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Abstract. We investigate improvements of the Lp Brunn-Minkowski inequality for

convex bodies containing the origin, under the additional assumption that they have

a common projection onto a hyperplane. We provide some positive answers as well
as counterexamples to what would seem to be the expected result. Moreover, its con-

nection with the suitable improvements of the Lp first Minkowski inequality is also
shown.

1. Introduction

Let Kn be the family of all convex bodies, i.e., non-empty compact and convex sets,
in the n-dimensional Euclidean space Rn, and Kn

o the subfamily of Kn consisting of all
convex bodies containing the origin. We write Bn for the n-dimensional Euclidean unit
ball and Sn−1 for its boundary, the unit sphere. For any u ∈ Sn−1, the vector hyperplane
with normal vector u is denoted by u⊥, whereas the orthogonal projection of a set A ⊂ Rn

onto u⊥ is represented by Pu⊥(A). Finally, the n-dimensional volume of a measurable set
A ⊂ Rn, i.e., its n-dimensional Lebesgue measure, is denoted by voln(A).

Relating the volume of the Minkowski addition of two sets in terms of their volumes,
one is led to the famous Brunn-Minkowski inequality. One form of it reads as follows (see,
e.g., [29, Theorem 7.1.1]).

Theorem A. Let K,L ∈ Kn be two convex bodies. The inequality

(1.1) voln
(
(1− λ)K + λL

)1/n ≥ (1− λ)voln(K)1/n + λvoln(L)
1/n

holds for all λ ∈ (0, 1).

Here + is used for the Minkowski sum, i.e., A + B := {x + y : x ∈ A, y ∈ B} for any
non-empty subsets A,B ⊂ Rn, whereas λA := {λx : x ∈ A}, for some λ > 0, denotes the
corresponding dilatate of A.

The Brunn-Minkowski inequality is one of the most well-known and powerful inequalities
in Convex Geometry and beyond. We refer to [15] for an exhaustive survey on the Brunn-
Minkowski inequality and [29, Chapter 7] for a thorough analysis of this result. Moreover,
there are several extensions and generalizations of this inequality (see [15] and [29, Chapter
9]). Among all of them, here we are interested in the Lp version of (1.1), for p ≥ 1, which
is the cornerstone of the so-called Lp Brunn-Minkowski theory.

For the statement of such an extension of the Brunn-Minkowski inequality, we need
first to recall the notion of p-sum: for any pair of convex bodies containing the origin
K,L ∈ Kn

o , and p ≥ 1 fixed, the p-sum K +p L of K and L is the unique convex body
K +p L ∈ Kn

o such that

(1.2) h(K +p L, x) :=
(
hp(K,x) + hp(L, x)

)1/p
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for all x ∈ Rn, where h(A, ·) : Rn −→ R denotes the support function of a non-empty
bounded set A (see Section 2 for its precise definition and main properties). Although the
case p = ∞ can be interpreted as its limit case, i.e., h(K+∞L, x) = max

{
h(K,x), h(L, x)

}
,

thus yielding the convex hull of the union of the bodies K and L, we will omit this case
along the manuscript, since for such a value of p all the inequalities (both the classical
ones and those we aim to present here) trivially coincide. So, throughout the rest of the
paper, when writing p ≥ 1, we will refer to a real number p ≥ 1. Further, for any λ > 0,
the p-scalar multiplication defined by

(1.3) λ ·p K := λ1/pK

is also considered, which, in terms of its support function is expressed by hp(λ ·p K, ·) =
λhp(K, ·). Though this notion clearly depends on p, we use the notation · (instead of ·p)
throughout this paper whenever such p-scalar multiplication is employed jointly with the
p-sum +p. Furthermore, given λ, µ > 0, we shall write λ ·K +p µ ·L for (λ ·K) +p (µ ·L).
Notice also that the case p = 1 recovers the classical linear combination λK + µL (due to
the well-known fact that the support function is Minkowski additive).

Altogether, we get to the following result, originally shown by Firey [12] (cf. also [29,
Corollary 9.1.5]), which establishes the Lp Brunn-Minkowski inequality (later proven by
Lutwak, Yang and Zhang [25] in the case of arbitrary non-empty compact sets, by using
a more general definition of p-sum that coincides with the original one by Firey when
considering convex bodies containing the origin).

Theorem B. Let p ≥ 1, and let K,L ∈ Kn
o be two convex bodies containing the origin.

The inequality

(1.4) voln
(
(1− λ) ·K +p λ · L

)p/n ≥ (1− λ)voln(K)p/n + λvoln(L)
p/n

holds for all λ ∈ (0, 1).

Around three decades after the definition by Firey of the p-sum of convex bodies contain-
ing the origin, Lutwak [23, 24] initiated a systematic and thorough study of p-additions and
their implications. This novel and remarkable extension of the classical Brunn-Minkowski
theory, in the literature commonly referred to as the Lp Brunn-Minkowski theory, is not
only a very fruitful area of research nowadays, but it has supposed to be the starting point
for new generalizations and contributions. We refer the reader to [29, Section 9.1] for
further information on the Lp Brunn-Minkowski theory and its aftermath.

Our main goal in this paper is the investigation of possible refinements of inequality
(1.4). To this aim notice first that, since

(1.5) (1− λ̄) ·K +p λ̄ · L = (1− λ) ·K +p λ · L

for any λ, λ1, λ2 ∈ (0, 1), where λ̄ := (1 − λ)λ1 + λλ2, K := (1 − λ1) · K +p λ1 · L and

L := (1− λ2) ·K +p λ2 · L (cf. (1.2) and (1.3)), inequality (1.4) ensures that the function

λ 7→ voln
(
(1− λ) ·K +p λ · L

)
is (p/n)-concave on the whole interval (0, 1) (recall that a non-negative function f is said
to be α-concave, for some α > 0, if fα is concave on its domain, which is assumed to be
convex). So, considering Jensen’s inequality for means, it is clear that if a certain non-
negative function f is α-concave for some α > 0, and 0 < β < α, then it is β-concave.
Therefore, here we aim to enhance the degree of concavity p/n provided by (1.4), when
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dealing with a suitable subfamily of convex bodies (since, in general, the exponent p/n
cannot be improved, due to the non-trivial equality conditions of Theorem B).

In the classical setting of the Minkowski addition (i.e., when p = 1), and in the spirit
of finding assumptions that allow us to improve the concavity of the volume functional,
the following well-known result (which can be found in [2, 5]) asserts that it is enough to
consider convex bodies with a common projection onto a hyperplane.

Theorem C. Let K,L ∈ Kn be two convex bodies such that Pu⊥(K) = Pu⊥(L), for some
u ∈ Sn−1. The inequality

(1.6) voln
(
(1− λ)K + λL

)
≥ (1− λ)voln(K) + λvoln(L)

holds for all λ ∈ (0, 1).

This result, sometimes stated in terms of a condition on a maximal volume section by
a hyperplane, instead of a common projection onto it, goes back to Bonnesen [4]. We
also refer to [26] for further extensions and details about (1.6), as well to [29, Section
7.7], where several engaging results in that direction are presented when one deals with a
so-called canal class (namely, a family of convex bodies having a common projection onto
a hyperplane). Recent developments about linear refinements of Brunn-Minkowski type
inequalities in the geometric and functional setting can be found in [10, 11, 19, 20, 28, 30],
whereas further recent applications of canal classes to other convex geometric inequalities
and problems stated in [1, 13, 14, 16] can be found in [21, 22].

Taking into account the above-mentioned linear refinement of the Brunn-Minkowski
inequality, it is natural to wonder about a possible extension of such a result to the Lp

setting. The point at issue in this regard is trying to figure out the suitable “degree of
concavity” of the function λ 7→ voln

(
(1− λ) ·K +p λ ·L

)
. To be more precise, we pose the

following question:

Question 1.1. Given p ≥ 1, for which value of α = α(n, p) > 0 does the inequality

(1.7) voln
(
(1− λ) ·K +p λ · L

)α ≥ (1− λ)voln(K)α + λvoln(L)
α

hold for all λ ∈ (0, 1), provided that K,L ∈ Kn
o are convex bodies containing the origin for

which Pu⊥(K) = Pu⊥(L) for some u ∈ Sn−1?

For sure, in order that such a value of α provides us with something significant, it must
be not smaller than p/n, because of Theorem B, and moreover not less than 1, due to
Theorem C jointly with the well-known inclusion

(1− λ) ·K +p λ · L ⊃ (1− λ)K + λL

(see e.g. [12]). Furthermore, in Section 4 first we show that α cannot be bigger than
p. Thus, altogether, we already know that we are searching for α’s lying in the range[
max{1, p/n}, p

]
.

There are various indications to figure out the “right choice” for α in the previous ques-
tion (we will discuss this in further detail at the beginning of Section 4). Amongst them,
we have that one may interpret the statement of Theorem C as that the volume functional
“behaves” as the one-dimensional volume (cf. (1.1) for n = 1) under the additional as-
sumption, for the bodies there involved, of a common projection onto a hyperplane. Hence,
from the case n = 1 in Theorem B, it seems natural to conjecture that α = p is the suit-
able answer to Question 1.1. In fact, if that was the case, such a statement (cf. (1.7) with
α = p) would be not only the best one can expect but also an extension of Theorem C to
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the Lp setting (since the value of p = 1 recovers the Minkowski sum). Unfortunately, this
fact is in general not true:

Theorem 1.2. Let p ≥ 1. Then there exist two convex bodies containing the origin
K,L ∈ Kn

o with Pu⊥(K) = Pu⊥(L), for some u ∈ Sn−1, and such that the inequality

voln
(
(1− λ) ·K +p λ · L

)p ≥ (1− λ)voln(K)p + λvoln(L)
p.

does not hold for all λ ∈ (0, 1).

Once we know that α = p is not the right answer to Question 1.1, we need to find out
which value of α could still provide us with a positive solution to this issue. The following
result shows that α = (n+ p− 1)/n is valid in this regard. At this point, we would like to
notice that this inequality gives a refinement of (1.4), since (n+p−1)/n ∈ [max{1, p/n}, p),
and further that it is an extension of Theorem C (because such a value of α is precisely 1
whenever p = 1).

Theorem 1.3. Let p ≥ 1 and α = (n+ p− 1)/n, and let K,L ∈ Kn
o be two convex bodies

containing the origin such that Pu⊥(K) = Pu⊥(L), for some u ∈ Sn−1. The inequality

voln
(
(1− λ) ·K +p λ · L

)α ≥ (1− λ)voln(K)α + λvoln(L)
α

holds for all λ ∈ (0, 1).

