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Review

In classic test theory, we have:
A model (X ,F ,(Pϑ )ϑ∈Θ)

A confidence level α ∈ (0,1)

Then a confidence region is a set C = (C(x) : x ∈X ) with
C(x)⊆Θ

{x : C(x) 3 ϑ} measurable for all ϑ ∈Θ

Pϑ

(
{x : C(x) 3 ϑ}

)
≥ 1−α

How can one translate this idea to a multiple testing framework
in a way that makes sense?
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Say that ϕ ∈ Φα (H ) and C ∈ C1−α , then we per definition have

∀ϑ ∈Θ : Pϑ

( ⋃
i∈I0(ϑ)

{ϕi(x) = 1}
)
≤ α

and
∀ϑ ∈Θ Pϑ

(
{x : C(x) 3 ϑ}

)
≥ 1−α.

Then a natural requirement on a confidence region C(x) is that

∀ϑ ∈Θ : Pϑ

( ⋃
i∈I0(ϑ)

{ϕi(x) = 1}∪{x : C(x) 63 ϑ}
)
≤ α

Intuition:
⋃

i∈I0(ϑ){x : ϕi(x) = 1} and {x : C(x) 63 ϑ} should more
or less overlap
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Compatible

Thus we get the following definition

Definition

A confidence region C ∈ C1−α and a multiple test ϕ ∈ Φα (H )
are said to be compatable if C ⊆ C(ϕ), i.e. C(x)⊆

⋂
i:ϕ(x)=1 Ki

for all x ∈X .

Notice that compatiblity implies

∀ϑ ∈Θ : Pϑ

( ⋃
i∈I0(ϑ)

{x : ϕi(x) = 1}∪{x : C(x) 63 ϑ}
)
≤ α,

the conditon from the motivational slide.
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Example

Example for a non-compatable set
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Extended Correspondence Theorem

With this theorem we can easily construct confidence regions
for single step procedures:

Theorem

Let H = {Hi : i ∈ I} be a family of hypothesis. If
ϕ ∈ Φα (H )

C(x) =
⋂

i:ϕi (x)=1 Ki ∀x ∈X where the convention⋂
i∈ /0 Ki = Θ is used

then
C = (C(x) : x ∈X ) ∈ C1−α .

and with this, C and ϕ are compatable.
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Model for Tukey Test

Let Xi1, . . . ,Xin ∼ N(µi ,σ
2) be iid observations,

µ = (µ1, . . . ,µk ) ∈ Rk unknown. We want find confidence
regions for ϑij := µi −µj , 1≤ i < j ≤ k . Let Ȳi := X̄i ·−µi ,
1≤ i ≤ k , then it is clear that

X̄i ·− X̄j ·−ϑij = Ȳi − Ȳj ∀1≤ i ≤ k

and that for the statistic

T̃ij(x) =
√

n
|Ȳi − Ȳj |

S(x)
with S(x) =

1
k(n−1)

k

∑
i=1

n

∑
l=1

(xil − x̄i .)
2

max1≤i<j≤k T̃ij(x) is qk ,k(n−1) distributed.
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Now we can test a candidate µ ′ to level α using the Tukey
principle, because µ will be rejected if and only if

√
n
|ȳ ′i − ȳ ′j |

S(x)
> qk ,k(n−1);α

where ȳ ′i = x̄i ·−µ ′i If we rewrite this, we see that µ ′ will be
accepted if and only if for all 1≤ i < j ≤ k :

|(x̄i ·− x̄j ·)−ϑ
′
ij | ≤

S(x)√
n

qk ,k(n−1);α

⇔ϑ
′
ij ∈
[

(x̄i ·− x̄j ·)−
S(x)√

n
qk ,k(n−1);α ,(x̄i ·− x̄j ·) +

S(x)√
n

qk ,k(n−1);α

]
Because of the extended correspondence theorem we get a
compatable confidence region for our ϑ ′ij .
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Scheffé test

In the ANOVA model, let q ≤ k , a1, . . . ,aq ∈ Rk be linear
independent and define L = span (a1, . . . ,aq). In the lecture on
Multiple Tests we learned that ∀µ ∈ Rk ,σ2 > 0 we have:

P
(

c>µ ∈
[
c>µ̂−K ,c>µ̂ + K

]
∀c ∈L

)
= 1−α

where µ̂ := (X̄1·, . . . , X̄k ·)
>, and

K :=

√√√√q ·s2
k

∑
i=1

c2
i

n
Fq,k(n−1);α
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Why Bother??

