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What is a SNP (single nucleotide polymorphism) ?
Bi-allelic SNPs: Exactly two possible alleles

Locus 1 2 3 4 ... i ... M

Tom (m) A A G T ... A ... G
Tom (p) A A G T ... A ... C

Andrew A A G C ... A ... C
A A G C ... G ... C

Rachel A A G C ... G ... G
A A G T ... G ... G
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Contingency table layout in association studies

Assume a bi-allelic marker (SNP) at a particular locus and
a binary phenotype of interest, e. g., a disease status.

Genotype A1A1 A1A2 A2A2 Σ
Phenotype 1 x1,1 x1,2 x1,3 n1.
Phenotype 0 x2,1 x2,2 x2,3 n2.

Absolute count n.1 n.2 n.3 N

In case of allelic tests:

Genotype A1 A2 Σ
Phenotype 1 x1,1 x1,2 n1.
Phenotype 0 x2,1 x2,2 n2.

Absolute count n.1 n.2 N
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Formalized association test problem
Multiple test problem with system of hypotheses
H = (Hj : 1 ≤ j ≤ M), where Hj : Genotypej⊥Phenotype
with two-sided alternatives Kj.

Abbreviated notation (one particular position):

n = (n1., n2., n.1, n.2, n.3) ∈ N5 resp. n = (n1., n2., n.1, n.2) ∈ N4 ,

x =

(
x11 x12 x13
x21 x22 x23

)
∈ N2×3 resp. x =

(
x11 x12
x21 x22

)
∈ N2×2.

In both cases, the probability of observing x given n is
under the null given by

f (x|n) =

∏
n∈n n!

N!
∏

x∈x x!
.
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Tests for association of marker and phenotype
(i) Chi-squared test

Q(x) =
∑

r

∑
s

(xrs − ers)
2

ers
, where ers = nr.n.s/N.

Resulting ”exact” (non-asymptotic) p-value:

pQ(x) =
∑

x̃

f (x̃|n), with

summation over all x̃ with marginals n such that Q(x̃) ≥ Q(x).

(Local) level α test: ϕQ(x) = 1pQ(x)≤α
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Tests for association of marker and phenotype
(ii) Tests of Fisher-type

pFisher(x) =
∑

x̃

f (x̃|n), with

summation over all x̃ with marginals n such that f (x̃|n) ≤ f (x|n).

Corresponding level α test: ϕFisher(x) = 1pFisher(x)≤α

ϕQ(x) and ϕFisher(x) keep the (local) significance level α
conservatively for any sample size N.

In other words:
pQ(X) � U and pFisher(X) � U under the null, U ∼ UNI[0, 1].
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Estimating the proportion of informative SNPs
(References: Schweder and Spjøtvoll (1982), Storey et al., 2004)
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Caveat: Storey’s method does not work for
discrete p-values pQ(X) and pFisher(X)
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Discreteness: Realized randomized p-values

Definition:
Statistical model (Ω,A, (Pϑ)ϑ∈Θ) given

Two-sided test problem H : {ϑ = ϑ0} versus K : {ϑ 6= ϑ0}

Discrete test statistic: X ∼ Pϑ with values in Ω

U ∼ UNI[0, 1], stochastically independent of X

A realized randomized p-value for testing H versus K is a measurable
mapping pr : Ω× [0, 1]→ [0, 1] with

Pϑ0(pr(X,U) ≤ t) = t for all t ∈ [0, 1].
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Realized randomized p-values
based on pQ(X) and pFisher(X)

Lemma:
Based upon the chi-squared and Fisher-type testing strategies,
corresponding realized randomized p-values can be calculated as

pr
Q(x, u) = pQ(x)− u

∑
x̃:Q(x̃)=Q(x)

f (x̃|n),

pr
Fisher(x, u) = pFisher(x)− uγf (x|n),

where u denotes the realization of U ∼ UNI[0, 1], stochastically
independent of X and γ ≡ γ(x) = |{x̃ : f (x̃|n) = f (x|n)}|.

We propose realized randomized p-values for estimating π0.
For final decision making, their non-randomized
counterparts should be used (Reproducibility!).
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Effective number of tests
A thought experiment

Assume markers indexed by I = {1, . . . ,M} can be divided into
disjoint groups with indices in subsets Ig ⊂ I, g ∈ {1, . . . ,G}.

Let ϕ = (ϕi, i ∈ I) and assume that for each g ∈ {1, . . . ,G} and
for any pair (i, j) ⊆ Ig the identity {ϕi = 1} = {ϕj = 1} holds.

Then, “effectively” only one single test is performed in each
subgroup. Denoting i(g) = min Ig for g = 1, . . . ,G, it holds

FWERϑ(ϕ) = Pϑ

 G⋃
g=1

⋃
i∈I0∩Ig

{ϕi = 1}

 ≤ Pϑ

 G⋃
g=1

{ϕi(g) = 1}

 .

Consequently, multiplicity correction in this extreme scenario
only has to be done with respect to G << M.
Bonferroni-type adjustment α/G would be valid!
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Effective number of tests
Cheverud-Nyholt method and beyond

Meff. = 1 +
1
M

M∑
i=1

M∑
j=1

(1− r2
ij).

The numbers rij are measures of correlation among markers i
and j and can typically be obtained from linkage disequilibrium
(LD) matrices.

More sophisticated methods exist in the literature, e. g.:
• simpleM by X. Gao et al. (2008)
• Keff. by Moskvina and Schmidt (2008)

All rely on the correlation structure reflected by the rij’s.
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Our proposed data analysis workflow

1. Compute realized randomized p-values pr(xj, uj) and
non-randomized versions p(xj), j = 1, . . . ,M.

2. Estimate the proportion π0 of uninformative SNPs by π̂0.
3. Determine the effective number of tests Meff. by utilizing

correlation values obtained from an appropriate LD matrix
of the M SNPs.

4. For a pre-defined FWER level α, determine the list of
associated markers by performing the multiple test
ϕ = (ϕj, j = 1, . . . ,M), where ϕj(xj) = 1p(xj)≤t∗ with
t∗ = α/(Meff. · π̂0).
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Real data example: Herder et al. (2008)
Replication study

Herder, C. et al. (2008). Variants of the PPARG, IGF2BP2, CDKAL1, HHEX,
and TCF7L2 genes confer risk of type 2 diabetes independently of BMI in the
German KORA studies. Horm. Metab. Res. 40, 722–726.

Data:
M = 44 SNPs on ten different genes
(N ≈ 1900 study participants)

”Results” section:
”...(conservative) Bonferroni correction for 10 genes...”

Authors’ claim:
Threshold t∗ = 0.005 for raw marginal p-values controls the
FWER at α = 5%
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Herder et al. (2008): Data re-analysis

LD information:
Taken from the HapMap project (population ’CEU’)

Estimated effective number of tests:
Meff. = 40.63 (Cheverud-Nyholt method),
Keff. = 16.73 (Moskvina-Schmidt method).

Estimated proportion of uninformative SNPs:
π̂0 = 0.4545 (Storey et al., 2004)

Resulting threshold according to our method:
t∗ = α/(Keff. × π̂0) = α/(16.73 · 0.4545) = α/7.604 = 0.0066.

In conclusion:
Our proposed method confirms the authors’ heuristic
argumentation and endorses their scientific claims.
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Future research goals

• Effective number of tests for continuous response
• Effective number of tests for FDR control
• Adaptive estimation of effective numbers of tests

• Statistical methodology for confirmatory functional studies
(fMRI data)

• Hierarchical multiple testing methods for (auto-)
correlated data (time series)
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