◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

How to analyze many contingency tables simultaneously ?

Thorsten Dickhaus

Humboldt-Universität zu Berlin

Beuth Hochschule für Technik Berlin, 31.10.2012

Real data

Motivation: Genetic association studies

Statistical setup

Refined statistical inference methods

Real data example

Reference:

Dickhaus, T., Straßburger, K., Schunk, D., Morcillo, C., Illig, T., and Navarro, A. (2012): How to analyze many contingency tables simultaneously in genetic association studies. *SAGMB 11, Article 12.*

What is a SNP (single nucleotide polymorphism) ? Bi-allelic SNPs: Exactly two possible alleles

Locus 1 2 3 4 ... i ... M

What is a SNP (single nucleotide polymorphism) ?

Bi-allelic SNPs: Exactly two possible alleles

Locus	1	2	3	4	•••	i	•••	Μ
_	_	_	~	_				~
Tom	A	A	G	Т	• • •	A	• • •	G

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

What is a SNP (single nucleotide polymorphism) ?

Bi-allelic SNPs: Exactly two possible alleles

Locus	1	2	3	4	•••	i	•••	М
Tom	A	A	G	Т		A		G
Andrew	A	A	G	С		A		С

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへぐ

What is a SNP (single nucleotide polymorphism)?

Bi-allelic SNPs: Exactly two possible alleles

Locus	1	2	3	4	•••	i	•••	М
Tom	A	A	G	Т		A		G
Andrew	A	A	G	С		A		С
Rachel	A	A	G	С		G		G

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

What is a SNP (single nucleotide polymorphism) ? Bi-allelic SNPs: Exactly two possible alleles

Locus	1	2	3	4	•••	i	•••	Μ
Tom (m) Tom (p)	A A	A A	G G	T T	 	A A		G C
Andrew	A	A	G	С		A		С
Rachel	A	A	G	С		G		G

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

What is a SNP (single nucleotide polymorphism) ? Bi-allelic SNPs: Exactly two possible alleles

Locus	1	2	3	4	 i	 М
Tom (m)	A	A	G	T	 A	 G
Tom (p)	A	A	G	T	 A	 C
Andrew	A	A	G	C	 A	 C
	A	A	G	C	 G	 C
Rachel	A A	A A	G G	C T	 G G	 G G

Σ

 n_1

 n_{2}

Ν

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Contingency table layout in association studies

Assume a bi-allelic marker (SNP) at a particular locus and a binary phenotype of interest, e. g., a disease status.

Genotype	A_1A_1	A_1A_2	A_2A_2	Σ
Phenotype 1	<i>x</i> _{1,1}	<i>x</i> _{1,2}	<i>x</i> _{1,3}	<i>n</i> _{1.}
Phenotype 0	<i>x</i> _{2,1}	$x_{2,2}$	<i>x</i> _{2,3}	<i>n</i> _{2.}
Absolute count	<i>n</i> .1	<i>n</i> .2	<i>n</i> .3	N

In case of allelic tests:

Genotype A_1 A_2 Phenotype 1 $x_{1,1}$ $x_{1,2}$ Phenotype 0 $x_{2,1}$ $x_{2,2}$ Absolute count $n_{.1}$ $n_{.2}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Formalized association test problem

Multiple test problem with system of hypotheses $\mathcal{H} = (H_j : 1 \le j \le M)$, where $H_j : \text{Genotype}_j \perp \text{Phenotype}$ with two-sided alternatives K_j .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Formalized association test problem

Multiple test problem with system of hypotheses $\mathcal{H} = (H_j : 1 \le j \le M)$, where $H_j : \text{Genotype}_j \perp \text{Phenotype}$ with two-sided alternatives K_j .

Abbreviated notation (one particular position):

$$\begin{split} \mathbf{n} &= (n_{1.}, n_{2.}, n_{.1}, n_{.2}, n_{.3}) \in \mathbb{N}^5 \quad \text{resp. } \mathbf{n} = (n_{1.}, n_{2.}, n_{.1}, n_{.2}) \in \mathbb{N}^4 \text{,} \\ \mathbf{x} &= \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{pmatrix} \in \mathbb{N}^{2 \times 3} \text{ resp. } \mathbf{x} = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \in \mathbb{N}^{2 \times 2}. \end{split}$$

In both cases, the probability of observing ${\bf x}$ given ${\bf n}$ is under the null given by

$$f(\mathbf{x}|\mathbf{n}) = \frac{\prod_{n \in \mathbf{n}} n!}{N! \prod_{x \in \mathbf{x}} x!}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Tests for association of marker and phenotype (i) Chi-squared test

 $Q(\mathbf{x}) = \sum_{r} \sum_{s} \frac{(x_{rs} - e_{rs})^2}{e_{rs}}, \text{ where } e_{rs} = n_{r.}n_{.s}/N.$

Resulting "exact" (non-asymptotic) p-value:

$$p_{\mathcal{Q}}(\mathbf{x}) = \sum_{\tilde{\mathbf{x}}} f(\tilde{\mathbf{x}}|\mathbf{n}), \text{ with }$$

summation over all $\tilde{\mathbf{x}}$ with marginals \mathbf{n} such that $Q(\tilde{\mathbf{x}}) \ge Q(\mathbf{x})$.

