Criticality und Zusammenhang zu Hihger Critism

Patrick Wilhelm

January 31, 2011

Inhaltsverzeichnis

- Einführung
- Voraussetzungen und Modellannahmen
 - p-Werte
 - FDR und pFDR
 - Mixture-Model
- 3 BH95-Prozedur und Criticality
 - Benjamini-Hochberg-Prozedur
 - Criticality
 - Beispiele
- 4 Higher-Critism
 - Higher-Critism
 - Sparse-Mixture-Model
 - Beispiele

Enführung

Wenn man eine große Anzahl von Hypothesen testen will, dann ergeben sich drei zentrale Problemestellungen:

- **Detection Problem:** Existieren wahre Alternativen?
- **Estimation Problem:** Wieviele Hypothesen sind wahre Alternativen?

Enführung

Wenn man eine große Anzahl von Hypothesen testen will, dann ergeben sich drei zentrale Problemestellungen:

- **Detection Problem:** Existieren wahre Alternativen?
- Estimation Problem: Wieviele Hypothesen sind wahre Alternativen?
- **Selection Problem:** Welche Hypothesen sind wahre Alternativen?

Enführung

Wenn man eine große Anzahl von Hypothesen testen will, dann ergeben sich drei zentrale Problemestellungen:

- **Detection Problem:** Existieren wahre Alternativen?
- Estimation Problem: Wieviele Hypothesen sind wahre Alternativen?
- **Selection Problem:** Welche Hypothesen sind wahre Alternativen?

p-Werte

Proposition 1: Einseitiger p-Wert

Der einseitige p-Wert für eine Beobachtung $x \in \mathbb{R}$ ist $p(x) = 1 - F_0(x)$. Die zugehörige Verteilungsfunktion G_1 und die Dichte g_1 unter der Alternatve H_1 sind gegeben durch:

$$G_1(u) = 1 - F_1(F_0^{-1}(1-u))$$

$$g_1(u) = \frac{f_1}{f_0}(F_0^{-1}(1-u))$$

für alle $u \in [0,1]$

p-Werte

Proposition 2: zweiseitiger p-Wert

Sei o.B.d.A. F_0 symmetrisch, also $\forall x \in \mathbb{R} : F_0(x) + F_0(-x) = 1$ bzw. $\forall x \in \mathbb{R} : f_0(x) = f_0(-x)$, dann kann der zweiseitige p-Wert für ein $x \in \mathbb{R}$ geschrieben werden als $p(x) = 2(1 - F_0(|x|))$. Dann ist die zugehörige Verteilungsfunktion G_1 und deren Dichte g_1 unter der Alternative H_1 gegeben durch

$$G_1(u) = 1 - F_1(F_0^{-1}(1 - \frac{u}{2})) + F_1(F_0^{-1}(\frac{u}{2}))$$

$$g_1(u) = \frac{1}{2} \left(\frac{f_1}{f_0} (F_0^{-1} (1 - \frac{u}{2})) + \frac{f_1}{f_0} (F_0^{-1} (\frac{u}{2})) \right)$$

für alle $u \in [0,1]$

FDR und pFDR

Angenommen wir führen m simultane Hypothesentests durch. Dann ist die False Discovery Rate zum Schwellenwert t definiert durch:

$$FDR(t) = E[FDP(t)] := E[\frac{V(t)}{R(t) \vee 1}],$$

Die positive False Discovery Rate zum Schwellenwert t ist definiert durch:

$$pFDR(t) := E\left[\frac{V(t)}{R(t)}|R(t) > 0\right]$$

Die FDR ist eng verknüpft mit der pFDR durch

$$FDR(t) = pFDR(t)P(R(t) > 0).$$

FDR und pFDR

Als Funktion in Abhängikeit von einem Schwellenwert t ergibt sich die FDP im Zusammenhang mit p-Werten also durch:

$$FDP(t) = \frac{V(t)}{R(t) \vee 1} = \frac{\sum_{i=1}^{m} 1_{\{P_i \leq t\}} (1 - H_i)}{\sum_{i=1}^{m} 1_{\{P_i \leq t\}} + 1_{\{\text{alle } P_i > t\}}}$$

Mixture-Model

Setting:

m Tests, $H_1, ..., H_m$ Hyptothesen-Indikatorfunktionen für $i \in \{1, ..., m\}$, X_i sei die zugehörige Statistik.

$$\Rightarrow$$
 $(X_i, H_i)_{1 \le i \le m}$ iid, $H_i \sim \text{Bernoulli}(\pi)$, $(\pi = \text{Anteil } \mathbf{falscher}$ Nullhypothesen zu allen Hypothesen i.S.v. : $P(H_i = 1) = \pi)$.

