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Abstract. In this note, we prove linear versions of the Aleksandrov-Fenchel inequality and the
Brunn-Minkowski inequality for positive semidefinite matrices. With this aim, given a positive

semidefinite matrix A and a linear subspace L, we consider a family of matrices having the same

projection onto L, obtaining a linear version of the Aleksandrov-Fenchel inequality. In the case
of the Brunn-Minkowski inequality, the milder assumption of having equal determinant of the

projection of A onto L will be enough to obtain a linearized version of this inequality.

1. Introduction and background

Positive semidefinite and definite matrices are considered, in many fields of science, as a gener-
alization of non-negative real numbers. In the vector space of real symmetric matricesMn, the set
of symmetric positive semidefinite ones Sn+ is a closed, convex cone. In this paper, we will focus
mainly on mixed discriminant for matrices in Sn+, but for completeness, we state the definition of
the mixed discriminant first for arbitrary n× n matrices.

Following [3], let n ∈ N, with n ≥ 1, and A1, · · · , An be arbitrary n×n matrices. If A
(i)
j denotes

the i-th column of the matrix Aj , then

(1.1) D(A1, . . . , An) :=
1

n!

∑
σ∈Sn

det
(
A

(1)
σ(1), . . . , A

(n)
σ(n)

)
,

where Sn denotes the symmetric group of permutations of {1, . . . , n}. In the literature, further
different approaches to mixed discriminants can be found, see e.g. [1, 9, 14, 15]. In [3], we have also
the following relations to the determinant for arbitrary matrices A1 · · · , An, and λ1, . . . , λn ∈ R:

(1.2) D(A1, . . . , An) =
1

n!

∂n

∂λ1 . . . ∂λn
det(λ1A1 + . . .+ λnAn),

and

(1.3) D(A1, . . . , An) =
1

n!

n∑
k=1

(−1)n+k
∑

1≤i1<...<ik≤n

det(Ai1 + . . .+Aik).

Since we are going to deal mainly with symmetric and positive semidefinite matrices, we estate
the following result of the determinant for this class of matrices.

Theorem A. [11] Let n ∈ N, with n ≥ 1. There exists a unique symmetric real-valued function

D: (Sn+)n −→ R,

satisfying

(1.4) det(λ1A1 + . . .+ λmAm) =

m∑
i1,...,in=1

λi1 . . . λinD(Ai1 , . . . , Ain),

for every m ≥ 1, A1, . . . , Am ∈ Sn+ and λ1, . . . , λm ≥ 0.
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Theorem A states that the determinant of a linear combination of m real n × n matrices
A1, . . . , Am, with non-negative reals λ1, . . . , λm ≥ 0, is a homogeneous polynomial of degree n, in
λ1, . . . , λm, whose coefficients are the mixed discriminants of A1, . . . , Am. Observe that m may
not coincide with n.
For connections of the mixed discriminant to other notions we refer to [4, 5], and the references
therein. The following results provide us with fundamental inequalities for positive semidefinite
matrices.

Theorem B. [13, Theorem 7.8.21] Let A,B ∈Mn be positive definite matrices. Then

(1.5) det((1− λ)A) + λB)1/n ≥ (1− λ) det(A)1/n + λ det(B)1/n

for any λ ∈ [0, 1].

The latter (see also [6]) is usually referred to as the (Brunn-)Minkowski inequality for the de-
terminant, because of its analogy with the far-reaching and powerful Brunn-Minkowski inequality
for the volume; see e.g. [12].

The following inequality, also known as the (first) Minkowski inequality, can be proven directly
as a consequence of Theorem B, and establishes an inequality between the mixed discriminant
D( A, . . . , A︸ ︷︷ ︸

(n−1)−times

, B), and det(A) and det(B).

Theorem C. [16] Let A,B ∈Mn be positive definite matrices. Then

(1.6) D( A, . . . , A︸ ︷︷ ︸
(n−1)−times

, B)n ≥ det(A)n−1 det(B).

There are deep existing analogies between mixed discriminants and mixed volumes within the
framework of Convex Geometry, for which we refer, e.g., to [14, 15, 19], and the references therein.
There are also remarkable differences between them too, as [2] displays.

The next inequality also receives in the literature the same name as a fundamental geometric
inequality within the realm of Convex Geometry due to their analogy, the Aleksandrov-Fenchel
inequality.

Theorem D. [19, Theorem 5.5.4] Let A,B,C,A2, . . . , An ∈Mn be real n×n symmetric matrices,
where A,A2, . . . , An are positive definite and C is positive semidefinite. Then

(1.7) D(C,A2, . . . , An) ≥ 0.

Equality holds if and only if C = 0. Further,

(1.8) D(A,B,A3, . . . , An)2 ≥ D(A,A,A3, . . . , An)D(B,B,A3, . . . , An).

Equality holds if and only if B = λA for λ ∈ R.

The main aim of this note is to investigate conditions under which the latter two inequalit-
ies, i.e., the Brunn-Minkowski, and the Aleksandrov-Fenchel inequalities for positive semidefinite
matrices, have linearized versions following the spirit of [19, Section 7.7]. By a linear version of
the inequalities (1.5) and (1.8) we mean inequalities of the form:

(1.9) det((1− λ)A+ λB) ≥ (1− λ) det(A) + λ det(B), and

(1.10) 2D(A,B,A3, . . . , An) ≥ D(A,A,A3 . . . , An) + D(B,B,A3, . . . , An),

for suitable matrices A,B,A3, . . . , An.
It is immediate to verify that inequalities of the type (1.9) and (1.10) cannot hold for all positive

semidefinite matrices. For instance, the matrices

A =

(
1 1
1 1

)
and B =

(
2 1
1 2

)
violate both inequalities, (1.9) for all λ ∈ (0, 1), and (1.10).
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Within the theory of Convex Bodies there exist several results pursuing linearized versions of
geometric inequalities, in particular, for the Brunn-Minkowski inequality and the Aleksandrov-
Fenchel inequality. We refer to [19, Section 7] for a wealth of information on this.

In order to motivate the research on such linearized versions of the inequalities we observe that
from Theorem B, we directly obtain

det(A+B) =
(

det(A+B)1/n
)n
≥
(

det(A)1/n + det(B)1/n
)n
≥ det(A) + det(B),

for any A,B ∈ Mn positive definite matrices. However, when λ ∈ [0, 1] comes into play, we only
have

det((1− λ)A+ λB) ≥ (1− λ)n det(A) + λn det(B),

which is clearly not as sharp as inequality (1.9).
The present note is organized as follows. In Section 2, we recall some known results, which

are used in the rest of the note. Then, in Section 3, we consider projections of matrices onto
linear subspaces, by restricting the corresponding quadratic form of a matrix onto a subspace. In
Section 4, we introduce a canal class for positive semidefinite matrices inspired by the analogue
notion in Convex Geometry, and we establish some linearized versions of the Aleksandrov-Fenchel
inequality for suitable matrices, under the assumption of positivity of a suitable mixed discriminant
of (n− 1)× (n− 1) matrices closely connected to the given ones. Finally, in Section 5, we prove
linearized versions of the Brunn-Minkowski inequality for positive semidefinite matrices having
the same determinant of their projection onto a hyperplane, and related results.