(Local) level α test: $\varphi_Q(\mathbf{x}) = \mathbf{1}_{p_Q(\mathbf{x}) \leq \alpha}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Tests for association of marker and phenotype

(ii) Tests of Fisher-type

$$p_{\mathsf{Fisher}}(\mathbf{x}) = \sum_{\tilde{\mathbf{x}}} f(\tilde{\mathbf{x}}|\mathbf{n}), \ \mathsf{with}$$

summation over all $\tilde{\mathbf{x}}$ with marginals \mathbf{n} such that $f(\tilde{\mathbf{x}}|\mathbf{n}) \leq f(\mathbf{x}|\mathbf{n})$.

A D F A 同 F A E F A E F A Q A

Tests for association of marker and phenotype (ii) Tests of Fisher-type

 $p_{\mathrm{Fisher}}(\mathbf{x}) = \sum_{\tilde{\mathbf{x}}} f(\tilde{\mathbf{x}}|\mathbf{n}), \ \mathrm{with}$

summation over all $\tilde{\mathbf{x}}$ with marginals \mathbf{n} such that $f(\tilde{\mathbf{x}}|\mathbf{n}) \leq f(\mathbf{x}|\mathbf{n})$.

$$\underline{\text{Corresponding level } \alpha \text{ test:}} \quad \varphi_{\text{Fisher}}(\mathbf{x}) = \mathbf{1}_{p_{\text{Fisher}}(\mathbf{x}) \leq \alpha}$$

 $\varphi_Q(\mathbf{x})$ and $\varphi_{\text{Fisher}}(\mathbf{x})$ keep the (local) significance level α conservatively for any sample size *N*.

In other words:

 $p_Q(\mathbf{X}) \succ U$ and $p_{\text{Fisher}}(\mathbf{X}) \succ U$ under the null, $U \sim UNI[0, 1]$.

Estimating the proportion of informative SNPs

(References: Schweder and Spjøtvoll (1982), Storey et al., 2004)

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Estimating the proportion of informative SNPs

(References: Schweder and Spjøtvoll (1982), Storey et al., 2004)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Estimating the proportion of informative SNPs

(References: Schweder and Spjøtvoll (1982), Storey et al., 2004)

Caveat: Storey's method does not work for discrete $p\text{-values }p_{\mathcal{Q}}(\mathbf{X})$ and $p_{\text{\tiny Fisher}}(\mathbf{X})$

▲□▶▲□▶▲目▶▲目▶ 目 のへの

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Discreteness: Realized randomized *p*-values

Definition:

Statistical model $(\Omega,\mathcal{A},(\mathbb{P}_\vartheta)_{\vartheta\in\Theta})$ given

Two-sided test problem $H : \{\vartheta = \vartheta_0\}$ versus $K : \{\vartheta \neq \vartheta_0\}$

Discrete test statistic: $\mathbf{X} \sim \mathbb{P}_{\vartheta}$ with values in Ω

 $U \sim UNI[0, 1]$, stochastically independent of **X**

A realized randomized *p*-value for testing *H* versus *K* is a measurable mapping $p^r : \Omega \times [0, 1] \rightarrow [0, 1]$ with

$$\mathbb{P}_{\vartheta_0}(p^r(\mathbf{X}, U) \le t) = t \text{ for all } t \in [0, 1].$$

Real data

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Realized randomized *p*-values based on $p_Q(\mathbf{X})$ and $p_{\text{Fisher}}(\mathbf{X})$

Lemma:

Based upon the chi-squared and Fisher-type testing strategies, corresponding realized randomized *p*-values can be calculated as

$$p_Q^r(\mathbf{x}, u) = p_Q(\mathbf{x}) - u \sum_{\tilde{\mathbf{x}}: Q(\tilde{\mathbf{x}}) = Q(\mathbf{x})} f(\tilde{\mathbf{x}}|\mathbf{n}),$$

$$p_{\text{Fisher}}^r(\mathbf{x}, u) = p_{\text{Fisher}}(\mathbf{x}) - u\gamma f(\mathbf{x}|\mathbf{n}),$$

where *u* denotes the realization of $U \sim UNI[0, 1]$, stochastically independent of **X** and $\gamma \equiv \gamma(\mathbf{x}) = |\{\mathbf{\tilde{x}} : f(\mathbf{\tilde{x}}|\mathbf{n}) = f(\mathbf{x}|\mathbf{n})\}|$.

We propose realized randomized *p*-values for estimating π_0 . For final decision making, their non-randomized counterparts should be used (Reproducibility!).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Effective number of tests

A thought experiment

Assume markers indexed by $I = \{1, ..., M\}$ can be divided into disjoint groups with indices in subsets $I_g \subset I, g \in \{1, ..., G\}$.

