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2 A. POHL

1. Goal and preliminaries

The goal of this lecture series is to prove the measure classification theorem, which
has been a key step in Lindenstrauss’ proof of arithmetic quantum unique ergodicity
for congruence lattices over Q. The relation between this measure classification and
quantum limits will be explained in Pablo’s lecture series. Throughout we use the
following notation. We set

H := PGL2(R).

(We could also work in a PSL2-setting as Lindenstrauss does. Things wouldn’t
change, but for consistency with Pablo’s lectures, we decided to use PGL2.) For
any prime number p we set

Lp := PGL2(Qp), and K := PGL2(Zp).

For any congruence lattice Λ over Q and almost all primes p there is a subgroup
Γ ∈ H ∩ Lp such that

(1) Λ\PSL2(R) ∼= Γ\(H × Lp)/Kp, Λg 7→ Γ(g, id)Kp.

Here, the action of Γ on H × Lp is diagonal (from the left), and Γ is a lattice in
H × Lp, and Kp only acts on Lp (from the right). For example, if Λ = PSL2(Z),
then Γ = PGL2(Z[

1
p ]). If Λ = PΓ(N) and (p,N) = 1, then

Γ = {g ∈ PGL2(Z[
1
p ]) | g ≡ id mod N}.

For later use, we remark that for any congruence lattice Λ overQ we have ΓKp = Lp

and Γ ∩ Kp = Λ. For the provided examples, this can be checked easily. An
indication of the proof of the general statement will appear in Lior’s lecture series.
Let

G := H × Lp.

We let

A := {at | t ∈ R} with at :=

(
et

e−t

)

be the one-parameter diagonal subgroup ofG in the PGL2(R)-factor (or the SL2(R)-
factor). The group A is often identified with A×{idL}. Then A acts from the right
on Λ\ SL2(R) resp. from the right in the H-factor of Γ\(H × Lp)/Kp:

Λg.a := Λga resp. Γ(g∞, gp)Kp.a := Γ(g∞a, gp)Kp.

We drop the subscript p from Lp and Kp.

Theorem 1.1. Suppose Γ arises from a congruence lattice over Q. Let

S := L/K and X := Γ\H × S.

Let µ be a probability measure on X (on the Borel σ-algebra BX of X) such that

(i) µ is A-invariant,
(ii) µ is S-recurrent,
(iii) µ-almost all A-ergodic components of µ have positive entropy under the A-

flow.

Then µ is the Haar measure mX on X.

Conjecture 1.2. Theorem 1.1 should be true without the requirement (iii).
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p-adic numbers. Let p be a prime number. The field Qp of p-adic numbers is the
completion of Q with respect to the norm | · |p on Q given by

∣∣∣pk
n

m

∣∣∣
p
= p−k, |0|p = 0,

where k ∈ Z, (p, nm) = 1. This means that if x is “divided” by high powers of p,
then its p-norm becomes very small. This norm extends to Qp. We may identify
Qp with the Laurent series





∞∑

j=k

ajp
j

∣∣∣∣∣∣
k ∈ Z, aj ∈ {0, 1, . . . , p− 1}, ak 6= 0



 .

Calculations with these Laurent series are canonical, and
∣∣∣∣∣∣

∞∑

j=k

ajp
j

∣∣∣∣∣∣
p

= p−k.

The space Qp is locally compact, second countable, complete metric. Moreover,

Zp = {|x|p ≤ 1} ∼=





∞∑

j=0

ajp
j



 .

Recurrence. The measure µ is called S-recurrent if for all B ∈ BX and µ-almost
all x ∈ B the following is satisfied:

picture: recurrent S-leaf

Let (g∞, gp) ∈ H × L be a representative of x, i.e., x = Γ(g∞, gp)K. Then there
exists a sequence (hn) in L such that hn → ∞ (meaning, the sequence (hn) leaves
any compact subset of L) and

Γ(g∞, gphn)K ∈ B

for all n ∈ N.

One easily sees that this definition does not depend on the choice of representative
for x. In other words, S-recurrence means that for almost any x = Γ(g∞, gp)K ∈ B,
its S-leaf Γ(g∞, S) visits B again and again.
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A-invariance and A-ergodicity. The measure µ is called A-invariant if for all
a ∈ A we have a∗µ = µ. This means that for all a ∈ A and all B ∈ BX , we have

(a∗µ)(B) = µ({x ∈ X | xa ∈ B}) = µ(Ba−1) = µ(B).

The measure µ is called A-ergodic if µ is A-invariant, and whenever B = Ba for all
a ∈ A and some B ∈ BX , then µ(B) = 0 or µ(X \B) = 0.

Ergodic decomposition. Invoking one-point-compactification we can embed X
into a compact second countable space X with a single additional point. Moreover,
we can extend any given probability measure µ on X trivially to a probability
measure µ on X. Formally we should apply ergodic decomposition to µ and observe
that almost all ergodic components will give zero mass to the additional point. This
in turn allows us to restrict the ergodic decomposition to µ. For simplicity, we ignore
this additional step here.

So let µ be an A-invariant probability measure onX . Then there exists a probability
space (Ξ, ν) and a measurable map

Ξ → M1(X) = {probability measures on X}, ξ 7→ µξ,

such that each µξ is an A-invariant and ergodic probability measure and

µ =

∫

Ξ

µξdν(ξ).

Here, M1(X) is endowed with the weak* topology and the Borel σ-algebra induced
by this topology. The ergodic decomposition of µ is essentially unique.

Ergodic decompositions can be constructed via conditional measures, which we
explain further below.

Entropy. Suppose first that µ is an at-invariant probability measure on X for
some fixed t ∈ R. Roughly speaking, the entropy of µ with respect to at can
be understood as a measurement how much information the iterated action of at
reveals on average about the constellation of X .

Let us imagine that we are asked to find a certain point x in X . We are allowed
to perform experiments on X . This – mathematically – translates to putting a
countable partition P on X , consisting of measurable subsets. For any partition
we would be told the partition element which contains x.

picture: partition
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What amount of information do we gain on (measure theoretic) average on X and
how do we measure it? Imposing a number of reasonable conditions on a measur-
ing function (such as, if some partition element has full measure, the information
gained is zero; gained information is maximal if all partition element have the same
measure; some kind of continuity; etc.), one finds that there is up to scaling a
unique function, namely,

Hµ(P) := −
∑

P∈P

µ(P ) logµ(P ),

the static entropy of P , which may be finite or infinite. This is the average of the
information function

Iµ(P)(x) := − logµ(P ) for x ∈ P ∈ P .

Now we take into account the evolution of X under at (here, t is fixed), and we can
perform our experiment after each step with at.

picture: iteration

Performing this procedure k times is equivalent to considering the partition

Pk−1
0 :=

k−1∨

j=0

a−j
t .P := {Pi0 ∩ a−1

t .Pi1 ∩ . . . ∩ a
−(k−1)
t .Pik−1

| Pij ∈ P}.

Then

lim
k→∞

1

k
Hµ(P

k−1
0 ) =: hµ(at,P)

exists, it is even an infimum, and its limit is called the entropy of at with respect to
P . Then, changing the partition, we get

hµ(at) := sup{hµ(at,P) | P partition of X , Hµ(P) < ∞},

the entropy of at. If µ is an A-invariant probability measure, then for t 6= 0, the
value

1

|t|
hµ(at)

is independent of t. We call this common value the entropy of µ with respect to A =
{at}, denoted hµ(a•). We remark that hµ(a•) may depend on the parametrization
of A (and it does unless it vanishes).
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2. Very brief outline of the proof of Theorem 1.1

We set

N :=

{
ns =

(
1 s

1

) ∣∣∣∣ s ∈ R

}

and consider it as a subgroup of PSL2(R) for the left hand side of (1), and as
a subgroup in the H-factor for the right hand side of (1), or as identified with
N × {idL} for the right hand side of (1) (adapted to personal taste). Then N acts
from the right on either side of (1), and these actions are equivariant.

Step 1: If µ is N -invariant, then µ = mX .

Proof of Step 1. We take advantage of the PSL2(R)-equivariance of the isomor-
phism in (1) and actually show on the left hand side that µ = mX . By hypothesis,
µ is N - and A-invariant. By symmetry, µ is also invariant under

U = N− =

(
1
∗ 1

)

(either one conjugates the whole set-up such that U becomes N and uses the hy-
pothesis for the conjugate measure µ′, or one recalls that N is the Lie group to
one of the two simple roots of PSL2(R) and U is the Lie group to the other simple
root, and since here the whole group A is acting, there is no difference between
these two situation. All arguments to prove that µ is actually N -invariant are also
valid for a proof that µ is U -invariant). Thus, µ is invariant under N and U . Thus,
by generation (look at the Lie algebra), µ is PSL2(R)-invariant, and hence equals
mX . �

Step 2: The action on N on X (from the right) provides a foliation of X into N -
orbits. We define a family of Radon measures (defined on Borel σ-algebra, locally
finite, inner regular) {µN

x }x∈X such that x∗µ
N
x is supported on xN almost surely.

