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PROLOGUE

Central objects in geometry and topology often come equipped with intrinsic
combinatorial structure, for instance a natural combinatorial stratification. Im-
plications of distinguishing such combinatorial core data are manifold. At times
it proves useful for determining invariants of the spaces involved; alternatively,
it might serve as a starting point for linking geometric situations in seemingly
distant contexts.

One of the most beautiful and most characteristic examples of intrinsic com-
binatorial data determining invariants of a space is the topology of arrangements
of hyperplanes. The complements of complex hyperplane arrangements, for in-
stance, have an intricate topology. For describing their cohomology algebras,
however, knowing the lattices of intersections of hyperplanes is fully sufficient.
A presentation for the integral cohomology in terms of generators and relations,
the famous Orlik-Solomon algebra, can be read from there.

Discrete structures that emerge from geometry are often of interest to combi-
natorialists in their own right. They call for abstraction that, if considered with
open eyes and mind, bears the potential to disclose unexpected and far-reaching
connections.

The five chapters of the present thesis are intertwined by a common geomet-
ric object and by a common theme. De Concini-Procesi wonderful arrangement
models are ubiquitous (compare [DP3] as a main reference); we analyze their
combinatorial core data and present results in accordance with the general spirit
outlined above.

Combinatorial Resolutions: In the first chapter (joint work with Dmitry
Kozlov [FK1]) we provide a combinatorial framework that is designed to describe
the incidence change in stratifications throughout a resolution process. Though in-
spired by the construction of De Concini-Procesi models, our setting of combina-
torial resolutions, including notions of building sets, nested sets and combinatorial
blowups, is purely order theoretic.

Returning to the source of our notions, we find that they in fact describe the
incidence combinatorics of stratifications through every step of the De Concini-
Procesi model construction. They also serve in other contexts, e.g., resolutions of
toric varieties. Since a preprint version of this chapter has circulated, our com-
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binatorial framework for resolutions has been taken up in the context of model
constructions for real subspace and halfspace arrangements and for real stratified
manifolds [Ga2]. Moreover, it provided the outset for my joint work with Sergey
Yuzvinsky, which appears as Chapter 2 in this thesis.

An algebra defined by atomic lattices: In the second chapter (joint work with
Sergey Yuzvinsky [FY]) we study a graded algebra ���������	��

� over � defined
by a finite lattice � and a subset 
 in � , where 
 is a combinatorial building set as
it appears in the first chapter of this thesis. For intersection lattices of hyperplane
arrangements this algebra specializes to the cohomology algebra of hyperplane
arrangement compactifications of De Concini and Procesi [DP4].

Our main result is a representation of � , for an arbitrary atomic lattice � , as
the Chow ring of a smooth toric variety that we construct from � and 
 . Stepping
aside from the original geometric context of model constructions, but holding on
to the combinatorial structure at the core of the matter, we find a new and seem-
ingly unrelated geometric interpretation of the graded algebra � . We describe the
toric variety both by its fan and geometrically by a series of blowups and orbit
removal. Also we find a Gröbner basis of the relation ideal of � and a monomial
basis of � thereby generalizing earlier results by Yuzvinsky [Y] on a linear basis
for arrangement model cohomology.

Nested set complexes: In the third chapter (joint work with my student Irene
Müller [FM]) we look at the abstract simplicial complex of nested sets from the
point of view of topological combinatorics. We show that nested set complexes are
homotopy equivalent to the order complexes of the underlying meet-semilattices
without their minimal elements. For atomic semilattices, we consider the realiza-
tion of nested set complexes by simplicial fans proposed in the second chapter of
this thesis, and we strengthen our previous result showing that in this case nested
set complexes in fact are homeomorphic to the mentioned order complexes.

Desingularizing finite group actions: In the two remaining chapters (both joint
work with Dmitry Kozlov [FK2, FK3]) we study abelianizations of real linear,
respectively diffeomorphic, actions of finite groups.

The fourth chapter is concerned with one of the most natural real linear ac-
tions, the permutation action of the symmetric group ��� on � � . We study its
abelianization provided by the maximal De Concini-Procesi wonderful model for
the braid arrangement. We show that stabilizers of points in the arrangement
model are not merely abelian but, in fact, elementary abelian � -groups. To prove
that, we develop a combinatorial framework for explicitly describing the stabiliz-
ers in terms of automorphism groups of set diagrams over families of cubes. We
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observe that the natural nested set stratification on the arrangement model is not
stabilizer distinguishing with respect to the ��� -action, i.e., stabilizers of points are
not in general isomorphic on open strata. Motivated by this structural deficiency,
we furnish a new stratification of the De Concini-Procesi arrangement model that
distinguishes stabilizers.

In the fifth and last chapter of this thesis we provide abelianizations of diffeo-
morphic actions of finite groups on smooth real manifolds. De Concini-Procesi
wonderful models for local subspace arrangements and a careful analysis of lin-
ear actions on real vector spaces are at the core of our construction. Again, we
can show that stabilizers are elementary abelian � -groups, a setting for which we
suggest the term digitalization. As our main examples, we discuss the resulting
digitalizations of the permutation actions of the symmetric group on � � , and on
real projective space.
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2.3 Gröbner basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Arrangement compactifications . . . . . . . . . . . . . . . . . . . 35
2.5 The toric variety

�������	� 
��
. . . . . . . . . . . . . . . . . . . . . . 39

2.6 A geometric description of
� ���
��� 
��

. . . . . . . . . . . . . . . . . 43
2.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 On the Topology of Nested Set Complexes 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Preliminaries on building sets and nested sets . . . . . . . . . . . 50
3.3 The homotopy type of nested set complexes . . . . . . . . . . . . 52
3.4 Simplicial fans realizing nested set complexes . . . . . . . . . . . 53



xii Contents

4 Abelianizing the Real Permutation Action via Blowups 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 De Concini-Procesi arrangement models . . . . . . . . . . . . . . 59

4.2.1 Building sets and nested sets . . . . . . . . . . . . . . . . 59
4.2.2 Arrangement models and the nested set stratification . . . 60
4.2.3 Finite group actions on arrangements and on their won-

derful models . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 The arrangement model ����� . . . . . . . . . . . . . . . . . . . . 61

4.3.1 A candidate for an abelianization of the permutation action 61
4.3.2 The nested set stratification is not stabilizer distinguishing 62

4.4 The nested set stratification of arrangement models . . . . . . . . 64
4.4.1 Points in � 
 . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.2 Stabilizers of points in � 
 . . . . . . . . . . . . . . . . . 66
4.4.3 The divisors ��� , �	� 
 . . . . . . . . . . . . . . . . . . 68
4.4.4 Open strata of the nested set stratification . . . . . . . . . 70

4.5 A stabilizer distinguishing stratification of ����� . . . . . . . . . . 71
4.5.1 Adding strata . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5.2 �
����� �
� � is stabilizer distinguishing . . . . . . . . . . . . 73
4.5.3 ����� revisited . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 A combinatorial framework for describing stabilizers . . . . . . . 75
4.6.1 Diagrams over families of cubes . . . . . . . . . . . . . . 75
4.6.2 Automorphism groups . . . . . . . . . . . . . . . . . . . 76
4.6.3 Intersections of diagrams . . . . . . . . . . . . . . . . . . 78
4.6.4 A reduction theorem . . . . . . . . . . . . . . . . . . . . 81

4.7 Stabilizers of points in ����� . . . . . . . . . . . . . . . . . . . . . 82

5 A Desingularization of Real Diffeomorphic Actions of Finite Groups 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 A review of De Concini-Procesi arrangement models . . . . . . . 86

5.2.1 Arrangement models . . . . . . . . . . . . . . . . . . . . 86
5.2.2 Group actions on arrangement models and a description

of stabilizers . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.3 Models for local subspace arrangements . . . . . . . . . . 89

5.3 Digitalizing finite group actions . . . . . . . . . . . . . . . . . . 90
5.3.1 Finite linear actions on � � . . . . . . . . . . . . . . . . . 90
5.3.2 Finite diffeomorphic actions on manifolds . . . . . . . . . 92

5.4 Permutation actions on linear and on projective spaces . . . . . . 95
5.4.1 Automorphism groups of diagrams over families of cubes 95
5.4.2 Digitalizing the real permutation action . . . . . . . . . . 98
5.4.3 Digitalizing the permutation action on real projective space 101



Contents xiii

Bibliography 107





CHAPTER 1

INCIDENCE COMBINATORICS OF RESOLUTIONS

1.1 INTRODUCTION

For an arbitrary meet-semilattice we introduce notions of combinatorial blowups,
building sets, and nested sets. The definitions are given on a purely order-theoretic
level without any reference to geometry. This provides a common abstract frame-
work for the incidence combinatorics occurring in at least two different situations
in algebraic geometry: the construction of De Concini-Procesi models of subspace
arrangements [DP1], and the resolution of singularities in toric varieties.

The various parts of this abstract framework have received different empha-
sis within different situations: while the notion of combinatorial blowups clearly
specializes to stellar subdivisions of defining fans in the context of toric varieties,
building sets and nested sets were introduced in the context of model constructions
by De Concini & Procesi [DP3] (earlier and in a more special setting by Fulton &
MacPherson [FuM]), from where we adopt our terminology. This correspondence
however is not complete: the building sets in [DP3, FuM] are not canonical, they
depend on the geometry, while ours do not. See Section 1.4.1 for further details.

It was proved in [DP3] that a sequence of blowups within an arrangement
of complex linear subspaces leads from the intersection stratification of complex
space given by the maximal subspaces of the arrangement to an arrangement
model stratified by divisors with normal crossings. In the context of toric vari-
eties, there exist many different procedures for stellar subdivisions of a defining
fan that result in a simplicial fan, so-called simplicial resolutions.

The purpose of our Main Theorem 1.3.4 is to unify these two situations on the
combinatorial level: a sequence of combinatorial blowups, performed on a (com-
binatorial) building set in linear extension compatible order, transforms the initial
semilattice to a semilattice where all intervals are boolean algebras, more pre-
cisely to the face poset of the corresponding simplicial complex of nested sets. In
particular, the structure of the resulting semilattice can be fully described by the
initial data of nested sets. Both the formulation and the proof of our main theorem
are purely combinatorial.

We sketch the content of this chapter: In Section 1.2 we define building sets
and nested sets for meet-semilattices in purely order-theoretic terms and develop
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general structure theory for these notions. We present the definition of combina-
torial blowups for meet-semilattices in Section 1.3 and study their effect on build-
ing sets and nested sets. The section contains our Main Theorem 1.3.4 which
describes the result of blowing up the elements of a building set in terms of the
initial nested set complex.
Section 1.4 is devoted to relating our abstract framework to two different contexts
in algebraic geometry: In 1.4.1 we briefly review the construction of De Concini-
Procesi models for subspace arrangements. We show that the change of the inci-
dence combinatorics of the stratification in a single construction step is described
by a combinatorial blowup of the semilattice of strata. In 1.4.2 we draw the con-
nection to simplicial resolutions of toric varieties: we recognize stellar subdivi-
sions as combinatorial blowups of the face posets of defining fans and discuss the
notions of building and nested sets in this context.
In Section 1.5 we report on some developments that took place after a first preprint
version of this chapter has been written and has circulated in the fall of 2000. Our
combinatorial framework for the incidence combinatorics of resolutions has been
taken up in various contexts. We outline the model construction for real subspace
and halfspace arrangements and for real stratified manifolds by G. Gaiffi [Ga2].
Moreover, we give a short account of the study of a graded algebra associated
with any finite lattice in [FY], which appears as Chapter 2 of this thesis. In this
work, our combinatorial generalization of originally geometric notions leads to
the construction of an, at first sight, unrelated geometric counterpart for wonderful
models of hyperplane arrangements.

1.2 BUILDING SETS AND NESTED SETS OF MEET-SEMILATTICES

1.2.1 Poset terminology

We recall some notions from the theory of partially ordered sets, and refer to [St,
Ch. 3] for further details.

All posets discussed in this chapter will be finite. A poset � is called a meet-
semilattice if any two elements � ��� � � have a greatest lower bound, i.e., the
set ��� � �����
	�� ���
	���� has a maximal element, called the meet, ����� , of �
and � . Greatest lower bounds of subsets ��������� ������� ������� in � we denote with� ����� �!�"�������#��� . In particular, meet-semilattices have a unique minimal ele-
ment denoted $% . Minimal elements in �'&(�!$% � are called the atoms in � . Meet-
semilattices share the following property: for any subset ��������� ������� �������() �
the set �*� � ���+�-,'� for all � �-�.� is either empty or it has a unique minimal ele-
ment, called the join, /0���1� �32"�����!24��� , of � . If the meet-semilattice needs
to be specified, we write � / � � � � �5�3�32"�����624��� � � for the join of � in � .
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For brevity, we talk about semilattices throughout the chapter, meaning meet-
semilattices.

Let � be an arbitrary poset. For � ��� set: ����� ��� � ��� � � 	�� � ; ����� , and
��	�� , ��
�� are defined analogously. For subsets 
 )�� with the induced order,
we define 

��� ��� � ��� � � � 
 ��� 	�� � , and 

��� again analogously. For inter-
vals in � we use the standard notations � � � ����� ����� ��� �+�-	�� 	���� , � � � � ��� �
��� ��� �+�-	����'�6� , etc.

A poset is called irreducible if it is not a direct product of two other posets,
both consisting of at least two elements. For a poset � with a unique minimal el-
ement $% , we call � ��� � � �*� ��� ��� $% ����� is irreducible � the set of irreducible ele-
ments in � . In particular, the minimal element $% and all atoms of � are irreducible
elements in � . For � ��� , we call ��� � ��� ������� � � ��� �!��� � the set of elementary
divisors of � – a term which is explained by the following proposition:

Proposition 1.2.1 Let � be a poset with a unique minimal element $% . For � ���
there exists a unique finest decomposition of the interval � $% ����� in � as a direct

product, which is given by an isomorphism "$#&%� �('*)+-, � � $% � � + � .
,/10 � $% ����� , with

" #&%� � $% ������� � � + ������� � $% � � � + for 2 �43 ������� �65 . The factors of this decomposition are
the intervals below the elementary divisors of � : � � � ������� � � ) � � � � � � .
Proof. Whenever a poset with a minimal element $% is represented as a direct
product, all elements which have more than one coordinate different from $% are
reducible. Hence, if ' )+7, � � $% � � + ��8 � � $% ����� , and the � + are irreducible for 2 �93 ������� �:5 ,
then � � � ������� � � ) � ��� � � � . ;

1.2.2 Building sets

In this subsection we define the notion of building sets of a semilattice and develop
their structure theory.

Definition 1.2.2 Let � be a semilattice. A subset 
 in �'&(� $% � is called a building
set of � if for any � � �'&
�3$% � and max 
<��� � �*� � ������� ���>= � there is an isomor-
phism of posets

"
���
=?

+7, �
� $% ��� + � .

,/@0 � $% ����� (1.2.1)

with "
� ��$% ������� � � + ������� � $% � � � + for 2 �A3 ������� �!B . We call C � � �D� �E�F��� 

��� the
set of factors of � in 
 .

The next proposition provides several equivalent conditions for a subset of
�'&(� $% � to be a building set.
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Proposition 1.2.3 For a semilattice � and a subset 
 of �'& � $% � the following are
equivalent:

(1) 
 is a building set of � ;

(2) 
�� � � � �!&(� $% � , and for every � � ��& � $% � with ��� � � ��� � � ������� � � ) � the
elementary divisors of � , there exists a partition �1� ��� � � ����� � �>= of � 5 �
with blocks ��� � ��� � ������� ����� 	�
�� � for 
 � 3 ������� �:B , such that the elements in
����� 

��� ���*� � ������� � �>=�� are of the form ����� " #&%� ��$% ������� � $% � ��������$% ������� � $% �
����� � $% ������� � $% ������� � 
 � � $% � .
Informally speaking, the factors of � in 
 are products of disjoint sets of
elementary divisors of � .

(3) 
 generates �'&
� $% � by 2 , and for any � � � , any � � � � � ������� � � � � )
����� 

��� , and � � � with � ��� , we have 
<����� 

��������� �"!#!#! �$� 
 � 

��� .

(4) 
 generates �'&
� $% � by 2 , and for any � � � , any � � � � � ������� � � � � )
����� 

��� , and � � � with � ��� , the following two conditions are satisfied:

� � 

����� 

����� �"!#!#! ��� 
 �&% “disjointness,”
� � � � 2'� � 21����� 2 ���$�0��2'� � 2������ 2 � � “necessity.”

Proof. (1) ' (2): That 
 contains � � � �!&
� $% � follows directly from the definition of

building sets. We have the following isomorphisms: " �(� ' =+-, � � $% ��� + � /@0 � $% �����
by the building set property, and " #&%��( � ' �*),+ � ��( � � $% � ��� /10 � $% ��� + � for 2 � 3 ������� �!B
by Proposition 1.2.1. The composition " �.- � ' =+7, � " #&%��( � yields the finest de-

composition " #&%� of � $% ����� . Thus, ��� � � �0/ =+7, � � � � + � , which gives the partition
described in (2).
(2) ' (1): The decomposition of � $% � ��� into intervals below the elements in
����� 

��� follows from Proposition 1.2.1 by assembling factors � $% ��� + � with max-
imal elements indexed by elements from the same block of the partition ��� into
one factor.
(1) ' (3): (3) is a direct consequence of � $% ����� decomposing into a direct product
of the form described in the definition of building sets.
(3) ' (4): � � follows by setting � � $% in (3). Equality in � � � implies with (3) that


��� � 

��� , in particular, � � 

��� – a contradiction to ���0� .
(4) ' (1): For � ����& � $% � and max 

��� � �*� � ������� � �>=�� consider the poset map

1 �
=?

+7, �
� $% ��� + � /@0 � $% ����� � ��2 ��������� �32
= �54 /@0 2 � 2 ����� 262 = �
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i)
1

is surjective: For $%��� � 	�� , let max 
<��� � � � � ������� � � � � . First, observe that
/ �� , � ��� ��� , since 
 generates � by 2 . Second, define � + � � / ����)���( ��� with � + � �
�&�F��� 

��� � � 
 ����( for 2 � 3 ������� �!B . Clearly, � + �(� $% ��� + � , and � =+7, � � + � �F��� 

��� ,
since 
<��� )�

��� . Hence,

1 �	��� ������� �
� = � � / �� , � ��� � � .
ii)

1
is injective: a) Assume

1 ��2 � ������� ��2
= � � 1 ��� � ������� �
��= ��� � �� � . Let
max 

��� � � � � ������� � � � � . By induction on the number of elements in � $% � ��� we can
assume that � $% � ��� decomposes as a direct product � $% � ��� 8 � ' �� , � � $% � ��� � . More-
over, the subsets � + of max 

��� defined in i) actually partition max 
$��� as fol-
lows from the disjointness property applied to pairwise intersections of the 
�����( .
Thus, � $% � ��� 8 � ' =+7, � � $% �
� + � , with elements � + � � $% � � + � as above, and it follows
that 2 + �
� + �
� + for 2 �E3 ������� �!B .
b) Assume that

1 � 2 � ������� ��2
= � � 1 ��� � ������� ����= � ��� . By the necessity property it
follows that 2 + �
� + � � + for 2 � 3 ������� �!B . ;

Remark 1.2.4 The definition of building sets and of irreducible elements, as well
as the characterization of building sets in Proposition 1.2.3 (2), are independent
of the existence of a join operation and can be formulated for any poset with a
unique minimal element.

We gather a few important properties of building sets.

Proposition 1.2.5 For a building set 
 of � , the following holds:

(1) Let � � � , C � � � � �*� � ������� ���>= � the set of factors of � in 
 , and $%����� � 

with � 	'� . Then there exists a unique 2 �4��3 ������� �:B6� such that � 	�� + ; i.e.,
C � � �
� �F��� 

��� induces a partition of 
<��� .

(2) For � � � and ��� ��C � � � ,
�
� C � � �!&
�*��� � � � � C � � � � � �

i.e., each factor of � in 
 is needed to generate � .

(3) If � � ������� ��� = in 
 are such that ��� � � / =+7, � � + � � 
 � % for � �E3 ������� �!B , then

C � / =+7, � � + � � ��� � ������� ��� =�� .
Proof. (1) is a consequence of Proposition 1.2.3 (4)i), as was noted already in
the proof of (4) ' (1), part ii) a), in the previous proposition. Taking the full set
of factors and setting � � $% in Proposition 1.2.3 (4)ii), yields (2). For (3) note that
��� � ������� ��� =��() C � / =+7, � � + � by assumption. If ��� � ������� ��� = � were not the complete
set of factors, we would obtain a contradiction to (2). ;
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Example 1.2.6 (1) For the boolean lattice �
� of rank � , its atoms form the mini-
mal building set. As with any other semilattice, the full poset without its minimal
element gives the maximal building set.

In the smallest interesting example, the rank � boolean lattice ��� , we see that
there are other building sets between these extremal choices: The atoms can be
combined with any other rank � element to form a building set. Moreover, atoms
can be combined with the top element to form a building set, and any other subset
of ��� containing the latter is in fact a building set.

(2) For the partition lattice � � , the minimal building set is given by the 3 -block
partitions. Again, the maximal building set is given by the full lattice without its
minimal element. Looking at ��� , we see that we can add any � -block partition
to the minimal building set, e.g., (12)(34), to obtain building sets other than the
extreme ones.

(3) The lattice � � of positive integral divisors of a natural number �
	 %
ordered

by division relation has the prime powers dividing � as its minimal building set.
Note that this example includes the boolean lattice for any � having no square
divisors, hence there are ample building sets between the extreme choices.

1.2.3 Nested sets

In this subsection we define the notion of nested subsets of a building set of a semi-
lattice and prove some of their properties.

Definition 1.2.7 Let � be a semilattice and 
 a building set of � . A subset �
in 
 is called nested if, for any set of incomparable elements � � ������� � �!� in � of
cardinality at least two, the join � ��2 ������2��!� exists and does not belong to 
 . The
nested sets in 
 form an abstract simplicial complex, denoted � � 

� .

Note that the elements of 
 are the vertices of the complex of nested
sets � � 

� . Moreover, the order complex of 
 is a subcomplex of � � 

� , since
linearly ordered subsets of 
 are nested.

Proposition 1.2.8 For a given semilattice � and a subset � of a building set 

of � , the following are equivalent:

(1) � is nested.

(2) Whenever � � ������� ���!� are noncomparable elements in � , the join � � 2 ����� 2(�!�
exists, and C � � � 21�����*2 �!� � � �*� � ������� ���!��� .

(3) There exists a chain 
 ) � , such that � ��� �,)�� C � � � .
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(4) � ��� , where � is the maximal subset of �


, for which the following three

conditions are satisfied:

(o) %���� , and ����� ��� , for � ��
 ;

(i) if � ��� and � � ����� � , then � ��� ��� ;

(ii) if � ��� , then ����� � � C � / �F� � � � .
Proof.
(1) ' (2): Let � be a nested set, and � ���*� � ������� � �!�+�() � a set of in-
comparable elements with / �� , � � � �� 
 . We can assume that for some � + :
� � + � / �� , � � � ��� 
 �� % , otherwise the claim follows by Proposition 1.2.5 (3). More-
over, we can assume that there exists an element � � � � � ��/ �� , � � � ��� 
 and that
� � �F� � 
 ���	� . Define ��
 � ���*� � ������� ���!�+� � 

��� � �*� � ��� +
� ��� + � ������� ��� +�� � and
� � � / =

) , � �
+
� . Since ��
 ���*� +
� ��� + � ������� ��� +�� � is nested (it is a subset of � ), we

have the strict inequality � ��� . Furthermore,

��
� , �

� � � � 2
�
�
� &�� 
 � 	 � 2

�
� ����� � ���	� & � �6� � �

��
� , �

� � �

where the first inequality follows from Proposition 1.2.5 (1) and the second in-
equality from Proposition 1.2.5 (2). We thus arrive to a contradiction, which fin-
ishes the proof.
(2) ' (1): Obvious.
(2) ' (3): Let � be a set satisfying condition (2). Fix a particular linear exten-
sion �*� � ������� ���>=�� on the partial order of � , and define 2 + � ��� �!2 �����62 � + , for
2 �93 ������� �:B . By (2) we have C ��2 + � � �������*� � ������� ��� + � , and therefore � + ��C � 2 + �
and � +�� � ���C � 2 + � for 2 �93 ������� �!B . Hence, the 2 + ’s are different and form a chain

 � 2 � � 2�� ������� � 2 = . By construction, � � � �,)�� C � � � .
(1),(2) ' (4): Let � be a nested set, we shall prove that � ��� by induction on
the size of � :

1. if � � � � %
, then � ��� by condition (o);

2. if � � � , 3 , then �F� � � � C � / ����� � � by condition (2). Furthermore,
since � � ��� �$� � � � , and � ��� is nested (it is a subset of � ), � ��� ��� by
induction. Hence � ��� .

(3) ' (1): Let 
 � ��2 �@� ������� 2 = � be a chain in � and � � � �,) � C � � � . Let
��
 � �*� � ������� ���!�+� ) � , 
 , � , be an antichain in � , and � the maximal index in 

such that ��
���C � 2�� � �� % . In particular, ��
���C � 2�� � �����2�� � due to � ��
 � 	 3 and
��
 being an antichain.
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Let � � ��
���C � 2�� � . If � ��
���C � 2�� � � 	 3 ,

� � �
� � 
 ��C � 2�� � � 	

�
� 
 	 2 � �

where the strict inequality is a consequence of the necessity property for building
sets. Thus, / ��
 �� 
 . If � ��
,� C ��2 � �*� �93 , we have � � / ��
 	�2�� , due to ��

being an antichain with � � 
 � 	*3 , and again / � 
 �� 
 .
(4) ' (3): We need the following fact:

Fact. If there are elements � � ������� � �!� and � � ������� � � = in � , such that �!� 	 � +
for 2 � 3 ������� �!B , and C � / �� , � � ��� ���*� � ������� � �!�+� , and C � / =+7, � � + � ��� � ��������� � � = � ,
then C � � � 2 ������2 �!� � � 2 � � 2 ������2'� = � ���*� � ������� ���!� � � � � � ������� � � = � �

Once the fact above is proved, one can derive (3) as follows: For any
� � � we shall form a chain 
 � � 2 �@� ����� �62 � � � � such that � � � � � �� , � C � 2 � � .
Choose a linear extension �*� � ������� ���!�+� of � . Set 2 � � / ����� � , moreover,
2 � � � � / ����� � � &(�*�!�+� � , 2 � � � � / �F� � � � &(�*�!� ���!� � � � � , and so on. By (4)(ii),
C � 2 � � � ����� � . Applying (4)(i) to ����� ����� � , and (4)(ii) to � ��� 
 , we ob-
tain C � / ����� � ��� 
 � � �F� � � ��� 
 . With the fact above, we conclude that
C � 2 � � � � �E����� � � &(�*�!�+� � , and, using the same argument iteratively, we arrive
to � � � �� , � C � 2 ��� .
Proof of the fact. Set 2 � ��� �!2 �����62 �!� � ��2�� � 2"�����62�� = . Since 2#	 / �� , � � � ,
the factors of 2 can be partitioned into groups of elements below the � � for
� � 3 ������� � 
 , by Proposition 1.2.5 (1). Since � � 	�2 for � � 3 ������� � 
 / 3 , we obtain
C � 2 � ���*� � ������� � �!� � � �
�!� ������� �
���
� with � + 	��!� for 2 � 3 ������� ��� .

Again using Proposition 1.2.5 (1), the � ��������� � � = can be partitioned into
groups below the factors � + for 2 � 3 ������� ��� . The occurrence of one strict in-
equality / � � ) � � ) 	 � + ��� � + for some 2 � ��3 ������� ����� yields a contradiction to
2 � / � � �� , � � � 2 / =+7, � � + � / � � �� , � � � 2 / �+-, � � + , due to the necessity property of
building sets. Moreover, since the �"� are factors themselves, joins of more than two
of the ��� ’s are not elements of 
 . Thus, �"� � ��� , for � � 3 ������� �!B ��� , as claimed. ;

Example 1.2.9 (1) For the boolean lattice
	 � with its minimal building set, any

subset of atoms is nested. The nested set complex hence is a simplex on � vertices.
As for any other semilattice with maximal building set, the nested sets are the
totally ordered subsets of the poset, hence the nested set complex is the order
complex of the poset. In the particular case of � � it is the barycentric subdivision
of a simplex on � vertices. For � � with building set 
 � ��3 � � � � ��� � � the nested
set complex consists of two triangles, namely ��3 � � ��� � � and ��3 � � ��� � � .

(2) For the partition lattice � � with its minimal building set of 3 -block parti-
tions, a subset of such partitions is nested if and only if any two non-trivial blocks
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are either contained one in another or disjoint. This is the example which has sug-
gested the terminology of nested sets in the first place, it appeared as the central
combinatorial structure in the paper of Fulton & MacPherson [FuM] on models
for configuration spaces of smooth complex varieties.

1.3 SEQUENCES OF COMBINATORIAL BLOWUPS

We introduce the notion of a combinatorial blowup of an element in a semilattice
and prove that the set of semilattices is closed under this operation.

1.3.1 Combinatorial blowups

Definition 1.3.1 For a semilattice � and an element 2 � � we define a
poset ����� � , the combinatorial blowup of � at 2 , as follows:

- elements of ����� � :

(1) � � � , such that � �, 2 ;

(2) � 2 � � � , for � � � , such that � �, 2 and �5��262 � � exists
(in particular, � 2 � $% � can be thought of as the result of blowing up 2 );

- order relations in ����� � :

(1) � 	 � in ����� � if � 	 � in � ;

(2) � 2 � � � 	 � 2 ����� in ����� � if � 	0� in � ;

(3) � 2 � � � 	 � in ����� � if � , � in � ;

where in all three cases � � � �, 2 .

Note that the atoms in ����� � are the atoms of � together with the ele-
ment � 2 � $% � . It is easy, albeit tedious, to check that the class of (meet-)semilattices
is closed under combinatorial blowups.

Lemma 1.3.2 Let � be a semilattice and 2 � � , then ����� � is a semilattice.

Proof. The joins in ����� � are defined by the rule

�-� 2 � � � 2 � 2 ��� � �
	 %��
� � � 2 � �5� 2�� � � � �

�7� 2 ��� � 2'� �
	 %��
� � � 2 � �5� 2�� � � � �

�5��2'� �
	 %��
� � �5� 2 � � � �
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which is applicable only if � � 2�� � � exists, otherwise the corresponding joins in
����� � do not exist. Also, the first and second formulae are applicable only in the
case �5�.2�� � � �, 2 , otherwise the corresponding joins do not exist. The check of
this is straightforward and is left to the reader. ;

Observe that it is possible that � � 2'� � � exists, while � � 2'� �
	 % �
�

does not.

