### **Compatible Confidence Regions**

### Calvin Seward

Institüt für Mathematik Humboldt Universität zu Berlin

January 17, 2011

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □





### 2 Examples

3 Confidence regions for stepwise tests

### Review

In classic test theory, we have:

- A model  $(\mathscr{X}, \mathscr{F}, (\mathbb{P}_{\vartheta})_{\vartheta \in \Theta})$
- A confidence level  $\alpha \in (0, 1)$

### Review

In classic test theory, we have:

- A model  $(\mathscr{X}, \mathscr{F}, (\mathbb{P}_{\vartheta})_{\vartheta \in \Theta})$
- A confidence level  $\alpha \in (0, 1)$

Then a confidence region is a set  $\mathscr{C} = (C(x) : x \in \mathscr{X})$  with

• 
$$C(x) \subseteq \Theta$$

• 
$$\{x: C(x) \ni \vartheta\}$$
 measurable for all  $\vartheta \in \Theta$ 

$$\blacksquare \mathbb{P}_{\vartheta}(\{x: C(x) \ni \vartheta\}) \geq 1 - \alpha$$

## Review

In classic test theory, we have:

- A model  $(\mathscr{X}, \mathscr{F}, (\mathbb{P}_{\vartheta})_{\vartheta \in \Theta})$
- A confidence level  $\alpha \in (0, 1)$

Then a confidence region is a set  $\mathscr{C} = (C(x) : x \in \mathscr{X})$  with

• 
$$C(x) \subseteq \Theta$$

• 
$$\{x: C(x) \ni \vartheta\}$$
 measurable for all  $\vartheta \in \Theta$ 

$$\blacksquare \mathbb{P}_{\vartheta}(\{x: C(x) \ni \vartheta\}) \geq 1 - \alpha$$

How can one translate this idea to a multiple testing framework in a way that makes sense?

Say that  $\varphi \in \Phi_{\alpha}(\mathscr{H})$  and  $C \in \mathscr{C}_{1-\alpha}$ , then we per definition have

$$\forall \vartheta \in \Theta : \mathbb{P}_{\vartheta} \big( \bigcup_{i \in I_0(\vartheta)} \{ \varphi_i(x) = 1 \} \big) \leq \alpha$$

and

$$\forall \vartheta \in \Theta \quad \mathbb{P}_{\vartheta}(\{x: C(x) \ni \vartheta\}) \geq 1 - \alpha.$$

Say that  $\varphi \in \Phi_{\alpha}(\mathscr{H})$  and  $C \in \mathscr{C}_{1-\alpha}$ , then we per definition have

$$\forall \vartheta \in \Theta : \mathbb{P}_{\vartheta} \big( \bigcup_{i \in I_0(\vartheta)} \{ \varphi_i(x) = 1 \} \big) \leq \alpha$$

and

$$\forall \vartheta \in \Theta \quad \mathbb{P}_{\vartheta}(\{x : C(x) \ni \vartheta\}) \geq 1 - \alpha.$$

Then a natural requirement on a confidence region C(x) is that

$$\forall \vartheta \in \Theta : \mathbb{P}_{\vartheta} \big( \bigcup_{i \in I_0(\vartheta)} \{ \varphi_i(x) = 1 \} \cup \{ x : C(x) \not\ni \vartheta \} \big) \leq \alpha$$

Say that  $\varphi \in \Phi_{\alpha}(\mathscr{H})$  and  $C \in \mathscr{C}_{1-\alpha}$ , then we per definition have

$$\forall \vartheta \in \Theta : \mathbb{P}_{\vartheta} \big( \bigcup_{i \in I_0(\vartheta)} \{ \varphi_i(x) = 1 \} \big) \leq \alpha$$

and

$$\forall \vartheta \in \Theta \quad \mathbb{P}_{\vartheta}(\{x: C(x) \ni \vartheta\}) \geq 1 - \alpha.$$

