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Introduction

The aim of this thesis is to study the Lp-theory of (formal) second order elliptic
differential operators with singular measurable coefficients. The main tool of
our study is the theory of strongly continuous semigroups (C0-semigroups) of
bounded linear operators on Banach spaces. It is well-known that, if Ap is an
operator realisation of a formal differential expression in Lp with ρ(Ap) 6= ∅, then
the abstract Cauchy problem

u′(t) + Apu(t) = 0 (t > 0), u(0) = f

has a unique solution for all f ∈ D(Ap) if and only if −Ap is the generator of a
C0-semigroup Tp on Lp. In this case, the solution u is given by u(t) = Tp(t)f .

Another motivation to study Lp-theory is that it often yields significant in-
formation for weak L2-solutions of the corresponding elliptic and parabolic equa-
tions, such as integrability or smoothness properties of eigenfunctions and solu-
tions.

We confine ourselves to the case of real-valued coefficients so that the corre-
sponding semigroups will be positive. Our main interest lies in the case of singular
coefficients where the first problem one faces is constructing a C0-semigroup on
a suitable Lp-space, associated with the differential expression.

In the case of a uniformly elliptic principal part of the differential expression,
and bounded coefficients in the lower order terms, the associated semigroup exists
in the whole Lp-scale, which follows, for instance, from classical estimates on the
fundamental solution of the corresponding parabolic equation [Aro67]. If the
coefficients of the lower order terms are allowed to have strong singularities then
a semigroup associated with the differential expression can be constructed in
Lp for p from a proper subinterval of [1,∞) only. This phenomenon was first
observed in the study of Schrödinger operators with singular negative potentials
([HeSl78], [KPS81]), later also for the operator −∆ + b · ∇ in [KoSe90].

In this thesis we study general second order elliptic expressions in divergence
form with both first and zero order perturbations, namely

L := −∇ · (a∇) + b1 · ∇+∇ · b2 + V,

on an open set Ω ⊆ RN , for a wide class of boundary conditions. Generalising
results from [BeSe90], [Lis96], we establish a precise condition controlling the
interval of those p ∈ [1,∞) for which L gives rise to a quasi-contractive C0-semi-
group Tp = (e−tAp ; t > 0) on Lp(Ω).

By the Lumer-Phillips theorem, Tp is quasi-contractive, i.e., there exists ω ∈ R
such that the operators e−ωtTp(t) are contractive, if and only if Ap is quasi-
accretive. Thus, it is very natural to expect that the condition controlling the
interval of quasi-contractivity involves only the expression 〈Lu, up−1〉 occurring in
the definition of quasi-accretivity, computed in a suitable sense (see page 59). We
have to overcome several technical problems in order to show that this natural
condition is indeed sufficient.
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In general, the set of all p ∈ [1,∞) such that L is associated with a (not neces-
sarily quasi-contractive) C0-semigroup on Lp is strictly larger. It was already ob-
served in [KPS81] that the Schrödinger semigroup with negative LN

2
,weak-potential

can be defined on Lp for p from an interval strictly larger than the interval of
quasi-contractivity. In [Sem00] this result was extended to uniformly elliptic
second order divergence type operators on RN perturbed by a form small poten-
tial. Here we show that this behaviour is typical for rather general second order
uniformly elliptic operators.

A traditional way of constructing a semigroup associated with the differential
expression L is the form method. Since L is given in divergence form, it corre-
sponds to a sesquilinear form in L2. If this form is densely defined, sectorial and
closed then it is associated with an m-sectorial operator A in L2, which in turn
generates a C0-semigroup (e−tA; t > 0) on L2 ([Kat80; Thms. VI.2.1, IX.1.24]). If∣∣∣∣e−tA�L2∩Lp

∣∣∣∣
Lp→Lp

6 Ceωt for some p ∈ [1,∞) then
(
e−tA�L2∩Lp ; t > 0

)
extends

to a semigroup on Lp. For p > 1, this semigroup is always strongly continuous,
whereas for p = 1 this is the case if, e.g., the semigroup is positive (see [Voi92]).

The above approach was used for constructing semigroups which act in Lp for
all p ∈ [1,∞) (see [Dav89; Chapter 1] and the references there), or only for p from
some subinterval of [1,∞) containing 2 (see, e.g., [BeSe90], [Lis96]). However,
we do not assume that the form corresponding to L is sectorial, not even that
it is bounded from the left, so the traditional approach is not applicable. In
the case b2 = 0, V = 0, non-sectorial forms were studied in [KoSe90], [Lis96]
by approximating the coefficient b1 in such a way that the approximating forms
became sectorial.

Here we develop a new approach to the construction of positive C0-semi-
groups associated with sesquilinear forms. It includes cases of forms that can
be associated with a C0-semigroup on L2 under assumptions when all known
representation theorems break down.

Our approach is based upon approximations by sectorial forms, however, not
related to approximations of the coefficients of the first order terms. In contrast,
we approximate the potential: we introduce a positive potential U which ‘absorbs’
all the singularities of the lower order terms of L in the sense that, being added
to the corresponding form, it makes the sum sectorial. Under certain conditions,
this gives rise to a positive C0-semigroup on Lp, as described above. Finally, mak-
ing use of the perturbation theory for positive semigroups developed in [Voi86],
[Voi88], we subtract the potential U again. It is crucial for this construction that
the resulting semigroup turns out to be independent of the particular choice of
U .

In the context of Schrödinger operators with magnetic fields, and dominated
semigroups with singular complex potentials, a similar approximation idea was
used in [PeSe81] and in [LiMa97]—however, not in order to construct semigroups
but to study properties of semigroups constructed in a different way.

The Lp-properties of the semigroups we study here include analyticity with p-
independent sector, and p-independence of the spectra of the generators. Assume
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that the differential expression L is associated with a C0-semigroup on Lp, for
p from some subinterval of [1,∞). If one of the semigroups is analytic then by
the Stein interpolation theorem one can show that, for p from the interior of
this interval, the semigroup on Lp is analytic; the resulting angle of analyticity,
however, tends to zero as p approaches the endpoints of the interval.

E. M. Ouhabaz [Ouh95] was the first to establish analyticity of angle π
2

in
Lp(R

N), p ∈ [1,∞), for symmetric semigroups satisfying Gaussian upper bounds.
E. B. Davies [Dav95a] extended this result to the more general setting of metric
spaces with polynomial volume growth. For symmetric semigroups acting on Lp
for p from a subinterval of [1,∞) only, analyticity of angle π

2
was first shown in

[Sch96], under the assumption of certain weighted estimates. Here we prove an
analogous result for general uniformly elliptic second order operators.

Concerning the problem of Lp-spectral independence, let us mention that
this is not a general property of second order elliptic operators (see, e.g.,
[HeVo86]). However, as first dicovered by R. Hempel and J. Voigt, it is generic
for Schrödinger type operators. Here we present rather general conditions on the
coefficients of second order elliptic operators under which p-independence of the
spectrum holds.

In order to treat the three problems described above, namely extension of the
semigroup to Lp, analyticity, and Lp-spectral independence, we first provide a
general setting in which these problems can be studied, and we formulate proper
sufficient conditions in terms of weighted norm estimates. Motivated by the
paper [Dav95a] mentioned above, we study semigroups on metric spaces with
exponentially bounded volume growth, not just on open subsets of RN . This
enables us to unify and generalise numerous previous results concerning the three
problems under consideration—see the discussion in Section 2.2.

As a specific application of the abstract results we obtain that the Schrödinger
semigroup on a Riemannian manifold with Ricci curvature bounded below is
analytic of angle π

2
on Lp, for p from a certain subinterval of [1,∞) (p ∈ [1,∞)

if the negative part of the potential is in the Kato class). This result seems to
be new even for positive potentials—in this case the semigroup operators act as
contractions on all Lp-spaces.

Many of the known results are proved under the assumption that the semi-
group acts on all Lp-spaces and has an integral kernel satisfying a Gaussian upper
bound. Weighted norm estimates, i.e. estimates on the norm of the semigroup
operators as operators between weighted Lp-spaces, were first used in [ScVo94]
to establish Lp-spectral independence for Schrödinger operators on RN with form
small negative part of the potential. In this case the semigroup acts on Lp(R

N)
only for p from an interval around p = 2.

The proof in [ScVo94] relied on a discrete method where RN is subdivided
into congruent cubes. It is clear that this method is essentially restricted to the
study of semigroups acting on (subsets of) RN since in the case of a general
metric space there is no natural partition into countably many subsets. Here we
present a continuous version of the technique of weighted norm estimates which
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is suitable for the general context.

The structure of the thesis is as follows. To a large extent, Chapter 1 is a
collection of known facts about C0-semigroups and their generators (Section 1.1),
sectorial forms and the associated analytic semigroups (Section 1.2), Dirichlet
forms and the associated sub-Markovian semigroups (Section 1.5), and pertur-
bation of positive semigroups by real-valued potentials (Section 1.3). In Sec-
tion 1.4, the heart of the chapter, we provide the method that, as described
above, is needed in Chapter 3 to construct semigroups on Lp associated with
(non-sectorial) forms.

Chapter 2 is devoted to the theory of weighted norm estimates for semigroups
on metric spaces with exponentially bounded volume growth. In Section 2.1 we
present our abstract results on extrapolation, analyticity and Lp-spectral inde-
pendence. In Section 2.2 we give some account to the history of these three
problems, and we relate our results to the existing literature. As an application
we study perturbation of sub-Markovian semigroups satisfying Gaussian upper
bounds (such as the diffusion semigroup on a Riemannian manifold) by potentials.
The proofs of the main theorems are given in Sections 2.3-2.5.

In Chapter 3 we apply the abstract theory of Chapter 2 to our main subject,
the Lp-theory of second order elliptic differential operators. The main results
concerning the construction of the semigroup on Lp, quasi-contractivity and an-
alyticity of the semigroups, and Lp-spectral independence of the generators are
formulated in Section 3.1 and proved in the two subsequent sections. In Sec-
tion 3.4 we study to what extent the assumptions of our theorems are necessary.
The main result in this direction is that, for a wide class of coefficients, we can
characterise the set of all p for which the differential expression L is associated
with a quasi-contractive C0-semigroup on Lp.

Acknowledgements. In the first place, I would like to express my gratitude
to my supervisor, Prof. Dr. Jürgen Voigt. He always was open for discussing
problems, and his way of approaching problems in a structured way had a great
influence on me. It was Prof. Dr. Vitali Liskevich who drew my attention to the
subjects presented in this thesis. I am grateful to him for inspiring discussions
during several visits to Bristol. I thank Amir Manavi and Zeev Sobol for many
valuable discussions and remarks. My research was partially supported by the
Deutsche Forschungsgemeinschaft. The support is gratefully acknowledged.
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Chapter 1

C0-semigroups and sesquilinear
forms

In this chapter we provide the functional analytic tools needed in the two sub-
sequent chapters. In Sections 1.1 and 1.2 we collect basic facts about C0-semi-
groups, analytic semigroups and sectorial forms, mainly in order to fix our nota-
tion but also to recall results frequently used in this thesis. In Section 1.3 we recall
J. Voigt’s perturbation theory for positive C0-semigroups. This is fundamental
for Section 1.4 where we investigate sesquilinear forms τ in L2(µ) fulfilling the first
Beurling-Deny criterion and show how to associate with τ a positive C0-semigroup
on Lp(µ). Section 1.5 deals with the theory of (non-symmetric) Dirichlet forms,
the main example being the form corresponding to a homogeneous second order
elliptic differential operator with real coefficients.

1.1 C0-semigroups

In this section we recall some basic definitions and results from the theory of C0-
semigroups, the main references being [Dav80] and [Paz83]. Let X be a Banach
space over C (throughout this thesis we assume C to be the underlying scalar
field). By L(X) we denote the space of all bounded linear operators from X to
X.

Definition 1.1. (a) A function T : [0,∞)→ L(X) is called a semigroup on X if
T (0) = I and T (s+ t) = T (s)T (t) for all s, t > 0. We say that T is exponentially
bounded if ||T (t)|| 6 Ceωt for some C > 1, ω ∈ R and all t > 0.

(b) A semigroup T is called strongly continuous or a C0-semigroup if T (t)f →
f as t→ 0 for all f ∈ X.

