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INTRODUCTION

In breeding agricultural and horticultural crops it is, in many cases, of much
importance to compare the different selections obtained, e.g. in regard to their pro-
ductive capacity. This is usually done in field trials involving these selections. The
different plot yields will give us an impression of the productivity of the selections
grown. In order to find out how far such impressions are reliable, the yield figures
are mathematically worked out. As a rule a so-called analysis of variance (described
hereafter) will be carried out. The following conclusions may be drawn from it:
the selections will show or will not show differences which are statistically reliable,
leaving unrevealed, however, which selections differ. In practice often a t-test is
applied to find this out. This article means to show that a t-test is not allowed, at the
same time suggesting a practical method to learn more about each pair of varieties.

NUMERICAL EXAMPLE

The calculation concerns a trial on white cabbage carried out in 1950. A trial field
had been divided into 39 plots, grouped into 3 blocks of 13 plots each. In each block
the 13 varieties to be investigated were planted out (randomized blocks design).
During this trial all plots were treated in exactly the same way. The purpose was to
learn which variety would give the highest gross yield per head of cabbage and which
the lowest, in other words to find approximately the order of the varieties according
to gross yield per cabbage.

The numerical example (see fig. 1) shows 39 gross weights which were determined
for each plot, arranged according to variety 1,2, ........ , 13 and to block (A, B and
C). Thus, variety 1 in the plot of block A yielded 2090 grammes per (head of)) cabbage.
For simpler computation purposes this number was first rounded off to 3 figures, thus
giving 209, and then it was reduced by a ,,basic number” 120, so that in the end the
calcultation is based on the number 89 (,,reduced yield”). Therefore in the numerical
example the 39 numbers of the 13 varieties in the 3 blocks indicate the reduced yields.
Behind column C figures the sum of the columns A, B and C. Thus, for variety 1 the
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sum of the reduced yields of the 3 blocks is 168 and the mean reduced yield of each
plot 168:3 —=156,0. So the mean yield is 56,0 + 120 = 176,0 or 1760 grammes. On the
last line figures the total of the above 13 lines. Therefore the total yield of all the varie-
ties in block A is 383 and that of all varieties in all blocks = 409. The reduced mean
yields of the 13 plots of block A and of all 39 plots are 383:13 = 29,5 and 409:39 =
10,5 respectively.

ANALYSIS OF VARIANCE

It is known that the means of each variety or block will afford the best estimates
of the productive capacity of the variety or block. We are especially interested in the
variety means. Now the analysis of variance was applied to find out whether the 13
variety means would vary more than could be expected when the 13 variety numbers
represented one variety only. It is based on the following principles:

The 3 means 56,0, 29,5 and 10,5, as discussed above, may be considered as the best
estimates of respectively:

productive capacity of variety 1, that of block A and the ,,normal” productive
capacity. The differences 56,0 - 10,5 = 45,5 and 29,5-10,5 = 19,0 are the best
estimates of the extra capacity of variety 1 and of the extra capacity of block A, or
briefly, of the contributions of variety 1 and block A. Thus we may explain the yield
of plot A, as follows:

Yield of A; = normal yield 4- contribution of 1 + contribution of A 4 remainder

80 = 10,5 + 45,5 + 19,0 -+ 14,0
a= b + c -+ d + e

The number 14,0, the closing entry in this equation, represents the remainder, say
,error”’, unexplained contribution, which we interpret more or less rightly as due to
chance. From the fact that the contributions of both varieties and blocks have been
estimated as accurately as possible it follows that the chance deviation of the yield has
been accumulated in the ,,error’ as much as possible. It is obvious that we are justified
to write in this way the yield a of each plot as the total of 4 components, b - c+d+e.
For instance the reader himself may ascertain that the last plot C 13 will result in
-3 =10,5-1,5-17,8 + 5,8.