If µN
x is N -invariant for µ-almost all x ∈ X , then µ is N -invariant.

Step 3: For µ-almost all x ∈ X , the leafwise measure µN
x is N -invariant.

Remark 2.1. The key point of Theorem 1.1 is that invariance under the geodesic
flow and the assumptions on recurrence and entropy imply invariance under the
horocycle flow. This shows that the geodesic flow and the horocycle flow, though
a priori flows of very different behavior, are linked to each other.

Remark 2.2. Lindenstrauss’ measure classification theorem is actually more general.
For L, he allows any S-algebraic group, for K any compact subgroup of L, for Γ any
discrete subgroup ofH×L (not necessarily a lattice) such that Γ∩{idH}×L = {id}.
In this generality one cannot expect to conclude that µ is Haar. The proof of this
more general theorem is parallel to the specification we consider here (which is
the version one needs for AQUE). In the following we will see all ingredients of
the proof. Hence also in the general setting, one concludes that µ is N -invariant,
and then uses the Ratner Theorems to deduce that µ is a linear combination of
homogeneous measures.
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3. Leafwise measures and proof of step 2

As a tool for the construction of N -leafwise measures we need conditional measures.

picture: N-leaves

Conditional measures. Let µ be a finite (or probability) measure on X .

Example 3.1. IfA is the σ-algebra onX generated by the finite partition {A1, . . . , An}
with µ(Aj) > 0,

picture: finite partition
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then the conditional (probability) measures are given by the family {µA
x }x∈X ,

µA
x (B) :=

µ(B ∩ Aj)

µ(Aj)
, for B ∈ BX , if x ∈ Aj ,

and ∫

A

fdµ =
∑

Aj⊆A

µ(Aj) ·
1

µ(Aj)

∫

Aj

1Aj
f(y)dµ(y) =

∫

A

∫

X

f(y)dµA
x (y)dµ(x)

for all f ∈ L1(X,BX , µ) and all A ∈ A. The conditional measure µA
x takes the set

Aj with x ∈ Aj and restricts and normalizes the original measure µ to Aj . Iterated
integration then first averages f over the partition elements and then sums over all
partition elements belonging to A.

Example 3.2. We can also define families of conditional probability measures
which may be supported on null sets related to a sub σ-algebra A of BX .

Let Z = [0, 1]2, endowed with the usual Lebesgue (Haar) measure m. Consider the
sub σ-algebra A := B[0,1]×{∅, [0, 1]}. Then the atoms (minimal sets of A are given
by {x} × [0, 1], x ∈ [0, 1]. These are m-null sets.

picture: null sets as atoms

Then {µA
(x,y)}(x,y)∈Z, µ

A
(x,y) = δx×m[0,1], provides a family of conditional measures

and again ∫

A

fdm =

∫

A

∫

Z

f(u, v)dµA
(x,y)(u, v)dµ(x, y)

for all f ∈ L1(Z,BZ ,m), all A ∈ A.

Proposition 3.3. Let A a sub σ-algebra of BX and µ a finite measure on X. Then
there exists a system of probability measures {µA

x }x∈X (called conditional measures)
and a set X ′ ∈ A, µ(X \X ′) = 0, such that

(i) the map x 7→ µA
x is A-measurable on X ′. That means, for any f ∈ L1(X,BX , µ),

the map x 7→
∫
fdµA

x is A-measurable on X ′.
(ii) For all f ∈ L1(X,BX , µ) and all A ∈ A, we have

∫

A

fdµ =

∫

A

∫
fdµA

x dµ(x).

The conditional measures are uniquely characterized up to changes on null sets.
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Note that we have to work with real (onest) functions (not equivalence classes of
functions) in Proposition 3.3 because µA

x might be singular with respect to µ.

In the following we will (almost exclusively) work with countably generated σ-
algebras. A σ-algebra A on X is called countably generated if there is a countable
set A0 of subsets of X such that σ(A0) = A, where σ(A0) denotes the smallest
σ-algebra which contains A0. If A0 is a countable algebra (which we may assume
without loss of generality), then the A-atom at x ∈ X is

[x]A :=
⋂

x∈A∈A

A =
⋂

x∈B∈A0

B.

In particular, [x]A ∈ A. This need not be the case for uncountably generated
σ-algebras.

Proposition 3.4. Hypotheses as in Proposition 3.3. Then, by possibly shrinking
X ′ slightly,

(i) If A = σ({A1, A2, . . .}) is countably generated and An := σ({A1, . . . , An}) is
the finite σ-algebra generated by the first n generators of A, then µAn

x → µA
x

in the weak* topology for µ-almost all x ∈ X.
(ii) If A is countably generated, then µA

x ([x]A) = 1 for every x ∈ X ′. Moreover,
if [x]A = [y]A for some x, y ∈ X ′, then µA

x = µA
y .

Ergodic decompositions revisited. Let

E := {B ∈ BX | B is A-invariant}

be the σ-algebra of all A-invariant subsets. Then any family {µE
x} of conditional

measures on E provides an ergodic decomposition of µ.

Leafwise measures for N . We would like to find a countably generated sub σ-
algebra of BX whose atoms are µ-almost surely the N -leaves. In the situations we
consider, this is not possible. However, it is possible to locally model N -leaves by
atoms of appropriately chosen sub σ-algebras. Thus, locally we can define mea-
sures on N -leaves by conditional measures. Then we patch together these local
descriptions to Radon measures defined on entire N -leaves. Since we want to take
advantage of the additional structure on the N -leaves given by the groups, we will
actually define these leafwise measures on N .

picture: local N-leaves
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As preparation for this construction, we need a few definitions.

Metrics. We endow H with a left H-invariant Riemannian metric dH , and S with
an L-invariant metric dS . Then

dH×S

(
(h1, s1), (h2, s2)

)
:= max{dH(h1, h2), dS(s1, s2)}

is a metric on H × S, and

dX
(
Γ(h1, s1),Γ(h2, s2)

)
:= inf

γ∈Γ
dH×S

(
γ.(h1, s1), (h2, s2)

)

is a metric on X . With this metric, X becomes a locally compact, second countable
metric space, and the projection map

H × S → X

is locally an isometry.

Definition 3.5. Let x ∈ X and A ⊆ xN . We say that A is an open N -plaque if
and only if the set

{n ∈ N | xn ∈ A}

is open and bounded.

Theorem 3.6 (Definition and existence of leafwise measures for T = N). There
is a family {µN

x }x∈X of Radon measures on N and a set X ′ ∈ BX , µ(X \X ′) = 0,
satisfying the following properties:

(i) Let Z ∈ BX and A be a countably generated σ-algebra on Z such that for any
x ∈ Z, the atom [x]A is an open N -plaque, say [x]A = xUx,A with

Ux,A = {n ∈ N | xn ∈ [x]A}.

Then, for µ-almost every x ∈ Z, we have

(
µ|Z
)A
x
∝ x∗

(
µN
x |Ux,A

)
.

Here, x∗

(
µN
x |Ux,A

)
is the push-forward of µN

x |Ux,A
under the map N → X,

n 7→ xn.
(ii) For all x ∈ X ′ we have µN

x (BN
1 ) = 1.

(iii) For every x ∈ X ′ and n ∈ N such that xn ∈ X ′, we have

µN
x ∝ n∗

(
µN
xn

)
,

where n∗

(
µN
xn

)
is the push-forward of µN

xn under the map N → N,m 7→ nm
(note nm = mn).

This family of measures is unique (already by (i) and (ii)) up to redefining on null
sets in BX. It is called the family of leafwise measures.
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picture: compatibility

The remainder of this subsection serves to prove Theorem 3.6. Its proof is split
into several subresults.

Definition 3.7. Let δ > 0, R ≥ 1 and x0 ∈ X . We say that C ∈ BX is an
(R, δ)-cross section for N at x0 if and only if

(i) Bδ(x0) ⊆ CBN
1 ,

(ii) the map C ×BN
R → CBN

R , (x, n) 7→ xn, is injective and bi-measurable.

Definition 3.8. Let C be a (R, δ)-cross section for N at x0 ∈ X . Let A be a
countably generated σ-algebra A on CBN

R =: Z all of whose atoms are of the form
xBN

R for some x ∈ C. Then we call (A, Z) an (N,R)-flower with base Bδ(x0).

Proposition 3.9. Let x0 ∈ X and R ≥ 1 and suppose that the map

BN
R → X, n 7→ x0n,

is injective. Then there exists an (R, δ)-cross section C for N at x0 for some δ > 0.
Moreover, there exists a countably generated σ-algebra A on CBN

R for which

[xn]A = xBN
R

for all x ∈ C and n ∈ BN
R . Hence (A, CBN

R ) is an (N,R)-flower with base Bδ(x0).

picture: flowers
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For the proof of Proposition 3.9 (and also later on) we want to have a kind of
application of elements in H × S = G/K on X .

S-structure. Let

X̃ := Γ\G

and let πK : X̃ → X = X̃/K denote the canonical quotient map. Clearly, L (and

G) acts on X̃ from the right, but S = L/K (and G/K) cannot act on X = X̃/K,
even though S-leaf are well-defined subsets of X .

