Einführung Step-Down minP Bemerkungen

Step-Down Prozeduren zur Kontrolle der Family-Wise Error Rate ws 2010/2011

Jakob Gierl

HU Berlin

07.02.2011

Modell

mathematische Stichprobe X_1,\ldots,X_n iid im \mathbb{R}^J $X_i=(X_i(1),\ldots,X_i(J))\sim P\in\mathcal{M}$ M Nullhypothesen: $H_0(1),\ldots,H_0(M)$ $H_0(m):=\mathbb{1}_{(P\in\mathcal{M}(m))}$ mit $\mathcal{M}(m)\subseteq\mathcal{M}$ M Alternativen: $H_1(1),\ldots,H_1(M)$ $H_1(m):=\mathbb{1}_{(P\notin\mathcal{M}(m))}$ $\mathcal{H}_0:=\{m\mid H_0(m)=1\}$ Menge der wahren Nullhypothesen $\mathcal{H}_1:=\{m\mid H_1(m)=1\}$ Menge der falschen Nullhypothesen

Modell

$$T_n(1),\ldots,T_n(M)$$
 Teststatistiken $(T_n(1),\ldots,T_n(M))\sim Q_n(P)$ (unbekannte Verteilung im \mathbb{R}^M) Nullverteilung Q_0 schätzt $Q_n(P)$ $V:=V(n,M):=$ Anzahl der Fehler 1. Art (wahre Nullhypothese verworfen) $FWER:=\mathbb{P}(V\geq 1)$ Ziel: \mathcal{H}_0 schätzen und dabei asymptotische FWER-Kontrolle gewährleisten, also $\limsup_{n\to\infty}\mathbb{P}(V_n\geq 1)\leq \alpha$

Ein-Schritt und Schrittweise Verfahren

üblich:
$$T_m(X_1,\ldots,X_n)>c(m)$$
 \Rightarrow $H_0(m)$ wird abgelehnt

Einschrittverfahren:

```
kritische Werte c(m) = c(Q_0, \alpha)(m) sind unabhängig von den anderen Tests (siehe Vortrag von Mathias Trabs)
```

Schrittweise Verfahren:

```
kritische Werte c(m) = c(T_n, Q_0, \alpha)(m) dürfen von Statistiken (Daten) abhängen (z.B. die im Folgenden behandelten Step-Down Verfahren)
```

Step-Down Verfahren

Hypothesen zu den *signifikantesten* Teststatistiken werden sukzessive geprüft. Sobald eine Nullhypothese akzeptiert wird, werden alle weiteren Hypothesen ungeprüft ebenfalls akzeptiert.

Signifikanz z.B.:

- größte absoulute Teststatistik (→ maxT-Verfahren)
- kleinste unbereinigte p-Werte (→ minP-Verfahren)

Step-Down Verfahren: Visualisierung

$H_0(1)$	$H_0(4)$? ×
$H_0(2)$	$H_0(1)$? X
$H_0(3)$	$H_0(2)$? 🗸
$H_0(4)$	$H_0(5)$	
$H_0(5)$	$H_0(3)$	

Agenda

- Darstellung des Step-Down minP Verfahrens
- Theorem: asymptotische Kontrolle der FWER
- Theorem: exakte asymptotische Kontrolle der FWER
- Bemerkungen: Step-Down maxT, Schätzung der Nullverteilung

$$(Q_{0,1},\ldots,Q_{0,M})$$
: stetige Randverteilungen der Nullverteilung Q_0

unadjustierte *p*-Werte:

$$P_{0n}(m) := 1 - Q_{0m}(T_n(m))$$
 $P_0(m) := 1 - Q_{0m}(Z(m))$ mit $Z = (Z(1), \dots, Z(M)) \sim Q_0$ $(P_{0n}(m) \in [0, 1])$

o.B.d.A.:
$$P_{0n}(1) \leq ... \leq P_{0n}(M)$$

Für $\mathcal{A}\subseteq\{1,\ldots,M\}$ und ein multiples Niveau α definieren wir α -Quantile

$$c(\mathcal{A}) := c(\mathcal{A}, Q_0, \alpha)$$

$$:= F_{\mathcal{A}, Q_0}^{-1}(\alpha)$$

$$:= \inf \{ z \mid F_{\mathcal{A}, Q_0}(z) \ge \alpha \}$$

$$\min F_{\mathcal{A}, Q_0}(z) := \mathbb{P}_{Q_0} \left(\min_{m \in \mathcal{A}} P_0(m) \le z \right)$$

(mit wachsendem A ist c(A) monoton fallend)

Für Teilmengen $\mathcal{A}_m := \{m, \ldots, M\}$ definieren wir

$$C_n(m) := c(\mathcal{A}_m, Q_0, \alpha)$$

 $:= F_{\mathcal{A}_m, Q_0}^{-1}(\alpha)$

Kritische Werte:

$$egin{array}{lll} c_1 &:=& C_n(1) \ c_m &:=& \left\{egin{array}{lll} C_n(m) & ext{, falls } P_{0n}(m-1) < c_{m-1} \ 0 & ext{, sonst} \end{array}
ight. \end{array}$$

Entscheidungsregel

Lehne die Nullhypothese $H_0(m)$ zum m-ten signifikantesten (d.h. kleinsten) unadjustierten p-Wert ab, falls $P_{0n}(m) < c_m$.