We call Sa2 the total of the squares of the 39 numbers a, Sb? that of the 39 numbers b.
It should be noted that only the numbers a and e can all differ. The numbers b are
all alike; the numbers ¢ form 13 groups, each of 3 equal numbers. Calculating the
5 square totals gives:

Sa? = 892 + (=32 = 32801 = ,total”

Sb? = 10,52 + + (10,52 = 4289,26 = ,,total mean’”
Sc2 = 45,52 |- + (1,52 = 16713,74 ,,varieties”

Sd? = 19,02 4 + (-17,8)> = 8814,97 == ,,blocks”

Se? = 14,02 + + 5,82 = 2983,03 = ,,error”

In reality these sums of squares are calculated in a simpler way than indicated above,
but this unnecessarily complicates the explanation (for numerical computation see the
well-known textbooks e.g. of G. W. SNEDECOR).
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A so-called ,,relation of orthogonality” between the square totals (a sort of Pytha-
goras’ theorem) states that:

with:a = b + ¢ 4+ d 4+ e
goes: Sa? = Sb?> 4+ Sc? + Sd* 4 Se?
or in the example: 32801 = 4289 + 16714 -+ 8815 + 2983.

This relation results from the form of the table of figures (being a complete rec-
tangular table without blank places). The last three sums of squares are to some
extent measures of the relative causes of variation ,,varieties”, ,,blocks” and ,,error”.

In order to ascertain the effective power of these causes, we make use of the following
proposition:

Suppose the yields of the 39 plots have chance deviations of the same order
of magnitude o, such deviations being uncorrelated, and suppose there is a
relation of orthogonality between the sums of squares then these sums of
squares, apart from systematic contributions (varieties, blocks, total-mean)
are estimates of n 6%, n representing the number of degrees of freedom.

The number of degrees of freedom is a constant for each sum of squares representing
the smallest number of independent outcomes involved. Thus it is easy to see that, in
our example, the number of degrees of freedom of Sa?is n, = 39, for the 39 numbers a
are mutually independent. If only 38 were given, it would be impossible to calculate
the 39th from them. In the same way n;,, = 1, for the 39 numbers 5 are all alike. Since
the numbers ¢ have been divided into 13 groups of 3 equal numbers each, only 13 of
them at most need to be given, viz. 1 out of each group of 3. But the sum of these 13
numbers must equal 0, for they represent the differences between the 13 variety means
and the total mean. Therefore only 12 numbers ¢ need to be given to calculate all of
them, thus n, = 12, and ny = 2. The 39 numbers e, arranged in 13 rows and 3 columns
may all differ. It is, however, possible to prove that the total of the 3 numbers in each
row and also the total of the 13 numbers in each column must equal 0. Should one
row and one column not be given then it can be calculated from the other 24 numbers,
so that n, = 24. We may verify that all numbers of degrees of freedom have been
rightly calculated, for in addition to the above equations of ,,Pythagoras’ theorem™
the following equation also holds good:

n, = n, 4+ n. + ng + n,, or in the example
39 =14+12 4+ 2 -+ 24.

In this example we are only interested in sums of squares Sc? and Se?, ,,varieties”
and ,.error”. Suppose that the conditions of the foregoing proposition are fulfilled,
dividing the square totals Sc? and Se® by their respective numbers of degrees of freedom
n. and n,, gives (apart from systematic contributions) two estimates s2 and s2:

sz = 16713,74 : 12 = 1392,81
s = 2983,03:12 = 124,29
the so-called ,,mean squares” for ,,varieties”” and ,,error”.

Of both estimates of 62, s? is only a right error estimate if the 13 varieties have the
same productive capacity. On the other hand, s2 is always right, even in the case of
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unequal productive capacity of varieties or blocks. Therefore the latter will measure o2.
(The accuracy per plot of the trial can be expressed by the magnitude of ¢ in relation
to the mean yield m, being here 120 4 10,5 = 130,5. That accounts for the statement
that ¢/m = 8,54 %).

It is of importance that s = 11,21 X s2. The difference s — s2 = 1268,52 may be
considered as an estimate of the contributions to the variety mean square by ,,real”
differences between the varieties.

The following considerations serve to ascertain how far we may put confidence in a
conclusion that there are ,,real” differences:

If we assume that chance deviations apart from being uncorrelated and
of the same order of magnitude follow moreover the normal law of error, a
proposition states that F = s2/s? will follow a fixed (tabulated) probability
distribution.