2. Known results

In this section, we establish several inequalities for mixed discriminants, whose proofs do follow
essentially the exact steps of their analogs within the Theory of Convex Bodies. Some of the
proofs are provided for the sake of completeness. Further, at the end of the section, we recall some
inequalities relating to the determinant of positive semidefinite matrices and their submatrices.

The next lemma gathers some fundamental properties of mixed discriminants. Most of the
proofs follow from the definition given by (1.1). We denote by In the identity matrix.

Lemma 2.1. [3] Let A1, . . . , An, B,R, S be n×n arbitrary matrices. Then the following assertions
hold:

i) D(In, . . . , In) = 1.
ii) D(A1, . . . , An) = D(Aσ(1), . . . , Aσ(n)), for all σ ∈ Sn.

iii) D(A1, . . . , An) = D(AT1 , . . . , A
T
n ).

iv) D(aA1 + bB,A2, . . . , An) = aD(A1, A2, . . . , An) + bD(B,A2, . . . , An), for all a, b ∈ R.
v) D(SA1R, . . . , SAnR) = det(R) det(S)D(A1, . . . , An).

As pointed out in Theorem D, it is sometimes fundamental to know whethera mixed discrim-
inant of positive semidefinite matrices A1, . . . , An vanishes. The following result provides us with
equivalent conditions for the positivity of the mixed discriminants given by A1, . . . , An ∈ Sn+. Let
P (Ai) denote the linear subspace of Rn spanned by the eigenvectors of Ai associated with strictly
positive eigenvalues of Ai, i = 1, . . . , n.

Proposition 2.2. [3, 11] Let A1, . . . , An ∈ Sn+ be positive semidefinite matrices. Then, the fol-
lowing assertions are equivalent:

i) D(A1, . . . , An) > 0,
ii) There are linearly independent vectors vi ∈ P (Ai), i = 1, . . . , n.

iii) dim(P (Ai1) + . . . + P (Aik)) ≥ k for each choice of indices 1 ≤ i1 < . . . < ik ≤ n and for
all k ∈ {1, . . . , n}.

We observe that (1.7) is consistent with the latter for C 6= 0 (cf. Corollary 2.3).
The following corollary of Proposition 2.2 provides us with some useful tools for the computation

of the mixed discriminant.

Corollary 2.3. Let n ∈ N, and let A,A1, . . . , An ∈ Sn+.



4 CHRISTOPHER DE VRIES, NICO LOMBARDI, AND EUGENIA SAORÍN GÓMEZ

i) If A1, . . . , An are positive definite, then D(A1, . . . , An) > 0.
ii) If the positive semidefinite matrix A has rank one, then

D(A,A,A3, . . . , An) = 0.

Proof. The positivity of the mixed discriminant in i) follows immediately from Proposition 2.2.
Indeed, as P (Ai) = Rn, for i = 1, . . . , n, condition iii) in Proposition 2.2 is directly fullfilled.

In order to prove ii) we use Proposition 2.2 iii). It is enough to observe, that condition
dim(P (Ai1) + . . . + P (Aik)) ≥ k for each choice of indices 1 ≤ i1 < . . . < ik ≤ n and for
1 ≤ k ≤ n, is violated for k = 2 and A1 = A2 = A, as dim(P (A) + P (A)) = dim(P (A)) = 1 < 2.

�

Next, we establish two results, also parallel to existing results within the framework of convex
bodies, which provide us with a general version of Theorem B, for mixed discriminants, and a
characterization of the linearity of the latter. For completeness, and since the authors have not
been able to find the results stated explicitly within the context of positive semidefinite matrices,
we will provide the proofs of both of them, expressly noticing that they are a one-to-one translation
into matrices, determinants, and mixed discriminants of the referred to results in [19]. For the
sake of brevity, we introduce the notation D(A[k], Ak+1, . . . , An) := D(A, . . . , A︸ ︷︷ ︸

k−times

, Ak+1 . . . , An) for

the mixed discriminant of the matrices A,Ak+1, . . . , An, where the matrix A appears k times.

Theorem 2.4. Let n,m ∈ N be such that n ≥ 1 and 1 ≤ m ≤ n. Let A0, A1, Am+1, . . . , An ∈ Sn+,
and Aλ = (1− λ)A0 + λA1 ∈ Sn+. Then the function

f(λ) := D(Aλ[m], Am+1, . . . , An)1/m

is concave on [0, 1].

Notice that the case m = n coincides with Theorem B.

Proof. (Follows the same lines of the Proof of Theorem 7.4.5 in [19]). First, we prove that the
second derivative of f at 0 is non-positive. Then, we will argue that this implies the concavity of
f on [0, 1]. For the sake of brevity we write A = (Am+1, . . . , An).

Let us denote by D(i) = D(A0[m − i], A1[i],A), and define g(λ) := f(λ)m. Then, using multi-
linearity of the mixed discriminant, we have

g(λ) = f(λ)m =

m∑
j=0

(1− λ)m−jλj
(
m

j

)
D(j).

Using standard computations, the second derivative of f at zero satisfies

f ′′(0) = (m− 1)D
1
m−2

(0)

[
−D2

(1) +D(2)D(0)

]
.

Indeed,

f ′(λ) =
1

m
g(λ)

1
m−1g′(λ), and

f ′′(λ) =
1

m
(

1

m
− 1)g(λ)

1
m−2(g′(λ))2 +

1

m
g(λ)

1
m−1g′′(λ).

Direct calculation on g(λ) =
∑m
j=0(1− λ)m−jλj

(
m
j

)
D(j) provides us with

g(0) = D(0), g′(0) = m(D(1) −D(0)), and g′′(0) = m(m− 1)(D(0) − 2D(1) +D(2)).

Then,

f ′′(0) =
1

m
(

1

m
− 1)D

1
m−2

(0) (−mD(0) +mD(1))
2 + (m− 1)D

1
m−1

(0) (D(0) − 2D(1) +D(2))

= (m− 1)D
1
m−2

(0)

[
−D2

(1) +D(2)D(0)

]
.
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We observe that −D2
(1) + D(2)D(0) < 0 by the Aleksandrov-Fenchel inequality (1.8), which

yields f ′′(0) ≤ 0.
Next we complete the proof showing that the latter is enough to show f ′′(λ) ≤ 0 for all

λ ∈ [0, 1]. Let λ′ ∈ (0, 1) be fixed, we define Āτ = (1 − τ)Aλ′ + τA1 and h : [0, 1] → R, as
h(τ) = D(Āτ [m],A)1/m, for τ ∈ [0, 1].

Defining µ := τ(1− λ′), for 0 ≤ τ ≤ 1, we have 0 ≤ µ ≤ 1− λ′ < 1 and

(2.1) h(τ) = h(
µ

1− λ′
) = D(Ā µ

1−λ′
[m],A)1/m.

