Massey products of arrangement groups, by Daniel Matei.

Let A a complex line arrangement in C2, with complement X and group G = m;(X).
Recall that the rings H*<?(X,K) and H*<?(G, K) are isomorphic for K a field or Z. Taking
advantage of this, we use the cochains of GG rather than of X to compute Massey products.
By a classical result in rational homotopy theory X is a rationally formal space, therefore
all its k-fold Massey products in H*(X, Q) vanish if £ > 3. We exhibit here arrangements
whose complement X, although Q-formal, is not F,-formal, by presenting non-vanishing
Massey products in H?*(X,F,).

Theorem: For every prime p, there exists an arrangement A such that there are, modulo
indeterminacy, non-vanishing Massey products in H*(X,F,) .

For example, for p = 3 the arrangement 4 may be taken to be either of the two MacLane
arrangements of 8 lines in CP2. Dehomogenizing, we obtain two affine arrangements of 7
lines in C?, say A* and A~. Their complements X* are of the same homotopy type, say
X. In [2] we used the work of Falk [1] to compute the resonance varieties of A* over F,
and found that at the prime p = 3 they are special: {(X,F,) C H(X,F,) = F§ consists
of 8 components in general, but for p = 3 a ninth arises, say C'. That is a plane in F%,
consisting of 9 points. Choosing any two of them different from origin, we get linearly
independent cohomology classes in H*(X,F,) that cup zero, and so it possible to define
their triple products.

Theorem: Any triple Massey product in H*(X,F3) of the form (\, \, ) with X\ and p dis-
tinct points on C C HY(X,F3) does not vanish modulo the indeterminacy A\U H' (X, F3) +
H'(X,F3) U p.

Interestingly enough, the existence of non-vanishing triple products in H?*(X,F,) is
related with the occurence of p-torsion in the homology Hi(Y') of some p-fold coverings
Y of X. For example, for the decones A* of the Maclane arrangements we have that the
3-fold cyclic coverings Y] of X*, determined by A € C'\ {0} exhibit 3-torsion in H;, more
exactly: Hy(V,Z) =77 & Zs.
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