Die bedingte Verteilung von $X_i|H_i=1$ sei F_1 und von $X_i|H_i=0$ sei F_0 .

 \Rightarrow Randverteilung der X_i :

$$F = (1 - \pi)F_0 + \pi F_1,$$

Mixture-Model

Da $P_i|H_1=0 \sim U(0,1)$, erhalten wir mit $P_i|H_i=1 \sim G_1$ insgesamt als Randverteilung der p-Werte:

$$G = (1 - \pi)U + \pi G_1$$

bzw.

$$G(u) = (1 - \pi)u + \pi G_1(u),$$

mit Dichte:

$$g(u) = 1 - \pi + \pi g_1(u)$$

wobei G_1 typischerweise in einer Klasse von (Verteilungs-) Funktionen ist derart, dass

$$\Gamma_C := \{G_1 : G_1 \text{ ist konkav, } G_1 \in C([0,1])\}$$

Wir wollen die FDR zum Level α steuern. Seien $P_{(1)} \leq ... \leq P_{(m)}$ geordnete P-Werte zu den m Tests und sei t_{BH} gemäß Benjamini-Hochberg-Prozedur definiert durch

$$t_{BH} = \max\{i : P_{(i)} \le \alpha \frac{i}{m}, 0 \le i \le m\}.$$

Verteilungsfunktion der p-Werte

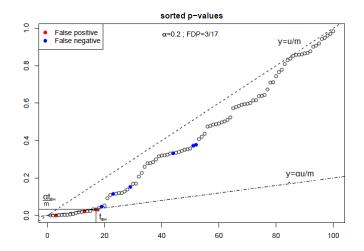


Figure: Benjamini-Hochberg Prozedur für geordnete p-Werte

Sei t fix, dann gilt:

$$FDR(t) = E\left[\frac{\sum_{i=1}^{m} 1_{\{P_i \le t\}} (1 - H_i)}{\sum_{i=1}^{m} 1_{\{P_i \le t\}} + 1_{\{\text{alle } P_i > t\}}}\right]$$

$$\approx \frac{E\left[\frac{1}{m} \sum_{i=1}^{m} 1_{\{P_i \le t\}} (1 - H_i)\right]}{E\left[\frac{1}{m} \sum_{i=1}^{m} 1_{\{P_i \le t\}} + \frac{1}{m} P\{\text{alle } P_i > t\}\right]}$$

$$= \frac{(1 - \pi)t}{G(t) + \frac{1}{m} (1 - G(t))^m} \approx \frac{(1 - \pi)t}{G(t)}$$

Sei nun $G_m(t) = \frac{1}{m} \sum_{i=1}^m \mathbb{1}_{\{P_i \leq t\}}$ die empirische Verteilungsfunktion der p-Werte. Dann gilt im stetigen Fall mit $G_m(P_i) \approx \frac{i}{m}$:

$$t_{BH}(P^m) = \sup\{t : t \le \alpha G_m(t)\}$$

= $\sup\{t : G_m(t) \le \frac{t}{\alpha}\}$
= $\sup\{t : \frac{t}{G_m(t)} \le \alpha\}$

Zwei Interpretationen:

Schätzer der FDR

$$FD\hat{R}(t) = \frac{t}{G_m(t)}$$

t_{BH} als Plug-In-Schätzer

$$u_*(\pi,G)=\max\{t:G(t)\leq rac{t}{lpha}\}\leq \max\{t:rac{t}{G(t)}\leq lpha\},$$
 denn $\lim_{m o\infty}G_m(t)=G(t)$

Daraus folgt
$$E[FDP(t_{BH})] = FDR(t_{BH}) \le (1 - \pi)\alpha$$
 und $pFDR = \frac{(1 - \pi)t}{G(t)}$

Criticality

Verschiedene Situationen für die BH95-Prozedur:

$$\alpha < \alpha_*$$
, $\alpha > \alpha_*$ und $\alpha = \alpha_*$

Insbsondere ensteht so eine Situation für $\alpha < \alpha_*$ in der FDR und pFDR asymptotisch nicht mehr äquivalent sind.