When has been verified, that F has so great a value, that chance outcomes as great
or greater have a probability of 0,05 at most, we conclude that it is improbable that
the variety means form a random sample from one and the same normal population.
If we maintain the supposition that the error distribution of the plot yields, therefore,
of the variety means are normal, uncorrelated and have equal variances, then we can
only conclude that the variety means are samples from normal populations, which
only differ with respect to their expected (= real) mean values or more practically
that the variety means show ,,real” differences. In the case before us the F-value (11,21)
is even greater than may be expected on a probability of 0,01. This we have indicated
by + 4. So far for the analysis of variance itself.

RANGE-TEST

The conclusion that the variety means form samples from populations not having
the same expected mean values is rather vague. It is clear that the varieties may be
arranged in some way or other into groups of different productive capacity. Now we
should like to have an answer to the question; which are these groups? Or, to put the
question more vaguely, which varieties do not belong to one and the same group? In
deciding upon this question one should have to ascertain for each pair of varieties if
there are any objections to their being placed into one and the same group.

Should the trial only provide two variety means, then the t-test would be valid.
When o = 11,15, estimated at 24 degrees of freedom, the difference D between the
two variety means must be at least equal to
11,15 x 1,414

1,73

D g05.2¢ = togs; 24 X 0V % = 2,064 x = 18,80.

For instance, suppose the trial only comprises the varieties 1 and 3 with yields
176,0 and 97,7. Then we find the difference 176,0 - 97,7 = 78,2 to be much greater
than 18,8, consequently these varieties belong to different populations. Briefly they
really differ in productive capacity. In a trial with two varieties t = D/o 4/2/3,
is the root from the value found for F. The outcome of F-and t-test are not only
of the same practical value but also identical. In this case the t-test renders the
F-test superfluous.

In case the trial involves more than two varieties it is easy to see that any arbitrary
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use of the t-test may lead to absurd conclusions. Suppose the 13 varieties really belong
to one population only and the value for F is found to be 1,0. The right conclusion
can be immediately drawn from the F-test viz. that there is no indication for dif-
ferences between the varieties. However, the 13 variety means will show a range of
variation (= difference between the highest and lowest value = range) as is common
for a random sample of 13 from a normal distribution. This range of variation is
<+ 3,34 times the standard deviation (see Table XX. Scores for ranked data: Statistical
Tables of FisHErR and YATES), being in our sample 3,34 x 11,15/1,73 = 21,5. This
range is greater than the 18,80, which is needed according to the t-test. Therefore we
are justified to expect in each trial with 13 varieties presenting no racial differences
at all at least one difference of mean yields which should be significant according to
the t-test. It is clear that the t-test should not be used in this manner. Then, is it
impossible to use the t-test in a trial with 13 varieties? When it is desired to compare
a pair of varieties or groups of varieties chosen independent of a knowledge about the
mean yields obtained in the experiment, the t-test may be used. In fact, however, there
are only two varieties or objects involved in such a trial. As soon as the trial contains
more objects and more than one difference has to be tested, one is naturally testing
sufficiently great differences, thus choosing the greatest. In applying the t-test in that
case an ,.error of selection” would be made, for not an arbitrary deviation, but the
greatest deviations from a normal population will be tested.

More or less intuitively I think, that I have succeeded in solving this problem by
making use of a ,,range test”, which is regularly applied by our Institute since early
1950. Results and practicability were satisfactory.

We use the table of the ,,studentized” range by E. S. PEARsON and H. O. HARTLEY
(6). For our purpose we have added to this table as much graphic matter as could be
safely done.

Along the vertical axis in the graph the range Rg s (see fig. 2) or Rgq; (see fig. 3)
has been plotted. The number of error degrees of freedom n, has been plotted
along the horizontal axis. For each number of varieties n; - 1, a line has been traced
representing the Rog; and R, Tespectively, at a certain value for n,. In the example
we worked with 24 error degrees of freedom. We only used the Rgg;. In the graph
(fig. 2) the vertical line at n, = 24 intersects the curves of n, 4+ 1 = 13,12 etc. down
to 2, successively in the points Rg o5 = 5,22; 5,14; 5,05; 4,95; 4,83; 4,70; 4,54; 4,38;
4,18; 3,90; 3,53 and 2,92. Multiplying these numbers by the standard deviations of
the variety means o/4/ 3 = 6,45 gave the column Ao = 18,80; 22,73;..... 33,61
of fig. 1.