The factor 1/n appearing in 1+ (p− 1)/n (namely, the above-mentioned valid value for
α) is still a bit mysterious for us. However, as we will show in Section 4, whenever α is a
solution to Question 1.1 then (α − 1)/(p − 1) is of the order of 1/n (as n → ∞). So, at
least in this asymptotic sense, the value 1 + (p − 1)/n seems to be the best possible one
can expect for Question 1.1.

Anyway, with the additional cost of adding a suitable multiplicative constant (greater
than 1) on the left-hand side of (1.7), one can still get the value α = p. This is the content
of the following result.

Theorem 1.4. Let p ≥ 1, and let K,L ∈ Kn
o be two convex bodies containing the origin

such that Pu⊥(K) = Pu⊥(L), for some u ∈ Sn−1. The inequality

C(n, p, λ) voln
(
(1− λ) ·K +p λ · L

)
≥
(
(1− λ)voln(K)p + λvoln(L)

p
)1/p

holds for all λ ∈ (0, 1), where

C(n, p, λ) = min

{
n

[
1−

(
1− 1

n

)p]1/p
,min

{
(1− λ), λ

}−(n−1)/p

}
.

Given λ ∈ (0, 1), we observe on the one hand that C(n, 1, λ) = 1, which fits well with
Theorem C, and on the other hand that C(n, p, λ) → 1 as p → ∞. Hence, (for a fixed
dimension n and) for values of p either sufficiently close to 1 or large enough, the above
result in a sense tells us that α = p is not that far away from being a feasible solution to
Question 1.1.

The paper is organized as follows. Section 2 is mainly devoted to recalling some defin-
itions and auxiliary well-known results, whereas in Section 4 we deal (from among other
results) with the proofs of Theorems 1.2 and 1.3. To conclude, in Section 5 we discuss and
show some other refined versions of certain related inequalities in the Lp setting (such as
the corresponding Minkowski first inequality), with the additional aim of finally showing
Theorem 1.4.
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2. Background and Preliminary Results

We work in the n-dimensional Euclidean space Rn, endowed with the usual euclidean norm
| · | and inner product ⟨·, ·⟩. We denote by {e1, · · · , en} the standard canonical orthonormal
basis in Rn, and by span{X} the smallest linear subspace of Rn containing the subset
X ⊂ Rn.

Let 1 ≤ p ≤ +∞, we denote by 1 ≤ q ≤ +∞ the Hölder’s conjugate of p, i.e., the real
number (we set q := +∞ if p = 1) such that

1

p
+

1

q
= 1.

We recall that Kn
o stands the subfamily of Kn of all convex bodies containing the origin.

Let C ∈ Kn is a convex body contained in a linear hyperplane u⊥, for some direction
u ∈ Sn−1. The family of convex bodies having the same projection C ⊂ u⊥ onto a given
hyperplane u⊥, u ∈ Sn−1, is known as canal class of C, see [29, Section 7.7]. For our
purposes in this paper, we will consider only convex bodies in the canal class containing
the origin, setting thus KC := {K ∈ Kn

o : Pu⊥(K) = C} to be the canal class with respect
to u ∈ Sn−1 and C ⊂ u⊥.
For K ∈ Kn, its dimension is the dimension of its affine hull, i.e., dimK = dimaff(K). We
denote by voln(K) the n-dimensional volume of K ∈ Kn, i.e., its n-dimensional Lebesgue
measure, and when dim(K) = i < n, the i-dimensional Lebesgue measure is denoted also
by voli(K).
We denote by C2,+ the set of all convex bodies K with ∂K of class C2 and the Gauss
curvature strictly positive at every x ∈ ∂K, see [29, Section 2.5]. The space of convex bodies
Kn is endowed with the Hausdorff metric [29, Section 1.8], which makes it a complete metric
space. From now on, any topological notion in Kn is implicitly considered with respect to
the Hausdorff metric.

2.1. Background in the Lp Brunn-Minkowski theory. LetK ∈ Kn, then the function
h(K, ·) : Sn−1 → R defined as h(K,u) = max{⟨x, u⟩ : x ∈ K} is called the support function
of K.
We extend the support function to Rn, h(K, ·) : Rn → R, as a positively 1-homogeneous
function, i.e.,

h(K,λx) = λh(K,x),

for every λ ≥ 0 and x ∈ Rn. Once extended in this way the support function is subadditive;
hence h(K, ·) is convex in Rn, see [29, Section 1.7.1]. We will denote with the same notation
both the support function defined on Sn−1 and its extension in Rn.
The subadditivity and the 1-homogeneity properties characterize support functions of con-
vex bodies, as the following theorem states.

Theorem 2.1. [29, Theorem 1.7.1] If f : Rn → R is a positively 1-homogenoeus and
subadditive function in Rn, then there exists a unique convex body K ∈ Kn, such that
f(x) = h(K,x), for every x ∈ Rn.

It is important to remark here that the support function of a convex body K is non-
negative if and only if K contains the origin, and its restriction to the unit sphere is strictly
positive if and only if the origin is an interior point opf K.

The p-sum of two convex bodies in Kn
0 is defined as follows.
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Definition 2.2. Let K,L ∈ Kn
o be two convex bodies containing the origin and p ≥ 1. We

define the p-sum between K and L as the unique convex body K +p L ∈ Kn
o such that

h(K +p L, x)
p := hp(K,x) + hp(L, x),

for all x ∈ Rn. For λ ≥ 0, the body λ ·K ∈ Kn
o is defined as λ ·K := λ1/pK, i.e.

hp(λ ·K,x) = λhp(K,x),

for all x ∈ Rn.

We remark that Definition 2.2 is well posed since (hp(K, ·) + hp(L, ·))1/p is a non-negative
support function by condition p ≥ 1. As remarked in the introduction, the case p = +∞
is omitted since for such a value of p all the inequalities (both the classical ones and those
we aim to present here) trivially coincide. We recall that we use the notation · (instead of
·p) throughout this paper whenever such p-scalar multiplication is employed jointly with
the p-sum +p.

In this framework, a natural way to explore possible refinements is considering the
α-mean of two non-negative real numbers.

Definition 2.3. Let α ∈ R ∪ {±∞}, λ ∈ [0, 1] and a, b non-negative real numbers. For
ab ̸= 0, we define the α-mean of a and b with weight λ as

Mλ
α(a, b) =


((1− λ)aα + λbα)

1
α , if α ∈ R \ {0},

a1−λbλ, if α = 0,

max{a, b}, if α = +∞,

min{a, b}, if α = −∞.

If ab = 0, then Mα(a, b;λ) = 0, for every α.

Notice that α = 1 provides us with the so-called weighted arithmetic mean, the case α = 0,
with the weighted geometric mean and α = 1

n , with the weighted harmonic mean.
Using the α-mean, allows us to write the Brunn-Minkowski and the Lp Brunn-Minkowski

inequalities as follows.

Theorem 2.4. If K,L ∈ Kn
o and p ≥ 1, then the Lp Brunn-Minkowski inequality reads as

(2.1) voln
(
(1− λ) ·K +p λ · L

)
≥ Mλ

p
n
(voln(K), voln(L)).

Note that the case p = 1 covers the standard Brunn-Minkowski inequality (1.1) for convex
bodies K,L ∈ Kn

o .
We remark that we are going to use along the paper the notation of the α-mean, i.e.,

Mλ
α(a, b), whenever it occurs for practice and space reason, but we are going to state and

discuss refinements of the Lp Brunn-Minkowski ineqauility with and without the notation
of the α-mean.

The following standard properties of means of non-negative real numbers happen to
play a crucial role when looking for refinements of the Brunn-Minkowski and Lp Brunn-
Minkowski inequalities.

Lemma 2.5. [18, Section 2.9] Let −∞ ≤ α < β ≤ +∞. For every a, b ∈ R, we have

(2.2) Mλ
α(a, b) ≤ Mλ

β(a, b),

with equality if and only if either a = b or ab = 0.
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Inequality (2.2) provides us with monotonicity of means, in particular, it recovers the
classical arithmetic-geometric mean inequality.

The next inequality is a product property of means. I am not sure that we need this
lemma

Lemma 2.6. [18, Section 2.9] Let a, b be non-negative real numbers and λ ∈ [0, 1]. In the
next we set Mα := Mλ

α(a, b). The following inequality

(2.3) Mβ
β ≤ (Mα)

α γ−β
γ−α (Mγ)

γ β−α
γ−α ,

holds true for every 0 < α < β < γ, with equality if and only if either a = b or ab = 0.

By the monotonicity property of the α-means we have also the following.

Lemma 2.7. If K,L ∈ Kn
o are convex bodies containing the origin and 1 ≤ p ≤ q, then

we have
(1− λ) ·K +p λ · L ⊆ (1− λ) ·K +q λ · L,

for every 0 ≤ λ ≤ 1. At the same time we have also

However we have also the following property regarding the p-sum of two convex bodies.

Lemma 2.8. If K,L ∈ Kn
o are convex bodies containing the origin and 1 ≤ p ≤ q, then

we have
K +q L ⊆ K +p L.

In [25], the authors extended the notion of p-sum to compact sets of Rn.

Definition 2.9. Let p > 1 and K,L ⊆ Rn be compact sets. We define

K +p L := {(1− t)
1
q x+ t

1
q y : x ∈ K, y ∈ L, t ∈ [0, 1]},

where q ≥ 1 stands for the Hölder conjugate of p.

In [25], the authors proved that Definition 2.9 coincides with Definition 2.2 in the case
of K,L ∈ Kn

o . We remark also that the authors in [25] extended the Lp Brunn-Minkowski
inequality (1.4) to compact sets (see [25, Theorem 4].

the next remark concerns the behavior of p-sum and the orthogonal projection. In
particular, it shows that the p-convex combination of two convex bodies in Kn

o which are
in the same canal class, is in the same canal class.

Remark 2.10. Let u ∈ Sn−1. We have

Pu⊥(K +p L) = Pu⊥(K) +p Pu⊥(L)

for every K,L ∈ Kn
o .

Proof. We use Definition 2.9. Let z ∈ Pu⊥(K) +p Pu⊥(L), hence there exist x ∈ Pu⊥(K),

y ∈ Pu⊥(L) and t ∈ [0, 1] such that z = (1 − t)
1
q x + t

1
q y. Moreover, there are x′ ∈ K,

y′ ∈ L and µ, ω ∈ R such that x′ = x+ ωu and y′ = y + µu. Hence, we have

z = (1− t)
1
q (x′ − ωu) + t

1
q (y′ − µu)

= (1− t)
1
q x′ + t

1
q y′ − u((1− t)

1
q ω + t

1
q µ),

which tells us that z ∈ Pu⊥(K +p L).
Vice versa, let z ∈ Pu⊥(K +p L), then there are z′ ∈ K +p L, and s ∈ R such that

z′ = z + su. Moreover, we have z′ = (1 − t)
1
q x′ + t

1
q y′, for some t ∈ [0, 1], x′ ∈ K and

y′ ∈ L, i.e., z = (1− t)
1
q x′ + t

1
q y′ − su.
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There also exist ω, µ ∈ R such that x = x′ − ωu ∈ Pu⊥(K) and y = y′ − µu ∈ Pu⊥(L),
hence

z = (1− t)
1
q (x′ − ωu) + t

1
q (y′ − µu),

since s = (1− t)
1
q ω + t

1
q µ.