We claim that for any x ∈ X there is an open neighborhood U of x in X and a
continuous local section

τU : U → X̃

of πK . Given such a local section τU , we can define an action-like continuous map
tU : U × (G/K) → X by

tU (y, gK) := πK(τU (y)g).

For the construction of these local continuous sections we use that ΓK = L and
Γ ∩K = Λ. More precisely we claim that there is an open cover S of X such that

(i) For all U ∈ S, x ∈ U , we have tU (x, (id,K)) = x.
(ii) For any U ∈ S, x ∈ U , y ∈ tU (x,G/K) and V ∈ S with y ∈ V , there exists

g ∈ G such that

tV (y, g·) = tU (x, ·).

Moreover, the action of g stays in the T -component.
(iii) If U ∈ S is relatively compact, then there exists r = rU > 0 such that for all

x ∈ U , tU (x, ·) is injective on B
G/K

r .

Let x ∈ X and pick a presentation of the form

x = Γ(h, id)K.

Let

πΛ : H → Λ\H

be the canonical quotient map. Since Λ is a lattice in H , we find an injectivity
radius r > 0 at πΛ(h). Hence the map

BH
r → BΛ\H

r (Λh), q 7→ Λhq

is an isometry. Set

U := {Γ(hq, id)K | q ∈ BH
r }.

We claim that

τU : U → Γ\G = X̃, y = Γ(g, id)K 7→ Γ(g, id)

is a local continuous section of πK . To see that τU is well-defined, assume that

U ∋ y = Γ(g, id)K = Γ(g′, id)K.

Hence there exist γ ∈ Γ, k ∈ K such that

(g′, id) = γ.(g, id)k = (γg, γk).

Thus,

k = γ−1 ∈ Γ ∩K = Λ.
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By the definition of U , we have g = hq, g′ = hq′ for some q, q′ ∈ BH
r . Thus,

γhq = γhq′

with γ ∈ Λ. Since r is an injectivity radius, it follows q = q′. In turn, γ = id. This
shows that τU is well-defined.

We prove that U is open. Let

πΓ : G → Γ\G

be the canonical quotient map. Then

π−1
K (U) = {Γ(hg, k) | q ∈ BH

r , k ∈ K} = πΓ(hB
H
r ×K),

which is open, since K is open in L.

One immediately checks that τU is continuous and a πK -section. Moreover, one
easily proves the other requirements.

For simplicity, we set

xBT
r := tU (x,B

T
r ).

This definition does not depend on the choice of U with x ∈ U .

Proof of Proposition 3.9. Thickening of piece of N -leaf: Let U ∈ S(x0). We claim
that there exists η > 0 such that

(2) BG/K
η BN

R → X, u 7→ tU (x0, u)

is injective. To seek a contraction, suppose that for any n ∈ N we find u
(n)
1 =

ε
(n)
1 n

(n)
1 , u

(n)
2 = ε

(n)
2 n

(n)
2 ∈ B

G/K
1
n

BN
R with u

(n)
1 6= u

(n)
2 and tU (x0, u

(n)
1 ) = tU (x0, u

(n)
2 ).

Passing to a subsequence, we may assume that

n
(n)
1 → n1, n

(n)
2 → n2 with n1, n2 ∈ BN

R .

Then

tU (x0, u
(n)
1 ) = tU (x0, u

(n)
2 ) → x0n1 = x0n2

and, by injectivity, n1 = n2. Hence u
(n)
1 → (n1,K) and u

(n)
2 → (n1,K). This

contradicts to the existence of an injectivity radius at x0n1: We find V ∈ S(x0n1)
relatively compact and a local section τV such that

tV (x0n1, n
−1
1 u

(n)
j ) = tU (x0, u

(n)
j ).

Now n−1
1 u

(n)
1 , n−1

1 u
(n)
2 → (id,K), but n−1

1 u
(n)
1 6= n−1

1 u
(n)
2 .

Choice of cross section: Let r > 0 be an injectivity radius at x0. Hence, the
canonical projection

BG/K
r → BX

r (x0)

is an isometry. Fix an Iwasawa decomposition H = K∞AN . Pick sufficiently small
δ ∈ (0, η) and ε > 0 such that, with

CG/K := (K∞A× S) ∩B
G/K
δ ,

we have

CG/KBN
ε ⊆ BG/K

r ∩BG/K
η BN

R .

Then

CG/K ×BN
ε → CG/KBN

ε



14 A. POHL

is an isomorphism (a diffeomorphism). Set

C := tU (x0, CG/K).

Then

(3) C ×BN
ε → CBN

ε , (y, n) 7→ yn

is injective, and we find some ξ > 0 such that Bξ(x0) ⊆ CBN
1 . We claim that

(3) stays injective for ε = R. To that end suppose that we find (x1, n1), (x2, n2) ∈
C × BN

R such that x1n1 = x2n2. Pick h1, h2 ∈ CG/K such that tU (x0, hj) = xj .
Then

tU (x0, h1n1) = x1n1 = x2n2 = tU (x0, h2n2).

By injectivity of (2), we find h1n1 = h2n2. Comparing entries of these elements
in G/K and envoking that the Iwasawa decomposition provides an diffeomorphism
H → K∞ × A × N , it follows immediately that n1 = n2. The map in (2) is
obviously measurable. Bi-measurability follows from a general principle (and can
also be proven by hand).

Definition of σ-algebra: We consider the σ-algebra

BC × {∅, BN
R }

on C × BN
R . This is clearly countably generated. Let A be the image of this

σ-algebra unter the map in (2) (for ε = R). Then A is a countably generated
σ-algebra on CBN

R and

[xt]A = xBN
R

for any x ∈ C and t ∈ BN
R . �

For the definition of the leafwise measures we need the following property: When-
ever B ∈ BN is bounded, then for µ-almost all x ∈ X , we find an (N,R)-flower A
with an atom “covering” B, that is xB ⊆ [x]A. For that we need to show that in
Proposition 3.9 we can have abitrarily large R.

Lemma 3.10. For µ-almost all x ∈ X, the N -leaf xN is embedded. This means
that the map N → X, n 7→ xn, is injective.

Proof. Let D ∈ BX be compact. We will show the statement on D. Since X is
σ-compact, the statement then follows on all of X . Since µ is A-invariant, Poincaré
recurrence yields that for µ-almost all x ∈ D there exists a sequence (tj)j∈N ր ∞
in R such that xatj ∈ D for all j ∈ N. Let x ∈ D be such that this conclusion holds
and let (tj) be such a sequence. By passing to a subsequence, we may assume that
(xatj ) converges to, say, x0 ∈ D. Suppose that the N -leaf xN is not embedded.
Then there exists n ∈ N , n 6= id, such that x = xn. Hence also

(4) xatj = xnatj = xatj (a−tjnatj ).

Now a−tjnatj → id, and hence both sides of (4) converge to x0. Let r > 0 be an
injectivity radius at x0. For sufficiently large j, the point xatj = xatj (a−tjnatj ) is

in BX
r (x0), but a−tjnatj 6= id, contradicting to r being an injectivity radius. In

turn, the N -leaf xN is embedded. �
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If B ∈ BN is a bounded and (A, Z) an (N,R)-flower such that xB ∈ [x]A for some
x ∈ X , then we would like to define

µN
x (B) :=

µA
x (xB)

µA
x (xB

N
1 )

.

Therefore we need µA
x (xB

N
1 ) > 0 for µ-almost all x.

Lemma 3.11. Let U ⊆ N be an open neighborhood of id and (A, Z) be an (N,R)-
flower. For µ-almost all x ∈ Z, we have µA

x (xU) > 0.

Proof. Let Z ′ be a full-measure subset of Z such that for the conditional measures
µA
x , x ∈ Z ′, the properties of Theorem 3.3 and Proposition 3.4 hold. Define

B := {x ∈ Z ′ | µA
x (xU) = 0}.

We want to show that µ(B) = 0. By the definition of conditional measures (see
Theorem 3.3), we have

µ(B) =

∫
1Bdµ =

∫ ∫
1B(y)dµ

A
x (y)dµ(y).

Hence, it suffices to show that

µA
x (B) = µA

x ([x]A ∩B) = 0

for each x ∈ Z ′. The goal is to cover [x]A ∩B with countably many µA
x -null sets.

Let x ∈ Z ′. Since A-atoms are open N -plaques, we have

[x]A = xUx

for some open bounded subset Ux ⊆ N . Let

Vx := {n ∈ Ux | xn ∈ [x]A ∩B}.

The familiy {nU}n∈Vx
is an open cover of Vx. Since Vx is second countable, there

is a countable subfamily {njU}j∈N, which covers Vx. Now

µA
x ([x]A ∩B) ≤ µA

x




⋃

j∈N

xnjU



 ≤
∑

j∈N

µA
x (xnjU).

