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Erinnerung:

Sei V ein Vektorraum der Dimension |G| und {e,} e eine Basis von V, die durch
die Gruppenelemente indiziert ist. Dann heift die Abbildung;:

G- GL(V)
g pg
mat pgles) =eqs Vs€G

die reguldre Darstellung von G.

1 Die Gruppenalgebra

1.1 Definition

Definiere auf dem Darstellungsraum der reguldren Darstellung eine Multiplikation
durch
€g-€h =¢€gp Vg,h € G

und lineare Fortsetzung. Die so erhaltene Algebra heifit Gruppenalgebra.

Die Elemente der Gruppen-Algebra CG sind von der Gestalt :

E ageq mit a, € C
geG

1.2 Satz
Seien p; : G — Aut(W;) die irreduziblen Darstellungen der Gruppe G, dann gilt:

CG = P End(W))

2 Irreduzible Darstellungen der S,

2.1 Bemerkung:

Die Anzahl der irreduziblen Darstellungen einer Gruppe ist gleich der Anzahl ihrer
Konjugiertenklassen. Auflerdem gilt nun in der symmetrischen Gruppe S4, dafl zwei
Elemente genau dann konjugiert sind, wenn sie, notiert in der Zyklenschreibweise,
durch die Lénge der aufretenden Zyklen dieselbe Partition von d induzieren. Man



schreibt fiir solche Partitionen:

Akd
}\:()\1,)\2,...,)%) mit )\12}\222)%21, wobel
k
keN und Y N =d
i=1
2.2 Definition
Das zur Partition A = (A1, A2,..., Ax) von d gehorende Young-Diagramm ist ein

Diagramm mit \; Késtchen in der i-ten Zeile.

Die konjugierte Partition A’ zu A ist die Partition, die zum diagonal gespiegelten
Young-Diagramm von A gehort.

Ein mit den Zahlen 1,2, ..., d ausgefiilltes Young Diagramm heifit Young-Tableau.

2.3 Beispiel
Das Young-Diagramm der Partition A = (3,2,2,1) von 8 ist:

A |
Az
As
A4

Die konjugierte Partition A’ zu X ist:

N = (4,3,2)

M |
X,
X,

Das kanonische Young-Tableau zur Partition A ist:

Mo [1]2]3]
X [4]5

A3 [6]7

A |8

2.4 Definition

Sei A Partition von d. Fiir die folgenden Definitionen beziehen wir uns auf das
kanonische Young-Tableau zur Partition A. Es seien:

P = P, = {g € S4|Reihen sind invariant unter g}

Q = @\ = {g € S4/Spalten sind invariant unter g}
ay = Zeg und by = Z sgn(g)ey
ger geQ
Weiter sei:
C) ‘= ay - b)\

¢ heiffit Young-Symmetrierer.



2.5 Theorem
Sei A Partition von d, ¢y € CS,4 wie oben, dann gilt: Es gibt ein ny € C mit
ci = nycy und fiir die Abbildung

_rey:CS; =5 CSy

T Ty
gilt:
Im(CS4) =: W,

ist eine irreduzible Darstellung von S .
Desweiteren kann jede irreduzible Darstellung von S, auf diese Art konstruiert wer-
den.

2.6 Satz

Sei U’ die alternierende Darstellung und X die konjugierte Partition zu A, dann
gilt:
Vi=WolU

2.7 Satz

Die Standard-Darstellung V gehort zur Partition A = (d — 1, 1) von d. Weiterhin
gilt, dafl A®V, die dussere Potenz der Standarddarstellung, die Darstellung ist, die
zu einem Hacken der folgenden Form gehort:

s A=(d—s,1,...,1)

3 Beweis des Theorems 2.5

3.1 Notation

In den nun folgenden S&tzen wird sehr hiufig die Notation g-z mitg € Gund z € CG
verwendet. Damit ist natiirlich die Multiplikation des zu g gehdrenden Basisele-
ments ey in der Gruppenalgebra mit z gemeint.

g-ri=ey-x VgeG,xeCq

3.2 Lemma
1. Fir p€ Py ist p-ay = ay -p = a,.
2. Fiir ¢ € Qx ist (sgn(q)q) - bx = bx - (sgn(q)q) = ba.
3. Fiir alle p € Py,q € Q» ist p-cx - (sgn(q)q) = cx.

4. Bis auf Multiplikation mit einem Skalaren ist ¢, das einzige Element in CS 4
mit der Eigenschaft 3.



3.3 Definition

Seinen A,y Partitionen von d. Definiere

A > pu & die erste nichtverschwindende Differenz A; — p; ist positiv.

3.4 Lemma

1. Falls A > p, dann gilt ay - z-b, = 0 fiir alle z € CS4. Insbesondere gilt
natiirlich ¢y - ¢, = 0.

2. Fiir alle z € CS 4 gilt: ¢y -z -cy ist ein skalares Vielfaches von ¢). Insbesondere
gilt:
ci:nAcA firein n, €C

3.5 Lemma

1. Jedes V), wie in Theorem 2.5 konstruiert, ist eine irreduzible Darstellung von

S 4.
2. Ist A # p, so sind V und V, nicht isomorph.

3.6 Lemma

Fiir ny in Lemma 3.4 (2) gilt
d!
)\ =

dim(V3)

Da es nun genausoviele Partitionen A von d wie Konjugiertenklassen der S4 gibt,
miissen die V) eine vollstindige Menge irreduzibler Darstellungen von S, bilden.
Dies vervollstdndigt den Beweis von Theorem 2.5.



4 Uber symmetrische Polynome

Wir betrachten den Vektorraum S% der symmetrischen, homogenen Polynome von
Grad d in k Variablen. Dieser Raum ist endlichdimensional und besitzt meherere
verschiedene Basen.

Seien im folgenden A und g Partitionen von d.

4.1 Basen des S%

1. Monome in den elementarsymmetrischen Funktionen Ej:
EH = Eﬂl "'Euz

wobei k> py > --- > >0und E; = 3 Xy e

N i
1<i1 <+ <1;<k

7

2. monomiale symmetrische Polynome
My=>_ X°
o

wobei tiber alle & = (ay, ..., ax) Permutation von A = (Aq, ..., Ax) mit
Ay > -+ > A > 0 summiert wird und X* = ' ---2p*.

3. Schur Polynome
Aitk—i
|°Lj |

Sy =
|25

mit Ay > - > A > 0.

4.2 Satz
Sei P € S%, dann gilt:

1.
P =Y "[P]hMy,

Akd

wobei [P]y der Koefizient von X* = 7! 12k in P.

P =Y w\(P)Sy,

AFd
wobei wy(P)=[A-Plimitl =X +k—1, +k—2,..., ).

4.3 Definition

Die Koefizienten K, die beim Basiswechsel von den Schurpolynomen zu den mo-
nomialen symmetrischen Polynomen auftreten, heiflen KostkaZahlen.

Su = KM,
A
Es gilt nun das folgende zentrale Lemma:

4.4 Lemma

[Plx=>_ KunA-P),