Kurz:
$$\mathcal{R}(T_n, Q_0, \alpha) = \{m \mid P_{0n}(m) < c_m\}$$

$$P_{0n}(1)$$
 $< C_n(1)$ ablehnen
 \vdots
 $P_{0n}(m-1)$ $< C_n(m-1)$ ablehnen
 $P_{0n}(m)$ $\not< C_n(m)$ akzeptieren
 $P_{0n}(m+1)$ $\not< 0$ akzeptieren
 \vdots
 $P_{0n}(M)$ $\not< 0$ akzeptieren

Annahme und Theorem 1

Annahme AP1 - asymptotische Null-Dominanz

 \exists Nullverteilung Q_0 :

$$\limsup_{n \to \infty} \mathbb{P}_{Q_n} \left(\min_{m \in \mathcal{H}_0} P_{0n}(m) < x \right)$$

$$\leq \mathbb{P}_{Q_0} \left(\min_{m \in \mathcal{H}_0} P_0(m) < x \right) \quad \forall x \in \mathbb{R}$$

Theorem 1 - asymptotische Kontrolle der FWER

Es sei Annahme AP1 erfüllt. Dann gilt für das Step-Down min P Verfahren: $\limsup_{n \to \infty} \mathbb{P}\left(V_n \ge 1\right) \le \alpha$

Beweis: (🔊)

Annahme und Theorem 2

Annahme AP2 - asymptotische Trennbarkeit von wahren und falschen Nullhypothesen

•
$$\forall \epsilon > 0$$
: $\lim_{n \to \infty} \mathbb{P}_{Q_n} \left(\max_{m \in \mathcal{H}_1} P_{0n}(m) \le \epsilon \right) = 1$

$$\bullet \lim_{\epsilon \downarrow 0} \lim_{n \to \infty} \mathbb{P}_{Q_n} \left(\min_{m \in \mathcal{H}_0} P_{0n}(m) \le \epsilon \right) = 0$$

•
$$\forall \alpha \in (0,1)$$
: $\min_{\mathcal{A} \subseteq \{1,\dots,M\}} c(\mathcal{A}, Q_0, \alpha) > 0$

Annahme und Theorem 2

Wenn die Annahmen AP1 und AP2 erfüllt sind, gilt nach dem ersten Theorem erst recht: $\limsup_{n\to\infty} \mathbb{P}\left(V_n \geq 1\right) \leq \alpha$

Verfeinerung:

Theorem 2 - exakte asymptotische Kontrolle der FWER

Es seien Annahmen AP1 und AP2 erfüllt. Falls außerdem Annahme AP1 strikt gilt ("=" statt " \leq ") und Q_0 stetig ist, gilt:

$$\limsup_{n\to\infty} \mathbb{P}\left(V_n \geq 1\right) = \alpha$$

Beweis: (🔊)

äquivalente Umformulierung des Verfahrens

Bemerkung: äquivalente Formulierung

$$\begin{array}{lll} P_{0\,n}^*(1) & := & P_{0\,n}(1) \\ P_{0\,n}^*(m) & := & \left\{ \begin{array}{ll} P_{0\,n}(m) & \text{, falls } P_{0\,n}^*(m-1) < C_n(m-1) \\ 1 & \text{, sonst} \end{array} \right. \end{array}$$

Entscheidungsregel: Wir lehnen $H_0(m)$ ab, falls $P_{0n}^*(m) < C_n(m)$.

äquivalente Umformulierung des Verfahrens

origi n al		äquivalent			
	$P_{0n}(1)$	$< C_n(1)$	$P_{0n}^{*}(1)$	$< C_n(1)$	ablehnen
	$P_{0n}(m-1) \\ P_{0n}(m) \\ P_{0n}(m+1)$		$P_{0n}^*(m-1) \\ P_{0n}^*(m) \\ 1$	$< C_n(m-1)$ $< C_n(m)$ $< C_n(m+1)$	ablehnen akzeptieren akzeptieren
	$P_{0n}(M)$	≠ 0	1	$\not< C_n(M)$	akzeptieren

Step-Down maxT

Ein ganz ähnliches Verfahren ist das Step-Down maxT Verfahren. Hier werden anstatt der unadjustierten p-Werte Maxima der Teststatistiken betrachtet. Theorem 1 und 2 gelten hier analog. Wenn die Teststatistiken identisch verteilt sind, sind beide Verfahren äquivalent. Allgemein ist minP besser ausbalanciert (bewegt sich auf dem Einheitsintervall).

Schätzung der Nullverteilung

- Es lassen sich Nullverteilungen konstruieren, die unsere Annahme AP1 erfüllen (siehe Vortrag von Mathias Trabs).
- In der Praxis ist die Verteilung P der Daten unbekannt, also auch die Nullverteilung $Q_0(P)$. Ein konsistenter Schätzer für Q_0 lässt sich mittels Bootstrap-Verfahren konstruieren (siehe Mathias Trabs). Die Step-Down Verfahren funktionieren für diesen analog.

(Details siehe van der Laan et al., 2004)

Einführung Step-Down minP Bemerkungen

Vielen Dank für eure Aufmerksamkeit!