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1 Vorgeschichte

In den Zeiten vor Abel und Galois war es eines der Hauptanliegen der Algebrai-
ker, “Formeln” fiir die Lésungen von Polynomgleichungen zu finden, wobei diese
Formeln mittels rationaler Operationen und Wurzeln aus den Koeflizienten der
jewiligen Gleichung aufgebaut sein sollten. Prézisiert man dieses Problem, so
gelangt man zu folgender

Definition 1.1. Sei F ein Erweiterungskérper von F. Man spricht von einer
Radikal-Erweiterung, falls £ = F(uy,...,uy,) und jeweils

ul € Fug,...,ui—1)

fiir ein m; > 1. Ist ferner ein Polynom f € F[z] gegeben, so heifit die Gleichung
f(z) = 0 18sbar durch Radikale, falls der Zerfillungskérper! E von f iiber

F eine Radikalerweiterung ist.

Eines der Glanzstiicke von Evariste Galois ist die folgende Charakterisierung
von Radikalerweiterungen:

Satz 1.2. Sei f € F[z] vom Grade n, char(F) = 0. Dann ist>
f(z) = 0 losbar durch Radikale <= Gal(f/F) ist auflésbar (1)

im Sinne der nachstehenden Definition. 3

(Fiir den Beweis dieses Satzes verweise ich auf [1].)
Definition 1.3. Eine Gruppe G heifit auflésbar, falls es eine Normalreihe
G=Gol G > ... Gy = {1}
gibt, so dak alle Quotienten G;/G;y1 abelsch sind.*

1Zur Erinnerung: Der Zerfillungskérper von f iiber F' entsteht grob gesagt dadurch, daf
man alle Wurzeln von f zu F hinzu adjungiert. Mit anderen Worten: Er ist der (bis auf
Isomorphie eindeutige) inklusionsminimale Erweiterungskorper von F, iiber dem f in lineare
Faktoren zerfallt.

2Hierbei gilt “=" in jeder Charakteristik, und “<” allgemeiner im Fall char(F) { n!.

3Gal(f/F) bezeichnet hierbei die Galois-Gruppe des Zerfillungskdrpers E von f iiber F,
d.h. die Gruppe aller Automorphismen von F, die ' punktweise fixieren.

4 Achtung! Es wird keineswegs G; < G fiir alle 4 vorausgesetzt.
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Beispiele 1.4. 1. Die symmetrische Gruppe S, ist nicht auftésbar, falls n >
5 (der Grund ist im wesentlichen, daf A, dann einfach und nicht abelsch
ist). Mit etwas zusétzlichem Aufwand folgt daraus der Satz von Abel, daf
es keine allgemeine Losungsformel fiir Gleichungen vom Grade > 5 gibt.

2. Trivialerweise ist jede abelsche Gruppe auflésbar.

Hier sind ein paar praktische Lemmas, um weitere Beispiele von auflésbaren
Gruppen zu finden.

Lemma 1.5. FEine Gruppe G ist genau dann auflésbar, wenn die induktiv durch
GO = G und GUHY = (G(i))/ definierte Kommutatorreihe G = G(©) >
G > ... terminiert, d.h. wenn G = {1} fiir ein n € N. Dabei ist H' die
Kommutatorgruppe ciner Gruppe H.?

Beweis. Terminiert die Kommutatorreihe, so stellt sie eine Normalreihe mit
abelschen Quotienten dar. TIst umgekehrt G = Go > G1 > ... > G, = {1} eine
Normalreihe mit abelschen Quotienten, so sieht man leicht durch Induktion {iber

i, dak G() < @G fiir alle i, also insbesondere G(?) = {1}. O

Lemma 1.6. Untergruppen und homomorphe Bilder von auflésbaren Gruppen
sind wieder auflésbar.

Beweis. Die Normalreihe G = Gg > ... > G, = {1} bezeuge, dak G auflésbar
ist, d.h. G;/G;41 abelsch. Ist H < G bzw. f : G — B ein surjektiver Gruppen-
homomorphismus, so werden durch H; := HNG; bzw. B; := f[G;] Normalreihen
mit abelschen Quotienten definiert. O

Eine Art Umkehrung:

Lemma 1.7. Ist N < G, und sind sowohl N als auch G/N auflésbar, so ist
auch G auflésbar.

Beweis. Zunichst bemerken wir, daf aufgrund des Korrespondenzsatzes (auch
Vierter Isomorphiesatz genannt) die Untergruppen von G/N von der Form H/N
sind, wobei N < H < (; dabei ist H/N < G/N <= H < @. Seien nun
N=No>...> N, = {1} und G/N = Go/N > G{/N>...>G,/N = N/N

Normalreihen mit abelschen Koeffizienten. Wir setzen diese einfach zusammen:
G:GOIZGIIZ---IZGn:N:NOIZNlE---ENkz{l}.