1.3.2 Blowing up building sets

In this subsection we prove that if one combinatorially blows up a building set of
a semilattice in any chosen linear extension order, then one ends up with the face
poset of the simplicial complex of nested sets of this building set. The following
proposition provides the essential step for the proof.

Proposition 1.3.3 Let � be a semilattice, 
 a building set of � , and 2 � ����� 
 .
Then,

�


 � � 
 & ��2 � � � � � 2 � $% � � is a building set of ����� � . Furthermore, the nested
subsets of

�


 are precisely the nested subsets of 
 with 2 replaced by � 2 � $% � .
Proof. It is easy to see that

�


 is a building set of ����� � . Indeed, given � � � & � 	 � ,
(1.2.1) is obvious for � � ����� � , and, if � � 2 2 � � exists, it follows for � 2 � ��� �
����� � from the identity

� $% � � 2 ����� � 	 % �
� � � $% ����� 	 % �

� � 	 � �
where

	 � is the subposet consisting of the two comparable elements $% � � 2 � $% � .
Let us now see that the sets of nested subsets of 
 and

�


 are the same when
replacing 2 by � 2 � $% � :

Let � be a nested set in 
 , not containing 2 . For incomparable ele-
ments � � ������� ���!� in � , / �� , � � � �,�2 , since otherwise we had 2 � ����� 
 ��� ��� �
C � / �� , � � ��� ���*� � ������� ���!�+� by Proposition 1.2.8(2). Thus, / �� , � � � exists in ����� �
and / �� , � � � ��

�


 . Hence, � is nested in
�


 . A nested subset in
�


 not containing
� 2 � $% � is obviously nested in 
 .

Let now � be nested in 
 containing 2 , and set
�

� � � � & ��2 � � � � � 2 � $% �5� .
Subsets of incomparable elements in

�

� not containing � 2 � $% � can be dealt with
as above. Thus assume that � 2 � $% � ��� � ������� ���!� are incomparable in

�

� . Then,
� � ������� ���!� are incomparable in the nested set � , and, as above, we conclude that
/ �� , � � � exists and / �� , � � � �, 2 . Moreover, 2 2 / �� , � � � exists in � (joins of
nested sets always exist!), thus, � 2 � / �� , � � � � � � 2 � $% � 2 / �� , � � � exists in ����� � and
is obviously not contained in

�


 . We conclude that
�

� is nested in
�


 .
Vice versa, let

�

� be nested in
�


 containing � 2 � $% � , and set � � �
�

� & � � 2 � $% �5� � �
��2 � . Again it suffices to consider subsets of incomparable elements 2 ��� � ������� ���!�



1.4 Instances of combinatorial blowups 11

in � . With � 2 � $% � � � � ������� ���!� incomparable in
�

� , � 2 � $% ��2 / �� , � � � � � 2 � / �� , � � � �
exists in ����� � , thus 2�2 / �� , � � � exists in � . Incomparability implies that 2�2
/ �� , � � � 	 2 , and thus 2 2�/ �� , � � � ���
 . We conclude that � is nested in 
 . ;

By iterating the combinatorial blowup described in Proposition 1.3.3 through
all of 
 , we obtain the following theorem, which serves as a motivation for the
entire development.

Theorem 1.3.4 Let � be a semilattice and 
 a building set of � with some chosen
linear extension: 
 � � � � ������� � ����� , with � � 	 � + implying � �E2 . Let ��� = �
denote the result of subsequent blowups ��� � � ����� � ��� � ������� ��� � � � � � . Then the final
semilattice ������� is equal to the face poset of the simplicial complex � � 

� .
Proof. The building set 
 � of ������� that results from iterated application of Propo-
sition 1.3.3 obviously is the set of atoms

�
in ������� . Every element � � ����� � is

the join of atoms below it: � � / � ��� . The subset
� ��� of 
 � is nested, in partic-

ular, it is the set of factors of � in ���*� � with respect to 
 � (Proposition 1.2.8(2)).
Proposition 1.2.5(2) implies that the interval � $% ����� in ����� � is boolean. We con-
clude that ��� ��� is the face poset of a simplicial complex with faces in one-to-one
correspondence with the nested sets in 
 � , which in turn correspond to the nested
sets in 
 by Proposition 1.3.3. ;

1.4 INSTANCES OF COMBINATORIAL BLOWUPS

1.4.1 De Concini-Procesi models of subspace arrangements

Let � � � �.� ������� � � � � be an arrangement of linear subspaces in complex
space ��� . Much effort has been spent on describing the cohomology of the com-
plement 	 �
� � ����� & ��� of such an arrangement and, in particular, on answer-
ing the question whether the cohomology algebra is completely determined by the
combinatorial data of the arrangement. Here, combinatorial data is understood as
the lattice � �
� � of intersections of subspaces of � ordered by reverse inclusion to-
gether with the complex codimensions of the intersections. A major step towards
the solution of this problem (for a complete answer see [DGM, dLS]) was the
construction of smooth models for the complement 	 �
� � by De Concini & Pro-
cesi [DP3] that allowed for an explicit description of rational models for 	 �
� �
following [M]. The De Concini-Procesi models for arrangements in turn are one
instance in a sequence of model constructions reaching from compactifications of
symmetric spaces [DP1, DP2], over the Fulton-MacPherson compactifications of
configuration spaces [FuM] to the general framework of wonderful conical com-
pactifications proposed by MacPherson & Procesi [MP].
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Given a complex subspace arrangement � in � � , De Concini & Procesi de-
scribe a smooth irreducible variety � together with a proper map � � � /10 � �
such that � is isomorphism over 	 �
� � , and the complement of the preimage
of 	 �
� � is a union of irreducible divisors with normal crossings in � . The
model � can be constructed by a sequence of blowups of smooth subvarieties that
is prescribed by the stratification of complex space induced by the arrangement.

Building sets for subspace arrangements

In order to enumerate the strata in the intersection stratification of � given by the
irreducible divisors, De Concini & Procesi introduced the notions of building sets,
nested sets and irreducible elements as follows:

Definition 1.4.1 ([DP3,
�
2]) Let � �
� � be the intersection lattice of an arrange-

ment � of linear subspaces in a finite dimensional complex vector space. Consider
the lattice � �
� ��� formed by the orthogonal complements of intersections ordered
by inclusion.

(1) For � � � �
� � � , � ��� =� , � � � with � � � � �
� � � , is called a decomposition
of � if for any �0)�� , � � � �
� � � , � �	� =� , � �
� � ��� � and � � ��� � � �
� � �
for ��� 3 ������� �!B .

(2) Call � � � �
� � � &(� $% � irreducible if it does not admit a non-trivial decom-
position.

(3) 
 ) � �
� � � &(� $% � is called a building set for � if for any � � � �
� � � and
� � ������� � ��= maximal in 
 below � , � ��� =� , � � � is a decomposition (the

 -decomposition) of � .

(4) A subset � )�
 is called nested if for any set of non-comparable elements
� � ������� �
�$= in � , � ��� =� , � � � is the 
 -decomposition of � .

Note that � �
� ��� coincides with � �
� � as abstract lattices. We will therefore
talk about irreducible elements, building sets and nested sets in � �
� � without
explicitly referring to the dual setting of the preceding definition.

The notions of Definition 1.4.1 are in part based on the earlier notions intro-
duced by Fulton & MacPherson in [FuM] to study compactifications of configu-
ration spaces. Our terminology is naturally adopted from [FM, DP3]. Building
sets and nested sets in the sense of De Concini & Procesi are building and nested
sets for the intersection lattices of subspace arrangements in our combinatorial
sense (see Proposition 1.4.5 (1) below). However, there are differences. The op-
posite is not true: A combinatorial building set for the intersection lattice of a
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subspace arrangement is not necessarily a building set for this arrangement in the
sense of De Concini & Procesi, neither are irreducible elements in the sense of
De Concini & Procesi irreducible in our sense.

Example 1.4.2 (Combinatorial versus De Concini-Procesi building sets)
Consider the following arrangement � of 3 subspaces in � � :

�.� � � � � % � ��� �#� � � � � � % � � � � � � �"� � � % �
The intersection lattice � �
� � is a boolean algebra on 3 elements. Combinatorial
building sets of this lattice have been discussed in Example 1.2.6, in particular,
the set of atoms � � � ��� � � �����() � �
� � is the minimal combinatorial building set.
However, any building set for � in the sense of De Concini & Procesi necessarily
includes the intersection � � ��� � , since its orthogonal complement does not de-
compose in � �
� � � . The minimal building set for � , i.e., the set of irreducibles
for � , in the sense of De Concini & Procesi is � �-��� � � ��� � � ��� ��� ��� . Any other
building set contains this minimal building set and the total intersection

� � � %
.

The main difference between our combinatorial set-up and the original context
of De Concini-Procesi model constructions can be formulated in the following
way: our constructions are order-theoretically canonical for a given semilattice.
The set of combinatorial building sets, in particular the set of irreducible elements,
depends only on the semilattice itself and not on the geometry of the subspace
arrangement which it encodes. See Proposition 1.4.5 for a complete explanation.

Local subspace arrangements

In order to trace the De Concini-Procesi construction step by step we need the
more general notion of a local subspace arrangement.

Definition 1.4.3 Let � be a smooth complex � -dimensional manifold and �
a union of finitely many smooth complex submanifolds of � such that all non-
empty intersections of submanifolds in � are connected smooth complex sub-
manifolds. � is called a local subspace arrangement if for any � � � there exists
an open set � in � with � � � , a subspace arrangement

�

� in ��� , and a biholo-
morphic map

1 � � 0 � � , such that
1 � � � � � �

�

� .

Given a subspace arrangement � , the initial ambient space � � of 	 �
� � car-
ries a natural stratification by the subspaces of � and their intersections, the poset
of strata being the intersection lattice � �
� � of the arrangement. For a local sub-
space arrangement � � � � � ������� ��� � � in � we again consider the stratification
of � by all possible intersections of the � � ’s, just like in the global case. The
poset of strata is also denoted by � �
� � and is called the intersection semilattice
(it is a lattice if the intersection of all maximal strata is nonempty).
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Definition 1.4.4 Let � be a local subspace arrangement and � �
� � its intersection
semilattice. For � ��� �
� � , � � ������� � �<= ��� �
� � are said to form a decomposition
of � if for any � ��� there exists an open set � with � � � and a biholomorphic
map

1 � � 0 ��� , such that
1 � � � � � � ������� � 1 � � � �<= � form a decomposition of1 � � � �	� in the sense of Definition 1.4.1(1).

As in the global case, 
0)�� �
� � is a building set for � if for any � � � �
� � ,
the set of strata �F� � 

��� gives a decomposition of � .

We shall refer to these building sets as geometric building sets. The differ-
ence between combinatorial building sets and geometric ones is contained in the
dimension function as is explained in the following proposition.

Proposition 1.4.5 Let � be a local subspace arrangement with intersection
semilattice � �
� � .

(1) If 
 ) � �
� � is a geometric building set of � , then it is a combinatorial
building set.

(2) If 
 ) � �
� � is a combinatorial building set of � �
� � , and for any � � � �
� �
the sum of codimensions of its factors is equal to the codimension of � , then

 is a geometric building set.

Proof. In both cases it is enough to consider the case when � is a subspace
arrangement.

(1) Consider 
 as a subset of � �
� � � , then, for � � 
 , the isomorphism "��
requested in Definition 1.2.2 is given by taking direct sums:

"����
=?

+7, �
� $% � � + �

� �(�� �/10 � $% � � � �

where � � ������� � ��= are maximal in 
 below � .
(2) For � � � �
� ��� , the set � � � ������� � �<= � � ����� 

��� gives a decomposition

of � because:

a) By the definition of � �
� � � and the definition of combinatorial building sets,
we have � � span � � � ������� � �<= � , and, since

� =� , �	��
 � � � � ��
 � � , we have
���
� =� , � � � ;

b) for any � ) � , � =� , � � � � � � � ) � � span �
� �
� �
������� � �<= � � � )
� =� , � �
� � � � � , where ” � ” denotes the meet operation in � �
� � � , hence
� � � =� , � �
� � � � � .

;
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Intersection stratification of local arrangements after blowup

Let a space
�

be given with an intersection stratification induced by a local sub-
space arrangement, and let � be a stratum in

�
. In the blowup of

�
at � , ��� � � ,

we find the following maximal strata:

- maximal strata in
�

that do not intersect with � ,

- blowups of maximal strata � at � � � , ��� ����� � , where � is maximal in
�

and intersects � ,

- the exceptional divisor
�

� replacing � .

We consider the intersection stratification of ��� � � induced by these maximal
strata. We will later see (proof of Proposition 1.4.7) that in case � is maximal in
a building set for the local arrangement in

�
, then the union of maximal strata

in ��� � � is again a local arrangement with induced intersection stratification. In
general, this is not the case, see Example 1.4.6

For ease of notation, let us agree here that formally blowing up an empty (non-
existing) stratum has no effect on the space. We think about a stratum � in

�
,

intersection of all maximal strata � ��������� � �!� that contain � , as being replaced by
the intersection of corresponding maximal strata in ��� � � :

��� ����� ��� � � ����� � ��� ����� 
 �!� � (1.4.1)

(recall that ��� ����� (
� + � � + for �.� � + � % ). The intersection (1.4.1) being empty
means that the stratum � vanishes under blowup of � . For notational conve-
nience, we most often retain names of strata under blowups, thereby referring to
the replacement of strata described above.

Example 1.4.6 (Local subspace arrangements are not closed under blowup)
We give an example which shows that blowing up a stratum in a local subspace
arrangement does not necessarily result in a local subspace arrangement again.
Consider the following arrangement of 2 planes and 1 line in � � :

�.� �#� / � � % � � � �#��� � � % � � � � � � � % �

After blowing up � , the planes � � and � � are replaced by complex line bundles
over ��� � , which have in common their zero section 	 and a complex line � ; �
is replaced by a direct product of � and ��� � , which intersects both line bundles
in 	 . The new maximal strata fail to form a local subspace arrangement in the
point 	 � � .
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Tracing incidence structure during arrangement model construction

We now give a more detailed description of the model construction by De Concini
& Procesi via successive blowups, and then proceed with linking our notion of
combinatorial blowups to the context of arrangement models.

Let � be a complex subspace arrangement, 
 ) � �
� � a geometric building set
for � , and � � ��������� � � � � some linear extension of the partial containment order
on associated strata in � � such that � =�� � ) implies 5F� B . The De Concini-
Procesi model � � � 
 of 	 �
� � is the result of blowing up the strata indexed
by elements of 
 in the given order. Note that the linear order was chosen so
that at each step the stratum which is to be blown up does not contain any other
stratum indexed by an element of 
 . At each step we consider intersection strat-
ifications as described above, and we denote the poset of strata after blowup of
� � with �



� �
� � . For the case of a stratum � � being empty after previous blowups

remember our agreement of considering blowups of % as having no effect on a
space. The later Proposition 1.4.7 however shows that strata indexed by elements
in 
 do not disappear during the sequence of blowups.

Let us remark that the combinatorial data of the initial stratification, i.e., of the
arrangement, prescribes much of the geometry of � 
 : the complement � 
 & 	 �
� �
is a union of smooth irreducible divisors indexed by elements of 
 , and these
divisors intersect if and only if the set of indices is nested in 
 [DP3, Thm 3.2].

Proposition 1.4.7 Let � be an arrangement of complex subspaces, 
 a build-
ing set for � in the sense of De Concini & Procesi, and � � � ������� � � �+� some lin-
ear extension of the partial containment order on associated strata as described
above. Let ���



� �
� � denote the geometric result of successively blowing up strata

� � ������� � � � , for 3 	 �!	 
 . Then,

(1) The poset of strata �


� �
� � of ���



� �
� � can be described as the result of a

sequence of combinatorial blowups of the intersection lattice � ��� �
� � :
�


� �
� � � ��� � ��� � � for 3 	 �!	 
 �

(Recall that ���,� � � � � ��� � � � ��� � � � � � ����� ��� � � � � � for 3 	 �!	6
 .)
(2) The union of maximal strata �



� in ���



� �
� � is a local subspace arrange-

ment, with 
 in �


� �
� � being a building set for �



� in the sense of Defini-

tion 1.4.4. (Recall that 
 here refers to the preimages of the original strata
in 
 ) � �
� � under the sequence of blowups.)

Proof. We proceed by induction on the number of blowups. The induction start is
obvious, since the lattice of strata �



� �
� � of the initial stratification of � � coincides
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with the intersection lattice � �
� � � ��� � � � � of the arrangement � . The union of
maximal strata is the arrangement � itself with its given building set 
 .

Assume that �


� � � �
� � � ����� � � � � � for some 3 	 �!	 
 , the union of maxi-

mal strata �


� � � in ���



� � � �
� � being a local arrangement, and 
 a building set for

�


� � � �
� � . Let � � � � be the next stratum to be blown up. First, we proceed in 4

steps to show that �


� �
� � � ����� � � � . In 2 further steps we then verify the claims

in (2).
Step 1: Assign strata of ���



� �
� � to elements in ���,� � � � .

We distinguish two types of elements in ���$� � � � :
Type I � � with � � ��� � � � � � � and � �, � �
Type II � � � � � � with � � ��� � � � � � � � � �, � �

and � 2 � exists in ���,� � � ��� � �
To � � ����� ��� � of type I, assign ��� ����� � (recall that blowing up an empty stratum
does not change the space). Note that ��
 � ��� ����� � � ��
 � � .
To � � � � � � ��� � ��� � of type II, assign � ��� ����� � � �

�

� , where
�

� denotes the ex-
ceptional divisor that replaces � in ���



� �
� � . This description comprises

�

� being
assigned to � � � $% � . Note that ��
 � ����� ����� � � �

�

� � ��
 �	� / 3 .
Step 2: Reverse inclusion order on the assigned spaces coincides with the partial
order on ���,� � � � .
(1)

� � � � ��� � � � � , both of type I:

� 	 	 % �
��� � ��� � 	 	 % � � �

��� � ��� � � 	 %
�� � � ��� � ��� ��� ���
	 � � ��� ����� � �

where “ � ” in the last equivalence can be seen by first noting that � & � �.� � � )� & � �.� � � , and then comparing points in the exceptional divisors.
(2)

� � � � � ��� � ��� � � � � , � of type I, � � � � � of type II:
As above we conclude

� 	 	 % �
�
� � � � � � ��� � 	 	 % � � �

�
� � �
� � � 	 %

�� � � ��� � � ' ��� ���
	 � � ��� ����� � �
�

� �

To prove the converse is rather subtle. Note first that � ��� ) �.� �
. Assume

that � strictly contains �.� �
, then both �.� �

and � � � are not in the building
set due to the linear order chosen on 
 , and � is a factor of both �.� �

and �.��� .
Let C �
�.� � � ��� � � � ��������� � � = � , C �
�.� � � ��� � ��
#� ������� ��
 ��� . � written as a
join of elements in ���,� � � � � � below the factors of �.� �

reads

� � ��	�2 	(� 2������ 2 	�=
for some ��	 �(� $% � � � , 	 � � � $% � � � � for � � 3 ������� �!B .
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If 	 ��� � � for some � � ��3 ������� �!B6� , we have

� 2 � � � 2 � ��	12 	
� 2 ����� 2 	 � 2 ������2 	�= �
	 � 2 � ��	12 � � 21����� 2 	 � 2 �����*2 ��= �
� � 2 � � 2������ 2 � = � � 2 � �

by the “necessity” property of Proposition 1.2.3(4), yielding a contradiction.
Hence, � � ��	12 � � 21�����*2 � = �
and similarly, � � � �#2 
#� 21����� 2 
 � for some � � � � $% � ��� .

For each 2 �4��3 ������� �!B6� there exists a unique � + �4��3 ������� ��
�� such that � + 	

 � ( by Proposition 1.2.5(1). Thus, / � ��� / 
 + , and, for showing that

� 	 � ,
it is enough to see that � 	 	 ��� .

We show that in an open neighborhood of any point � � �.� � , � � ) ��	 . This
yields our claim since strata in ���



� � � �
� � have pairwise transversal intersections:

if they coincide locally, they must coincide globally. With �


� � � being a local

arrangement, there exists an open neighborhood of � � �.��� where the strati-
fication is biholomorphic to a stratification induced by a subspace arrangement.
We tacitly work in the arrangement setting, using that ������� � � ��� � �6��� ��� is the in-
tersection lattice of a product arrangement. The 
 -decomposition of �
� 2 � � �
described in Definition 1.4.4 yields (when transferred to the primal setting):

� � � span �
� � � � �

Analogously, � 	 � span � � � � � .
In the linear setting we are concerned with, we interpret points in the excep-

tional divisor of a blowup as follows:

��� ����� �5�
�

� � � � � � span ��� � � � � � � ��� � �5� �
��� � � &	�
� � � � � � (1.4.2)

In terms of this description, the inclusion map ��� ����� � �
�

��� 0 ��� � � ���


� � � �
� � �

reads
�5� � span ��� � � � � � ��4 /10 � � � span ��� � � � � �

Therefore, ��� ����� � �
�

� being contained in ��� ���
	 � ) ��� � � ���


� � � �
� � � means

that for � � � span ��� � � � � � � � ��� ����� �.�
�

� there exists � � � & � � � � � such
that span ��� � � � � span ��� � � � . In particular, span � �
� � � ) span � � � � � , which by
our previous arguments implies that � ) �

.
We assumed above that � � �.� �

. If �.� �
coincides with � , i.e.,

�
con-

tains � , then ��	 � �
and a similar reasoning applies to see that � ) �

. Similarly
for �.� � � �.� � � � .
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(3) � � � � � , � � � � � � ��� � � � � , both of type II:

� � � � � 	 	 % �
�
� � � � � � ��� � 	 	 % � � �

�
� � �
� � � 	 %

�� � � � � � ��� ��� ���
	 � �
�

� � ��� ����� � �
�

� �

where “ � ” follows from (2) and ��� ���
	 � � ��� ���
	 � �
�

� � ��� ����� � �
�

� .
Step 3: Each of the assigned spaces is the intersection of maximal strata
in ���

�
� �
� � .

It is enough to show that spaces assigned to elements of type I in ����� � � � are inter-
sections of new maximal strata. Those associated to elements of type II then are
intersections as well by definition.

Let � � ��� � ��� � , � �, � , and � � � �� , � � � with � ��������� � �!� the maximal strata
in ���



� � � �
� � containing � . We claim that

��� ����� � �
��

� , �
��� ����� � � � � (1.4.3)

For the inclusion “ ) ” note that ��� ����� � ) ��� ��� � � � � is a direct consequence
of � ) � � as discussed in Step 2 (1).

For the reverse inclusion we need the following identity:

��
� , �
� � � � ��� � � � �0� (1.4.4)

This identity holds in any semilattice without referring to � being an element of
the building set.

Let 2 � � �� , � ��� ��� ��� � � . In case 2 � � �� , � � ��& � �.� � � � , we conclude that
2 � � & �
�.� � � . We thus assume that 2 is contained in the intersection of excep-

tional divisors ��.� � � , ��� 3 ������� � 
 . We again switch to local considerations in the
neighborhood of a point � � �.� � , using that it carries a stratification biholomor-
phic to an arrangement stratification.

Using the description (1.4.2) of points in exceptional divisors that are created

by blowups in the arrangement setting, 2 � � �� , � ��.� � � ) � �� , � ��� ��� � � � � means
that there exist � � � �� , � � �.� � ��� , and � � � � � & � �.� � � � for ���E3 ������� � 
 , with

2 � � � � span ��� � � �.� � � � � � ��� ����� � � � �
In particular, span ��� � � � � � span ��� + � � � for 3 	 � � 2 	 
 . Thus,

span ��� + � � � )
��

� , �
span � � � � � � � span �
� � � �
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using the identity (1.4.4). We conclude that there exists � � � & � � ��� � such that
span �5� � � � � span � � + � � � for all 2 �4��3 ������� �!B6� , hence

2 � �5� � span �5� � �.� � � � � ��� ����� � �
Though we are for the moment not concerned with the case of � ) � ,

we note for later reference that (1.4.3) remains true, with ����� � � % mean-
ing that the intersection on the right-hand side is empty. Following the proof
of the inclusion “ � ” in (1.4.3) for � ��� � � , we first find that the inter-
section of blowups can only contain points in the exceptional divisors. As-

suming 2 � � �� , � ��.� � � we arrive to a contradiction when concluding that
span ��� + � � � ) � �� , � span � � � � � � � span �
� � � � � � for 2 � 3 ������� � 
 .
Step 4: Any intersection of maximal strata in ���



� �
� � occurs as an assigned

space.
Every intersection involving the exceptional divisor

�

� occurs if we can show that
all other intersections occur (intersections that additionally involve

�

� then are
assigned to corresponding elements of type II).

Consider � � � �� , � ��� ��� ��� � � , where the � � are maximal strata in ���


� � � �
� � ;

recall here that a blowup in an empty stratum does not alter the space. We can
assume that � �� , � � � �� % , otherwise the intersection � were empty. With the
identity (1.4.3) in Step 3 we conclude that either � � % (in case � �� , � � � ) � )
or � � ��� ����� 
� � � � � � �� , � � � , in which case it is assigned to the element � �� , � � � in
����� � � � .
Step 5: �



� is a local subspace arrangement in ���



� �
� � .

It follows from the description (1.4.3) of strata in ���


� �
� � that all intersections

of maximal strata are connected and smooth. It remains to show that �


� locally

looks like a subspace arrangement. Let � � �


� . We can assume that � lies in the

exceptional divisor
�

� . Let � � �0) �


� � � be the image of � under the blowdown

map.
We first give a local description around � in �



� � � . By induction hypothesis,

there exists a neighborhood � of � , and an arrangement of linear subspaces �
in � � such that the pair � � � �



� � � � � � is biholomorphic to the pair � � � � � � . We

can assume that under this biholomorphic map, � is mapped to the origin. Let� � ���
)�� 	

and note that �.� � is mapped to some subspace � in � .
With � being maximal in the building set for �



� � � , �
	 � is a product arrange-

ment with one of the factors being an arrangement in ��	 � . More precisely, there
exists a subspace � 
 ) � � , and two subspace arrangements, � in ��	 � and � 
 in
� 

	 � , such that

(1) ��	 � ��� 
 	 � � � � � � ,
(2) � � � ����� 
�	 � � � � � ��� � � ����	 � � ��
 � � � ��
 ��� 
 � .



1.4 Instances of combinatorial blowups 21

Blowing up � in ���


� � � �
� � locally corresponds to blowing up � in � � . Let 


be the point on the special divisor
� � corresponding to � �

�

� , thus 
 maps to
the origin in � � under the blowdown map. A neighborhood of 
 in ����� � � is an
� -dimensional open ball which can be parameterized as a direct sum

� � � 
 � � � � �

Here, � is an open ball around
%

in ��	 � , � 
 is an open ball on the unit sphere in
� 

	 � around the point of intersection with the line

�
��� in ��
�	 � that defines 
 as a

point in the exceptional divisor, 
 � � % � span ��� � � � � � �� (compare (1.4.2)), and �
an open unit ball in � .

The maximal strata in this neighborhood are the following:

- the hyperplane � � � 
 � � % � � �
, as the exceptional divisor,

- � � � � � � ��
 � � � �
, replacing ��� � 

	 � � �

after blowup,

- � � �
� 
 � � 
 � � � � �
, replacing ��	 � � � 
 � �

after blowup for
� 
 �� %

.

This proves that around 
 in ������� � we have the structure of a local subspace
arrangement, which in turn shows the local arrangement property around � in �



� .

Step 6: 
 is a building set for �


� in the sense of Definition 1.4.4.


 is a combinatorial building set by Proposition 1.3.3. Complementing this with
the dimension information about the strata, we conclude, by Proposition 1.4.5(2),
that 
 is a geometric building set. ;

1.4.2 Simplicial resolutions of toric varieties

The study of toric varieties has proved to be a field of fruitful interplay between
algebraic and convex geometry: toric varieties are determined by rational poly-
hedral fans, and many of their algebraic geometric properties are reflected by
combinatorial properties of their defining fans.

We recall one such correspondence – between subdivisions of fans and special
toric morphisms – and show that so-called stellar subdivisions are instances of
combinatorial blowups. This allows us to apply our Main Theorem in the present
context: Given a polyhedral fan, we specify a class of simplicial subdivisions,
and, interpreting our notions of building sets and nested sets, we describe the
incidence combinatorics of the subdivisions in terms of the combinatorics of the
initial fan. For background material on toric varieties we refer to the standard
sources [Da, Od, Fu, Ew].
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Let
� �

be a toric variety defined by a rational polyhedral fan � . Any subdivi-
sion of � gives rise to a proper, birational toric morphism between the associated
toric varieties (cf [Da, 5.5.1]). In particular, simplicial subdivisions yield toric
morphisms from quasi-smooth toric varieties to the initial variety – so-called sim-
plicial resolutions. Quasi-smooth toric varieties being rational homology mani-
folds, such morphisms can replace smooth resolutions for (co)homological con-
siderations.

We define a particular, elementary, type of subdivisions:

Definition 1.4.8 Let � ����� ���$) � ) � � be a polyhedral fan, i.e., a collection of
closed polyhedral cones � in � � such that � ��� is a cone in � for any � ��� ��� .
Let 	�

��� � � � be a ray in � � generated by � ������� 
 ����� for some � ��� . The stellar
subdivision � � ��� ��� � of � in � is given by the collection of cones

��� &����6��� ��� ��� � � � ��	�
���� � � ��� � � �4)!� for some � �"�#�:��� �$� ��� � � �
where ���:�%� �$� ��� � �����������&� )'� � , and 	�

��� � � ��� � the closed polyhedral cone
spanned by � and � . If only concerned with the combinatorics of the subdivided
fan, we also talk about stellar subdivision of � in � , � � ��� ��� � , meaning any stellar
subdivision in � for � ����� � 
 �(�)� .

Proposition 1.4.9 Let *��+� � be the face poset of a polyhedral fan � , i.e., the set
of closed cones in � ordered by inclusion, together with the zero cone � % � as a
minimal element. For � ��� , the face poset of the stellar subdivision of � in � can
be described as the combinatorial blowup of * ��� � at � :

* �,� � ��� ��� � � � ����-�* ��� � �

Proof. Removing �#�:��� �$� ��� � from � corresponds to removing *��+� ��	(- from
* ��� � , adding cones as described in Definition 1.4.8 corresponds to extending
* ��� �!&.* ��� �:	(- by elements � � ��� � for � �/* ��� � , � )'� for some � �/���6��� ��� ��� � .
The comparison of order relations is straightforward. ;

We apply our Main Theorem to the present context.