Since xnj ∈ B, we have 0 = µA
xnj

(xnjU) = µA
x (xnjU), and hence µA

x (B) = 0. �

Proof of Theorem 3.6. By the combination of Lemma 3.10 and Proposition 3.9, for
each R ∈ N we pick a countable family of (N,R)-flowers such that their bases cover
X . The union of these families provides us with a countable family F of flowers.
Let X ′′ ∈ BX be a full measure set such that the N -leaf through any point of
X ′′ is embedded and µA

x (xB
N
1 ) > 0 for all x ∈ X ′′ and A ∈ F and such that

whenever A ∈ F and x ∈ X ′′, we have µA
x ([x]A) = 1, and whenever x, y ∈ X ′′ with

[x]A = [y]A, then µA
x = µA

y .

Let x ∈ X ′′. Let B ∈ BN be bounded. Then there exists A ∈ F such that
xB ⊆ [x]A. We define

(5) µN
x (B) :=

µA
x (xB)

µA
x (xB

N
1 )

.

To show that this definition is well-defined in all aspects (choice of F , choice of A)
and to show (i) one uses that countably generated σ-algebra all of whose atoms are
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open N -plaques are countably equivalent on their common domain. Now for count-
ably equivalent σ-algebra the conditional measures on the atoms of the common
refinement are proportional. These proofs are not difficult, we omit them here.

To prove (iii), let n ∈ N and B ∈ BX . Pick A ∈ F such that [x]A = [xn]A (there
are many such A). Then, by Proposition 3.4, we have µA

x = µA
xn. Hence

n∗µ
N
xn(B) = µN

xn(n
−1B) =

µA
xn(xB)

µA
xn(xnB

N
1 )

=
µA
x (xB

N
1 )

µA
x (xnB

N
1 )

·
µA
x (xB)

µA
x (xB

N
1 )

= cµN
x (B).

This completes the proof. �

Proposition 3.12 (Step 2). If µN
x is N -invariant for µ-almost all x ∈ X, then µ

is N -invariant.

Proof. Let n ∈ N . We have to show that n∗µ = µ. Let B ∈ BX . Suppose n ∈ BN
R .

In the proof of Theorem 3.6 we have seen that we can coverX with countably many
sets Zk ∈ BX such that on each Zk there is based a (N, 2R)-flower. By appropriate
choices of the Zk we may that we can cover B with countably many sets Bk ∈ BX

such that Bk ⊆ Zk and also Bkn
−1 ⊆ Zk. This allows us to take advantage of

Theorem 3.6(i). To simplify notation, we omit all restriction to subsets. Let A be
an appropriate (N,R)-flower.

Let x ∈ X and suppose that µN
x is N -invariant. We claim that µA

x is N -invariant.
Recall µA

x = cx∗µ
N
x for some c > 0. We have

n∗µ
A
x (B) = µA

x (Bn−1)

= cµN
x ({m ∈ N | xm ∈ Bn−1})

= cµN
x ({m ∈ N | xmn ∈ B})

= cµN
x ({m ∈ N | xnm ∈ B})

= cµN
x (n−1{m ∈ N | xm ∈ B})

= cx∗

(
n∗µ

N
x

)
(B)

= cx∗µ
N
x (B)

= µA
x (B).

Hence, the conditional measures µA
x are N -invariant for µ-almost all x ∈ X . Then

n∗µ(B) = µ(Bn−1) =

∫

X

1Bn−1dµ =

∫

X

µA
x (Bn−1)dµ(x) =

∫

X

µA
x (B)dµ(x)

= µ(B).

Thus, µ is N -invariant. �

4. Preparations for step 3

The remaining section are devoted to the proof of the following proposition, the
final step in the proof of Theorem 1.1.
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Proposition 4.1. For µ-almost all x ∈ X, the leafwise measure µN
x is N -invariant.

Idea of the proof: Before we start with the details of the proof of Proposition 4.1, we
illustrate its global idea. The proof makes essential use of the Ratner H-property,
the observation that leafwise measures coincide almost surely if the anchor points
are in the same S-leaf and the fact that the map x 7→ µN

x is “sufficiently” continuous.
More precisely, the idea of the proof is as follows. Qualitatively, the Ratner H-
property is the following phenomenon. When we take to close-by point x, y in X
and consider their trajectories under the horocycle flow (here: the N -flow), then
there are two possibilities for their behavior:

(1) They stay close to each other all the time. This can only happen if they are on
the same N -orbit.

(2) At some point xns, yns differ significantly. Then most of their distance is in
the flow direction. In particular, there is ns′ (significant) such that yns and
xns+s′ are close.

For the proof of Proposition 4.1 we will note that whenever x, y are on the same
S-leaf, then µN

x = µN
y (µ-almost surely). Moreover, by S-recurrence, we find any

pairs (x, y) of close-by points which are on the same S-leaf but not on the same
N -leaf. Let us fix one such pair (x, y) and suppose that xns, yns differ significantly.
Since xns and yns are still on the same S-leaf (the N -action preserves the S-leaves),
we have

µN
xns

= µN
yns

.

Now xns+s′ is close to yns and hence the leafwise measures µN
xns+s′

, µN
yns

should

be similar (by Lusin). We will see that we actually may assume

µN
xns+s′

= µN
yns

.

Then

µN
xns

= µN
yns

= µN
xns+s′

∝ (n−s′)∗µ
N
xns

We will see that this is as good as being N -invariant.

We will now first provide a conditional proof of Proposition 4.1, where we proceed
under the assumption of a doubling condition (to be explained below) to illustrate
the ideas. Finally, we will provide an unconditional proof where the doubling
condition is substituted a local version. We start with a few preparations.

The first step is to reduce the proof of Proposition 4.1 to the proof that on a non-
null set, the leafwise measures µN

x are proportional to their push-forward n∗µ
N
x for

some n ∈ N , n 6= id.

Lemma 4.2. For µ-almost all x ∈ X and all a ∈ A we have µN
xa ∝ θ∗µ

N
x , where

θ : N → N , n 7→ a−1na.

Proof. We restrict X to a full-measure subset X ′ on which leafwise measures are
defined via (5) and on which the statement of Lemma 3.11 holds. Let B ∈ BN be
bounded. Pick R ≥ 1 such that B, θ(B) ⊆ BN

R , and pick an (N,R)-flower (A, CBN
R )

of the form as in the definition (5). Then also the σ-algebra Aa is such an (N,R)-
flower (possibly, one has to shrink the cross section C a bit to avoid problems with
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injectivity radii). Using the definition of conditional measures on A and Aa, one
easily finds

a∗µ
A
x = µAa

xa ,

where a∗µ
A
x is the push-forward of µA

x under the map X → X , x 7→ xa. Then

µN
xa(B) =

µAa
xa (xaB)

µAa
xa (xaB

N
1 )

=

(
a∗µ

A
x

)
(xaB)(

a∗µA
x

)
(xaBN

1 )

=
µA
x (xaBa−1)

µA
x (xaB

N
1 a−1)

=
µA
x (xaBa−1)

µA
x (xB

N
1 )

·
µA
x (xB

N
1 )

µA
x (xaB

N
1 a−1)

= c
(
θ∗µ

A
x

)
(B)

for an obvious constant c > 0. �

Lemma 4.3. Let

Z := {x ∈ X | ∀n ∈ N : µN
x = n∗µ

N
x },

Y := {x ∈ X | ∃n ∈ N \ {id} : µN
x ∝ n∗µ

N
x }.

Then µ(Y \ Z) = 0.

Proof. For y ∈ Y we set

Ry := {s > 0 | µN
y ∝ (ns)∗µ

N
y } and r(y) := inf Ry.

We aim to show that Ry = R+ for µ-almost all y ∈ Y .

For s ∈ Ry it follows with Lemma 4.2 that

(6) µN
yat

∝ θ∗µ
N
y ∝ θ∗(ns)∗µ

N
y =

(
ne−2ts

)
∗
θ∗µ

N
y ∝

(
ne−2ts

)
∗
µN
yat

.

Hence r(yat) = e−2tr(y). Since µ is A-invariant, Poincaré recurrence applied to Y
yields r(y) = 0 for µ-almost all y ∈ Y .

We fix a test function ϕ ∈ Cc(N) which is non-negative everywhere and positive
on some neighborhood of idN . For y ∈ Y define

Ly :=

{
s ≥ 0

∣∣∣∣
∫

ϕd(ns)∗µ
N
y > 0

}
.

For µ-almost all y ∈ Y , the set Ly is nonempty and contains Ry. Note that Ly

depends on ϕ. The map

s 7→

∫
ϕd(ns)∗µ

N
y =

∫
ϕ(nns)dµ

N
y (n)

is clearly continuous. This yields that wheneverRy ⊆ Ly and r(y) = 0 (which is true
µ-almost surely), this map is positive on an interval [0, b] for some b = b(y, ϕ) > 0.
Define the map ky : Ly → R by

exp(ky(s)) :=

∫
ϕd(ns)∗µ

N
y∫

ϕdµN
y

=

∫
ϕ(nns)dµ

N
y (n)∫

ϕ(n)dµN
y (n)

.

