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CHARAKTERE

Stephan Schonenberger

Definition und Eigenschaften Sei V' ein Vektorraum iiber C, {e;};—1., eine Basis
von Vund A:V -V, AeGIV).

DEFINITION 1 Die Spur Tr(A) wvon A ist definiert als Tr(A) :== Y "" | ai;, wo (a;;) die
zu A gehorige n X n-Mariz ist.

BEMERKUNG 1 Die Spur ist unabhéngig von der Wahl der Basis von V.
Sei G eine endliche Gruppe und p : G — GI(V) eine lin. Darstellung.

DEFINITION 2 Die Abbildung

C

x:G —
a = x(a) = Tr(p,)

heisst der Charakter von p.

PROPOSITION 1 Ist x der Charakter der Darstellung p : G — GI(V), dim(V) = n, so
qilt:
i) x(1) =n
i) x(a™') = x(a)"
iii) x(z~'az) = x(a)
Begr:
i) x(1) =Tr(p)) =Tr(1) =n
i) x(a™") =Tr(pg") =30 A = 20 A = Tr(pa)” = x(a)*

iii) x(z7'az) = x(a) gdw. x(az) = x(ra) und das gilt wegen Symmetrie der Spur.

q.e.d.

BEeisPIEL 1 1. fiir die regulire Darstellung: dim(V) = |G| = g, ps(e;) = ey gilt:

_Jg s=1
Xo(s) {0 sonst,.

2. fiir die Permutationsdarstellung V' mit Basis {e;}zex : ps(ez) := €5y gilt:

x(a) := # Fixpunkte von a in X



Die duale Darstellung Sei p: G — GI(V) eine lin. Darstellung mit Charakter y und
V* der Dualraum von V.

DEFINITION 3 Die Auswertungsabbildung ist gegeben durch:

() :VxV* = C
(v, f) = (v, f):=f(v)

DEFINITION 4 Die duale Darstellung p* : G — GI(V*) ist definiert durch
Pe(f):V = C pi(f)(v) == [ (pg-1(v))
LEMMA 1 Fir die duale Darstellung gilt:
{pg(v), Py(f)) = (v, f)
LEMMA 2 Fir den Charakter x,« der dualen Darstellung gilt: x,« = X

Direkte Summe von Darstellungen Seien V;, i = 1,2 Vektorrdume, G eine endl.
Gruppe und p' : G — GI(V;) lin. Darstellungen.

DEFINITION 5 Die direkte Summe der Darstellungen ist definiert durch:
(p'®p?): G = GlVi®Vh)
(' ® p*)a = pi @ 1
Ist R die Matrix von g%, i = 1,2, dann ist die Matrix R, von (p' & p?), in Blockform

gegeben durch
R 0
n=(% )

LEMMA 3 Fiir den Charakter der direkten Summe gilt: X ig2 = X1 + Xp2

Tensorprodukte, Tensorprodukte von Darstellungen Wir wollen Tensorprodukte
in einem etwas allgemeineren Rahmen einfiihren und dann auf Darstellungen anwenden.
Sei R ein kommutativer Ring mit 1.

DEFINITION 6 A, B, C R-Moduln. Eine Abbildung f : A x B — C heisst bilinear, falls
fir a1, as,a € A, by,by,b € B und r € R gilt:

I) f(a1 +az,b) = f(a1,b) + f(az,b)
II) f(CL, bl + b?) = f(a7 bl) + f(a7 bZ)
II) f(ra,b) =rf(a,b) = f(a,rb)

DEFINITION 7 Sei F der freie R-Modul iiber Ax B und K der Untermodul von F, erzeugt
von Elementen der Form



(@+d',b) — (a,b) — (¢, b)
(a,b+10") — (a,b) — (a,b)
(ra,b) — r(a,b)
(a,rb) — r(a,b)

Der R-Modul F/K heisst Tensorprodukt von A und B und wird mit AQg B bezeichnet.
Fine Aquivalenzklasse (a,b) + K wird als a @ b geschrieben.

DEFINITION 8 Die bilineare Abbildung

1:AxB — A®B
(a,b) — a®b

heisst natiirliche Abbildung oder kanonische Abbildung.

SATZ 1 (UNIVERSELLE EIGENSCHAFT DES TENSORPRODUKTES) Isti: AXB — A®B
die natirliche Abbildung, dann gibt es zu jeder bilinearen Abbildung f : A X B — C n
einen R-Modul C' genau eine R-lineare Abbildung f: AQ B — C, so dass f =1io f.

SATZ 2 Falls fir einen R-Modul X und eine bilineare Abbildung ¢ : A x B — X die
universelle Figenschaft gilt, dann ist X isomorph zu A ® B.

SATZ 3 Sind A : A — A, u : B — B' R-lineare Abbildungen der R-Moduln A, A’,
B, B', dann gibt es eine eindeutige R-lineare Abbildung f : AQ B — A’ ® B, so dass
fla®b) = Aa) ® u(b).

Kehren wir zur Darstellungstheorie zuriick: Ist R ein Koérper, so ist ein R-Modul ein
Vektorraum.