Observing that

Ā µ
1−λ′

= (1− µ

1− λ′
)
(

(1− λ′)A0 + λ′A1

)
+

µ

1− λ′
A1

= (1− (λ′ + µ))A0 + (λ′ + µ)A1,

we get h(τ) = h( µ
1−λ′ ) = f(λ′ + µ). We remark also that f(λ′ + µ) is well-defined since 0 ≤ µ ≤

1− λ′ < 1. Moreover h(0) = f(λ′). Computing the first and second derivatives of f with respect
to λ at 0, we get

d

dλ
|λ=λ′ f(λ) =

1

1− λ′
d

dτ
|τ=0 h(τ), and

d2

dλ2
|λ=λ′ f(λ) =

1

(1− λ′)2

d2

dτ2
|τ=0 h(τ).

We have d2

dτ2 |τ=0 h(τ) ≤ 0 from the same argument of f ′′(0) = d2

dλ2 |λ=0 f(λ) ≤ 0, where instead

of A0 we consider Aλ′ . Thus, we have d2

dλ2 |λ=λ′ f(λ) ≤ 0.

It only remains d2

dλ2 |λ=1 f(λ) (left derivative), for which we consider g(λ) = f(1− λ). This yields
d2

dλ2 |λ=1 f(λ) = d2

dλ2 |λ=0 g(λ) ≤ 0.
�

As briefly mentioned before, the next theorem contains a characterization of the linearity case
in Theorem 2.4.

Theorem 2.5. Let n,m ∈ N be such that n ≥ 1 and 1 ≤ m ≤ n, A0, A1, Am+1, . . . , An ∈ Sn+,
Aλ = (1− λ)A0 + λA1 ∈ Sn+, and let A = (Am+1, . . . , An). Let further

f(λ) := D(Aλ[m], Am+1, . . . , An)1/m = D(Aλ[m],A)1/m

for 0 < λ < 1. Under the assumption D(A0[m],A) > 0, and D(A1[m],A) > 0, the following
conditions are equivalent:

i) The function f is linear.
ii) D(A0[m− i], A1[i],A)2 = D(A0[m− i+ 1], A1[i− 1],A)D(A0[m− i− 1], A1[i+ 1],A) for

i = 1, . . . ,m− 1.
iii) D(A0[m− 1], A1[1],A)m = D(A0[m],A)m−1D(A1[m],A).

Proof. (The proof follows the same lines of the proof of [19, Theorem 7.4.6]).
As in the proof of Theorem 2.4, we will denote by D(i) = D(A0[m− i], A1[i],A). Firstly, assume

that f is linear. Therefore,

D(Aλ[m],A)1/m = (1− λ)D(A0[m],A)1/m + λD(A1[m],A)1/m.

By taking the m-th power and using multilinearity of the mixed discriminant, we obtain

m∑
i=0

(
m

i

)
(1− λ)m−iλiD(i) = D(Aλ[m],A)

=
(

(1− λ)D(A0[m],A)1/m + λD(A1[m],A)1/m
)m

=

m∑
i=0

(
m

i

)
(1− λ)m−iλiD

(m−i)/m
(0) D

i/m
(m) .
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Hence, we get Dm
(i) = Dm−i

(0) Di
(m) for every i = 0, . . . ,m.

Assume the latter equality holds for every i = 0, . . . ,m. Considering the equality for i− 1, i, i+ 1
and squaring we obtain:

D2m
(i) = D

2(m−i)
(0) D2i

(m),

Dm
(i−1) = Dm−i+1

(0) Di−1
(m), and

Dm
(i+1) = Dm−i−1

(0) Di+1
(m).

Thus, taking the product of the mixed discriminants corresponding to i− 1 and i+ 1 yields

Dm
(i−1)D

m
(i+1) = D

2(m−i)
0 D2i

m = D2m
(i) .

Next, we show ii) implies iii). We have that

D(i)

D(i−1)
=
D(i+1)

D(i)
for all i ∈ {1, . . . ,m− 1}.

Therefore, we get immediately the desired equality(
D(1)

D(0)

)m−1

=
D(2)

D(1)
·
D(3)

D(2)
. . .

D(m)

D(m−1)
=
D(m)

D(1)
.

It remains to prove that i) follows from iii). As we showed in Theorem 2.4, f is concave. Hence,
we get f ′(0) ≥ f(1) − f(0) with equality if and only if f is linear. On the other hand, from
Minkowski’s first inequality, Theorem C, we receive that

Dm
(1) ≥ D

(m−1)
(0) D(m),

with equality if and only if f is linear.
�

Next, we state two well-known inequalities, the Bergstrom and the Ky Fan inequalities for the
determinant. They are, a priori, not parallel to inequalities within the realm of Convex Geometry
and will be key to prove linearized versions of the Brunn-Minkowski and the Aleksandrov-Fenchel
inequalities for positive semidefinite matrices.

Theorem 2.6. [6, 7, 8] Let A and B be two n×n positive definite matrices, we denote by Ai and
Bi the two (n− 1)× (n− 1) matrices given by A and B deleting the i-th row and the i-th column.
Then we have

(2.2)
det(A+B)

det(Ai +Bi)
≥ det(A)

det(Ai)
+

det(B)

det(Bi)
,

for every i ∈ {1, . . . , n}.

Theorem 2.7. [6, 10] Let A and B be two n × n positive definite matrices, we denote by A(k)

and B(k) the principal k × k matrices of A and B obtained by taking the first k rows and the k
columns. Then we have

(2.3)

(
det(A+B)

det(A(k) +B(k))

) 1
n−k

≥ det(A)
1

n−k

det(A(k))
1

n−k
+

det(B)
1

n−k

det(B(k))
1

n−k
,

for every k ∈ {1, . . . , n− 1}.

3. Projection of a matrix onto a linear subspace

As briefly mentioned before, linearized versions of the Brunn-Minkowski and Aleksandrov-
Fenchel inequalities within the context of Convex Geometry can be found in the literature (see
e.g. [19, Section 7.7]). For those results, assumptions on equal projections of the involved convex
sets have shown to yield fruitful conclusions. Inspired by that fact, we consider next projections of
positive semidefinite matrices, which will be used in the next section with the purpose of linearizing
the matrix versions of the Brunn-Minkowski and Aleksandrov-Fenchel inequalities.

We consider Rn endowed with the Euclidean structure. We write uT v for the scalar product of
u, v ∈ Rn and || · || for the Euclidean norm. We denote by ei the i-th vector of the standard basis
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in Rn. Further, we denote by Sn−1 the Euclidean unit sphere in Rn, and for a vector u ∈ Rn, we
denote by u⊥ the (n− 1)-dimensional subspace of Rn orthogonal to u, which will refer to just as
a hyperplane.

The following notion of projection of a matrix onto a subspace has been considered in [4, 5],
and it is inherited from the definition of restriction of a quadratic form to a linear subspace.