(c) The generator of a C0-semigroup T is the operator A in X defined by

D(A) :=
{
u ∈ X; Au := lim

t→0

1
t

(
T (t)u− u

)
exists

}
.

Every C0-semigroup is exponentially bounded. An exponentially bounded
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8 CHAPTER 1. C0-SEMIGROUPS AND SESQUILINEAR FORMS

semigroup T is strongly continuous if and only if T (t)f → f for all f from some
dense subset of X.

The generator of a C0-semigroup T is a closed densely defined operator which
determines the semigroup T uniquely. We can therefore write etA := T (t) for the
semigroup operators. From time to time we will loosely speak of a C0-semigroup
T (t) = etA in order to express that T is a C0-semigroup with generator A.

The type of a C0-semigroup T is the infimum of all ω ∈ R for which there
exists C > 1 such that ||T (t)|| 6 Ceωt for all t > 0. If ω0 ∈ [−∞,∞) is the type
and A the generator of T then

λ ∈ ρ(A), (λ− A)−1 =

∫ ∞
0

e−λtT (t) dt for all λ ∈ C with Reλ > ω0,

where the integral is a strong integral.
In the literature, a semigroup T is often denoted by

(
T (t); t > 0

)
,
(
T (t)

)
t>0

or T (·) in order to indicate that T depends on one parameter. We will mostly
use the symbol T only.

Let A be a linear operator in X. The numerical range of A is the set

Θ(A) :=
{
x′(Au); u ∈ D(A), ||u|| = 1, x′ ∈ X ′, ||x′|| = 1, x′(u) = 1

}
.

For X = Lp(µ), where (Ω, µ) is a measure space and 1 < p <∞, we obtain

Θ(A) =
{
〈Au, |u|p−1 sgnu〉; u ∈ D(A), ||u||p = 1

}
.

Here and in the sequel, 〈f, g〉 is defined as
∫

Ω
f(x) · g(x) dµ(x) whenever f · g ∈

L1(µ), for f, g: Ω→ C measurable.
The operator A is called m-accretive if Θ(A) ⊆

{
z ∈ C; Re z > 0

}
and

−1 ∈ ρ(A). It is called quasi-m-accretive if ω+A is m-accretive for some ω ∈ R.
A semigroup T is called contractive if ||T (t)|| 6 1 for all t > 0, and quasi-
contractive if ||T (t)|| 6 eωt for some ω ∈ R and all t > 0. The Lumer-Phillips
theorem states that −A generates a contractive C0-semigroup if and only if A is
m-accretive.

Let E, F be Banach spaces, and assume that there exists a Hausdorff topolog-
ical vector space G such that E ↪→ G, F ↪→ G (continuous injections) and E ∩F
is dense in both E and F . Let BE and BF be bounded operators in E and F ,
respectively. We say that BE and BF are consistent if BE�E∩F = BF �E∩F . Two
semigroups TE, TF on E, F , respectively, are called consistent if the operators
TE(t) and TF (t) are consistent for all t > 0.

Let TE be a semigroup on E, D a dense subset of E ∩ F , and assume that
TE(t)�D extends to a bounded operator TF (t) on F , for all t > 0. Then TF is a
semigroup on F , and TE and TF are consistent. In this case we will say that TE
extrapolates to the semigroup TF on F .

Later on, we will make use of the following notion.
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Definition 1.2. ([Voi86; Def. 1.5]) Let Tn (n ∈ N), T be C0-semigroups on
X. We say that Tn converges strongly to T , in symbols T = s-limTn or simply
Tn → T , if Tn(t)f → T (t)f as n → ∞, uniformly for t in bounded subsets of
[0,∞), for all f ∈ X.

Let An, A be the generators of Tn, T , respectively. Then Tn → T if and only
if An → A in the strong resolvent sense, by the Trotter-Kato-Neveu theorem.

1.2 Analytic semigroups and sectorial forms

For the theory of sectorial forms we refer to [Kat80; Chapter VI], for the con-
nection with analytic semigroups to [Kat80; Sec. IX.1]. For symmetric forms see
also [Dav80; Sec. 4.2], for analytic semigroups also [Dav80; Sec. 2.5] and [Paz83;
Sec. 2.5].

Definition 1.3. (a) For θ ∈ (0, π
2
] let

Sθ :=
{

0 6= z ∈ C; |arg z| < θ
}
.

A function T : Sθ → L(X) is called exponentially bounded if ||T (z)|| 6 CeωRe z for
some C > 1, ω ∈ R and all z ∈ Sθ.

(b) A C0-semigroup T on X is called analytic if T has an exponentially
bounded analytic extension to Sθ, for some θ ∈ (0, π

2
]. The supremum θ0 of

such θ is called the angle of analyticity of T . The extension of T to Sθ0 will again
be denoted by T .

Analytic semigroups are usually defined in a different way (see, e.g., [Dav80]),
but actually these definitions are equivalent: If a semigroup T has an analytic
extension to Sθ for some θ ∈ (0, π

2
] then T (z + w) = T (z)T (w) for all z, w ∈ Sθ,

by unique analytic continuation. If T is strongly continuous, and θ < π
2
, then the

analytic extension to Sθ is exponentially bounded if and only if limSθ3z→0 T (z)f =
f for all f ∈ X. For the “only if” part note that

{
T (t)f ; t > 0, f ∈ X

}
is dense

in X and that T is strongly continuous on t+ Sθ, for all t > 0.
A linear operator A in X is called m-sectorial (of angle θ) if Θ(A) ⊆ Sθ − ω

and −1− ω ∈ ρ(A) for some ω ∈ R, θ ∈ (0, π
2
). In particular, if A is m-sectorial

then A is quasi-m-accretive. Moreover, −A generates an analytic semigroup of
angle at least π

2
− θ, with ||e−zA|| 6 eωRe z for all z ∈ Sπ

2
−θ. However, if e−tA is an

analytic semigroup then A need not be m-sectorial (the diffusion semigroup on
L1(RN) is analytic of angle π

2
but its generator is not m-sectorial).

Let H be a Hilbert space. A C0-semigroup T on H is symmetric, i.e. all
semigroup operators T (t) are selfadjoint, if and only if the generator of T is
selfadjoint. In this case, T is in particular quasi-contractive, and analytic of
angle π

2
.

A sesquilinear form τ in H is called symmetric if τ(u, v) = τ(v, u) for all
u, v ∈ D(τ). A symmetric form τ is said to be bounded below if τ > −ω for some
ω ∈ R, i.e.,
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τ(u) := τ(u, u) > −ω||u||2
(
u ∈ D(τ)

)
.

In this case, τ(u, v) + (ω + 1)(u, v) defines a scalar product on D(τ), and τ is
called closed if D(τ) is a Hilbert space with respect to this scalar product. In the
following, if we speak of a closed symmetric form τ then this implicitly means
that τ is bounded below.

If τ is a symmetric form which is bounded below then we define τ(u) := ∞
for u ∈ H \ D(τ). With this definition, τ is closed if and only if u 7→ τ(u) is
a lower semicontinuous function from H to (−∞,∞] (see [Dav80; Thm. 4.12]).
Moreover, if we state an inequality of the type τ(u) 6 c then this implicitly
expresses that u ∈ D(τ).

Let τ be a sesquilinear form in H. We define the form τ ∗ in H by τ ∗(u, v) :=
τ(v, u) on D(τ ∗) := D(τ). Moreover,

Re τ :=
τ + τ ∗

2
and Im τ :=

τ − τ ∗

2i
,

where the sum of two forms τ1, τ2 is defined by (τ1 +τ2)(u, v) := τ1(u, v)+τ2(u, v)
on D(τ1 + τ2) := D(τ1) ∩D(τ2). Then Re τ and Im τ are symmetric forms, and
τ = Re τ + i Im τ, τ ∗ = Re τ − i Im τ . Note that (Re τ)(u) = Re(τ(u)) for all
u ∈ D(τ). (But not (Re τ)(u, v) = Re(τ(u, v)) for all u, v ∈ D(τ)!)

The numerical range of τ is the set

Θ(τ) :=
{
τ(u); u ∈ D(τ), ||u|| = 1

}
.

The form τ is symmetric if and only if Θ(τ) ⊆ R (recall K = C). Moreover,
Re τ > −ω for some ω ∈ R if and only if Θ(τ) ⊆

{
z ∈ C; Re z > −ω

}
. In this

case, τ is said to be bounded from the left.
We say that τ is sectorial if Θ(τ + ω) ⊆ Sθ for some ω ∈ R, θ ∈ (0, π

2
), or

equivalently,

|Im τ(u)| 6 tan θ(Re τ + ω)(u)
(
u ∈ D(τ)

)
.

In this case we endow D(τ) with the form norm || · ||τ defined by ||u||2τ := (Re τ +
ω+ 1)(u). It is easy to see that this definition does not depend on the particular
choice of ω, up to equivalence of norms.

We say that a sectorial form τ is closed if the symmetric form Re τ is closed. By
Kato’s first representation theorem ([Kat80; Thm. II.2.1]), every densely defined
closed sectorial form in H is associated with an m-sectorial operator A in H in
the sense that D(A) ⊆ D(τ) and

(Au, v) = τ(u, v) for all u ∈ D(A), v ∈ D(τ).

The operator A is selfadjoint if and only if τ is symmetric. We will shortly write
τ ↔ T to indicate that T is the analytic semigroup generated by −A. With this
notation, τ ∗ ↔ T ∗ :=

(
T (t)∗; t > 0

)
.
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Let τ be a closed sectorial form, A the associated m-sectorial operator in H.
By [Kat80; Cor. 2.3] the numerical range Θ(A) of A is a dense subset of the
numerical range Θ(τ) of τ . Therefore, −A generates a contractive C0-semigroup
if and only if A is m-accretive, and the latter is true if and only if Re τ > 0.

A sectorial form τ is called closable if it has a closed extension τ̃ ⊇ τ . The
smallest closed extension of τ is denoted by τ . The sum of two closable (closed)
sectorial forms is again a closable (closed) sectorial form. A subspace D ⊆ D(τ)
is called a core for τ if D is dense in D(τ) with respect to the form norm. If τ
is closable then this is equivalent to τ�D = τ , where we shortly write τ�D for the
restriction of τ to D ×D.

Let τ1, τ2 be symmetric forms. We write τ1 6 τ2 if D(τ1) ⊇ D(τ2) and
τ1(u) 6 τ2(u) for all u ∈ D(τ2). (This is consistent with the definition of τ > −ω
if −ω is interpreted as the form defined by −ω(u, v) with domain H.)

Let H = L2(µ) for some measure space (Ω, µ), and V : Ω → R measurable.
Then

∫
V uv dµ on the domain Q(V ) :=

{
u ∈ L2(µ); V |u|2 ∈ L1(µ)

}
defines a

symmetric form which we will also denote by V . The form V satisfies V > −ω
for some ω ∈ R if and only if V > −ω a.e., and V is closed in this case.

We conclude this section by a lemma which is useful for extrapolation of
analytic semigroups.

Lemma 1.4. Let (Ω, µ) be a measure space, D a subspace of L1(µ)∩L∞(µ) which
is dense in Lp(µ) for all 1 6 p <∞, and norming for L1(µ). Let 1 6 p, q <∞,
S ⊆ C open, F : S → L(Lq(µ)) an analytic function. If ||F (·)�D||p→p is locally
bounded then F (·)�D extends to an analytic function Fp: S → L(Lp).

Proof. It is clear that F (·)�D extends to a locally bounded function Fp: S →
L(Lp). The assumption implies that 〈Fp(·)f, g〉 is analytic for all f, g ∈ D. A
slight modification of [Kat80; Thm. III.3.12] shows that Fp is analytic. (For the
case p = 1 note that D is not necessarily dense in L∞(µ); it suffices that D is a
norming subspace for L1(µ).)

This result will be applied in Chapter 3 in the following situation: (Ωn) is
an increasing sequence of measurable subsets of Ω such that µ(Ωn) < ∞ and
Ω =

⋃
n Ωn (in particular, Ω is σ-finite). Then the space of all f ∈ L∞(Ω) for

which there exists n ∈ N such that f = 0 a.e. on Ω \ Ωn is a suitable choice for
D.