Theorem 1.4.10 Let � be a polyhedral fan in � � with face poset *��+� � . Let

 )0* ��� � be a building set of * ��� � in the sense of Definition 1.2.2, � � 

� the
complex of nested sets in 
 (cf. Definition 1.2.7). Then, the consecutive applica-
tion of stellar subdivisions in every cone � � 
 in a non-increasing order yields a
simplicial subdivision of � with face poset equal to the face poset of � � 

� .

As examples of building sets for face lattices of polyhedral fans let us mention:
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(1) the full set of faces, with the corresponding complex of nested sets being
the order complex of * ��� � (stellar subdivision in all cones results in the
barycentric subdivision of the fan);

(2) the set of rays together with the non-simplicial faces of � ;

(3) the set of irreducible elements in * ��� � : the set of rays together with all
faces of � that are not products of some of their proper faces.

Remark 1.4.11 For a smooth toric variety
� �

, the union of closed codimension 1
torus orbits is a local subspace arrangement, in particular, the codimension 1 orbits
form a divisor with normal crossings, [Fu, p. 100]. The intersection stratification
of this local arrangement coincides with the torus orbit stratification of the toric
variety. For any face � in the defining fan � , the torus orbit � - together with
all orbits corresponding to rays in � form a geometric building set. Our proof
in 1.4.1 applies in this context with � - playing the role of � . We conclude that
under blowup of

� �
in the closed torus orbit � - , the incidence combinatorics of

torus orbits changes exactly in the way described by a stellar subdivision of �
in � . This is the combinatorial part of the well-known fact that in the smooth case,
the blowup of

� �
in a torus orbit � - corresponds to a regular stellar subdivision

of the fan � in � [MO].

1.5 AN OUTLOOK

1.5.1 Models for real subspace arrangements and stratified manifolds

In the spirit of the De Concini-Procesi wonderful model construction for subspace
arrangements, Gaiffi [Ga2] presents a model construction for the complement of
arrangements of real linear subspaces modulo � � : Given a central subspace ar-
rangement � in some Euclidean vector space � , denote by

�
	 �
� � the quotient of

its complement by � � . Denote the unit sphere in � by � � � � , and consider, for a
given (geometric) building set 
 in � �
� � , the embedding

� �
�
	 �
� � /@0 � � � � �

?
� ) 


� � � � � � �

The map is obtained by composing the natural section
�
	 �
� � 0 	 �
� � ,

� ��� 40 �� ��� , with a projection onto each factor of the right-hand side product.
Denote the closure of this map by � 
 . � 
 is shown to be a manifold with cor-
ners, which enjoys much of the properties familiar from the projective setting: the
boundary of � 
 is stratified by codimension 3 manifolds with corners indexed with
building set elements and having non-empty intersection whenever the index set
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is nested with respect to 
 . The set-up allows for a straightforward generalization
to mixed subspace and halfspace arrangements motivated by compactifications
of configuration spaces in work of Kontsevich [Ko]. A step aside from classical
(linear) arrangements, our combinatorial framework still applies is this context.

In a second part of his paper, Gaiffi extends the previous construction to coni-
cally stratified manifolds with corners. Replacing the explicit construction of tak-
ing the closure of an embedding into a product of spheres as above, he describes
a sequence of “real blowups” in the sense of Kuperberg & Thurston [KT]. The
sequence is prescribed by the choice of a subset of strata in the original manifold
that is a combinatorial building set in our sense. The resulting space is a manifold
with corners with its boundary stratified by codimension 3 manifolds with corners
that are indexed by the building set elements, and intersections being non-empty
if and only if the corresponding index sets are nested.

1.5.2 A graded algebra associated with a finite lattice

In joint work with Sergey Yuzvinsky, which appears as second chapter in this
thesis [FY], we start out from the combinatorial notions of building sets and
nested sets given in the present chapter and define a commutative graded alge-
bra in purely combinatorial terms:

Definition 1.5.1 For a finite lattice � ,
�

its set of atoms, and 
 a combinatorial
building set in � , define the algebra �����	��

� as the quotient of a polynomial
algebra over � with generators in 3 - 3 correspondence with the elements of 
 :

�����	��

� � � ��� �*��� � � ) 
 �
���

�

where the ideal of relations
�

is generated by

�?
� , �

��� � � for � � � ������� � ����� not nested �
�
�@	�� ��� � for 
 � � �

For � the intersection lattice of an arrangement of complex hyperplanes �
and 
 its minimal building set, this algebra was shown to be isomorphic to the in-
teger cohomology algebra of the compact wonderful arrangement model in [DP4,
1.1]. We show that the algebra in fact is isomorphic to the cohomology algebra of
the arrangement model for any choice of a building set in the intersection lattice.

Going beyond the arrangement context, we can provide yet another geomet-
ric interpretation of the algebras ��� � ��

� : For an arbitrary atomic lattice and a
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given combinatorial building set we construct a smooth, non-compact toric vari-
ety

� � �
��� 
��
and show that its Chow ring is isomorphic to the algebra � � �	��

� .

In a sense, this is a prototype result of what we had hoped for when working
on our combinatorial framework: to provide the outset for going beyond the geo-
metric context of resolutions and yet get back to it in a different, elucidating, and,
other than via the abstract combinatorial detour, seemingly unrelated way.





CHAPTER 2

CHOW RINGS OF TORIC VARIETIES DEFINED BY

ATOMIC LATTICES

2.1 INTRODUCTION

In this chapter we study a graded algebra � ��� � �	��

� over � that is defined by a
finite lattice � and a special subset, a so-called building set, 
 in � . The definition
of this algebra is inspired by a presentation for the cohomology of arrangement
compactifications as it appears in work of De Concini and Procesi [DP4].

In [DP3, DP4] the authors studied a compactification of the complement of
subspaces in a projective space defined by a building set in the intersection lattice
� of the subspaces. In particular they gave a description of the cohomology alge-
bra 
 � of this compactification in terms of generators and relations. In general,
the set of defining relations for 
 � is much larger than the one we propose for � .
However, in the case of all subspaces being of codimension 3 and 
 the set of
irreducibles in � , the former can be reduced to the latter [DP4, Prop. 1.1]. We
show that this reduction holds for arbitrary building sets in � , thus giving a first
geometric interpretation of the algebra ��� � ��

� (compare Corollary 2.4.3).

Our first result about � is that for an arbitrary atomic lattice � a larger set of
relations, similar to the defining relations of 
 � , holds in � . To define the new
relations for arbitrary lattices beyond the geometric context of arrangements, we
need to introduce a special metric on the chains of � . In fact, this new set of
relations forms a Gröbner basis of the relation ideal which allows us to define a
basis of � over � generalizing the basis defined in [Y] and [Ga1].

Our main result about � motivating its definition is Theorem 2.5.4 which as-
serts that � is naturally isomorphic to the Chow ring of a smooth toric variety� � �����
��� 
��

constructed from an atomic lattice � and a building set 
 in � . This
result gives a second geometric interpretation of � , this time for arbitrary atomic
lattices. We introduce the toric variety

�
by means of its polyhedral fan � � �	��

�

that we build directly from � and 
 . Then we give a more geometric construc-
tion of

�
as the result of several toric blowups of an affine complex space and

subsequent removal of certain open torus orbits.
The chapter is organized as follows. In section 2, we recall the necessary com-

binatorial definitions and define the algebra � � �����	��

� . In section 3, we extend
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the set of relations for � to a Gröbner basis of the relation ideal and exhibit a basis
of the algebra. In section 4, we review the De Concini-Procesi compactifications
of arrangement complements and relate � to their cohomology algebras. Also
we give some examples of the Poincaré series of these compactifications using
our basis. Section 5 is devoted to the definition of the toric variety

�
from a pair

���	��

� . We prove our main theorem asserting that � is naturally isomorphic to
the Chow ring of

�
. In section 6, we give another construction of

�
as the result

of a series of toric blowups and subsequent removal of some open orbits. Finally,
in section 7, we consider a couple of simple examples.

2.2 THE ALGEBRA �����	��

�
We start with defining some lattice-theoretic notions, building sets and nested sets,
that provide the combinatorial essence for our algebra definition below. These
notions, in the special case of intersection lattices of subspace arrangements, are
crucial for the arrangement model construction of De Concini and Procesi [DP3].
For our purpose, we choose to present purely order-theoretic generalizations of
their notions that previously appeared in [FK1].

By a lattice, in this chapter, we mean a finite partially ordered set all of whose
subsets have a least upper bound (join, 2 ) and a greatest lower bound (meet, � ).
The least element of any lattice is denoted by $% . For any subset 
 of a lattice �
we denote by max 
 the set of maximal elements of 
 . Also, for any

� � � we
put 

� 	 ��� � � 
�� �0	 � � , similarly for 

	 . To denote intervals in � we use the
notation � � � � ��� ����	 � � � � 	 	 	 �4� for

� � � � � .

Definition 2.2.1 Let � be a finite lattice. A subset 
 in �'&(� $% � is called a building
set in � if for any

� � �'&
� $% � and max 

� 	 �-� � � ������� � ��=�� there is an isomor-
phism of posets

" 	 �
=?

� , �
� $% � � � � .

,/@0 � $% � � �

with " 	 � $% ������� � � � ������� � $% � � � � for � � 3 ������� �!B . We call ����� 
<� 	 the set of
factors of

�
in 
 .

As a first easy example one can take the maximal building set �
& � $% � . Looking
at the other extreme, the elements

� � �'&(� $% � for which � $% � � � does not decom-
pose as a direct product, so-called irreducibles in � , form the minimal building
set in a given lattice � .

The choice of a building set 
 in � gives rise to a family of nested sets.
Roughly speaking these are the subsets of � whose antichains are sets of factors
with respect to the building set 
 . The precise definition is as follows.
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Definition 2.2.2 Let � be a finite lattice and 
 a building set in � . A subset �
in 
 is called nested if, for any set of pairwise incomparable elements �4� ������� � ���
in � of cardinality at least two, the join ��� 2 ������2 � � does not belong to 
 . The
nested sets in 
 form an abstract simplicial complex, the simplicial complex of
nested sets � � �	��

� .

For the maximal building set 
 � �
& � $% � the nested set complex coincides with
the order complex of �
& � $% � . Smaller building sets yield nested set complexes
with fewer vertices, but allow for more dense collections of simplexes.

An important property of a nested set is that for any two distinct maximal
elements

�
and � we have

� ��� � $% (see [FK1, Prop. 2.5(1), 2.8(2)]).
We now have all notions at hand to define the main character of this chapter.

Definition 2.2.3 Let � be a finite lattice,
� � � � its set of atoms, and 
 a building

set in � . We define the algebra ��� �	� 

� of � with respect to 
 as

�����	��

� � � ��� �*��� � � ) 
 �
� �

�

where the ideal
�

of relations is generated by

�?
� , �

��� � for � � � ������� � ����� �� � � �	� 

� � (2.2.1)

and

�
�@	�� ��� for 
 � � ��� � � (2.2.2)

Note that the algebra ��� �	� 

� is a quotient of the face algebra of the simplicial
complex � � �	� 

� . Although � is defined for an arbitrary lattice our main con-
structions and results make sense only for atomic lattices, i.e., lattices in which
any element is the join of some atoms. Thus we will restrict our considerations to
this case.

In the special case of � being the intersection lattice of an arrangement of
complex linear hyperplanes and 
 being the minimal building set in � , this algebra
appears in work of De Concini and Procesi [DP4]. It is the cohomology algebra of
a compactification of the projectivized arrangement complement; for details we
refer to section 2.4.
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2.3 GRÖBNER BASIS

The set of generators of the ideal
�

in Definition 2.2.3, while being elegant, is too
small for being a Gröbner basis of this ideal. In this section, we extend this set to
a Gröbner basis. In particular, we will obtain a � -basis of ��� � ��

� .

To define the larger set of relations we need to introduce a metric on chains
in � .

Definition 2.3.1 Let � be an atomic lattice and
� � � � � with

� 	 � . We
denote by � � � � � � the minimal number of atoms 
 � ������� � 
 � in � such that
� � � 2 / �� , � 
 � .

The following four properties of the function � are immediate:

(i) � � � � 		� , � � �
� 		� for
� � �
� 	 � � with

� 	 � 	 	 . Notice
that equality is possible even if all three

� � �
� and 	 are dis-
tinct. Also it is not necessarily true that � � � � � �
	 � � � � 		� .

(ii) � � � � � � � � � �
� 		� , � � � � 	 � for
� � � � 	 � � with

� 	 � 	 	 .

(iii) � � � 2 	 � � 2 	 � 	 � � � � � � for
� 	 � � � and 	 � � arbitrary.

(iv) � � � � ��2 	 � 	 � �5��� 	 � 	 � for � � 	 � � .

For example, (iv) follows from the fact that if �5� � 	 �*2�/ � 
 � � 	
for some atoms


#� ������� ��
 � then � 2 / � 
 � � � 2 	
. If � is geometric (for instance, the inter-

section lattice of a hyperplane arrangement) then � � � � � � �"��� � / ��� � whence
in (ii) equality holds and (iv) is the semimodular inequality.

Now we can introduce the new set of generators for
�

. The new relations are
analogous to the defining relations for the cohomology algebra of the compacti-
fication of the complement of an arrangement of projective subspaces described
in [DP3].

Theorem 2.3.2 The ideal of relations
�

in Definition 2.2.3 is generated by poly-
nomials of the following type:

��� � ?
� )�� ��� for � �� � ���	��

� � (2.3.1)

��� � � � =?
� , �

�	� � 
 �
�@	 � ����� � � (2.3.2)

where �.� ������� � � = are maximal elements in a nested set 
 � � ���	��

� , 	 � 
 with
	 	 � � / =� , � � � , and � � � � � � 	 � .
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Proof. First notice that polynomials (2.2.1) and (2.2.2) are among polynomials
��� and � � � � . (To see that polynomials (2.2.2) are among � � � � choose 
 � % , and
	 � 
 � � � � � . Here and everywhere we use the usual agreement that the join
of the empty set is $% .) Hence it is left to show that any � � � � is in

�
, i.e., it is a

combination of polynomials (2.2.1) and (2.2.2).
We prove our claim by induction on � .

� � 3 . Choose an atom 
 of � with 
 2'��� 	
. Then using (2.2.2) we have

=?
� , �

�	� � 
 �
�@	�� ����� �

�
� (2.3.3)

We want to show that for any � , 
 , � � � � � ������� ��� = � � � � � � � ��

� implies
that � , 	

. Then, any summand with � �, 	
can be omitted from (2.3.3) using

polynomials (2.2.1), and we obtain � � � � �
�

for � � 3 .
First note that � cannot be smaller than or equal to any of the � � , � � 3 ������� �!B ,

since � 	 � � would imply 
 	 � � contradicting the choice of 
 .
Assume that � is incomparable with �-� ������� ��� � for some � , 3 , and �0,�� �

for � � � ��3 ������� �!B . Since � � � �.� ������� � � =�� � � these elements are the factors of
the 
 -decomposition in

�

� � � � 2
��

� , �
� � � � 2

=�
� , �

� ��, 
 2
=�

� , �
� � � 	 �

Since
	 � 
 , the elements � � , ��� 3 ������� � � , are not maximal in 
 below

�

� , which
contradicts the � � being factors of

�

� .
We conclude that � is comparable with, i.e., larger than all � � whence � ,

/ =� , � � �
2 
 � 	
.

� 	 3 . Choose an atom 
 of � from the set of atoms in the definition of � � � � 	 � .
Then � �'� 2 
�� 	

. Using (2.2.2) we have

=?
� , �

�	� � 
 �
�@	�� ��� � 
 �

�@	 � ��� � � � � � � � (2.3.4)

We show, using polynomials (2.2.1) and (2.2.2) and the induction hypothesis, that
any � with � �, 	

can be omitted from the first sum modulo
�

.
Let � � � 
 , � � , 
 but � � �, 	

. Using polynomials (2.2.1) we can assume
that � ��� � �.��������� � � =�� � � . Due to the choice of 
 , � � cannot be smaller than
any of the � � . Further note that if � � is incomparable with say � � ��������� � , �-	 B ,
then it is incomparable also with all �-� ������� ��� = . Indeed the join � � 2'� � 21����� 2
� � � ��� 2�� � 2 ������2�� = is a 
 -decomposition. Hence the two following cases
remain to be considered.
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Case 1. � � is comparable with all � � , ��� 3 ������� �!B , hence � � , � .
Our goal is to rewrite

��� �

 �
�@	 � ����� � � � (2.3.5)

modulo
�

so that it contains an expression of the form (2.3.2) with exponent � �
as a factor. First observe that � � 2 	 � 
 since � � � 	 � 
 but 
 � � � � 	

[DP3,
Thm. 2.3, 3b’]. The building set element � � 2 	 is to take the role of

	
in (2.3.2).

Let � � 
 with � , 	
. We want to show that any � with � �, � � 2 	

can
be omitted from (2.3.5) modulo

�
. We can assume that � � � � ��� � � . If � 	 ���

then
	 	 � � , contradicting the choice of � � . If � and � � were incomparable

then � 2 � � �� 
 contradicting the fact that they both are greater than 
 . Hence
� , ��� and thus � , � � 2 	 .

Thus (2.3.5) reduces to

��� �

 �
�@	�� � � � ��� � � � � � (2.3.6)

Using properties (iv) and (i) of our metric � we obtain

� � ��� � ��� 2 	 �
	 � �
� � � 	 � 	 �(	 � �5� 2 
 � 	 � � � � (2.3.7)

Hence (2.3.6) contains a polynomial of the form (2.3.2) with exponent � � as a
factor whence it lies in

�
by induction hypothesis.

Case 2. � � is incomparable with � � ������� ��� = .
Since � ��� � �.��������� � = � � � we have

�

��� � � ��� 2#� � 2������ 2 � = ���
 . We want to
rewrite


 =?
� , �

�	� � � ��� �

 �
�@	 � ��� � � � � (2.3.8)

modulo
�

so that it contains a polynomial of the form (2.3.2) with exponent � �
as a factor.

Observe that
�

��� 2 	 � ��� 2 	
, and, as in Case 1, � � 2 	 � 
 . This time,�

��� 2 	 � � � 2 	
is to take the role of

	
, and

�

��� the role of � in (2.3.2).
As in Case 1, we see that


 =?
� , �

�	� � �1��� �

 �
�@	 � ����� � � � �


 =?
� , �

�	� � ����� �

 �
�@	�� � � � ����� � � � � 
 � � � 


�
�
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arguing as before for nested pairs � � � � ��� .
Now the right hand side has a factor of the form (2.3.2) with exponent � �

because again

� �
�

� � �
�

� � 2 	 �
	 � �
�

��� � 	 � 	 �(	 � � 	 � � 2 
 � � � �
This implies that the right hand side lies in

�
by induction hypothesis which com-

pletes the proof. ;
The main feature of the new generating set is that it is a Gröbner basis of

�
.

As the main reference for Gröbner bases we use [Ei]. Fix a linear order on 
 that
refines the reverse of the partial order on � . It defines a lexicographic order on the
monomials which we use in the following theorem.

Theorem 2.3.3 The generating system (2.3.1) and (2.3.2) is a Gröbner basis of
�

.

Proof. To prove that a set of monic polynomials is a Gröbner basis for the ideal
it generates it suffices to consider all pairs of their initial monomials with a com-
mon indeterminate, compute their syzygies, and show that these syzygies have
standard expressions in generators (without remainders). We will prove this by a
straightforward calculation. To make the calculation easier to follow we will use
several agreements. For any polynomial � �

�
we will be dealing with, we will

exhibit a generator � whose initial monomial � � � � � divides a monomial � of � and
call � /�� ��� ���� � ��� � � the reduction of � by � (here � ��� � is the coefficient of � in � ).
Reducing a polynomial all the way to

%
gives a standard expression for it. Also

since reduction by monomial generators is very simple we will not name specific
generators of the form � � but just call this reduction � -equivalence.

We use certain new notation in the proof. For each �
	�
 put � � � ' � ) � �	�
and for any

	 � 
 put �
� � �

� ) 
���
 � � .
Now we consider pairs � � � ��� � � of generators of

�
of several types.

1. At least one of the generators is � � . If they both are of this type then the
syzygy is

%
. If the other one is � � � � with

	 �� � then the syzygy is divisible by �	�
whence � -equivalent to 0. Finally if

	 � � then the only nontrivial case is where� � � � � 
 � & � 	 � ��� ��� � 
 � � � . Notice that then � � 
 �� � . The syzygy
is � -equivalent to ���6� �

� � � � ��
where ��� / 	�)�� �

as usual. Put
�� � / 	�)�� � . If� � 


 � and

� 	 ��'2 	
then

�
cannot form a nested set with

�
. Indeed, if it did

then
�� 2 	 � � 2 �� �� 
 contradicting

� � � � � �� � . Similarly, if
� � 
<
 �

and
�

is incomparable with
�� then

�
cannot form a nested set with

�
. Indeed if

they did then
� 2 � �� 2 	 � � � 2 �� ��
� implying that

�
forms a nested set

with � � 
 . This would contradict
� 	 	

.
Now using property (i) of the metric � we can reduce the syzygy to

%
by

� � ���� � � .
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For the rest of the proof we need to consider only pairs with � � � ��� � � � �
( � �E3 � � � . We denote the exponent of � � � � � � � in ��� by � � .

2. Suppose
	 � �� 	 � and

	 � �� 
 + . In this case the syzygy is

� � ��� � � � � � � � / � � � � � � � / � � ��� � � � � � � � / � � � � � � �

and this is in fact a standard expression for it. (Here and to the end of the proof
we use � � for arbitrary subsets � of � meaning that if � is not nested the product
is � -equivalent to

%
.)

3. Suppose
	 � � 	 � � 	

and � � � � / � � , %
. Then the syzygy is

� � ��� � � ��� � � � � � � � � � � � / � � � � � � � � � �
and it reduces to

%
by � � .

4. At last, suppose
	 � � 
 � . Put 
 � � 
�� � 
 � �!&(� 	 � � and � � � � � � ,

� � � ����� . Then the syzygy is

� � � � � � � � � � � � � � � � �� / � � �� � � � � � � � � � ���
Adding to � the polynomial � � �	� � � � � � � ��� � � � � � � � � ��� � / � � �� � we obtain

� 
 � � ��� � � � � � � � � � � � � � / � � �� � � � � � � � � � � �
Notice that � is divisible by � � and � � ��� �-	 � � �
� � . Thus it suffices to reduce ��

to
%
. Also by � � we can immediately reduce ��
 to

� 
 
 � � �#� � �� � � � � � � � � � �
For the next steps we sort out summands of � � . Using property (i) of the met-

ric � we can delete the summands � � with
	 � � � � 	 � reducing by � ���	� ��
 � � � .

The sum of all summands � � with � , 	 � forms � � � � � � � � � � � � � � that reduces
to 0 by � � � � � . Indeed, denote the join of 
 � by 
 � and the join of 
 � &
� 	 � � by

 
� . This gives the join of 
 as 
 � 2 
 
� . Then, using properties (ii) and (iii) of the
metric � , we have

� � 
 � 2 
 
� � 	 ��� 	 � � 
 � 2 
 
� � 	 � 2 
 
� ��� � � 	 � 2 
 
� � 	 � �
	 � � 
 ��� 	 � ��� � � 
 � � 	 � � � � � � � � �

After the reductions in the previous paragraph we are left with a sum each
summand of which is divisible by a polynomial



� � � � ����� � � � � � � � � �
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where 	 � 


 � � , 	 is incomparable with
	 � , and 
 � ��	 � � � . To reduce this

polynomial we sort out the summands in the second sum. If � � 
 	 � � is not
greater than or equal to 	 2 	 � then it is incomparable with 	 whence ��	 � ��� ����
since

	 �@� 	 � � . This implies that 

� is � -equivalent to


 
 � � � � ����� �
� 	 � � � � � ��� �

� �

Finally 
 
 � reduces to
%

by � ��� � � 
 � � � � � since, by property (iii) of the metric � , we
have

� � 
 
� 2 	 � 	 � 2 	 � � � � 
 � 2 	 � 	 � 2 		� 	 � � 
 � � 	 ��� � � �*�
This reduction completes the proof. ;

Corollary 2.3.4 The following monomials form a � -basis of ��� � ��

� :
?
� )�� �

�
� � �� �

where � is running over all nested subsets of 
 and ���5� ��� � �5� 
 � �	� , ��
 being
the join of � � � � � .

If � is the intersection lattice of a complex central hyperplane arrangement
then this basis coincides with the basis exhibited in [Y]. In the next section we
will give some examples of computing the Hilbert series of the algebra using this
basis.

2.4 ARRANGEMENT COMPACTIFICATIONS

As we mentioned before, for a geometric lattice the metric � defined in section 2.3
coincides with the difference of ranks. This holds in particular for the intersection
lattice of a hyperplane arrangement. In this setting and for 
 being the minimal
building set, the algebra � � �	��

� appeared in [DP4] as the cohomology algebra
of a compactification of the projectivized arrangement complement. From our
work in previous sections we can conclude that for any building set 
 in � the
algebra ��� �	� 

� can be interpreted geometrically as the cohomology algebra of
the corresponding arrangement compactification.

We first review the construction of arrangement models due to De Concini and
Procesi in the special case of complex hyperplane arrangements [DP3].

Let � ����
#� ������� ��
 � � be an arrangement of complex linear hyperplanes
in � � . Factoring by

� 
 � if needed, we can assume � to be essential, i.e.,
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� 
 � ��� % � . The combinatorial data of such an arrangement is customarily
recorded by its intersection lattice � �
� � , i.e., the poset of intersections of all sub-
sets of hyperplanes ordered by reverse inclusion. The greatest element of � �
� �
is
%

and the least element is ��� . Let 
 ) � �
� � be a building set in � �
� � , and let
us assume here that

% � 
 .
We define a map on 	 �
� ��� � � � & ��� , the complement of the arrangement,

� � 	 �
� � /�0 � � �
?
� ) 


� �
� � 	 � � �

where
�

is the natural inclusion into the first factor and the natural projection to
the other factors restricted to 	 �
� � . The map

�
defines an embedding of 	 �
� �

in the right hand side space and we let � 
 denote the closure of its image. The
space � 
 is a smooth algebraic variety containing 	 �
� ) as an open set. The
complement � 
 & 	 �
� � is a divisor with normal crossings with irreducible com-
ponents indexed by building set elements. An intersection of several components
is non-empty (moreover, transversal and irreducible) if and only if the index set is
nested as a subset of 
 [DP3, 3.1,3.2].

There is a projective analogue of � 
 . Consider the projectivization
� � of � ,

i.e., the family of codim 3 projective spaces
� 
 in � � � � � for 
 in � . The

following construction yields a compactification of the complement 	 � � � ��� �
� � � � � & � � � . The map

�
described above is � � -equivariant, where � � acts by

scalar multiplication on 	 �
� � and on � � , and trivially on ' � ) 
 � � � � 	 � � . We
obtain a map

� � 	 � � � � /�0 � � � � � �
?
� ) 


� �
� � 	 � � �

and again take the closure of its image to define a model � 
 for 	 � � � � . The
space � 
 is a smooth projective variety and the complement � 
 & 	 � � � � is a
divisor with normal crossings. Irreducible components are indexed by building
set elements in 
 � � � 
 & � � % � � , and intersections of irreducible components are
non-empty if and only if corresponding index sets are nested in 
 .

Geometrically, the arrangement models � 
 and � 
 are related as follows. The
model � 
 is the total space of a line bundle over � 
 ; in fact, it is the pullback of the
tautological bundle on � � � � � along the canonical map � 
 0 � � � � � . In particular,
� 
 is isomorphic to the divisor in � 
 associated to

%
[DP3, 4.1].

Example 2.4.1 Let � � � � denote the rank � / 3 complex braid arrangement, i.e.,
the family of partial diagonals, 
 � � + �'� + / � � � %

, 3�	 �-� 2!	 � , in � � . Its in-
tersection lattice � �
� � � � � equals the lattice � � consisting of the set partitions
of � �1�*� � ��3 ������� � � � ordered by reverse refinement. The set * of partitions
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with exactly one block of size , � forms the minimal building set in �	� .
The De Concini-Procesi arrangement compactification ��� is isomorphic to the
Deligne-Knudson-Mumford compactification of the moduli space � � � � � � of � ��3 -
punctured complex projective lines [DP3, 4.3].

In the more general setting of affine models for complex subspace arrange-
ments, De Concini and Procesi provide explicit presentations for the cohomology
algebras of irreducible components of divisors and of their intersections in terms
of generators and relations [DP3,

�
5]. As mentioned above, the compactification

of a complex hyperplane arrangement � 
 is isomorphic to the divisor associated
with the maximal building set element in the corresponding affine model. We
recall a description of its integral cohomology algebra.

Proposition 2.4.2 ([DP3, Thm. 5.2]) Let � be an essential arrangement of com-
plex hyperplanes, � � � �
� � its intersection lattice, and 
 a building set in �
containing � % � . Then the integral cohomology algebra of the arrangement com-
pactification � 
 can be described as


 � � � 
 � 8 � ��� � � � � � ) 
 �
���

�
with generators � � , �	� 
 , corresponding to the cohomology classes of irre-
ducible components of the normal crossing divisor, thus having degree � .
The ideal of relations

�
is generated by polynomials of the following type:

�?
� , �

� � � for � � � ������� � ����� �� � ���	��

� � (2.4.1)

=?
� , �

� � � 
 �
�@	 �

� � � � � (2.4.2)

where �.� ������� � � = are maximal elements in a nested set 
 � � ���	��

� , 	 � 
 with
	 	 / =� , � � � , and � �"	�
 ��
 ��� 	 / 	�
 ��
 ���3/ =� , � � � .

Comparing Proposition 2.4.2 with Theorem 2.3.2, we have a generalization of
Proposition 1.1 from [DP4], where only the case of 
 being the minimal building
set, i.e., the set of irreducibles, is considered.

Corollary 2.4.3 Let � be an essential arrangement of complex hyperplanes,
� ��� �
� � its intersection lattice, and 
 a building set in � containing � % � . Then
the cohomology algebra of the arrangement compactification � 
 is isomorphic to
the algebra �����	��

� defined in section 2.2:


 � � � 
 � 8 � ��� �	� 

� �



38 Chow Rings of Toric Varieties Defined by Atomic Lattices

In the rest of the section we will give several examples of the Poincaré series
for compactifications of hyperplane arrangement complements. This means we
compute the Hilbert series of �����	��

� . We restrict our computations to the com-
pactifications with 
 being the maximal building set � & � $% � , although they can
be easily generalized to arbitrary 
 .