Then a natural requirement on a confidence region C(x) is that

$$\forall \vartheta \in \Theta : \mathbb{P}_{\vartheta} \big( \bigcup_{i \in I_0(\vartheta)} \{ \varphi_i(x) = 1 \} \cup \{ x : C(x) \not\ni \vartheta \} \big) \leq \alpha$$

Intuition:  $\bigcup_{i \in I_0(\vartheta)} \{x : \varphi_i(x) = 1\}$  and  $\{x : C(x) \not\ni \vartheta\}$  should more or less overlap

# Compatible

Thus we get the following definition

#### Definition

A confidence region  $C \in \mathscr{C}_{1-\alpha}$  and a multiple test  $\varphi \in \Phi_{\alpha}(\mathscr{H})$ are said to be **compatable** if  $C \subseteq C(\varphi)$ , i.e.  $C(x) \subseteq \bigcap_{i:\varphi(x)=1} K_i$ for all  $x \in \mathscr{X}$ .

Notice that compatiblity implies

$$\forall \vartheta \in \Theta : \mathbb{P}_{\vartheta} \big( \bigcup_{i \in I_0(\vartheta)} \{ x : \varphi_i(x) = 1 \} \cup \{ x : C(x) \not\ni \vartheta \} \big) \leq \alpha,$$

the conditon from the motivational slide.

### Example

Example for a non-compatable set

# Extended Correspondence Theorem

With this theorem we can easily construct confidence regions for single step procedures:

#### Theorem

Let 
$$\mathscr{H} = \{H_i : i \in I\}$$
 be a family of hypothesis. If  
 $\varphi \in \Phi_{\alpha}(\mathscr{H})$   
 $C(x) = \bigcap_{i:\varphi_i(x)=1} K_i \quad \forall x \in \mathscr{X} \text{ where the convention}$   
 $\bigcap_{i \in \emptyset} K_i = \Theta \text{ is used}$ 

then

$$C = (C(x) : x \in \mathscr{X}) \in \mathscr{C}_{1-\alpha}.$$

and with this, C and  $\varphi$  are compatable.

### Model for Tukey Test

Let  $X_{i1}, \ldots, X_{in} \sim N(\mu_i, \sigma^2)$  be iid observations,  $\mu = (\mu_1, \ldots, \mu_k) \in \mathbb{R}^k$  unknown. We want find confidence regions for  $\vartheta_{ij} := \mu_i - \mu_j$ ,  $1 \le i < j \le k$ . Let  $\bar{Y}_i := \bar{X}_{i.} - \mu_i$ ,  $1 \le i \le k$ , then it is clear that

$$ar{X}_{i\cdot} - ar{X}_{j\cdot} - artheta_{ij} = ar{Y}_i - ar{Y}_j \qquad orall 1 \leq i \leq k$$

and that for the statistic

$$\tilde{T}_{ij}(x) = \sqrt{n} \frac{|\bar{Y}_i - \bar{Y}_j|}{S(x)}$$
 with  $S(x) = \frac{1}{k(n-1)} \sum_{i=1}^k \sum_{l=1}^n (x_{il} - \bar{x}_{i.})^2$ 

 $\max_{1 \le i < j \le k} \tilde{T}_{ij}(x)$  is  $q_{k,k(n-1)}$  distributed.

Now we can test a candidate  $\mu'$  to level  $\alpha$  using the Tukey principle, because  $\mu$  will be rejected if and only if

$$\sqrt{n}\frac{|\bar{y}_i'-\bar{y}_j'|}{S(x)} > q_{k,k(n-1);\alpha}$$

where  $\bar{y}'_i = \bar{x}_{i.} - \mu'_i$  If we rewrite this, we see that  $\mu'$  will be accepted if and only if for all  $1 \le i < j \le k$ :

$$egin{aligned} &|(ar{x}_{i\cdot}-ar{x}_{j\cdot})-artheta_{ij}'| \leq rac{S(x)}{\sqrt{n}}q_{k,k(n-1);lpha}\ \Leftrightarrow artheta_{ij}' \in \left[(ar{x}_{i\cdot}-ar{x}_{j\cdot})-rac{S(x)}{\sqrt{n}}q_{k,k(n-1);lpha},(ar{x}_{i\cdot}-ar{x}_{j\cdot})+rac{S(x)}{\sqrt{n}}q_{k,k(n-1);lpha}
ight] \end{aligned}$$

Because of the extended correspondence theorem we get a compatable confidence region for our  $\vartheta'_{ii}$ .