1.3 Perturbation of positive C0-semigroups by

real-valued potentials

In this section we give a short introduction to J. Voigt’s perturbation theory for
positive C0-semigroups developed in [Voi86], [Voi88]. We include the proofs for
two reasons: they partly simplify the original proofs, and they demonstrate how
the theory works.
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Let (Ω, µ) be a measure space, 1 6 p < ∞. A semigroup T of positive
operators on Lp(µ) is called positive, which we denote by T > 0. If T1, T2 are two
positive semigroups, then T1 6 T2 means T1(t) 6 T2(t) as positive operators for
all t > 0. If T is a C0-semigroup on Lp(µ) with generator −A, and V ∈ L∞(µ),
then TV denotes the C0-semigroup generated by −(A+V ). For the remainder of
this section let T, T1, T2 be positive C0-semigroups on Lp(µ).

The following two inequalities (see [Voi88; Prop. 1.3]) lie at the heart of Voigt’s
perturbation theory. Most of the subsequent proofs rely on these inequalities only.
Let V, V1, V2 ∈ L∞(µ) be real-valued. Then

V1 6 V2 =⇒ TV1 > TV2 > 0, (1.1)

V > 0, T1 6 T2 =⇒ 0 6 (T2)V − (T1)V 6 T2 − T1. (1.2)

The first statement and the first inequality of the second one follow from the Trot-
ter product formula, TV (t) = s-limn→∞

(
T ( t

n
)e−tV/n

)n
for all t > 0 (cf. [EnNa00;

Exercise III.5.11]). The second inequality in (1.2) is equivalent to T1 − (T1)V 6
T2 − (T2)V which in turn follows from Duhamel’s formula, T (t) − TV (t) =∫ t

0
T (t− s)V TV (s) ds, since (T1)V 6 (T2)V by the first inequality.
We are going to extend the definition of TV to unbounded real-valued poten-

tials, approximating V by V (n) := (V ∧ n) ∨ (−n) and letting

TV (t) := s-lim
n→∞

TV (n)(t) (t > 0) (1.3)

if the limits exist. Obviously, TV is a semigroup in this case, and inequalities (1.1)
and (1.2) carry over to unbounded potentials whenever the corresponding limits
exist. Moreover, if V > 0 or V 6 0 then (TV (n)) is monotone by (1.1). This leads
to the following definition.

Definition 1.5. ([Voi86; Def. 2.2], [Voi88; Def. 2.1], [Voi88; Def. 3.1]) Let
V : Ω→ [0,∞) be measurable.

(a) If V > 0 then the limit in (1.3) exists for all t > 0 by dominated con-
vergence. If TV is strongly continuous, V is called T -admissible. In this case,
TV (n) → TV .

(b) If V 6 0 then V is called T -admissible if the limit in (1.3) exists for all
t > 0 and defines a C0-semigroup. In this case, TV (n) → TV .

By monotone convergence, the limit exists if and only if supn∈N ||TV (n)(t)|| <
∞ for all t > 0. By [Voi88; Prop. 2.2], V is T -admissible if and only if
sup06t61, n∈N ||TV (n)(t)|| <∞.

(c) If V > 0 and V is T -admissible then −V is TV -admissible since TV 6
(TV )−V ∧n 6 (TV ∧n)−V ∧n = T for all n ∈ N by (1.1) and (1.2). If T = (TV )−V ,
then V is called T -regular.

In the subsequent proofs we will make use of inequalities (1.1) and (1.2)
without further notice. The crucial result concerning the notion of admissibility
is as follows.
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Proposition 1.6. ([Voi88; Thm. 2.6]) Let U, V > 0 be measurable. Assume that
−U and V are T -admissible. Then V is T−U -admissible, −U is TV -admissible,
and (TV )−U = (T−U)V = s-limn,m→∞ TV ∧n−U∧m = TV−U .

Proof. First observe that the semigroup (T−U)V is strongly continuous since TV 6
(T−U)V 6 T−U , i.e., V is T−U(·)-admissible. The fact that −U is TV (·)-admissible
will be shown simultaneously with (TV )−U = (T−U)V .

Let Un := U ∧ n, Vn := V ∧ n (n ∈ N). For m ∈ N we have

0 6 (TVn)m−Um − (TV )m−Um 6 TVn − TV → 0 (n→∞)

and hence (T−Um)Vn = (TVn)−Um → (TV )−Um (n→∞). Further,

0 6 (T−U)Vn − (T−Um)Vn 6 T−U − T−Um (n,m ∈ N),

which implies the second equality. Letting n→∞ we obtain

0 6 (T−U)V − (TV )−Um 6 T−U − T−Um ,

so that (TV )−Um → (T−U)V as m→∞. This shows that −U is TV (·)-admissible
and (TV )−U = (T−U)V . To prove the last equality it suffices to note that

TV2n−Un 6 T(V−U)(n) 6 TVn−U2n (n ∈ N)

since V2n − Un > (V − U)(n) > Vn − U2n.

Lemma 1.7. Let V > 0 be measurable, T1 6 T2.
(a) (cf. [LiMa97; Prop. 1.4(a), Prop. 1.5]) V is T1-admissible if and only if

V is T2-admissible.
(b) ([LiMa97; Cor. 1.15]) If V is T2-regular then V is T1-regular.

Proof. (a) If V is T1-admissible then (T2)V is strongly continuous since (T1)V 6
(T2)V 6 T2. If V is T2-admissible then 0 6 T1 − (T1)V 6 T2 − (T2)V implies that
T1(t)− (T1)V (t)→ 0 strongly as t→ 0, hence (T1)V is strongly continuous.

(b) V is T1-admissible by (a). With Vn := V −V ∧n we have (TV )−V ∧n = TVn
by Proposition 1.6. Therefore, 0 6 T1 − (T1)Vn 6 T2 − (T2)Vn implies that(
(T1)V

)
−V ∧n → T1 as n→∞.

The converse of (b) is not true in general, but we have the following result.

Lemma 1.8. Let U, V > 0 be measurable.
(a) ([Voi88; Prop. 3.4]) If −U is T -admissible and V is T -regular, then V is

T−U -regular.
(b) (cf. [LiMa97; Cor. 1.16]) Assume that U is T -regular. Then V is T -

regular if and only if V is TU -regular.
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Proof. (a) For m ∈ N, V is Tm−U∧m-regular by Lemma 1.7(b) and hence T−U∧m-
regular. Further,

0 6 T−U − (T−U)V−V ∧n 6
(
T−U − T−U∧m

)
+
(
T−U∧m − (T−U∧m)V−V ∧n

)
for all n,m ∈ N. The assertion follows by choosing first m and then n large
enough.

(b) follows directly from (a) and Lemma 1.7(b) since (TU)−U = T .

Another important application of Proposition 1.6 is the next result which,
roughly speaking, expresses that negative admissible potentials are always regu-
lar.

Lemma 1.9. (cf. [Voi88; Prop. 3.3(b)]) Let V > 0 be measurable. If −V is
T -admissible, then (T−V )V = T , and V is T -regular.

Proof. Since T 6 (T−V )V 6 T−V , the semigroup (T−V )V is strongly continuous,
i.e., V is T−V -admissible. Lemma 1.7(a) implies that V is T -admissible, hence
(TV )−V = (T−V )V = T by Proposition 1.6.

In the last two results of this section, let V > 0 be measurable, and Tp, Tq
consistent positive C0-semigroups on Lp(µ), Lq(µ), respectively, for some p, q ∈
[1,∞).

Lemma 1.10. ([Voi86; Prop. 3.1]) (a) (Tp)V and (Tq)V are consistent, and V
is Tp-admissible if and only if V is Tq-admissible.

(b) If −V is Tp- and Tq-admissible, then (Tp)−V and (Tq)−V are consistent.
(c) V is Tp-regular if and only if V is Tq-regular.

Proof. (a) First, observe that (Tp)V ∧n, (Tq)V ∧n are consistent (n ∈ N) by the
Trotter product formula. Therefore, (Tp)V , (Tq)V are consistent as limits of con-
sistent semigroups. By [Voi92], (Tp)V is strongly continuous if and only if (Tq)V
is strongly continuous (since (Tp)V and (Tq)V are positive semigroups).

(b) is proved in the same way as (a).
(c) follows from (a) and (b) since −V is admissible with respect to (Tp)V as

well as (Tq)V .

Corollary 1.11. Assume that −V is Tp-admissible. Then −V is Tq-admissible if

and only if (Tp)−V extrapolates to a C0-semigroup T̂q on Lq(µ), and T̂q = (Tq)−V
in this case.

Proof. If −V is Tq-admissible then the semigroups (Tp)−V and (Tq)−V are con-

sistent, by Lemma 1.10(b). This shows the “only if” part, with T̂q = (Tq)−V . To
show the other implication, assume that (Tp)−V extrapolates to a C0-semigroup

T̂q on Lq(µ). By Lemma 1.9 and Lemma 1.10(a), Tp =
(
(Tp)−V

)
V

and (T̂q)V are

consistent semigroups, i.e., (T̂q)V = Tq. This shows the Tq-admissibility of −V ,

and T̂q = (Tq)−V follows from the consistency of (Tp)−V and (Tq)−V .
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1.4 The first Beurling-Deny criterion for sesqui-

linear forms

In Section 1.2 we recalled the well-known fact that with every densely defined
closed sectorial form in a Hilbert space one can associate an analytic semigroup on
H (Kato’s first representation theorem). In this section we are going to associate
a positive C0-semigroup on Lp(µ) with a sesquilinear form in L2(µ) fulfilling the
first Beurling-Deny criterion ((Ω, µ) a measure space), even in cases when the
form is not bounded from the left. This is performed in Proposition 1.19 and
Definition 1.20 below.

The contents of the present section are partly new. This section, together
with the previous one, is fundamental for the understanding of Chapter 3.

Definition 1.12. Let τ be a sesquilinear form in L2(µ).
(a) τ is called real if Reu ∈ D(τ) for all u ∈ D(τ), and τ(u, v) ∈ R for all

real-valued u, v ∈ D(τ).
(b) τ is said to fulfil the first Beurling-Deny criterion if τ is real and u+ ∈

D(τ), τ(u+, u−) 6 0 for all real-valued u ∈ D(τ).

The following proposition, due to E.-M. Ouhabaz, shows the relevance of these
two notions.

Proposition 1.13. ([Ouh92b; Prop. 2.2 and Thm. 2.4]) Let τ be a densely de-
fined closed sectorial form in L2(µ), T the associated analytic semigroup on
L2(µ). Then T is real (i.e., all semigroup operators are real) if and only if τ
is real, and T is positive if and only if τ fulfils the first Beurling-Deny criterion.

The next lemma states that it suffices to verify the conditions of Defini-
tion 1.12 on a form core.

Lemma 1.14. Let τ be a closable sectorial form. If τ fulfils the first Beurling-
Deny criterion then so does τ .

Proof. We first show that τ is real. Without restriction Re τ > 0. Then

τ(Reu) 6 τ(Reu) + τ(Imu) = Re τ(u)
(
u ∈ D(τ)

)
since τ is real. From this we easily deduce: if u ∈ D(τ), (un) ⊆ D(τ) with
un → u in D(τ), then Reu ∈ D(τ) and Reun → Reu in D(τ). By the latter we
show that τ(u, v) ∈ R for all real-valued u, v ∈ D(τ), i.e., τ is real.

From the above it follows that the set of all real-valued elements of D(τ)
is dense in the set of all real-valued elements of D(τ). Now, for real-valued
u ∈ D(τ) we have τ(u+, u − u+) = −τ(u+, u−) > 0 and τ(u − u+, u+) =
−τ
(
(−u)+, (−u)−

)
> 0. Thus, we can apply [MaRö92; Lemma I.4.9] to con-

clude that u+ ∈ D(τ), τ(u+, u−) 6 0 for all real-valued u ∈ D(τ).
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For the remainder of this section let τ be a densely defined sesquilinear form
in L2(µ) fulfilling the first Beurling-Deny criterion. The next result characterises
admissibility of potentials via form conditions, in the case of symmetric forms.

Proposition 1.15. (cf. [Voi86; Prop. 5.7, Prop. 5.8(a)]) Let τ be symmetric
and closed, T the associated positive C0-semigroup on L2(µ), V : Ω → [0,∞)
measurable.

(a) The potential V is T -admissible if and only if τ + V is densely defined,
and τ + V ↔ TV in this case.