For these examples we use the basis of ��� � � � � � �	� �'& ��$% � � from Corol-
lary 2.3.4. In the considered case the basic monomials are parametrized by certain
flags in ��&(� $% � with multiplicity assigned to their elements. The upper bounds
for multiplicities allow us to write the Hilbert series of � ��� � in the following
form. For each sequence � of natural numbers, � � � % ��� � ��� �@� ��������� = 	'��� � �
denote by � � ��� � the number of flags in � whose sequence of ranks equals � . Set
B � B ��� � and call it the length of � . Then we have


 ��� � � � � 
 � �E3 � � � � = � � �?
� , �


 � 3 / 
 � � � � � � � � � �
3 / 
 	 � � ��� � �

Here, � runs over all sequences as above and we use the agreement
� � � � � � �� � � � 3 .

In some important cases one can give more explicit descriptions of the num-
bers � � ��� � whence of the Hilbert series. We consider two such cases.

Generic arrangements. For arrangements from this class, the intersection lat-
tice � is defined by the number � of atoms and the rank 
 . We use both pieces
of notation: � and � � � ��
 � . The number of elements of � of rank 
 
 ��
 is
 ������ and for every

� � � of rank 
 
 the lattice � � � ��� � , � � is isomorphic
to � � � / 
 
 ��
 / 
 
 � . This immediately implies the following formula:

� � ��� �
� =?
� , ��� � / ��� � �� � / � � � ��� �

where B � B ��� � if � = � � � ��
 and B �*B ��� � / 3 otherwise. This gives


 ��� ��� � ����
 � � ��
 � �
3 � � ��� �

3 � 
 � 3 / 
 � � � � � � �
3 / 
 	 = � � �?

� , �

 � 3 / 
 � � � � � � � � � �

3 / 
 � � / � � � �� � / ��� � � ��� �
where the summation now is over all � with the extra condition ��= � � � ��
 and we

again use the agreement
� � � � � � �� � � �E3 .

Braid arrangements. For the rank � / 3 complex braid arrangement (compare
Example 2.4.1) the intersection lattice is given by the partition lattice �	� of set
partitions of � �@��� � ��3 ������� � � � ordered by reverse refinement. Observe that the
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rank of a partition � coincides with � / � �
� where � �
� is the number of blocks of
the partition. Thus the number of elements of � � of rank 
 is � � � � � � � that is the
number of partitions of � �1� in � / 
 blocks. For every

� � � � of rank 
 the lattice
� � � � � � � , � � is isomorphic to � � � � . This immediately implies the following
formulas:

� � � ��� � � = � � �?
� , �

� � � � � � � / ��� � � �
and


 ��� � � � � � 
 �
� 3 � � � � = � � �?
� , �


 � 3 / 
 � � � � � � � � � �
3 / 
 � � � � � � � / � � � � � 	 �

where the summation is over all � .
2.5 THE TORIC VARIETY

� ������� 
��

In this section we present another geometric interpretation of the algebra � � �	��

� ,
this time for an arbitrary atomic lattice � . For a given building set 
 in � we
construct a toric variety

� ���
��� 
��
and show that its Chow ring is isomorphic to the

algebra �����	��

� .
Given a finite lattice � with set of atoms

� � � � ��� ��� ������� � � � � , we will fre-
quently use the following notation: For

� � � , denote the set of atoms below
�

by
� ��� � ��� � � � ��� � ����, � � . Define characteristic vectors ��	 in � � for

� � �
with coordinates

�	��	 � � � �

 3 if � � � � ��� �%

otherwise � for ��� 3 ������� � � �
We will consider cones spanned by these characteristic vectors. We therefore
agree to denote by � ��� � the cone spanned by the vectors � 	 for

� � � , ��) � .
Let � be a finite atomic lattice and 
 a building set in � . We define a rational,

polyhedral fan � � �	� 

� in � � by taking cones � ��� � for any nested set � in � ,

� ���	��

� � � � � ��� � � � � � ���	��

� � � (2.5.1)

By definition, rays in � ���	��

� are in 3 - 3 correspondence with elements in 
 ; the
face poset of � � �	� 

� coincides with the face poset of � � � ��

� . To specify the set
of cones in � � �	� 

� of a fixed dimension B , or nested sets in 
 with B elements,
we often use the notation � ���	��

�-= or � � �	� 

� = , respectively.

Proposition 2.5.1 The polyhedral fan � ���	��

� is unimodular.
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Proof. We need to show that for any nested set � ��� � �	� 

� the set of generating
vectors for � � � � , � ��	 � � � � � , can be extended to a lattice basis for � � . To
that end, fix a linear order � on � that refines the given order on � , and write
the generating vectors ��	 as rows of a matrix � following this linear order. Now
transform � to a matrix

�

� , replacing each vector ��	 by the characteristic vector���	 of
��

, with
�� �

�
�������	�


� �

For each
�

this can be done by adding rows � � to ��	 for elements

	 � ����� � � � � ��� � � � � � incomparable to
�

in � � �
the reason being that characteristic sets of atoms for incomparable elements of
a nested set are disjoint [FK1, Prop. 2.5(1), 2.8]. The matrix

�

� clearly has rows
with strictly increasing support, hence can be easily extended to a square matrix
with determinant � 3 . The same extra rows will complete the rows of the original
matrix � to a lattice basis for � � . ;

Remark 2.5.2 In section 2.6 we will give a more constructive description of
� ���	��

� , picturing the fan as the result of successive stellar subdivisions of faces
of the � -dimensional cone spanned by the standard lattice basis for � � and subse-
quent removal of faces (compare Thm. 2.6.1). From this description, unimodality
of the fan will follow immediately.

Let
� ������� 
��

denote the toric variety associated with � � �	��

� . If there is no risk
of confusion, we will abbreviate notation by using

� �
instead.

� �
is a smooth,

non-complete, complex algebraic variety. Crucial for us will be its stratification
by torus orbits ��� , in one-to-one correspondence with cones � ��� � in � � �	��

� ,
thus with nested sets � in 
 .

The orbit closures � ��� � , � � � ���	��

� � � = , generate the Chow groups �D= � � � � ,
B � % ������� � � . We describe generators for the groups of relations among the � � � � ,
� � � ���	��

� � � = , in � = � � � � for later reference. This description is due to Fulton
and Sturmfels [FS]. We present here a slight adaptation to our present context.

Proposition 2.5.3 ([FS, 2.1]) The group of relations among generators � � � � ,
� � � ���	��

� � � = , for the B -th Chow group �D= � � � � , B � % ������� � � , is generated by
relations of the form� ��
 ��� � �

�
���������������� ��� � � �

��� � ��� �  	 � � � � � (2.5.2)
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where 
 runs over all nested sets with � / B / 3 elements and � over a generat-
ing set for the sublattice determined by � � 
 � � in the dual lattice Hom � � � � � � .
Here, � � �  is a lattice point in � � � � generating the ( 3 -dimensional) lattice
span � � ��� � � � � � 	 span � � ��
 � � � � � .

Since
� ���
��� 
��

is non-singular, the intersection product � makes
��� � � � � � �

� � = , � ��� = � � � � with
��� = � � � � ��� � � = � � � � into a commutative graded ring, the

Chow ring of
� ������� 
��

.

Theorem 2.5.4 Let
��������� 
��

be the toric variety associated with a finite atomic
lattice � and a combinatorial building set 
 in � as described above. Then the
assignment ��� 40 � � � � 
-� for � � 
 , extends to an isomorphism

�����	��

� 8 � ��� � � � ���
��� 
�� � �

Proof. Orbit closures � � � � 
 � in
� �

that correspond to the rays � �+� ��� � in � ���	��

�
for � � 
 , generate

��� � � � � � multiplicatively, since

� � � � � � � � � ��
 ��� ����� ��� � � � � 
 �
for � ��� � � ������� � � = � � � ���	��

� , � denoting the intersection product (see [Fu,
p.100]).

Moreover, relations as in ��� �	� 

� hold. Indeed, the intersection products of
orbit closures corresponding to rays that do not span a cone in � ���	��

� are

%
[Fu,

p.100], which is exactly the monomial relations (2.2.1) for non-nested index sets
in �����	��

� . Relations (2.5.2) in

��� � � � � � � � � � � � � � � as described above coin-
cide with the linear relations (2.2.2) in �����	��

�� � % � ��� � � �

� ) 

� ��� � � � 	 � � � � 
 � � �

�@	 � � � � � 
 � � (2.5.3)

the ��� , for � � � ��� � , forming a basis for the lattice orthogonal to � � % � � %
in � � .

Thus, sending ��� to � � � � 
-� for � � 
 , we have a surjective ring homomor-
phism from ��� �	� 

� to the Chow ring of

� �
. It remains to show that the re-

lations (2.5.2) in
��� � � � � � follow from relations (2.5.3) in

��� � � � � � , and from
monomials over non-nested index sets being zero.

Let us fix some notation. For 
 � � ���	��

� and
� � 
 define

�  � � � � � � ��� &
�
����
��� �

�
� � �
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the set of atoms that are below
�

, but not below the join of all � in 
 that are
smaller than

�
. Observe that

�  � � � �� % for any
� � 
 , since 
 is nested, and

� � 
 � �
�

	 )  
�  � � � �

For 
 � � ���	��

� = � � , B , � , the sublattice determined by � ��
 � � in the dual
lattice is generated by vectors in � ��� � � , where

� � � � ��� � / ���"( � � � ��� + � �  � � � for some
� � 
#� �

� � � � ���4� � � � ��� � & � � 
 � � �
Observe that � � � � � contains

�
	�)  ��� �  � � �*� / 3 � ��� � � � �!& � /�
 � � � � � ��� � � /

� 
'� � 	�
 ��
 ������
 � linear independent vectors, thus a basis for the sublattice
determined by � � 
 � � .

For 
 ��� � �	��

� = � � , B , � , and � � � / � � ( � �6� , the relation (2.5.2) reads as� ��
 � ��� � / � � ( �
�

�
�������� � � ��� ��� �

� ��� � / ���"( ����� �  	 � � � �
�

�
��� ��� ������ ��� � � � ��� ���

� � � � / ���"( � ��� 	 � �  �	� � 
 �

� � �  � � 
 �
� � ��� � � �
	�� ����
� ��� ����� ��� ���

� � � � 
 � / �
��� ��� � � ��	�� (����� ��� ����� ��� ���

� � � � 
 � � �
Monomials over non-nested index sets being zero, we may drop the condition

 � � ��� � � ���	��

� in both sums. Moreover, if � � 
 , � either is larger than both
� � and � + , or not larger than either of them. Thus, both sums in � ��
 � � � � / � � ( �
are relations of type (2.5.3), hence � ��
 � � � , � � � � , is a consequence of relations
of type (2.2.1) and (2.2.2) holding in

��� � � � � � , as claimed.
For � � ��� � , the reasoning is similar, but easier. Indeed� ��
 � ��� � �

�
������������ ��� ��� �

� � � ����� �  	 � � � �
�

�
� � ��� ����
� ��� � � � ��� ���

� ��� � ��� 	 � �  �	� � 
-�

� � �  � � �
� 	 � � � � ��
 � �
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since no � � 
 can be larger than � , and again, by monomials over non-nested
sets being zero, the condition 
 �
� �4� � � � �	� 

� can be dropped. This completes
our proof. ;

2.6 A GEOMETRIC DESCRIPTION OF
� �����	� 
��

The goal of this section is to give a geometric description of the variety
� � �
��� 
��

.
For an arbitrary atomic lattice � , we describe the toric variety

� ���
��� 
��
as the

result of a sequence of blowups of closed torus orbits and subsequent removal of
a number of open orbits. We start with a more constructive description of the fan
� ���	��

� as the result of a sequence of stellar subdivisions and subsequent removal
of a number of open cones.

We allow the same setting as for the definition of � � �	��

� in (2.5.1). Let � be
a finite atomic lattice with set of atoms

� � � � ��� ��� ������� � � � � and 
 a building set
in � .
Construction of � ���	��

� .
(0) Start with the fan � � given by the � -dimensional cone spanned by the coordi-
nate vectors in � � together with all its faces.
(1) Choose a linear order � on 
 that is non-increasing with respect to the orig-
inal partial order on � , i.e., �0	 � 
 implies � 
�� � . Write 
 � � � ��� � ���
������� ���+� � Construct a fan

�

� � � ��

� by successive barycentric stellar subdivisions
in faces � � � � � � � of � � for � � 3 ������� ��
 , introducing in each step a new ray gener-
ated by the characteristic vector � � � , ���E3 ������� � 
 .
(2) Remove from

�

� ���	��

� all (open) cones � ��
 � with index sets of generating
vectors 
 that are not nested in 
 and denote the resulting fan by � ���	��

� .
Theorem 2.6.1 The simplicial fan � � �	��

� constructed above coincides with the
fan � � � ��

� defined in section 2.5.

Proof. By construction the fans share the same generating vectors. In fact, due to
the removal of cones in step (2) of the construction above, it is enough to show that
for any nested set � � � � �	��

� there exists a cone in

�

� � �	� 

� containing � � � �
as a face. Due to the recursive construction of

�

� � �	� 

� this statement reduces to
the following claim.

Claim. Let � � � � � ������� � � = � be nested in � with respect to 
 , and assume that
the indexing is compatible with the linear order � on 
 , i.e.,

� ��� ������� � = . For
notational convenience, extend the set by

� = � �@� � $% . Then any stellar subdivision
in � � � � � � , �	� 
 , during the construction of

�

� ���	��

� , for �	� � � , � �� � � � � ,
� � 3 ������� �!B ��3 , retains a cone � � with

� � � � � ������� � � � � � � � � � � � � ����� � � � = � �
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among its faces and for � � � � , � �93 ������� �!B , creates a cone � 	 � with

� � � � � ������� � � �5� � � � � � � � � ����� � � � = � �
among its faces.

Proof of the claim. Assume first that �	� � � , � �� � � � � , for some � � ��3 �
����� �!B ��3 � (the second condition being empty for B � 3 ), and assume that the pre-
vious subdivision step in � � � � 
 � � , � 
 � 
 , has created, resp. retained a cone � � �
with � � � � ��������� � � � � � � � � � � � �"����� � � � = � � among its faces.

If � � � 
 � does not contain � � � � � � , it will not be altered by stellar subdivision
in � � � � � � . Any cone that is to be altered when subdividing � � � � � � needs to be
contained in star � � � � � � , hence among its faces needs to contain � � � � � � .

If � �
� 
 � does contain � � � � � � among its faces, choose

� �
�
� � &

=�
+-, �

� � + � � (2.6.1)

If the set was empty, we would have
�
� � ) � + 	��

� � + � , in particular,

� 	
�
+ 	��

� + 	
�

����� ��� 
 �
� + �

The join on the right hand side is taken over all
� + that are maximal among� � � � � ������� � � � with respect to the partial order in � . Since these elements are

pairwise incomparable and nested in � they are the factors of their join. This im-
plies that �0	 � +�� for some 2 � , � [FK1, Prop. 2.5(i)] contradicting the fact that
� � � +�� .

Hence we can choose � as described in (2.6.1) and, when subdividing � � � � � � ,
we replace � � � by � � by substituting the new ray

� � � � for the ray
� � � � in � � � .

Observe that � � � � � ������� � � � � � � � � � � � � ������� � � = � � remains as a face in the
newly created cone � � .

Assume now that � � � � and again denote the cone emerging from the pre-
vious subdivision step by � � � , assuming that it contains � � � � � ������� � � � � ���
� � � � � � ������� � � = � � among its faces. When subdividing � � � � � � � now replace
� � � by � 	 � by substituting the new ray

� ��	 � � for the generating ray associated
with some

� � �
� � � � &

�
+ 	�� � �

� � + � � � � � � &
�

( 	 �
	 �
 ( ��
 �
� � + � � � � � � ��� �

where the right hand side is non-empty as we observed before (see proof of
Thm. 2.5.4).

Note that � � � � � ������� � � �5� � � � � � � � �"������� � � = � � is a face of the newly cre-
ated cone � 	 � . This completes the proof of our claim. ;
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Corollary 2.6.2 The toric variety
� ���
��� 
��

can be constructed as follows. Start
from the toric variety associated with the � -dimensional cone spanned by the
standard lattice basis in � � , i.e., from � � stratified by torus orbits. Perform a se-
quence of blowups in orbit closures associated with faces � � � � � � of the standard
cone for � � 
 in some linear, non-increasing order. Remove from the resulting
variety all open torus orbits that correspond to cones in

�

� � �	� 

� indexed with
non-nested subsets of � .

It follows immediately from this description that the toric variety
� ���
��� 
��

is
smooth.

2.7 EXAMPLES

We discuss a number of examples to illustrate the central notions of this chapter.
Partition lattices.
Let � � denote the lattice of set partitions of � �@� ordered by reversed refinement.
As we mentioned above, the partition lattice � � occurs as the intersection lattice
of the braid arrangement � � � � (compare Example 2.4.1).

For � �
� , the only building set is the max-
imal one, i.e., 
 � � � & � $% � . Denoting el-
ements as in the Hasse diagram depicted on
the right, the nested set complex � � � � ��

�
contains the following simplices:

����� �
����	�

�������� ��� �����

��
� � � � ��

�
� ��
#� � ��
#� � � 
 � � � � ��
#� � � ��
#� � � ��
 � � �.�(�

The algebra ��� ��� ��

� thus is the following:

��� ��� ��

� � � � � � � � ��� � � � � � � � � ��� �>�
�� � � � ��� � � � � � � � ��� � � � � � � � � � � � �

� � � � � � ���
� � � � � � � � � � � � ��� ��� �

We find that ��� ��� � 

� 8 � ��� � �1��	 � � � � � , which illustrates Corollary 2.4.3. The
compactification � � � � ���� 
 of the complement of the projectivized braid arrange-
ment

� � � (a three times punctured � � �
) is the complex projective line.

To visualize the fan � � ��� ��

� we choose to
depict its intersection with a hyperplane or-
thogonal to the diagonal ray in the positive
octant of � � . To shorten notation, we denote
rays by building set elements.

�����
� ��� � ��� �"!�#$�

� ���
�
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The toric variety
����� ��� � 
�� is the blowup of � � in

%
with open torus orbits corre-

sponding to cones � � 
 � � ��
#� � � , � � 
 � � ��
 � � � , � � 
#� � ��
 � � � and � � 
 � � � 
 � � � �	� ,
� � 
#� � ��
 � � � �	� , � � 
#� � ��
 � � � �	� removed. What we remove here, in fact, are the
proper transforms of the three coordinate axes of � � after blowup in

%
.

For � ��� , we have several choices when fixing a building set. The partitions with
only one non-trivial block of size ,�� form the minimal building set * . To obtain
the others we add any number of � -block partitions in � � .

� ��� � ��� � ��� ����� ���������� � � 	�

��� � �
�

The nested set complex � � ��� ��* � is a � -dimensional complex on 3 3 vertices.
It is a cone with apex � , the simplices in its base � � � � ��* ��� being the ordered
subsets in * &.� �.� together with the pairs 
 � � 
 � � , 
#� � 
 � � , 
#� � 
 � � . We depict
below the 3 -dimensional base � � ��� ��* � � . To simplify notation we label vertices
with the non-trivial block of the corresponding partition. The non-ordered nested
pairs are indicated by dotted lines.

� �
� � �

� � �

� �

� �
� � �

� �

� ��� � !����	�� � �� �
� �

Choosing instead of * the maximal building sets 
 in � � , i.e., including the
� -block partitions into the building set, results in a subdivision of these edges by
additional vertices 
 � �3� � � , 
 � �3� � � and 
 � � � � � corresponding to the newly added
building set elements.

� �
� � �

� � �

� �

� �
� � �

� �
� � �� �

� � � �3� � �

� �3� � �

� ���
� !�#$� �
� � � � �
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Simplifying the presentation of the algebra � � � � ��* � given in Definition 2.2.3
yields

� � � � ��* � 8� ��� � � � � ��� � � � ��� � � � ��� � � � ��� �>�
�� � � + = � � for all 3�	 �7� 2�� B6	 �

� � + = � � � + � = � for all � 2 B �� � 
 2 
 B 

� �� + = ��� � � for all 3�	 �7� 2�� B6	 ��� �

where we index generators corresponding to rank � lattice elements by the non-
trivial block of the respective partitions. The linear basis described in Corol-
lary 2.3.4 is given by the monomials � � � � , � � � � , � � � � , � � � � , � � , and � � � .

For completeness, we state the description of ��� � � ��* � for general � , where
* again denotes the minimal building set, i.e., the set of 3 -block partitions
in � � . Having in mind that ��� � � ��* � is isomorphic to the cohomology of
the Deligne-Knudson-Mumford compactification � � � � � � of the moduli space of
� � 3 -punctured complex projective lines (compare Example 2.4.1), the following
presentation should be compared with presentations for 
 � � � � � � � � � given earlier
by Keel [Ke].

We index generators for ��� � � ��* � with subsets of � �@� of cardinality larger than
two representing the non-trivial blocks in the respective partitions and obtain:

��� � � ��* � 8 � ��� �*���!� ����� ��� � � ��� 	 � �
�� ��� ��� for �6� � ��&% �

and � �) � � � �)
� ��
� � � + 
	� � ��� for 3.	 ��� 2 	 � � �

A non-geometric lattice.
Consider the lattice � depicted by its Hasse diagram
on the right. We obtain the following building sets:


 � � � � � � � � � � � �
� � �

 � � � � � � � � � � � � � � �
� � �

 � � � � � � � � � � � � � � � � � �
� � �

the only other choice being to replace � � by � � in 
 � .


 ��� �
�

� �
 � 
 �

For a description of the nested set complexes we refer to the corresponding

fans � ���	��
 ��� , � ��3 � � � � , shown below. The standard presentations for ��� � ��
 � � ,
� � 3 � � � � , according to Definition 2.2.3 simplify so as to reveal the Hilbert func-
tions of the algebras to be


 � � � �	��
 � � � 
 � � 3 � �"
 for ���E3 � � � � �



48 Chow Rings of Toric Varieties Defined by Atomic Lattices

with basis in degree 3 being the generators associated to building set elements
other than atoms.

We depict the fans � ���	��
 � � , � ��3 � � � � , again by drawing their intersections
with a hyperplane orthogonal to the diagonal ray in the positive octant of � � .
 �


 �

 �� � 
 ! # � �


 �
� 
 �� �
 �


 �
� � � 
 �

� �
 �� � 
 ! # ���� � 
 ! # ���
�

The toric variety
�����
��� 
 � � is the result of blowing up � � in the origin,

and henceforth removing the open torus orbits corresponding to one original � -
dimensional cone and the unique � -dimensional cone containing it.

The toric varieties
��� �
��� 
 � � and

�����
��� 
 � � differ from
�������	� 
 � � by blowups in

one, resp. two of the original 3 -dimensional torus orbits before removing open
orbits as above.



CHAPTER 3

ON THE TOPOLOGY OF NESTED SET COMPLEXES

3.1 INTRODUCTION

In the same way as intersection lattices capture the combinatorial essence of hy-
perplane arrangements, building sets and nested set complexes encode the com-
binatorics of De Concini-Procesi arrangement models: They prescribe the model
construction by sequences of blowups, they describe the incidence combinatorics
of the divisor stratification, and they naturally appear in presentations of cohomol-
ogy algebras for arrangement models in terms of generators and relations (com-
pare [DP3]).

Nested set complexes have been defined in various generalities. The notion
of nested sets goes back to the model construction for configurations spaces of
algebraic varieties by Fulton & MacPherson [FuM]; the underlying poset in this
special case is the lattice of set partitions. De Concini and Procesi [DP3] de-
fined building sets and nested set complexes for intersection lattices of subspace
arrangements in real or complex linear space; in this setting they have the broad
geometric significance outlined above.

In my joint work with D. Kozlov [FK1], which appears as the first chapter
of this thesis, we provided purely order-theoretic definitions of building sets and
nested set complexes for arbitrary meet-semilattices. Together with the notion of
a combinatorial blowup in a meet-semilattice, a complete combinatorial counter-
part to the resolution process of De Concini and Procesi was established. These
purely combinatorial notions at hand, we studied abstract algebras that generalize
arrangement model cohomology in joint work with S. Yuzvinsky [FY] (appears
as chapter � of this thesis). In this context, nested set complexes attain yet another
geometric meaning as the defining data for certain toric varieties.

In this chapter, we study nested set complexes from the viewpoint of topolog-
ical combinatorics. Relying on techniques from the homotopy theory of partially
ordered sets due to Quillen [Q], we show that, for any building set 
 in a meet-
semilattice � , the nested set complex � � �	��

� is homotopy equivalent to the order
complex of the underlying meet-semilattice without its minimal element, �
& � $% � .

For atomic meet-semilattices we can strengthen this result. We consider the
realization of nested set complexes � � �	��

� by simplicial fans � � �	� 

� proposed
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in [FY], and we show that, for building sets 
 )�
 in � , the simplicial fan � ���	��

�
is obtained from � � � ��
 � by a sequence of stellar subdivisions. This in particular
implies that, for a given atomic meet-semilattice � , the nested set complex for any
building set is homeomorphic to the order complex of �
& � $% � .

After a brief review of the definitions for building sets, nested set complexes,
and combinatorial blowups in Section 3.2, we present our result on the homotopy
type of nested set complexes in Section 3.3. The strengthening in the case of
atomic meet-semilattices is given in Section 3.4.

3.2 PRELIMINARIES ON BUILDING SETS AND NESTED SETS

For the sake of completeness we here review the definitions of building sets and
nested sets for finite meet-semilattices as proposed in [FK1].

All posets occurring in this chapter are finite. We mostly assume that the
posets are meet-semilattices (semilattices, for short), i.e., greatest lower bounds
exist for any subset of elements in the poset. Any finite meet-semilattice �
has a minimal element, which we denote by $% . We frequently use the nota-
tion � 
 �� to denote � without its minimal element. For any subset � in � we
denote the set of maximal elements in � by ����� � . For any

� � � , we set
� � 	 ��� � � ��� � 	 � � , and we use the standard notation for intervals in � ,
� � � � ��� ����	 � ��� � 	 	�	 ��� . The standard simplicial complex built from a
poset � is the order complex of � , which we denote by

� ��� � ; it is the abstract
simplicial complex on the elements of � with simplices corresponding to linearly
ordered subsets in � . As a general reference on posets we refer to [St, Chapter 3].

Definition 3.2.1 Let � be a finite meet-semilattice. A subset 
 in � 
 �� is called a
building set if for any

� � � 
 �� and max 

� 	 � � � � ������� � ��= � there is an isomor-
phism of posets

"
� �
=?

+7, �
� $% � � + � .

,/@0 � $% � � � (3.2.1)

with " 		� $% ������� � � + ������� � $% � � � + for 2 � 3 ������� �!B . We call C 
 � � ��� ���F� � 

���
the set of factors of

�
in 
 .

As a simple example we can take the full semilattice � 
 �� as a building set.
Besides this maximal building set, there is a minimal building set consisting of all
elements

�
in � 
 �� which do not allow for a product decomposition of the lower

interval � $% � � � , the so-called irreducible elements in � .
Any choice of a building set 
 in � gives rise to a family of so-called nested

sets. These are, roughly speaking, subsets of 
 whose antichains are sets of factors
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with respect to the building set 
 . Nested sets form an abstract simplicial complex
on the vertex set 
 – the nested set complex, which is the main character of this
chapter.

Definition 3.2.2 Let � be a finite meet-semilattice and 
 a building set in � . A
subset � in 
 is called nested (or 
 -nested if specification is needed) if, for any
set of incomparable elements

� � ������� � � � in � of cardinality at least two, the join� �!2'����� 2 � � exists and does not belong to 
 . The 
 -nested sets form an abstract
simplicial complex � � �	� 

� , the nested set complex with respect to � and 
 .

For the maximal building set � 
 �� in � , the nested sets are the chains in � 
 �� ;
in particular, the nested set complex � ���	� � 
 �� � coincides with the order complex� � � 
 �� � .

We also remind here a construction on semilattices that was proposed
in [FK1], the combinatorial blowup of a semilattice � in an element

�
in � .

Definition 3.2.3 For a semilattice � and an element
�

in � 
 �� we define a poset
� ��� � �	� � � on the set of elements

��� � � � � � � � � �	� � �,��-� ��� $� � � � �	� � �,�� � ��� � � 2�� � � 
 �#��� 
 � � �(�
The order relation � in � determines the order relation � within the two parts
of ��� � � described above,

� � 	 ���$
�� � � 	 
 � � �
$� � $	 ���$
�� � � 	 
 � � �

and additional order relations between elements of these two parts are defined by

� � $	 ���$
�� � � 	 
 � � �
where in all three cases it is assumed that �
� 	 �, �

in � . We call ��� � � the
combinatorial blowup of � in

�
.

Let us remark here that ��� � � is again a meet-semilattice. The combinato-
rial blowup of a semilattice was used in [FK1] to analyze the incidence change
of strata in the construction process for De Concini-Procesi arrangement mod-
els. In the present chapter we will need combinatorial blowups to describe the
incidence change in polyhedral fans under stellar subdivision following an obser-
vation in [FK1, Prop. 4.9]:

Proposition 3.2.4 Let � be a polyhedral fan with face poset *��+� � . For a cone
� in � , the face poset of the fan obtained by stellar subdivision of � in � ,
* �,�#� ��� ��� � � , can be described as the combinatorial blowup of *��+� � in � :

*��$��� �+� ��� � � � ��� � �$* ��� � � �
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3.3 THE HOMOTOPY TYPE OF NESTED SET COMPLEXES

In this section, we will show that for a given meet-semilattice � and a building
set 
 in � the nested set complex � ���	��

� is homotopy equivalent to the order
complex of � 
 �� . We will use the following two lemmata on the homotopy type of
partially ordered sets going back to Quillen [Q].

Lemma 3.3.1 (Quillen’s fiber lemma) Let �<�7� 0�� be a map of posets such that
the order complex of � � � � � � 	 � is contractible for all

� � � , then � induces a
homotopy equivalence between the order complexes of � and � .

Lemma 3.3.2 Let � be a poset, and assume that there is an element
� � � ���

such that the join
� � 2 �

exists for all
� ��� . Then the order complex of � is

contractible. A poset with the property described above is called join-contractible
via

�
.