## Scheffé test

In the ANOVA model, let  $q \le k$ ,  $a_1, \ldots, a_q \in \mathbb{R}^k$  be linear independent and define  $\mathscr{L} = \text{span}(a_1, \ldots, a_q)$ . In the lecture on Multiple Tests we learned that  $\forall \mu \in \mathbb{R}^k, \sigma^2 > 0$  we have:

$$\mathbb{P}\left(oldsymbol{c}^{ op}oldsymbol{\mu}\in\left[oldsymbol{c}^{ op}oldsymbol{\hat{\mu}}-oldsymbol{K},oldsymbol{c}^{ op}oldsymbol{\hat{\mu}}+oldsymbol{K}
ight] \quad oralloldsymbol{c}\in\mathscr{L}
ight)=1-lpha$$

where  $\hat{\mu} := (ar{X}_{1\cdot}, \dots, ar{X}_{k\cdot})^{ op}$ , and

$$\mathcal{K} := \sqrt{q \cdot s^2 \sum_{i=1}^k \frac{c_i^2}{n} F_{q,k(n-1);\alpha}}$$

・ロッ ・回 ・ ・ ヨッ ・ ヨッ

10/21

# Why Bother??

- Stepwise procedures are typically more powerful
- But in the past single step procedures were used when confidence regions were required (medical experiments...)
- So if one wants the best of both worlds, a better theory needs to be developed

# **General Stratigy**

We can construct (in theory) a confidence region  $C \in \mathscr{C}_{1-\alpha}$  which is compatible with  $\psi \in \Phi_{\alpha}(\mathscr{H})$  using the following two steps:

1 Determine  $\varphi \in \Phi_{\alpha}(\Theta)$  induced by  $\psi$ . Then calculate  $\mathbb{P}_{\vartheta}(\varphi_{\vartheta} = 1)$  for all  $\vartheta \in \Theta$ . If  $\mathbb{P}_{\vartheta}(\varphi_{\vartheta} = 1) < \alpha$  try to find a  $\tilde{\varphi}_{\vartheta} \ge \varphi_{\vartheta}$  where

$$\alpha \geq \mathbb{P}_{\vartheta}(\tilde{\varphi}_{\vartheta} = 1) > \mathbb{P}_{\vartheta}(\varphi_{\vartheta} = 1)$$

ideally we want 
$$\mathbb{P}_{\vartheta}( ilde{\varphi}_{\vartheta} = 1) = \alpha$$

2 Then construct  $\tilde{C} := C(\tilde{\phi})$ 

$$\forall x \in \mathscr{X} : \ \tilde{C}(x) \subseteq C(x) \text{ where } C = C(\varphi).$$

• C and  $\psi$  are compatable.

## Problems with stepwise procedures

There are two main problems with the practical implementation of this strategy:

- **1** Finding a good  $\tilde{\varphi}_{\vartheta}$  for all  $\vartheta \in \Theta$ .
- **2** Inverting the set of  $\tilde{\varphi}_{\vartheta}$  into a multiple confidence region  $\tilde{C}$ .

