Facets of Geometry

Women in Sciences, Rome, May 27, 2005

Eva Maria Feichtner

feichtne@math.ethz.ch

Department of Mathematics, ETH Zurich

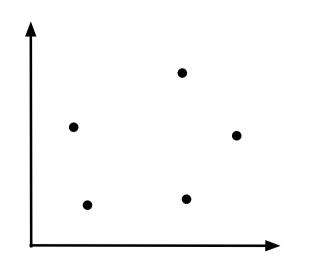
Polytopes

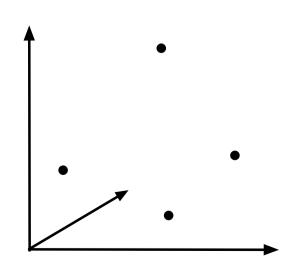
A polytope is the convex hull of a finite point set in \mathbb{R}^d :

$$P = \text{conv}(x_1, \dots, x_n) = \{ \sum_{i=1}^n \lambda_i x_i \mid \lambda_i \ge 0, \sum_{i=1}^n \lambda_i = 1 \}$$

for x_1, \ldots, x_n in \mathbb{R}^d .

Define $\dim P := \dim (\operatorname{aff} P)$.





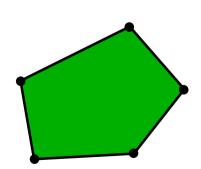
Polytopes

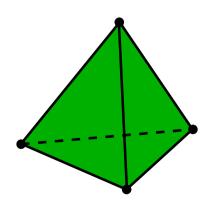
A polytope is the convex hull of a finite point set in \mathbb{R}^d :

$$P = \text{conv}(x_1, \dots, x_n) = \{ \sum_{i=1}^n \lambda_i x_i \mid \lambda_i \ge 0, \sum_{i=1}^n \lambda_i = 1 \}$$

for x_1, \ldots, x_n in \mathbb{R}^d .

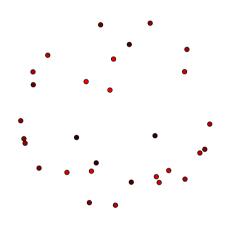
Define $\dim P := \dim (\operatorname{aff} P)$.

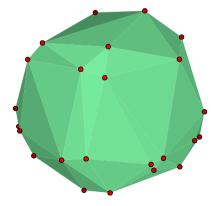


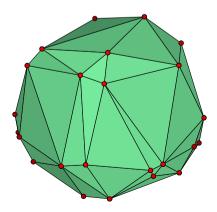


Examples of polytopes

Polytopes can be generated at random ...





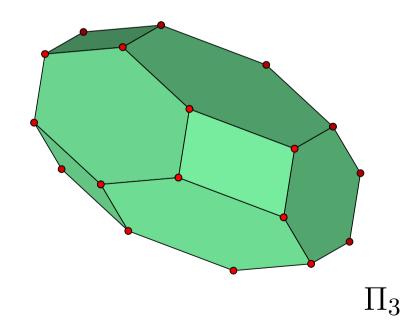


Examples of polytopes

... or can be constructed systematically:

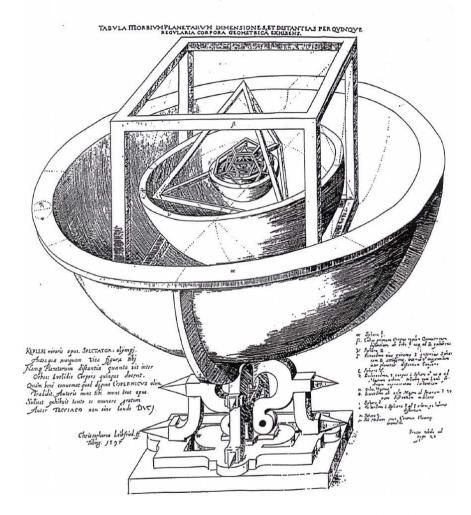
$$\Pi_{d-1} = \text{conv}\{(\sigma(1), \dots, \sigma(d)) \mid \sigma \in \mathfrak{S}_d\} \subseteq \mathbb{R}^d$$