(b) The potential −V is T -admissible if and only if V 6 τ+ω for some ω ∈ R.
In this case, τ − V is closable and τ − V ↔ T−V .

Proof. All the assertions of the proposition, except for the closability of τ−V , are
shown in [Voi86]. There the proof is given for the case of the diffusion semigroup
on RN only, but literally the same proof carries over to the general case. The
closability of τ − V is due to A. Manavi ([Man01; Prop. 12.1.7]); we present his
argument here.

Note that T−V is a symmetric C0-semigroup. Let τ̃ be the densely defined,
closed symmetric form in L2(µ) associated with T−V . By part (a) of the propo-
sition we have τ̃ + V ↔ (T−V )V = T ↔ τ , taking into account Lemma 1.9 and
the definition of T . Hence τ̃ + V = τ . Since Q(V ) ⊇ D(τ), this implies that
τ̃ ⊇ τ − V , i.e., τ − V has a closed extension.

Proposition 1.15(a) is valid even for sectorial forms, see [Man01; Kor.
12.1.4(a)]. Part (b), however, is not valid for sectorial forms τ : the inequal-
ity V 6 Re τ + ω still implies that −V is T -admissible ([Man01; Prop. 12.1.11]),
but the converse is not true as we will see in Example 3.31 in Section 3.4.

It is clear that a sesquilinear form τ fulfils the first Beurling-Deny criterion if
and only if the same holds for τ + V , for some measurable function V : Ω → R

with Q(V ) ⊇ D(τ). Surprisingly, a similar result holds for closability. It is a
direct consequence of Proposition 1.15(b).

Corollary 1.16. (cf. [Man01; Kor. 12.1.14]) Let τ be sectorial. Then τ is clos-
able if and only if τ + V is closable for some measurable function V > 0 with
Q(V ) ⊇ D(τ).

Proof. Without restriction τ is symmetric. Let V > 0 be measurable with
Q(V ) ⊇ D(τ). If τ is closable then it is clear that τ + V is closable. If τ + V is
closable then V 6 τ + V + ω for some ω ∈ R. Proposition 1.15(b) implies that
τ + V − V is closable. Thus, τ is closable since τ ⊆ τ + V − V .

Definition 1.17. Let τ be sectorial and closable, V > 0 measurable. We say
that V is τ -regular if D(τ +V ) is a core for τ , i.e., D(τ)∩Q(V ) is dense in D(τ).

Obviously, if V is τ -regular then V is τ -regular, but the converse is not true
in general (D(τ + V ) may be {0} although V is τ -regular, see [StVo85]). The
following lemma states in particular that form regularity implies semigroup reg-
ularity.
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Lemma 1.18. Let τ be sectorial and closable, T the positive C0-semigroup as-
sociated with τ , V > 0 τ -regular. Then V is T -regular, and TV ↔ τ + V .

Proof. Note that τ + V fulfils the first Beurling-Deny criterion, by Lemma 1.14.
Let T1 be the positive C0-semigroup associated with τ + V .

SinceD(τ+V ) is a core for τ and (τ+V−V ∧n)(u)→ τ(u) for all u ∈ D(τ+V ),
we can use [Kat80; Thm. VIII.3.6] to obtain (T1)−V ∧n → T . Thus, −V is T1-
admissible, and (T1)−V = T . Lemma 1.9 implies that V is T1-regular and that
T1 = TV . The latter shows the second assertion, and V is regular with respect to
T = (T1)−V , by Lemma 1.8(a).

In [Man01; Kor. 12.1.4(b)] it is shown that form regularity and semigroup
regularity are actually equivalent, but we do not need this fact here.

Now we are ready to formulate the main result of this section which is funda-
mental for Chapter 3.

Proposition 1.19. Let U > 0 be measurable, Q(U) ⊇ D(τ), τ + U sectorial
and closable, τ + U ↔ TU,2. Let V > 0 be (τ + U)-regular, τ + V sectorial and
closable, τ + V ↔ TV,2. Let p ∈ [1,∞).

Assume that TU,2 extrapolates to a positive C0-semigroup TU,p on Lp(µ) and
that −U is TU,p-admissible. Then the same holds with V in place of U , V is
(TU,p)−U -regular, and (TU,p)−U = (TV,p)−V .

Proof. Let Tp := (TU,p)−U . It suffices to show that V is TU,p-regular and that
TV,2, (Tp)V are consistent: then V is Tp-regular by Lemma 1.8(a) and thus
(TU,p)−U =

(
(Tp)V

)
−V .

The potential U is (τ +V )-regular since Q(U) ⊇ D(τ +V ), and V is (τ +U)-
regular by the assumptions. Lemma 1.18 implies that (TV,2)U ↔ (τ + V ) + U =

(τ + U) + V ↔ (TU,2)V and that U is TV,2-regular. Therefore,

TV,2 =
(
(TV,2)U

)
−U =

(
(TU,2)V

)
−U .

Moreover, V is TU,2-regular and hence TU,p-regular by Lemma 1.10(c). Since −U
is TU,p-admissible we obtain by Proposition 1.6 that

(Tp)V =
(
(TU,p)−U

)
V

=
(
(TU,p)V

)
−U .

Now we combine the above two equalities and conclude by Lemma 1.10(a) and (b)
that TV,2 and (Tp)V are consistent.

Proposition 1.19 leads to the following definition. Recall that τ is a densely
defined sesquilinear form fulfilling the first Beurling-Deny criterion.

Definition 1.20. Let p ∈ [1,∞). We say that τ is associated with a positive
C0-semigroup Tp on Lp(µ), τ ↔ Tp on Lp(µ) for short, if the following holds:

There exists U > 0 such that Q(U) ⊇ D(τ), τ + U is sectorial and closable,
the positive C0-semigroup TU,2 on L2(µ) associated with τ + U extrapolates to a
C0-semigroup TU,p on Lp(µ), −U is TU,p-admissible, and Tp = (TU,p)−U .
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According to Proposition 1.19, the semigroup Tp is uniquely determined by
the form τ . If τ itself is sectorial and closable, we can choose U = 0. In the
context of forms fulfilling the first Beurling-Deny criterion, the above definition
is thus an extension of the corresponding definition of the analytic semigroup on
L2(µ) associated with a closed sectorial form in L2(µ).

The following result is a generalisation of Lemma 1.18.

Proposition 1.21. Let p ∈ [1,∞) and assume that τ is associated with a positive
C0-semigroup Tp on Lp(µ). Let U > 0 be measurable, Q(U) ⊇ D(τ), and τ + U
is sectorial and closable. If V > 0 is (τ + U)-regular then V is Tp-regular, and
τ + V ↔ (Tp)V .

Proof. First assume that V > U . Then τ + V is a closable sectorial form. Let
TV,2 be the C0-semigroup associated with τ + V . By Proposition 1.19 we obtain
that TV,2 extrapolates to a C0-semigroup TV,p on Lp, (TV,p)−V = Tp, and V is
Tp-regular. Lemma 1.9 implies that TV,p = (Tp)V , i.e., τ + V ↔ (Tp)V .

In the general case we apply the above argument to U + V in place of V . We
conclude that (τ + V ) + U ↔ (Tp)U+V and that U + V is Tp-regular. Thus, V is
Tp-regular, by [Voi88; Prop. 3.3(a)]. Moreover, −U is (Tp)U+V (·)-admissible and(
(Tp)U+V

)
−U = (Tp)V by [Voi88; Thm. 3.4]. Hence τ + V ↔ (Tp)V .

The next proposition deals with consistent semigroups and the adjoint semi-
group. Part (a) is similar to Corollary 1.11.

Proposition 1.22. Let p ∈ [1,∞) and assume that τ is associated with a positive
C0-semigroup Tp on Lp(µ).

(a) Let q ∈ [1,∞) and Tq a positive C0-semigroup on Lq(µ). Then τ is
associated with Tq if and only if Tp, Tq are consistent. In this case, τ is associated
with a family of consistent C0-semigroups Ts on Ls(µ), s ∈ [p ∧ q, p ∨ q].

(b) If p > 1 and T ∗p denotes the adjoint semigroup on Lp′(µ) then the form τ ∗

is associated with T ∗p .

Note that, since Tp is a real semigroup, it makes no difference whether the
adjoint semigroup is taken with respect to the bilinear or with respect to the
sesquilinear duality bracket.

Proof of Proposition 1.22. Let U > 0 be such that Q(U) ⊇ D(τ), τ + U is
sectorial and closable, the positive C0-semigroup TU,2 on L2(µ) associated with
τ + U extrapolates to a C0-semigroup TU,p on Lp(µ), −U is TU,p-admissible, and
Tp = (TU,p)−U .

(a) Assume that τ is associated with Tq. Then Proposition 1.19 implies that
TU,2 extrapolates to a positive C0-semigroup TU,q on Lq(µ), that −U is TU,q-
admissible, and Tq = (TU,q)−U . The semigroups TU,p, TU,q are consistent, so Tp,
Tq are consistent by Lemma 1.10(b).

Conversely, assume that Tp, Tq are consistent. Then (Tp)U , (Tq)U are consis-
tent by Lemma 1.10(a). From Lemma 1.9 we know that

(Tp)U =
(
(TU,p)−U

)
U

= TU,p.
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Since TU,2, TU,p are consistent, we conclude that TU,2 extrapolates to the semigroup
(Tq)U on Lq(µ). The potential U is Tp-regular by Proposition 1.19 and hence Tq-
regular by Lemma 1.10(c). Thus, −U is (Tq)U -admissible, and

(
(Tq)U

)
−U = Tq.

By Definition 1.20 this shows that τ is associated with Tq.
The last assertion now follows by Riesz-Thorin interpolation.
(b) It is easy to see that τ ∗ + U is closable, fulfils the first Beurling-Deny

criterion, and that τ ∗ + U = τ + U
∗
. Thus, τ ∗ + U is associated with the positive

C0-semigroup T ∗U,2 which in turn extrapolates to the semigroup T ∗U,p on Lp′(µ).

Moreover,
(
(T ∗U,p)−U∧n

)
n∈N is an increasing sequence of semigroups, and

(T ∗U,p)−U∧n =
(
(TU,p)−U∧n

)∗ → T ∗p weakly as n→∞

since (TU,p)−U∧n → Tp. We deduce that (T ∗U,p)−U∧n → T ∗p strongly as n → ∞.
Hence, −U is T ∗U,p-admissible and (T ∗U,p)−U = T ∗p , i.e., τ ∗ is associated with T ∗p .

The following corollary shows that, in the case of symmetric forms, Defini-
tion 1.20 does not lead to new situations in which τ can be associated with a
C0-semigroup on Lp(µ).

Corollary 1.23. Let τ be symmetric.
(a) The form τ is associated with a C0-semigroup on L2(µ) if and only if τ is

bounded below and closable.
(b) If τ is associated with a C0-semigroup on Lp(µ), for some p ∈ [1, 2), then

τ is associated with a C0-semigroup on Lq(µ) for all q ∈ [p, p′], q 6=∞.

Proof. (a) The “if” part is clear, so we prove the “only if” part. Let U > 0 be
such that Q(U) ⊇ D(τ), τ + U is sectorial and closable, and −U is admissible
with respect to the positive C0-semigroup TU,2 associated with τ + U . Then, by
Proposition 1.15(b), we have U 6 τ + U + c for some c ∈ R. This implies τ > −c
since Q(U) ⊇ D(τ). Since τ + U is closable we obtain by Corollary 1.16 that τ
is closable.

(b) This is a direct consequence of Proposition 1.22.

For the last result of this section recall that I is an ideal of a lattice X if
u ∈ I, v ∈ X, |v| 6 |u| implies v ∈ I.

Lemma 1.24. Let τ be sectorial and closable, U > 0 measurable.
(a) Let D ⊆ D(τ) be a dense ideal. Then D ∩Q(U) is dense in D(τ + U).
(b) If V > 0 is τ -regular then V is (τ + U)-regular. In particular, if U, V are

τ -regular then U + V is τ -regular.