Hence, we have z ∈ Pu⊥(K) +p Pu⊥(L). □

Corollary 2.11. Let p ≥ 1. Let K,L ∈ KC,o, with C ⊆ u⊥ a convex body containing the
origin, and u ∈ Sn−1. The following

(1− λ) ·K +p λ · L ∈ KC,o

holds for every λ ∈ (0, 1).

In [14] the authors stated a formula contained in the following result, for the volume of a
p-sum of convex bodies whose addends lie in orthogonal linear subspaces.

Theorem 2.12. [14] Let 1 ≤ n1, n2 ≤ n − 1 be such that n1 + n2 ≤ n. Let K and
L be convex bodies containing the origin such that K ⊆ span{e1, · · · , en1

} and L ⊆
span{en1+1, · · · , en1+n2

}. We have

(2.4) voln1+n2
(K +p L) =

Γ
(

n1

q + 1
)
Γ
(

n2

q + 1
)

Γ
(

n1+n2

q + 1
) voln1

(K)voln2
(L),

where Γ(·) stands for the Gamma function.

The following result is an application of formula (2.4), that will be useful later.

Corollary 2.13. Let p ≥ 1. Let u ∈ Sn−1 a direction, C ⊆ u⊥ a convex body containing
the origin such that C ⊆ u⊥. We have

(2.5) voln(C +p s · [−u, u]) = 2s
1
pD(n, p)voln−1(C)

for every s > 0, where D(n, p) =
Γ(n−1

q +1)Γ( 1
q+1)

Γ(n
q +1)

.

We introduce the notion of Steiner symmetrization, which will be used in the last lemma
of this section. The notion of Schwarz and Steiner symmetrizations are also related to the
extension of refinements of Brunn-Minkowski type inequalities under the assumption of
equal (n− 1) Lebesgue without - ? measure of the projections, see Section 4.5.

We start defining the Schwarz symmetrization, and introduce the Steiner symmetrization
as a particular case of the latter.

Definition 2.14. [17, Section 9.3] Let K ∈ Kn and 1 ≤ k ≤ n − 1. Let H be a (n − k)-
dimensional subspace of Rn, with orthogonal complement H⊥. For any y ∈ PH(K), let
Bk(y, rk) ⊆ y +H⊥ be the k-dimensional ball centered at y with radius rk such that

volk(Bk(y, rk)) = volk(K ∩ (y +H⊥)).

The Schwarz symmetral of K, with respect to H, is defined as

SH(K) =
⋃

y∈PH(K)

Bk(y, rk).

Lemma 2.15. [17] Let K,L ∈ Kn be two convex bodies and H a (n − k)-dimensional
subspace of Rn, with 1 ≤ k ≤ n− 1. The following statements hold.

i) SH(K) is a convex body.
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ii) If L ⊆ K, then SH(L) ⊆ SH(K).
iii) vol(K) = vol(SH(K)).
iv) PH(K) ⊆ SH(K).
v) SH(K) + SH(L) ⊆ SH(K + L).

We recall also the Steiner symmetrization, which is the Schwarz symmetrization taking
k = 1 in Definition 2.14.

Definition 2.16 (Steiner Symmetrization). [29] Let K ∈ Kn be a convex body and u ∈
Sn−1 a direction. The Steiner symmetral of K with respect to u⊥ is defined as

(2.6) Su⊥(K) =
⋃

x∈P
u⊥ (K)

[
x− 1

2
vol1(K ∩ (x+ Lu))u, x+

1

2
vol1(K ∩ (x+ Lu))u

]
,

where Lu stands for the linear 1-dimensional subspace of Rn spanned by u.

We present now the behaviour of the Steiner and the Schwarz symmetrizations with respect
to the p-sum.

Theorem 2.17. Let K,L ∈ Kn
o , u ∈ Sn−1 and p > 1. We have

(2.7) Su⊥(K) +p Su⊥(L) ⊆ Su⊥(K +p L).

Proof. Let z ∈ Su⊥(K)+p Su⊥(L), then there exist t ∈ (0, 1), x ∈ Su⊥(K) and y ∈ Su⊥(L)

such that z = (1− t)
1
q x+ t

1
q y.

There exist x′ ∈ Pu⊥(K) and y′ ∈ Pu⊥(L) such that x = x′ + lx and y = y′ + ly, where

|lx| ≤
1

2
vol1(K ∩ (x′ + Lu)), |ly| ≤

1

2
vol1(L ∩ (y′ + Lu))

and Lu = lin(u).
Hence we have

z = (1− t)
1
q x+ t

1
q y

= (1− t)
1
q x′ + t

1
q y′ + (1− t)

1
q lx + t

1
q ly.

Now we notice that z′ := (1− t)
1
q x′ + t

1
q y′ ∈ Pu⊥(K) +p Pu⊥(L) = Pu⊥(K +p L).

Moreover if we take lz := (1− t)
1
q lx+ t

1
q ly, then we have |lz| ≤ 1

2vol1((K+pL)∩ (z′+Lu)).
Indeed

|lz| ≤ (1− t)
1
q |lx|+ t

1
q |ly|

≤ (1− t)
1
q

2
vol1(K ∩ (x′ + Lu)) +

t
1
q

2
vol1(L ∩ (y′ + Lu))

=
1

2
vol1((1− t)

1
q (K ∩ (x′ + Lu))) +

1

2
vol1(t

1
q (L ∩ (y′ + Lu))).

We prove now that t
1
q (L ∩ (y′ + Lu)) ⊆ t

1
qL ∩ (t

1
q y′ + Lu). Let s ∈ t

1
q (K2 ∩ (y′ + Lu)),

i.e., s = t
1
q s′, with s′ ∈ L ∩ (y′ + Lu).

Since s′ ∈ L, we have that s ∈ t
1
qL. Moreover s′ ∈ y′ + Lu, i.e., s

′ = λu + y′ for some

λ ∈ R, hence s′ = t
1
q y′ + λt

1
q u ∈ t

1
q y′ + Lu.

Analog for (1− t)
1
q (K ∩ (x′ + Lu)) ⊆ (1− t)

1
qK ∩ ((1− t)

1
q x′ + Lu).
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Hence we have

|lz| ≤
1

2
vol1((1− t)

1
qK ∩ ((1− t)

1
q x′ + Lu)) +

1

2
vol1(t

1
qL ∩ (t

1
q y′ + Lu)).

Moreover, we know, with the approach followed by the authors in [25], that

((1− t)
1
qK ∩ ((1− t)

1
q x′ + Lu)) + (t

1
qL ∩ (t

1
q y′ + Lu)) ⊆ (K +p L) ∩ (z′ + Lu),

i.e.,

|lz| ≤
1

2
vol1((K +p L) ∩ (z′ + Lu)),

which means that z ∈ Su⊥(K +p L).
□

Refining the argument that led to the ”Sphericity Theorem of Gross”, see [17, Corollary
9.1] we can extrapolate a sequence of Steiner symmetrals that converges to the Schwarz
symmetral of the body.

Theorem 2.18. [17] Let 1 ≤ k ≤ n − 1 and H ⊆ Rn be a (n − k)-dimensional subspace
of Rn. There exists a sequence (uj)j∈N ⊆ Sn−1 ∩H of directions in H, such that for any
K ∈ Kn

(0) the sequence Su⊥
j
(· · · (Su⊥

1
(K))) converges to SH(K), as j → ∞, with respect to

Hausdorff metric, i.e., SH(K), the Schwarz symmetral of K with respect to H, is the limit
of a sequence of Steiner symmetrizations of K.

The previous convergence result provides us with the same result of Theorem 2.17 for
the Schwarz symmetrization.

Theorem 2.19. Let K,L ∈ Kn
o , 1 ≤ k ≤ n − 1 and p > 1. Let H ⊆ Rn be a (n − k)-

dimensional subspace of Rn. We have

(2.8) SH(K) +p SH(L) ⊆ SH(K +p L).

Proof. By Theorem 2.18 there is a sequence of directions in H, i.e., (uj)j∈N ⊆ Sn−1 ∩H
such that

lim
j→∞

Su⊥
j
(· · · (Su⊥

1
(K))) = SH(K), lim

j→∞
Su⊥

j
(· · · (Su⊥

1
(L))) = SH(L)

and
lim
j→∞

Su⊥
j
(· · · (Su⊥

1
(K +p L))) = SH(K +p L)

where the convergence is considered with respect to the Hausdorff metric.
By Theorem 2.17 we have

Su⊥
j
(K) +p Su⊥

j
(L) ⊆ Su⊥

j
(K +p L),

for every j ∈ N. Passing to the limit we have the desired inclusion. □

We state the following result, concerning the approximation of convex bodies belonging to
the same canal class by C2,+ convex bodies.

Lemma 2.20. Let u ∈ Sn−1 be a direction and C ∈ Kn an (n − 1)-dimensional convex
body containing the origin, such that C ⊂ u⊥. Let K,L ∈ KC,o.

There exist two sequences {Ki}i∈N and {Li}i∈N of convex bodies such that:

i) Ki, Li ∈ Kn
o ∩ C2,+ and limi→+∞Ki = K, limi→+∞ Li = L;

ii) Ki and Li belong to the same canal class, for every i ∈ N.
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Proof. Note that

(2.9) h(K,w) = h(L,w) ∀ w ∈ u⊥ ∩ Sn−1.

In the first part of the proof will show that we may reduce to the case when h(K, ·) = h(L, ·)
in an open neighborhood of u⊥ ∩ Sn−1.

Let r > 0 and consider

Kr = conv(K ∪ (1 + r)C),

where “conv” denotes the convex hull. Then (see [29])

h(Kr, ·) = max{h(K, ·), (1 + r)h(C, ·)}.

In particular, by (2.9)

(1 + r)h(C,w) > h(K,w) ∀ w ∈ u⊥ ∩ Sn−1.

By the continuity of the support functions, we get that the previous inequality holds in an
open subset Ω of Sn−1 containing u⊥ ∩ Sn−1. Thus

h(Kr, w) = (1 + r)h(C,w) ∀ w ∈ Ω.