Criticality

Kritische Werte für die BH95-Prozedur

$$\alpha_* := \inf_{u>0} \frac{u}{G(u)} \le 1, \ \beta_* = (1-\pi)\alpha_*$$

Da $G \in \Gamma_C$ ist G konkav, G(0) = 0 ist $u \mapsto \frac{u}{G(u)}$ ist nicht wachsend auf [0,1].

$$\implies \alpha_* := \inf_{u>0} \frac{u}{G(u)} = \lim_{u\to 0} \frac{u}{G(u)} = \lim_{u\to 0} \frac{1}{g(u)},$$

sowie

$$\beta_* = \frac{1-\pi}{g(u)} \Longrightarrow \alpha_* = \frac{\beta_*}{1-\pi} \Longrightarrow \alpha_* = 0 \Longleftrightarrow \beta_* = 0$$

Bemerkung: Man kann also die Betrachungen auf den Fall $\alpha_* = 0$ oder nicht reduzieren.

Criticality

Für die BH95-Prozedur hatten wir im asymptotischen Fall:

$$u_*(\pi, G) = \max\{t : \frac{u}{\alpha} \leq G(u)\}$$

als Grenzwert des größten abgelehnten p-Wert und somit

$$p_* = G(u_*) = \frac{u_*}{\alpha}$$

als Grenzwert des Anteils der p-Werte

Verteilungsfunktion der p-Werte

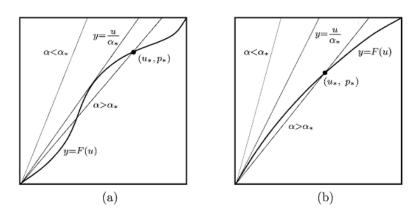


Figure: links: kritischer Wert α_* für allgemeines G, rechts: kritischer Wert α_* für konkaves G

Satz 1: $\alpha < \alpha_*$

Sei $\alpha < \alpha_*$. Wenn die Menge m der Hypothesen gegen unendlich strebt dann ist Anzahl der abgelehnten Alternativen t_{BH} beschränkt im Sinne von:

$$t_{BH} \stackrel{d}{\rightarrow} \tau$$

Mit anderen Worten: bezeichne $p_*(\alpha) = \frac{t_{BH}}{m}$ der Anteil der Ablehnungen durch die Benajmini-Hochberg-Prozedur, dann konvergiert $p_*(\alpha)$ gegen 0 für $m \to +\infty$. Es gilt außerdem:

$$\mathsf{pFDR} \to (1-\pi)\alpha_*$$

Interpretation von Satz 1

Es kann also keine Prozedur ein pFDR kleiner als $\beta_* = \inf_{t>0} pFDR(t) = \inf_{t>0} \frac{(1-\pi)t}{G(t)}$ erreichen.

Criticality:

FDR und pFDR asymptotisch nicht mehr äquivalent, denn es folgt für ein multiples Testproblem mit $\beta_* > 0$, dass jede Prozedur zum Level $\alpha < \beta_*$:

$$P(R(t) = 0) = 1 - \frac{FDR(t)}{pFDR(t)} \ge 1 - \frac{\alpha}{\beta_*} > 0$$

Bemerkung: Dieser Wert hängt jeweils von der betrachteten Prozedur ab

Satz 2: $\alpha > \alpha_*$

Sei $\alpha > \alpha_*$ und $\delta := 1 - \alpha g(u*) > 0$ und sei $q_* = 1 - p_*$. Dann gilt:

$$limsup_m + -\frac{t_{BH} - mp_*}{\sqrt{mlog(log(m))}} = \frac{\sqrt{2p_*q_*}}{\delta} := p_{\infty}$$
, f.s.

und $p_*(\alpha)$ ist asymptotisch proportional zur Macht:

$$M_m = rac{t_{BH}}{m}(rac{1-lpha}{\pi}+lpha)+o_p(1)
ightarrow G_1(u_*)$$

Mit anderen Worten heißt das, dass ind diesem Fall $p_*(\alpha)$ konvergiert gegen einen positiven Wert p_{∞} für $m \to \infty$.

