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The investigation of L2-Laplace eigenvalues and eigenfunctions for hyperbolic sur-
faces of finite area is a classical and exciting topic at the intersection of number
theory, harmonic analysis and mathematical physics. In stark contrast, for ge-
ometrically finite hyperbolic surfaces of infinite area, the discrete L2-spectrum
is finite. A natural replacement are the resonances of the considered hyperbolic
surface, which are the poles of the meromorphically continued resolvent

R(s) = (∆− s(1− s))−1

of the hyperbolic Laplacian ∆. These spectral entities also play an important role
in number theory and various other fields, and many fascinating results about them
have already been found; the generalization of Selberg’s 3/16-theorem by Bour-
gain, Gamburd and Sarnak [4] is a well-known example. However, an enormous
amount of the properties of such resonances, also some very elementary ones, is
still undiscovered. Prominent open questions include the existence of a Weyl law,
the fractal Weyl law conjecture by Lu, Sridhar and Zworski [6], and the essential
spectral gap conjecture by Jakobson and Naud [5].

A few years ago, by means of numerical experiments, Borthwick [2] noticed
for some classes of Schottky surfaces (hyperbolic surfaces of infinite area without
cusps and conical singularities) that their sets of resonances exhibit unexcepted
and nice patterns, which are not yet fully understood. He used the method of
periodic orbit expansion, which is well-suited for investigations of resonances with
positive real part and of Schottky surfaces with large funnel widths and Euler
characteristic near −1.

We discussed an alternative method, termed domain-refined Lagrange–Cheby-
chev approximation, which has some advantages over the method of period orbit
expansion. Figure 1 displays a part of the resonance set of a so-called funneled
torus Schottky surface, calculated with this method.

Observation ([1]). The method of domain-refined Lagrange–Chebychev approxi-
mation allows us to calculate resonances also for Schottky surfaces with smaller
Euler characteristic or small funnel widths as well as resonances with negative real
part. This method is efficient and does not require any specific properties (e.g.,
additional symmetries) of the Schottky surfaces.

The methods of periodic orbit expansion and of domain-refined Lagrange–
Chebychev approximation have the same starting point as both take advantage
of the interpretation of resonances as zeros of the Selberg zeta function and of
a transfer-operator-based representation of this zeta function. For any Schottky
surface X, the Selberg zeta function ZX is given by the Euler product

(1) ZX(s) =
∏

`∈LX

∞∏
k=0

(
1− e−(s+k)`

)
for Re s� 1,
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Figure 1. Resonances for a Schotty surface

and its holomorphic continuation to all of C. Here, the multiset LX in the first
product of (1) refers to the primitive geodesic length spectrum of X. There exists
a family of transfer operators (LX,s)s∈C for X, which derives from a discretization
of the geodesic flow on X and whose Fredholm determinant equals the Selberg
zeta function of X:

(2) ZX(s) = det(1− LX,s) .

For the method of periodic orbit expansion one infers from (2) a series expansion

ZX(s) =

∞∑
n=0

dn(s) ,

whose coefficients (dn(s))n∈N0
are defined and calculated recursively in terms of

the traces (TrLm
X,s)m∈N of the transfer operator LX,s. The zeros of the truncated

series approximate the zeros of ZX , and hence the resonances of X.
For the method of domain-refined Lagrange–Chebychev approximation we note

that the transfer operator LX,s has an integral kernel. Thus,

(LX,sf)w =

∫
Ω

Ks(z, w)f(z) dz ,

where Ω is a finite union of certain open subsets of C, the map f belongs to a well-
chosen function space, and the integral kernel Ks has a rather simple structure.
We use the Gauss–Chebychev quadrature rule to approximate Ks or, equivalently,
Lagrange–Chebychev interpolation for the functions f . Then the transfer opera-
tor Ls gets approximated by a finite matrix, say Ms, and hence the Selberg zeta
function ZX(s) = det(1−LX,s) is approximated by D(s) := det(1−Ms). The zeros
of D serve as an approximation of the zeros of ZX , and in turn of the resonances
of X.
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The method of periodic orbit expansion allowed us to discover that the reso-
nance set exhibits astonishing structures in the positive half-plane, as shown by
Borthwick’s seminal work [2] and subsequent investigations (we refer to [3, 1] for
extensive references). With the method of domain-refined Lagrange–Chebychev
approximation we see that these structures not just extend to the negative half-
plane but show new patterns there.
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