Repeating the previous argument for L, we obtain that there exists some open subset Ω′

of Sn−1, containing u⊥ ∩ Sn−1, such that

h(Kr, w) = h(Lr, w) ∀ w ∈ Ω′.

As the families of convex bodies Kr and Lr converges to K and L, respectively, as r → 0+,
by a diagonal argument it is sufficient to show that Kr and Lr can be approximated as
indicated in the statement.

Therefore we may assume that

h(K,w) = h(L,w) ∀ w ∈ Ω′

where Ω′ is an open subset of Sn−1 containing u⊥ ∩ Sn−1. In particular, there exists ϵ > 0
such that h(K,w) = h(L,w) for every w ∈ Sn−1 such that

|(w, u)| ≤ ϵ.

We now approximate K and L using a standard convolution argument, which can be
found for instance in [8]. Following the notations in [8, Appendix A], let O(n) be the group
of rotations of Rn, endowed with the Haar probability measure ν. We define

h(Ki, v) =

∫
O(n)

h(K, ρv)ωi(ρ)ν(dρ), ∀ v ∈ Sn−1

where ωi : O(n) → [0,+∞) is a sequence of mollifiers over O(n). As observed in [8,
Appendix A], for every i ∈ N, h(Ki, ·), i ∈ N, is the support function of a convex body Ki

of class C2,+, and the sequence Ki converges to K. A similar construction can be repeated
for L, obtaining a sequence Li.

We show that the bodiesKi and Li belong to the same canal class, for every i sufficiently
large. The support of ωi is contained in a neighborhood of radius 1/i of the identity (see
[8, Appendix A]). Hence there exists i0 such that for every i ≥ i0 and for every v ∈ u⊥,

|⟨(v, ρ(v)⟩| > ϵ implies ρ(v) = 0.
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Therefore, for v ∈ u⊥ and i ≥ i0, we have:

h(Pu⊥(Ki), v) =

∫
O(n)

h(K, ρv)ωi(ρ)ν(dρ)

=

∫
O(n)

h(L, ρu)ωi(ρ)ν(dρ)

= h(Pu⊥(Li), v).

□

3. Functional expression of the volume and its derivatives

This section follows the line and the notations of [3, 6, 7, 8, 9]. Let u ∈ Sn−1 and
K ∈ Kn

o . We focus on the construction of a family of convex bodies via K, belonging to
the same canal class KC , with C = Pu⊥(K). In the following, referring to the support
function of K, we write either h(K, ·) or h, when there is no ambiguity on K, both defined
on Sn−1.

We recall that an orthonormal frame on the sphere is a map which associates to every
x ∈ Sn−1 an orthonormal basis of the tangent space to Sn−1 at x. Let ϕ ∈ C2(Sn−1). We
denote by ϕi(v) and ϕij(v), i, j ∈ {1, · · · , n− 1}, the first and second covariant derivatives
of ϕ at v ∈ Sn−1, with respect to a fixed local orthonormal frame on an open subset of
Sn−1. The following definition will be crucial in the sequel. We set, for v ∈ Sn−1,

(3.1) Q(ϕ; v) = (qij)i,j=1,··· ,n−1 = (ϕij(v) + ϕ(v)δij)i,j=1,··· ,n−1;

here the δij ’s are the usual Kronecker symbols. Hence Q(ϕ, v) is a square matrix of order
(n-1) or n− 1?. On an occasion, instead of Q(ϕ; v) we write Q(ϕ). Note that Q(ϕ; v) is
symmetric by standard properties of covariant derivatives.

We also set

C2,+(Sn−1) := {h ∈ C2(Sn−1) : Q(h; ·) > 0 on Sn−1},

where Q(h; ·) > 0 means that the matrix is positive definite.
Recall that C2,+ stands for the set of all convex bodies with boundary of class C2

with strictly positive Gaussian curvature. The following proposition is a special case of
Proposition A.1 in [8].

Proposition 3.1. h ∈ C2,+(Sn−1) if and only if h is the support function of a convex body
K ∈ C2,+.

We work with specific family of differentiable functions.

Definition 3.2. Let p ≥ 1, s ∈ R. Let K ∈ C2,+ and h be the support function of K, and
ϕ ∈ C2(Sn−1). We define the following family of functions depending on s

hs : Sn−1 → R

defined as

(3.2) hs(v) = (hp(K, v) + s ϕ(v))
1
p ,

for every v ∈ Sn−1 and for every s ∈ R such that (3.2) is well-defined.

In a similar manner as in [8, Proposition A.1], see also [29, Section 2.5], we have that,
for s small enough, hs is a support function.
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Proposition 3.3. Let p ≥ 1. Let K ∈ C2,+ and assume that the origin is an interior
point of K. There exists a > 0, so that for every s ∈ R with 0 < |s| < a, there exists a
unique Ls ∈ C2,+ such that

hs(v) = h(Ls, v),

for every v ∈ Sn−1. Moreover, the origin is an interior point of Ls.

Proof. Let h be the support function of K and. Then h > 0 on Sn−1 (as the origin is an
interior point of K). This implies in particular that there exists a1 > 0 such that hs > 0
on Sn−1 if |s| < a1. By the definition (3.2) of hs, as h, ϕ ∈ C2(Sn−1), in the same range
we have that hs ∈ C2(Sn−1).

Following the same argument in [8, Proposition A.1] we have that Q(hs; ·) > 0 on Sn−1

for every s ∈ (−a, a), for a suitable a > 0. Indeed, since Q(h; ·) > 0 on Sn−1, by the
compactness of Sn−1 we have that there exists γ > 0 such that

(3.3) Q(h; v) ≥ γIn−1,

for every v ∈ Sn−1, where In−1 is the (n−1)× (n−1) identity matrix. Here the inequality
Q(h; ·) ≥ γIn−1 means that the matrix Q(h; ·)− γIn−1 is positive semi-definite or semidef-
inite?. By the regularity assumptions of h and ϕ, and by (3.3), we have that Q(hs; ·) > 0
on Sn−1 for every s ∈ (−a, a).

By Proposition 3.1, for every s ∈ (−a, a), there exists Ls ∈ C2,+ such that hs(·) =
h(Ls, ·) on Sn−1. Note that the origin is in the interior of each Ls since hs(v) > 0 for every
v ∈ Sn−1. □

The case p = 1 is a well-known case, studied for instance in [6, 7, 8, 9]. We remark that
for every p ≥ 1 we have h0 = h = h(K, ·).

3.1. The volume functional and its derivatives. Let F : C2,+(Sn−1) → [0,+∞) be
defined as

F (g) =
1

n

∫
Sn−1

g(v) det(Q(g; v))dv,

for g ∈ C2,+(Sn−1). Note that if g = h is the support function of a convex body K, then
F (h) is the volume of K (see, for instance [6]).

Given p ≥ 1, K ∈ C2,+ and ϕ ∈ C2(Sn−1), we want to compute the first and second
derivatives of the family of real-valued functionals F (hs), as function of s, i.e., we consider
the following volume function f : (−a, a) → R+ defined as

(3.4) f(s) =
1

n

∫
Sn−1

hs det(Q(hs)) dv,

for some a > 0.
We will need some preparation. For simplicity we will write det(Q(h)) for det(Q(h; ·)) for
a given function h ∈ C2,+(Sn−1). Given a square matrix A = (aij)i,j=1,...,N of order N ,
we set

Sij(A) =
∂ det

∂aij
(A), i, j = 1, . . . , N.

The matrix
(Sij(A))i,j=1,...,N

is the co-factor matrix of A.
Given a function h ∈ C2,+(Sn−1), we define the linear functional

L(h) : C2(Sn−1) → C(Sn−1)
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as follows:

(3.5) L(h)ϕ :=

n−1∑
i,j=1

Sij(Q(h))(ϕij + ϕδij), ∀ ϕ ∈ C2(Sn−1).

A special case is given by K = Bn the unit ball, which will be useful later in the paper.
Since in this case Q(h) = In−1, and since the co-factor matrix of the identity matrix is the
identity matrix itself, we have

(3.6) L(h)ϕ =

n−1∑
i,j=1

δij(ϕij + ϕδij) =

n−1∑
i=1

ϕii + (n− 1)ϕ = ∆Sn−1ϕ+ (n− 1)ϕ

where ∆Sn−1 is the spherical Laplace operator.
The following result is a differentiable result for the volume function.

Lemma 3.4. [3, Proposition 3.1] We have

d

ds
F (hs) =

∫
Sn−1

(
d

ds
hs

)
det(Q(hs)) dv

and

d2

ds2
F (hs) =

∫
Sn−1

(
d2

ds2
hs

)
det(Q(hs)) dv +

∫
Sn−1

(
d

ds
hs

)
L(hs)

d

ds
hs dv.

Note that in [3, Proposition 3.1], the authors established the derivative results of Lemma
3.4 for any differentiable path hs in C

2,+(Sn−1), passing through h. We focus on the family
hs given by Definition 3.2.

Remark 3.5. The derivatives of hs as given by Definition 3.2, with respect to s have the
following expressions:

hs = (hp + sϕ)
1
p ,

d

ds
hs =

1

p
(hp + sϕ)

1−p
p ϕ =

ϕ

p
h1−p
s ,

d2

ds2
hs =

1− p

p2
(hp + sϕ)

1−2p
p ϕ2 =

1− p

p2
ϕ2h1−2p

s .

(3.7)

Taking into account Lemma 3.4 and (3.7), we deduce the following result.

Lemma 3.6. Let p ≥ 1, K ∈ C2,+ and ϕ ∈ C2(Sn−1). We have

d

ds
f(s) =

1

p

∫
Sn−1

ϕ h1−p
s det(Q(hs)) dv

and

d2

ds2
f(s) =

1

p2

[
(1− p)

∫
Sn−1

ϕ2 h1−2p
s det(Q(hs)) dv +

∫
Sn−1

ϕ h1−p
s L(hs)ϕ h

1−p
s dv

]
.

3.2. The case p = 1. We conclude this section focusing on the case p = 1, and connecting
the differentiation formulae established above to the linear Brunn-Minkowski inequality
(1.6).

The main result of this part is the following proposition.

Proposition 3.7. Let u ∈ Sn−1. For every convex body K ∈ C2,+ and ϕ ∈ C2(Sn−1) such
that ϕ|u⊥ = 0, the inequality

(3.8)

∫
Sn−1

ϕL(h)ϕ dv ≤ 0
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holds, where h is the support function of K.

This result will be used in the proof of Theorem 1.3, and, as we will see, it follows from
the linear form of the Brunn-Minkowski inequality expressed by Theorem C.