### Example

■  $Z_i$ ,  $i \in I = \{1, ..., k\}$  permutation-symmetric random variables, with Lebesgue density  $f(x) > 0 \forall x \in \mathbb{R}$ 

• 
$$X_i := Z_i + \vartheta_i, \ \vartheta_i \in \mathbb{R}$$

We want to find lower confidence bounds for  $\underline{\vartheta_i}$  which are compatible with step-up and step-down procedures. Thus set:

• 
$$c_1 \leq \cdots \leq c_k$$
 defined by  $\mathbb{P}(\max_{1 \leq i \leq j} Z_i \leq c_j) = 1 - \alpha, j \in I$ 

### Example (cont.)

We define a step-down test with the rule:

$$\psi_i(x) = 1 \Leftrightarrow \exists r \in I : x_i \ge c_r \text{ and} \ orall j \in \{r, \dots, k\} : x_{(j)} \ge c_r$$

Now we must choose a test  $\varphi = (\varphi_{\vartheta} : \vartheta \in \Theta)$  with  $C(\varphi) \subset C(\psi)$ . To do this, define:

$$\kappa(\vartheta) := \{i \in I : \vartheta_i \leq 0\}, \ \vartheta \in \mathbb{R}$$

and consider the following two cases:

Case 1: 
$$\kappa(\vartheta) \neq \emptyset$$

### Example (cont.)

In this case, define a level- $\alpha$  test by:

$$arphi_artheta(x) = \mathsf{1} \Leftrightarrow \max_{i \in \kappa(artheta)} (x_i - artheta_i) \geq c_{|\kappa(artheta)|}.$$

This is indeed a level- $\alpha$  test because:

$$\mathbb{P}_{artheta}ig(arphi_{artheta}(X)=1ig) = \mathbb{P}_{artheta}ig(\max_{i\in\kappa(artheta)}Z_i\geq c_{|\kappa(artheta)|}ig) \ = \mathbb{P}_{artheta}ig(\max_{1\leq i\leq |\kappa(artheta)|}Z_i\geq c_{|\kappa(artheta)|}ig)\leqlpha$$

Case 2: 
$$\kappa(\vartheta) = \emptyset$$

### Example (cont.)

Here we define a level- $\alpha$  test by:

$$\varphi_{artheta}(x) = 1 \Leftrightarrow \max_{i \in I} (x_i - artheta_i) \geq c_k.$$

Again we see that

$$\mathbb{P}_\vartheta(\varphi_\vartheta(X)=1)=\mathbb{P}_\vartheta(\max_{i\in I}Z_i\geq c_k)=\mathbb{P}_\vartheta(\max_{1\leq i\leq k}Z_i\geq c_k)\leq \alpha$$

#### Theorem

For the Bonferroni-Holm test we have the following lower bounds:

$$\underline{\vartheta_i}(x) = \begin{cases} 0 & \psi_i(x) = 1, \ m(x) < k \\ L_i(x) & \psi_i(x) = 0 \\ K_i(x) & m(x) = k \end{cases}$$

where  $m(x) := |\{i \in I : \psi_i(x) = 1\}|$  and  $K_i(x)$  is such that:

$$\forall \vartheta \in \Theta : \quad \mathbb{P}_{\vartheta} \left( \vartheta_i \geq K_i(x) \right) \geq 1 - \alpha_k$$

and  $L_i(x)$  such that:

$$orall artheta \in \Theta: \quad \mathbb{P}_arthetaig(artheta_i \geq L_i(x)ig) \geq 1 - lpha_{k-\kappa(artheta)+1}$$

### Example (cont.)

Returning to our example, we can define

$$K_i(x) = x_i - c_k$$
 and  $L_i(x) = x_i - c_{k-m(x)}$ .

This gives us then

$$\underline{\vartheta_i}(x) = \begin{cases} 0 & \psi_i(x) = 1, \ m(x) < k \\ x_i - c_{k-m(x)} & \psi_i(x) = 0 \\ x_i - c_k & m(x) = k \end{cases}$$

or equivalently

$$\underline{\vartheta_i}(x) = \begin{cases} \min\{0, x_i - c_{k-m(x)}\} & m(x) < k \\ \max\{0, x_i - c_k\} & m(x) = k \end{cases}$$



- Compatable confidence regions are easy to create for single step procedures
- For multiple step procedures things are a good bit harder, but not impossible
- But all told it is an interesting question deserving more consideration.

#### Vielen Dank für eure Aufmerksamkeit.