Permutohedron

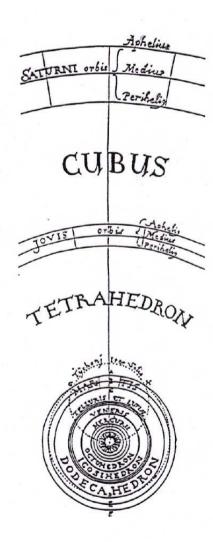


Platonic solids

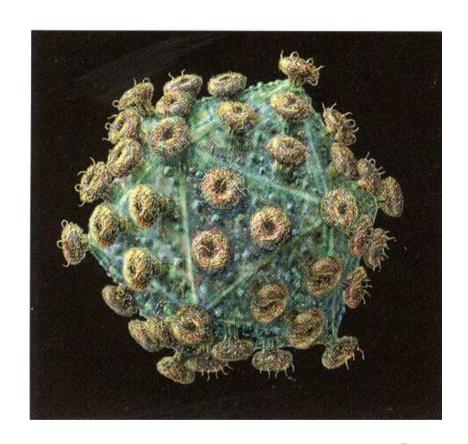
B.C. 300



Johannes Kepler (1571–1630) *Mysterium Cosmographicum*, Tübingen, 1596.



Johannes Kepler (1571–1630) *Harmonices Mundi*, Linz, 1619.



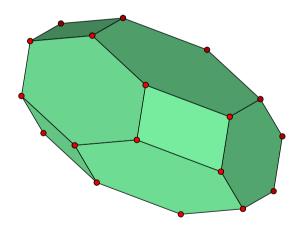
Sabine Yerly, et al., *Antiviral Therapy* 2004; 3: 375-384.

Faces of polytopes

Let P be a polytope in \mathbb{R}^d , $c \in (\mathbb{R}^d)^*$, $c_0 \in \mathbb{R}$, such that $cx \leq c_0$ for all $x \in P$. Then

$$F = P \cap \{x \in \mathbb{R}^d \mid cx = c_0\}$$

is called a face of P.



 $\dim F = \dim (\operatorname{aff} F)$, and according to dimension we talk about vertices, edges, faces and facets.

Face numbers of polytopes

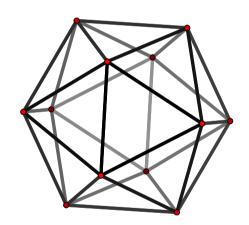
Let P be a d-polytope. Define

 f_i := number of i-dimensional faces of P for $i=-1,\ldots,d$.

$$f(P):=(f_{-1},\ldots,f_d)$$
 f-vector of P .

Example:

$$f(P) = (1, 12, 30, 20, 1)$$



Question: Which (d+2)-tuples of natural numbers occur as f-vectors of polytopes?

Face numbers of polytopes

 $\dim P = 3$, Euler's formula:

$$f_0 - f_1 + f_2 = 2$$

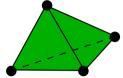
 $\dim P = d \ge 3$, Euler-Poincaré formula:

$$\sum_{i=-1}^{d} (-1)^i f_i = 0$$

Swiss Federal Institute of Technology Zurich

Simplicial polytopes

The convex hull of d+1 affinely independent points in \mathbb{R}^d is called a d-simplex.



A polytope is called simplicial if all its proper faces are simplices.

Question: Which (d+2)-tuples of natural numbers occur as f-vectors of simplicial polytopes?

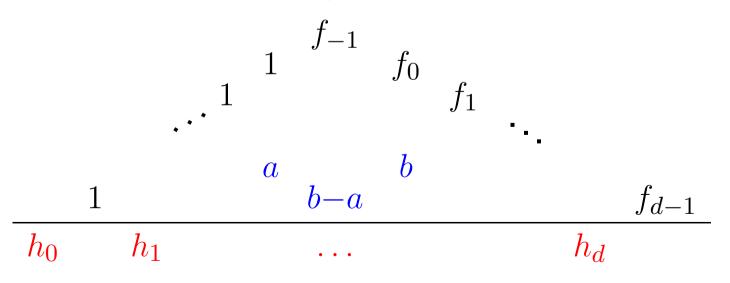
The h-vector of simplicial polytopes

Let P be a simplicial d-polytope. Define

$$h_k := \sum_{i=0}^k (-1)^{k-i} \begin{pmatrix} d-i \\ d-k \end{pmatrix} f_{i-1}$$
 for $k = 0, \dots, d$.