Proof. Without restriction, τ is symmetric and τ > 0.
(a) Since τ + U fulfils the first Beurling-Deny criterion it suffices to consider

0 6 u ∈ D(τ + U). Let (un) ⊆ D such that un → u in D(τ) as n → ∞.
Let vn := (Reun)+. Then vn ∈ D, and vn → u in L2(µ). Since τ fulfils the
first Beurling-Deny criterion we have lim supn→∞ τ(vn) 6 limn→∞ τ(un) = τ(u).
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From the lower semicontinuity of τ we deduce that vn → u in D(τ) as n → ∞.
Moreover, τ((u − vn)+) 6 τ(u − vn) → 0 and thus vn ∧ u = u − (u − vn)+ → u
in D(τ) as n → ∞. Finally, vn ∧ u ∈ D ∩ Q(U), and vn ∧ u → u in Q(U) by
dominated convergence.

(b) Just apply (a) to D = D(τ + V ).

1.5 Dirichlet forms

In this section we introduce the notions of sub-Markovian semigroups and (non-
symmetric) Dirichlet forms, the main source being [MaRö92]. For this thesis, the
main example of a Dirichlet form is the form corresponding to a homogeneous
second order elliptic differential operator with real coefficients—the principal part
of the type of elliptic operators we investigate in Chapter 3. At the end of the
section we present a perturbation result for symmetric sub-Markovian semigroups
which is due to V. Liskevich and Yu. Semenov.

Let (Ω, µ) be a measure space. An operator B ∈ L(L2(µ)) is called sub-
Markovian if B is positive and L∞-contractive, i.e., ||Bf ||∞ 6 ||f ||∞ for all f ∈
L2(µ)∩L∞(µ). It is easy to see that B is sub-Markovian if and only if f 6 1 a.e.
implies that Bf 6 1 a.e. for all f ∈ L2(µ): for the “if” part note that f > 0 is
equivalent to −nf 6 1 for all n ∈ N.

A C0-semigroup T on L2(µ) is called sub-Markovian if all semigroup operators
T (t) are sub-Markovian. The next result gives a characterisation of this property
for the case that T is associated with a closed sectorial form τ > 0. We state the
result in a core version which we did not find in the literature, so we include a
proof. We write D(τ)r for the set of real-valued elements of D(τ).

Proposition 1.25. (cf. [MaRö92; Prop. I.4.3, Thm. I.4.4]) Let τ be a densely
defined closed sectorial form in L2(µ), τ > 0, and T the associated analytic
semigroup on L2(µ). Then T is sub-Markovian if and only if τ is real and

u ∧ 1 ∈ D(τ), τ(u ∧ 1, (u− 1)+) > 0 (u ∈ D) (1.4)

for some dense subset D of D(τ)r.

Proof. If T is sub-Markovian then τ is real by Proposition 1.13, and (1.4) follows
from [MaRö92; Prop. I.4.3 (ii)⇒ (i), Thm. I.4.4 (iv)⇒ (i)], for D = D(τ).

Conversely, assume that τ is real and that (1.4) holds for a dense subset D of
D(τ)r. We will show that

(u− 1)+ ∈ D(τ), τ(u, (u− 1)+) > 0 (u ∈ D(τ)r);

then it follows that T is sub-Markovian, by [MaRö92; Prop. I.4.3 (iii)⇒ (ii)]. Let
first u ∈ D. Note that u = u ∧ 1 + (u − 1)+ (this in particular implies that
(u− 1)+ ∈ D(τ) in (1.4)), hence

τ(u, (u− 1)+) = τ(u ∧ 1, (u− 1)+) + τ((u− 1)+) > τ((u− 1)+) > 0.
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From this we also obtain, by the sectoriality of τ (see [Kat80; Sec. VI.3, (1.31)]),
that there exists c > 1 such that

||(u− 1)+||2τ = τ((u− 1)+) + ||(u− 1)+||22
6 (τ + 1)(u, (u− 1)+) 6 c||u||τ ||(u− 1)+||τ .

Therefore, ||(u− 1)+||τ 6 c||u||τ for all real-valued u ∈ D.
Let now u ∈ D(τ)r. Let (un) ⊆ D such that un → u in D(τ). Then

(un − 1)+ ∈ D(τ), τ(un, (un − 1)+) > 0

for all n ∈ N. Thus, it remains to show (u − 1)+ ∈ D(τ) and (un − 1)+ →
(u − 1)+ weakly in D(τ). This in turn follows from (un − 1)+ → (u − 1)+ in
L2(µ), supn∈N ||(un − 1)+||τ 6 c supn∈N ||un||τ < ∞ and the lower semicontinuity
of Re τ .

The above proposition leads to the following definition.

Definition 1.26. A sesquilinear form τ in L2(µ) is called Dirichlet form if τ is
densely defined, real, sectorial and closed, Re τ > 0 and

u ∧ 1 ∈ D(τ), τ(u ∧ 1, (u− 1)+) > 0, τ((u− 1)+, u ∧ 1) > 0
(
u ∈ D(τ)r

)
,

or equivalently, τ and τ ∗ fulfil condition (1.4) for some dense subset D of D(τ)r.

Observe that Re τ is a Dirichlet form if τ is a Dirichlet form; but it is easy to
show that the converse is not true.

By duality and interpolation we immediately obtain the fundamental result
about Dirichlet forms.

Theorem 1.27. Let τ be a densely defined closed sectorial form in L2(µ), T the
associated analytic semigroup on L2(µ). Then τ is a Dirichlet form if and only
if T is positive and Lp-contractive for all 1 6 p 6∞.

Now we introduce our main example of a Dirichlet form which will be the
starting point in Chapter 3. Let N ∈ N, ∅ 6= Ω ⊆ RN an open set and a: Ω →
R
N ⊗ RN a measurable matrix-valued function. If a ∈ L1,loc, i.e., ajk ∈ L1,loc(Ω)

for all 1 6 j, k 6 N , then we can define a sesquilinear form τ in L2(Ω) by

τ(u, v) := 〈a∇u,∇v〉, D(τ) := C∞c (Ω).

Here, 〈f, g〉 is defined as
∫

Ω
f(x)·g(x) dx whenever f ·g ∈ L1(Ω), for f, g: Ω→ C

N

measurable.
We say that a is sectorial (with constant α > 0) if∣∣Im(aζ · ζ)

∣∣ 6 αRe(aζ · ζ) a.e. for all ζ ∈ CN ,

or equivalently, aζ ·ζ ∈ Sarctanα a.e. for all ζ ∈ CN (here, S0 := (0,∞)). Obviously,
τ is sectorial if a is sectorial. By [Vog00] the converse is also true.
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In the following we assume that a is sectorial. Define the sectorial form τN in
L2(Ω) by

τN(u, v) := 〈a∇u,∇v〉, D(τN) :=
{
u ∈ W 1

1,loc(Ω) ∩ L2(Ω); a∇u·∇u ∈ L1(Ω)
}
.

The index N indicates that the associated sectorial operator in L2(Ω) corresponds
to Neumann boundary conditions (in case τN is a densely defined closed sectorial
form).

In order to see that τN is defined on D(τN), i.e., a∇u · ∇v ∈ L1(Ω) for all

u, v ∈ D(τN), let as := a+a>

2
denote the symmetric part of a. By the sectoriality

of a we obtain that

D(τN) =
{
u ∈ W 1

1,loc(Ω) ∩ L2(Ω); as∇u · ∇u ∈ L1(Ω)
}
.

Moreover, by [Kat80; Sec. VI.3, (1.31)], there exists c > 1 such that

|aξ · η| 6 c(asξ · ξ)
1
2 (asη · η)

1
2

(
ξ, η ∈ CN

)
. (1.5)

Thus,

|a∇u · ∇v| 6 c(as∇u · ∇u)
1
2 (as∇v · ∇v)

1
2 ∈ L1(Ω)

(
u, v ∈ D(τN)

)
,

i.e., τN is defined on D(τN).

The matrix function a is called uniformly elliptic if a ∈ L∞, i.e., ajk ∈ L∞(Ω)
for all 1 6 j, k 6 N , and there exists ε > 0 such that a > ε a.e., i.e.,

aξ · ξ =
N∑

j,k=1

ajkξjξk > ε|ξ|2 a.e. for all ξ ∈ RN .

It is standard (see, e.g., [Dav89; Thm. 1.3.9]) that τN is a Dirichlet form if
a is symmetric and uniformly elliptic. But we are going to study much more
general cases. First observe that, by the chain rule (cf. [BoMu82; Thm. 4.2]),
∇(u ∧ 1) = χ[u<1]∇u and ∇(u − 1)+ = χ[u>1]∇u for all u ∈ W 1

1,loc(Ω). This

implies that u∧ 1 ∈ D(τN) and τ
(
u∧ 1, (u− 1)+

)
= τ
(
(u− 1)+, u∧ 1

)
= 0 for all

real-valued u ∈ D(τN). Moreover, it is easy to see that τN is real, and Re τN > 0
since a is sectorial. Therefore, τN is a Dirichlet form as soon as τN is densely
defined and closed. More generally, if τN is densely defined and closable then τN
is a Dirichlet form.

If a ∈ L1,loc then C∞c (Ω) ⊆ D(τN); in particular, τN is densely defined in this
case. The following result is an easy criterion guaranteeing that τN is closed.

Proposition 1.28. (cf. [RöWi85; Thm. 3.2]) Assume that a is sectorial, a.e.
invertible, and a−1 ∈ L1,loc. Then the form τN defined above is sectorial and
closed. In particular, if τN is densely defined then it is a Dirichlet form.
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In the proof of this proposition we will make use of the next lemma which
shows that the assumption a invertible, a−1 ∈ L1,loc is equivalent to as invertible,
a−1
s ∈ L1,loc. For a matrix a ∈ RN ⊗ RN we write |a| to denote the norm of the

operator a in Euclidean space RN . Observe that as > 0 if a is sectorial, so the
square root a

1/2
s of as exists and we obtain

Re(aζ · ζ) = asζ · ζ = |a1/2
s ζ|2 (ζ ∈ CN). (1.6)

Lemma 1.29. Let a ∈ RN ⊗ RN be sectorial with constant α. Then |a| 6 (α +
1)|as|, and a is invertible if and only if as is invertible. If a is invertible then a−1

is sectorial with constant α, and

as 6 a>a−1
s a 6 (1 + α2)as, (1.7)

(a−1)s 6 a−1
s 6 (1 + α2)(a−1)s.

Proof. Let ǎ := a− as denote the antisymmetric part of a. The sector condition
implies that

|ǎξ · η| 6 α|a1/2
s ξ| · |a1/2

s η|
(
ξ, η ∈ RN

)
(cf. (1.5)). From this we deduce

|ǎξ| 6 α|a1/2
s ||a1/2

s ξ| (ξ ∈ RN).

In particular, |ǎ| 6 α|a1/2
s ||a1/2

s | = α|as| and thus |a| 6 (α + 1)|as|.
In order to show the second assertion, assume that as is invertible. Then

aξ · ξ = |a1/2
s ξ|2 > 0 and hence aξ 6= 0 for all 0 6= ξ ∈ RN , i.e., a is invertible.

Conversely, if as is not invertible then there exists 0 6= ξ ∈ RN such that |a1/2
s ξ|2 =

0. By the above, |ǎξ| 6 α|a1/2
s ||a1/2

s ξ| = 0 and thus aξ = a
1/2
s (a

1/2
s ξ) + ǎξ = 0,

i.e., a is not invertible.
Let now a be invertible. Then the sector condition implies that

a−1ζ · ζ = a(a−1ζ) · (a−1ζ) ∈ Sarctanα (ζ ∈ CN),

i.e., a−1 is sectorial with constant α. Since ǎ is antisymmetric, we have

a>a−1
s a = (as + ǎ>)a−1

s (as + ǎ) = as + ǎ>+ ǎ+ ǎ>a−1
s ǎ = as + ǎ>a−1

s ǎ.

Observe that ǎ>a−1
s ǎ = (a

−1/2
s ǎ)>(a

−1/2
s ǎ) > 0. Thus, (1.7) is equivalent to

|a−1/2
s ǎξ| 6 α|a1/2

s ξ| for all ξ ∈ RN . This in turn follows from

|a−1/2
s ǎξ · η| = |ǎξ · a−1/2

s η| 6 α|a1/2
s ξ| · |η| (ξ, η ∈ RN).