Lemma 1: Criticality und Likelihoddquotienten

Sei G_1 konkav und die Verteilungsfunktion der Teststatistik symmetrisch. Dann gilt:

• Wenn $\frac{h}{f_0}(t)$ beschränkt ist für $t \to \infty$, dann hat die Dichte g_1 der p-Werte unter der Alternative eine endlichen Grenzwert bei 0 (Notation: $g_1(0)$). In diesem Fall entsteht *Criticality*. Der kritische Wert is gegeben durch:

$$\alpha_* = \frac{1}{1 + \pi + \pi g_1(0)}.$$

② Wenn $\frac{f_1}{f_0}(t) = +\infty$ für $t \to \infty$, dann gilt $\lim_{u \to 0} \frac{G(u)}{u} = +\infty$ und $\alpha_* = 0$. Dann entsteht keine Criticality und alle gewünschten FDR-Level sind erreichbar.

(Dieses Lemma gilt sowohl für einseiteige, als auch zweiseitige p-Werte)

Gauss-Test

Seien m Statistiken gemäß N(0,1) verteilt unter der Nullhypothese und gemäß $N(\theta,1)$ mit $\theta \neq 0$ unter der Alternative. Dann ist der Likelihooquotient gegeben durch:

$$\frac{f_1}{f_0} = \exp(-\frac{1}{2}(t-\theta)^2 + \frac{1}{2}t^2) = \exp(-\frac{\theta^2}{2} + \theta t)$$

Da der Likelihood-Quotient nicht beschränkt ist für $t \to \infty$, folgt aus dem Lemma, dass keine *Criticality* ensteht, also $\alpha_* = 0$.

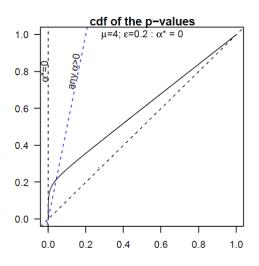


Figure: Gauss-Tes

Laplace-Test

Sei die Dichte der Teststatistik gegeben durch $f_0: t \to \frac{1}{2}e^{-|t|}$ unter der Nullhypothese und $f_1: t \to \frac{1}{2}e^{-|t-\theta|}$ unter der Alternative mit $\theta > 0$. Dann ist der Likelihood-Quotient gegeben durch

$$\frac{f_1}{f_0} = e^{2t-\theta}$$
, falls $t \le \theta$

$$\frac{f_1}{f_0} = e^{\theta}$$
, falls $t > \theta$

Criticality

$$\alpha_* = \frac{1}{\pi e^{\theta} + (1 - \theta)}$$

BH95 hat asymoptotisch Macht Null für $\alpha < \alpha_*$

Laplace-Test

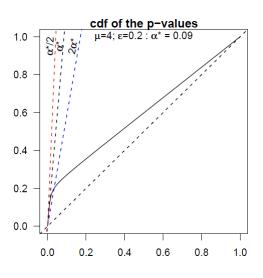


Figure: Laplace-Test

Higher-Critism

Im Rahmen des Detection Problems, also der Möglichkeit zu entscheiden ob, ein Signal *Sparse-Data* (seltene Signale) enthält oder nicht untersuchen wir die:

Detection Boundary

Asymptotische Grenze über der wir Signale entdecken und unter der es unmöglich ist Signale auszumachen

Beispiel - Verstecktes Kommunikationssignal

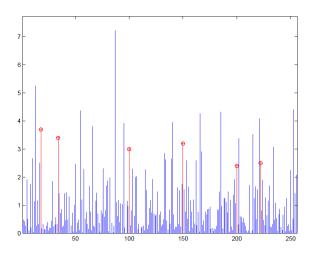


Figure: Versteckte Kommunikationssignale

Sparse-Mixture-Model

Wir betrachten das Gauss-Modell. Seien m unabhängige Beobachtungen $X_i \sim N(\mu_i, 1)$ gegeben und nur ein kleiner Anteil der μ 's ist merklich von Null verschieden.

Nach Definition ist ist der Vektor $\mu = \{\mu_1, ..., \mu_m\}$ sparse.