Stepwise procedures are typically more powerful
But in the past single step procedures were used when
confidence regions were required (medical
experiments. . . )
So if one wants the best of both worlds, a better theory
needs to be developed
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General Stratigy

We can construct (in theory) a confidence region C ∈ C1−α

which is compatible with ψ ∈ Φα (H ) using the following two
steps:

1 Determine ϕ ∈ Φα (Θ) induced by ψ. Then calculate
Pϑ (ϕϑ = 1) for all ϑ ∈Θ. If Pϑ (ϕϑ = 1) < α try to find a
ϕ̃ϑ ≥ ϕϑ where

α ≥ Pϑ (ϕ̃ϑ = 1) > Pϑ (ϕϑ = 1)
ideally we want Pϑ (ϕ̃ϑ = 1) = α

2 Then construct C̃ := C(ϕ̃)

∀x ∈X : C̃(x)⊆ C(x) where C = C(ϕ).
C̃ and ψ are compatable.
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Problems with stepwise procedures

There are two main problems with the practical implementation
of this strategy:

1 Finding a good ϕ̃ϑ for all ϑ ∈Θ.
2 Inverting the set of ϕ̃ϑ into a multiple confidence region C̃.
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Example

Zi , i ∈ I = {1, . . . ,k} permutation-symmetric random
variables, with Lebesgue density f (x) > 0 ∀x ∈ R
Xi := Zi + ϑi , ϑi ∈ R
H = {Hi : i ∈ I} with Hi : ϑi ≤ 0 vs. Ki : ϑi > 0

We want to find lower confidence bounds for ϑi which are
compatible with step-up and step-down procedures. Thus set:

α ∈ (0,1)

c1 ≤ ·· · ≤ ck defined by P
(

max1≤i≤j Zi ≤ cj
)

= 1−α, j ∈ I
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Example (cont.)

We define a step-down test with the rule:

ψi(x) = 1⇔∃r ∈ I : xi ≥ cr and
∀j ∈ {r , . . . ,k} : x(j) ≥ cj

Now we must choose a test ϕ = (ϕϑ : ϑ ∈Θ) with C(ϕ)⊂ C(ψ).
To do this, define:

κ(ϑ) := {i ∈ I : ϑi ≤ 0}, ϑ ∈ R

and consider the following two cases:
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Case 1: κ(ϑ ) 6= /0

Example (cont.)

In this case, define a level-α test by:

ϕϑ (x) = 1⇔ max
i∈κ(ϑ)

(xi −ϑi)≥ c|κ(ϑ)|.

This is indeed a level-α test because:

Pϑ

(
ϕϑ (X ) = 1

)
= Pϑ

(
max

i∈κ(ϑ)
Zi ≥ c|κ(ϑ)|

)
= Pϑ

(
max

1≤i≤|κ(ϑ)|
Zi ≥ c|κ(ϑ)|

)
≤ α
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Case 2: κ(ϑ ) = /0

Example (cont.)

Here we define a level-α test by:

ϕϑ (x) = 1⇔max
i∈I

(xi −ϑi)≥ ck .

Again we see that

Pϑ (ϕϑ (X ) = 1) = Pϑ (max
i∈I

Zi ≥ ck ) = Pϑ ( max
1≤i≤k

Zi ≥ ck )≤ α
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Theorem

For the Bonferroni-Holm test we have the following lower
bounds:

ϑi(x) =


0 ψi(x) = 1, m(x) < k
Li(x) ψi(x) = 0
Ki(x) m(x) = k

where m(x) := |{i ∈ I : ψi(x) = 1}| and Ki(x) is such that:

∀ϑ ∈Θ : Pϑ

(
ϑi ≥ Ki(x)

)
≥ 1−αk

and Li(x) such that:

∀ϑ ∈Θ : Pϑ

(
ϑi ≥ Li(x)

)
≥ 1−αk−κ(ϑ)+1
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Example (cont.)

Returning to our example, we can define

Ki(x) = xi −ck and Li(x) = xi −ck−m(x).

This gives us then

ϑi(x) =


0 ψi(x) = 1, m(x) < k
xi −ck−m(x) ψi(x) = 0
xi −ck m(x) = k

or equivalently

ϑi(x) =

{
min{0,xi −ck−m(x)} m(x) < k
max{0,xi −ck} m(x) = k .
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Fazit

Compatable confidence regions are easy to create for
single step procedures
For multiple step procedures things are a good bit harder,
but not impossible
But all told it is an interesting question deserving more
consideration.
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Vielen Dank für eure Aufmerksamkeit.

21 / 21


	Motivation and Definitions
	Examples
	Confidence regions for stepwise tests