The last assertion is a direct consequence of (1.7), the identity a>(a−1)sa = as,
and the following elementary observation. Let b, c ∈ RN ⊗ RN be symmetric.
Then

b 6 c if and only if a>ba 6 a>ca

since a is invertible.
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By the functional calculus one can show that for a continuous function f : R→
C the mapping B 7→ f(B), in the space of all selfadjoint operators B ∈ L(RN), is
continuous. We infer that the function x 7→ as(x)1/2 on Ω is measurable. By (1.6)
we obtain that

D(τN) =
{
u ∈ W 1

1,loc(Ω) ∩ L2(Ω); a1/2
s ∇u ∈ L2(Ω)N

}
and that the norm in D(τN) is given by ||u||2τN = ||u||22 + ||a1/2

s ∇u||22.

Proof of Proposition 1.28. First we show a
−1/2
s ∈ L2,loc. Observe that a−1

s ∈
L1,loc if and only if |a−1

s | ∈ L1,loc. Since |a−1/2
s | = |a−1

s |1/2 we obtain that a
−1/2
s ∈

L2,loc if and only if a−1
s ∈ L1,loc. The latter holds by Lemma 1.29.

We only have to show that D(τN) is complete. Let (un) be a Cauchy sequence

in D(τN). Then un → u in L2(Ω) and a
1/2
s ∇un → f in L2(Ω)N for some u ∈

L2(Ω), f ∈ L2(Ω)N . Since a
−1/2
s ∈ L2,loc we obtain ∇un → a

−1/2
s f in L1,loc(Ω)N .

This implies that u ∈ W 1
1,loc(Ω), a

1/2
s ∇u = f ∈ L2(Ω). Therefore, u ∈ D(τN) and

un → u in D(τN) as n→∞.

Let the assumptions of Proposition 1.28 hold. If a ∈ L1,loc then we can define
the form τD := τN�C∞c (Ω). The index D indicates that the associated sectorial
operator in L2(Ω) corresponds to Dirichlet boundary conditions.

Proposition 1.30. Assume that a is sectorial, a.e. invertible, and a, a−1 ∈ L1,loc.
Then W 1

∞,c(Ω) ⊆ D(τD), and τD is a Dirichlet form.

Proof. The first assertion follows from a standard convolution argument, us-
ing a ∈ L1,loc and the lower semicontinuity of Re τD (see [LiVo00; proof of
Lemma B4(i)]). By Proposition 1.28, τN is a Dirichlet form. Thus, for the
second assertion it suffices to show u∧1 ∈ D(τD) for all u ∈ C∞c (Ω). This follows
from the first assertion.

For the remainder of the section, (Ω, µ) will be a measure space. Recall that a
function ϕ: C→ C is called a normal contraction if ϕ(0) = 0 and |ϕ(x)−ϕ(y)| 6
|x− y| for all x, y ∈ C, i.e., ϕ is Lipschitz continuous with constant 1. Then we
will also say, for all measurable u: Ω → C, that the function ϕ ◦ u is a normal
contraction of u. The crucial result on normal contractions is as follows (recall
that Re τ is a symmetric Dirichlet form if τ is a Dirichlet form).

Proposition 1.31. (cf. [ReSi78; Thm. XIII.51]) Let τ be a Dirichlet form in
L2(µ). If u ∈ D(τ) and v is a normal contraction of u then v ∈ D(τ) and
Re τ(v) 6 Re τ(u).

We conclude this section by a result on perturbation of Dirichlet forms by
real-valued potentials which is essentially due to V. Liskevich and Yu. Semenov.
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Theorem 1.32. (cf. [LiSe93; Thm. 2], [LiSe96; Thm. 3.2]) Let τ be a symmetric
Dirichlet form in L2(µ), V : Ω→ R measurable. Assume that τ + V + is densely
defined, and V − 6 βτ + V + + cβ for some β < 1, cβ ∈ R. Let p± := 2

1∓
√

1−β (the

roots of the equation 4
pp′

= β).

(a) Then τ + V is a densely defined closable symmetric form, and for all p ∈
[p−, p+] the associated analytic semigroup TV,2 on L2(µ) extrapolates to a positive
C0-semigroup TV,p on Lp(µ), with ||TV,p(t)|| 6 ecβt (t > 0). For p ∈ (p−, p+), the
semigroup TV,p is analytic.

(b) For the generator −AV,p of TV,p we have〈
AV,pu, |u|p−1 sgnu

〉
>
(

4
pp′
τ + V

)
(|u| p2 sgnu)

(
u ∈ D(AV,p)

)
.

In particular, for p ∈ (p−, p+) we obtain |u| p2 sgnu ∈ D(τ) for all u ∈ D(AV,p),
and 〈

AV,pu, |u|p−1 sgnu
〉
>
(

4
pp′
− β

)
τ(|u| p2 sgnu)− cβ||u||pp.

Remarks 1.33. (a) In [LiSe93], [LiSe96], the above theorem is proved in the
more general setting of perturbation by sub-Markovian generators, not only by
potentials. But the assumption on the perturbation is slightly more restrictive,
namely (expressed for perturbation by a potential) V− 6 β(τ + V+) + cβ, with
V−, V+: Ω→ [0,∞) such that V = V+ − V−.

(b) Note that the inequality V − 6 βτ + V + + cβ obviously implies βτ +
V + cβ > 0, but the converse is not true: For example, choose V 6 0 such that
D(τ + V ) = {0}. Then trivially τ + V > 0, but V − 66 τ . Nevertheless we have
the following equivalence: V − 6 βτ +V + + cβ if and only if βτ +V + cβ > 0 and
Q(V −) ⊇ D(τ) ∩Q(V +).

(c) For p ∈ [1,∞), let Tp be the positive C0-semigroup on Lp(µ) associated
with τ . By Proposition 1.15 we have TV,2 =

(
(T2)V +

)
−V − . Thus, by Corol-

lary 1.11, part (a) of the theorem can be expressed differently: V − is (Tp)V +-
admissible for all p ∈ [p−, p+]. (But V − is not Tp-admissible in general!) By
Proposition 1.22(a) we obtain yet another reformulation of part (a): for all
p ∈ [p−, p+], the form τ + V is associated with a quasi-contractive C0-semigroup
on Lp.

(d) The following trivial example shows that the interval [p−, p+] obtained in
Theorem 1.32 is not always significant. Let U : Ω → [0,∞) be measurable and
unbounded, τ := U , V := −1

2
U . Then V − 6 βτ + c holds only if β > 1

2
. But

τ+V = 1
2
U is associated with a contractive C0-semigroup on Lp for all p ∈ [1,∞).

Nevertheless, we will show in Section 3.4 that the interval [p−, p+] is sharp if
τ is the form corresponding to a second order elliptic differential operator: let
Ω ⊆ RN be open, a: Ω→ R

N ⊗RN measurable and symmetric, a > 0 a.e. in the
matrix sense, a, a−1 ∈ L1,loc. Let τN be the symmetric Dirichlet form given by
Proposition 1.28, and τ ⊆ τN a Dirichlet form. In Theorem 3.22 we will show
that τ + V is associated with a quasi-contractive C0-semigroup on Lp if and only
if V − 6 4

pp′
τ+V + +c for some c ∈ R. For a particular example see Example 3.27.
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(e) In Section 2.2 we will show that, under some additional conditions on
the measure space and the semigroup, the Lp-scale [p−, p+] of existence of the
semigroup can be extended, but in general without quasi-contractivity outside
[p−, p+]. The proof of this extension result (Theorem 2.10) will reveal the rele-
vance of Theorem 1.32(b).

The proof of Theorem 1.32 relies on [LiSe96; Thm. 2.1] and the following
auxiliary result which is an Lp-version of Proposition 1.15. Here we use the
notation vp(u) := |u| p2 sgnu and wp(u) := |u|p−1 sgnu for u: Ω→ C, 1 < p <∞.

Notice that u · wp(u) = vp(u) · vp(u) = |u|p.

Lemma 1.34. Let 1 < p <∞, T (t) = e−tA a positive contractive C0-semigroup
on Lp(µ), and h a closed symmetric form in L2(µ). Assume that〈

Au,wp(u)
〉
> h(vp(u))

(
u ∈ D(A)

)
.

Let V : Ω → R be measurable, with T -admissible V +, and V − 6 h + V +. Then
−V − is TV +-admissible, e−tAV := (TV +)−V −(t) is contractive, and〈

AV u,wp(u)
〉
> h + V (vp(u))

(
u ∈ D(AV )

)
. (1.8)

Proof. Notice that h + V is closable by Proposition 1.15. It suffices to study the
cases V > 0, V 6 0. Let first V > 0. Then we only have to show (1.8).

Let u ∈ D(AV ). Without restriction assume that 0 ∈ ρ(A + V ∧ n) for all
n ∈ N. Then un := (A + V ∧ n)−1AV u→ u in Lp and hence wp(un)→ wp(u) in
Lp′ as n→∞. Therefore,

(h + V ∧ n)(vp(un)) 6
〈
(A+ V ∧ n)un, wp(un)

〉
→
〈
AV u,wp(u)

〉
(n→∞).

Without restriction vp(un) → vp(u) a.e. and in L2. By Fatou’s lemma and the
lower semicontinuity of h we infer that V |vp(u)|2 = limn→∞ |vp(un)|2 ∈ L1(µ),
vp(u) ∈ D(h) and

(h + V )(vp(u)) 6
〈
AV u,wp(u)

〉
.

Now we study the case V 6 0. Recall that V (n) = V ∨ (−n). The assumption
V − 6 h implies that〈

(A+ V (n))u,wp(u)
〉
> (h + V (n))(vp(u)) > 0

(
u ∈ D(A), n ∈ N

)
.

Thus, by the Lumer-Phillips theorem, TV (n) is a contractive semigroup for all
n ∈ N. By [Voi88; Prop. 2.2] we infer that V is T -admissible. To show (1.8), let
u ∈ D(AV ) and assume without restriction that 0 ∈ ρ(A + V (n)) for all n ∈ N.
Then we have un := (A+V (n))−1AV u→ u in Lp as n→∞. Note that un ∈ D(A)
implies that vp(un) ∈ D(h) ⊆ D(h + V ). Therefore,

h + V (vp(un)) 6 (h + V (n))(vp(un))

6
〈
(A+ V (n))un, wp(un)

〉
→
〈
AV u,wp(u)

〉
(n→∞),

and the lower semicontinuity of h + V implies (1.8).
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Proof of Theorem 1.32. Without restriction assume that cβ = 0 (cf. Re-
mark 1.33(b)). By Proposition 1.15, the symmetric form 4

pp′
τ + V is closable

if 4
pp′
> β, i.e. p ∈ [p−, p+]. In particular, τ + V is closable.

Let p ∈ [p−, p+], Tp(t) = e−tAp the positive C0-semigroup on Lp(µ) associated
with τ . By [LiSe96; Thm. 2.1] we have〈

Apu,wp(u)
〉
>

4

pp′
τ(vp(u))

(
u ∈ D(Ap)

)
.

(In [LiSe96], this inequality was shown for σ-finite measures µ only, for the general
case one should argue as in [NaVo96].) Now Lemma 1.34 implies that −V − is
(Tp)V +-admissible, that TV,p is contractive and that (b) holds. The analyticity of
TV,p for p ∈ (p−, p+) follows from the analyticity of TV,2 and Stein interpolation.



Chapter 2

Extrapolation, Analyticity, and
Lp-spectral independence

Given a measure space (M,µ) and a C0-semigroup Tq on Lq(Ω) for some mea-
surable subset Ω ⊆ M , q ∈ [1,∞), we are going to investigate the following
two problems: under which conditions does the semigroup Tq extrapolate to a
consistent family of C0-semigroups Tp on Lp(Ω) with p-independent angle of an-
alyticity, for p from some interval in [1,∞) containing q? Secondly, assuming
Tq does extrapolate to consistent C0-semigroups Tp on Lp(Ω) for p from some
interval, when is the spectrum of the semigroup generators p-independent? The
conditions on both the space M and the semigroup Tq will be formulated in terms
of a measurable semi-metric on M .

The chapter is organised as follows. In Section 2.1 we introduce the framework
and formulate our main results. In Section 2.2 we give some account to the
history of the problems of Lp-spectral independence and analyticity of semigroups
and relate our results to the existing literature. As an application we continue
the study of perturbation of sub-Markovian semigroups by potentials. For our
main application, the Lp-theory of second order elliptic differential operators, see
Chapter 3.