Dabei sorgt der Dritte Isomorphiesatz dafiir, dafs alle Quotienten abelsch sind.

O
5Dies ist die von allen Elementen der Form [a,b] := aba='b~! (a,b € H) erzeugte Unter-
gruppe; sie hat einige niitzliche Eigenschaften:
1. H' <4 H;

2. H/H'’ ist abelsch.
3. Ist N ein Normalteiler von H mit H/N abelsch, so gilt H' < N.
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Als Anwendung sehen wir, daf alle p-Gruppen (Gruppen der Ordung p”), p
prim, auflésbar sind: Denn ist G' derart, so entweder GG abelsch, oder aber das
Zentrum Z(G) ist ein nichttrivialer Normalteiler; dann aber sind induktiv sowohl
Z(@G) als auch G/Z(G) auflésbar (beides sind p-Gruppen kleinerer Ordnung),
also auch G.

Der Satz von Burnside ist eine Verallgemeinerung dieser Beobachtung auf
den Fall von zwei Primfaktoren. Zunéchst aber méchte ich die fiir den Beweis
notwendigen Zutaten zusammentragen.

2 Hilfsmittel

Es sei G eine Gruppe mit |G| = p"m, p prim und p { m. Eine p-Sylow-
Untergruppe von G ist eine Untergruppe P < G der Ordnung |P| = p".
Die Menge der p-Sylow-UG von G wird mit Syl,(G) bezeichnet.

Satz 2.1 (Die Sylow-Sitze). 1. Syl,(G) # 0.

2. Ist P € Syl,(G) und ferner Q < G, |Q] = pt fiir ein k < n, so existiert
ein g € G mit Q < gPg~!. Insbesondere sind alle p-Sylow-Untergruppen
zueinander konjugiert.

3. Fs gilt s := |Sy1p(G)| = [G : Ng(P)] fiir jedes P € Syl,(G). Somit gilt

s | m und aufferdem s =1 mod p.

Ein Beweis findet sich etwa in [1]. Desweiteren werden wir einige im Seminar
erarbeitete Resultate bendtigen:

Notiz 2.2. Ist p eine komplexe Darstellung einer endlichen Gruppe G, so gilt
p(g)!¢! = T fiir alle ¢ € G; insbesondere sind alle Eigenwerte von p(g) gewisse
Einheitswurzeln. Ist somit n der Grad von p und x der zugehorige Charakter,
so gilt [x(g)| < n fiir alle g, mit “=" genau dann, wenn p(g) = w/ fiir eine |G|-te
Einheitswurzel w. Insbesondere ist Z(x) := {g € G | [x(9)] = n} < G.

Notation 2.3. Wenn im folgenden von einer Gruppe mit Namen G die Rede
ist, so bezeichnen immer

® p1,...,pr die irreduziblen Darstellungen von G,
e ny,...,n, deren Grade (also ), n? = |G|),
® X1,...,Xr die entsprechenden Charaktere; ferner seien

e (,...,C, die Konjugiertenclassen von G.

Auferdem sei Clg(a) := {gag™' | ¢ € G} die Konjugiertenklasse von a € G.
Es sei daran erinnert, daft Charaktere Klassenfunktionen sind, d.h. konstant auf
Konjugiertenklassen. Ich werde also ohne gréfere Scheu x(C;) schreiben, womit
dann x(g) gemeint ist fiir ein beliebiges g € C;.
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Nach Notiz 2.2 ist x(C;) stets eine algebraisch ganze Zahl, d.h. Nullstelle ei-
nes normierten Polynoms mit ganzzahligen Koeffizienten. Der Ring der algebra-
isch ganzen Zahlen wird mit .4 bezeichnet; es sei daran erinnert, dalt ANQ = Z.

Ferner haben wir gesehen, dafs

_ |Ci| x;(C)

nj

wy,; (Ch)

immer eine algebraisch ganze Zahl ist.

Satz 2.4 (Orthogonalititsrelation II). Seien a,b € G. Dann gilt

r 161
> xila)xi(b) = { e e £ (OR 11)
i=1

0 sonst.

3 Der Satz von Burnside

Satz 3.1. Ist |G| = p%q® mit p und q prim, so ist G auflésbar.