We claim that Ly = [0,∞) and ky(rs) = rky(s) for any r, s > 0.
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If s1 ∈ Ry and s2 ∈ Ly, then∫
ϕ(nns1+s2)dµ

N
y (n)∫

ϕ(n)dµN
y (n)

=

∫
ϕ(nns1+s2)dµ

N
y (n)∫

ϕ(nns1)dµ
N
y (n)

·

∫
ϕ(nns1)dµ

N
y (n)∫

ϕ(n)dµN
y (n)

=

∫
ϕ(nns2 )d(ns1)∗µ

N
y (n)∫

ϕ(n)d(ns1 )∗µ
N
y (n)

· exp(ky(s1))

=

∫
ϕ(nns2 )dµ

N
y (n) · c∫

ϕ(n)dµN
y (n) · c

· exp(ky(s1))

= exp(ky(s1 + s2)).

Thus, s1 + s2 ∈ Ly and ky(s1 + s2) = ky(s1) + ky(s2). If r(y) = 0, then since
Ry contains arbitrarily small s > 0, this special kind of additivity yields that
Ly = [0,∞) (hence we can move [0, b] by small amounts, and then repeat) and hence
ky is continuous on [0,∞). Moreover, Ry is dense in Ly (note that s1 + s2 ∈ Ry

for s1, s2 ∈ Ry. Adding up arbitrarily small elements sufficiently often produces
elements arbitrarily close to any given s0 ∈ Ly). (Note that we cannot conclude
that Ry = Ly because Ly depends on ϕ.) This now implies that

(1) ∀ s ∈ Ry, ∀m ∈ N : ky(ms) = mky(s),
(2) ∀ s ∈ Ly, ∀m ∈ N : ky(ms) = mky(s), (by continuity)
(3) ∀ s ∈ Ly, ∀ q ∈ Q : ky(qs) = qky(s),
(4) ∀ s ∈ Ly, ∀ r > 0: ky(rs) = rky(s).

Let s ∈ Ry. As seen in (6), then e−2ts ∈ Ryat
. Then

exp(ky(s)) =

∫
ϕd(ns)∗µ

N
y∫

ϕdµN
y

=

∫
ϕdθ∗(ns)∗µ

N
y∫

ϕdθ∗µN
y

=

∫
ϕd
(
ne−2ts

)
∗
θ∗µ

N
y∫

ϕdθ∗µN
y

=

∫
ϕd
(
ne−2ts

)
∗
µN
yat∫

ϕdµN
yat

= exp(kyat
(e−2ts)).

Invoking continuity, we find

ky(s) = kyat
(e−2ts)

for all s ∈ Ly, all t ∈ R.

The map f : Y ′ → R, y 7→ ky(1), is measurable on some full measure subset Y ′ of
Y . By Lusin’s Theorem and regularity of µ, for any ε > 0 we find a compact subset
Kε of Y ′ with µ(K) ≥ µ(Y ′) − ε such that f |Kε

is continuous. In particular, it is
bounded. Applying Poincaré recurrence to Kε yields that

ky(1) = e−2tkyat
(1) = 0

for µ-almost all y ∈ Kε. Letting ε → 0, shows ky ≡ 0 for µ-almost all y ∈ Y . Thus,
we have ∫

ϕd(ns)∗µ
N
y =

∫
ϕdµN

y

for µ-almost all y ∈ Y and all s > 0 and all test functions ϕ. Therefore Y \ Z is a
null set. �

Remark 4.4. The proof of Lemma 4.3 shows that Z and Y are A-invariant µ-almost
surely.
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First reduction of proof of Proposition 4.1. Let Z, Y be as in Lemma 4.3. The
statement of Proposition 4.1 is equivalent to µ(X \Z) = 0. Assume that µ(X \Z) >
0 and set

µ′ := µ|X\Z .

Then µ′ is S-recurrent, and by Remark 4.4 also A-invariant. Clearly, (since Z is A-
invariant) the entropy condition is satisfied. In the construction of (N,R)-flowers
we can restrict to A-invariant sets because A-invariant sets essentially consist of
complete N -leaves (easily seen using standard Iwasawa decomposition). Then we
can further restrict to the flowers (conditional measures of conditional measures).
Since X \ Z is A-invariant, we have

(µ′)Ax = µA
x

µ-almost surely. Therefore, for the proof of Proposition 4.1 it suffices to show that
the assumption µ(Z) = 0 or µ(Y ) = 0 leads to a contradiction. �

Proposition 4.5 (Identical leafwise measures). There exists X ′ ∈ BX , µ(X\X ′) =

0, such that for all x, y ∈ X ′ with x
S
∼ y we have µN

x = µN
y .

For x ∈ X let S(x) := {U ∈ S | x ∈ U}, where S is the family of open sets from the
local continuous sections. For all pratical purposes we stay here with the family of
local continuous sections we constructed explicitly.

Sketch of proof of Proposition 4.5. • We start by showing that we can define
leafwise measures for S-leaves in analogy to Theorem 3.6. For that we need
the thickening property, cross sections, (S,R)-flowers and long embedded
S-leaves.

• We show the existence of thickening and cross sections. Let x0 ∈ X , U ∈
S(x0), R ≥ 1 and suppose that

tU (x0, ·) : B
S

R → X, s 7→ tU (x0, s)

is injective. We claim that there exists ε > 0 such that x0B
H
ε ⊆ U and

x0B
H
ε ×BS

R → X, (x, s) 7→ tU (x, s)

is injective. Note that by our choices of local sections, we have

tU (x0h, s) = tU (x0, s)h

for sufficiently small h. To seek a contradiction we suppose that for all

n ∈ N we find h
(n)
1 , h

(n)
2 ∈ BH

1
n

, s
(n)
1 , s

(n)
2 ∈ BS

R such that

tU (x0h
(n)
1 , s

(n)
1 ) = tU (x0h

(n)
2 , s

(n)
2 )

and h
(n)
1 s

(n)
1 6= h

(n)
2 s

(n)
2 . Since B

S

R is compact, we may assume that

s
(n)
1 → s1, s

(n)
2 → s2 for some s1, s2 ∈ B

S

R.

Since tU is continuous, it follows

tU (x0h
(n)
1 , s

(n)
1 ) = tU (x0h

(n)
2 , s

(n)
2 ) → tU (x0, s1) = tU (x0, s2).
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Hence, by injectivity, s1 = s2. Using an appropriate local section at x0s1,
we see find a contraction to the existence of an injectivity radius at x0s1.
This shows that the existence of ε > 0 such that

tU (x0, ·) : B
H
ε BS

R → X

is injective. Now, if x1 = x0h1, x2 = x0h2 ∈ x0B
H
ε and s1, s2 ∈ BS

R with
tU (x1, s1) = tU (x2, s2), we have

tU (x1, s1) = tU (x0, s1)h1 = tU (x0, h1s1) = tU (x0, h2s2).

Hence, h1s1 = h2s2. By comparing the components, h1 = h2, s1 = s2.
• We claim that all S-leaves are embedded. This means that for any x ∈ X
and U ∈ S(x), the map tU (x, ·) : S → X is injective. Let s1, s2 ∈ S with
tU (x, s1) = tU (x, s2). Suppose x = Γ(h, id)K. Then

Γ(h, s1) = tU (x, s1) = tU (x, s2) = Γ(h, s2).

Since Γ acts diagonally, it follows s1 = s2.
• Now we can define families of S-leafwise measures as in Theorem 3.6 with
the difference that we have to pay attention to different local sections.
This means, that for x ∈ U ∈ S, the leafwise measure at x depends on
the local section on U , resulting in families {µS

x,U}. Moreover, instead of

Theorem 3.6(iii), for x
S
∼ y with x ∈ U ∈ S(x), y ∈ V ∈ S(y) and any

isometry λ on S with

(7) tU (x, ·) = tV (y, ·) ◦ λ,

we have

µS
x,U ∝ λ∗µ

S
y,V .

• We also can achieve all these statements and constructions for N×S-leaves
by using a hyprid version of the construction of N -leafwise and S-leafwise
measures. This hybrid structure shows (for more general situations, it is
proven by Einsiedler-Katok) that for µ-almost all x ∈ X and U ∈ S(x) we
have

µN×S
x,U ∝ µN

x × µS
x,U .

• If now x
S
∼ y with x ∈ U ∈ S(x), y ∈ V ∈ S(y) and λ an isometry on S as

in (7), then

µN
x × µS

x,U ∝ µN×S
x,U ∝ λ∗µ

N×S
y,V ∝ µN

y × λ∗µ
S
y,V ∝ µN

y × µS
x,U .

Hence, µN
x = µN

y (equality because of normalization).