Proof of Proposition 3.7. By Proposition 3.1, we know that there exists a > 0 such that
for every s ∈ (−a, a),

hs := h+ sϕ

is the support function of a convex body Ls ∈ C2,+. The condition ϕ|u⊥ = 0 provides us
with the assumption that K,Ls ∈ KC , for every s ∈ (−a, a), i.e., they belong to the same
canal class: Pu⊥(K) = Pu⊥(Ls) = C, for every s ∈ (−a, a).

Let f : (−a, a) → R be defined by

f(s) = voln(Ls), s ∈ (−a, a).

Inequality (1.6) implies that f is concave. Indeed, let s1, s2 ∈ (−a, a) and λ ∈ [0, 1]. We
observe, by the linearity property of the support function, that we have L(1−λ)s1+λs2 =
(1− λ)Ls1 + λLs2 . Therefore

f((1− λ)s1 + λs2) = voln(L(1−λ)s1+λs2)

= voln((1− λ)Ls1 + λLs2)

≥ (1− λ)voln(Ls1) + λvoln(Ls2) = (1− λ)f(s1) + λf(s2),

where the inequality holds because Ls1 , Ls2 ∈ KC , and this proves the concavity of f .
Since f is concave, we have in particular that

d2

ds2
f(0) ≤ 0.

Applying Lemma 3.6, with hs = h+ sϕ and p = 1, we deduce

(3.9)
d2

ds2
f(s) =

∫
Sn−1

ϕL(hs)ϕ dv.

We conclude that ∫
Sn−1

ϕL(h)ϕ dv ≤ 0.

□

4. Proofs of Theorems 1.2 and 1.3

Suggestion: leave the content of subsection 4.1 without being inside a proper subsection,
but just as the introductory content of this section. In this way Subsection 4.2 will become
the first subsection

4.1. Preliminary considerations. Let u ∈ Sn−1. As before, given a convex body C ⊆
u⊥ containing the origin, with u ∈ Sn−1. We recall that we denote by KC the set of all
convex bodies K containing the origin and such that Pu⊥(K) = C.

Let p ≥ 1. We are interested in finding α ∈ R such that the inequality

(4.1) voln
(
(1− λ) ·K +p λ · L

)
≥
(
(1− λ)voln(K)α + λvoln(L)

α
) 1

α

holds true for every K,L ∈ Kn
o such that Pu⊥(K) = Pu⊥(L).
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Remark 4.1. From the inclusion

(1− λ)K + λL ⊆ (1− λ) ·K +p λ · L,

and from Theorem C, it follows that

voln
(
(1− λ) ·K +p λ · L

)
≥ voln

(
(1− λ)K + λL

)
≥ (1− λ)voln(K) + λvoln(L),

that is, (4.1) holds for α = 1.

Remark 4.2. Let α = p. Let u ∈ Sn−1 and C ⊆ u⊥ a convex body containing the origin.
Taking K = C and L = C +p [−u, u] inequality (4.1) becomes an equality. By (2.5) we
have

voln((1− λ) ·K +p λ · L)p = voln(C +p λ · [−u, u])p = 2pDp(n, p)voln−1(C)
pλ,

for every λ ∈ [0, 1]. On the other hand

(1− λ)voln(C)
p + λvoln(C +p [−u, u])p = λvoln(C +p [−u, u])p = λ2pDp(n, p)voln−1(C)

p.

The next two results aim to prove that (4.1) does not hold for any α > p.

Proposition 4.3. Let p, α > 1. If there exist u ∈ Sn−1 and C ⊆ u⊥ a convex body
containing the origin with C ⊆ u⊥ such that inequality (4.1) holds for every pair of convex
bodies in KC , then for every choice of K ∈ KC the function f : [0,+∞) → R, defined by
f(s) := voln(K +p s · [−u, u])α, is concave.

Proof. The concavity of f follows from the same argument of the proof of Proposition 3.7,
we just remark that in the case of the p-sum, with p > 1, we have Pu⊥(K) = Pu⊥(K +p s ·
[−u, u]) for every s > 0 by Remark 2.10, hence K +p s · [−u, u] ∈ KC for every s > 0 and
we can apply inequality (4.1).

□

Proposition 4.4. Let p > 1. Let C ⊆ u⊥ be a convex body containing the origin, with
u ∈ Sn−1. If α ≥ 1 is such that inequality (4.1) holds for every K,L ∈ KC , then α ≤ p.

Proof. We set f : [0,+∞) → R as f(s) = voln(C +p s · [−u, u])α. By (2.5) we have

f(s) = voln(C +p s · [−u, u])α = 2αDα(n, p)s
α
p voln−1(C)

α.

By Proposition 4.3, f is concave, then we have

f(s) ≥ (1− s)f(0) + sf(1),

for s ∈ [0, 1], whence

voln(C +p s · [−u, u])α ≥ svoln(C +p [−u, u]) = s2αDα(n, p)voln−1(C)
α.

This means that we have s
α
p ≥ s, for every s ∈ [0, 1], that is, α ≤ p. □

4.2. The main tools for the proof of Theorems 1.2 and 1.3. Let p ≥ 1. Let
K ∈ C2,+ ∩ Kn

o and ϕ ∈ C2(Sn−1). We recall (see Proposition 3.3) that there exists
R ∋ a > 0 such that

h(K, ·)p + sϕ(·)
is the support function of a uniquely determined convex body Ls ∈ C2,+ ∩ Kn

o , for every
s ∈ (−a, a).
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Proposition 4.5. Let α, p > 1. Inequality (4.1) holds true for every pair of convex bodies
K,L ∈ KC if and only the following condition holds: for every K ∈ C2,+ ∩ Kn

o and
ϕ ∈ C2(Sn−1) such that ϕ|u⊥ = 0, and a > 0 such that h(K, ·)p + sϕ(·) is a support
function for every s ∈ (−a, a), the function f : (−a, a) → R defined by

(4.2) f(s) = voln(Ls)
α,

is concave. Here Ls is the convex body such that h(Ls, ·)p = h(K, ·)p + sϕ(·).
Proof. Assume that (4.1) holds. Let K ∈ C2,+ ∩ Kn

o , ϕ ∈ C2(Sn−1), a > 0, and Ls and
f defined as in the statement of the proposition. We observe that, if s1, s2 ∈ (−a, a) and
λ ∈ [0, 1], then we have

h(L(1−λ)s1+λs2 , v)
p = (1− λ)h(Ls1 , v)

p + λh(Ls2 , v)
p,

for every v ∈ Sn−1, that is, f((1− λ)s1 + λs2) = voln((1− λ) · Ls1 +p λ · Ls2)
α. Hence we

can proceed as in the proof of Proposition 3.7, since Ls1 and Ls2 belong to the same canal
class, and conclude that f is concave.

Vice versa let K,L ∈ KC be a pair of convex bodies belonging to the same canal class
and containing the origin. We assume first that K,L ∈ Kn

o ∩ C2,+. We define a function
ϕ : Sn−1 → R as ϕ(v) = h(L, v) − h(K, v), v ∈ Sn−1, hence ϕ ∈ C2 by the smoothness
property of K,L, and ϕ|u⊥ = 0 by the canal class assumption. We have a family of
functions hs = (hp+sϕ)1/p, where h stands for the support function of K, and there exists
a > 0 such that hs is the support function of a body Ls ∈ C2,+ for every s ∈ (−a, a). We
observe that h0 = h = h(K, ·), meanwhile h1 = h+ ϕ = h(L, ·). We have also that hs > 0
on Sn−1 for every s ∈ (0, 1), since we have hs = (1− s)h(K, ·) + sh(L, ·). This allows us to
claim that a > 1.
We consider now the function f defined via K and the ϕ above. By the concavity assump-
tion of f we must have that

f(λ) ≥ (1− λ)f(0) + λf(1),

for every λ ∈ [0, 1], hence we have

voln((1− λ) ·K +p λ · L) = voln((1− λ) · L0 +p λ · L1) = voln(L(1−λ)0+λ1)

= voln(Lλ) = f(λ)

≥ (1− λ)f(0) + λf(1) = (1− λ)voln(K) + λvoln(L),

for every λ ∈ [0, 1]. Now we can extend the inequality above to every convex bodies
K,L ∈ KC by the approximation result established in Lemma 2.20. □

The operator L appearing in the next result is the one introduced in section 3.

Proposition 4.6. Let p > 1 and 1 < α ≤ p. Let u ∈ Sn−1 and C be a convex body
containing the origin, such that C ⊆ u⊥. Inequality (4.1) holds for every K,L ∈ KC if and
only if the inequality

1

n

(∫
Sn−1

h det(Q(h)) dv

)[
(1− p)

∫
Sn−1

h1−2pϕ2 det(Q(h)) dv +

∫
Sn−1

h1−pϕL(h)h1−pϕ dv

]
≤ (1− α)

(∫
Sn−1

h1−pϕdet(Q(h)) dv

)2

(4.3)

holds for every K ∈ C2,+, with support function h, and for every ϕ ∈ C2(Sn−1) such that
ϕ|u⊥ = 0.
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Proof. Let assume that (4.1) holds for every K,L ∈ KC . Let K ∈ C2,+ and ϕ ∈ C2(Sn−1)
such that ϕ|u⊥ = 0. We consider the function f : (−a, a) → R+ defined by f(s) :=
voln(Ls)

α, where Ls is the convex body with support function h(K, ·)p + sϕ and a > 0 is
sufficiently small. By Proposition 4.5, we know that f is concave. We set g(s) := voln(Ls),
so that f(s) = g(s)α. Therefore

d2

ds2
f(0) = α(α− 1)g(0)α−2(g′(0))2 + αg(0)α−1g′′(0)

= α(α− 1)voln(K)α−2

(
d

ds
|s=0 voln(Ls)

)2

+ αvoln(K)α−1

(
d2

ds2
|s=0 voln(Ls)

)
≤ 0.

Equivalently

voln(K)
d2

ds2
|s=0 voln(Ls) ≤ (1− α)

(
d

ds
|s=0 voln(Ls)

)2

.

By Lemma 3.4 we obtain

1

np2

(∫
Sn−1

h det(Q(h)) dv

)[
(1− p)

∫
Sn−1

h1−2pϕ2p det(Q(h)) dv +

∫
Sn−1

h1−pϕpL(h)h1−pϕp dv

]
≤ 1− α

p2

(∫
Sn−1

h1−pϕp det(Q(h)) dv

)2

,

which provides us with inequality (4.3).
Vice versa, let K,L ∈ KC be a pair of convex bodies belonging to the same canal

class and containing the origin. We assume first that K,L ∈ C2,+. As in the proof of
Proposition 4.5 we define ϕ : Sn−1 → R as ϕ(v) = h(L, v) − h(K, v), v ∈ Sn−1, so there
exists a > 0 such that hs = (hp + sϕ)1/p is the support function of a body Ls ∈ C2,+

for every s ∈ (−a, a), where h stands for the support function of K. Taking into account
the function f : (−a, a) → R+ defined by f(s) := voln(Ls)

α, we notice, as above, that
inequality (4.3) is equivalent to

d2

ds2
f(0) ≤ 0.

