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Resonances of Riemannian orbifolds play an important role in many areas of math-
ematics, e.g., analysis, dynamical systems, mathematical physics, and number
theory. In this extended abstract we focus on geometrically finite hyperbolic or-
bisurfaces, i.e., on two-dimensional Riemannian orbifolds of the form Γ\H, where
H denotes the hyperbolic plane and Γ is a finitely generated Fuchsian group, act-
ing on H by Riemannian isometries. We set X := Γ\H and let ∆X denote the
hyperbolic Laplacian on X. The resolvent

RX(s) :=
(
∆X − s(1− s)

)−1
: L2(X) → H2(X)

of ∆X is defined for s ∈ C with ℜs > 1/2 and s(1− s) not being an L2-eigenvalue
of ∆X . It extends meromorphically to all of C as operators

RX(s) : L2
comp(X) → H2

loc(X) .

The resonances ofX are the poles of this meromorphic family. We denote byR(X)
the multiset of resonances of X, where each resonance is repeated according to its
multiplicity (i.e., the rank of the residue operator at this resonance). We let

NX(r) := #
{
s ∈ R(X) :

∣∣s− 1
2

∣∣ ≤ r
}
, r > 0 ,

denote the counting function of resonances in balls (centered at 1/2).
For compact hyperbolic orbisurfaces X, all resonances originate from L2-eigen-

values. Up to finitely many exceptions, they are located at the critical axis ℜs =
1/2, and the Weyl law for their asymptotic counting is well-known:

(1) NX(r) ∼ vol(X)

2π
r2 as r → ∞ .

For non-compact hyperbolic orbisurfaces X of finite area, not all resonances orig-
inate from L2-eigenvalues. In this situation, also scattering resonances make an
appearance, which has the effect that the resonance set spreads out more. How-
ever, it is confined to the strip ℜs ∈ [0, 1]. This difference to compact spaces
complicates the counting of resonances. Nevertheless, by work of Selberg [13] and
W. Müller [7], the same asymptotics for the resonance set as for compact hyper-
bolic orbisurfaces was established. Thus, also for these orbisurfaces, the Weyl
law (1) is known to be valid. We emphasize that it is a Weyl law for the resonance
set, not necessarily for the L2-eigenvalue set.

For hyperbolic surfaces X of infinite area, in stark contrast, it is not yet known
if such a Weyl law for the resonance set should be expected. For geometrically
finite hyperbolic orbisurfaces X of infinite area with at least one periodic geodesic,
Guillopé and Zworski [4, 5] showed

NX(r) ≍ r2 as r → ∞ .

Thus, the order of growth of the resonance counting function is as for hyperbolic
orbisurfaces of finite area, but (non-)equality of the implied constants could not
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yet be decided. A few results regarding the finer structure of these constants are
known, e.g., as in [1, 11].

A further significant difference to the situation of finite-area orbisurfaces is the
location of the resonance set. For infinite-area orbisurfaces it is not confined to a
strip of finite width, but may distribute all over a certain right half-plane in C (with
the Hausdorff dimension δ of the limit set of X being the right-most resonance).
This makes it interesting to consider a resonance counting function with a “vertical
counting direction.” More precisely, for σ ∈ R and T > 0 we define

NX(σ, T ) := # {s ∈ R(X) : ℜs ≥ σ , |ℑs| ≤ T}

to be the function counting the resonances in the box [σ,∞) + i[−T, T ], with an
interest of understanding its asymptotics for T → ∞. Motivated by Sjöstrand’s
work [14] and numerical experiments, Lu–Sridhar–Zworski [6] conjectured a fractal
Weyl law of the form

(2) NX(σ, T ) ∼ cσT
1+δ as T → ∞ ,

with δ being the right-most resonance of X (and cσ a suitable implied constant,
potentially depending on everything other than T ). An important result towards
this conjecture was achieved by Zworski [15] and Guillopé–Lin–Zworski [3], with
two different proofs. They showed that for Schottky surfaces X (i.e., geometrically
finite hyperbolic orbisurfaces of infinite area without cusps and elliptic points), for
all σ ∈ R we have

NX(σ, T ) ≪σ T 1+δ as T → ∞ .

We now turned to the case of geometrically finite hyperbolic orbisurfaces of infinite
area with cusps, at least one periodic geodesic and potentially elliptic points, in
which we could establish the following result.

Theorem (Naud–P.–Soares). For certain geometrically finite hyperbolic orbisur-
faces X of infinite area with cusps, for all σ ∈ R, we have

(3) NX(σ, T ) ≪σ T 1+δ(log T )2−δ as T → ∞ .

The proof is based on transfer operator techniques, following the strategy of
the proof in [3]. However, it is more involved due to the presence of a cusp. Every
cusp has the effect that thickenings of the limit set do not have uniform contraction
properties. Further, the required one-parameter transfer operator families (Ls)s
for orbisurfaces with cusps are a priori valid only for ℜs ≫ 1, and hence we need
to work within the domain of the meromorphic continuation of these families in s.
The realm of this theorem heavily depends on the existence of representations of
the Selberg zeta function of X as the Fredholm determinant of a well-structured
transfer operator family for X. Such families are, e.g., provided in [10, 2] and, in
particular by combination of [9] and [12] for a descent class of Fuchsian groups.
An announcement of the theorem above with a sketch of the proof for non-cofinite
Hecke triangle group appeared in [8]. The result in full detail will be available soon,
including also a discussion of the extended setting involving finite-dimensional uni-
tary representations of the fundamental group ofX (i.e., a vector-valued situation).
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Comparing (3) to the conjectured asymptotics (2) we notice the additional
factor of (log T )2−δ. It is not yet understood if this factor is immanent to the
setting and, if so, if the exponent is best possible.
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