�

Lemma 4.6. For every ε > 0, every B ∈ BX and µ-almost every x ∈ B, there is
some

y ∈ B ∩Bε(x) \ xB
N×S
1

such that y
S
∼ x. Here, xBN×S

1 := tU (x,B
N×S
1 ) does not depend on the choice of

U ∈ S(x).
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Proof. A picture proof:

picture: long S-leaves

From the arguments in the proof of Proposition 4.5 we know that almost every
N × S-leaf is embedded, i.e., for µ-almost all x ∈ X . Pick U ∈ S(x). Let ε > 0
and cover B with a countable family {Bj}j∈N of ε/2-balls in X . Let j ∈ N. By
S-recurrence, we know that for µ-almost every x ∈ B ∩Bj there exists s ∈ S \BS

1

such that y := tU (x, s) ∈ B ∩ Bj . Since the N × S-leaf through x is embedded

µ-almost surely, we have y /∈ xBN×S
1 µ-almost surely. Noting Bj ⊆ Bε(x) finishes

the proof. �

5. A conditional proof of Proposition 4.1

Lemma 5.1 (Ratner H-property, quantitatively). Let X ′ ⊆ X be compact and
̺ ∈ (0, 1). Then we find C, η0 > 0 such that for all δ ∈ (0, η0) and x, x′ ∈ X ′ with

x′ ∈ Bδ(x) \ xB
N×S
1

there exists η > 0 such that for all r ∈ R with

̺η < |r| < η

there exists r′ ∈ R with
1

C
< |r − r′| < C

such that we have

x′nr ∈ B
Cδ

1
2
(xnr′)

Conditional proof of Proposition 4.1. Let ε > 0 sufficiently small (ε < 1/16 is suffi-
cient for the conditional proof, the unconditional one may require a smaller ε). We
fix a compact set X1 ∈ BX with µ(X1) > 1− ε such that

(a) X1 ∩ Y = ∅ (possible since Y is a null set),
(b) the map x 7→ µN

x is continuous on X1 (possible by Lusin’s Theorem),
(c) for all x ∈ X1, the N -leafwise measure µN

x satisfies Theorem 3.6(i)-(iii) (possible
by Theorem 3.6), and

(d) ∀x, x′ ∈ X1 : (x
S
∼ x′ ⇒ µN

x = µN
x′) (possible by Proposition 4.5).
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We will deduce a contradiction to (a) under the following doubling assumption:
There is a constant ̺ ∈ (0, 1) such that for µ-almost every x ∈ X and all r > 1 we
have

µN
x (BN

r ) > 2µN
x (BN

̺r).

We claim that there is a (fixed) compact interval I ⊆ R>0 (in particular, bounded
away from 0) such that, if ε is sufficiently small, for any sufficiently small δ > 0 we
find points y, y′ ∈ X1 with

(8) y′ ∈ Bδ(ynt)

for some |t| ∈ I, and

µN
y = µN

y′ .

If we suppose this claim to be true for the moment, then we apply it to a sequence
(δj) ց 0 to get sequences (yj), (y

′
j) in X1. Since X1 is compact, we may assume

yj → y, y′j → y′ for some y, y′ ∈ X1.

Since

d(y′j , yjntj ) < δj → 0

and the ntj are contained in the compact set {nt | |t| ∈ I}, there exists t ∈ I ∪ −I
with

y′ = ynt.

By (b), the map x 7→ µN
x is continuous on X1. Since

µN
yj

= µN
y′
j
,

we find

µN
y = µN

y′ = µN
ynt

.

Using (c), we have

µN
ynt

∝
(
n−t

)
∗
µN
y .

Hence either y or y′ (depending on whether t > 0 or not) is in Y , which is a
contradiction to (a).

It remains to prove the claim. By a special maximal ergodic theorem by Lindenstrauss-
Rudolph (note that µN

x is not yet known to be N -invariant), we find a compact set

X2 ∈ BX , X2 ⊆ X1, µ(X2) ≥ 1 − c1ε
1
2 , where c1 is some universal constant, such

that

(9) ∀x ∈ X2 ∀ r > 0:

∫

BN
r

1X1
(xn)dµN

x (n) ≥ (1− ε
1
2 )µN

x (BN
r ).

Moreover, we may assume that the doubling assumption holds on X2 without ex-
ceptions. Let C, η0 be as in Lemma 5.1 applied toX2 and ̺ (pick a ̺ in the doubling
assumption). For δ ∈ (0, η0) pick η > 0 as in Lemma 5.1. Pick δ sufficiently small,
so that η > 1. By Lemma 4.6, for µ-almost every x ∈ X2 we find

x′ ∈ X2 ∩Bδ(x) \ xB
N×S
1

with x′ S
∼ x. We fix such a pair (x, x′) and consider

G1 := {s ∈ R | xns ∈ X1}, G2 := {s ∈ R | x′ns ∈ X1}.

We want to show that (
BR

η \B
R

̺η

)
∩G1 ∩G2 6= ∅.
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We estimate its measure. For that we use the identification R → N , s 7→ ns. Since

x, x′ ∈ X1 and x
S
∼ x′, (d) shows

µN
x = µN

x′ .

Since x, x′ ∈ X2, we have

µN
x

(
(BR

η \B
R

̺η) \Gj) = µN
x (BR

η )−
[
µN
x (B

R

̺η) + µN
x ((BR

η \B
R

̺η) ∩Gj)
]
.

With (9) and µN
x = µN

x′ it follows that

µN
x (B

R

̺η) + µN
x ((BR

η \B
R

̺η) ∩Gj) ≥ µN
x (BR

η ∩Gj)

≥ (1− ε
1
2 )µN

x (BR

η ).

Hence
µN
x ((BR

η \B
R

̺η) \Gj) ≤ ε
1
2µN

x (BR

η ).

By the doubling assumption, we have

µN
x (BR

η ) = µN
x (B

R

̺η) + µN
x (BR

η \B
R

̺η) ≤
1

2
µN
x (BR

η ) + µN
x (BR

η \B
R

̺η).

Thus
1

2
µN
x (BR

η ) ≤ µN
x (BR

η \B
R

̺η).

Therefore,

µN
x ((BR

η \B
R

̺η) \Gj) ≤ 2ε
1
2µN

x (BR

η \B
R

̺η).

By (c),

µN
x (BR

η ) > 0.

Now

µN
x (BR

η \B
R

̺η) ≤ µN
x ((BR

η \B
R

̺η) \G1) + µN
x ((BR

η \B
R

̺η) \G2) + µN
x ((BR

η \B
R

̺η) ∩G1 ∩G2)

≤ 4ε
1
2µN

x (BR

η \B
R

̺η) + µN
x ((BR

η \B
R

̺η) ∩G1 ∩G2).

Thus,

µN
x ((BR

η \B
R

̺η) ∩G1 ∩G2) ≥ (1− 4ε
1
2 )µN

x (BR

η \B
R

̺η),

which is positive for sufficiently small ε.

Now pick s0 ∈ (BR
η \B

R

̺η) ∩G1 ∩G2 and consider

y := xns0 , y′ := x′ns0 ∈ X1.

By Lemma 5.1,
y′ ∈ B

Cδ
1
2
(yns1)

for some s1 such that |s1| is in some fixed compact interval I ⊆ R>0 (which does
not depend on x, x′ or δ). Since µN

x = µN
x′ and x, x′, y, y′ ∈ X1, we have

µN
y = µN

xns0
∝
(
n−s0

)
∗
µN
x =

(
n−s0)∗µ

N
x′ ∝ µN

x′ns0
= µN

y′ .

From µN
y (BN

1 ) = 1 = µN
y′(BN

1 ) it follows that µN
y = µN

y′ . This completes the
proof. �

Remark 5.2. • As soon as δ, η are fixed, we need Lemma 5.1 just for the pair
(x, x′), and the doubling assumption just for x and η. At these points one
can twist the conditional proof to make an unconditional one.

• We have not used the entropy condition in Theorem 1.1 yet.
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6. An unconditional proof of Proposition 4.1

For ̺ ∈ (0, 1), C, γ > 0 and x, x′ ∈ X we define

R̺(x) := {r > 0 | µN
x (BN

r ) > 2µN
x (BN

̺r)},

D̺,C,γ(x, x
′) := {r ∈ R | ∀ s ∈ R, ̺r < |s| < r ∃ s′ ∈ R, C−1 < |s− s′| < C : x′ns ∈ Bγ(xns′ )}.

Thus, R̺(x) is the set on which the doubling condition holds for µN
x , andD̺,D,γ(x, x

′)
the set on which the “near displacement condition” holds for x, x′.

Let ε > 0 sufficiently small (will become clear during the proofs) and define the
sets X1, X2 as in the conditional proof of Proposition 4.1.

Lemma 6.1. Recall the set X2. For any δ > 0, any C, γ > 0 and any x, x′ ∈ X2

with

(i) d(x, x′) < δ,

(ii) x
S
∼ x′,

(iii) D̺,C,γ(x, x
′) ∩R̺(x) 6= ∅,

we find s, s′ ∈ R with C−1 < |s′| < C such that

(a) y := xns, y
′ := x′ns ∈ X1,

(b) y ∈ Bγ(y
′ns′),

(c) µN
y = µN

y′ .