Proposition 3.3.3 Let � be a finite meet-semilattice, and 
 a building set in � .
Then the nested set complex � ���	��

� is homotopy equivalent to the order complex
of � 
 �� ,

� ���	��

��� � � � 
 �� � �
Proof. We denote by *�� � � the poset of non-empty faces of the nested set com-
plex � � � ��

� . Consider the following map of posets:

1 � *�� � � /@0 � 
 ��
� 4 /@0 �

� �
�
	�)��

� �

We claim that the order complex of * � � � � 	 � � 1 � � � � � 
 �� �:� 	 � is contractible for
any

� � � 
 �� . An application of the Quillen fiber lemma 3.3.1 will then prove the
statement of the proposition.
Case 1:

� � 
 . We show that *�� � �!� 	 is join-contractible via
�

and, with
an application of Lemma 3.3.2, thus prove our claim. Let � be an element in
* � � �:� 	 , i.e., a nested set with / � 	 �

. We have to show that � � � � � is nested
with / � � � � �(	 �

, hence � � � � � � * � � �:� 	 . Either / � � �
, in which case� � � , and our claim is obvious; or / ��� �

, in which case we can add
�

to � ,
obtaining a nested set, with / � � � � � � �

, hence � � � � � � * � � �:� 	 .
Case 2:

� �� 
 . We show that *�� � �!� 	 is join-contractible via the set of factors
of

�
, C 
 � � � . Again, let � be a nested set with / ��	 �

; we have to show that
� � C 
 � � � is nested with join less or equal

�
, hence � � C 
 � � � � * � � �:� 	 .

If / � � �
, then

� � / ����� � and C 
 � � � ���F��� ��) � by [FK1, Prop.
2.8(2)], which makes our claim obvious.
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For / ��� �
, assume that ��) � ��C 
 � � � is an antichain with at least two

elements, and / � � 
 . Since the 
 -factors of
�

, C 
 � � � ��� � � ������� � � ��� , give
a partition of 

� 	 into subsets 
<��� � , � � 3 ������� � 
 [FK1, Prop. 2.5(1)], we find
that / ��	 � for some � ��C 
 � � � . If � contains any elements of C 
 � � � , then
it must contain � , which contradicts � being an antichain with more than one
element. We conclude that � does not contain any factors of

�
. In particular, it

is a subset of the nested set � , thus should have a join outside 
 , and we again
reach a contradiction. We conclude that � � C 
 � � � is nested with join

�
, hence

belongs to * � � �:� 	 . ;

3.4 SIMPLICIAL FANS REALIZING NESTED SET COMPLEXES

We recall the definition of the simplicial fan � ���	��

� for a given atomic meet-
semilattice � and a building set 
 in � . For details see [FY, Section 5].

Given a finite meet-semilattice � with set of atoms
� ��� � � � �-��������� � � � � ,

we will frequently use the following notation: For
� � � , define

� ��� � �
� � � � ��� � � � ,��.� , the set of atoms below a specific element

�
in � . We define

characteristic vectors ��	 in � � for lattice elements
� � � by

�	��	 � � � �

 3 if � � � � ��� �%

otherwise � for ��� 3 ������� � � �
These characteristic vectors will appear as spanning vectors of simplicial cones
in � � . For a subset ��) � , we agree to denote by � � � � the cone spanned by the
vectors ��	 for

� � � .

Definition 3.4.1 Let � be a finite atomic meet-semilattice and 
 a building set
in � . We define a rational, polyhedral fan � ���	��

� in � � as the collection of cones
� � � � for all nested sets � in � ,

� ���	��

� � � � � ��� � � � � � ���	��

� � � (3.4.1)

By definition, rays in � � �	��

� are in 3 - 3 correspondence with elements in 
 .
In fact, the face poset of � ���	��

� coincides with the face poset of � � �	��

� .

If there is no risk of confusion we will denote the fan in (3.4.1) by � � 

� .

Theorem 3.4.2 Let � be a finite atomic meet-semilattice, and 
 , 
 building sets
in � with 
 � 
 . Then, the fan � � 

� is obtained from � � 
 � by a sequence of stel-
lar subdivisions. In particular, the supports of the fans � � 

� and � � 
 � coincide.
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Proof. For building sets 
 � 
 in � and � minimal in 
4& 
 , set 
 � � 
 &
� ��� .
Obviously, �F��� 
 ��� � C � � � � , and for any

� � � we find that

����� 
�� 	 �

 C 
 � � � if � �� C 
 � � � �
� C 
 � � � &�� � � � � C � � � � if � � C 
 � � � �

Isomorphisms of posets required for the building set property of 
 expand accord-
ingly in the second case, and we find that 
 is again a building set for � .

We thus conclude that, for any two building sets 
 , 
 with 
 � 
 , there is a
sequence of building sets


 � 
 � � 
 � � ����� � 
 � � 
 �

such that 
 � and 
 � � � differ by exactly one element � � , and � � is minimal in 
 � & 

for � � 3 ������� � 
 / 3 .

We can thus assume that 
 � 
�& � ��� , and it suffices to show that � � 

� is
obtained from � � 
 � by a sequence of stellar subdivisions.

In fact, we claim that � � 

� is obtained by a single stellar subdivision of � � 
 �
in � � C � � � � � , introducing a new ray that is generated by the characteristic vector� � , i.e.,

� � 

� � �����+� � 
 � � � ��C � � � � � � � � � � (3.4.2)

Observe that the two fans in (3.4.2) share the same set of generating vectors
for rays, so all we have to show is that they have the same combinatorial structure,
i.e., their face posets coincide.

The face poset of the subdivided fan can be described as the combinatorial
blowup of the face poset *��+� � 
 � � � * � � � 
 � � in the 
 -nested set C � � � �
(cf. [FK1, Sect. 4.2]), hence we are left to show that

* � � � 

� � � ������� � � � �$* � � � 
 � � � � (3.4.3)

Let us abbreviate notation and denote the poset on the right hand side by ����* .
We first show the left-to-right inclusion in (3.4.3).

Let � be a 
 -nested set in � . We need to show that � is an element in ����* . For
the matter of this proof, we agree to freely switch between sets of atoms and their
joins in the respective semilattices.

For � �� � , we note that � is 
 -nested. Moreover, � does not contain C � �
� � ,
since the latter is certainly not 
 -nested. We conclude that � is an element in ����* .

For �	� � , we need to show that ��� & � � � � � C � � � � is 
 -nested. Let � be
an antichain with at least two elements that is contained in ���4&
� � � � � C � � � � ;
we need to see that /0� �� 
 . If � ) C � � � � then clearly /0� either equals �
or lives between � and its 
 -factors, hence in any case is not contained in 
 .
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If � does not contain any 
 -factor of � , then � 	 � is 
 -nested, in particular
/ � ���
 .

We can thus assume that the antichain � is of the form � � ��� � ������� ��� � �
C � ������� �:C<=�� , where � � � �'& � � � � � C � � � � � for � �93 ������� � 
 , and C + ��C � �
� � for
2 �93 ������� �:B , and both types of elements occur in � .

Let us assume that /0� ��
 . We have

�
� 	

��
� , �

� � 2 � �
�

� � � � � � � � 
 ����� ��� � �
���
	���

��

��� ��� � �����

� �"2 � � (3.4.4)

where the last equality holds since any � + comparable with � has to be smaller
than � , otherwise � + , � 	 C � gives a contradiction to � being an antichain.

If there are no � � , � � ��3 ������� 
�� , that are incomparable with � , the right hand
side of (3.4.4) equals � . Assuming that /0� � 
 we find that / ��	�C for some
C ��C � �
� � since the 
 -factors of � partition the elements of 
 below � [FK1,
Prop. 2.5.(1)]. We assumed that � contains some of the 
 -factors of � , and thus
conclude that it must contain C . This however contradicts to � being an antichain
with at least two elements.

We are left with the case of the join on the right hand side of (3.4.4) being
taken over more than one element. Since � � ����� � � � � � � incomparable with
� � � � � �() � is a 
 -nested antichain, we conclude that / � � is not contained
in 
 and � � is its set of factors. Since these factors partition 
 -elements below
/ � � we find that either / ��	 � � , for some � � � � � , which is a contradiction to �
being an antichain, or / ��	 � , which again places /0� below one of the 
 -
factors C of � , and, as argued above, leads to a contradiction. We conclude that
� �4&
� ��� � � C � � � � is 
 -nested, thus any 
 -nested set � is an element of ����* as
claimed.

Let us now turn to the right-to-left inclusion in (3.4.3).
Let � � ��� ��� � � � �$* � � � 
 � � � , we have to show that � , respectively the set of atoms
below � in ����* , is nested with respect to 
 .

Let us first consider the case when � is 
 -nested and does not contain C � �
� � ,
i.e., � is one of the elements of the face poset *�� � � 
 � � that remain after the
blowup. Assume that � is not 
 -nested, hence there exists an antichain � in �
with / � � 
4& 
 , i.e., /0��� � . We conclude that � coincides with the set
of 
 -factors of � (cf. [FK1, Prop. 2.8.(2)]), which contradicts our assumption
about � not containing C � �
� � .

Let us now consider the remaining case, i.e., � � � 
 � � � � , where � 
 is 
 -
nested, � 
 ���C � �
� � , and � 
 ��C � � � � is 
 -nested. We have to show that � is

 -nested.

Let � be an antichain contained in � . If � �� � , then ��) � 
 and /0� � 
#& 

implies as above that ��� C � �
� � contradicting our assumptions.
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If � �-� , then ��� ��
 � � � � where ��
 is an antichain in � 
 . If /0��� � , then
� would not be an antichain, hence it suffices to show that / � �� 
 . Consider

�
� �

�
� 
 2 � �

�
� 
 2

� C � �
� � � �
� 
 2

�
� ��� � ��� � ��� � � ���
	

�
��

��

� � � � � ��� ��	�� � ����� ��� � C �

where the last equality holds since any 
 -factor C of � comparable with an ele-
ment � in the antichain � 
 must be smaller than � , otherwise C , � implies � 	��
which contradicts to � being an antichain.

We find that ��
 � ��C �<C � � � � � C incomparable to elements in � 
 � is an an-
tichain in � 
 � C � �
� � . With the latter being 
 -nested by assumption, we con-
clude that /0� ���
 as required, which completes our proof. ;

Corollary 3.4.3 Let � be a finite atomic meet-semilattice, and 
 a building sets
in � . Then the nested set complex � ���	��

� is homeomorphic to the order complex
of � 
 �� ,

� ���	��

� 8 � � � � 
 �� � �
Proof. By Theorem 3.4.2 the simplicial fan � � � 
 �� � is a stellar subdivision of
� � 

� for any building set 
 in � . This in particular implies that the abstract
simplicial complexes encoding the face structure of the respective fans are home-
omorphic. The observation that the nested set complex for the maximal building
set, � � �	� � 
 �� � , coincides with the order complex of � 
 �� finishes our proof. ;



CHAPTER 4

ABELIANIZING THE REAL PERMUTATION ACTION

VIA BLOWUPS

4.1 INTRODUCTION

Our object of study is an abelianization of the � � permutation action on � � that
is provided by a particular De Concini-Procesi wonderful model for the braid
arrangement. Our motivation comes from an analogous construction for finite
group actions on complex manifolds, due to Batyrev [B1, B2], and subsequent
study of Borisov & Gunnells [BG], where the connection of such abelianizations
with De Concini-Procesi wonderful models for arrangement complements was
first observed.

Whereas previous studies were restricted to complex manifolds, here we study
one of the most natural nontrivial actions of a finite group on a real differentiable
manifold, namely the permutation action on � � . The locus of non-trivial sta-
bilizers in this case is provided by the braid arrangement � � � � . We suggest to
blow up intersections of subspaces in � � � � , respectively proper transforms of
those intersections, in the order of an arbitrary linear extension of the intersection
lattice � � , so as to exhaust all of the arrangement. That is the same as to take
the De Concini-Procesi wonderful model of the arrangement complement with
respect to the maximal building set, see [DP3].

Not only do we obtain an abelianization of the real permutation action, we
even show that stabilizers of points in the arrangement model are isomorphic to
direct products of � � . To this end, we develop a combinatorial framework for ex-
plicitly describing the stabilizers in terms of automorphism groups of set diagrams
over families of cubes.

Moreover, we observe that the natural nested set stratification on the arrange-
ment model is not stabilizer distinguishing with respect to the ��� -action, i.e., sta-
bilizers of points are not in general isomorphic on open strata. Motivated by this
structural deficiency, we furnish a new stratification of the De Concini-Procesi
arrangement model that distinguishes stabilizers.

Arrangement models have been extensively studied over the last years. They
were introduced by De Concini & Procesi in [DP3], one of the motivations be-
ing to provide rational models for cohomology algebras of arrangement comple-
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ments. In [FK1] the De Concini-Procesi model construction was put in a very gen-
eral combinatorial context, showing that the notions of building sets and nested
sets, coined already by Fulton & MacPherson in [FuM], along with the notion
of a blowup, have canonical combinatorial counterparts in the theory of semi-
lattices. It was also shown in [FK1] that this combinatorial framework actually
traces precisely the step-by-step change in the incidence structure of strata during
the De Concini-Procesi resolution process.

On the geometric side, wonderful arrangement models were generalized
to wonderful conical compactifications by MacPherson & Procesi [MP], and
Gaiffi [Ga2] recently provided a further generalization incorporating mixed real
subspace and halfspace arrangements as well as real stratified manifolds as start-
ing points of the construction. Algebraic topological invariants of wonderful mod-
els are another focus of interest. Yuzvinsky [Y] provided a monomial basis for
the cohomology of wonderful compactifications of hyperplane arrangements that
was later generalized by Gaiffi to compactifications of subspace arrangements
in [Ga1].

We give a more detailed outline of this chapter: In section 4.2, we begin our
investigations with a brief review of De Concini-Procesi wonderful models. More-
over, we describe how an action of a finite group on an arrangement extends to an
action on the arrangement model. We then turn to our specific situation, observ-
ing that when blowing up the entire locus of non-trivial stabilizers for � � acting
on � � , i.e., the entire braid arrangement, the nested set stratification is not suf-
ficient to distinguish stabilizers. That is, we may have two points lying on the
same stratum, but having non-isomorphic stabilizers. In fact, this happens already
for � � � .

In section 4.4, we study the nested set stratification and group actions on
De Concini-Procesi models in some detail, so that finally, in section 4.5, we are
able to rectify the situation: We define a different stratification on the De Concini-
Procesi model such that, on one hand, this stratification is naturally arrived at by
tracing a certain, interesting on its own right, subspace arrangement in � � , on the
other hand, this new stratification is stabilizer distinguishing.

In section 4.6 we turn to the detailed study of the isomorphism types of sta-
bilizers of points in the De Concini-Procesi resolution of the braid arrangement.
Relying on our analysis in the previous sections, we know that the stabilizer of
a point in the arrangement model is the intersection of a number of stabilizers of
lines and of the stabilizer of one single point in � � . We develop a combinatorial
language to describe stabilizers of points and lines in � � , namely by representing
them as automorphism groups of set diagrams over families of cubes. The crucial
property of this representation is that taking intersections of a number of auto-
morphism groups of such diagrams will again yield an automorphism group over
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a diagram. This new diagram can be combinatorially read of from the original
diagrams. Thus, we succeed to represent the stabilizer of a point in the arrange-
ment model as an automorphism group of a set diagram over a family of cubes.
By further analysis of this diagram, we are finally able to prove in section 4.7 that,
beyond the natural initial expectation that the stabilizers ought to be abelian, they
in fact are isomorphic to direct products of � � , with the number of factors in each
product at most

� � � � .
4.2 DE CONCINI-PROCESI ARRANGEMENT MODELS

In this section we briefly review the construction and main characteristics of won-
derful arrangement models as introduced by De Concini & Procesi in [DP3]. We
first remind the notions of building sets and nested sets since they guide the ex-
plicit construction and capture the underlying incidence combinatorics of a natural
stratification. Moreover, we comment on actions of finite groups on De Concini-
Procesi models that are induced from group actions on the arrangement.

4.2.1 Building sets and nested sets

Let � be an arrangement of linear subspaces in a finite dimensional real or com-
plex vector space, and denote by � � � �
� � the lattice of intersections of spaces
in � ordered by reverse inclusion, customarily called the intersection lattice of � .

Definition 4.2.1 ([DP3,
�
2]) For � ��� �
� � the intersection lattice of a complex

or real subspace arrangement, let � � denote the lattice formed by the orthogonal
complements of intersections in � ordered by inclusion.

(1) For � � � � , � � � =� , � � � with � � � � � , is called a decomposition of � if for
any �0)�� , � � � � , � � � =� , � �
� ��� � � and � ��� � � � � , for � �E3 ������� �!B .

(2) Call � � � � irreducible if it does not admit a non-trivial decomposition.

(3) 
 ) � �6&(� $% � is called a building set for � if for any � � � �6&(� $% � and
� � ������� � ��= maximal in 
 below � , � � � =� , � � � is a decomposition (the

 -decomposition) of � .

(4) A subset 
 )�
 is called nested if for any set of non-comparable elements
� � ������� �
�$= in 
 , � ��� =� , � � � is the 
 -decomposition of � . The nested sets
in 
 form an abstract simplicial complex, the nested set complex � � 

� .

We will without further notice consider building sets as subsets of the inter-
section lattice � , and thus let the consideration of � � remain a detour for the
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sake of providing a transparent definition. Note that for any arrangement � the
set of irreducible elements in � �
� �!& � $% � is the minimal building set, whereas

 � � �
� �!& � $% � is the maximal building set. For the maximal building set the
nested set complex coincides with the order complex of the (non-reduced) inter-
section lattice.

4.2.2 Arrangement models and the nested set stratification

We are now prepared to give the definition of wonderful arrangement models.
Let � be an arrangement of subspaces in a real or complex vector space � , � �
� �
its intersection lattice, and 
 a building set for � . On the complement of the
arrangement, 	 �
� ��� � ��& � � , consider the map

� � 	 �
� � /10 � �
?
� ) 


� � � 	 � � � (4.2.1)

where in its first coordinate the map is given by inclusion, and in later coordi-
nates by projection to the (real, resp. complex) projectivizations of the respective
quotient spaces. Formally,

� � � � � � � � � � � � � � � � ) 
 � �
with

� � � � � � � � � � � 	 � � � � � 	 � � , for � � 	 �
� � , where brackets
� � � � � denote

the linear span of subspaces or vectors, respectively. This map is an embedding
of 	 �
� � , the arrangement model � 
 is defined as the closure of its image in
� � ' � ) 
 � � � 	 � � :

� 
 � � 	 � � � � � � �
Alternatively, � 
 can be described as the result of subsequently blowing up

intersections of subspaces in � , and proper transforms of such, corresponding to
building set elements � � 
 in some linear extension of the inclusion order.

The arrangement model � 
 is a smooth variety that contains the arrangement
complement 	 �
� � as an open subspace. The complement � of 	 �
� � in � 


is a divisor with normal crossings, in fact, it is the union of smooth, irreducible
components ��� indexed by building set elements � � 
 . The intersections of
divisors ��� are smooth and irreducible, naturally, they are indexed with subsets
of 
 . One of the main results of De Concini and Procesi, [DP3], states that an
intersection of divisors is non-empty if and only if it is indexed with a nested set
in 
 .

We call the resulting stratification of � 
 by irreducible divisor components � �
and their intersections the nested set stratification of � 
 , and denote it by � � 
 ��� � .
Note that the poset of strata for �
� 
 ��� � coincides with the face poset of the nested
set complex � � 

� .
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De Concini & Procesi also provide a projective version of their arrangement
models obtained by starting out with the projectivization of the arrangement com-
plement and replacing the first factor on the right hand side of (4.2.1) by

� � � �
accordingly. The properties of the resulting projective model � 


are similar to
those of � 
 , for details we refer to [DP3,

�
4].

4.2.3 Finite group actions on arrangements and on their wonderful models

Let us now assume that a finite group � acts on our vector space � by linear
transformations, and that the arrangement � is invariant under that action. By
a standard result from representation theory, any linear action of a finite group is
orthogonal [V, 2.3, Thm. 1]. Throughout the chapter, we denote the corresponding
� -invariant positive definite symmetric bilinear form by the usual scalar product.
Since we assume � to preserve � , the group acts on the intersection lattice of � ,

� �5�.� � �����$�'� � � � � �5� � � � �����$� � �5� � � � for all � � � � � � ������� � � � � ���
as well as internally on the corresponding intersections of subspaces. Also, � acts
on the ambient space of the arrangement model corresponding to the maximal
building set, that is on � � ' � ) 
 � � � 	 � � , where 
 � � �
� �!& � $% � , by

� � � � � ��� � � ) 
 � � ��� � � � � ��� � ��� � � � � � � � � ) 
 � �
for all � � �
� � � � � ��� � � ) 
 � � � �

?
� ) 


� � � 	 � � �
Moreover, the inclusion map

� � 	 �
� � /10 � � ' � ) 
 � � � 	 � � defined
in (4.2.1) commutes with the action of � :

� � � � � � � � � � � � � � � � � � 	 � � � ) 
 � � ��� � � � � ��� � � � � � � � � � � � 	 � � � � � � � � � ) 
 �
� ��� � � � � � � � � � � � � � 	 � � � ) 
 � � � � � � � � � � for � � � �3� � 	 �
� � �

We conclude that, since each element of � acts continuously on � , the closure of
Im

�
is � -invariant. Hence, � acts on the arrangement model � 
 extending the

� -action on 	 �
� � ) � 
 .
Note that choosing a � -invariant building set 
 � � �
� �!& ��$% � as well yields an

action of � on the corresponding arrangement model.

4.3 THE ARRANGEMENT MODEL �����

4.3.1 A candidate for an abelianization of the permutation action

We consider the permutation action of the symmetric group ��� on � � ,
�
� � � � � � � � � � ������� ��� � � � � � � for all � � � � �
� � � � � ������� ��� � � � � � �
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The locus of points in � � with non-trivial stabilizer is a union of hyperplanes 
 � � + ,

 � � + � � ker � � � / � + � for 3�	 �7� 2!	 � . This family of “diagonal hyperplanes” in � �
is the braid arrangement � � � � of rank � / 3 , its name referring to the fact that the
complement of a complexified version in � � is the classifying space of the pure
braid group on � strands. The braid arrangement is one of the central examples in
arrangement theory and has provided a starting point for many investigations and
developments in arrangement theory and beyond, see e.g., [OT].

The intersection lattice of � � � � is the partition lattice � � , i.e., the poset of
set partitions � � � � � � ����� � � � � of ��3 ������� � � � ��� � �@� , � � )9� �@� with � �� , � � � � � �@� ,
ordered by reverse refinement. Clearly, a partition � � � � � � ����� � � � � in � �
corresponds to the intersection of hyperplanes

� � � � + � )�� � 
 � � + with
� 	 ��� ��� � 2 � �

3�	 �7� 2!	 ��� ��� � 23� ) �>= , for some 3 	DB 	 � � . We will freely use this correspon-
dence between partitions and intersections of subspaces in the braid arrangement.

For further considerations, we restrict the permutation action to the � � / 3 � -
dimensional real space

� � �*� � � � �
��

� , �
� � � % � �

The locus of points in � with non-trivial stabilizers is the intersection of � � � �
with � , an essential arrangement with intersection lattice �	� , which we still call
braid arrangement and denote by � � � � without further mention.

We propose to study the De Concini-Procesi arrangement model � ��� for � � � �
as a candidate for an abelianization of the permutation action. We allow ourselves
here to use the shorthand notation ��� � instead of � � � �	����

 . It follows from the
general discussion in subsection 4.2.3 that � � � carries a natural � � -action extend-
ing the � � -action on 	 �
� � � � �
) ��� � . It turns out that rather curious phenomena
enter the scene already in low dimensions.

4.3.2 The nested set stratification is not stabilizer distinguishing

Already for � � acting on � � , the nested set stratification on the De Concini-Procesi
model, � ����� ��� � , is not fine enough to distinguish stabilizers. Let us have a close
look at the situation.

As above, we restrict the permutation action of � � on � � to the subspace
� ��� � � � ��� � ��� � � � � �� , � � � � % � . The arrangement model ��� � is the result of
blowing up � % � in � . Topologically, � � � is an open Möbius band.

As a subspace of � � � � � � , ����� can be described as follows:

����� � � � � � � � � � �+� �� % � � � � % �:5 � � 5 � � � � � � ) � � � � � � �
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In terms of this pointwise description of ����� the divisors � � , � � ��� , read

� ���

 � � � � � � � � � � � � % �:5 � � 5 � � � � � �
� � � � � � � � � � � � � � � � � � �+� � � � � �� % � � � � % � � � 3 � 3 � / � � � � � �

with � � � � � � � � � , � � � � � � � � � having analogous descriptions.
Points on � � � � � � � � � are stabilized by the � -element subgroup of � � generated

by the transposition � � � 3 � � � : For a generic point on � � � � � � � � � , � fixes the point
and thus the generating line. For the single point in � � � � � � � � � � � ���

 , � fixes

%
and

the line
� � 3 � 3 � / � � � pointwise. Analogously, we see that points on � � � � � � � � � and

on � � � � � � � � � are stabilized by the transpositions � 3 � � � and � � � � � , respectively.
On � ���

 , however, we find points whose stabilizers the nested set stratification

does not distinguish: Stabilizers for points on � ���

 are trivial except for those
points on the intersections with one of the other three divisors, and for � additional
points

� � � � � % � � � 3 � / 3 � % � � � � � � � � % � � � 3 � % � / 3 � � � � � � � � % � � � % � 3 � / 3 � � �
The

� � + are stabilized by transpositions � � � 2 � , 3 	6��� 2
	 � , respectively, since
the transpositions fix

%
and flip the lines in the second coordinate. In fact, the

transposition ��� � 2 � , 3 	 ����2 	 � , acts on the open Möbius band � ��� like a “central
symmetry” with fixed point

� � + .

� � � � � � � � �

+ � � � � � � � �

+ � � �

+ � � � � � � � � + � � � � � � � �+ � � � � � � � �
Figure 1. The nested set stratification � ����� ��� � .

We provide here a glance on the already more complicated situation for � � � .
Our picture below shows the stratification of the exceptional divisor � ���

 , a real
projective space of dimension � , as it emerges from the first blowup step in the
De Concini-Procesi construction, Bl ���

 � .

We choose to place the intersection of � ���

 with the hyperplane 
 � � � on the
equator of the upper hemisphere model, and thus obtain the stratification of � ���


by the braid arrangement as depicted above. The double, respectively, triple inter-
sections of hyperplanes in � ���

 , e.g., 
 � � � � 
 � � � , respectively, 
 � � � � 
#� � � � 
 � � � ,
remain to be blown up in later steps, for triple intersections locally producing the
situation that we studied above for � �
� .
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� �
� �
� �

+ � � ��� � � � �
+ � � � � � � � ��� � + � ��� � � � � � � �

+ � � � � � � � � � �

� � �

� � � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �

� �3� � �

� � �

� �

� � �

� � � �3� � � � � � � �

� � � � �
� �� �

� � � � �

� � � � � � � � � � �

Figure 2. The stratification of � ���

 after blowup of � % � in � .

We mark some points and lines on open strata that ought to be distinguished by
a stabilizer distinguishing stratification: For instance, the point on � ���

 given by
the line that is generated by the vector � % � % � / 3 � 3 � in 
 � � � should be distinguished
from the open stratum corresponding to 
 � � � , since not only the transposition
� � � 3 � � � but also � � � � � � � stabilizes this line. The same goes for the (dashed)
line obtained on � ���

 as the intersection with the plane spanned by the vectors
� 3 � / 3 � % � % � and � % � % � / 3 � 3 � .

4.4 THE NESTED SET STRATIFICATION OF ARRANGEMENT MODELS

4.4.1 Points in � 


Let � be an arrangement of subspaces in a real vector space � , � �
� � its intersec-
tion lattice and 
 � � �
� �!& �!$% � the maximal building set for � . We will encode
points in the arrangement model � 
 into tuples of points and lines in � , a descrip-
tion that will prove to be favorable for technical purposes.

A point � in � 
 will be written as

� � � � ��
#� �:55� � 
 � �:5 � ������� ��
 � �65 � � � (4.4.1)

where � is a point in � , the 
 � are elements in 
 ���'& � $% � , and the 5 � are lines
in � . The point � is the first coordinate of � when written as an element in
the product space on the right hand side of (4.2.1). 
 � is the maximal lattice
element that, as a subspace of � , contains � . The line 5 � is orthogonal to 
 �
and corresponds to the coordinate entry of � indexed by 
 � in

� � � 	�
 � � . The
lattice element 
 � , in turn, is the maximal lattice element that contains both 
 �
and 55� . The specification of lines 5�� , i.e., lines that correspond to coordinates of �

in
� � � 	 
 � � , and the construction of lattice elements 
 � � � , continues analogously

for � , � until a last line 5 � is reached whose span with 
�� is not contained
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in any lattice element other than the full ambient space � . Note, that if 
4� is
a hyperplane, then the line 5 � is uniquely determined. The whole space � can be
thought of as 
 � � � .

Observe that the lattice elements 
 � are determined by the point and the se-
quence of lines; we still choose to include the 
 � in order to keep the notation
more transparent.

To see that the description (4.4.1) of a point � in the arrangement model � 
 is
sufficient, we need to see that the rest of the coordinates can be read off uniquely
from the coordinates � �:5 � ������� �65 � . The reconstruction can be explicitly done as
follows. Fixing 
 � � � %

and 5 ��� � � � � , the first coordinate of � is � , and the
coordinate of � indexed with 
 � 
 , � � , can be read from (4.4.1) as

� � � � 5 + ��
 � 	�
 � � � � 	 
�� � (4.4.2)

where 2 is chosen from the index set ��3 ������� ��
�� such that 
 	 
 + , but 
 �	 
 +�� � .
To prove (4.4.2) we need the following technical lemma.

Lemma 4.4.1 Let � be a vector space and
�


 , 
 vector subspaces of � , such
that

�


 ) 
 . Let furthermore � � � � �� , � be a sequence of points in � & 
 such that
the limit � 
 � ��� �

� � � �
�


 �
� � exists in the corresponding Grassmannian.
Assume that � �) 
 , then � 
 � ��� �

� � � ��
 � � �
� ��
 � ; again the limit is under-

stood with respect to the topology of the appropriate Grassmannian.