SATZ 4 Fir Vektorrdume Vi, Vo und Vi* der Dualraum von Vi ist die Abbildung

ViV, — Hom(Vi,Vs)
fQus = Y(f Qus)

definiert durch
Y(f ®va)(v1) = f(v1)ve

ein Isomorphismus.

DEFINITION 9 Sind p* : G — GI(V;) Darstellungen, dann ist das Tensorprodukt p' ®
p*: G — GI(Vy ® Vo) der Darstellungen definiert durch (p' ® p*), := py ® py.

LEMMA 4 Sind x; die Charaktere der Darst. p* (i =1,2), dann ist der Charakter X g2
gegeben durch X g, = X1X2



Orthogonalitéitsrelationen Sei G eine endl. Gruppe. Fiir eine Darstellung p : G —
GI(V) definieren wir
Véi={veV : pv)=v VgeGqG}

Im allgemeinen ist eine Abbildung p, : V' — V nicht G-linear. Wir konstruieren eine
G-lineare Abbildung durch Mittelung:

1
¢:=@Zpg

g€eG

PROPOSITION 2 ¢ ist eine G-lineare Projektion auf V°.
Fiir eine Projektion p gilt Tr(p) = Rang(p) und daher:
. 1 1
dim(V®) =Tr(g) = 1z > Tr(pg) = 157 2 x(9)
9€G geG
BEMERKUNG 2 Fiir alle irred. Darstellungen V ausser der trivialen gilt >, x(¢g) =0

Mit CG := {f : G — C} bezeichnen wir die Menge aller Abbildungen von G nach C.
DEeFINITION 10 f € CG heisst Klassenfunktion, falls V a,b € G gilt

f(ab) = f(ba)
BEMERKUNG 3 Nach Proposition 1.iii) ist der Charakter eine Klassenfunktion.
LEMMA 5 CGg :={f € CG : f ist Klassenfunktion} C CG bildet einen Vektorraum.

DEFINITION 11 Wir definieren ein Skalarprodukt auf CGx durch

(0, %) = ‘1?' > elg™)(g)

geG

SATZ 5 (ORTHOGONALITATSRELATIONEN) Ist G eine endl. Gruppe, p° : G — GI(V;)
irreduzible Darstellungen mit Charakter x;, (i =1,2). Dann gilt:

i) (x1,x2) = 1, falls p* und p? dquivalent sind.
ii) (x1,%x2) =0, falls p* und p? nicht dquivalent sind.

Begr: Betrachte die folgende Darstellung:

p:G — GIl(Hom(Vi,Vs))
pg : Hom(Vi, Vo) — Hom(Vi,Vs)

po(f) == P2f (0))™

g =

Es gilt
Hom(V1,V3) = { G-linere Abb. V; — V5 }

4



und da Vi, V5 irreduzibel, folgt aus dem Lemma von Schur:

. o\ _ J 1 falls p! und p? dquivalent
dim (Hom(V4,2)") = {0 falls p! und p? nicht #quivalent.

Weiter gilt wegen Isomorphie der Darstellungen Vi*®V; & Hom(V;, V3) fiir den Charakter
von p:

Xp = XIX2
und daher
(X1, x2) = ZX1 ZXp dzm Hom(VhVQ) )
QEG gEG

q.e.d.

Anwendungen der Orthogonalititsrelationen

SATZ 6 Jede endl. dim. Darstellung einer endl. Gruppe ist direkte Summe irreduzibler
Darstellungen.

Es gibt also V = @®F_,V; mit irred. p-inv. V;. Die auf V; induzierten Darstellungen seien
o' := ply.. Es gilt daher p = Z '~ p'. mit irreduziblen p' : G — GI(V;). LA. gibt es aber
dquivalente Darstellungen in dieser Zerlegung. Diese wollen wir zusammenfassen: Sind V;
und V; dquivalent (i # j), so lassen sie sich mit einem G-Isomorphismus identifizieren.
0O.B.d.A. kénnen wir festlegen:

v v
ni—mal na—mal ns—mal

V=Vo.. . oVohe.. oVho..oV.0...0V,

DEFINITION 12 nV :=V & ...V, np:=p®d ... & p; n Summanden.

Damit wird: , ,
V=@PnVi p=@Pns
i=1 i=1

Fiir die Charaktere folgt nach Proposition 3:

X = Z niXi
i=1

SATZ 7 Mit obiger Notation gilt fiir eine irred. Darstellung ¢ : G — GI(W) mit Charakter
Y: '
n; falls ¢ dquivalent zu p*
oo ¥) = { 0 sonst

KoroLLAR 1 Sind p = Zf ; nipt = Zi Zmzwi zwer Zerlequngen einer Darstellung wie
oben Dann ist k = | und es gibt eine Permutation © € Sy, so dass p' dquivalent ist zu
™D und n; = myiy- Die Zerlegungen sind also bis auf Aquivalenz eindeutig.

SATz 8 Ist x der Charakter von p: G — GU(V), dann gilt (x, x) = 1 gdw. die Darstellung
ist 1rreduzibel.