The graph is not very handy for frequent use. Therefore we have established an
extensive table from the graph, with many values n, and n,. In the numerical example
we use the column Aggs as follows: First the variety means are arranged from high
to low, thus: variety 1 = 176,0, variety 11 = 152,7, etc...... variety 3 = 97,7. Next
we ascertain whether the greatest difference between two varieties, i.e. 176,0 - 97,7 =
78,3, is greater than may be expected on a probability of only 0,05 for a random
sample of thirteen from a normal distribution, of which the ¢ with 24 degrees of
freedom has been estimated at 11,15//73. Stated briefly we ascertain if 78,3 is greater
than 33,61, which indeed is the case.

We conclude now that the two varieties 1 and 3 belong to different populations, in
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FIG. 2. GRAPH OF THE STUDENTIZED RANGE ACCORDING TO E. S. PEARSON AND

H. O. HARTLEY. BIOMETRICA 33 (1943) : 89 (TABLE 2).
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other words, that variety 1 ,,really” differs from variety 3. At this stage it is desirable
to note that the ,,variety variance” 1393 is closely linked up to the range 78,3. From the
fact that the F = 11,21*+ or 78,3 > 33,61 we might draw exactly the same conclusion.
Both criteria though not being identical, are nearly equivalent. Our experience is that,
if F > Fy5, also D > A5 holds good, so that we should also have been able to
predict on account of the F-Test that the greatest difference i.e. that between the
varieties 1 and 3 is ,,real”. It is clear that the range test has the advantage of practically
never contradicting the F-test (contrary to the t-test).

We cannot compare other pairs of varieties without obtaining small deviations
from the 5 per cent basis, for we proceed as follows. After having concluded that
variety 3 is distinct from variety 1, we ascertain whether 8 is distinct from variety 1.
To be exact in this test we should not overlook the possibility that the first conclusion
may not be right, even if the odds are less than 5 97, say 2,6 7;. In that case the following
should be taken into account. If our first conclusion is wrong, there are two possibili-
ties.

1) There are no differences between the varieties 1, 2, 3,...., 13. Then there is only
arisk of 2,6 % of making such wrong conclusion with respect to any couple of varieties.

2) There are real differences between some of the varieties but not between the
couple of varieties with the largest range. The probability for such couple to show
the largest difference will be certainly less than 2,6 9. So the probability of making
wrongly the statement that the largest difference is real will be at most 2,6 9;.

If our first conclusion is right one may ask: should the hypothesis that variety
1 and 8 are the extremes in a random test of 12 from one normal distribution be
rejected? Criterion: is 176,0 - 100,7 = 75,3 greater than 33,09?

If our first statement is wrong (the probability then of making the statement is at
most 2,6 9;) one may ask: should the hypothesis that variety 1 and 8 are the highest,
respectively the lowest but one in a random test of 13 from one normal distribution
be rejected? Criterion?

One should have to average both criteria in some way or other to obtain a criterion
on a 5 basis for the highest and the lowest but one in the row of averages. This averag-
ing, however, is impossible, as only one of the situations is the real one, briefly itis a
problem difficult to solve. Therefore we have neglected the possible error in the first
conclusion. Besides it is quite likely that the two criteria do not diverge very much.
For both the requirements are less severe than for the greatest difference. Also the
first criterion is more severe than the second from which the conclusion may be drawn
that the difference 33,09 differs very little from the exact one and on the safe side.

Now variety 1 may be compared with the third and fourth lowest variety by re-
moving each time a lowest variety from the random test. Thus variety 1 differs
significantly from the 13th, the 12th, the 11th, and the 2nd variety. This result we
indicate by giving to variety 1 the rank values 1 up to and including 1, in other words:
variety 1 belongs to a population, to which at most the varieties 1 up to 1 inclusive,
belong. Now this conclusion results from the foregoing twelve. There is only a small
probability of the first conclusion being wrong, the chances that the next conclusions
are wrong become greater and greater because accumulation of faulty conclusions
may occur. The smaller the remaining group of varieties undergoing the range test
the greater the chances of a less exact test. It may be noted that as soon as the group
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only consists of the varieties 1 and 11, viz. 176,0 and 152,7, the range test (Agos=
18,80 becomes identical with the t-test (Dg s = 18,80).

