Spreads of non-singular pairs in symplectic vector spaces

Let V be a vector space of dimension 2n over a field \mathbf{F} equipped with a non-singular symplectic form <,>.

Def. A non-singular pair (or ns-pair) in V is $\Delta = \{\delta, \delta^{\perp}\}$ consisting of a pair of n-dimensional subspaces, mutually orthogonal, whose direct sum is V, and such that the restriction of <, > to each of them is non-singular.

Def. A spread of non-singular pairs or nsp-spread is a set of ns-pairs $\sigma = \{\Delta_i\}$ whose non-zero elements partition $V - \{0\}$ (regarding Δ as the union of the elements in δ and δ^{\perp}).

Theorem. For any even n, any field \mathbf{F} that is either a finite field of odd characteristic or an algebraic number field, and any vector space V of dimension 2n over \mathbf{F} , as above, there exist nsp-spreads in V.

 $\Sigma = \{\text{nsp-spreads } \sigma \text{ in } V\}$ is an interesting algebraic/combinatorial object, which we discuss. This theorem is new except in case n=2 and $\mathbf{F}=\mathbf{F}_3$, in which case (as Coble knew in 1908) the 27 elements of Σ correspond to the 27 lines on the non-singular cubic surface.