Arguing in the same manner as in [29, Theorem 7.4.5] we have that d2

ds2 f(s) ≤ 0, for every
s ∈ (−a, a), that is, f is concave in (−a, a). The conclusion follows from Proposition
4.5. Moreover, we can extend the inequality to every convex bodies K,L ∈ KC by the
approximation result established in Lemma 2.20.

□

4.3. Proof of Theorem 1.2. Given p ≥ 1 and α such that (4.1) holds, we establish an
upper bound for α, strictly smaller than n. This in particular will provide the proof of
Theorem 1.2.

Theorem 4.7. Let u ∈ Sn−1 and C be a convex body containing the origin, such that
C ⊆ u⊥. Let p ≥ 1 and α be such that (4.1) holds for every K,L ∈ KC . Then

α− 1 ≤ c(n) (p− 1),
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where

(4.4) c(n) =


π2

4

[
(2k − 1)!!

(2k)!!

]2
if n = 2k, k ∈ N,

[
(2k)!!

(2k + 1)!!

]2
if n = 2k + 1, k ∈ N.

Proof. By Proposition 4.6, inequality (4.3) holds. For K = Bn, the unit ball in Rn, we
have in particular

h ≡ 1, det(Q(h)) ≡ 1,

and, by (3.6),

L(h)ϕ =

n−1∑
i,i=1

δij(ϕij + ϕδij) = (n− 1)ϕ+

n−1∑
i

ϕii = (n− 1)ϕ+∆Sn−1ϕ

where ∆Sn−1 is the spherical Laplacian. Hence inequality 4.3 becomes

(4.5) κn

[
(1− p)

∫
Sn−1

ϕ2dv +

∫
Sn−1

ϕ((n− 1)ϕ+∆Sn−1ϕ)dv

]
≤ (1− α)

(∫
Sn−1

ϕ dv

)2

.

After an integration by parts we get

(4.6) κn

[
(1− p)

∫
Sn−1

ϕ2dv +

∫
Sn−1

[(n− 1)ϕ2 − |∇Sn−1ϕ|2]dv
]
≤ (1− α)

(∫
Sn−1

ϕ dv

)2

where ∇Sn−1 stands for the spherical gradient. This inequality must hold for every ϕ ∈
C2(Sn−1), such that ϕ ≡ 0 on u⊥. By a standard approximation argument, it follows that
the same inequality has to hold for every Lipschitz function ϕ on Sn−1, such that ϕ ≡ 0 on
u⊥.

We now fix an orthonormal frame {e1, . . . , en} in Rn such that u = en, and define
ϕ : Sn−1 → R by

ϕ(x) = ϕ(x1, . . . , xn) = |(x, u)| = |xn|.
As ϕ is even, inequality (4.6) is equivalent to

(4.7)
κn
2

[
(1− p)

∫
Sn−1
+

ϕ2dv +

∫
Sn−1
+

[(n− 1)ϕ2 − |∇Sn−1
+

ϕ|2]dv

]
≤ (1−α)

(∫
Sn−1
+

ϕ dv

)2

where

Sn−1
+ = {(x1, . . . , xn) ∈ Sn−1 : xn ≥ 0}.

By the divergence theorem∫
Sn−1
+

|∇Sn−1
+

ϕ|2dv = −
∫
Sn−1
+

ϕ∆Sn−1ϕdv;

(no boundary terms appear, as ϕ vanishes on the boundary of Sn−1
+ relative to Sn−1).

Hence we must have

(4.8)
κn
2

[
(1− p)

∫
Sn−1
+

ϕ2dv +

∫
Sn−1
+

ϕ((n− 1)ϕ+∆Sn−1ϕ)dv

]
≤ (1−α)

(∫
Sn−1
+

ϕ dv

)2

.
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On the other hand, on Sn−1
+ the function ϕ coincides with the restriction of a linear function

to the unit sphere, that is, a spherical harmonic of degree 1. Therefore it solves the equation

(n− 1)ϕ+∆Sn−1ϕ = 0.

We deduce

κn(1− p)

2

∫
Sn−1
+

ϕ2dv ≤ (1− α)

(∫
Sn−1
+

ϕ dv

)2

,

or, equivalently,

α− 1 ≤ (p− 1)

κn

∫
Sn−1
+

ϕ2dv

2

(∫
Sn−1
+

ϕ dv

)2 .

The two integrals in the right hand side of the last inequality can be explicitly computed,
exploiting the equality ϕ(x1, . . . , xn) = xn on Sn−1

+ . In particular∫
Sn−1
+

ϕdv = κn−1, and

∫
Sn−1
+

ϕ2dv = κn−1In,

where

In =

∫ π/2

0

(sin(t))ndt.

[The computations to prove the previous formulas are standard, but not straightforward -
should we show at least a part of them?]. Hence

α− 1 ≤ (p− 1)
κnIn
2κn−1

.

Let

c(n) =
κnIn
2κn−1

.

Using the recursion formula

In =
n− 1

n
In−2

(which can be obtained by an integration by parts) and the equalities

I0 =
π

2
and I1 = 1,

we obtain:

(4.9) In =


π

2

(2k − 1)!!

(2k)!!
if n = 2k, k ∈ N,

(2k)!!

(2k + 1)!!
if n = 2k + 1, k ∈ N,

for n ≥ 2. On the other hand

(4.10)
κn

2κn−1
=

√
π Γ((n+ 1)/2)

2 Γ(1 + n/2)
.

In particular,

c(2k) =
π3/2

4
·
Γ(k + 1

2 )

Γ(k + 1)
· (2k − 1)!!

(2k)!!
.
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Using the identity

Γ

(
k +

1

2

)
=

√
π

(2k − 1)!!

2k

we get

c(2k) =
π2

4

[
(2k − 1)!!

(2k)!!

]2
.

The value of c(2k + 1)

c(2k + 1) =

[
(2k)!!

(2k + 1)!!

]2
can be obtained from (4.9) and (4.10) in a similar way. □

Proof of theorem 1.2. It is straightforward to check that

c(2k) ≤ π2

16
< 1 and c(2k + 1) ≤ 4

9
< 1.

This implies that inequality (4.1) can be true only if (α− 1) < (p− 1), that is, α < p. □

4.4. Proof of Theorem 1.3.

Proof of Theorem 1.3. By Proposition 4.6, it is enough to prove inequality (4.3) with

α =
n+ p− 1

n
.

Let K ∈ C2,+ and ϕ ∈ C2(Sn−1) be such that ϕ ≡ 0 on u⊥. Let f : (−a, a) → R+ be
defined as

f(s) := voln(Ls)
α,

where Ls ∈ Kn
o ∩ C2,+ such that h(Ls, ·) := (h(K, ·)p + sϕ(·))

1
p , and a > 0 is sufficiently

small (see Proposition 3.3). We first remark that by Proposition 3.7 we have∫
Sn−1

ψL(h)ψ dv ≤ 0

for every ψ ∈ C2(Sn−1) such that ψ|u⊥ = 0. Since h1−pϕ is still a function of class C2,
vanishing on u⊥ = 0, we obtain∫

Sn−1

h1−pϕL(h)h1−pϕ dv ≤ 0.

Therefore it suffices to prove

1− p

n

(∫
Sn−1

h det(Q(h)) dv

)(∫
Sn−1

h1−2pϕ2 det(Q(h)) dv

)
≤ (1− α)

(∫
Sn−1

h1−pϕdet(Q(h)) dv

)2

=
1− p

n

(∫
Sn−1

h1−pϕ det(Q(h)) dv

)2

.

As
1

n

∫
Sn−1

h det(Q(h)) dv = voln(K),

we are reduced to prove

nvoln(K)

∫
Sn−1

h1−2pϕ2 det(Q(h)) dv ≥
(∫

Sn−1

h1−pϕdet(Q(h)) dv

)2

.
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The previous inequality can be written in the following form:

(4.11)

∫
Sn−1

(
ϕ

h

)2

dµ ≥
(∫

Sn−1

ϕ

h
dµ

)2

,

where µ is the probability measure on Sn−1 such that

dµ =
1

nvoln(K)
hdet(Q(h))dv.

Finally, (4.11) follows from Jensen’s inequality. □

Remark 4.8. We know from Theorem 1.3 that inequality (4.1) holds if α = n+p−1
n , that

is

α− 1 = (p− 1) · 1
n
.

We also know from Theorem 4.7 that the same inequality does not hold in general, if

α− 1 > c(n)(p− 1)

where c(n) is given by (4.4). It is therefore natural to compare c(n) with 1
n . An explicit

comparison can be made when n tends to infinity. Indeed, using (4.4) and the Stirling
formula the following relation can be proved:

lim
n→∞

nc(n) =
π

2
.

4.5. Steiner Symmetrization and improvements of the Lp Brunn-Minkowski in-
equality. This subsection will be moved to the fifth section The section deals with the
extension of the result of Theorem 1.3 in the case of equal (n− 1)-dimensional volume of
the projections, instead of equal projections.
In the classical literature, an extension of the linear improvements of the Brunn-Minkowski
inequality reads as follows.

Theorem 4.9. [2, Section 1.7] Let K,L ∈ Kn be convex bodies such that there exists a
direction u ∈ Sn−1 with the condition

(4.12) voln−1(Pu⊥(K)) = voln−1(Pu⊥(L)).

The inequality

(4.13) voln
(
(1− λ)K + λL

)
≥ (1− λ)voln(K) + λvoln(L),

holds for all λ ∈ [0, 1].

The previous result goes back to [5], see also [29, Section 7.7].
The case p > 1 reads as follows and it is an extension of Theorem 1.3.

Theorem 4.10. Let u ∈ Sn−1, p > 1 and α := n+p−1
n ∈ (1, p). The inequality

(4.14) vol
(
(1− λ) ·K +p λ · L

)
≥ ((1− λ)voln(K)α + λvoln(L)

α)
1/α

holds for every λ ∈ [0, 1] and K,L ∈ Ko such that voln−1(Pu⊥(K)) = voln−1(Pu⊥(L)).