Let L be a linear subspace of Rn, Q ∈ Mn a real square symmetric matrix, and let qQ be the
quadratic form on Rn associated to Q, i.e., qQ(x) = 〈x,Qx〉. The projection of the matrix Q onto
L will be defined as the matrix associated to the restriction of q to the subspace L ⊂ Rn, and
denoted by Q|L ∈MdimL. The matrix Q|L is well defined, and if Q is positive semidefinite, then
so is Q|L.

For the matrix terminology, as usual, we need to consider orthonormal bases of L and L⊥, BL
and BL⊥ , and the basis of Rn given by union of those, BL,L⊥ = BL∪̇BL⊥ . Whenever we will
be dealing with projection of matrices, every matrix Q ∈ Mn will be considered as the matrix
of the associated linear map, with respect to the bases BL, BL⊥ , and BL,L⊥ , fixed in advance.

With some abuse of notation, once we have fixed bases of L,L⊥ and Rn as just mentioned, given
a matrix T , we will denote by T also the linear map T : U −→ V where U, V ∈ {L,L⊥,Rn} are
appropriately chosen. The other way around, given a map T : U −→ V for U, V ∈ {L,L⊥,Rn}
we also denote by T the matrix of T , with respect to the bases BL, BL⊥ or Rn, accordingly. With
that, the projection of a matrix onto the subspace L -implicitly w.r.t. the orthonormal bases BL
of L, BL⊥ of L⊥, and BL,L⊥ of Rn amounts to the following.

Proposition and Definition 3.1. [4, 5] Let Q ∈ Mn be a positive semidefinite matrix, and let
L ⊆ Rn be a linear subspace of Rn of dimension 1 ≤ k ≤ n. The following definitions of the
projection of a matrix are equivalent.

i) Let q : Rn −→ R be the quadratic form x→ xTQx. Then, the projection of the matrix Q
onto the subspace L is the positive semidefinite k × k matrix of the restriction of q to the
subspace L.

ii) Let BL and BL⊥ be bases of L and L⊥ respectively, and let BL,L⊥ = BL∪̇BL⊥ be an
orthonormal basis of Rn. Then, the projection of the matrix Q onto L is defined as the
self-adjoint operator

Q|L = P ∗QP,

where P : L → Rn denotes the inclusion of L into Rn, and P ∗ : Rn → L the orthogonal
projection of Rn onto L.

Remark 3.2. We observe that for the equivalence of the two definitions of the projection of a
matrix onto a subspace we have used the conventions made before, namely for a subspace L ⊂ Rn,
with a fixed orthonormal basis BL, we consider the inclusion and projection maps P : L −→ Rn,
and P ∗ : Rn −→ L, and the representation matrices P , and P ∗, respectively, with respect to the
orthonormal basis of L, BL, and the standarbasis of Rn.

Remark 3.3. Let C = (cij)1≤i,j≤n ∈ Mn be a positive semidefinite matrix, which is also the
matrix of the linear map C : Rn −→ Rn with respect to the standardbasis in Rn. Let L be a linear
subspace of Rn, and let BL, BL⊥ , BL,L⊥ = BL∪̇BL⊥ be orthonormal bases of L,L⊥, and Rn,
respectively. Then, if the matrix A gives the linear map C in the basis BL,L⊥ , then the projection
of C onto L is

P ∗CP =


1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

... · · ·
...

...
...

...
0 0 . . . 1 0 . . . 0

 · A ·



1 . . . 0
0 . . . 0
... · · ·

...
0 . . . 1
0 . . . 0
... · · ·

...
0 . . . 0


,

that is, the dimL× dimL principal submatrix of A is given by the first dimL columns and rows.
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We observe that the projection of a matrix onto a subspace L, as a linear map does not depend
on the choice of the bases for L,L⊥ or Rn, while it does when we only consider the matrix.

The next lemma provides us with a connection between the projection of a matrix, and the
principal matrices of A and B, involved in Theorems 2.6 and 2.7, which are indeed appropriate
projections of A and B.

Lemma 3.4. Let A ∈ Sn+ be a positive definite matrix and 1 ≤ i ≤ n. Let Ai denote the
(n− 1)× (n− 1) matrix obtained from A by removing the i-th row and the i-the column, and let
A(i) denote the i× i matrix obtained from A by taking the first i columns and i rows. Then,

i) Ai = A|L for L = e⊥i ,

ii) A(i) = A|L for L = lin {e1, . . . , ei}.
Proof. Let A ∈ Sn+. Both statements follow the same idea, namely, an appropriate permutation
of the canonical basis and Remark 3.3.

In order to prove i) it is enough to consider the basis B = (e1, . . . , ei−1, ei+1, . . . , en, ei), which
is just a reordering of the orthonormal canonical basis. Let C be the matrix representation of A
with respect to the basis B. The projection matrix of C onto e⊥i , taking Remark 3.3 into account,
is performed by deleting the last column and the last row from C, which is exactly removing the
i-th column and i-th row of A.

Analogously, for the proof of ii) we consider the standard basis B′ = (e1, . . . , en) and project
A onto L.

�

We list now some properties of the projection of matrices, in connection with mixed discriminants.
Let H ⊆ Rn be a hyperplane. Let Q1, . . . , Qn−1 ∈ Sn+ be positive semidefinite matrices. By using

Proposition and Definition 3.1 i) the projection matrices Q1|H, . . . , Qn−1|H ∈ Sn−1
+ , onto H are

(n− 1)× (n− 1) positive semidefinite matrices. We will denote by Dn−1 the mixed discriminant
on (Sn−1

+ )n−1, whose existence is provided by Theorem A. Thus, Dn−1(Q1|H, . . . , Qn−1|H) is
the mixed discriminant of the (n− 1)× (n− 1) positive semidefinite matrices Q1|H, . . . , Qn−1|H.
Lemma 3.6 states a connection between mixed discriminants in (Sn+)n and in (Sn+)n−1. Before
we can state the mentioned result, we need the following standard fact about quadratic forms,
described by positive semidefinite matrices of rank 1.

Remark 3.5. Let A ∈ Sn+ be a positive semidefinite matrix with rank(A) = 1. Then, there exists

u ∈ Sn−1 and λ > 0, such that A = λuuT . Thus, the quadratic form defined by A is given by
xTAx = xTλuuTx = λ(xTu)2.

Now, we can state the connection of mixed discriminant of appropriate n× n matrices, to the
mixed discriminant Dn−1 of the (n − 1) × (n − 1) projection matrices onto the kernel of the one
having rank one.

Lemma 3.6. [5, Lemma 2.4] Let u ∈ Sn−1, Q1, . . . , Qn ∈ Sn+ positive semidefinite matrices, so that

Qn = λuuT for λ > 0. Let H = u⊥ be the hyperplane orthogonal to u, and let Q1|H, . . . , Qn−1|H
denote the projection matrices of Q1, . . . , Qn−1 onto H. Then,

(3.1) D(Q1, . . . , Qn) =
λ

n
Dn−1(Q1|H, . . . , Qn−1|H).

