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Multiple statistical decision problems

• Multiple comparisons (multiple tests)

• Simultaneous confidence regions

• Multiple power / sample size calculation

• Selection problems

• Ranking problems

• Partitioning problems
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Prologue

We assume a statistical model (statistical experiment)
(Ω,F , (Pϑ)ϑ∈Θ)

More concrete scenario (chosen for exemplary purposes):

Balanced ANOVA1 model:
X = (Xij)i=1,...,k, j=1,...,n, Xij ∼ N (µi, σ

2),
Xij stochastically independent random variables on R,
µi ∈ R ∀1 ≤ i ≤ k, σ2 > 0 (known or unknown) variance
k ≥ 3, n ≥ 2, ν = k(n− 1) (degrees of freedom)

Ω = Rk·n, F = Bk·n

ϑ = (µ1, . . . , µk, σ
2) ∈ Rk × [0,∞) = Θ
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Multiple comparisons (multiple tests)

(Ω,F , (Pϑ)ϑ∈Θ) Statistical model
Hm = (Hi)i=1,...,m Family of null hypotheses with ∅ 6= Hi ⊂ Θ

and alternatives Ki = Θ \ Hi

(Ω,F , (Pϑ)ϑ∈Θ,Hm) Multiple testing problem
ϕ = (ϕi : i = 1, . . . ,m) multiple test for Hm

Test decision
Hypotheses 0 1

true Um Vm m0
false Tm Sm m1

m− Rm Rm m
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Multiple tests (II)

Wanted features of ϕ:

No (or only minor) contradictions among the
individual test decisions
Control of the probability of erroneous decisions

(Type I) error measures / concepts:

FWERm(ϕ) = Pϑ(Vm > 0)
!
≤ α ∀ϑ ∈ Θ

(Strong) control of the Family-Wise Error Rate (FWER)

FDRm(ϕ) = Eϑ
[

Vm
Rm∨1

] !
≤ α ∀ϑ ∈ Θ

Control of the False Discovery Rate (FDR)
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FWER control

FWER-controlling multiple testing principles:

• Historical single-step tests
(Bonferroni, Sidak, Tukey, Scheffé, Dunnett)

• Holm’s (1979) stepwise rejective procedure
• Closed test principle (Marcus, Peritz, Gabriel (1969))
• Intersection-union principle (generalized closed testing)
• Partitioning principle

(Finner and Straßburger 2001, Hsu 1996)
• Projection methods under asymptotic normality

(Bretz, Hothorn and Westfall)
• Resampling-based multiple testing

(Westfall / Young 1992, Dudoit / van der Laan 2008)
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Multiplicity of current applications

Due to rapid technical developments in many scientific fields,
the number m of hypotheses to be tested simultaneously can
nowadays become almost arbitrary large:

• Genetics, microarrays: m ∼ 30000 genes / hypotheses
• Genetics, SNPs: m ∼ 500000 SNPs / hypotheses
• Proteomics: m ∼ 5000 proteine spots per gele sheet
• Cosmology: Signal detection, m ∼ 106 pixels / hypotheses
• Neurology: Identification of active brain loci, m ∼ 103 voxels
• Biometry: pairwise comparisons of many means,

tests for correlations

Analyses have (in a first step) typically explorative character.

=⇒ Control of the FWER much too conservative goal!
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Definition of the False Discovery Rate

Θ Parameter space
H1, . . . ,Hm Null hypotheses
ϕ = (ϕ1, . . . , ϕm) Multiple test procedure
Vm = |{i : ϕi = 1 and Hi true }| Number of falsely rejected,

true nulls
Rm = |{i : ϕi = 1}| Total number of rejections

FDRϑ(ϕ) = Eϑ[
Vm

Rm ∨ 1
]

False Discovery Rate (FDR) given ϑ ∈ Θ

Definition: Let α ∈ (0, 1) fixed.

The multiple test ϕ controls the FDR at level α if

FDR(ϕ) = sup
ϑ∈Θ

FDRϑ(ϕ) ≤ α.
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The classical FDR theorem
Benjamini and Hochberg (1995)

p1, . . . , pm (marginal) p-values for hypotheses H1, . . . ,Hm

Hi true for i ∈ Im,0, Hi false for i ∈ Im,1

Im,0 + Im,1 = Nm = {1, . . . ,m}, m0 = |Im,0|
pi ∼ UNI[0, 1], i ∈ Im,0 stochastically independent (I1)
(pi : i ∈ Im,0), (pi : i ∈ Im,1) stoch. independent vectors (I2)
p1:m ≤ · · · ≤ pm:m ordered p-values

Linear step-up procedure ϕLSU with Simes’ crit. values αi:m = iα/m:

Reject all Hi with pi ≤ αm:m, where m = max{j : pj:m ≤ jα/m}.