Proof. Let us split � into the direct sum of linear subspaces:

� �
�


 � �
�



�

� 
�� � 
 � �

where
�


 �
, resp. 
 �

, denotes the orthogonal complement of
�


 , resp. of 
 .
Since � � ��

�


 , we have ��
 � � � � �
�


 �
� ��
 �
�


 � 3 , hence ��
 � � � ��
 �
�


 � 3 ,
and therefore there exists � � �


 �
, � �� %

, such that � � � �


 � � � .
Writing � � �"�"� � ��� � � � , where �"� �

�


 , ��� �
�


 � � 
 , and � � � 
 �
, for all � ,

we have � � � �
�


 � � � ��� � � � �
�


 � � (4.4.3)

Note that �3� � � � �
�


 �
, and �3� � � � �� %

. We can scale � � , such that � �3� � � ��� � 3 ,
and, after scaling � and changing � � to / � � for some appropriately chosen � , we
get that � 
 � ��� � � ��� � � � � � � . Denote � 
 � ��� � ��� � � � and � 
 � ��� � � ��� � � ; these
limits exist since �3� and � � are chosen in mutually orthogonal linear subspaces.
We certainly have � 
 � ��� � � ��� � � � � � � 
 � ��� � ��� � � 
 � ��� � � � � � � � � � , and� � �

�


 � � 
 , � � � 
 �
. Since � �� 
 , we have � � �� %

, hence, for large � ,
� � � � , � � ��� 	 � 	 %

.
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We finish the proof by writing down two sequences of identities. First,

�
� ��
 � � � �


 � � ��
 � � � � ��
 � � � � � � � � ��
 � � � � � ��
 � �

where the second equality follows from
�


 ) 
 , and the fourth equality follows
from � � � 
 . Second,

� 
 ���� �

� � � ��
 � � � 
 ���� �

� � � ��
 � � �
� 
 ���� �

� � � 
 � � � � � ��
 � �

where the first equality follows from (4.4.3) and the fact that �*� � 
 . The second
equality is the most interesting one, it follows from the fact that the points � � lie in

 �

, and that the projectivization map � � 
 � & � % � 0 � � 
 � � , mapping a point
to the line which it spans, is continuous. ;
Proof of (4.4.2). Choose a sequence � � � � �� , � , � � � 	 �
� � , such that the limit
� 
 � ��� �

� � � ��� ��� in � � ' � ) 
 � � � 	 � � . This translates into

� � � � 
 � � � � � � �
� � � � 
 � ��� �

� �
� � ���
� � 
 � ��� �
� � � � � 	 � �

Let us choose 
 � 
 , and 2 ����3 ������� ��
�� , such that 
 	 
 + , but 
 �	 
 + � � . The
identity (4.4.2) follows now from the following computation:

� 
 ���� �

� � � ��
 � � � 
 ���� �

� � � � ��
 + � ��
 �
� � 
 ���� �

� � 5 + ��
 + � ��
 � � � 
 ���� �

� 5 + ��
 � �

where the first and the third equality are consequences of 
 + )�
 , while the
second one follows from Lemma 4.4.1. ;

4.4.2 Stabilizers of points in � 


We now assume that our subspace arrangement carries the action of a finite
group � . As we discussed above, the action extends to the arrangement model
� 
 . When considering stabilizers of the various actions we will include indices
into the notation that indicate the set on which the full group is acting, e.g., we
will write �#�:� � � �5� � , ���6� � � � � � � for the stabilizers of � with respect to the � -actions
on � and on � 
 , respectively.

We take up the encoding of points in � 
 from subsection 4.4.1, and derive a
description for the stabilizer of a point in � 
 :
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Proposition 4.4.2 Let an arrangement model � 
 be equipped with a group action
stemming from the action of a finite group � on the arrangement. Then for sta-
bilizers of points � � � � ��
 � �:55����
 � �:5 � ������� � 
 � �:5 � � in � 
 the following description
holds:

���6� � � � � � � � ���:� � � � � � � �#�:� � � � 55� � � ����� � ���6� � � ��5 � � � (4.4.4)

where ���:� � � ��5 ��� , � � 3 ������� � 
 , denotes the subgroup of elements � � � with
� ��5 ���
� 5 � , i.e., elements preserving 5�� without necessarily fixing the line pointwise.

Proof. Using the description of points in � 
 given in subsection 4.4.1, and the
definition of the group action, we can describe the stabilizer of a point � � � 
 as
follows:

�#�:� � � � � � � � ���6� � � � � � � ���6� ���	� ��� � � � ��55� � � ����� � �#�:� ����� ��� � 
 � ��5 � � � (4.4.5)

where ���6� � ��� ��� ��� � ��5 � � , � � 3 ������� � 
 , translating from the projective to the original
linear setting, means elements � � � under which both 
 � and 5 � are invariant:

���6� � �	� ��� ��� � � 5 ��� � � ���:� � � � 
 ��� � ���6� � � ��5 � � �

Again, �#�:� � � � 
 ��� denotes group elements that preserve 
 � but do not necessarily
fix 
 � pointwise.

We show that

���6� � � � � � ) ���6� � � � 
#� � � and

�#�:� � � � 
 � � � �#�:� � � � 5 ��� ) ���6� � � � 
 � � � � � for � �E3 ������� � 
 / 3 �

which, successively applied for � � 
 / 3 , � � 
 / � , etc., reduces the right hand side
of (4.4.5) to the right hand side of (4.4.4), since � � 	 � � , for any two sets �
and

	
, such that � ) 	

.
For � � ���:� � � � � � , � in contained in � � 
 � � � 
#� . But 
 � � � � 
#� ��� 
#�

is assumed to be maximal in 
 ���'&(� $% � containing � , thus, it follows from the
fact that 
 is closed under taking intersections, that � � 
 � � � 
#� . Similarly for
�	� �#�:� � � � 
 � � � ���6� � � ��5 ��� : � � 
 � � � � � 
 � � � contains both 
 � and 5 � , but 
 � � �
should be maximal in 
 � �'&(��$% � with this property, hence � � 
 � � � �
� 
 � � � .

Note additionally, that if 
�� is a hyperplane, then �#�:� � � � 
 � � � ���6� � � ��5 ��� ,
hence, in this case, �#�:� � � ��5 ��� can be removed from the right hand side of (4.4.4)
without changing the expression. ;
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4.4.3 The divisors � � , � � 

Recall from Section 4.2 that the nested set stratification �
� 
 ��� � on an arrangement
model � 
 is given by irreducible components of divisors and their intersections.
Our objective is to provide, in our special setting, a description of the divisors � � ,
� ��
 , that enables us to tell for a given point in the arrangement model on which
of these divisors it lies.

De Concini & Procesi give a description of the divisors in terms of affine and
projective arrangement models for “smaller” arrangements. To keep track of the
respective settings, we provide arrangement models with an additional index that
specifies the ambient space of the original arrangement, and we indicate projective
models by a bar, e.g., in presence of other arrangement models we will now write
� � � 
 for the affine and � � � 
 for the projective model of the previously considered
arrangement.

In our special setting the description of divisors by De Concini & Procesi reads
as follows:

Proposition 4.4.3 [DP3, Thm. 4.3, Rem. 4.3.(1)] Let � be an essential arrange-
ment of subspaces, 
 the maximal building set, 
 ��� �
� �!& � $% � , and � � � 
 the
corresponding arrangement model. For the irreducible divisors � � , � ��
 , there
are natural isomorphisms:

� ���

 8 � � � � 
 � (4.4.6)

� � � 
 8 � � ��� � � 
�� � � ��� � 
�� � � for � �� � % � � (4.4.7)

Here, � ��� � � 
 � � is the projective model for the quotient arrangement � 	 � � �
��
 	 � � 
 � � ��
 � � � with (maximal) building set 
<��� � ��
 � 
 � 
 	
� � , and ��� � 
�� � is the affine model for the restricted arrangement � �	� � �
��
 ��� � 
 � � � with (maximal) building set 
$
�� � ��
 � 
�� 
 	 � � .

The projective model � � � 
 , in fact, is isomorphic to the inverse image of
� % � when projecting � � � 
 to � , the first coordinate of its ambient space [DP3,
Thm.4.1]. Hence, � � � ���

 if and only if � ���

 � %

, in other words

� � � ���

 � � � � � � 
 �
�
� % � �

?
� ) 


� � � 	 � ��� � (4.4.8)

It is a description of this type that we want to achieve for the other divisors, � � ,
� ���� % � , as well.

To this end, note that the right hand side of (4.4.7) can be considered as a
subspace of

� % � �
?
� ) 
�� � � � � 	 ��� 
 	 � � � � �

?
� ) 
�� �

� �
� 	 
 � �
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For � � 


�� , we can “expand” the factor
� � � 	�� � by a diagonal map

� � � 	�� � /@0 ?� � ���� � ��� � �
� 	 � 
 2 � � � �

and thus interpret ��� as a subset of

� � � � � �
?
� ) 
��� � � �
� 	 � 
 2 � � � �

?
� ) 
�� � � � � 	 
�� �

With � 	 � 
 2 � � 8� �
� ��
 � 	 
 , � � can be considered a subspace of the ambient

space � � ' � ) 
 � � � 	 � � of the arrangement model.
We thus can state our description of divisors � � :

Proposition 4.4.4 Let � be an essential arrangement of subspaces, 
 the maxi-
mal building set, 
 ��� �
� �!&
� $% � , and � 
 the corresponding arrangement model.
The irreducible divisors � � , � � 
 , are intersections of � 
 with the product
spaces � � , where the � � are obtained by restricting those factors of the original
ambient space of ��� which are indexed with 
 � 

	��� :

� � � � 
 � � �

� � 
 �
��
� �

?
� ) 
 �� � � � � � ��
 � 	 
�� �

?
� ) 
 � � � � � 	 
���
� �

Proof. Observe first that the description for � ���

 given in (4.4.8) coincides with
the one stated in the Proposition: intersecting � 
 with � ���

 restricts the first coor-
dinate to

%
.

For � ���� % � , we start with the description of � � in (4.4.7) and see from the
reasoning above that any element in � � is contained in � � . For the converse,
let � � � � ��
#� �:55����
 � �:5 � ������� � 
 � �:5 � � be contained in � 
 � � � . From � � � � we
conclude that � � � , hence 
 � , � . Assuming for the moment that 
 ��� � , we
look at the component of � indexed by 
 � . Using the expansion of � from (4.4.2)
and the fact that � � � � , we see that

� � � � � 55� ��
#� � 	�
 � � � � � 	 
#� � �
hence 5 � ) � . This implies that 
 � is larger or equal � , for, if it were not,

 � 2 ��� 
 � would contain both 
 � and 55� in contradiction to 
 � being maxi-
mal with this property.

We conclude that there is an index B �4��3 ������� ��
�� with 
�= � � , and can thus
split the point/lines description of � into

� �


� � ��
#� �:55� � 
 � �:5 � ������� �:5 = � � � � � � � 5 = ��
 = � ��������� ��
 � �65 � � � �
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The first tuple clearly describes an element in � � � 
�� � . We rewrite the second tuple
as follows:

� % ��� � �:5 = ��
 = � � 	 � ������� ��
 � 	 � �:5 � � �
With 5 + being orthogonal to � , hence 5 + � � � � 	 � � , we can then interpret it as an
element of � ��� � � 
 � � . With (4.4.7) we thus conclude that � � � � . ;

4.4.4 Open strata of the nested set stratification

We will provide a characterization of points on open strata of the nested set strat-
ification of ��� in terms of their point/line encoding described in subsection 4.4.1.

To fix some notation, let us denote by ���� � � !#!#! � ��� the open stratum in � � 
 ��� �
that lies in the intersection of divisors � � ��������� ��� ��� , but on no other divisors
indexed with building set elements. Recall that the index set � � � ������� � � � � is

 -nested, which in our context, i.e., for the maximal building set, means that it is
a chain in � �
� � . We tacitly assume that the � � are listed in a descending order:
� � 	 ����� 	 � � .

Proposition 4.4.5 Let � 
 be an arrangement model with nested set stratifica-
tion � . A point � � � 
 is contained in the open stratum of � indexed with the
nested set 
 ��� � � ������� � � � � if and only if the spaces in 
 coincide with the
spaces occurring in the point/line description of � :

� ��� �� � � !#!#! � � � � ' � � � � � � � �:55��������� � � � �:5 � � �
where on the right hand side the usual restrictions for coordinates of a point/line
tuple as in (4.4.1) apply.

Proof. First observe that the claim holds for points � in the big open stratum
� 
 & � � 	 �
� � , that is for � � %

: The indexing nested set is empty, and the
point/line description for � reduces to the point entry � � 	 �
� � .

We can thus assume that � � � , in particular, � is contained in some open
stratum in � , say

� � � �� � � !#!#! � ��� �
where we remind that the � � are indexed in descending order, and � , 3 .

At the same time, � has a point/line description, say

� � � � ��
#� �:5 � ������� ��
 � �:5 � � �
where 
 � ������� ��
 � � 
 , � � 
 � , and 5 � � � � � 	 
 ��� , for � �93 ������� � 
 . We show in
the following that the descending chains � � 	 ����� 	 � � and 
 � 	 ����� 	 
 � co-
incide, in particular implying � � 
 .



4.5 A stabilizer distinguishing stratification of � � � 71

Step 1: The maximal elements of the chains coincide: 
 � � � � .
With � � � � � , we know by Proposition 4.4.4 that � � ��� ; but 
#� is maximal with
this property, hence, 
 � , � � .

We want to see, that � � � � � . Using again Proposition 4.4.4 and the expan-
sion of � in (4.4.2), we have to check that � � 
 � , and that for any 
 �	 
 � the
coordinate � � � � � � � � 
 � 	 
 is a point in

� � � 
 � � 
 � 	 
�� . With
� � � ) 
#� this is

obviously the case.
We conclude that 
 � � 
 , hence, 
#�6	 � � by maximality of � � in 
 . This

yields our claim. In particular, we see that 
(, 3 .
Step 2: Assume 
 + � � + for 2 � 3 ������� � � , and � � 
 . Then � , � ��3 and

 � � � � � � � � .
Here, we first want to see, that � � � � �
	 � . For this we need to check that
� � 
 � � � , and that for any 
 �	 
 � � � the coordinate � � � � 5 + � 
 � 	 
 is a point
in

� � � 
 � � � ��
 � 	�
�� . The line 5 + depends on 
 (compare (4.4.2)), but for any

 in question its index 2 is strictly less than � �93 . From the point/line descrip-
tion for � we see that � � 
 � ) 
 � � � . With 5 + 	 
 + � �6) 
 � � � we conclude that� 5 + � 
 � 	 
 � � � � 
 � � � � 
 � 	 
�� , hence � � � � �
	 � .

Since 
 � � � belongs to the nested set 
 , 
 � � �@� 
 � � � � , implies that, in fact,
� , � ��3 and 
 � � �6	 � � � � .

To obtain equality we write out the condition on the coordinate of � indexed
with 
 � that results from � � ��� � 	 � : � � � � � 5 � ��
 � � 	 
 � � � � � � � � � ��
 � � 	 
 � � �

� � � � � � 	�
 � � .
We conclude that 5�� ) � � � � . Moreover, � � ) � � � � by descending order on 
 .

But 
 � � � is maximal in 
 containing both 
 � � � � and 5 � , hence 
 � � � , � � � � ,
from which our claim follows.
Step 3: � ��
 , and hence the chains coincide.
From Steps (1) and (2) we conclude that � , 
 . Let us assume that � 	 
 , in
particular, � � ��� 
 	 � . We conclude from the resulting condition on the coordinate
indexed by 
 � , � � 
 � � 5 � ��
 � � 	 
 ��� � � � ��� � � ��
 � � 	�
 ��� � � � � � � � 	 
 � � , that both
5 � and 
 � � ��� are contained in �.� � � which contradicts the fact that the point/line
description of � was terminated after the 
 -th step. Hence � � 
 , and the chains
� � 	 ����� 	 � � and 
 � 	 ����� 	 
 � coincide. ;

4.5 A STABILIZER DISTINGUISHING STRATIFICATION OF � � �

4.5.1 Adding strata

On our way to construct a stabilizer distinguishing stratification for � � � we first
analyze the locus of lines in � � that are stabilized by a given element in � � . Let
��� � � , and, restricting the permutation action, consider � � as a representation
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space of the cyclic group
� � � . In � � we have, on one hand, the linear subspace� � � � � ��� 
 � � � � , the locus of lines that are pointwise fixed by � , on the other hand,

we have the subspace
�
� � � � � , the locus of lines that are flipped by � . We can

characterize lines in � � that are invariant under � � � � as follows:

Proposition 4.5.1 Let ��� � � and � � � � � � � � � � � � � � � � � � . For a given line 5
in � � ,

� �'�#�:� � ��5 � � ' 5 ) � � � � �
We would like to emphasize that � � � � is defined as a union of

� � � � � and�
� � � � � , not as their span.

Let us now describe stratifications of the orthogonal complements �
�

of sub-
spaces � in � � . For such � , and for any � � � � , define � � � � � ��� � � � � � � � � .
Then, ���

� � � � � � ��� �	� 	�) �	

is a stratification of �

�
. Unlike the restriction of the braid arrangement stratifica-

tion to �
�

, it distinguishes stabilizers of points as well as stabilizers of lines.
We propose a construction for subsets in real arrangement models � 
 that takes

unions of linear subspaces in � � as input data. It is inspired by the description
of divisors ��� , � � 
 , that we presented in Proposition 4.4.4. Taking spaces
� � � � � � � � , � � 
 , ��� � � , with � � � � � � as defined above, our construction will
provide us with the additional maximal strata in � � � for obtaining a stabilizer
distinguishing stratification.

Definition 4.5.2 Let � � � 
 be an arrangement model, and � � � ��� ������� � � � � a
family of real linear subspaces in � . Define a subset

	 � � � in � 
 by
	 � � � � �

� 
 �

��� � � �
?� � � � � ���
 �

for any

 � � 


� � � � ��
 � 	 
�� �
?� � � � � �	
 �

for some

 � � 


� � � 	 
 � 
��� �

where
� � � ����
 � 	 
 � stands for the projectivization of � �� , � � � � � 
 � 	 
 .

We now can refine the nested set stratification � of ����� so as to obtain a
stabilizer distinguishing stratification. As before, we describe the stratification by
listing its maximal strata:

� � � � 

�
� � � )�� 
 � 
 � � � � � ��� � � � � � � )�� 
 � 	�)�� 
�� � (4.5.1)

where in the second family of strata we only consider those with � % � � � � � � � �()
�
�

.
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4.5.2 � ����� �
� � is stabilizer distinguishing

We can now state one of the main results of this chapter:

Theorem 4.5.3 The stratification � for the arrangement model � � � defined
in (4.5.1) is stabilizer distinguishing, i.e., the stabilizer of a point � � � � � is
completely determined by the open stratum of � that contains � .

Proof. We pick a point � � � � � ��� �:55� ������� � � � �65 � � in � ��� , and assume that we have
the complete list of maximal strata in � which contain � . We want to show that
the stabilizer of � is fully determined by this list.

Note first that by Proposition 4.4.5 our list of strata contains the divisors
� � � ������� ��� � 
 , and no other divisors of this type. This means that we can read
of from the list the elements � � ������� � ��� for the point/line description of � .

Assume � � 	 ��� � � � � � � � � � � , for some � � , � � ��3 ������� � 
�� . With Defini-
tion 4.5.2, and � � � � � � � � � ��� � � , this puts the following restriction on the co-
ordinate of � that is indexed by � � :

� � � � � 5 � � � � � 	 � � � � � � � � � � � � � � � � � � � � 	 � ��� �
We conclude that 5 � ) � � � � � ��� , in particular, � stabilizes 5�� .

From the strata
	 ��� � � � � � � � � � � , that occur on our list for a fixed space

� � , � �4��3 ������� ��
�� , we can read off a subset � � of �#�:� � � 5 ��� . Namely, for each
� � ��3 ������� � 
�� , � � consists of all � such that � � 	 � � � � � � ��� � � ��� .

Let us assume that, when constructing � � from our list of strata for � , we actu-
ally missed some elements of ���6� � ��5�� � : let � �/���6� � ��5 � ��& � � . Then 5 � ) � �,� � � � � , but
� �� 	 ��� �,� � � � � � � ��� . By definition of the additional maximal strata we conclude
that there exists a subspace 
 � � � , which does not contain any of the spaces in
� �,� � � ��� � � � , such that

� � � � 5 + ��
 � 	 
 �� � � � � �,� � � � � � � � ��
 � 	�
�� � (4.5.2)

The line index 2 depends on 
 , but in any case, 2 	 � : for 2 � � , 5 + ) � � ,
and for 2 � � , 5 � ) � �,� � � � � , and the condition on � � for � being contained in
	 � � �$� � � ��� � � � � would be fulfilled.

It follows from (4.5.2) that 5 + �) � �$� � � ��� . Since 5 + is orthogonal to � � , it im-
plies � ������6� � ��5 + � , and, in particular, � �� � �� , � ���6� � ��5 ��� . Hence, even if for some � ,
� � � ���6� � ��5 � � , once the full intersection is taken, this is rectified:

��

� , �
� ���

��

� , �
���6� � � 5 ��� �

With the description of ���6� � � � � from Proposition 4.4.2, and ���6� � � � � being deter-
mined by the partition pattern of � , hence by � � , we can conclude that the list of
strata in � containing � actually determines the stabilizers of � . ;
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4.5.3 ����� revisited

Let us have a look at the stratification � on ����� and see how it resolves the prob-
lem raised in 4.3.2, namely to distinguish stabilizers of points by means of a strat-
ification.

To start with, we have to identify those spaces � � � � � � � � for � � � � , ��� � � ,
that give raise to new strata

	 � � � � � � � � � � . We claim that the only interesting
case occurs for � a transposition, � � ��� � 2 � , 3 	 �-��2!	 � , and � ��� % � .

We have � � � � � 
 � � + � 
 �� � + , where we denote hyperplanes of � � � � in � by

 � � + , just as for the original (non-essential) arrangement in � � , and their orthogo-
nal complements by 
 �� � + . With � � � ��� % � � � � � � � , we obtain new strata

	 � � � + � � 	 ��� � ��� � 2 � ��� % � � � � % � �
� ��� � � 
 � 
 � � + � 
 �� � + � � � � � 
 � � + � � � � 
 � � + / � � � �

In terms of the pointwise description for ����� that we gave in 4.3.2 this reads
	 � � � � � � � � � � � � � � �+� � � � � �� %

or � � � / � � �� % �
� � � % � � � 3 � 3 � / � � � � � � % � � � 3 � / 3 � % � � � � �

analogously for
	 � � � � � , 	 � � � � � . Hence, as opposed to the nested set stratifica-

tion � , the stratification � ��� � �
�
�
�
)���� �
� � � �

�
� �
� � � �

�
� �
� �

�
�
�
� � distinguishes the

points
� � � + , 3 	 ���F2 	 � from the rest of the divisor � ���

 .

���
�
�

����
�
�� ��

�
� ����

�
�

���
�
� � �

�
�

�	� �
�
��
 � ��
��� �

 � �
�
��
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�
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 � ��


Figure 3. The stratification � ����� �
� � .
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4.6 A COMBINATORIAL FRAMEWORK FOR DESCRIBING STABILIZERS

In this section we develop a combinatorial framework for describing stabilizers
of points on the De Concini-Procesi arrangement model � ��� with respect to the
� � -action. In section 4.7 we will use this description to prove that the stabilizers
of points of ����� are isomorphic to direct products of � � .

4.6.1 Diagrams over families of cubes

Definition 4.6.1

1. Let � be a finite, possibly empty set of positive integers. We call the collec-
tion of all subsets of � (including the empty subset) an � -cube. Reversely,
given an � -cube � , we call � the index set of � .

2. Let 
 be a positive integer. A 
 -family of cubes is a collection � �
��� � ������� � ��� � , where, for each 2 �A3 ������� � � , � + is an � � 2 � -cube, for some
� � 2 �() ��3 ������� � 
�� .

One can make use of geometric intuition by thinking of an � -cube as a coor-
dinate

% 	 3 -cube with � indexing the set of “directions” of the cube. The % -cube is
simply the point at the origin. For every ��, ����� � � � , the � -cube can be imbedded
as a coordinate

% 	 3 -cube in � � , and our object is the equivalence class of all these
imbeddings.

Let � be an � -cube, to discriminate from other � -cubes, we write elements of� as pairs � � ���
� , for � ) � . We denote vert � � � � � � � ���
� � � ) ��� , and refer
to its elements as vertices of � . When it is clear which cube we are in, we may
choose to skip � , and call � itself a vertex of � .

Note also that a 
 -family of cubes is simply specified by a function � �
� � � 0
� � � � , and that if

�
 	 
 , then every 
 -family of cubes is also a
�
 -family. For � �

��� � ������� � ��� � we denote vert � � � � � � � , � vert � � ��� , and refer to its elements as
vertices of � .

Definition 4.6.2

1. Let � be a 
 -family of cubes, � � ��� � ������� � ��� � , and let � be a positive
integer. An � -diagram

�
over � is a partition of the set � �@� into � vert � � �*�

blocks, some blocks may be empty, and an assignment of the blocks of this
partition to vertices of � ; in other words, it is a function

� � � �@� /@0 vert � � � �
B 40 � � � � = � � � = � � (4.6.1)
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where 2 � B � � � � � specifies the index of the cube and � = ) � � 2 � B � � the vertex
of � � � = � assigned to B .

2. For a vertex � � � � � of � , we call the set
� � � � � � � � the fiber of

�
over

� � � � � . For an � -cube � in � , the fiber of
�

over � is defined as the union
of the fibers of the vertices of � :

� � � � � � � � �

� ���
� � � � � � � � �

�����	�



���
������

��� ! �	�



�����
�

�������
��� � �

�������
�����
�

��� !�� !�� � ��� !�� �
Figure 4. An example of a 15-diagram over a 3-family of cubes.

As yet another piece of notation, let � � � ��� � be the set partition with blocks
being the fibers of

�
over the vertices of � , i.e., � � � � � � � � � � � � � � � ��� � � � ) vert

� � �
,

where we disregard all the empty blocks in the set on the right hand side.

4.6.2 Automorphism groups

There is a standard � � � -action on an � �@� -cube: it is generated by reflections with
respect to � hyperplanes, which are parallel to the facets of the cube, and which
go through the center of the cube. A technically convenient way to describe this
action is to think of the vertices of an � �@� -cube as vectors in an � -dimensional
vector space over the field ! � , again denoted � � � , and the action as parallel trans-
lations by vectors in � � � (i.e., generated by parallel translations with respect to the
coordinate vectors).

For a subset � ) � �1� , let � �� denote the corresponding coordinate subspace
of � � � , and let proj � � � � � 0 � �� denote the projection onto � �� which simply
”forgets” the coordinates with indices outside of � .

The following definition generalizes these actions to the case of diagrams over
families of cubes.

Definition 4.6.3 Let an � -diagram
�

over a 
 -family of cubes � �-���'� ������� � ��� �
be given. We define the group of automorphisms of

�
, which we denote " � � � � � ,

as follows: " � � � � � consists of all permutations � � � � , such that
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i) ��� � � � � ( � � ��� � � ��� ( � , for all 2�� 3 ������� � � , i.e., � preserves the fibers over
cubes;

ii) there exists (not necessarily unique) � � � � � , such that

��	 � = � � � � � = � � ��= � � for all B � ��3 ������� � � � � (4.6.2)

where � + � proj � � + � �,� � , for all 2 � ��3 ������� � � � , and where � = and 2 ��B � are
as in (4.6.1). In other words, � maps fibers to fibers according to a uniform
scheme obtained by restricting � to the cubes in the family � .

Remark 4.6.4 Maps between fibers of an � -diagram
�

over a 
 -family of
cubes � , which are induced by an element � � " � � � � � , must be bijections.

Indeed, let � be an � -cube in � , let � ) � , and let � � � � � be associated to �
by Definition 4.6.3 ii), then, by (4.6.2), we have

� � � � � � � � � � �() � � � � � � proj � �$� � �	� � � �
while

� � � � � � � � proj � �,� � � � � � �() � � � � � � proj � �$� � � �	� � � � � � � � � � � � �
Since � is injective, its restrictions are injective as well, hence we can conclude

that � restricts to a bijection between
� � � � � � � � and

� � � � � � proj � �$� � �	� � � .
Lemma 4.6.5

1. For � � � � , the stabilizer of � under the � � -action is the Young subgroup
of � � indexed by the set partition of � �1� , which is induced by the coordinates
of � . One can represent this Young subgroup as an automorphism group of
an � -diagram over a 0-family of cubes.

2. For a line 5 ) � � , the stabilizer of 5 under the � � -action can be represented
as an automorphism group of an � -diagram over a 1-family of cubes.

Proof. (1) The first part of the statement is immediate. To construct the necessary
� -diagram, group together all the coordinates of � that are equal and assign the
corresponding sets of indices to different 0-cubes. This yields an � -diagram

�

over a 0-family of cubes, and, obviously, " � � � � � is exactly the ��� -stabilizer of �
in � � .

(2) Take a nonzero vector � ��5 . Group together all the equal coordinates of� , and assign corresponding sets of indices to 0-cubes, just like we did for � .
Now, whenever there are two groups of coordinates, such that these groups are
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of equal cardinality, and the coordinates in the two groups are negatives of each
other, we connect the two corresponding 0-cubes with an edge, to form a 1-cube.
We orient all these cubes in the same coordinate direction. Clearly, this yields an
� -diagram

�
over a 1-family of cubes.

Assume first that our diagram consists of a number of 3 -cubes and at most
one

%
-cube, with the fiber over this

%
-cube consisting of all the indices of the

coordinates of � which are equal to
%
. The elements of the group " � � � � � are of

two sorts, depending on which of the two elements of � � they are associated to.
We easily verify that those elements of " � � � � � , which are associated to

% � � � ,
are exactly those � � � � , which fix � , while those elements of " � � � � � , which are
associated to 3 � � � , are exactly those �	� � � , which map � to / � . Since these
are the only two options for mapping � , if 5 is to be preserved by the element � ,
we have proven the lemma in this case.

Assume now that
�

is a diagram of some other form. Then, there exist no
��� � � such that � �	� � � / � , i.e., each element of ���:� � ��5 � fixes 5 pointwise. In
this case, ���:� � ��5 � � �#�:� � � � � , thus we are back to case (1) and the diagram can be
obtained by splitting all the 3 -cubes into

%
-cubes. ;

4.6.3 Intersections of diagrams

Let � � � ��� � ������� � ��� � , resp. � ��� � �(� ������� � ��� � , be a 
 � -, resp. 
 � -family of
cubes, where � � is an ��� � � � -cube, and � + is an � � � 2 � -cube, for all � � � � � , 2 �9� � � .

Let
� � , resp.