Therefore the range test remains entirely on the safe side in regard to the t-test.
We may also ascertain here how much the t-test will exaggerate the favorable results
of the tests. For the greatest difference we find that Aggs = 33,61. Dggs, on the
contrary, = 18,80. Consequently the ,,accuracy” suggested by the t-test is (33,61/
18,80)° or 3,2 times too big.

By eliminating each time the highest variety from the group of 13 varieties, a group
of 5 varieties will remain: 10,5,2,8,3 with a range of variation 124,3 - 97,7 = 26,6,
which is smaller than Ages = 26,91. Consequently variety 3 does no longer differ
significantly from the varieties 10,5,2 and 8 and has the values 9 up to and including
13. A variety 4, in the middle of the table, ranks eighth. Should 4 be placed into a group
of the first 8 varieties, it becomes evident that 4 is different from the highest variety.
If placed into a group of the six lower varieties, 4 differs from 12 up to 13 inclusive.
Therefore variety 4 has the values 2 up to and including 11.

CONCLUSION

The idea to abolish the use of the t-test in connection with an analysis of variance,
is no longer new. Some authors have never referred to the t-test in their publications
on analyses of variance, others have mentioned the t-test in recent publications with-
out accepting any responsibility as to the interpretation (SNEDECOR, 7, Cox and
COCHRAN, 1).

D. NEwWMAN (4) is the first to mention the range test in connection with the analysis
of variance in Biometrika 31, providing a table of ranges as well. NEWMAN tries to
group the objects. In 1943 PEARSON and HARTLEY (6) published an emended and
extended table of ranges. In Biometrics 1949 TUkey (8) provides some other criteria
which can be used following up the analysis of variance. 1)

At first I myself, not knowing this literature, made a range by converting the F-test
into a range test by means of table XX from Tables of FISHER and YATES:

Ro05: 0, 5 = v/ Fo0550,, 0, X Ra, o0

In a more mathematical way a fair approximation may be attained as investigated
bij PATNAIK (5) and FLORIN (2).

The problem forced itself on me after I had attended a lecture by Dr DRION for
the ,,Studiekring voor Proeftechniek” (minutes of the 22nd meeting on 13 October
1948) on the 5 9 and 1 9; point for the greatest value in a series of F-values in the
analysis of variance, a problem presenting itself in the 2-factor tests and bearing much
resemblance to this question. I mention from this lecture the article by K. R. NAIR (3).

Mathematical study about a good test remains to be done.

SUMMARY
A numerical example is given of the analysis of variance applied on yields per
cabbage.
After having concluded from a F-test, that the varieties show significant differences,
1) It may be remarked that the range test applied as indicated in our article gives more detailed

conclusions than drawn by NEWMAN in his two examples and the same results as attained by TUKEY
in the same two examples. Comparing our method with that of TUKEY the former is more plausible.
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a discussion is given of a new method to decide which varieties are different.

The t-test though in frequent use, gives wrong conclusions. The method indicated
in this article diverges from those discussed by NEwMAN and TUKEY and is I suppose
the more plausible.

SAMENVATTING

Het gebruik van de ,,studentized range” in verband met de variatieanalyse

Een rekenvoorbeeld wordt gegeven van de variatieanalyse toegepast op spitskool-
opbrengstcijfers.

Na op grond van een F-test te hebben geconcludeerd dat de rassen duidelijke ver-
schillen tonen, wordt een nieuwe methode besproken om uit te maken welke rassen
verschillen. Hoewel de t-test hiertoe geregeld gebruikt wordt geeft deze verkeerde
uitkomsten. De aangegeven methode wijkt af van die welke door NEwWMAN en TUKEY
worden besproken en lijkt mij de meest voor de hand liggende van de drie.
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