Effective number of tests

A thought experiment

Assume markers indexed by $I = \{1, ..., M\}$ can be divided into disjoint groups with indices in subsets $I_g \subset I, g \in \{1, ..., G\}$. Let $\varphi = (\varphi_i, i \in I)$ and assume that for each $g \in \{1, ..., G\}$ and for any pair $(i,j) \subseteq I_g$ the identity $\{\varphi_i = 1\} = \{\varphi_j = 1\}$ holds. Then "effectively" only one single test is performed in each

Then, "effectively" only one single test is performed in each subgroup.

(ロ) (同) (三) (三) (三) (○) (○)

Effective number of tests

A thought experiment

Assume markers indexed by $I = \{1, ..., M\}$ can be divided into disjoint groups with indices in subsets $I_g \subset I, g \in \{1, ..., G\}$. Let $\varphi = (\varphi_i, i \in I)$ and assume that for each $g \in \{1, ..., G\}$ and for any pair $(i, j) \subseteq I_g$ the identity $\{\varphi_i = 1\} = \{\varphi_j = 1\}$ holds.

Then, "effectively" only one single test is performed in each subgroup. Denoting $i(g) = \min I_g$ for $g = 1, \ldots, G$, it holds

$$\mathsf{FWER}_{\vartheta}(\varphi) = \mathbb{P}_{\vartheta}\left(\bigcup_{g=1}^{G}\bigcup_{i\in I_{0}\cap I_{g}}\{\varphi_{i}=1\}\right) \leq \mathbb{P}_{\vartheta}\left(\bigcup_{g=1}^{G}\{\varphi_{i(g)}=1\}\right)$$

Consequently, multiplicity correction in this extreme scenario only has to be done with respect to G << M. Bonferroni-type adjustment α/G would be valid!

Real data

(ロ) (同) (三) (三) (三) (○) (○)

Effective number of tests

Cheverud-Nyholt method and beyond

$$M_{ ext{eff.}} = 1 + rac{1}{M} \sum_{i=1}^{M} \sum_{j=1}^{M} (1 - r_{ij}^2).$$

The numbers r_{ij} are measures of correlation among markers *i* and *j* and can typically be obtained from linkage disequilibrium (LD) matrices.

More sophisticated methods exist in the literature, e. g.:

- simple \mathcal{M} by X. Gao et al. (2008)
- K_{eff.} by Moskvina and Schmidt (2008)

All rely on the correlation structure reflected by the r_{ij} 's.

A D F A 同 F A E F A E F A Q A

Our proposed data analysis workflow

- 1. Compute realized randomized *p*-values $p^r(\mathbf{x}_j, u_j)$ and non-randomized versions $p(\mathbf{x}_j), j = 1, \dots, M$.
- 2. Estimate the proportion π_0 of uninformative SNPs by $\hat{\pi}_0$.
- 3. Determine the effective number of tests $M_{\text{eff.}}$ by utilizing correlation values obtained from an appropriate LD matrix of the *M* SNPs.
- 4. For a pre-defined FWER level α , determine the list of associated markers by performing the multiple test $\varphi = (\varphi_j, j = 1, ..., M)$, where $\varphi_j(\mathbf{x}_j) = \mathbf{1}_{p(\mathbf{x}_j) \leq t^*}$ with $t^* = \alpha/(M_{\text{eff.}} \cdot \hat{\pi}_0)$.

Real data example: Herder et al. (2008)

Replication study

Herder, C. et al. (2008). Variants of the PPARG, IGF2BP2, CDKAL1, HHEX, and TCF7L2 genes confer risk of type 2 diabetes independently of BMI in the German KORA studies. Horm. Metab. Res. 40, 722–726.

Data:

M = 44 SNPs on ten different genes ($N \approx 1900$ study participants)

"Results" section:

"...(conservative) Bonferroni correction for 10 genes..."

Authors' claim:

Threshold $t^* = 0.005$ for raw marginal *p*-values controls the FWER at $\alpha = 5\%$

Herder et al. (2008): Data re-analysis

LD information:

Taken from the HapMap project (population 'CEU')

Estimated effective number of tests:

$M_{\rm eff.}=40.63$	(Cheverud-Nyholt method),
$K_{\rm eff.} = 16.73$	(Moskvina-Schmidt method).

Estimated proportion of uninformative SNPs:

 $\hat{\pi}_0 = 0.4545$ (Storey et al., 2004)

Resulting threshold according to our method:

$$t^* = \alpha / (K_{\text{eff.}} \times \hat{\pi}_0) = \alpha / (16.73 \cdot 0.4545) = \alpha / 7.604 = 0.0066.$$

In conclusion:

Our proposed method confirms the authors' heuristic argumentation and endorses their scientific claims.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Future research goals

- Effective number of tests for continuous response
- Effective number of tests for FDR control
- Adaptive estimation of effective numbers of tests
- Statistical methodology for confirmatory functional studies (fMRI data)
- Hierarchical multiple testing methods for (auto-) correlated data (time series)