� � , be � -diagrams over � � , resp. � � :
� � � � �1� /�0 vert � � � � �

B 40 � � � � � = � � � � � �= � �
� � � � �1� /�0 vert � � � � �

B 40 � � ��� � = � � � � � �= � �

Definition 4.6.6 The intersection of diagrams
� � and

� � , denoted
� � � ��� � � ,

is an � -diagram over a � 
 � � 
 � � -family of cubes � defined as follows:

� � � � � � + � ��) � � � � + ) � � � � � ��� � 2 � � ��� � � � �1�*� � 
 � �+� � � � � 2 ��� �
here � � � + is an � ��� � 2 � -cube, furthermore

� � � �@� /@0 vert � � � �
B 40 � � � � � = � � ��� � = � � � � � �= ���*� � 
 � �+� ��� � � �= � � �
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Note that the fibers over the vertices and cubes of
�

are determined by the
fibers of

� � and
� � as follows:

� � � � � � � + �
� � � �� � � � � � � � �� � � + � �
and

� � � � � � � + � � � � � � �� � � � �6��� � � � � � � � � � �� � � + ���*� / 
 � �+� ��� ��� 	 
 � � � � (4.6.3)

for each �#) � � � � 2 � .

� �
�
� � �

�
�� �� �

� � ���
��� �

���
� ���	�

���	� ����� 


� � �


��� ! � � � � ��������� ! �	�
�����

��� ! � � ���
� � � ���� ! ���
� � �

� �������
Figure 5. An example of an intersection of two diagrams.

In the above example, observe that
� ��� � � actually contains two more cubes,

� � � � and ��� � � , with � -element index sets � � 3 � � � and � � � � 3 � , whose fibers, how-
ever, are all empty.

Lemma 4.6.7 For two � -diagrams
� � and

� � , we have � � � � � � � � � � � � � � �
� � � � � � where � denotes the operation of common refinement of the set partitions.

Proof. By (4.6.3), the blocks of � � � � � � � � are all nonempty intersections of the
blocks of � � � � � with the blocks of � � � � � , which is precisely the definition of the
common refinement operation. ;

We shall prove two structural theorems about � -diagrams. The first one asserts
that taking intersections of diagrams commutes with passing to the automorphism
group.

Theorem 4.6.8 For two � -diagrams
� � and

� � as above, and
� � � ��� � � their

intersection, we have

" � � � � � � � " � � � � � � � " � � � � � � (4.6.4)
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Proof. First we prove that the set on the left hand side of (4.6.4) is a subset of the
set on the right hand side.

Let � � " � � � � � � � " � � � � � � . By Definition 4.6.3 i) we know that � preserves
the fibers

� � �� � � � � , for all � � � � � , and � preserves the fibers
� � �� � � + � , for all 2 �

� ��� . Hence � preserves
� � �� � � ��� � � � �� � � + � � � � � �
� � � + � , for all � � � � � � 2 � � � � ,

and so property i) of Definition 4.6.3 is valid for � .
By Definition 4.6.3 ii), there exist �

� � � � � ���� , and �
� � � � � � �� , such that

�
� � �
� � � = � �	�

� � �= � � � � � �	 � = � � and �
� � �
� � � = � �	�

� � �= � � � � � �	 � = � �
for all B � � �@� , where �

� � �
� � � = � � proj � � � � � � = � � �$� � , and �

� � �
��� � = � � proj ��� � ��� � = � � �$� � .

Define � � � ���
� � �� as a concatenation � � �$�

� � � ���
� � � � , that is the first 
 �

coordinates of � are equal to �
� � � , and the last 
 � coordinates of � are equal to

�
� � � . Let B � � �@� , and decompose � = ) � 
 � � 
 �6� as � = � � � � �= � �� � � �= , where� � � �= � ��=��1��3 ������� � 
 � � , and

�� � � �= � � =��1�$
 � � 3 ������� � 
 � � 
 ��� . Then, we have

� � � � = � � ��� � = � � ��= � � � � � � = � � ��� � = � � � � � �= � �� � � �= �
� � � � � = � �	� � � �= � � �� ��� � = � � �� � � �= �
� � � � �	 � = � � ��

� � �	 � = � � ��	 � = � �
where � � � � = � � ��� � = � � proj � � � � � = � � ��� � = � � �$� � , �� ��� � = � is equal to � ��� � = � in the coor-
dinates �$
 � � 3 ������� � 
 � �&
 ��� , and is equal to

%
in the other coordinates, while

�� � � �	 � = � � �*� � 
 � �+� � � � � �	 � = � � . In other words,
�� � � � = � and

�� � � �	 � = � are the 
 � -shifted

versions of � ��� � = � and � � � �	 � = � . So, we have shown that � � " � � � � � � � ��� .
Now let us prove that the set on the right hand side of (4.6.4) is a subset of the

set on the left hand side.
Take � � " � � � � � , then � preserves

� � � �
� � � + � , and therefore � also preserves
��

+-, �
� � � �
� � � + � �

��
+7, �
� � �� � � � � � � � �� � � + � � � � �� � � � � �

��
+-, �
� � �� � � + �

� � � �� � � ��� �*� �1� � � � �� � � � � � for any � �9� � ���
in the same way � preserves

� � �� � � + � , for any 2 � � � � . This checks condition i) of
Definition 4.6.3.

Finally, by condition ii) of Definition 4.6.3, there exists � � � � � � � �� , such that
for any B � � �@� we have � � � � = � � ��� � = � � ��= � � ��	 � = � . As above, we can decompose

��� �,�
� � � ���

� � � � and ��= � � � � �= � �� � � �= as a concatenation of the first 
�� and the last

 � coordinates. Then, in the notations which we used above, we can derive that

�
� � �
� � � = � �	�

� � �= � � � � � �	 � = � � and
��
� � �
��� � = � � ��

� � �= � � �� � � �	 � = � �
Shifting the second identity down by 
 � , we get �

� � �
� � � = � � �

� � �= �
� � � � �	 � = � . ;
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4.6.4 A reduction theorem

When
�

is an � -diagram over a 
 -family of cubes, not every element � � � � � gives
rise to an element � � " � � � � � . The natural obstruction is that, by Remark 4.6.4,
fibers with different cardinalities cannot map to each other. It turns out that one
can always canonically reduce

�
to another � -diagram with the same automor-

phism group, such that in this new � -diagram all fibers over vertices in the same
cube have the same cardinality.

Theorem 4.6.9 Let an � -diagram
�

over a 
 -family of cubes � � ����� ������� � ��� �
be given. Then, there exists an � -diagram

��
over a

�
 -family of cubes
�� �

� �(� ������� � ����� , such that

0)
�
(	 
 ;

1) " � � � � � � " � � �
�� � ;

2) � � � � � � + � � � � � � � � � � � + � � 
 � � , for all 2 � � ��� , and for all � � � 
.) � � � 2 � ,
where � � � 2 � is the index set of � + .

In the continuation, we shall call an � -diagram satisfying Condition 2) of The-
orem 4.6.9 a reduced diagram.

Proof of Theorem 4.6.9. Let � be the set of all � � � � � , such that � occurs as
a �#
 � -cube symmetry for some � � " � � � � � . Clearly, � is a linear subspace of
� � � , when both are viewed as vector spaces over the field ! � . Hence, there exists% 	 �4	 
 , such that � 8� � �� . Therefore, we can choose an orthogonal linear basis
��� � ������� �����+� for � � � , such that ��� � ������� ��� � � is an orthogonal linear basis for � .

Let us split each cube � � � � into the orbits of the restriction of the action of
� to � � . We can think of cubes � � as coordinate subspaces, that is as intersections
of coordinate hyperplanes, with respect to the standard basis in the vector space
� � � . The orbits themselves however are not coordinate subspaces, rather they are
intersections of the coordinate subspaces corresponding to cubes with affine linear
subspaces of dimension � obtained from � by parallel translations. Therefore, if
we change the linear basis in � � � from the standard one to ������������� �����+� at the same
time as we split the cubes of � into the orbits as described above, we end up with
a new 
 -family of cubes

�� � � �(� ������� � ��� � , and an � -diagram
��

over this family,
which is induced from

�
.
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Figure 6. An example of the canonical splitting of a diagram.

By the choice of � and of the basis ����� ������� �����+� , we see that all the cubes
of

�� actually lie within the coordinate subspace of � � � corresponding to the first
� coordinates. Thus, we might as well think of

�� as a � -family of cubes, with
� �� action induced from the action of � � � , from which condition 0) of the theorem
follows.

Also, since the action on the ground set � �@� never changed, we still have the
equality " � � � � � � " � � �

�� � , verifying condition 1) of the theorem.
Finally, since � acts transitively on each of its orbits, we can conclude that

the cardinalities of the fibers are constant for the vertices of the same cube in
�� ,

thus demonstrating the truth of the last condition, and completing the proof of the
theorem. ;

4.7 STABILIZERS OF POINTS IN �����

In this section we show that the stabilizers of points in � ��� are not just abelian,
but in fact are isomorphic to direct products of � � . In view of the already proven
results, it merely remains to put the puzzle pieces together.

Theorem 4.7.1 For ��� � , the De Concini-Procesi arrangement model of the braid
arrangement, and � � ����� , the stabilizer of � with respect to the � � -action on
� ��� is a direct product of � � ’s:

�#�:� � ��� � � � � 8� � �� � for some
% 	 � 	 � � 	 � � �
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Proof. By (4.4.1) a point in ����� can be written as � � � � ��
 � �:55����
 � ������� ��
 � �:5 ��� ,
where 
 � � � � &(� $% � , and there does not exist a subspace 
 � � � , 
 ���� � , such
that 
 � � 
 � �:5 � � . By Proposition 4.4.2 we know that

�#�:� � � � � � � � � ���6� � � � � � � �����6� � � � ��5 � � � �����$� ���6� � � � � 5 � � � (4.7.1)

By Lemma 4.6.5 there exist diagrams
� � � � � ������� � � � , such that

" � � � � � � � ���6� � � � � � � � and " � � � � ��� � ���:� � � � ��5 � � � for each � �9� 
 � �
(4.7.2)

Combining (4.7.1), (4.7.2), and Theorem 4.6.8, we find an � -diagram
�

, such
that " � � � � � � �#�:� � ��� � � � � . Moreover, by the Reduction Theorem 4.6.9, we can
assume that

�
is reduced.

If the partition � � � � has a block
	

of cardinality at least 3, then, by
Lemma 4.6.7, so do also the partitions � � � � � ��� � � � � ������� ��� � � � � . Let 
 be the
linear subspace of � � of codimension 2 defined by setting the coordinates with
indices in

	
equal. By construction, � � 
 , and 5 � ) 
 ������� �:5 � ) 
 . Since


 � � � , we see that � � 
 implies 
 � ) 
 . Further 5 �4) 
 , together with

#�() 
 , implies

� 55� ��
#� �
) 
 . Hence 
 � ) 
 , and so on, until we can conclude
that

� 5 � ��
 � �
) 
 . This yields a contradiction, since 
 ���� � .
So we proved that all blocks of the partition � � � � are of cardinality at most 2.

Assume now there exist two different blocks
	 � and

	 � in � � � � , such that � 	 �*� �
� 	 � � � � . Let 
 be the linear subspace of � � of codimension 2 defined by
equations � � � � � � � , � + � � � + � , where

	 � � ��� � ���
� � , 	 ��� � 2 � � 2 ��� . Again

 � � � , and by an argument completely analogous to the previous one, we can
trace the two blocks

	 � and
	 � through the partitions � � � � � ��� � � � � ������� ��� � � ��� ,

and conclude that
� 5 � ��
 � �
) 
 . This again yields a contradiction, since 
 �� � � .

Now we know that � � � � has at most one block of size 2. In particular, since
�

is reduced, all the fibers over � -cubes, for � � � , 3 , are of cardinality 1. Let us say
�

is an � -diagram over a 
 -family of cubes � � � � � ������� � � ��� , where 
 is minimal
possible. If � � � � has no blocks of size 2, then there exists a group isomorphism
between " � � � � � and � � � , since each element � � � � � defines the maps between
the fibers uniquely. Each � -cube defines at most � � � new directions and has � � � �
vertices, hence



	 � ���*� � ����� � � � ��� 	�� � � � � � � � ����� � � � ��
�� � � � � 	 � �
If the partition � � � � has one block

	
of size 2, then, since

�
is reduced,

	
has to be a fiber over a % -cube. With 
 chosen as above, it is immediate that

" � � � � � 8 � � � � � � � , where the first factor on the right hand side is the group acting
on the � 
 � -cube, and the second factor is acting on the set

	
. Just as before we get


(	 � � / � � 	 � , hence 
 � 3 	 � 	 � . ;





CHAPTER 5

A DESINGULARIZATION OF REAL DIFFEOMORPHIC

ACTIONS OF FINITE GROUPS

5.1 INTRODUCTION

Abelianizations of finite group actions on complex manifolds appeared promi-
nently in the work of Batyrev [B1], and a connection to the wonderful arrangement
models of De Concini and Procesi was observed by Borisov and Gunnells [BG].
In the previous chapter we presented a detailed study of the key example over
the reals, the abelianization of the permutation action of the symmetric group � �
on � � given by the maximal De Concini-Procesi model of the braid arrangement.
In particular, we showed that stabilizers of points on the arrangement model are
elementary abelian � -groups. We suggest to call an abelianization with this prop-
erty a digitalization of the given action.

In the present chapter, we extend our analysis in two steps. First, for any
linear action of a finite group on a real vector space, we define an arrangement of
linear subspaces whose maximal De Concini-Procesi model we then show to be a
digitalization of the given action. Second, we proceed by analyzing diffeomorphic
actions of finite groups on smooth real manifolds. We propose a locally finite
stratification of the manifold by smooth submanifolds and, observing that this
stratification is actually a local subspace arrangement, we show that the associated
maximal De Concini-Procesi model is a digitalization of the given action.

We present examples in the linear and in the non-linear case. First, we con-
sider the permutation action of the symmetric group ��� on � � , and we find that our
arrangement construction specializes to the rank � truncation of the braid arrange-
ment. The resulting digitalization is the one discussed in the previous chapter.

As a non-linear example, we consider the action of ��� on � � � � � given by
projectivizing the real permutation action on � � . We show that our manifold
stratification, in this case, coincides with the rank � truncation of the projectivized
braid arrangement. The resulting digitalization thus is the maximal projective
De Concini-Procesi model for the braid arrangement.

In considering these examples, a major role is played by the algebro-
combinatorial concept of diagrams over families of cubes and their automorphism
groups. This convenient algebro-combinatorial framework has been developed in
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the previous chapter in order to study stabilizers of points on the maximal model
for the braid arrangement. It serves again in the present context as a manageable
encoding of the occurring groups.

We give a short overview on the material presented in this chapter: In sec-
tion 5.2 we provide a review on De Concini-Procesi arrangement models in an
attempt to keep this exposition fairly self-contained. Our main results are pre-
sented in section 5.3. In 5.3.1 we propose a digitalization for any given linear
action of a finite group on a real vector space; in 5.3.2 we extend our setting to
diffeomorphic actions of finite groups on smooth real manifolds. Section 5.4 is
focused on examples. After presenting a brief review on diagrams over families
of cubes and their automorphism groups in 5.4.1, we work out details about the
proposed digitalizations for the real permutation action in 5.4.2, and for the per-
mutation action on real projective spaces in 5.4.3.

5.2 A REVIEW OF DE CONCINI-PROCESI ARRANGEMENT MODELS

5.2.1 Arrangement models

We review the construction of De Concini-Procesi arrangement models as pre-
sented in [DP3]. Moreover, we recall an encoding of points in maximal arrange-
ment models from [FK2] that is crucial for the technical handling of stabilizers
(cf. 5.2.2).

The model construction

Let � be a finite family of linear subspaces in some real or complex vector
space � . The combinatorial data of such subspace arrangement is customarily
recorded by its intersection lattice � � � �
� � , the partially ordered set of inter-
sections among subspaces in � ordered by reversed inclusion. We agree on the
empty intersection to be the full space � , represented by the minimal element $%
in the lattice. We will frequently use � 
 �� to denote ��&(� $% � .

There is a family of arrangement models each coming from the choice of a
certain subset of the intersection lattice, so-called building sets. For the moment
we restrict our attention to the maximal model among those, which results from
choosing the whole intersection lattice as building set.

We give two alternative descriptions for the maximal De Concini-Procesi
model of � . Consider the following map on the complement 	 �
� ��� � ��& ���
of the arrangement,

� � 	 �
� � /10 � �
?
	 ) � ����

� � � 	 � � � (5.2.1)
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where
�

is the natural inclusion into the first factor and the natural projection to
the other factors restricted to 	 �
� � . Formally,

� � � � � � � � � � � � � � 	 � � 	 ) � ���� � �

where
� � � � � denotes the linear span of subspaces or vectors, respectively, and� � � � � 	 � is interpreted as a point in

� � � 	 � � for any
� � � 
 �� .

The map
�

defines an embedding of 	 �
� � into the product on the right hand
side of (5.2.1). The closure of its image, � � � � 
 � �

, is the maximal De Concini-
Procesi model of the arrangement � . If we want to stress the ambient space of the
original arrangement, we will use the notation � � � � for � � .

Alternatively, one can describe � � as the result of successive blowups of strata
in � . Consider the stratification of � given by the linear subspaces in � and their
intersections. Choose some linear extension of the opposite order in � . Then,
� � is the result of successive blowups of strata, respectively proper transforms of
strata, corresponding to the subspaces in � in the chosen linear extension order.

Let us mention here that there is a projective analogue � � of the affine ar-
rangement model � � (cf. [DP3,

�
4]). In fact, the affine model � � is the total space

of a line bundle over � � . We will need to refer to projective arrangement mod-
els only in one of our examples in Section 5.4. We therefore stay with the affine
setting in the following exposition

Normal crossing divisors and nested set stratification

The term wonderful models has been coined for � � and its generalizations for
other choices of building sets. We summarize the key facts about the maximal
model supporting this connotation.

The space � � is a smooth algebraic variety with a natural projection onto the
original ambient space � , � � � � /@0 � . The map � is the projection onto the first
coordinate of the ambient space of � � on the right hand side of (5.2.1), respec-
tively the concatenation of blowdown maps of the sequence of blowups result-
ing in � � . This projection is an isomorphism on 	 �
� � , while the complement
� � & 	 �
� � is a divisor with normal crossings with irreducible components in-
dexed by the elements of � 
 �� . An intersection of several irreducible components
is non-empty (moreover, transversal and irreducible) if and only if the indexing
lattice elements form a totally ordered set, i.e., a chain, in � [DP3, 3.1,3.2]. The
stratification by irreducible components of the divisor and their intersections is
called the nested set stratification of � � , denoted � � � ��� � , for reasons that lie
in the more general model construction for arbitrary building sets rather than the
maximal building set � 
 �� .
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An encoding of points in maximal arrangement models

Points in � � can be described as a sequence of a point and a number of lines in
the vector space � according to the form of the ambient space for � � given on the
right hand side of (5.2.1). However, there is a lot of redundant information in that
description. The following compact encoding of points was suggested in [FK2,
Sect 4.1].

Proposition 5.2.1 Let � be a point in the maximal wonderful model � � for a
subspace arrangement � in complex or real space � . Then � can be uniquely
written as

� � � � � 
 ����
 � ��
 � ��
 � ������� ��
 � ��
 � � � � � ��
 � ��
 � ������� ��
 � � � (5.2.2)

where � is a point in � , the 
 � ������� � 
 � form a descending chain of subspaces in
� 
 �� , and the 
�� are lines in � , all subject to a number of additional conditions.

More specifically, �	� � � � � , and the linear space 
 � is the maximal lattice
element that, as a subspace of � , contains � . The line 
 � is orthogonal to 
 �
and corresponds to the coordinate entry of � indexed by 
 � in

� � � 	�
 � � . The
lattice element 
 � , in turn, is the maximal lattice element that contains both 
 �
and 
�� . The specification of lines 
 � , i.e., lines that correspond to coordinates of �

in
� � � 	 
 � � , and the construction of lattice elements 
 � � � , continues analogously

for �1, � until a last line 
 � is reached whose span with 
�� is not contained
in any lattice element other than the full ambient space � . Note that, if 
4� is
a hyperplane, then the line 
�� is uniquely determined. The whole space � can be
thought of as 
 � � � . Observe that the 
 � are determined by � and the sequence of
lines 
*� ; we choose to include the 
 � at times in order to keep the notation more
transparent.

The full coordinate information on � can be recovered from (5.2.2) by setting

 � � � � , 
 � � � � � , and retrieving the coordinate � � indexed by 
 � � 
 �� as

� � � � 
 + ��
 � 	 
 � � � � 	 
�� � (5.2.3)

where 2 is chosen from ��3 ������� � 
�� such that 
 	 
 + , but 
 �	 
 + � � .
For completeness, let us mention here that we can tell the open stratum in the

nested set stratification �
� � ��� � that contains a given point � from its point/line
encoding stated in Proposition 5.2.1.

Proposition 5.2.2 ([FK2, Prop 4.5]) A point � in a maximal arrangement
model � � is contained in the open stratum of �
� � ��� � indexed by the chain

#� 	 
 � 	 ����� 	 
 � 	 $% in � if and only if its point/line description (5.2.2) reads
� � � � ��
#� ��
 � ��
 � ��
 � ������� ��
 � ��
 � � .
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5.2.2 Group actions on arrangement models and a description of stabilizers

Provided an arrangement is invariant under the action of a finite group, this action
extends to the maximal arrangement model. We review the details, and recall a
description for stabilizers of points in the model from [FK2].

Group actions on � �

Let � be an arrangement that is invariant under the linear action of a finite group �
on the real or complex ambient space � . Without loss of generality, we can as-
sume that this action is orthogonal [V, 2.3, Thm 1]. We denote the corresponding
� -invariant positive definite symmetric bilinear form by the usual scalar product.

The group � acts on the ambient space of the arrangement model � � , i.e., for
� � � � � 	 � 	 ) � � �� � � � � ' 	�) � ���� � � � 	 � � and � � � , we have

�	� � � � � 	 � 	 ) � � �� � � � � � � � � � � � � � � � � 	 � � � 	�) � � �� � �
where � � � � � � � 	 � � � � � � 	 � � for

� � � 
 �� . Since the inclusion map
�

of (5.2.1)
commutes with the � -action, and � acts continuously on � , we conclude that
� � � � � �

is as well � -invariant. In particular, the � -action on � � extends the
� -action on the complement of � .

Stabilizers of points on � �

The point/line description for points in the arrangement model � � given in 5.2.1
allows for a concise description of stabilizers with respect to the � -action on � � .

Proposition 5.2.3 ([FK2, Prop 4.2]) For a maximal arrangement model � � that
is equipped with the action of a finite group � stemming from a linear action of
� on the arrangement, the stabilizer of a point � � � � ��
 ����
 � ��
 � ��
 � ������� ��
 � ��
 ���
in � � is of the form

�#�:� � � � � � � � ���6� � � � � � � ���6� � � � 
 � � � ����� � �#�:� � � � 
 � � � (5.2.4)

where, for � � 3 ������� � 
 , ���6� � � � 
�� � denotes the elements in � that preserve the
line 
�� in � as a set.

5.2.3 Models for local subspace arrangements

The arrangement model construction of De Concini & Procesi generalizes to the
context of local subspace arrangements.
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Definition 5.2.4 Let
�

be a smooth � -dimensional real or complex manifold and
� a family of smooth real or complex submanifolds in

�
such that all non-empty

intersections of submanifolds in � are connected, smooth submanifolds. The
family � is called a local subspace arrangement if for any � � � � there exists
an open neighborhood � of � in

�
, a subspace arrangement

�� in a real or complex
� -dimensional vector space � and a diffeomorphism

1 � � /10 � , mapping �
to
�� .

Local subspace arrangements fall into the class of conically stratified mani-
folds as appearing in work of MacPherson & Procesi [MP] in the complex and in
work of Gaiffi [Ga2] in the real setting.

A generalization of the arrangement model construction of De Concini & Pro-
cesi by sequences of blowups of smooth strata for conically stratified complex
manifolds is given in [MP]. Details are provided for blowing up so-called irre-
ducible strata, the more general construction for an arbitrary building set in the
stratification is outlined in Sect. 4 of [MP].

In this chapter, we will be concerned with maximal wonderful models for con-
ically stratified real manifolds

�
, in the special case of local subspace arrange-

ments � . The maximal model � � � � 	 � � results from successive blowups of all
initial strata, respectively their proper transforms, according to some linear order
on strata which is non-decreasing in dimension.

In fact, local subspace arrangements consisting of a finite number of subman-
ifolds implicitly appear already in the arrangement model constructions of De
Concini & Procesi [DP3]. A single blowup in a subspace arrangement leads to
the class of local arrangements, and it is due to the choice of blowup order on
building set strata that this class is closed under blowups that occur in the in-
ductive construction of the arrangement models (compare the discussion in [FK1,
4.1.2], in particular, Example 4.6).

We will encounter the case of local subspace arrangements � in a smooth real
manifold

�
that are invariant under the diffeomorphic action of a finite group �

on
�

. The � -action can be extended to the maximal model � � , observing that
we can simultaneously blow up orbits of strata, thereby lifting the � -action step
by step through the construction process. In particular, the concatenation of blow-
down maps � � � � 0 �

is � -equivariant.

5.3 DIGITALIZING FINITE GROUP ACTIONS

5.3.1 Finite linear actions on � �

In this subsection we assume � to be a finite subgroup of the orthogonal
group

� � � � acting effectively on � � . As pointed out before, assuming the ac-
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tion to be orthogonal is not a restriction (compare 5.2.2).
We construct an abelianization of the given action. For any subgroup 
 in �

(we use the notation 
 	 � in the sequel), define

� � 
�� � � � 

� 
 line in � � with � � 
 � 
 for all � � 
 � �

the linear span of lines in � � that are invariant under 
 , i.e., the span of lines that
are either fixed or flipped by any element � in 
 . Denote by � the arrangement
given by the proper subspaces � � 
�� � � � , 
 subgroup in � . Set � � � � � , the
maximal De Concini-Procesi wonderful model for � as discussed in 5.2.1. If we
want to stress the particular group action that gives rise to the arrangement � we
write � �
� � and � � � � � , or � �
��� � � � and � � � ��� � � � , respectively.

We will now propose � � as an abelianization of the given linear action. Recall
that we use the term digitalization for an abelianization with stabilizers that are
not merely abelian but elementary abelian � -groups, i.e., are isomorphic to � =� for
some B ��� .

Theorem 5.3.1 Let an effective action of a finite subgroup � of
� � � � on � � be

given. Then the wonderful arrangement model � � , as defined above, is a digital-
ization of the given action.

Proof. As a first step we prove that

� �,���6� � � � � � � for any � � � �

Let � � � . Using the encoding of points in arrangement models as sequences
of point and lines from 5.2.1, we have � � � � ��
 � ������� ��
 � � , the associated sequence
of building set spaces being � � ������� � �!� . The description of stab � from Proposi-
tion 5.2.3,

���6� � � � �#�:� � � � �#�:� � 
 � � ����� � �#�:� � 
 � �
implies that � � � �,�#�:� � � � , and 
�� ) � �$���:� � � � for � � 3 ������� � 
 .

The building set element � � is the smallest subspace among intersections
of spaces � � 
�� in � such that � � � � , in particular, � � ) � �$���:� � � � . Simi-
larly, the building set element � � is the smallest subspace among intersections
of spaces � � 
�� in � such that

�
� � ��
�� � ) � � ; since

�
� � ��
 � � ) � �$���:� � � � , so is � � :

� � ) � �,���6� � � � .
By analogous arguments we conclude that � � ������� � �3� � � ) � �,�#�:� � � � . How-

ever, by the description of � as a sequence of point and lines we know that
�3� � � � � � , which proves our claim.

With � �,�#�:� � � � � � � , we can now choose a basis � � ������� � � � in � � such that
any

� ��� � , for ��� 3 ������� � � , is invariant under the action of �#�:� � � .
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Consider the homomorphism

2 � �#�:� � � /@0 � � �
� 4 /@0 ��� � ������� ��� � � �

with ��� � � � defined by � � ��� � ����� ��� for � � 3 ������� � � . Since we assume the action
to be effective, 2 is injective. Hence stab � 8 � � =� for some B 	 � . ;

5.3.2 Finite diffeomorphic actions on manifolds

We now generalize the results of the previous subsection to diffeomorphic actions
of finite groups on smooth manifolds. To this end, we first propose a stratification
of the manifold and show that the stratification locally coincides with the arrange-
ment stratifications on tangent spaces that arise from the induced linear actions as
described in the previous section. We can assume, without loss of generality, that
the manifold is connected, since we can work with connected components one at a
time.

The � -stratification

Let
�

be a smooth manifold, � a finite group that acts diffeomorphically on
�

.
For any point � � �

, and any subgroup 
 	0���:� � � , 
 acts linearly on the tangent
space

� � � of
�

in � . Consider as above

� � � ��
�� � � � 
(� 
 line in
� � � with � � 
 � 
 for all � � 
 � �

the linear subspace in
� � � spanned by lines that are invariant under the action

of 
 . Denote the arrangement of proper subspaces � � � � 
�� in
� � � , � �$���6� � � �� � � � , by ��� .

For any subgroup 
 in ���:� � � , we take up the homomorphism that occurred
in the proof of Theorem 5.3.1, and define

2 � � � � 
 /@0 �
��� ��� � � � 	��
�

by choosing a basis � � ������� � ��� , 
�� � ��
 � 
 � � ���	� , for � � � ��
�� , and setting

2 � � � ��� � � ��� � ������� ��� � � �

for � � 
 , with ��� � � � determined by � �	��� � ����� ��� for � � 3 ������� � 
 .
Moreover, we define

C � � � 
�� � � ����� 2 �
� 	 �
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Note that C � � ��
�� is the normal subgroup of elements in 
 that fix all of � � � � 
��
pointwise. We denote by � � � ��
�� the connected component of � 
 � � � � � ���	� � � �
in

�
that contains � .

Consider the stratification of
�

by the collection of submanifolds � � � ��
 � for
� � �

, 
 	'���6� � � ,
� � � � � � � � 
�� � �,) 	 � ������� ��� � �

We will refer to this stratification as the � -stratification of
�

. Observe that � is a
locally finite stratification.

We recall the following fact from the theory of group actions on smooth man-
ifolds:

Proposition 5.3.2 Let � be a compact Lie group acting diffeomorphically on a
smooth manifold

�
, and let ��� � �

. Then there exists a stab ��� -equivariant dif-
feomorphism

� � � from an open neighborhood � of � � in
�

to the tangent space� � � � of
�

in ��� .
This is a special case of the so-called slice theorem [A, tD] that originally

appeared in work of Bochner [Bo].
We return to our setting of � being a finite group.