Remark 3.7. We observe that the choice of an orthonormal basis for the hyperplane H in Lemma
3.6 would not alter the validity of the result. Indeed, if B1 and B2 are orthonormal bases of H, and
Q|HB1 , and Q|HB2 denote the projection matrices of Q onto H with respect to the basis B1, and
B2, there is an orthogonal matrix, such that Q|HB1

= OQ|HB2
OT . Thus, Lemma 2.1 v) yields

Dn−1(Q1|HB1
, . . . , Qn−1|HB2

) = Dn−1(OQ1|HB1
OT , . . . , OQn−1|HB2

OT ).

We end this section with the following remark on projection of a matrix onto two hyperplanes,
which will be useful in the coming sections.

Remark 3.8. [4, Proof of Lemma 2.3.1] Let A ∈ Mn and let u ∈ Sn−1. Let O be an orthogonal
matrix mapping u to ei, and thus, mapping u⊥ to e⊥i . Then det

(
A|u⊥

)
= det

(
(OAOT )|e⊥i

)
.
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4. Linearized version of the Aleksandrov-Fenchel inequality

In this section, we aim to obtain a linearized version of the Aleksandrov-Fenchel inequality for
mixed discriminants. The following theorem and its proof, which provides us with the mentioned
goal, is a one-to-one adaptation of [19, Theorem 7.4.3] to the matrix context. We provide detailed
proof in this framework for completeness.

Theorem 4.1. Let A0, A1, A2, A3 . . . , An be positive semidefinite matrices, and A := (A3, . . . , An).
If D(A1, A0,A), D(A2, A0,A) > 0, then

(4.1)
D(A1, A1,A)

D(A1, A0,A)2
− 2D(A1, A2,A)

D(A1, A0,A)D(A2, A0,A)
+

D(A2, A2,A)

D(A2, A0,A)2
≤ 0.

Proof. (The proof follows the same lines of the proof of [19, Theorem 7.4.3]) We consider first the
case in which all matrices involved are positive definite matrices. We observe that the assumption
D(A1, A0,A) = D(A2, A0,A) > 0 is in this case redundant.

Following the notation of the proof of Theorem 7.4.3 in [19], we denote

Uij := D(Ai, Aj ,A),

with i, j = 0, 1, 2. The following statement is a direct adaptation to mixed discriminant of [19,
Lemma 7.4.1].
Claim. The following inequality

(U00U12 − U01U02)
2 ≤

(
U2

01 − U00U11

) (
U2

02 − U00U22

)
holds.

Indeed, by the Aleksandrov-Fenchel inequality for mixed discriminants, i.e., Theorem D, direct
computations for fixed λ1, λ2 ≥ 0 show

0 ≤ D(λ1A1 + λ2A2, A0,A)2 −D(λ1A1 + λ2A2, λ1A1 + λ2A2,A)D(A0, A0,A)

= λ2
1(U2

10 − U11U00︸ ︷︷ ︸
A

)− 2λ1λ2(U12U00 − U10U20︸ ︷︷ ︸
B

) + λ2
2(U2

20 − U22U00︸ ︷︷ ︸
C

).

Denoting by A = U2
10 − U11U00, B = U12U00 − U10U20, and C = U2

20 − U22U00 we obtain the
validity of the inequality

Ax2 + 2Bx+ C ≥ 0,

for every x ∈ R. Therefore, 4B2 − 4AC ≤ 0, i.e.,

(U00U12 − U01U02)
2 ≤

(
U2

01 − U00U11

) (
U2

02 − U00U22

)
= U2

01U
2
02

(
1− U00U11

U2
01

)(
1− U00U22

U2
02

)
.

By Theorem D, we have 1− U00U22

U2
02

> 0 and 1− U00U11

U2
01

> 0, and since all matrices involved are

positive definite, we also have U00, U01, U02 > 0. If we take now the negative squared root on the
left-hand side, and the positive square root on the right-hand side, then applying the inequality
4ab ≤ (a+ b)2, i.e, considering −2ab ≤ a+ b with a = 1− U00U22

U2
02

> 0, and b = U00U11

U2
01

> 0, we get

U01U02

(
U11

U2
01

− 2
U12

U2
01

+
U22

U02

)
≤ 0,

which yields (4.1).
Next, we perform a standard approximation argument, which allows us to remove the defin-

iteness assumption and consider positive semidefinite matrices. We include the main steps for
completeness. In the previous argument for positive definite matrices, we needed D(A0, A0,A) =
U00 > 0, D(A0, A1,A) = U01 > 0, D(A0, A2,A) = U02 > 0. From the assumptions follow directly
that U01, U02 > 0. Now we prove that if U00 = 0, we can also argue as above after performing a
suitable approximation.

We observe first, that it is sufficient to consider A0 diagonal because of Lemma 2.1. On the
one hand, there exists k0 and Ai1 , . . . , Aik0 such that dim(P (Ai1) + . . . + P (Aik0 )) < k0. On the
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other hand, if S an orthogonal matrix, such that STA0S = A′0 is diagonal, then U00 = 0 and vice
versa. Thus, U00 = 0 is equivalent to D(A′0, A

′
0,A) = 0.

Therefore, we can assume that A0 = diag(a11, . . . , akk, 0, . . . , 0), for some k ∈ {1, . . . , n}, and
aii > 0, i ∈ {1, . . . , k}. Defining A0,j = diag(a11, . . . , akk, 1/j, . . . , 1/j), with 0 < j ∈ N, we obtain
that A0,j is positive definite for every j and it converges to A0 in the Euclidean metric. Hence,
D(A0,j , A0,j ,A) > 0 and by the assumption, we also have D(A1, A0,j ,A) > 0, D(A2, A0,j ,A) > 0,
for every 0 < j ∈ N. Applying the previous argument to D(A0,j , A0,j ,A),D(A1, A0,j ,A) and
D(A2, A0,j ,A), we have for every 0 < j ∈ N

D(A1, A1,A)

D(A1, A0,j ,A)2
− 2D(A1, A2,A)

D(A1, A0,j ,A)D(A2, A0,j ,A)
+

D(A2, A2,A)

D(A2, A0,j ,A)2
≤ 0.

Using (1.3) and the continuity of the determinant we get

lim
j→+∞

D(A0,j , A0,j ,A) = D(A0, A0,A), lim
j→+∞

D(A1, A0,j ,A) = D(A1, A1,A),

lim
j→+∞

D(A2, A0,j ,A) = D(A2, A2,A),

which finishes the proof. �

From this result, we obtain immediately the first linearization version of the Aleksandrov-
Fenchel inequality. We need the assumption of D(A1, A0,A) = D(A2, A0,A) > 0, which is only
relevant in the case that the matrices are not positive definite.

Corollary 4.2. Let A0, A1, A2, A3 . . . , An ∈ Sn+ be positive semidefinite matrices. We will write
A := (A3, . . . , An). If D(A1, A0,A) = D(A2, A0,A) > 0 holds, then

(4.2) 2D(A1, A2,A) ≥ D(A1, A1,A) + D(A2, A2,A).