Proof. Let first apply the Steiner symmetrization of K and L with respect to u⊥, which we
recall they are denoted by Su⊥(K) and Su⊥(L). Afterwards, we apply the Schwarz symmet-
rization to Su⊥(K) and Su⊥(L) with respect to the 1-dimensional linear subspace spanned
by u. We donete the Schwartz symmetrals as follows: Su(Su⊥(K)) and Su(Su⊥(L)).
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By Lemma 2.15 we have voln(Su(Su⊥(K))) = voln(Su⊥(K)) = voln(K) and voln(Su(Su⊥(L))) =
voln(Su⊥(L)) = voln(L). By Theorems 2.17 and 2.19 we have also

Su(Su⊥(K +p L)) ⊇ Su(Su⊥(K) +p Su⊥(L)) ⊇ Su(Su⊥(K)) +p Su(Su⊥(L)).

Let λ ∈ [0, 1], we observe that we have also

Su(Su⊥((1−λ)·K)) = Su(Su⊥((1−λ)1/pK)) = (1−λ)1/pSu(Su⊥(K)) = (1−λ)·Su(Su⊥(K)),

and similar Su(Su⊥(λ · L)) = λ · Su(Su⊥(L)).
We observe that Su(Su⊥(K)) and Su(Su⊥(L)) belongs to the same canal class along the
direction u, i.e., Pu⊥(Su(Su⊥(K))) = Pu⊥(Su(Su⊥(L))).Hence, by Theorem 1.3, we have

voln((1− λ) ·K +p λ · L) = voln(Su(Su⊥((1− λ) ·K +p λ · L)))
≥ voln(Su(Su⊥((1− λ) ·K)) +p Su(Su⊥(λ · L)))
= voln((1− λ) · Su(Su⊥(K)) +p λ · Su(Su⊥(L)))

≥ ((1− λ)voln(Su(Su⊥(K)))α + λvoln(Su(Su⊥(L)))α)
1/α

= ((1− λ)voln(K)α + λvoln(L)
α)

1/α

for α = n+p−1
n . □

5. Other related inequalities, and proof of Theorem 1.4

We focus our attention in this section on the proof of Theorem 1.4. We split the proof
of the theorem into two parts. The first subsection deals with the inequality

min
{
(1− λ), λ

}−(n−1)/p
voln

(
(1− λ) ·K +p λ · L

)
≥
(
(1− λ)voln(K)p + λvoln(L)

p
)1/p

,

meanwhile the second one deals with

n

[
1−

(
1− 1

n

)p]1/p
voln

(
(1− λ) ·K +p λ · L

)
≥
(
(1− λ)voln(K)p + λvoln(L)

p
)1/p

.

There are two separted subsections because the proofs are obtained by two different ap-
proaches. The first one comes form the refinement result of the Prékopa-Leindler inequality,
see [10], and application of functional results that can be found in [27].
The second approach comes from the linear refinement of the first Minkowski inequality
extended to the Lp setting.

5.1. Inequalities in the functional setting. Questions: Where do we write the defini-
tions of projection of a function? Do we need a definition of α-concave function or later in
the theorems we write only the inequality that the function should hold, without giving a
name? Do we need the definition of ∞-concave function?

From the homogeneity of the volume, it is well-known that the Brunn-Minkowski inequality
(1.1) is equivalent to the fact that

(5.1) voln(tK + sL)1/n ≥ tvoln(K)1/n + svoln(L)
1/n

holds for any K,L ∈ Kn and t, s > 0.
Let K,L ∈ Kn be convex bodies belonging to the same canal class, i.e. Pu⊥(K) =

Pu⊥(L), for some u ∈ Sn−1. The inequality

(5.2) voln
(
tK + sL

)
≥ (t+ s)n−1(tvoln(K) + svoln(L)),



24 A. COLESANTI, N. LOMBARDI, E. SAORÍN GÓMEZ, AND J. YEPES NICOLÁS

holds for every t, s > 0. Indeed, as a consequence of the homogeneity of the Lebesgue
measure, we have

1

(t+ s)n−1
voln

(
tK + sL

)
= (t+ s)voln

(
t

s+ t
K +

s

s+ t
L

)
.

Taking λ = s
s+t ∈ (0, 1) in Theorem C we have

1

(t+ s)n−1
voln

(
tK + sL

)
≥ (t+ s)

[
t

s+ t
voln(K) +

s

s+ t
voln(L)

]
= tvoln(K) + svoln(L),

as desired.

Remark 5.1. i) Inequality (5.2) is a refinement of the Brunn-Minkowski inequality
(5.1). Indeed, one has

voln
(
tK + sL

)
≥ (t+ s)n−1

(
tvoln(K) + svoln(L)

)
= (t+ s)n

(
t

t+ s
voln(K) +

s

t+ s
voln(L)

)
≥ (t+ s)n

(
t

t+ s
voln(K)

1
n +

s

t+ s
voln(L)

1
n

)n

=
(
tvoln(K)

1
n + svoln(L)

1
n

)n
.

ii) Inequality (5.2) is equivalent to the linear Brunn-Minkowski inequality (1.6).
iii) If t+ s ≥ 1, then inequality (5.2) implies

voln(tK + sL) ≥ tvoln(K) + svoln(L)

under the same projections constraint.

We recall that Mλ
α(a, b) the α-mean of a and b with weight λ. We have the following

inequality.

Theorem 5.2. Let p ≥ 1. Let K,L ∈ Kn
(o) be two convex bodies with the origin in their

interiors and p ≥ 1. If there exists u ∈ Sn−1 and C ∈ Kn such that C ⊂ u⊥ and K,L ∈ KC ,
then

(5.3)

(
Mλ

p(a, b)

Mλ
p−1(a, b)

)(p−1)(n−1)

voln
(
(1− λ) ·K +p λ · L

)
≥ Mλ

p(a, b) ≥ Mλ
p
n
(a, b),

hold for any λ ∈ [0, 1], where a = voln(K) and b = voln(L).

We will show the latter inequality as a consequence of a functional and more general
result. To this aim, we first recall the following refinement of the Borell-Brascamp-Lieb
inequality:

Theorem 5.3. [10, Theorem 1.6] Let λ ∈ (0, 1). Let f, g : Rn −→ R≥0∪{∞} be α-concave
functions, where −1/n ≤ α ≤ ∞, and let h : Rn −→ R≥0 ∪ {∞} be a measurable function
such that

h
(
(1− λ)x+ λy

)
≥
(
(1− λ)f(x)α + λg(y)α

)1/α
for all x, y such that f(x)g(y) > 0. If there exists a hyperplane u⊥, for u ∈ Sn−1, such that∫

u⊥
proju⊥(f)(x) dx =

∫
u⊥

proju⊥(g)(x) dx

then ∫
Rn

h(x) dx ≥ (1− λ)

∫
Rn

f(x) dx+ λ

∫
Rn

g(x) dx.

Here proju⊥(f) stands for the projection of the function f onto H.
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Definition 5.4. [10, Definition 1.2] Let u ∈ Sn−1 and f : Rn → R+ ∪ {∞}, the projection
of f onto u⊥ is the function proju⊥(f) : u⊥ → R+ ∪ {+∞} defined by

proju⊥(f)(y) = sup
t∈R

f(y + tu),

for y ∈ u⊥.

Geometrically, Definition 5.4 means that the hypograph of the projection of f onto
u⊥ is the projection of the hypograph of f onto u⊥. In particular, the projection of
the characteristic function of a convex body K is just the characteristic function of the
projection of K onto u⊥.

Moreover, in [27] the following Lp extension of the Borell-Brascamp-Lieb inequality was
obtained (we recall that in this setting we write q to denote the Hölder’s conjugate of p).

Theorem 5.5. [27, Theorem 2.1] Let λ ∈ (0, 1) and let p ≥ 1. Let −1/n ≤ α ≤ ∞ and let
f, g, h : Rn −→ R≥0 ∪ {∞} be integrable functions such that

h
(
(1− µ)1/q(1− λ)1/px+ µ1/qλ1/py

)
≥
[
(1− µ)1/q(1− λ)1/pf(x)α + µ1/qλ1/pg(y)α

]1/α
for all x, y such that f(x)g(y) > 0 and all µ ∈ [0, 1]. Then∫

Rn

h(x) dx ≥ Mλ
pα

nα+1

(∫
Rn

f(x) dx,

∫
Rn

g(x) dx

)
.

Now we are in conditions to show the following Lp extension of Theorem 5.3:

Theorem 5.6. Let λ ∈ (0, 1) and let p ≥ 1. Let f, g : Rn −→ R≥0 ∪ {∞} be α-concave
integrable functions, where −1/n ≤ α ≤ ∞, I suggest to use a different letter instead of α,
since in the last section α is used as the best exponent for the refinement, meanwhile here
the exponent is p and later we let α going to infinity and let h : Rn −→ R≥0 ∪ {∞} be a
measurable function such that

h
(
(1− µ)1/q(1− λ)1/px+ µ1/qλ1/py

)
≥
[
(1− µ)1/q(1− λ)1/pf(x)α + µ1/qλ1/pg(y)α

]1/α(5.4)

for all x, y such that f(x)g(y) > 0 and all µ ∈ [0, 1]. If there exists a hyperplane u⊥, for
u ∈ Sn−1, such that

(5.5)

∫
u⊥

proju⊥(f)(x) dx =

∫
u⊥

proju⊥(g)(x) dx

then (
Mλ

p(a, b)

Mλ
p−1(a, b)

)((p−1)(n−1)+1/α) ∫
Rn

h(x) dx ≥ Mλ
p(a, b),

where a =
∫
Rn f(x) dx and b =

∫
Rn g(x) dx.

Notice that the case p = 1 of this result (that is, in the classical setting of the Minkowski
addition) is precisely the statement of Theorem 5.3.
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Proof. Without loss of generality, we assume that
∫
Rn f(x) dx,

∫
Rn g(x) dx are not both

zero. Moreover, we will first assume that α ̸= 0,∞. Then, taking

(5.6) µ :=
λ
(∫

Rn g(x) dx
)p

(1− λ)
(∫

Rn f(x) dx
)p

+ λ
(∫

Rn g(x) dx
)p ,

for which we clearly have that µ ∈ [0, 1], we define

(5.7) t = t(µ) := (1− µ)1/q(1− λ)1/p and s = s(µ) := µ1/qλ1/p.

From (5.4) we have that

(5.8) h(tx+ sy) ≥
(
tf(x)α + sg(y)α

)1/α
for all x, y with f(x)g(y) > 0. Now, for any given pair of points x, y ∈ Rn, we write x′ :=
(t+ s)x and y′ := (t+ s)y. Moreover, we define the auxiliary functions f, g : Rn −→ R≥0

given by

f
(
x′
)
:= (t+ s)1/αf

(
x′

t+ s

)
and g

(
y′
)
:= (t+ s)1/αg

(
y′

t+ s

)
,

respectively. Thus, (5.8) yields

h

(
t

t+ s
x′ +

s

t+ s
y′
)

≥
[

t

t+ s

(
f
(
x′
))α

+
s

t+ s

(
g
(
y′
))α]1/α

for all x′, y′ such that f
(
x′
)
g
(
y′
)
> 0. Notice that, from the definition of f and g, the

functions f and g are α-concave and, from (5.5), they satisfy that∫
u⊥

projH
(
f
)
(z) dz =

∫
u⊥

projH
(
g
)
(z) dz.