Der hier prasentierte Beweis folgt [2] und basiert hauptsichlich auf den bei-
den folgenden Lemmas:

Lemma 3.2. Es seien x ein irreduzibler Charakter von G vom Grad n = x(1)
und C eine Konjugiertenklasse von G, so daff |C| und n relativ koprim sind.
Dann gilt

entweder C C Z(x), dh. |x(C)|=n
oder x(G)=0.

Beweis. Wie oben angemerkt ist w, (C) = W eine algebraisch ganze Zahl.

Nach Voraussetzung existieren ganze Zahlen k,! mit k |C'| 4+ In = 1; wegen

k1CIx(C)

= @ + Ix(C)

kwy(C) =

ist somit auch

x(C)

n

eine algebraisch ganze Zahl.
Nun brauchen wir ein wenig Galois-Theorie. Es sei K := Q(({) der |G|-te
Kreisteilungskorper, d.h. ¢ eine primitive |G|-te Einheitswurzel.

Fakt 3.3. K D @ ist eine Galois-Erweiterung, d.h. wird u € K wvon allen
o € I := Gal(K/Q) auf sich selbst abgebildet, so gilt u € Q. Desweiteren ist T'
isomorph zur multiplikativen Gruppe der primitiven |G|-ten Finheitswurzeln.
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Ist nun o € T, so bildet o Einheitswurzeln wieder auf ebensolche ab, folglich
ist auch o(x(C)) wieder eine Summe von Einheitswurzeln; es gilt [x(C)| =
n < x(C) =wl firein w < o(x(C)) = o(w)l < |o(x(C))| = n.
Ferner ist o(a) wieder eine algebraisch ganze Zahl, in der Tat Wurzel desselben
Polynoms wie a, da o die ganzzahligen Koeffizienten fixiert.

Betrachte nun

N = H o(a).

cel’

Es gelten: N € A, [N| < 1, N € Q, da N von allen o € T fixiert wird. Folglich
gilt |[N| = 0 oder |N| = 1, was wegen [x(C)| = n <= |o(x(C))| = n auf die
zu beweisende Aussage hinausliuft. O

Lemma 3.4. Sei G eine endliche, nicht abelsche Gruppe. Hat G eine Konju-
giertenklasse C' mit |C| = ¢* fiir eine Primzahl ¢ und ein k > 0, so ist G nicht
einfach (d.h. G hat einen nicht-trivialen Normalteiler).

Beweis. Um zu einem Widerspruch zu gelangen, nehmen wir an, daft G doch
einfach ist. Seien p;, n;, x; und C; wie oben angegeben. O.B.d.A. sei x; die
triviale Darstellung. Da nun ¢ ein Teiler von

|G| = 1+2r:n?,
i=2

gibt es ein j > 2 mit ¢ { n;, also n; und |C|relativ koprim. Nach Lemma 3.2 gilt
fiir jedes solche j entweder x;(C) =0 oder C' C Z(x;) = {g € G| Ix;(9)| = n}.
Die zweite Moglichkeit ist allerdings ausgeschlossen: Sonst wére nach Notiz 2.2
{1} # Z(x;) < G, also wegen Einfachheit Z(x;) = G. Da ferner wegen p; # 1
ker(p;) # G, also ker(p;) = {1}, gélte dann G = Z(yx;)/ ker(p;). Letzterer
Quotient ist aber isomorph zu einer Untergruppe der |G|-ten Einheitswurzeln,
also zyklisch; somit wire G abelsch, ein Widerspruch.
Folglich gilt x; (C) = 0 fiir alle j > 2 mit ¢ { n;. Dann folgt mit (OR II)

0 = S

=Nn;

= 1+Z”ZXZ(C)+O7

qlni
also
1 n;
—=-Y — x(C)eANQ,
q q
adnism~ 4

€Z

im Widerspruch zu der Tatsache, dal A N Q. O
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Beweis des Satzes. Per Induktion iiber die Gruppenordnung geniigt es nach
Lemma 1.7, einen nichttrivialen Normalteiler von G zu finden. Da abelsche
Gruppen ohnehin auflésbar sind, diirfen wir davon ausgehen, daf G nicht abelsch
ist. Sei nun P € Syl,(G), d.h. |P| = p. Nach der Klassengleichung ist Z(P) #
{1}.Ist 1 # z € Z(P), so ist der Zentralisator Cg(z) > P, also ist [Clg(z)| =
[G : Cg(z)] eine Potenz ¢*. Der Fall k = 0 ist trivial, denn dann ist » zentral
in G, und 1 # (z) <« G wie gewiinscht; ist aber k£ > 1, so liefert Lemma 3.4 den
gesuchten nichttrivialen Normalteiler. O
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