Then it holds:

FDRϑ(ϕLSU) = Eϑ[
Vm

Rm ∨ 1
] =

m0

m
α ∀ϑ ∈ Θ.
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Linear step-up in terms of Simes’ rejection line
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FDR control under positive dependency

Benjamini, Y. & Yekutieli, D. (2001) / Sarkar, S. K. (2002):

Proofs for FDR control in presence of special dependency
structures:

FDRϑ(ϕ) ≤ m0

m
α ∀ϑ ∈ Θ

for stepwise test procedures employing Simes’ critical values.

Model assumptions: MTP2 oder PRDS

Examples:
Multivariate normal distributions with non-negative correlations,
multivariate (absolute) t-distributions
(Finner, Dickhaus, Roters (2007), The Annals of Statistics 35, 1432-1455)
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Explicit adaptation

Since under positive dependency the FDR of the LSU-
procedure is bounded by

m0

m
α

for any m > 1 and given α ∈ (0, 1), ϕLSU does not exhaust the
FDR level α in case of m0 < m.

Many modern FDR-controlling methods:

Pre-estimation of m0 or π0 = m0/m aiming at
tighter α-exhaustion and gain of power

(Explicit adaption)
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Empirical stochastic processes

Interpret the number of rejections of (true / false)
null hypotheses and the FDR of a single-step test with
threshold t ∈ [0, 1] for the p-values as empirical processes in t:

V(t) =
∑

i∈Im,0

1[0,t](pi),

S(t) =
∑

i∈Im,1

1[0,t](pi),

R(t) = V(t) + S(t) =
m∑

i=1

1[0,t](pi),

FDR(t) = E
[

V(t)
R(t) ∨ 1

]
.
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The adaptive procedure of
Storey, Taylor and Siegmund (2004)

For a tuning parameter λ ∈ (0, 1) is the following estimator
π̂0 of π0 reasonable (Schweder and Spjøtvoll (1982)):

π̂0 ≡ π̂0(λ) =
m− R(λ)+1

m(1− λ)
=

1− F̂m(λ)+1/m
1− λ

Under (I1) and (I2), we additionally obtain an estimator for the
FDR of a single-step test with threshold t ∈ [0, 1]:

F̂DRλ(t) =
π̂0(λ)t

(R(t) ∨ 1)/m

Resulting adaptive thresholding:

tλα = sup{0 ≤ t ≤ λ : F̂DRλ(t) ≤ α}
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The estimator π̂0

Schweder and Spjøtvoll (1982)
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The estimator π̂0

Schweder and Spjøtvoll (1982)
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Martingal- and stopping time properties

Lemma: (Storey, Taylor and Siegmund (2004))
Assuming stochastically independent p-values under the m0 null
hypotheses, V(t)/t is for 0 ≤ t < 1 a reverse martingal with respect
to the filtration Ft = σ(1[0,s](pi), t ≤ s ≤ 1, i = 1, . . . ,m), i. e.,
for s ≤ t it holds E[V(s)/s|Ft] = V(t)/t.

The random threshold tλα is a stopping time with respect to Ft∧λ.

=⇒ FDR-proofs utilizing theory of optimal stopping
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Proof of FDR-control of the adaptive
test procedure by Storey et al.

Assumption: λ chosen such that F̂DRλ(λ) ≥ α.

It follows: F̂DRλ(tλα) = α⇔ R(tλα) = mπ̂0(λ)tλα/α.

Moreover, the process V(t)/t stoppt at tλα is bounded and

FDR(tλα) = E
[

V(tλα)
R(tλα)

]
= E

[
α

mπ̂0(λ)
V(tλα)

tλα

]
= E

[
α

1− λ
m− R(λ) + 1

V(tλα)
tλα

]
= E

[
α

1− λ
m− R(λ) + 1

E
[

V(tλα)
tλα
|Fλ
]]

= E
[
α

1− λ
m− R(λ) + 1

V(λ)
λ

]
.
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Noticing V(λ) ∼ Bin(n0, λ), yields:

FDR(tλα) = E
[
α

1− λ
m− R(λ) + 1

V(λ)
λ

]
≤ E

[
α

1− λ
m0 − V(λ) + 1

V(λ)
λ

]
=

m0∑
k=0

α
1− λ

m0 − k + 1
k
λ
· P(V(λ) = k)

= α
1− λ
λ

m0∑
k=0

k
m0 − k + 1

(
m0

k

)
λk(1− λ)m0−k

= α
1− λ
λ
· λ− λ

m0+1

1− λ
= α(1− λm0)

≤ α for all λ ∈ (0, 1) and m0 ≥ 0. �
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Implicit adaptation

Alternatively to explicit adaptation, it may be asked:

Is it possible to derive a better rejection curve

circumventing the factor m0/m appearing in

the FDR of ϕLSU ?