Sparsity

$$\frac{\#\{i:\mu_i\neq 0\}}{m}\leq \pi\approx 0$$

Sparse-Mixture-Model

Betrachtet man in diesem Zusammenhang die Ip-Norm mit

$$\frac{1}{m} \sum_{i=1}^{m} |\mu_i|^p \le \nu^p$$
, ν klein, 0

folgt für $p \rightarrow 0$

Sparsity

$$\sum_{i=1}^{m} |\mu_i|^p \stackrel{p \to 0}{\to} \#\{i : \mu_i \neq 0\}$$

Sparse-Mixture-Model

Im Gegensatz zum Mixture-Model von oben und der Frage: welche X_i kommen von F_1

Simultanes Testen von m Hypothesen

$$X_i|H_i=0\sim F_0$$

$$X_i|H_i=1\sim F_1$$

untersuchen wir hier die Frage ob π gleich Null ist?

Binäres-Test-Problem

$$X_i|H=0\sim F_0$$
 , $1\leq i\leq m$

$$X_i|H^n=1\sim (1-\pi)F_0+\pi F_1$$
 , $1\leq i\leq m$

Detection-Boundary

Man setzt

$$\pi = \pi_m = m^{-\beta}$$
, $\mu = \mu_m = \sqrt{2rlog(m)}$, $\frac{1}{2} < \beta < 1$, $0 < r < 1$

und definiert dann die

Detection-Boundary

$$\rho_*(\beta) = \beta - \frac{1}{2}, \text{ für } \frac{1}{2} < \beta \le \frac{3}{4}$$

$$ho_*(eta) = (1-\sqrt{1-eta})^2$$
, für $rac{3}{4} < eta < 1$

Satz 3: Detection Boundary

• Sei $r > \rho_*(\beta)$ und sei

$$LR_m = \sum_{i=1}^m log(1 - \pi + \pi e^{\mu_m x_i - \mu_m^2/2}) > 0$$

der Likelihood-Quotiententest, der H_0 ablehnt, dann:

$$P_{H_0}(\{\text{lehne }H_0\text{ ab}\}) + P_{H_1^m}(\{\text{akzeptiere }H_0\}) \overset{m \to \infty}{\to} 0$$

② Sei $r < \rho_*(\beta)$, dann:

$$P_{H_0}(\{\text{lehne }H_0\text{ ab}\}) + P_{H_1^m}(\{\text{akzeptiere }H_0\}) \overset{m \to \infty}{\to} 1$$

Detection Boundary

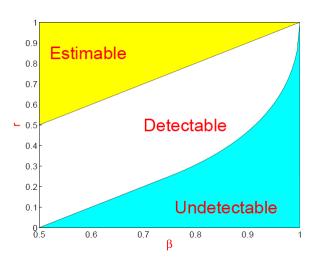


Figure: Detection Boundary spaltet die *entdeckbare Region* von der *unentdeckbaren* Region

Gauss-Test

Gaussian-Mixtures

•

$$X_i|H=0 \sim N(0,1)$$
 iid

$$X_i|H^n = 1 \sim (1-\pi)N(0,1) + \pi N(\mu_m), 1)$$
 iid

Sparsity

$$\pi = \pi_m = m^{-\beta}$$
, $\mu = \mu_m = \sqrt{2rlog(m)}$, $\frac{1}{2} < \beta < 1$, $0 < r < 1$

Gauss-Test

Gaussian Detection Boundaries

Optimale Boundary

$$\rho_*(\beta) = \beta - \frac{1}{2}, \text{ für } \frac{1}{2} < \beta \le \frac{3}{4}$$

$$\rho_*(\beta) = (1 - \sqrt{1 - \beta})^2, \text{ für } \frac{3}{4} < \beta < 1$$

Benjamini-Hochberg Boundary

$$\rho_{BH}(\beta) = (1 - \sqrt{1 - \beta})^2, \text{ für } \frac{1}{2} < \beta < 1$$

Gauss-Test: Detection Boundary

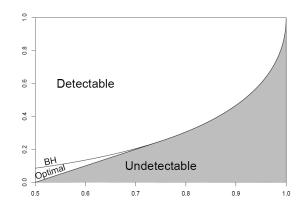


Figure: Detection Boundary - Gauss-Test

Laplace-Test: Detection Boundary

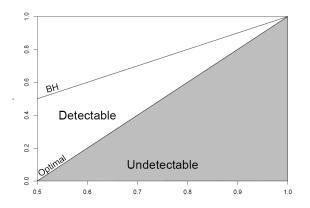


Figure: Detection Boundary - Laplace-Test

Danke

Vielen Dank für Ihre Aufmerksamkeit