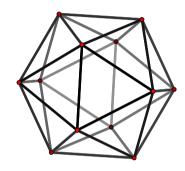
$$h(P) := (h_0, \dots, h_d) h$$
-vector of P .

A variation of Pascal's triangle:



The h-vector of simplicial polytopes

Example: The h-vector of the icosahedron



Dehn-Sommerville equations:

Let (h_0, \ldots, h_d) be the h-vector of a simplicial polytope, then

$$h_k = h_{d-k}$$
 for $k = 0, ..., d$.

Dual polytopes

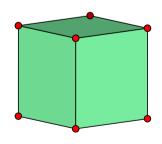
Let P be a d-dimensional polytope, $0 \in \text{int}(P)$. Then

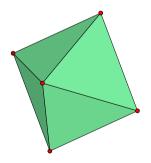
$$P^{\diamond} := \{c \in (\mathbb{R}^d)^* \mid cx \leq 1 \text{ for any } x \in P\}$$

is the dual polytope of P.

Observe that $f_i(P^{\diamond}) = f_{d-i-1}(P)$.

Example:





Simplicial versus simple polytopes

P simplicial

any facet F in Phas d facets

any k such facets intersect in a (d-k-1)-face of P

\leftrightarrow P^{\diamond} simple

- \leftrightarrow any vertex v in P^{\diamond} lies on d edges
- \leftrightarrow any k of these edges span a k-face of P^{\diamond}

h- and *f*-polynomials of simplicial polytopes:

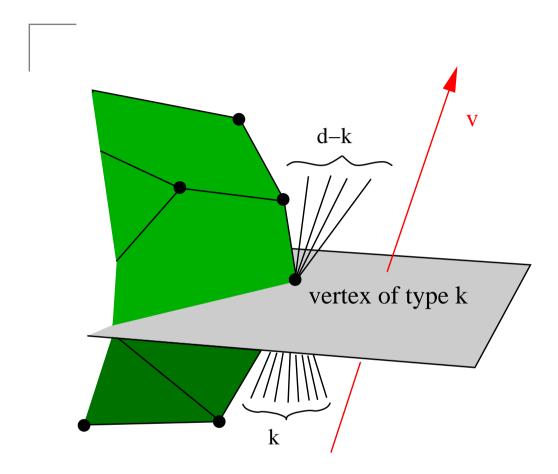
$$f(P,t) = \sum_{i=0}^{d} f_{d-i-1}(P)t^{i}$$
 $h(P,t) = \sum_{i=0}^{d} h_{d-i}(P)t^{i}$

$$h(P,t) = \sum_{i=0}^{d} h_{d-i}(P)t^{i}$$

By definition,

$$f(P,t) = h(P,t+1).$$

Proof of the Dehn-Sommerville equations



 \longrightarrow Count faces of P^{\diamond} along v.

Proof of the Dehn-Sommerville equations

Contribution to

$$f(P,t) = \sum_{i=0}^{d} f_i(P^{\diamond})t^i = \sum_{i=0}^{d} h_{d-i}(P)(t+1)^i = h(P,t+1)$$

at a vertex of P^{\diamond} of type k:

$$t^{0} + kt^{1} + {k \choose 2}t^{2} + \ldots + {k \choose k}t^{k} = (t+1)^{k}.$$

 $\implies h_{d-k} = \text{number of vertices in } P^{\diamond} \text{ of type } k \text{ w.r.t. } v$ $= \text{number of vertices in } P^{\diamond} \text{ of type } d-k \text{ w.r.t. } -v$ $= h_k$

Face numbers of simplicial polytopes

g-Theorem:

[Billera & Lee 1980, Stanley 1980]

 $(h_0,\ldots,h_d)\in\mathbb{N}^{d+1}$ is the h-vector of a simplicial d-polytope if and only if

- $h_k = h_{d-k}$ for k = 0, ..., d
- $g(P) := (h_0, h_1 h_0, \dots, h_{\lfloor d/2 \rfloor} h_{\lfloor d/2 \rfloor 1})$ is a Macaulay sequence.