Hence, by Theorem 5.3 applied to the functions f, g, h, we get∫
Rn

h(x) dx ≥ t

t+ s

∫
Rn

f
(
x′
)
dx′ +

s

t+ s

∫
Rn

g
(
x′
)
dx′

= t(t+ s)−1+1/α

∫
Rn

f

(
x′

t+ s

)
dx′ + s(t+ s)−1+1/α

∫
Rn

g

(
x′

t+ s

)
dx′

= t(t+ s)n−1+1/α

∫
Rn

f(x) dx+ s(t+ s)n−1+1/α

∫
Rn

g(x) dx,

where in the last equality we have made the change of variables x = x′/(t+ s).
Therefore, using the definition of p-mean as well as that of the parameters t, s and µ

given in (5.6) and (5.7) respectively, we obtain(
Mλ

p(a, b)

Mλ
p−1(a, b)

)((p−1)(n−1)+1/α) ∫
Rn

h(x) dx ≥ why not equal?

1

(t+ s)n−1+1/α

∫
Rn

h(z) dz ≥ t

∫
Rn

f(x) dx+ s

∫
Rn

g(x) dx

= Mλ
p

(∫
Rn

f(x) dx,

∫
Rn

g(x) dx

)
= Mλ

p(a, b),

as desired.
Finally, note that the cases α = 0 and α = ∞ can be derived from the previous ones by

continuity. This concludes the proof. □
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Now, the geometric version of the latter result, collected in Theorem 5.2 is a direct
consequence of Theorem 5.6. To show it, we need to introduce the following notation: χM

will refer the characteristic function of a subset M ⊂ R.

Proof of Theorem 5.2. It is enough to apply Theorem 5.6 with f = χK , g = χL and
h = χ(1−λ)·pK+pλ·pL, and noticing that f and g are ∞-concave do we need a proper
definition?. □

Remark 5.7. Along the proof of Theorem 5.6, the factor

(5.9)

(
Mλ

p(a, b)

Mλ
p−1(a, b)

)(p−1)
(
(n−1)+1/α

)

arose by computing the value

1(
t(µ) + s(µ)

)n−1+1/α

for a suitable choice of µ.

Hence, the factor (5.9) depending on the integrals of f and g can be bounded from above
by the constant

(5.10) C(p, λ, α) := sup
µ∈[0,1]

1(
(1− µ)1/q(1− λ)1/p + µ1/qλ1/p

)n−1+1/α
.

Notice that C(1, λ, α) = 1 whereas

C(p, λ, α) = min
{
(1− λ), λ

}−(n−1+1/α)/p

for p > 1.

In the geometric case, that is, in Theorem 5.2, the left-hand side may be bounded from
above by

C(p, λ) := C(p, λ,∞) = min
{
(1− λ), λ

}−(n−1)/p
,

and hence, when λ = 1/2 the constant factor on the left-hand side is 2(n−1)/p (for p > 1).
In other words, the following inequality holds:

(5.11) 2(n−1)/p voln
(
(1− λ) ·K +p λ · L

)
≥ Mλ

p

(
voln(K), voln(L)

)
.

Remark 5.8. Let K ∈ Kn
o . Since the projection of the characteristic function of the

orthogonal projection of K on a hyperplane u⊥ is the characteristic function of Pu⊥(K),
we have ∫

u⊥
proju⊥(χK)(x) dx = voln−1(Pu⊥(K)).

Hence, condition (5.5) in the geometric setting for two convex bodies K,L ∈ Kn
o is equi-

valent to voln−1(Pu⊥(K)) = voln−1(Pu⊥(L)).
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5.2. Refinement of the first Lp Minkowski inequality. Associated to the Brunn-
Minkowski inequality there is also the so-called first Minkowski inequality.

Suggestion: remove Definition 5.9 and use Proposition 5.10 only with the limit as a defin-
ition for the V1. In this way there is no need to introduce the surface area measure.

Definition 5.9. Let K,L ∈ Kn. The functional V1 : (Kn)
2 → R+ is defined as

(5.12) V1(K,L) :=
1

n

∫
Sn−1

h(L, u) dSn−1(K,u),

where Sn−1(K, ·) is the (n− 1)- area measure of K.

It is possible to prove the following.

Proposition 5.10. [29, Section 5.1] The following limit exists and

(5.13) V1(K,L) = lim
ϵ→0+

voln(K + ϵL)− voln(K)

ϵ
=

1

n

∫
Sn−1

h(L, u) dSn−1(K,u)

holds for every K,L ∈ Kn.

We refer to [29] for properties of V1 and relations with other magnitudes within the
theory of convex bodies. The first Minkowski inequality reads as follows.

Theorem 5.11. [29, Theorem 7.2.1] The following inequality

(5.14) V1(K,L)
n ≥ voln(K)n−1voln(L),

holds for every K,L ∈ Kn.

The following is the linear refinement of inequality (5.14).

Theorem 5.12. [30, Theorem 1.1] Let K,L ∈ Kn be two convex bodies such that there
exists u ∈ Sn−1 with Pu⊥(K) = Pu⊥(L), i.e., they belong to the same canal class along the
direction u ∈ Sn−1. Hence, the inequality

(5.15) nV1(K,L) ≥ (n− 1)voln(K) + voln(L)

holds.

We remark that, as a consequence of the arithmetic-geometric mean inequality, we have
that inequality (5.15) is actually a refinement of the standard first Minkowski inequality.

In [23] we can find a extension of the first Minkowski inequality in the Lp Brunn-
Minkowski theory, where the author introduced also the following functional that covers
the role of the functional V1.

Suggestion: remove Definition 5.13 and Proposition 5.14 as stated like now, and consider
only the definition of Vp via the limit, i.e.,

Vp(K,L) :=
1

p
lim

ϵ→0+

voln(K +p ϵ · L)− voln(K)

ϵ

Definition 5.13. Let p ≥ 1, and K,L ∈ Kn
o . We set

Vp(K,L) :=
1

n

∫
Sn−1

hp(L, u)h1−p(K,u)dSn−1(K,u).

We remark that if p = 1, then we have Vp(K,L) = V1(K,L).
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Proposition 5.14. [23] Let p ≥ 1. We have

Vp(K,L) :=
1

n

∫
Sn−1

hp(L, u)h1−p(K,u)dSn−1(K,u)

for every K,L ∈ Kn
o .

The following is the Lp first Minkowski inequality.

Theorem 5.15. [23, Theorem 1.2] Let p ≥ 1. The inequality

(5.16) Vp(K,L)
n ≥ voln(K)n−pvoln(L)

p

holds for every K,L ∈ Kn
o .

Taking Theorem 5.12 into account, we prove the following.

Theorem 5.16. Let p > 1 and u ∈ Sn−1. The inequality

(5.17) Vp(K,L) ≥
[(

1− 1

n

)
voln(K) +

1

n
voln(L)

]p
vol1−p

n (K)

holds for every K,L ∈ KC , where C ⊂ u⊥ is a convex body containing the origin and
u ∈ Sn−1.

Proof. Remove this part: By Proposition 5.14, we know that

Vp(K,L) :=
1

n

∫
Sn−1

hp(L, u)h1−p(K,u)dSn−1(K,u).

Taking into account the integral representation of Vp, see [29, Theorems 9.1.1], by Hölder’s
inequality with k = 1

1−p < 0 (see (6.9.3) in [18]), we have

Vp(K,L) ≥ Vp
1(K,L)vol

1−p
n (K),

see also [29, Theorem 9.1.2].
By inequality (5.15) we have

(5.18) nV1(K,L) ≥ (n− 1)voln(K) + voln(L),

which implies

Vp(K,L) ≥
[(

1− 1

n

)
voln(K) +

1

n
voln(L)

]p
vol1−p

n (K).

□

We remark that inequality (5.17) is a refinement of the first Lp Minkowksi inequality (5.16)
by the arithmetic-geometric mean inequality.

Theorem 5.16 provides us with a different type of improvement of the Lp Brunn-
Minkowski inequality under the canal class constraint.

Theorem 5.17. Let p ≥ 1, u ∈ Sn−1, and C ⊆ u⊥ containing the origin. The inequality

(5.19) np
[
1−

(
1− 1

n

)p]
voln

(
(1− λ) ·K +p λ · L

)p ≥ (1− λ)voln(K)p + λvoln(L)
p,

holds for every λ ∈ (0, 1) and K,L ∈ KC .
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Proof. Let M ∈ KC , then by direct computation we have

Vp(M, (1− λ) ·K +p λ · L) = (1− λ)Vp(M,K) + λVp(M,L).

By Theorem 5.16, we have

Vp(M, (1− λ) ·K +p λ · L)

≥ (1− λ)

[(
1− 1

n

)
voln(M) +

1

n
voln(K)

]p
vol1−p

n (M)

+ λ

[(
1− 1

n

)
voln(M) +

1

n
voln(L)

]p
vol1−p

n (M)

= vol1−p
n (M)

{
(1− λ)

[(
1− 1

n

)
voln(M) +

1

n
voln(K)

]p
+ λ

[(
1− 1

n

)
voln(M) +

1

n
voln(L)

]p}
.

Now we take M = (1− λ) ·p K1 +p λ ·p L, then Vp(M,M) = voln(M), i.e.,

volpn(M)

≥ (1− λ)

[(
1− 1

n

)
voln(M) +

1

n
voln(K)

]p
+ λ

[(
1− 1

n

)
voln(M) +

1

n
voln(L)

]p
.

Now we consider the right-hand side of the previous inequality, i.e.,

(1− λ)

[(
1− 1

n

)
voln(M) +

1

n
voln(K)

]p
+ λ

[(
1− 1

n

)
voln(M) +

1

n
voln(L)

]p
≥ (1− λ)

[(
1− 1

n

)p

volpn(M) +
1

np
volpn(K)

]
+ λ

[(
1− 1

n

)p

volpn(M) +
1

np
volpn(L)

]
=

(1− λ)volpn(K) + λvolpn(L)

np
+

(
1− 1

n

)p

volpn(M),

which implies the thesis.
□

Remark 5.18. Inequality (5.19) is an improvement of the Lp Brunn-Minkowski inequality
as a consequence of the improvement inequality(5.17).
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