First step:

Identification of least favorable parameter configurations
(LFCs) for the FDR.



MCP and FDR Adaptation AORC

Dirac-uniform models as LFCs

Theorem: (Benjamini & Yekutieli (2001))
If pi ∼ U([0, 1]), i ∈ Im,0, stochastically independent (I1) and
(pi : i ∈ Im,0), (pi : i ∈ Im,1) stoch. independent vectors (I2),
then a step-up procedure ϕSU

(m) with critical values α1:m ≤ · · · ≤ αm:m

has the following properties: If

αi:m/i is increasing (decreasing) in i

and the distribution of (pi : i ∈ Im,1) decreases stochastically, then the
FDR of ϕSU

(m) increases (decreases).

If αi:m/i is increasing in i, it follows that the FDR becomes
largest for pi ∼ δ0 ∀i ∈ Im,1 (Dirac-uniform model).

In DU-models, analytic calculations are possible!
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Asymptotic Dirac-uniform model: DU(ζ)

Assumptions:

Independent p-values p1, . . . , pm;

m0 = m0(m) null hypotheses true with

lim
m→∞

m0(m)
m

= ζ ∈ (0, 1],

m0 p-values UNI([0, 1])-distributed (corresp. hypotheses true)

m1 = m−m0 p-values δ0-distributed (corresp. hypotheses false)

Then the ecdf of the p-values Fm (say) converges
(Glivenko-Cantelli) for m→∞ to

Gζ(x) = (1− ζ) + ζx for all x ∈ [0, 1].
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Heuristic for an asymptotically optimal rejection curve

Assume we reject all Hi with pi ≤ x for some x ∈ (0, 1).

Then the FDR (depending on ζ and x) under DU(ζ) is
asymptotically given by

FDRζ(x) =
ζx

(1− ζ) + ζx
.

Aim: Find an optimal threshold xζ (say), such that

FDR ≡ α for all ζ ∈ (α, 1).

We obtain:

FDRζ(xζ) = α ⇐⇒ xζ =
α(1− ζ)
ζ(1− α)

.
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Asymptotically optimal rejection curve

Ansatz: Rejection curve fα and Gζ shall cross each other

in xζ , i.e., fα(xζ) = Gζ(xζ).

Plugging in xζ derived above yields

fα

(
α(1− ζ)
ζ(1− α)

)
=

1− ζ
1− α

.

Substituting t =
α(1− ζ)
ζ(1− α)

⇐⇒ ζ =
α

(1− α)t + α
,

we get that fα(t) :=
t

(1− α)t + α
, t ∈ [0, 1],

is the curve solving the problem!
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Asymptotically optimal rejection curve for α = 0.1
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Critical values, step-up-down procedure

The critical values induced by fα are given by

αi:m = f−1
α (i/m) =

iα
m− i(1− α)

, i = 1, . . . ,m. (1)

Due to αm:m = 1, a step-up procedure based on fα cannot work.

One possible solution:

Step-up-down procedure with parameter λ ∈ (0, 1):

Fm(λ) ≥ fα(λ)⇒ t∗ = inf{pi > λ : Fm(pi) < fα(pi)} (SD-branch),

Fm(λ) < fα(λ)⇒ t∗∗=sup{pi < λ : Fm(pi) ≥ fα(pi)} (SU-branch).

Reject all Hi with pi < t∗ or pi ≤ t∗∗, respectively.
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SUD-procedure for λ = 0.3, 0.6
(m = 50, α = 0.1)
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Refined results for SUD tests
Finner, Dickhaus, Roters (2009), Annals of Statistics 37, 596-618

• AORC-based stepwise test procedures asymptotically
keep the FDR level under (I1) und (I2).

• In the class of stepwise test procedures with fixed rejection
curve asymptotically keeping the FDR level,
AORC-based tests have largest power for ζ ∈ (α, 1).