The previous results enable us to establish the linearized Aleksandrov-Fenchel inequality for
matrices sharing the same projection.

Theorem 4.3. Let C3 . . . , Cn, C ∈ Sn+ be positive semidefinite matrices, and let L = u⊥ be the
(n− 1)-dimensional subspace orthogonal to u. If Dn−1(C|L,C3|L, . . . , Cn|L) > 0, then,

(4.3) 2D(A,C,C3, . . . , Cn) ≥ D(A,A,C3, . . . , Cn) + D(C,C,C3, . . . , Cn),

for every A ∈ Sn+ with A|L = C|L, the Aleksandrov-Fenchel inequality (1.8) can be linearized.

Proof. We consider the rank one positive semidefinite matrix M = uuT . Since rank(M) = 1, then
by Lemma 3.6 we have

D(C,M,C3, . . . , Cn) =
1

n
Dn−1(C|L,C3|L, . . . , Cn|L) > 0.

Moreover, for every A ∈ Sn+ with A|L = C|L we have also

D(A,M,C3, . . . , Cn) = D(C,M,C3, . . . , Cn) =
1

n
Dn−1(C|L,C3|L, . . . , Cn|L) > 0.

By Corollary 4.2, with A0 = M , we obtain the result. �

Next, as seems to be natural after the last result, we introduce the following family of matrices,
depending on a linear subspace and a given matrix. Not only this family allows us to have a
linearized Aleksandrov-Fenchel inequality, but (a generalization of) it will allow us to linearize the
Brunn-Minkowski inequality in the next section. We will call this family, canal class, following
the terminology used for the analog notion within the context of convex bodies. For the latter,
we refer the reader to [19, Section 7.7], and the references therein.

Definition 4.4. Let C ∈ Sn+ be a positive semidefinite matrix, and let L be a linear subspace
in Rn. Then, the canal class of C, relative to the subspace L, is the following family of positive
semidefinite matrices:

ML
C =

{
A ∈ Sn+ : C|L = A|L

}
.

The following corollary is now an immediate consequence.
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Corollary 4.5. Let C3 . . . , Cn, C,M ∈ Sn+ be positive semidefinite matrices, u ∈ Sn−1, and let

L = u⊥. We assume further that Dn−1(C|L,C3|L, . . . , Cn|L) > 0. Then,

2D(A,B,C3, . . . , Cn) ≥ D(A,A,C3, . . . , Cn) + D(B,B,C3, . . . , Cn),

for every A,B ∈ML
C .

We finish the section by stating one more inequality for mixed discriminants, which can be
derived from the latter results, and which will be needed in the next. We follow [19, p. 399-400].
We recall, that a finite sequence of real numbers (a0, a1, . . . , am) is called concave if

ai−1 − 2ai + ai+1 ≤ 0 for i = 1, . . . ,m− 1,

which is equivalent to
a0 − a1 ≤ a1 − a2 ≤ · · · ≤ am−1 − am.

By taking arithmetic means the following inequalities are also satisfied by a concave sequence

ai − aj
j − i

≤ aj − ak
k − j

and (k − j)ai + (i− k)aj + (j − i)ak ≤ 0.

In the latter, equality holds if and only if

ar−1 − 2ar + ar+1 = 0 for r = i+ 1, . . . , k − 1.

Lemma 4.6. Let 1 ≤ m ≤ n, let A0, A1, A2, Am+1 . . . , An be positive semidefinite matrices, and
write A := (Am+1, . . . , An). If D(A0[m − i], A1[i],A) > 0 for 0 ≤ i ≤ m, then the finite sequence
(D(0), . . . ,D(m)), where D(i) = D(A0[m−i], A1[i],A), 1 ≤ i ≤ m, is a concave sequence. Moreover,

(k − j)D(i) + (i− k)D(j) + (j − i)D(k) ≤ 0

for every 0 ≤ i < j < k ≤ m, with equality holds if and only if

D(k−1) − 2D(k) + D(k+1) = 0

holds for every k = 1, . . . ,m− 1.

Proof. The discussion preceding the lemma states the inequality and the equality case as long
as we prove that the sequence (D(0), . . . ,D(m)) is concave. The concavity follows from Corollary
4.2. �

5. Linearized Brunn-Minkowski inequality

In this section, we focus on linearizations of the Brunn-Minkowski inequality and related in-
equalities. We begin with a linearized version of the general Brunn-Minkowski inequality, which
relies on the linearized Aleksandrov-Fenchel inequality for matrices sharing a common projection
on a hyperplane.

Theorem 5.1. Let u ∈ Sn−1 and L = u⊥ be the (n−1)-dimensional subspace orthogonal to u. Let
C ∈ Sn+ be a positive semidefinite matrix, fix m ∈ {2, . . . , n}, and Cm+1, . . . , Cn ∈ Sn+ be such that

Dn−1(C|L[m−1], Cm+1|L, . . . , Cn|L) > 0. Let A0, A1 ∈ML
C , and denote by Aλ = (1−λ)A0 +λA1

the convex combination of A0 and A1, with λ ∈ [0, 1]. Then, the function

f(λ) = D(Aλ[m], Cm+1, . . . , Cn)

is concave on [0, 1].

Proof. (The proof of this result follows the same lines of the proof of [19, Theorem 7.7.2]).
We denote by C := (Cm+1, . . . , Cn), then f(λ) = D(Aλ[m], C). We observe first, that Aλ ∈ML

C .
Using now the linearity of the mixed discriminant in each entry in Proposition 2.1, we obtain (see
the function g in the proof of Theorem 2.4):

f ′′(0) = m(m− 1)
[
D(A0[m], C)− 2D(A1, A0[m− 1], C) + D(A1, A1, A0[m− 2], C)

]
.

Applying now Theorem 4.3, we obtain that f ′′(0) ≤ 0, which establishes the concavity of the
function f in [0, 1]. �

In the case m = n we obtain the following immediate corollary.
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Corollary 5.2. Let u ∈ Sn−1, and let u⊥ be the (n − 1)-dimensional subspace orthogonal to u.
Let A,B ∈ Sn+ be such that A|u⊥ = B|u⊥. Then,

det((1− λ)A+ λB) ≥ (1− λ) det(A) + λ det(B),

for every λ ∈ [0, 1]. Moreover, we have equality if and only if there exists a matrix R ∈ Sn+ of rank
at most 1, such that B = A+R.

The equality case follows from the following result and remark.

Theorem 5.3. [17, Theorem 5.1] Let A,B ∈ Sn+ be two positive semidefinite matrices. Then

det((1− λ)A+ λB) = (1− λ) det(A) + λ det(B)

if and only if there exists a matrix R ∈ Sn+ of rank at most 1, such that B = A+R.