Proof. Note that y
S
∼ y′, since the action of N preserves S-leaves and by (ii) x, x′

are on the same S-leaf. Then y, y′ ∈ X1 immediately implies (c). To prove (a) and
(b), we set (as before)

G1 := {s ∈ R | xns ∈ X1}, G2 := {s ∈ R | x′ns ∈ X1}.

Pick r ∈ D̺,C,γ(x, x
′) ∩ R̺(x). Since x, x′ ∈ X1 and x

S
∼ x′, we have µN

x = µN
x′ .

Then, since x, x′ ∈ X2, it follows as before that

µN
x

(
(BR

r \B
R

̺r) \Gj

)
≤ ε

1
2µN

x (BR

r ).

Invoking r ∈ R̺(x), it follows further

≤ 2ε
1
2µN

x

(
(BR

r \B
R

̺r)
)
.

to x, which contradicts to the fact that µ-almost all N -leaves are embedded. There-
fore, as before, we find

s0 ∈
(
BR

r \B
R

̺r

)
∩G1 ∩G2.

Set

y := xns0 , y′ := x′ns0 .

Then y, y′ ∈ X1 and, since r ∈ D̺,D,γ , we find s′ ∈ R with C−1 < |s′| < C such
that y ∈ Bγ(y

′ns′). �

The following proposition is the only place where one uses the entropy condition in
Theorem 1.1.
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Proposition 6.2. For all ε > 0 there exists ̺ ∈ (0, 1) such that the set

X̺ := {x ∈ X | µN
x (BN

1 ) > 2µN
x (BN

̺ )}

has measure µ(X̺) > 1− ε.

The relation between R̺(x) and X̺ is given by

e2t ∈ R̺(x) ⇔ xat ∈ X̺

because of

µN
xat

(BN
s ) = cθ∗µ

N
x (BN

s ) = cµN
x (atB

N
s a−t) = cµN

x (BN
e2ts).

Sketch of proof of Proposition 6.2. • We claim that if µ-almost every a1-ergodic
component of µ has positive entropy, then µ-almost every N -leafwise mea-
sure µN

x is infinite. We note that it does not make a big difference, whether
we work with a-ergodic or A-ergodic components.

Let

E1 := {x ∈ X | µN
x is finite}

and

E2 := {x ∈ X | µN
x = δidN

}.

Then E2 ⊆ E1 and we claim that µ(E1 \ E2) = 0. To that end let

r(x) :=

{
inf{r > 0 | µN

x (BN
r ) > 1

2µ
N
x (BN

∞)} if x ∈ E1,

0 otherwise.

As in Lemma 4.3 we see r(x) = e−1r(xa1). Using Poincaré recurrence
as in Lemma 4.3 it follows that r(x) = 0 µ-almost surely. This shows
µ(E1 \ E2) = 0.

Now let ν = µE
x be an ergodic component of µ. We find a countably

generated Borel σ-algebra A on X such that
(1) for µ-almost every x ∈ X we have

xBN
ε ⊆ [x]A ⊆ xBN

r ,

(2) a1A ⊆ A,
(3)

hν(a1) = Hν(A | a1A) = −

∫
log νa1A

x ([x]A)dν(x).

We omit the proof of its existence here. Then

(10) hν(a1) = −

∫
log

x∗ν
N
x ([x]A)

x∗νNx ([x]a1A)
dν(x).

Since E2 is a1-invariant (up to a null set) and ν is ergodic, we have ν(E2) =
0 or ν(E2) = 1. Note that νNx = µN

x µ-almost surely. If ν(E2) = 1, then
(10), we have hν(a1) = 0, which is a contradiction. Hence µ-almost each
leafwise measure is infinite.
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• We claim that if µ-almost each leafwise measure is infinite, then µ is N -
recurrent.

picture proof: N-recurrent

• We now prove the statement of the proposition. To seek a contradiction,
we assume that we find ε0 > 0 such that for all ̺ ∈ (0, 1) such that

µ(X̺) < 1− ε0.

We set

Y̺ := X ′ \X̺ = {x ∈ X ′ | µN
x (BN

1 ) ≤ 2µN
x (BN

̺ )}

= {x ∈ X ′ |
1

2
≤ µN

x (BN
̺ )}.

Note that for ̺1 < ̺2 we have

Y̺2
⊇ Y̺1

.

Hence

µ
( ⋂

n∈N

Y 1
n

)
= lim

n→∞
µ(Y 1

n
) ≥ ε0.

Hence, there exists B ∈ BX , µ(B) > 0 such that for µ-almost all x ∈ B we
find a sequence (nk) → ∞ in N such that

1

2
≤ µN

x (BN
1

nk

)

for all k ∈ N. Thus, on a set of positive measure, we have

µN
x ({id}) ≥

1

2
.

We pick an (N,R)-flower whose basis intersects this set in a positive mea-
sure set. Then

µ({x}) > 0

for all x in a positive measure set. For all these x, by N -recurrence, the
N -orbit through x has to return to x, which is a contradiction to the fact
that µ-almost all N -leaves are embedded.

�

From now on fix some ̺ ∈ (0, 1) as in Proposition 6.2 adapted to our previous
choice of ε.
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Lemma 6.3. There exists a constant C0 > 0 such that for any sufficiently small

δ ∈ (0, 1) and any x, x′ ∈ X1 such that d(x, x′) < δ and x
S
∼ x′, we find ξ1 >

C−1
0 δ−

1
2 such that at least one of the following properties is satisfied:

(i) For all t ∈ (0, κ log ξ1) we have

ξ1 ∈ D
̺,C0,δ

1
4
(xat, x

′at).

Here, κ is an absolute positive constant.
(ii) For all t ∈ (κ′ log ξ1, 2κ

′ log ξ1) we have

e−tξ1 ∈ D
̺,C0,δ

1
4
(xat, x

′at).

Here, κ′ is again an absolute positive constant.

Proof. We start by considering the difference between x and x′ in the H-direction.
Suppose that

x = Γ(g, s), x′ = Γ(g′, s′).

Then

δ > dX(x, x′) = inf
γ∈Γ

dH×S(γ.(g, s), (g
′, s′)).

Without loss of generality, we may assume that

δ > dH×S((g, s), (g
′, s′)) = max{dH(g, g′), dS(s, s

′)}.

Hence
δ > dH(g, g′) = dH(idH , g−1g′).

Let

σ :=

(
0 −1
1 0

)
∈ H

and

U := σNσ =

{
us =

(
1
s 1

) ∣∣∣∣ s ∈ R

}
.

Then the identity component H0 of H has the Bruhat decomposition

H0 = UNA ∪NAσ,

where UNA is an open neighborhood of idH . We suppose that δ is so small that
g−1g′ ∈ UNA. Define s−, s+, sa by

g−1g′ = us−ns+asa .

Then |s−|, |s+|, |sa| < Cδ for some absolute constant C > 0 (which only depends on
the parametrization of the metric). Note that x, x′ are not in the same N -leaf. If
they were, they could not be both in X1 since X1∩Y = ∅. Hence at least one of s−,
sa does not vanish. The relation between s− and sa will result in the consideration
of the two cases.

Now

x′ H×S
∼ xus−ns+asa = Γ(g′, s)

and

d(x′, xus−ns+asa) < δ.

Then, for any t, ξ ∈ R we have

x′atnξ
H×S
∼ xus−ns+asaatnξ
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and
d(x′atnξ, xus−ns+asaatnξ) < δ.

We claim that for t > 0, ξ > 1, |ξ2e2ts−| ≤ 1 we have

xus−ns+asaatnξ ∈ xatn(ξ − 2saξ − e2ts−ξ
2)BH

σ

with
σ = C2 max{ξe2t|s−|, ξ

−1, ξ|sa|δ, δ}

for some global constant C2. If this is the case, then

x′atnξ ∈ Bσ(xatnξ′)

with ξ′ := ξ − 2saξ − e2ts−ξ
2. We have

us−ns+asaatnξ = atue2ts−ne−2ts++esaξasa

and claim that

u(e2ts−)n(e
−2ts+ + e−2saξ)asa ∈ n(ξ − 2saξ − e2ts−ξ

2)BH
σ

Note that any displacement caused by asa is contained in BH
C3σ

for some C3. Hence
asa can be neglected in the following calculation. We have

n(ξ − 2saξ − e2ts−ξ
2)−1u(e2ts−)n(e

−2ts+ + e−2saξ)

=

(
1 + e2ts−ξ(−1 + 2sa) + (e2ts−ξ)

2 b
e2ts− 1 + s−s+ + e−2sae2ts−ξ

)

with

b := e−2ts− + (e2ts−ξ
2)(−e−2sa + 1 + 2e−sas−sa) + (e2ts−ξ)

2e−2ts+ + (e2ts−ξ
2)e−2saξ−1

+ (e−2saξ − (1 + s−s+)ξ + 2saξ(1 + s−s+)).

Now we use that ξ > 1, t > 0, |e2ts−ξ2| ≤ 1, and |s−|, |s+|, |sa| ≤ Cδ, and

|e−2saξ − (1 + s−s+)ξ + 2saξ(1 + s−s+)| ≤ C′ξ|sa|δ

for some global constant C′ to see that the claim holds true.