Technical results:
• New methodology of proof for stepwise test procedures

with non-linear rejection curves resp. critical values
• Upper FDR bounds for step-up-down tests

(asymptotically and finite)
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SU-test with modified version of fα, finite case
(m = 100, 500, 1000, α = 0.05)

For m = 100, maximum DU FDR is FDR16,100 ≈ 0.05801.
=⇒ Adjustment of critical values for finite cases necessary!
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FDR control for step-up implies
FDR control for step-up-down

Theorem:
Consider a SU test ϕm and a SUD(λ) test ϕλ for λ ∈ {1, . . . ,m− 1}
with the same set of critical values (αi:m)m

i=1 belonging to
Mm = {(ci:m)m

i=1 : 0 ≤ c1:m ≤ . . . ≤ cm:m ≤ 1, ci:m/i increases in i}.
Then, under (I1) and (I2), it holds

FDRϑ(ϕλ) ≤ FDRϑ(ϕm) for all ϑ ∈ Θ.

Hence, if the FDR is controlled by the SU test, then the SUD(λ) test
also controls the FDR.

Sketch of Proof: {Rλ1
m ≥ j, pi0 ≤ αj:m} ⊆ {Rλ2

m ≥ j, pi0 ≤ αj:m}
for any 1 ≤ λ1 ≤ λ2 ≤ m, which implies that
Pϑ(Rλm ≥ j|pi0 ≤ αj:m) is non-decreasing in λ for each j ∈ Nm.
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Exact finite adjustment (for step-up)

(Slight) modification of fα or its critical values, e. g.

αi:m =
iα

m + βm − i(1− α)
, i = 1, . . . ,m,

for a suitable adjustment constant βm > 0.

(Same as: Use f̃α(t) = (1 + βm/m) fα(t), t ∈ [0, α/(α+ β/m)].)

m = 100 leads to β100 ≈ 1.76.

Ray of light:

GAVRILOV, Y., BENJAMINI, Y. AND SARKAR, S. K. (2009).
An adaptive step-down procedure with proven FDR control.
Annals of Statistics 37, 619-629:
SD-procedure with βm ≡ 1.0 controls FDR for every m ∈ N.
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Adjustment with three parameters
For i = 1, . . . ,m, utilize adjusted critical values of the form

αi:m =
iα

m + β1,m + β2,m
( i

m

)β3,m − i(1− α)

Resulting FDRs for adjusted critical values with one (black)
and three parameters, respectively, for m = 100, 200, 400,
depending on m0.
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Iterative method

Let J ∈ N be fixed and α(0)
1:m, . . . , α

(0)
m:m ∈Mm be start critical

values, for instance adjusted AORC-based critical values,
fulfilling that FDRm,m0 ≈ α for all m0 ≥ k.

Now, try to iteratively modify crit. values most influencing
FDRm,m0 for k ≤ m0 ≤ m to reduce d(m0,m) = α− FDRm,m0 .

One possible iteration scheme:

For j from 1 to J do:
For i from 1 to i∗(k) do:

1. Determine α(j−1)
i from α

(j−1)
i:m = iα(j−1)

i /(m− i(1− α(j−1)
i )).

2. Put αj
i = αα

(j−1)
i /FDRm,m0(i)(α

(j−1)
i ).

Motivation: Fixed-point iteration for
f (αi) = ααi/FDRm,m0(i)(αi).
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Stepwise finding

Subsequently solve (for αm1+1:m) the target equations

FDRm,m0(αm1+1:m, . . . , αm:m) = α, m0 ∈ Nm. (2)

m0 = 1⇒ αm:m = mα for a fixed α, because FDRm,1 = αm:m/m.
It follows that αm:m ≥ 1 for each m ≥ 1/α, which is
unacceptable. We can try to fix that by replacing (2) by

FDRm,m0(αm1+1:m, . . . , αm:m) = min
(m0

m
, α
)
, m0 ∈ Nm. (3)

If even (3) cannot be solved inMm, we further generalize the
right-hand-side and solve

FDRm,m0(αm1+1:m, . . . , αm:m) = g(α, ζm), m0 ∈ Nm.
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Flexible FDR-control
Candidates for g(α, ζm):

g(ζ|γ, η) =
{
α(1− (1− ζ/γ)η), 0 ≤ ζ < γ,
α, γ ≤ ζ ≤ 1.

g(ζ|γ, η) for α = 0.05 and γ = 1, η = 20.0, 18.0, 16.0 together
with min(α, ζ) for ζ ranging from 0 to 0.3.
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