Remark 5.4. We observe that if there exists a matrix R ∈ Sn+ of rank at most 1, such that

B = A + R, then there exists u ∈ Sn−1 with R = λuuT , for a suitable λ ∈ R. This implies that
R|u⊥ is the (n− 1)× (n− 1) zero matrix. Hence, A|u⊥ = B|u⊥.

Next, we deal with the equality case in Theorem 5.1, i.e., the equality case in the linearized
Brunn-Minkowski inequality, under the assumption of equal matrix projections onto a hyperplane.

Theorem 5.5. Under the same notations and hypotheses of Theorem 5.1, let f(λ) := D(Aλ[m], C)
for 1 ≤ m ≤ n, and Cm+1, . . . , Cn ∈ Sn+. The following assertions are equivalent:

i) The function f is linear;
ii) We have the following chain of equalities:

D(A0[m], C)−D(A0[m− 1], A1, C)
= D(A0[m− 1], A1, C)−D(A0[m− 2], A1[2], C) = . . . = D(A0, A1[m− 1], C)−D(A1[m], C);

iii) (m− 1)D(A0[m], C)−mD(A0[m− 1], A1, C) + D(A1[m], C) = 0.

Proof. (The proof of this result follow the same lines of the proof of [19, Theorem 7.7.2]).
Let f(λ) := D(Aλ[m], C), and for 1 ≤ i ≤ m ≤ n, let D(i) = D(A0[m − i], A1[i], C). From

Theorem 5.1 we have that the function f is concave, which yields f ′(0) ≥ f(1) − f(0), with
equality if and only if the function is linear. Writing the latter explicitly, having into account that
f ′(0) = −mD(0) +mD(1), we get

D(m) −mD(1) + D(0)(m− 1) ≤ 0

with equality if and only if f is linear, which is exactly the equivalence between i) and iii).
The equivalence of ii) and iii) follows from the equality in Lemma 4.6. �

5.1. Equal determinant of projections. In this subsection, we aim to improve the linearized
version of the Brunn-Minkowski inequality for matrices under the assumption of equal projections,
by considering a milder assumption, namely, that the matrices have equal determinant of the
projections onto a hyperplane.

We prove first the result, when the projections are assumed to be onto hyperplanes orthogonal
to the standard basis {e1, . . . , en} in Rn.

Proposition 5.6. Let 1 ≤ i ≤ n, and let A,B ∈ Sn+ be two positive definite matrices. If

det
(
A|e⊥i

)
= det

(
B|e⊥i

)
, then

det((1− λ)A+ λB) ≥ (1− λ) det(A) + λ det(B),

for every λ ∈ [0, 1].
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Proof. Let λ ∈ [0, 1]. We use Lemma 3.4 and apply Bergstrom’s inequality to (1 − λ)A and λB.
Taking into account that det(Ai) = det

(
A|e⊥i

)
= det

(
B|e⊥i

)
= det(Bi), we obtain

det((1− λ)A+ λB)

det((1− λ)Ai + λBi)
≥ det((1− λ)A)

det((1− λ)Ai)
+

det(λB)

det(λBi)

= (1− λ)
det(A)

det(Ai)
+ λ

det(B)

det(Bi)

=
(1− λ) det(A) + λ det(B)

det(Ai)
.

Therefore, we obtain the inequality

(5.1)
det(Ai)

det((1− λ)Ai + λBi)
det((1− λ)A+ λB) ≥ (1− λ) det(A) + λ det(B).

The Brunn-Minkowski inequality (Theorem B) applied to det((1− λ)Ai + λBi) yields

det((1− λ)Ai + λBi) ≥
(

(1− λ) det(Ai)
1

n−1 + λ det(Bi)
1

n−1

)n−1

=
(

(1− λ) det(Ai)
1

n−1 + λ det(Ai)
1

n−1

)n−1

= det(Ai).

Thus,

det(Ai)

det((1− λ)Ai + λBi)
≤ 1.

The latter, together with (5.1) yields the result. �

Let A,B ∈ Sn+. Next, we prove that we can assume equal determinant of the projections

of A and B onto a generic hyperplane u⊥, u ∈ Sn−1, to obtain the linearized version of the
Brunn-Minkowski inequality for the determinant in Proposition 5.6, using Remark 3.8.

Theorem 5.7. Let A,B ∈ Sn+ be positive semidefinite matrices, and let u ∈ Sn−1. Assume that

det
(
A|u⊥

)
= det

(
B|u⊥

)
. Then

det((1− λ)A+ λB) ≥ (1− λ) det(A) + λ det(B),

for every λ ∈ [0, 1]. Moreover, we have equality if and only if there exists a matrix R ∈ Sn+ of rank
at most 1, such that B = A+R.

Proof. Let O be an orthogonal matrix such that en = Ou. By Remark 3.8, we have

det(OAOT |e⊥n ) = det(A|u⊥) = det(B|u⊥) = det(OBOT |e⊥n ).

Applying Proposition 5.6 to OAOT and OBOT , we have,

det((1− λ)OAOT + λOBOT ) ≥ (1− λ) det(OAOT ) + λ det(OBOT ).

Using that the matrix O is orthogonal we get the desired inequality. The equality follows from
Theorem 5.3. �

It is natural to ask whether the assumption that the projections of two matrices onto a k-
dimensional linear subspace L, with k ∈ {1, . . . , n}, are equal allows establishing a linearized
version of the Brunn-Minkowski inequality. The following lemma shows that such an assumption
is not enough for that purpose.

Lemma 5.8. There exist matrices A,B ∈ Sn+, and an (n − 2)-linear subspace L ⊂ Rn with
det(A|L) = det(B|L), so that

det ((1− λ)A+ λB) < (1− λ) det(A) + λ det(B),



14 CHRISTOPHER DE VRIES, NICO LOMBARDI, AND EUGENIA SAORÍN GÓMEZ

Proof. Let a1, . . . , an, b1, . . . , bn ≥ 0, and let A = diag{a1, . . . , an} and B = diag{b1, . . . , bn} be

diagonal positive semidefinite matrices satisfying that
∏n−2
i=1 ai =

∏n−2
i=1 bi. Then, from Lemma

3.4, A|L = A(n−2) and B|L = B(n−2), thus det(A|L) = det(B|L) =
∏n−2
i=1 ai for L being the

(n − 2)-dimensional linear subspace generated by the first n − 2 vectors of the canonical basis
{e1, . . . , en−2} of Rn.

We consider now the matrices A′ = diag{a1, . . . , an−1} and B′ = diag{b1, . . . , bn−1}, which
are clearly positive semidefinite. From the assumption follows that the determinants of their
projections onto the first n − 2 vectors of the standard basis of Rn−1 coincide. Using Theorem
5.7, we have

det((1− λ)A′ + λB′) =

n−1∏
i=1

((1− λ)ai + λbi) = ((1− λ)an−1 + λbn−1)

n−2∏
i=1

((1− λ)ai + λbi)

≥ (1− λ) det(A′) + λ det(B′) = (1− λ)

n−1∏
i=1

ai + λ

n−1∏
i=1

bi

= ((1− λ)an−1 + λbn−1)

n−2∏
i=1

ai.