Case 1: Let |sa| > |s−|
10
21 . We set ξ1 := |sa|−1. Then ξ1 > C−1δ−1, and in

particular > 1 for sufficiently small δ. Take

t ∈

(
0,

log ξ1
100

)
, ξ ∈ (̺ξ1, ξ1),

and set ξ′ := ξ − 2saξ − e2ts−ξ
2. Then

|ξ′ − ξ| = |2saξ + e2ts−ξ
2|

Now

|ξ2e2ts−| ≤ |ξ
202
100

1 s−| = |sa|
− 202

100 |s−| ≤ |sa|
− 202

100
+ 210

100 = |sa|
8

100 ,

which becomes arbitrarily small for sufficiently small δ. Moreover,

2̺ ≤ |2saξ| ≤ 2.

Therefore

2̺− (small) ≤ |ξ′ − ξ| = |2saξ + e2ts−ξ
2| ≤ 2 + (small).

For an appropriate choice of C0 (only depending on ε and ̺ and absolute constants),
we have

ξ1 ∈ D̺,C0,σ(xat, x
′at).
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Finally,

σ = C2 max{ξe2t|s−|, ξ
−1, ξ|sa|δ, δ} ≤ C3δ

for an absolute constant C3. This is qualitatively even better than ≤ δ
1
4 .

Case 2: Let |sa| ≤ |s−|
10
21 and set ξ1 := |s−|−

1
2 . Then

ξ1 > C− 1
2 δ−

1
2 > 1

for sufficiently small δ. Let

t ∈

(
log ξ1
20

,
log ξ1
10

)
, ξ ∈

(
̺e−tξ1, e

−tξ1
)
.

As before set ξ′ := ξ − 2saξ − e2ts−ξ
2 and consider

|ξ′ − ξ| = |2saξ + e2ts−ξ
2|.

Now

|2saξ| ≤ 2|sa|e
−tξ1 ≤ 2|sa|ξ

− 1
20

+1
1

≤ 2|s−|
10
21

− 19
40 < C′δ

10
21

− 19
40 .

Note that 10
21 − 19

40 > 0. Moreover,

|e2ts−ξ
2| ≤ e2t|s−|e

−2tξ21 = 1

and

|e2ts−ξ
2| ≥ ̺2.

Hence,

̺− (small) ≤ |ξ′ − ξ| ≤ 1 + (small).

For appropriate constant C0 (only depending on ε, ̺ and absolute constants) we
have

e−tξ ∈ D̺,C0,σ(xat, x
′at).

Finally,

σ ≤ C3δ
41
42 ,

which again is qualitatively better than δ
1
4 . This completes the proof. �

Relative to our choice of ε > 0 and ̺ ∈ (0, 1) we fix a compact subset X3 of X2

with µ(X3) > 1 − C2ε
1
4 (for some absolute constant C2) such that for any x ∈ X3

and any t > 0 we have

1

t

∫ t

0

1X2
(xas)ds ≥ 1− ε

1
4 ,(11)

1

t

∫ 0

−t

1X2
(xas)ds ≥ 1− ε

1
4 ,(12)

1

t

∫ t

0

1X̺
(xas)ds ≥ 1− ε

1
4 ,(13)

1

t

∫ 0

−t

1X̺
(xas)ds ≥ 1− ε

1
4 .(14)

Note that for almost all x ∈ X3 and all δ > 0, we find x′ ∈ X3 with d(x, x′) < δ

and x
S
∼ x′ by Lemma 4.6.
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Lemma 6.4. Let δ > 0 be sufficiently small and suppose that x, x′ ∈ X3 with

d(x, x′) < δ and x
S
∼ x′. Then there is some t ≥ 0 such that

D
̺,C0,δ

1
4
(xat, x

′at) ∩R̺(xat) 6= ∅

and

xat, x
′at ∈ X2.

Moreover, xat
S
∼ x′at and d(xat, x

′at) < δ
1
4 .

Proof. (i) Suppose that ξ1 > C−1
0 δ−1/2 is as in Lemma 6.3(i). Then for all

t ∈ (0, κ log ξ1), we have

ξ1 ∈ D
̺,C0,δ

1
4
(xat, x

′at).

From (11) it follows that measurewise at least
∫ k log ξ1

0

1X2
(xas)1X2

(x′as)ds ≥
(
1− 2ε

1
4

)
κ log ξ1

common displacements (with t ∈ (0, κ log ξ1)) of x and x′ are simultaneously
in X2. In more detail: Let λ denote the Lebesgue measure on R and set

L1 := {s ∈ (0, κ log ξ1) | xas ∈ X2}

L2 := {s ∈ (0, κ log ξ1) | x
′as ∈ X2}.

Then

λ(L1 ∩ L2) = λ(L1) + λ(L2)− λ(L1 ∪ L2)

≥
[
(1− ε

1
4 ) + (1 − ε

1
4 )− 1

]
κ log ξ1.

To estimate for how many (measurewise) displacements (with t ∈ (0, κ log ξ1))
of x, the point ξ1 is not in R̺(xat), we recall that

ξ1 ∈ R̺(xat) ⇔ xata 1
2
log ξ1 = xat+ 1

2
log ξ1 ∈ X̺.

From (13) it now follows

∫ κ log ξ1

0

1X\X̺
(xas+ 1

2
log ξ1)ds =

∫ (κ+ 1
2
) log ξ1

1
2
log ξ1

1X\X̺
(xat)dt

=

(∫ (κ+ 1
2
) log ξ1

0

−

∫ 1
2
log ξ1

0

)
1X\X̺

(xat)dt

≤

∫ (κ+ 1
2
) log ξ1

0

1X\X̺
(xat)dt ≤ ε

1
4 (κ+

1

2
) log ξ1.

Now
(
1− 2ε

1
4

)
κ log ξ1 − ε

1
4

(
κ+

1

2

)
log ξ1 > 0

if and only if

ε
1
4 <

κ

3κ+ 1
2

.

Thus, if ε is chosen below this absolute constant (and also below the absolute
constants from before), then we find some t as in the statement of the lemma.
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(ii) Suppose now that ξ1 > C−1
0 δ−

1
2 is as in Lemma 6.3(ii). Hence, for all t ∈

(κ′ log ξ1, 2κ
′ log ξ1) we have

e−tξ1 ∈ D
̺,C0,δ

1
4
(xat, x

′at).

From (11) it follows

∫ 2κ′ log ξ1

κ′ log ξ1

1X2
(xas)1X2

(xas)ds =

(∫ 2κ′ log ξ1

0

−

∫ κ′ log ξ1

0

)
1X2

(xas)1X2
(x′as)ds

≥
(
1− 2ε

1
4

)
2κ′ log ξ1 − κ′ log ξ1

=
(
1− 4ε

1
4

)
κ′ log ξ1.

Recall that

e−tξ1 ∈ R̺(xat) ⇔ xata− 1
2
t+ 1

2
ξ1 = xa 1

2
t+ 1

2
ξ1 ∈ X̺.

With (13) it follows that
∫ 2κ′ log ξ1

κ′ log ξ1

1X\X̺
(xa 1

2
s+ 1

2
ξ1)ds = 2

∫ (κ′+ 1
2
) log ξ1

1
2
(κ′+1) log ξ1

1X\X̺
(xat)dt

≥ 2

∫ (κ′+ 1
2
) log ξ1

0

1X\X̺
(xat)dt

≥ 2ε
1
4

(
κ′ +

1

2

)
log ξ1.

Now
(
1− 4ε

1
4

)
κ′ log ξ1 − 2ε

1
4

(
κ′ +

1

2

)
log ξ1 > 0

if and only if
κ′

6κ′ + 1
> ε

1
4 ,

which can be satisfied for sufficiently small ε. Note that all bounds on ε
are given by absolute constants. The remaining statements follow immedi-
ately from the calculations in Lemma 6.3. Hence, the proof of this lemma is
complete.

�

Proof of Proposition 4.1. As in the condition proof of Proposition 4.1 we claim to
find a fixed compact interval I ⊆ R>0 such that for sufficiently small δ > 0 we find
points y, y′ ∈ X3 with

y′ ∈ Bδ(ynt)

for some |t| ∈ I and µN
y = µN

y′ . Then we conclude as in the conditional proof that

X3 ∩ Y 6= ∅ which is a contradiction.

For any δ > 0 we can find a pair x, x′ ∈ X3 with d(x, x′) < δ and x
S
∼ x′ by

Lemma 4.6. Then Lemma 6.4 shows that there exists t ≥ 0 such that

D
̺,C0,δ

1
4
(xat, x

′at) ∩R̺(xat) 6= ∅

and

xat, x
′at ∈ X2.
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Moreover, xat
S
∼ x′at and d(xat, x

′at) < δ
1
4 . By Lemma 6.1 we find s, s′ ∈ R with

C−1
0 < |s′| < C0 such that

y := xatns, y′ := x′atns ∈ X1,

y ∈ B
δ

1
4
(yns′),

µN
y = µN

y′ .

This completes the proof. �
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