Proposition 5.3.3 The diffeomorphism
� � � maps the � -stratification of

�
to the

arrangement stratification on
� � � � given by ��� � , i.e.,

� � � � � � ��� ��
�� � � � � ��� ��
�� for any 
 	 ���6� � ��� �
Proof. By definition, � � ��� ��
�� � � 
 � ��C � ��� ��
�� � � � , which, using the stab � � -
equivariance of

� � � , implies that
� � � � � � ��� ��
�� � � � 
 � ��C � ��� ��
 � � � � � � � . We

are left to show that

� 
 �	��C � ��� ��
 � � � � � � � � � � ��� � 
�� �
Obviously, � � ��� ��
 � ) � 
 � � C � ��� ��
�� � � � � � � , and we need to see that

Fix � C � ��� ��
�� � � � � � � does not exceed � � ��� ��
�� .
Note that 
 acts on � � ��� ��
 � . By definition, C � ��� ��
 � is a normal sub-

group of 
 with quotient 
 	 C � ��� ��
�� 8� � �� for some � 	 
 � ��
 � 
 � � � ��� � , and
we find that 
 acts on Fix ��C � ��� ��
�� � � � � � � : For � � � 
 � ��C � ��� ��
�� � � � � � � ,
� � 
 , and � � ��C � ��� ��
�� , we have � � � �	� �

�

� � � for some
�

� ����C � ��� ��
 � , thus
� �
� � � � � , i.e., � � � � 
 � ��C � ��� ��
�� � � � � � � .

Instead of considering the action of 
 on � 
 � ��C � � � � 
���� � � � � � , we con-
sider the induced action of 
 	 C � ��� ��
�� on � 
 � ��C � ��� � 
�� � � � � � � . Since

 	 C � ��� ��
�� 8� � �� for some � 	 
 , � 
 � ��C � ��� ��
�� � � � � � � decomposes into 3 -
dimensional representation spaces, which, as lines that are invariant under the
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action of 
 , must be contained in � � ��� � 
�� by definition. This shows that� 
 � � C � ��� ��
�� � � � � � � does not exceed � � ��� � 
�� , and thus completes our proof.
;

In particular, Proposition 5.3.3 shows that the submanifolds � � � ��
�� in the
� -stratification form a local subspace arrangement in

�
. Moreover, the � -strat-

ification is invariant under the action of � since � ��� � � ��
 � � � � � � � � � � � 
 � � � �
for any � � �

, 
 	"�#�:� � � , and any � � � . Hence, we have at hand the maximal
� -equivariant wonderful model � � � � 	 � � of the local subspace arrangement �
in

�
as outlined in 5.2.3.

Digitalizing manifolds

We propose the maximal wonderful model of
�

with respect to the � -stratification
as a digitalization of the manifold

�
.

Theorem 5.3.4 Let � be a finite group acting diffeomorphically and effectively
on a smooth manifold

�
. Then the maximal wonderful blowup of

�
with respect

to the � -stratification � 	 � � is a digitalization of the given action.

Proof. Let � be a point in � 	 � � , ��� � � � � � its image under the blowdown map
� � � 	 � � /@0 �

. Since � is � -equivariant, stab � )0�#�:� � ��� , hence we can restrict
our attention to stab ��� when determining the stabilizer of � in � .

Consider the stab ��� -equivariant diffeomorphism
� � � as discussed above

(Proposition 5.3.2),
� � � � � /@0 � � � � �

where � is an open neighborhood of � � in
�

, such that
� � � maps the � -

stratification on � to the arrangement stratification on the tangent space at � � .
Since the De Concini-Procesi model is defined locally, the diffeomorphism

� � �
induces a stab ��� -equivariant diffeomorphism between the inverse image of � un-
der the blowdown map, � � � � � � � � � , and the De Concini-Procesi model for the
arrangement ��� � in the tangent space

� � � � ,
�� � � � � � � � /@0 � ��� � 	 � � � � �

In particular,
���:� � � 8 � �#�:� �

�� � � � � � �
which, by our analysis of the linear setting, is an elementary abelian � -group,
provided we can see that stab � � acts effectively on

� � � � . To settle this remain-
ing point, assume that there exists a group element � �� � in stab � � that fixes all
of
� � � � . By Proposition 5.3.2, � then fixes an open neighborhood of � � in

�
,
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which implies that � fixes all of
�

, contrary to our assumption of the action being
effective. ;

5.4 PERMUTATION ACTIONS ON LINEAR AND ON PROJECTIVE SPACES

One of the most natural linear actions of a finite group is the action of the symmet-
ric group � � permuting the coordinates of a real � -dimensional vector space. This
action induces a diffeomorphic action of � � on � � / 3 � / dimensional real projec-
tive space � � � � � . Our goal in this section is to give explicit descriptions of the
� -stratifications and the resulting digitalizations in both cases.

To this end, we will first review the algebro-combinatorial setup of diagrams
over families of cubes and their automorphism groups from [FK2]. We will then
show that, in the case of the real permutation action, the arrangement � ��� � � co-
incides with the rank � truncation of the braid arrangement, � ��� 	 �� � � , i.e., the braid
arrangement � � � � without its hyperplanes. We can thus conclude that the abelian-
ization construction proposed in the present chapter specializes to the maximal
model of the braid arrangement discussed in [FK2].

For the permutation action on � � � � � , we show that the � -stratification coin-
cides with the rank � truncation of the projectivized braid arrangement,

� � ��� 	 �� � � ,
thus the digitalization proposed in 5.3.2 coincides with the maximal projective
arrangement model for � � � � (cf. [DP3,

�
4]).

5.4.1 Automorphism groups of diagrams over families of cubes

For the sake of completeness, we here review the setup of diagrams over families
of cubes and their automorphism groups as developed in [FK2, Sect. 6].

Definition 5.4.1 A 
 -family of cubes is a collection � � � 
���������� � 
 =�� of sets
where each 
 + is the set of all subsets of a (possibly empty) index set � + )
��3 ������� � 
�� for 2 �93 ������� �!B . We think of the 
 + as copies of

% 	 3 cubes which
are � � + � -dimensional faces of the 
 -dimensional

% 	 3 cube placed in the coordinate
directions prescribed by � + ) ��3 ������� ��
�� . Following this interpretation, we talk
about subsets of � + as vertices �
���#� � 
 + � of cubes 
 + in � , and about vertices of the
family of cubes, �
����� � � � � � =+7, � �
����� � 
 + � . To specify particular vertices, we use
the notation � 
 + ���
� , 
 + � � , � ) � + , where the first coordinate names a cube in �
and the second coordinate specifies the vertex of the cube.

An � -diagram
�

over a 
 -family of cubes � is a partition of the set
� �@��� � ��3 ������� � � � into � �
����� � � �*� (possibly empty) blocks, and a bijection between
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the blocks of this partition and the vertices of � ; in other words, it is a function
� � � �1� /@0 �
����� � � �

� 4 /@0 � 
 � � � � ��� ��� �
where 2 ��� � � ��3 ������� �!B�� specifies the index of the cube, and � � ) � � � � � the vertex
of 
 � � � � assigned to � .

For a vertex � 
 + ���
� of � , we call the set
� � � � 
 + ���
� the (vertex) fiber of

�

over � 
 + ���
� . For a cube 
 + in � , the (cube) fiber of
�

over 
 + is defined as
� � � � 
 + � � � � � ��� ( � � � � 
 + ���
� . We denote the partition of � �1� into vertex fibers
over � by � � � � .

For a given � -diagram
�

over a 
 -family of cubes � the group of automor-
phisms of

�
, " � � � , consists of all permutations � � ��� , such that

(i) ��� � � � � �$( � � � � � � � �$( � for 2 � 3 ������� �:B ;

(ii) there exists a group element �
� � � � � � � such that

� 	 � � � � �
� � � � � � � ��� � � � for all � �9� �1� �
where �
� � � � � � � is interpreted as a bijection on the vertices of the 
 -
dimensional

% 	 3 cube and �
� � � + � proj � ( �$�
� � � � is its projection to the ver-
tices of the face 
 + for 2 � 3 ������� �!B .

Informally speaking, automorphisms of an � -diagram
�

over � are permuta-
tions � of � �@� that preserve cube fibers in

�
and, restricted to any cube fiber,

map vertex fibers to vertex fibers according to an overall scheme that is obtained
by restricting a bijection �
� � � on the vertices of the 
 -dimensional

% 	 3 cube to the
respective cube in � .

In [FK2] we proved two structure theorems about � -diagrams and their auto-
morphism groups which we cite here for future use:

Theorem 5.4.2 (1) ([FK2, Theorem 6.8, Lemma 6.7]) The set of automorphism
groups of � -diagrams is closed under intersection, i.e., for any two � -diagrams
� � , � � there exists an � -diagram

�
, canonically depending on

� � and
� � , such

that
" � � � � � " � � � ��� " � � � �

For the partitions of � �@� by vertex fibers associated with the respective diagrams,

� � � � � � � � � � � � � � � � �
where � denotes the meet-operation on the partition lattice �	� .
(2) ([FK2, Theorem 6.9]) For any � -diagram

�
over a 
 -family of cubes � there

exists an � -diagram
��

over a
�
 -family of cubes

�� , canonically depending on
�

,
such that
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(i) " � � � � " � �
��

(ii) �
�� � � � 
 ���
� � � �

�� � � � 
 � � � � for any 
 �
�� and � � � � �
����� � 
 � .

Moreover, � �
�� � �"� � � � in the partition lattice � � .

We call a diagram reduced if it has equicardinal vertex fibers over the vertices of
any fixed cube as described in (ii).

We remark here that the equality � �
�� � �"� � � � in Theorem 5.4.2(2) was not

explicitly stated in [FK2], however it follows directly from the proof of [FK2,
Theorem 6.9].

To illustrate the context in which the setup of diagrams over families of cubes
and their automorphism groups proved useful, we provide the following examples.

Example 5.4.3 Consider the action of the symmetric group � � on � � by permut-
ing coordinates.

(1) ([FK2, Lemma 6.5 (1)]) For � � � � , let �
� � � � � 	 � � ����� � 	 = � be the partition
of � �@� given by the index sets with equal coordinate entries in � . Let

� � � � be
the � -diagram over the

%
-family of cubes consisting of B cubes 
�� ������� � 
 =

of dimension
%

with (cube) fibers
� � � � � � � 
 + � � 	 + for 2 � 3 ������� �!B . Then,

the stabilizer of � in � � under the permutation action, i.e., the Young sub-
group of � � corresponding to the partition � � � � , is isomorphic to the auto-
morphism group of

� � � � .
(2) ([FK2, Lemma 6.5 (2)]) Let 
 be a line in � � generated by a non-

zero vector � � � � . If the blocks in � � � � can be arranged into pairs
	
� � ���� � 	

� � ���� ������� � 	
� � ���� � 	

� � ���� with � 	
� � ��#( � �0� 	

� � �� ( � and coordinate entries in �
corresponding to

	
� � �� ( ,

	
� � �� ( have the same absolute value for 2 � 3 ������� � � ,

and one remaining block
	 � � with corresponding coordinate entries in �

being
%
, denote by

� � 
 � the 3 -diagram with � cubes 
 � ������� � 
	� of dimen-
sion 3 and one cube 
 � of dimension

%
, where

� � 
 � � � � 
 + ��% � � 	
� � �� ( and

� � 
 � � � � 
 + � ��3 � � � 	
� � �� ( for 2 � 3 ������� � � and

� � 
 � � � � 
 � � � 	 � � . If such a
construction is not possible, due to multiplicities of coordinate entries in � ,
set
� � 
 � � � � � � as described in (1). Then, the stabilizer of 
 in � � under

the permutation action, i.e., the subgroup of permutations that either fix or
flip the line 
 , is isomorphic to the automorphism group of

� � 
 � .
(3) ([FK2, Theorem 7.1]) Stabilizers of points in the maximal De Concini-

Procesi arrangement model � � � � � for the braid arrangement with respect
to the natural � � -action are automorphism groups of (reduced) � -diagrams
with at most one (vertex) fiber of cardinality greater or equal � . In particular,
the stabilizers are elementary abelian � -groups.
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5.4.2 Digitalizing the real permutation action

As outlined above, we will now recover the rank � truncation of the braid arrange-
ment as the arrangement � � � � � arising from the real permutation action.

Let us fix some notation. Any set partition � � � 	 � � ����� � 	 = � ��� �@� gives
rise to an intersection of hyperplanes � 	 in the braid arrangement � � � � �
��
 � + ��� + / � ��� % �$3�	 � � 2!	�� �() � � , namely

� 	 � �
=�� , � �

� � + ) � � 
 � + �

We call � 	 the braid space associated to � .
We find that braid spaces occur in the arrangement � � ��� � . They arise from

particular subgroups of � � , namely automorphism groups of diagrams over fami-
lies of cubes as presented in 5.4.1.

Lemma 5.4.4 Let
�

be a reduced diagram over a family of cubes, and assume
that fibers over

%
-cubes are either singleton sets or have cardinality at least � .

Then the space determined by Aut
�

in the arrangement � ����� � is the braid space
associated to the set partition � � � � ,

� � " � � � � � ��� � � � �

Proof. Let us first assume that the underlying family of cubes for the diagram
�

consists of a single 
 -dimensional cube 
 . In particular, the partition � � � � � � �@�
has � � equicardinal blocks

	 � ������� � 	 � 
 . For the following discussion, we identify
the set � �@� with the index set for the coordinates of vectors in � � .

A line 
 in � that is invariant under the action of " � � � must have equal
coordinate entries within every vertex fiber of

�
, that is within every block of

the partition � � � � , since for any such fiber
	 + the full symmetric group � � ( is

a subgroup of " � � � . A sign change within a fiber would only be possible if
it were a � -element fiber over a

%
-dimensional cube which we excluded by our

assumptions.
We can thus consider coordinates of generating lines for � � " � � � � blockwise,

and can conclude at this point that

��
 � � � � " � � � � � 	 � � �
Moreover, coordinates of a generating line 
 in � � " � � � � must all have the

same absolute value since " � � � acts transitively on the full set of coordinates � �@� .
Describing the sign pattern for a generating line in � � " � � � � on the fibers

in the 
 coordinate directions of the underlying cube determines the sign for the
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remaining fibers. We want to show that, by fixing the sign pattern in the coordi-
nate directions of the cube, we obtain � � linearly independent generating lines for
� � " � � � � and, to this end, we formalize our description slightly.

We write generating vectors for the lines in � -dimensional space as vectors��� �	� � � ����� � � with coordinates indexed by subsets � of �#
 � and with entries � 3 ,
where � � stands for the coordinate entries on the fiber

� � � � 
 ���
� over the vertex
� ) �#
 � of 
 . A function � � �#
 � 0 � � 3 � , the choice of signs in the coordinate
directions of the cube mentioned above, determines such a vector � � � � by

� � � �� � � ?
� )��

�
��� � for � )E� 
 � �

We claim that the � � generating lines
� � � � � � , � �1� 
 � 0 � � 3 � , for � � " � � � � are

linearly independent, and we verify this fact by showing that the vectors � � � � are
pairwise orthogonal.

For functions � ��� � � 
 � 0 � � 3 � denote by � �,� ��� � the subset of �#
 � on which
the functions differ. Writing out the scalar product, we obtain

� � � � � � - � � �
� ��� � � ?

��) �
�
� � � � ��� � �

�
����� � � � / 3 � � � ��+

� � � - � � �

Since � �,� ��� � is non-empty for distinct functions � ��� there is a bijection between
subsets of � 
 � containing a fixed element � of ���$� ��� � and those not containing � .
Pairs of subsets linked by this bijection give contributions of opposite sign to the
sum above, and we conclude that � � � � � � - � � %

for distinct functions � ��� .
Thus the � � generating lines

� � � � � � in � � " � � � � are linearly independent and,
by the dimension bound given above, they actually form a basis for � � " � � � � .
Obviously, � � " � � � � � � � ��� !#!#! � � � 
 , which concludes our proof in the special case
of a diagram over a family consisting of only one cube.

Let us now assume that the underlying family of cubes for
�

consists of more
than one cube, � � � 
 � ������� � 
	� � for � , 3 , and the partition � � � � is of the form
� 	

� � �� � ������� 	
� � �
��� � 	�� � �6����� �

	
� � �� � ����� � 	

� � �
� � � 	�� � � , where the

	
� � �+ are the (equicardinal)

vertex fibers over the cube 
 � , for 2 � 3 ������� � ��
 � � � , and � � 3 ������� � � . Again, a
line that is invariant under the action of Aut

�
must have equal coordinate entries

on every (vertex) fiber of
�

. Hence, the number of blocks in � � � � , � �� , � � ��� ��� � ,
is an upper bound for dim � � " � � � � .

For subsets
� ) � �1� , we denote characteristic vectors in � � by ��� . In analogy

to our considerations for diagrams over a single cube, we see that

�
�
� � � �( � for ��� 3 ������� � � � 2 � 3 ������� � � ��� ��� � �
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are generating lines for � � " � � � � . These lines are linearly independent and, by
the upper bound for the dimension of � � " � � � � given above, they form a basis
for � � " � � � � , which obviously coincides with the braid space � � � � � . ;

Theorem 5.4.5 The arrangement � ��� � � associated with the real permutation ac-
tion as described in 5.3.1 coincides with the rank � truncation of the braid ar-
rangement. In particular, the digitalization � � � � � � of Theorem 5.3.1 coincides
with the maximal wonderful model of the braid arrangement as discussed in
[FK2].

Proof. Let
� � + = be a diagram over a

%
-family of cubes with all fibers con-

sisting of singletons other than one � -element fiber containing � � 2 �!B for some
3 	 ����2 � B 	 � . For 3 	 � � 2 �!B �:5 	 � , the � � 2 �:B �:5 pairwise distinct, let

� � + � = ) be
a diagram over a 3 -family of cubes with a single 3 -dimensional cube with fibers
��� � 23� and � B �:5�� over its vertices and

%
-dimensional cubes with singleton fibers

otherwise. With Lemma 5.4.4 we see that

� � � � + = � � � � + = and � � � � + � = ) � � � � + � = ) �
Thus, the rank � truncation of the braid arrangement is contained in � ��� � � , and it
remains to show that all other proper subspaces � � 
 � arising from subgroups 

of � � are braid spaces of codimension at least � .

Let us remark here that hyperplanes never occur in arrangements � �
� � in-
duced by some linear effective action of a finite group � on a real vector
space � , since, if � � 
�� were a hyperplane for some subgroup 
 in � , then both
� � 
 � and its orthogonal line 
 in � would be invariant under 
 . In particular,
 ) � � 
�� � � .

Claim: All subspaces in � ��� � � are of the form � � " � � � � for some � -diagram
�

.

Proof of the Claim: For any subgroup 
 of � � define

� � 
�� � � �
� � � � � 
��
� 

	
��� � � � � " � � � �

Since automorphism groups of � -diagrams over families of cubes are closed under
intersection (cf. Theorem 5.4.2(1)), � � 
�� itself is an automorphism group of an
� -diagram. We claim that

� � 
 � � � � � � 
�� � for any 
 	 � � � (5.4.1)

Recall that for a line 
 in � � and � � � � , 
 is invariant under the action of �
if and only if � � " � � � � � 
 � � , where

� � 
 � denotes the � -diagram described in
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Example 5.4.3(2). The subgroup 
 preserves a line 
 if and only if 
 is contained
in Aut

� � 
 � . The latter being equivalent to � � 
�� ) " � � � � 
 � , we conclude that 

preserves 
 if and only if � � 
�� preserves 
 . Hence, (5.4.1) follows, which proofs
our claim.

Given a diagram
�

, we can assume without change of " � � � that it is re-
duced (cf. Theorem 5.4.2(2)). Moreover, we can assume that

�
contains no

%
-

dimensional cubes with � -element fibers. For if it did, we could place the two
elements into singleton fibers over the vertices of a 3 -cube, which uses a coordi-
nate direction that did not occur previously in the family of cubes underlying

�
.

This operation does not alter the automorphism group of the diagram.
Referring to Lemma 5.4.4, we now find that all subspaces in � ����� � are actu-

ally braid spaces, which completes our proof. ;

5.4.3 Digitalizing the permutation action on real projective space

We will consider the � -stratification on � � � � � induced by the permutation action
of � � and give a description of the digitalization proposed in 5.3.2.

Theorem 5.4.6 The � -stratification on � � � � � induced by the permutation action
of � � coincides with the rank � truncation of the projectivized braid arrangement

� � � � � . In particular, the digitalization � �
� � � � � � coincides with the maximal pro-

jective arrangement model for
� � � � � .

Proof. For any 
 � � � � � � , 
 � � � � a line in � � with generating vector � of unit
length, we will describe the induced linear action of the stabilizer ���6� � �

� � � � 
 on
the tangent space

� � � � � � � .
First observe that the stabilizer of a line 
 is an automorphism group of an

� -diagram
� � 
 � as described in Example 5.4.3(2),

���6� � �
� � � � 
 � " � � � � 
 � �

We interpret the tangent space
� � � � � � � as the orthogonal hyperplane to 
 in � �

placed at � � � � , � � � � � � � � 
 � � � � � � �
With this identification, we can give an explicit description of the Bochner map

� � (cf. Proposition 5.3.2) that maps a neighborhood � of 
 in � � � � � diffeomor-
phically and ���6� � 
 -equivariantly to the tangent space

� � � � � � � ,
� � � � /�0 � � � � � � �

� 4 /�0 � � � 
 � � � � �
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Claim: For any 
 � � � � � � the arrangement induced by the action of " � � � � 
 � on� � � � � � � coincides with the rank � truncation of the braid arrangement intersected
with

�
,

� � � " � � � � 
 � � � � � � ��� 	 �� � � � � � (5.4.2)

By Proposition 5.3.3 we retrieve the � -stratification by taking the inverse im-
age of � � � " � � � � 
 � � � � under

� � for any 
 � � � � � � . Due to our description
of

� � , we easily conclude that the � -stratification of � � � � � coincides with the
rank � truncation of the projectivized braid arrangement,

� � � � 	 �� � � .

The rest of our argument is a proof of the Claim (5.4.2), which we break into
a number of steps.
(1) The " � � � � 
 � -action on

�
. Let � � � � � � � 
 � � � � � , and � � " � � � � 
 � .

Recall from the definition of automorphisms of diagrams in 5.4.1 that, for any
automorphism � of a diagram over a 
 -family of cubes, there is a group element
�
� � � � � � � describing the automorphism on the 
 -cube underlying the cubes of the

 -family. Note that �
� � � � � � ����� 3 � / 3 � by construction of

� � 
 � .
Writing out the action - � of " � � � � 
 � on

�
in detail, we obtain:

� - � � � � ��� � � � ��� � � � � �

 ��� � � � � if ��� � � �/ ��� � � � � if ��� � � / �

� � � � � ��� � � � � �
Observe that � � � � � 
 � and � � � � � � � � � . For easier distinction, we have chosen �
to denote the permutation action on points in � � .
(2) Mapping

�
to � � 	 � � � ������� � � � � . We shall map

� " � � � � 
 � -equivariantly
to the � � / 3 � -dimensional quotient space � � ��� � 	 � , where

� � � � � � ��������� � � �
denotes the small diagonal in � � .

To this end we first define an action - � of " � � � � 
 � on � by:

� - � 
 � � � ������� ��� � � � � � � � �
� � � ��� � � � ��������� ��� � � � � �
for � � " � � � � 
 � � � � � ������� ��� � � � � � �0�

Moreover, we define a map

�9� � /@0 �
� 4 /@0 � �

�

by restricting the projection � � /10 � � 	 � to
�

.
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We check that � is " � � � � 
 � -equivariant with respect to the actions - � and - � .
Indeed, for � � " � � � � 
 � , and � � � � � � � � , we have

� - � � � � � � � � � - � � � � � � � � � � � � � � 
 � � � � � ��� � � � �
� �
� � � ��� � � � � � � � � � � - � � � �

We conclude that, unless 
 ) � �
(a case that we will settle separately in

step (4)) we have an " � � � � 
 � -equivariant isomorphism from
�

to � by re-
striction from the standard projection on � . This implies that we can retrieve
the arrangement � � � " � � � � 
 � � � � as the inverse image of the arrangement
� �� � " � � � � 
 � �	� � , where

�� � � �	� � .
(3) A description of the arrangement � �� � " � � � � 
 � � � � . We will show that the
arrangement induced by the " � � � � 
 � -action - � on � , � �� � " � � � � 
 � ��� � , co-
incides with the rank � truncation of the braid arrangement � ��� 	 �� � � � � in a neigh-
borhood of

�� .
First, observe that the action - � differs from the permutation action of

" � � � � 
 � on � by at most a sign, which in particular implies that the construction
of � � 
�� for 
 	 " � � � � 
 � yields the same subspaces with respect to both actions.
Hence, we can freely switch to consider the permutation action of " � � � � 
 � on � .

For any subgroup 
 in " � � � � 
 � , we argue as in the proof of Theorem 5.4.5
and first observe that we can replace 
 by � � 
 � � " � �

��
, the intersection of

all automorphism groups of � -diagrams containing 
 . We can assume that the
diagram

��
satisfies the assumptions of Lemma 5.4.4, as we did before in the

proof of Theorem 5.4.5. We conclude that

� � " � �
�� � � � � � �� � �

with � �
�� � 	 � � � � 
 � � in the permutation lattice � � , since

��
is an intersection of

diagrams with one of the factors being
� � 
 � (cf. Theorem 5.4.2 (1)).

Let � be any partition of rank , � in � � with � 	 � � � � 
 � � . Consider a
diagram

� 	 over a family of
%
-cubes with the blocks of � as fibers. Obviously,

" � � � 	(	 " � � � � 
 � , the assumptions of Lemma 5.4.4 are satisfied as before, and
we conclude that � � " � � � 	 � � � 	 . Thus, any braidspace � 	 with ��� � , � and
� 	!� � � � 
 � � occurs in the arrangement � �� � " � � � � 
 � �	� � .

With � � � � 
 � � being the partition type � �	� � of
�� , we can conclude that

� �� � " � � � � 
 � �	� � coincides with the rank � truncation of the braid arrangement
� � � 	 �� � � � � in a neighborhood of

�� .
Taking the inverse image of � ��� 	 �� � � � � under � , we conclude that the arrange-

ment � � � " � � � � 
 � � � � coincides with the rank � truncation of the braid ar-
rangement � ��� 	 �� � � intersected with

�
, and have thus proved our claim (5.4.2) for

any 
 � � � � � � , which, as a line in � � is not contained in
� �

.
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(4) Settling the remaining case. Let us now assume that the line 
 � � � � is con-
tained in

� �
. Then the tangent space

� � 
 � � � at 
 decomposes as a direct sum
into � � � � � � � � � � � �
The stabilizer of 
 , " � � � � 
 � , acts on T by

� - ��� � � � � �	� � �,�
� � � � � � � � - � � �
for � � " � � � � 
 � � � � � � and � � � � �0�

We can modify - � so as to act trivially on the first coordinate, since such
modification does not change the spaces � � 
�� in

�
that arise from subgroups 


in " � � � � 
 � .
As in (3), we see that the arrangement � � � " � � � � 
 � � � � � � is a restriction

of � � � 	 �� � � to
� � � . With the " � � � � 
 � -action on the first coordinate of

�
being

trivial, we can take the direct product of � � � " � � � � 
 � � � � � � with
�

and
conclude that � � � " � � � � 
 � � � � is the restriction of � ��� 	 �� � � to

�
. This proves our

claim in the remaining case. ;

Example 5.4.7 To illustrate our theorem on the � -stratification induced by the
permutation action on real projective space and the resulting digitalization we
look at � � acting on � � � in some detail.

We depict � � � using the upper hemisphere model, where we place
� � � � � �

on the equator.

� � � , � ��� ��� � � � � ��� � ����� �

� , � ��� ��� � �

� � � , � ��� ��� � � �
� � � , � ��� � ����� �

� ��� ��� � � �� � ��������� �
� � � �

� � � �
� � � �

The locus of points in � � � with non-trivial stabilizer groups consists of the
three lines

� 
 � + , 3 	 � � 2
	 � , which are projectivizations of the hyperplanes in � � ,
intersecting in

� � � � 3 � 3 � 3 � , and points
� � + on

� � �
, where

� � + is the line orthog-
onal to 
 � + in � � for 3 	6� � 2 	 � .

Observe that the transposition ��� � 2 � � � � acts on � � � as a central symmetry
in

� � � + , respectively, as a reflection in
� 
 � � + .
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� � � (
� ��� ����� �

� � � (

� ��� (
� � � (

We find that the arrangements � � �,���6� � 
 � � � � � � � associated with the in-
duced linear actions of the stabilizers on tangent spaces for 
 � � � � are empty
unless 
 � � 3 � 3 � 3 � . In this case, we see that � � � � � � � � � � � � � � coincides with the
standard action of � � on � � 	 � , since transpositions, as we observed above, act
as reflections in the hyperplanes of the projectivized braid arrangement. Thus,
� � � � � � � � ��� � � � � � � � � � � � � � � coincides with the rank � truncation of the braid arrange-
ment consisting of the origin of the tangent space.

We conclude that the � -stratification is given by the single point � 3 � 3 � 3�� in
� � � , hence the digitalization we propose is the blowup of � � � in this point,

� �
� � � � � ��� � � � � � � � � � � � � �

Topologically, this means to glue a Möbius band into a pointed � � � , in other
words, to glue two Möbius bands along their boundaries. The resulting space
hence is a Klein bottle.

� � �
� � � � ��� � ����� � � � ������� � � � ��� ��� � � �

� � � � �
� � � �

� � � �
� � � �

� � � �

Remark 5.4.8 As already the low-dimensional Example 5.4.7 shows, the � -
stratification associated with the permutation action of ��� on � � � � � is different
from the codimension � truncation of the stabilizer stratification.
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[B1] V.V. Batyrev: Non-Archimedean integrals and stringy Euler numbers
of log-terminal pairs; J. Eur. Math. Soc. (JEMS) 1 (1999), 5–33.

[B2] V.V. Batyrev: Canonical abelianization of finite group actions; pre-
print, math.AG/0009043.

[BG] L.A. Borisov, P.E. Gunnells: Wonderful blowups associated to group
actions; Selecta Math. (N.S.) 8 (2002), 373–379.

[Bo] S. Bochner: Compact groups of differentiable transformations; Ann.
of Math. 46 (1945), 372–381.

[Da] V.I. Danilov: The geometry of toric varieties; Russ. Math. Surv. 33
(1978), 97–154.

[DGM] P. Deligne, M. Goresky, R. MacPherson: L’algèbre de cohomologie
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