In Section 2.3 we develop the technique of weighted estimates which consti-
tutes a major tool in the proofs of our results. We reformulate and prove the
result on extrapolation and analyticity in a more general form in Section 2.4.
In Section 2.5 we prove the theorem on Lp-spectral independence for semigroup
generators by reducing it to a theorem on Lp-spectral independence for bounded
operators.

2.1 Framework and main results

Throughout this chapter let 1 6 p0 < q0 6 ∞ be fixed, and (M,µ) a σ-finite
measure space with µ(M) > 0. Let d a measurable semi-metric on M , i.e.,
d: M ×M → [0,∞) is measurable. Then d(x, ·) is measurable for all x ∈ M

28



2.1. FRAMEWORK AND MAIN RESULTS 29

since the function y 7→ (x, y) is measurable. The open ball with respect to d with
centre x and radius r will be denoted by B(x, r). We assume µ(B(x, r)) <∞ for
all x ∈ M , r > 0. In the case (p0, q0) 6= (1,∞) let vr(x) := µ(B(x, r)) (x ∈ M ,
r > 0), whereas in the case (p0, q0) = (1,∞) we only assume vr: M → [0,∞) to
be measurable functions satisfying µ(B(x, r)) 6 vr(x) for all x ∈M , r > 0 and

vr 6 vR on M (R > r > 0), vr(x) 6 vr+d(x,y)(y) (x, y ∈M, r > 0). (2.1)

Note that (2.1) is automatically fulfilled if vr(x) = µ(B(x, r)) since B(x, r) ⊆
B(y, r + d(x, y)).

Fix a measurable subset Ω ⊆M . We tacitly assume that functions defined on
Ω are extended by 0 outside Ω when considered as functions on M . In the follow-
ing we consider semigroups on Lp(Ω), 1 6 p < ∞. The reason for introducing
the space M is that the functions µ(B(·, r)) on M can behave much better than
the functions µ(B(·, r) ∩ Ω) on Ω. An important example for this situation is
M = RN and an open subset Ω ⊆ RN .

For the problem of extrapolation and analyticity we will need two volume
growth conditions,

vr 6 c0e
c1rv1 on M (r > 1), (2.2)

v2r 6 c0vr on M (0 < r 6 1
2
), (2.3)

for some c0 > 1, c1 > 0. Condition (2.2) means that the volume of balls grows at
most exponentially, condition (2.3) is the doubling property for small balls. The
latter is known to be equivalent to

vR 6 c2

(
R
r

)N
vr (0 < r < R 6 1) (2.4)

for some N > 0. (In ‘(2.3) =⇒ (2.4)’ one obtains c2 = c0, N = log2 c0.)
In the case M = RN , d the supremum metric (this will turn out to be conve-

nient) and µ the Lebesgue measure, conditions (2.2) and (2.3) are trivially fulfilled
with vr(x) = µ(B(x, r)) = (2r)N . If M is a complete Riemannian manifold with
Ricci curvature bounded below, d the Riemannian distance and µ the Riemannian
volume, then (2.2) and (2.4) hold for vr(x) = µ(B(x, r)) and N the dimension
of M , by Bishop’s comparison principle (see, e.g., [GHL90; Thm. 4.19]). In the
latter case, vr is a function heavily depending on the space variable: in contrast
to the flat space case it is not bounded below in general.

In order to formulate our main results we need the following notation. By
means of the semi-metric d, we define weight functions ργ,y on M ,

ργ,y(x) := e−γd(x,y) (x, y ∈M, γ ∈ R).

Let B be a linear operator in L1(M) + L∞(M), and 1 6 p 6 q 6∞. We denote
the norm of B as an operator from Lp to Lq by

||B||p→q := sup
{
||Bf ||q; f ∈ Lp(M) ∩D(B), ||f ||p 6 1

}
∈ [0,∞],



30 CHAPTER 2. ANALYTICITY AND LP -SPECTRAL INDEPENDENCE

and for γ ∈ R we define the weighted operator norm

||B||p→q,γ := sup
y∈M
||ργ,yBρ−1

γ,y�{f∈Lp(M); ρ−1
γ,yf∈D(B)}||p→q

= inf
{
c > 0; ∀ f ∈ D(B), y ∈M : ||ργ,yBf ||q 6 c||ργ,yf ||p

}
∈ [0,∞].

We will call an estimate of the type ||B||p→q,γ < ∞ a weighted p→q-estimate or
weighted norm estimate.

Theorem 2.1. Assume that (M,d) is separable and that (2.2) and (2.3) hold.
Let p0 6 s 6 q0 and Ts a C0-semigroup on Ls(Ω). Assume that there exist m > 1,
t0 > 0 and α0, β0 > 0 with α0 + β0 = p−1

0 − q−1
0 such that

sup
0<t6t0

||vα0

t1/m
Ts(t)v

β0

t1/m
||p0→q0,t−1/m <∞. (2.5)

Then Ts extrapolates to a consistent family of C0-semigroups Tp on Lp(Ω), p ∈
[p0, q0] \ {∞}, with angle of analyticity not depending on p.

Moreover, there exist C > 0, ω ∈ R, ν > 0 such that

||vαt1/mTs(t)v
β

t1/m
||p→q,γ 6 Ceωt+νγ

mt (t > 0, γ > 0) (2.6)

for all p0 6 p 6 q 6 q0, α, β > 0 with α + β = p−1 − q−1.

By the phrase ‘angle of analyticity not depending on p’ we mean the following.
If one of the semigroups Tp is analytic of angle θ, then all of them are analytic of
angle θ; if one of the semigroups is not analytic, then none of them is analytic.
We point out that the above theorem contributes to the solution of two prob-
lems, extrapolation as well as analyticity of semigroups. So to say, it deals with
extension of the Lp-scale as well as extension of the time scale.

For the case of Euclidean space RN we immediately obtain, recalling vr =
(2r)N :

Corollary 2.2. Let Ω ⊆ RN be measurable, p0 6 s 6 q0 and Ts a C0-semigroup
on Ls(Ω). Assume that there exist m > 11, t0, C > 0 such that

||Ts(t)||p0→q0,t−1/m 6 Ct
−N
m

( 1
p0
− 1
q0

)
(0 < t 6 t0).

Then Ts extrapolates to a consistent family of C0-semigroups Tp on Lp(Ω), p ∈
[p0, q0] \ {∞}, with angle of analyticity not depending on p.

Remarks 2.3. (a) The set of estimates in (2.6) can be considered as a generalised
Gaussian upper bound (cf. [Sch96; p. 44]). Notice that (2.6) trivially implies (2.5).

In the case (p0, q0) = (1,∞), estimate (2.6) with p = 1, q =∞, α = β = 1
2

is
equivalent to the following Gaussian upper bound of order m on the semigroup
kernel:

|kt(x, y)| 6 C
(
vt1/m(x)vt1/m(y)

)− 1
2 exp

(
ωt− c(d(x,y)m

t
)

1
m−1
)

(t > 0, x, y ∈ Ω).
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The equivalence will be shown by Davies’ trick, see Proposition 2.7 below. P. Lie
and S. T. Yau [LiYa86] proved that a Gaussian upper bound of order m = 2 holds
for the heat semigroup on Riemannian manifolds with Ricci curvature bounded
below.

(b) The measure µ is assumed to be σ-finite since this is a necessary condition
for the property that all balls B(x, r) have finite volume: for fixed x0 ∈ M we
have M =

⋃
n∈NB(x0, n).

(c) Observe that (2.2) and (2.3) imply that vr > 0 for all r > 0: recall
that µ(M) > 0. Thus, for all x ∈ M there exists R > 0 such that vR(x) >
µ(B(x,R)) > 0. By (2.2) and (2.3) we obtain vr(x) > 0 for all r > 0. In the case
(p0, q0) 6= (1,∞) we thus have µ(B(x, r)) > 0 for all x ∈M , r > 0.

(d) In Lemma 2.17 below we will show the following. (M,d) is separable
as soon as 0 < µ(B(x, r)) < ∞ for all x ∈ M , r > 0. In particular, (M,d)
is separable if (2.2) and (2.3) hold for vr(x) = µ(B(x, r)). Conversely, if M is
separable then µ(B(x, r)) > 0 for all r > 0 and almost all x ∈M . After removing
a null set we can (and do) therefore assume µ(B(x, r)) > 0 for all x ∈M , r > 0
also in the case (p0, q0) = (1,∞).

For the second result which deals with Lp-spectral independence, the expo-
nential volume growth condition (2.2) is too weak. In fact, it is known that in the
case of exponential volume growth the Lp-spectrum of the semigroup generators
typically does depend on p (see, e.g., [Stu93; Prop. 2(b)]). Instead, we need the
following subexponential volume growth condition

∀ ε > 0∃ cε > 0∀ r > 1 : vr 6 cεe
εrv1, (2.7)

as in [Stu93; p. 443]. We further assume

µ(B(x, 1)) > 0 (x ∈M). (2.8)

Observe that, if (2.7) holds then the latter condition is automatically fulfilled in
the case (p0, q0) 6= (1,∞) (cf. Remark 2.3(c)). Moreover, if (M,d) is separable
then (2.8) holds (without restriction, cf. Remark 2.3(d)). Recall that vr(x) =
µ(B(x, r)) in the case (p0, q0) 6= (1,∞), whereas µ(B(x, r)) 6 vr(x) in the case
(p0, q0) = (1,∞), for all x ∈M , r > 0.

Theorem 2.4. Assume that (2.7) and (2.8) hold. Let Tp(t) = e−tAp be consistent
C0-semigroups on Lp(Ω), p ∈ [p0, q0]\{∞}. Assume that there exist C,K, t0, γ0 >
0 and α, β > 0 with α + β = p−1

0 − q−1
0 such that

||vα1 Tp0(t)vβ1 ||p0→q0,γ0 6 Ct−K (0 < t 6 t0). (2.9)

Then the spectrum σ(Ap) does not depend on p ∈ [p0, q0]\{∞}, and the operators
Ap have consistent resolvents.



32 CHAPTER 2. ANALYTICITY AND LP -SPECTRAL INDEPENDENCE

Corollary 2.5. Let Ω ⊆ RN be measurable, Tp(t) = e−tAp consistent C0-semi-
groups on Lp(Ω), p ∈ [p0, q0]\{∞}. Assume that there exist C,K, t0, γ0 > 0 such
that

||Tp0(t)||p0→q0,γ0 6 Ct−K (0 < t 6 t0).

Then the spectrum σ(Ap) does not depend on p ∈ [p0, q0]\{∞}, and the operators
Ap have consistent resolvents.

Remark 2.6. Condition (2.9) is in particular fulfilled if the doubling prop-
erty (2.3) holds and there exists m > 1 such that

sup
0<t6t0

||vαt1/mTp0(t)vβ
t1/m
||p0→q0,γ0 <∞.

In this case, we can choose K = N
m

( 1
p0
− 1

q0
) in (2.9), with N from (2.4). Thus,

if (2.3) holds then we have the following relation between the assumptions of
Theorems 2.1 and 2.4: The volume growth assumption (2.7) for large balls is
more restrictive than (2.2) in Theorem 2.1, whereas assumption (2.9) on the
semigroup is less restrictive than (2.5) in Theorem 2.1:

In estimate (2.9) the size of the exponent−K of t does not matter. In contrast,
it is important that the number N occurring in the corresponding estimate in
Corollary 2.2 is the dimension of the underlying space RN . Moreover, in (2.9)
the weighted estimate is only needed for a fixed γ0 whereas in (2.5) it is crucial

that γ(t) = t−
1
m tends to ∞ in the right way as t→ 0.

2.2 Comments and Examples

The problem of Lp-spectral independence for generators of consistent C0-semi-
groups has a long history going back to B. Simon [Sim82] where the question was
posed for Schrödinger operators. The main breakthrough was made by R. Hempel
and J. Voigt [HeVo86] who answered the question in the affirmative for the case
that the negative part of the potential is from the Kato class. This result was a
starting point for many extensions in different directions.

The three crucial properties of Schrödinger semigroups used in the proof in
[HeVo86] are the following. The underlying space is Euclidean space, the semi-
group has an integral kernel satisfying a Gaussian upper bound (in particular, the
semigroup acts on the whole Lp-scale), and the semigroup on L2 is symmetric.
W. Arendt proved in [Are94] an abstract result saying that these three conditions
are already enough to ensure Lp-spectral independence.