Hence,
∏n−2
i=1 (1 − λ)ai + λbi ≥

∏n−2
i=1 ai, for every λ ∈ [0, 1]. Now, if we assume that ai = bi for

1 ≤ i ≤ n − 2, we have not only det(A|L) = det(B|L), but A|L = B|L, which leads for λ ∈ [0, 1]
to:

det((1− λ)A+ λB) =

n∏
i=1

((1− λ)ai + λbi) = ((1− λ)an + λbn)

n−2∏
i=1

ai,

while

(1− λ) det(A) + λdet(B) = ((1− λ)anan−1 + λbnbn−1)

n−2∏
i=1

ai.

Thus, it is enough to consider

((1− λ)an−1 + λbn−1)((1− λ)an + λbn) ≥ ((1− λ)anan−1 + λbnbn−1).

The latter is equivalent to (an − bn)(an−1 − bn−1) ≤ 0, which does not depend on λ ∈ [0, 1]. Now
it is easy to provide non-negative reals an−1, an, bn−1, bn, for which (an − bn)(an−1 − bn−1) ≤ 0
does not hold, as, e.g., an > bn ≥ 0, and an−1 > bn−1 ≥ 0. �

The previous result, along with Theorems 5.6 and 5.7 allows us to argue that the assumption
det(A|L) = det(B|L), and even A|L = B|L, for an (n− 2)-dimensional is not enough to ensure a
linearized version of the Brunn-Minkowski inequality.

Nevertheless, we can prove the following result, which follows the same spirit, by means of
the Ky-Fan inequality. An almost linear version of the Brunn-Minkowski inequality under the
assumption of equal determinant of the projections of the matrices onto (n − 2)-dimensional
subspaces, is a particular case of it.

Theorem 5.9. Let A,B ∈ Mn be two positive definite matrices. If det(A|L) = det(B|L) for
some (n− k)-dimensional linear subspace L ⊂ Rn, then

(5.2) det((1− λ)A+ λB) ≥ (1− λ)k det(A) + λk det(B),

for every λ ∈ [0, 1].

Proof. The proof is essentially the same as the proof of Theorem 5.7, except for the fact, that we
apply Ky Fan’s inequality (2.3) instead of Bergstrom’s inequality (2.2).

Using Remark 3.8 we can assume that L is the span of the first n− k vectors of the canonical
basis. Then, using Lemma 3.4 the projection onto L of the matrix A, is the matrix A(n−k) in Ky
Fan’s Theorem, constructed by taking the first k rows and columns of A, i.e., A(n−k) = A|L. Now
we can apply Ky Fan’s inequality to (1− λ)A and λB to obtain
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(
det((1− λ)A+ λB)

det((1− λ)A(n−k) + λB(n−k))

) 1
k

≥ (1− λ)
n
k det(A)

1
k

(1− λ)
n−k
k det(A(n−k))

1
k

+
λ
n
k det(B)

1
k

λ
n−k
k det(B(n−k))

1
k

=

= (1− λ)
det(A)

1
k

det(A(n−k))
1
k

+ λ
det(B)

1
k

det(B(n−k))
1
k

=

=
(1− λ) det(A)

1
k + λ det(B)

1
k

det(A(n−k))
1
k

,

where the last equality comes from the assoumption det(A|L) = det(B|L).
From the Brunn-Minkowski inequality for (n − k) × (n − k) matrices applied to the matrix

(1− λ)A(n−k) + λB(n−k) we get

det((1− λ)A+ λB)
1
k(

(1− λ) det(A(n−k))
1

n−k + λ det(B(n−k))
1

n−k

)n−k
k

≥
(

det((1− λ)A+ λB)

det((1− λ)A(n−k) + λB(n−k))

) 1
k

.

By the assoumption det(A(n−k)) = det(B(n−k)), we have(
(1− λ) det(A(n−k))

1
n−k + λ det(B(n−k))

1
n−k

)n−k
k

= det(A(n−k))
1
k ,

thus det((1− λ)A+ λB) ≥ (1− λ)k det(A) + λk det(B). �

Remark 5.10. Although we cannot provide a characterization of the equality in the previous result,
we provide next an example of two positive semidefinite matrices A,B satisfying B = A+R with
rankR ≤ 2, for which there is no equality in the previous result, showing that the equality in the
latter result differs strongly from the equality in the previous refinements of the Brunn-Minkowski
inequality for the determinant of positive semidefinite matrices.

Let A = diag{a1, . . . , an}, with ai > 0, for all i = 1, . . . , n, be a positive definite matrix. Let
R = diag{0, . . . , 0, rn−1, rn}, with ri > 0, for i = n − 1, n, be a positive semidefinite with rank 2.
Let λ ∈ [0, 1], and B = A+R. Then we have

det((1− λ)A+ λB) = det(A+ λR) =

(
n−2∏
i=1

ai

)
(an−1 + λrn−1)(an + λrn).

(an−1 + λrn−1)(an + λrn) = (1− λ)2an−1an + λ2(an−1 + rn−1)(an + rn),

which yields

λ(an−1rn + anrn−1 + 2anan−1) = λ2(2an−1an + an−1rn + rn−1an).

However, the latter is only true for λ ∈ {0, 1}, as long as 2an−1an + an−1rn + rn−1an 6= 0.
In the case rankR ≤ 1, it follows from Theorem 5.3, that

det((1− λ)A+ λB) = (1− λ) detA+ λ detB.

Thus, there cannot be equality in (5.2), in general.

As the first Minkowski inequality in Theorem C follows from the Brunn-Minkowski inequality,
we state now a linearized version of the first Minkowski inequality for the mixed discriminant,
following from the linearized version of the Brunn-Minkowski inequality.

Theorem 5.11. Let A,B ∈Mn be two positive semidefinite matrices. If det
(
A|u⊥

)
= det

(
B|u⊥

)
for some u ∈ Sn−1, then we have

(5.3) nD(A, . . . , A,B) ≥ (n− 1) det(A) + det(B).

Moreover equality holds if and only if there exists L ∈Mn such that rank(L) ≤ 1 and B = A+L.

The proof follows the lines of (some of) the classical proofs of the first Minkowski inequality
within Convex Geometry, as in [19].
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Proof. It follows from (1.4) that

nD(A[n− 1], B) = lim
λ→0+

det((1− λ)A+ λB)− det((1− λ)A)

λ
.

Hence, by means of Theorem 5.7, we have

nD(A[n− 1], B) = lim
λ→0+

det((1− λ)A+ λB)− det((1− λ)A)

λ

≥ lim
λ→0+

(1− λ) det(A) + λ det(B)− det((1− λ)A)

λ

= lim
λ→0+

(1− λ) det(A) + λ det(B)− (1− λ)n det(A)

λ

= lim
λ→0+

1− λ− (1− λ)n

λ
det(A) + det(B)

= (n− 1) det(A) + det(B).

The equality follows from Theorem 5.3. �
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