Macaulay sequences

An algebraic characterization:

 $(g_0, \ldots, g_{\lfloor d/2 \rfloor}) \in \mathbb{Z}^{\lfloor d/2 \rfloor + 1}$ is a Macaulay sequence if and only if there exists a commutative, associative, graded algebra over \mathbb{Q} ,

$$A = \bigoplus_{i>0} A_i,$$

generated in degree 1, and

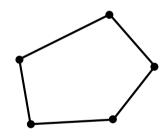
$$\dim A_i = g_i$$
 for all $i \ge 0$.

Adding tools: Toric varieties

Let P be a d-polytope with rational vertex coordinates.

 X_P the toric variety associated with P:

$$X_P = (T^d \times P^{\diamond})/\sim$$



$$\pi: X_P \longrightarrow P^{\diamond}$$

$$\pi^{-1}(x) \cong \underbrace{S^1 \times \ldots \times S^1}_{k \text{ times}} \quad \text{for } x \in \text{int } F^{\diamond}, \dim F^{\diamond} = k.$$

Proof of the g-Theorem "==>"

[Stanley 1980]

P simplicial, thus realizable with rational vertex coordinates X_P \mathbb{Q} -homology manifold

- ullet dim $H^{2i}(X_P,\mathbb{Q})=h_i$ for $i=0,\ldots,d$ [Danilov 1978]
- $\omega^{d-2i}: H^{2i}(X_P, \mathbb{Q}) \xrightarrow{\cong} H^{2(d-i)}(X_P, \mathbb{Q})$ for i < d/2, $\omega = [Y]$, Y a generic hyperplane section
- witness algebra:

$$H^*(X_P,\mathbb{Q})/\langle\omega\rangle$$

Beyond simplicial polytopes

Can we extend the g-theorem beyond simplicial polytopes?

• In dimension ≥ 4 there exist polytopes that cannot be realized with only rational vertex coordinates.

[Perles 1965]

ightharpoonup P an arbitrary d-polytope

$$\tilde{h}(P) := (\tilde{h}_0, \dots, \tilde{h}_d) \in \mathbb{Z}^{d+1}$$
 toric h -vector $\tilde{h}_k = \tilde{h}_{d-k}$ for $k = 0, \dots, d$

[Stanley 1987]

Face numbers of non-simplicial polytopes

P a non-simplicial, but rational d-polytope X_P the associated toric variety $IH^*(X_P, \mathbb{Q})$ intersection cohomology of X_P

[Goresky & MacPherson 1980]

- $IH^*(X_P, \mathbb{Q}) = \bigoplus_{i=0}^d IH^{2i}(X_P, \mathbb{Q})$
- ullet dim $IH^{2i}(X_P,\mathbb{Q})= ilde{h}_i$ for $i=0,\ldots,d$ [MacPherson 1987, Fieseler 1991]
- $\omega^{d-2i}: IH^{2i}(X_P, \mathbb{Q}) \xrightarrow{\cong} IH^{2(d-i)}(X_P, \mathbb{Q})$ for i < d/2, $\omega = [Y] \in H^2(X_P, \mathbb{Q})$, Y a generic hyperplane section
- no ring structure!

Face numbers of non-rational polytopes

P a non-rational d-polytope, $IH^*(P, \mathbb{Q})$ intersection cohomology of the normal fan of P [Barthel, Brasselet, Fieseler, Kaup 2002] [Bressler, Lunts 2003]

- $\ell^{d-2i}: IH^{2i}(P,\mathbb{Q}) \stackrel{\cong}{\longrightarrow} IH^{2(d-i)}(P,\mathbb{Q})$ for i < d/2, ℓ a conewise linear strictly convex function on $\Sigma(P)$ [Karu 2003]
- ullet dim $IH^{2i}(P,\mathbb{Q})= ilde{h}_i$ for $i=0,\ldots,d$ [Bressler, Lunts 2003]