Massey products of arrangement groups, by Daniel Matei.

Let \mathcal{A} a complex line arrangement in \mathbb{C}^2 , with complement X and group $G = \pi_1(X)$. Recall that the rings $H^{*\leq 2}(X,\mathbb{K})$ and $H^{*\leq 2}(G,\mathbb{K})$ are isomorphic for \mathbb{K} a field or \mathbb{Z} . Taking advantage of this, we use the cochains of G rather than of X to compute Massey products. By a classical result in rational homotopy theory X is a rationally formal space, therefore all its k-fold Massey products in $H^*(X,\mathbb{Q})$ vanish if $k\geq 3$. We exhibit here arrangements whose complement X, although \mathbb{Q} -formal, is not \mathbb{F}_p -formal, by presenting non-vanishing Massey products in $H^2(X,\mathbb{F}_p)$.

Theorem: For every prime p, there exists an arrangement \mathcal{A} such that there are, modulo indeterminacy, non-vanishing Massey products in $H^2(X, \mathbb{F}_p)$.

For example, for p=3 the arrangement \mathcal{A} may be taken to be either of the two MacLane arrangements of 8 lines in \mathbb{CP}^2 . Dehomogenizing, we obtain two affine arrangements of 7 lines in \mathbb{C}^2 , say \mathcal{A}^+ and \mathcal{A}^- . Their complements X^{\pm} are of the same homotopy type, say X. In [2] we used the work of Falk [1] to compute the resonance varieties of \mathcal{A}^{\pm} over \mathbb{F}_p and found that at the prime p=3 they are special: $_1(X,\mathbb{F}_p)\subset H^1(X,\mathbb{F}_p)=\mathbb{F}_3^7$ consists of 8 components in general, but for p=3 a ninth arises, say C. That is a plane in \mathbb{F}_3^7 , consisting of 9 points. Choosing any two of them different from origin, we get linearly independent cohomology classes in $H^1(X,\mathbb{F}_p)$ that cup zero, and so it possible to define their triple products.

Theorem: Any triple Massey product in $H^2(X, \mathbb{F}_3)$ of the form $\langle \lambda, \lambda, \mu \rangle$ with λ and μ distinct points on $C \subset H^1(X, \mathbb{F}_3)$ does not vanish modulo the indeterminacy $\lambda \cup H^1(X, \mathbb{F}_3) + H^1(X, \mathbb{F}_3) \cup \mu$.

Interestingly enough, the existence of non-vanishing triple products in $H^2(X, \mathbb{F}_p)$ is related with the occurrence of p-torsion in the homology $H_1(Y)$ of some p-fold coverings Y of X. For example, for the decones \mathcal{A}^{\pm} of the Maclane arrangements we have that the 3-fold cyclic coverings Y_l of X^{\pm} , determined by $\lambda \in C \setminus \{\mathbf{0}\}$ exhibit 3-torsion in H_1 , more exactly: $H_1(Y_l, \mathbb{Z}) = \mathbb{Z}^7 \oplus \mathbb{Z}_3$.

References

- [1] M. Falk, Arrangements and cohomology, Ann. Combin. 1 (1997), 135–157.
- [2] D. Matei, A. Suciu, Cohomology rings and nilpotent quotients of real and complex arrangements, Arrangements-Tokyo 1998, Adv. Stud. in Pure Math., vol. 27, Math. Soc. Japan, Tokyo, 2000.

Department of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan

E-mail address: matei@ms.u-tokyo.ac.jp