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As known for a long time, transfer matrix techniques prove to be powerful in
the study of lattice spin systems, for example for deriving exact solutions of one-
and two-dimensional systems such as the Onsager solution. Reflection positivity
in lattice spin systems is intimately related to the existence of self-adjoint positive
definite transfer matrices.

Also known for a long time, the correspondence principle of quantum mechan-
ics suggests close relations between geometric and spectral entities of Riemannian
manifolds (and, more generally, of Riemannian orbifolds). In particular, one ex-
pects strong interdependencies between geodesics (classical mechanical objects)
on the one side and L2-eigenfunctions and L2-eigenvalues of the Laplacian, and
more generally, resonances and resonant states (quantum mechanical objects) on
the other side.

Over the last century much effort was spend on establishing instances of such
interdependencies in a mathematically rigorous way. An ever increasing number
of results were found and were seen to be of great importance for various areas
of mathematics, including dynamical systems, spectral theory, harmonic analysis,
representation theory, number theory, and mathematical physics. However, the
full scope and depth of the relation between geometric and spectral objects of
Riemannian orbifolds is still mysterious.

In the talk we restricted to the case of non-elementary hyperbolic surfaces
X = Γ\H with at most finitely many ends (of finite and infinite area). Here,
H denotes the hyperbolic plane, and Γ is a discrete non-cyclic geometrically finite
subgroup of the Möbius group PSL(2,R). For these spaces, a relation between
periodic geodesics and resonances is shown by the Selberg zeta function which is
the dynamical zeta function given by

(1) ZX(β) :=
∏

`∈L(X)

∞∏
k=0

(
1− e−(β+k)`

)
(β ∈ C, Re(β)� 1)

where L(X) denotes the primitive geodesic length spectrum of X, counted with
multiplicities. The infinite product in (1) converges if Reβ is sufficiently large,
and it has a meromorphic continuation to all of C. The zeros of the Selberg zeta
function consist of the resonances of X and some well-understood ‘trivial’ zeros
(of rather topological nature). Thus, the Selberg zeta function ZX establishes a
relation between the geodesic length spectrum and the Laplace spectrum of X, or,
in other words, a relation between geodesics and resonant states on the spectral
level.

We discussed a construction of generalized transfer matrices and showed that
these allow us to establish a relation between periodic geodesics and L2-eigenfunc-
tions beyond the spectral level, thereby improving on the connection provided by
means of the Selberg zeta function. The construction of the generalized transfer
matrices rely on a good choice of a discretization for the geodesic flow on X. We
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took advantage of the discretizations provided in [16], which are particularly well-
suited for our purposes. Each such discretization provides a discrete dynamical
system F : D → D on a union of certain intervals in R that is semi-conjugate
to the geodesic flow on X and that branches into finitely many ‘submaps’ given
by the Möbius action of some element in Γ. The associated generalized transfer
matrix with parameter β ∈ C (transfer operator in the sense of Ruelle and Mayer)
is

Lβf(x) :=
∑

y∈F−1(x)

e−β ln |F ′(y)|f(y),

acting on functions f : D → C.
Some of the major results regarding the role of these transfer operators in the

study of the interdependencies of geodesics and eigenfunctions and resonant states
of X are roughly as follows:

• If X has finite area and at least one cusp, that is, an end of finite area, and
if Reβ ∈ (0, 1) then the space of rapidly decaying L2-eigenfunctions on X
(Maass cusp forms) is isomorphic to the space of sufficiently regular eigen-
functions with eigenvalue 1 of Lβ [12, 15, 14, 18, 13]. The isomorphism
is given by an explicit integral transform. Up to date, transfer operator
techniques are the only tool known to provide such a deep relation between
geometric and spectral entities of hyperbolic surfaces.
• If X has finite or infinite area and at least one cusp then an induction

procedure of the discretization of the geodesic flow used for the construc-
tion of Lβ provides a uniformly expanding, infinitely branched discrete

dynamical system. The associated transfer operator L̃β acts on a certain
Banach space of holomorphic functions. As such it is nuclear of order zero
and hence admissible for the thermodynamic formalism. Its Fredholm
determinant equals the Selberg zeta function

ZX(β) = det
(
1− L̃β

)
.

The possibility to represent ZX as a Fredholm determinant of a transfer
operator family suggests that many results obtained with the help of the
Selberg zeta function and the Selberg trace formula should follow as a
‘shadow’ from results obtained via transfer operators. Moreover, transfer
operator techniques provide an alternative proof of meromorphic extend-
ability of the Selberg zeta function. See [12, 18, 17, 19] for all of these
results.
• Eigenfunctions with eigenvalue 1 of Lβ and L̃β are isomorphic, see [1] for

Hecke triangle groups and forthcoming manuscripts for general Γ. This re-
sult together with the previously mentioned allows us to recover already a
part of the spectral interpretations of the zeros of the Selberg zeta function
without relying on the Selberg trace formula.
• Twists by finite-dimensional unitary representations can easily be accom-

modated by the transfer operators as additional weights. The results on
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the connection between Selberg zeta functions and L̃β as well as on the

relation between Lβ and L̃β extend to the twisted objects [19, 1].
• Also twists by finite-dimensional representations χ with non-expanding

cusp monodromies (representations which are not necessarily unitary but
have controlled behavior in cusps) can be accommodated by transfer oper-
ators. Transfer operator techniques are currently the only known method
to prove meromorphic extendability of the χ-twisted Selberg zeta functions
[8].
• These results recover, illuminate and refine the seminal transfer operator

techniques for the modular surface PSL(2,Z)\H by Mayer [10, 11], Chang–
Mayer [3], Efrat [7], Lewis–Zagier [9], Bruggeman [2], and its extension to
certain finite-index subgroups of PSL(2,Z) [4, 5, 6].

It is expected that the mentioned results, in particular the isomorphism between
eigenfunctions of transfer operators and Maass cusp forms, can be generalized to
eigenfunctions of other regularity, to (Γ, χ)-twisted and vector-valued eigenfunc-
tions, and to general resonant states. Moreover, generalizations to more general
locally symmetric spaces are expected. The relation between these generalized
transfer matrices and reflection positivity remains to be understood.
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[12] M. Möller and A. Pohl, Period functions for Hecke triangle groups, and the Selberg zeta

function as a Fredholm determinant, Ergodic Theory Dynam. Systems 33 (2013), no. 1,
247–283.

3



[13] A. Pohl, Symbolic dynamics and Maass cusp forms for cuspidal cofinite Fuchsian groups,
in preparation.

[14] , A dynamical approach to Maass cusp forms, J. Mod. Dyn. 6 (2012), no. 4, 563–596.

[15] , Period functions for Maass cusp forms for Γ0(p): A transfer operator approach,
Int. Math. Res. Not. 14 (2013), 3250–3273.

[16] , Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orb-

ifolds, Discrete Contin. Dyn. Syst., Ser. A 34 (2014), no. 5, 2173–2241.
[17] , A thermodynamic formalism approach to the Selberg zeta function for Hecke tri-

angle surfaces of infinite area, Commun. Math. Phys. 337 (2015), no. 1, 103–126.

[18] , Odd and even Maass cusp forms for Hecke triangle groups, and the billiard flow,
Ergodic Theory Dynam. Systems 36 (2016), No. 1, 142–172.

[19] , Symbolic dynamics, automorphic functions, and Selberg zeta functions with unitary

representations, Contemp. Math. 669 (2016), 205–236.

4