In the subsequent investigations, different results were proved assuming only
two of the conditions (possibly replacing the third one by another condition).
K.-Th. Sturm showed that the method of [HeVo86] can be adapted to the setting
of Riemannian manifolds. In [Stu93] he proved Lp-spectral independence for
uniformly elliptic second order operators on Riemannian manifolds with Ricci
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curvature bounded below, assuming a volume growth condition slightly weaker
than (2.7). In the setting of metric spaces with polynomially bounded volume,
an abstract approach was developed by E. B. Davies in [Dav95a].

G. Schreieck and J. Voigt were the first to investigate the problem for semi-
groups not acting on the whole Lp-scale. In [ScVo94] they established Lp-spectral
independence for Schrödinger operators on RN with form small negative part of
the potential. In this case we have consistent C0-semigroups on Lp(R

N) only for
p from an interval around p = 2 (see Theorem 1.32). As a result, the semigroup
has no integral kernel enjoying a pointwise Gaussian upper bound. The ideas
from [ScVo94] were put in a more general context in [Sch96]. A similar method
was used in [Dav95b] to show Lp-spectral independence for higher order elliptic
operators with bounded measurable coefficients. Further progress was made by
Yu. Semenov [Sem97] who studied selfadjoint second order elliptic operators with
unbounded coefficients in the principal part, adapting the method from [ScVo94].

In [HiSc99], again in the context of pointwise Gaussian upper bounds, the
symmetry assumption on the semigroup was replaced by certain commutator
estimates. P. C. Kunstmann showed in [Kun99] that the symmetry assumption
can actually be dropped. Further generalisations combining the above ones can
be found in [Kun00], [LiVo00] and [KuVo00]. Most of all these extensions of the
result in [HeVo86] are unified in Theorem 2.4.

Most of the known results concerning the problem of analyticity are about
semigroups acting on the whole Lp-scale. Then the question of analyticity in L1

is of particular interest since for 1 < p < ∞, analyticity can be shown by Stein
interpolation (but with angle depending on p). In general, L1-analyticity does
not hold, even if the semigroup on L2 is symmetric and sub-Markovian (see, e.g.,
[Dav89; Thm. 4.3.6], [Voi96]). Starting from [Ama83], there are several specific
results on certain classes of elliptic operators on domains of RN stating that the
semigroup on L1 is analytic, but not giving the optimal angle ([Kat86], [CaVe88],
[ArBa93], only to mention a few).

E.-M. Ouhabaz was the first to establish analyticity of angle π
2

in L1(RN). In
his thesis ([Ouh92a]) he observed that a Gaussian upper bound on the semigroup
kernel for complex times proved in [Dav89; Thm. 3.4.8] can be used to show the
following. If T2 is a symmetric sub-Markovian semigroup on L2(RN) satisfying
a Gaussian upper bound then the corresponding consistent C0-semigroups Tp on
Lp(R

N) are analytic of angle π
2
, for all p ∈ [1,∞). See [Ouh95] for a more general

version not assuming the semigroup to be sub-Markovian.
Ouhabaz’ result was generalised in [Dav95a] from Euclidean space to metric

spaces with polynomially bounded volume. Again in the context of Euclidean
space, the symmetry assumption was dropped in [Hie96], with a result stating
p-independence of the angle of analyticity. For a comprehensive discussion of the
case (p0, q0) = (1,∞) see [Are97].

Concerning the case (p0, q0) 6= (1,∞) there are few results so far, and they are
restricted to Euclidean space. E. B. Davies proved the following in [Dav95b]. If H
is a selfadjoint superelliptic operator on RN of order 2m < N , with bounded mea-
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surable coefficients, then e−tH extrapolates to an analytic semigroup on Lp(R
N)

of angle π
2
, for all p ∈ [ 2N

N+2m
, 2N
N−2m

]. Analyticity of angle π
2

(but not extrapola-
tion) was also shown in [Sch96; Sec. 3.3] in a more general setting assuming a
generalised Gaussian upper bound similar to (2.6). On the other hand, extrapo-
lation was studied in [Sem00] for generalised Schrödinger semigroups with form
small negative part of the potential, but without showing analyticity of angle π

2
.

We will show that the results on Lp-spectral independence and analyticity
discussed above are covered by Theorems 2.1 and 2.4 (and Theorem 2.26 in Sec-
tion 2.5 below), except for the following. In [Stu93] a slightly weaker assumption
than the subexponential volume growth condition (2.7) was used, but the proof
heavily depends on the symmetry of the semigroup in L2 and existence on the
whole Lp-scale. In [Kun00], [KuVo00] there are more sophisticated results con-
cerning Lp-spectral independence in the case (p0, q0) = (1,∞).

For the case (p0, q0) = (1,∞) it is important to observe that the set of esti-
mates in (2.6) in Theorem 2.1 is equivalent to a Gaussian upper bound of order
m.

Proposition 2.7. Assume that (M,d) is separable. Let T2 be a C0-semigroup on
L2(Ω). Then the estimates in (2.6) hold with α = β = 1

2
, p = 1, q = ∞ if and

only if the semigroup operators T2(t) have integral kernels kt satisfying

|kt| 6 C
(
vt1/m ⊗ vt1/m

)− 1
2 exp

(
ωt− cm(d

m

νt
)

1
m−1
)

(t > 0), (2.10)

with cm = (m− 1)m−
m
m−1 .

Proof. Let D ⊆ M be countable and dense, t > 0. By the Dunford-Pettis
theorem, (2.6) holds if and only if T2(t) has an integral kernel kt satisfying

|kt(x, y)| 6 inf
w∈D

Cργ,w(x)−1vt1/m(x)−
1
2vt1/m(y)−

1
2ργ,w(y)eωt+νγ

mt

= C
(
vt1/m(x)vt1/m(y)

)− 1
2 eωt+νγ

mt−γd(x,y)

for almost all x, y ∈ Ω and all rational γ > 0. We now optimise with respect to

γ (Davies’ trick): setting γ =
(
d(x,y)
mγt

) 1
m−1 yields the desired conclusion.

Gaussian upper bounds are known to hold for wide classes of uniformly elliptic
operators, e.g. for

(a) second order uniformly elliptic operators in divergence form on RN

with real coefficients [Aro67],

with complex coefficients in dimensions 1 and 2 [AMT98],

with uniformly continuous complex coefficients in higher dimensions [Aus96];

(b) superelliptic operators of order 2m in dimensions N < 2m [Dav95b];

(c) second order uniformly elliptic operators in divergence form on Riemannian
manifolds with Ricci curvature bounded below [Sal92].
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For more detailed discussions of examples for which Gaussian upper bounds are
valid, we refer to [HiSc99], [Kun99].

Until recently, all results concerning the case (p0, q0) 6= (1,∞) were restricted
to M = R

N , µ = λN the Lebesgue measure. The proofs relied on the ‘box
method’ where RN is subdivided into congruent cubes Qj and one works in spaces
lr(Lp(Qj)). In contrast, our proofs of Theorems 2.1 and 2.4 do not use the box
method but rely on Lemma 2.19 as a substitute. Indeed, working in a general
measure space which carries a semi-metric it is not clear what one should use
instead of the partition into cubes of equal size.

The weight functions ργ,y were not used in the context of weighted norm
estimates until [KuVo00]. In [ScVo94] the functions ρξ defined by ρξ(x) := eξx

(x, ξ ∈ RN) were used to prove Lp-spectral independence, in [Sch96] also to prove
analyticity of angle π

2
. It was set forth in [Dav95b] that (approximations of)

these weight functions ρξ are suitable for studying all three problems of interest
in the present chapter: extrapolation, analyticity and Lp-spectral independence.
For the technique of weighted estimates, which we develop in the next section,
the crucial advantage of the weights ργ,y = e−γ|·−y|∞ is that they are integrable
for γ > 0 whereas the weights ρξ grow exponentially in direction ξ.

In [Sem97] and later in [LiVo00], the weights had the more general form
ρξ = eξψ, with an L1-regular function ψ: RN → R

N , i.e., ψ is Lipschitz continuous
and

sup
k∈ZN

∑
j∈ZN

e−|ψ(k)−ψ(j)| <∞. (2.11)

With these weight functions at hand, it was possible to study elliptic operators
with singular coefficients not only in the lower order terms but also in the principal
part. Note that ψ(x) = x is L1-regular. We will see that the more general weights
are suitable for the problem of Lp-spectral independence only.

Before [KuVo00], all results concerning the case (p0, q0) 6= (1,∞) involved
weighted operator norms of the type sup|ξ|=γ ||ρξBρ−1

ξ ||p→q instead of the weighted
norm ||B||p→q,γ defined via ργ,y. We point out that in the case of higher order
elliptic operators on RN (see [Dav95b]), it is hard to estimate ||B||p→q,γ directly
since the functions ργ,y have only one bounded weak derivative. Nevertheless we
have the following result.

Proposition 2.8. Let ψ: RN → R
N be Lipschitz continuous, Ω ⊆ R

N open,
B: L∞,c(Ω) → L1,loc(Ω) a linear operator, γ > 0, 1 6 p < q 6 ∞. Define
a semi-metric d on RN by d(x, y) := |ψ(x) − ψ(y)|∞, and let || · ||p→q,γ be the
corresponding weighted operator norm. Then

||B||p→q,γ 6 2N sup
|ξ|=γ
||eξψBe−ξψ||p→q.

Proof. Let E :=
{
±γej; j = 1, . . . , N

}
where ej are the standard unit vectors of

R
N . Fix y ∈ RN , and for ξ ∈ E let ρξ := eξ(ψ−ψ(y)). Then

ρ−1
γ,y = eγ|ψ−ψ(y)|∞ = max

ξ∈E
ρ−1
ξ .
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We will make use of the fact that B has a dual operator B′: L∞,c(Ω)→ L1,loc(Ω)
and that ||B′||q′→p′ = ||B||p→q (see [KuVo00; Lemma 10]). For f ∈ L∞,c(Ω) we
obtain

||ρ−1
γ,yB

′ργ,yf ||p′ 6
∑
ξ∈E

||ρ−1
ξ B′ρξρ

−1
ξ ργ,yf ||p′ 6

∑
ξ∈E

||ρ−1
ξ B′ρξ||q′→p′||ρ−1

ξ ργ,yf ||q′ .

Note that ρ−1
ξ ργ,y 6 1. By duality and the definition of ρξ we conclude that

||ργ,yBρ−1
γ,y||p→q = ||ρ−1

γ,yB
′ργ,y||q′→p′ 6

∑
ξ∈E

||ρ−1
ξ B′ρξ||q′→p′ 6 2N max

ξ∈E
||eξψBe−ξψ||p→q

which completes the proof.

Let us now first consider the case ψ(x) = x. Then the semi-metric d defined
above is just the supremum metric, and we have λN(B(x, r)) = (2r)N for all x ∈
R
N , r > 0. Hence, the volume growth conditions of both Corollaries 2.2 and 2.5

are satisfied. Moreover, we can use Proposition 2.8 to estimate ||T (t)||p→q,γ.
A typical example for an L1-regular function on R1 is as follows. Define ψ

on R by ψ(2n + x) = 2n + 2x+ for all n ∈ Z, |x| 6 1. Then ψ�[2n−1,2n] = 2n

for all n ∈ Z and hence λN(B(x, r)) > 1 if (x − r
2
, x + r

2
) ∩ [2n − 1, 2n] 6= ∅ for

some n ∈ Z. From this we easily see that the doubling property (2.3) does not
hold, i.e., the conditions of Theorem 2.1 are not fulfilled. But we show that the
conditions of Theorem 2.4 do hold for L1-regular ψ:

First observe the following. If ψ is Lipschitz continuous then there exists
L > 0 such that d(x, y) 6 L|x − y|∞ for all x, y ∈ RN . This implies that

B(x, 1) ⊇ x + [− 1
L
, 1
L

]N . Hence λN(B(x, 1)) >
(

2
L

)N
for all x ∈ RN , i.e., (2.8)

holds. Now, (i) =⇒ (ii) of the following lemma shows that (2.7) holds for L1-
regular ψ and, by Proposition 2.8, that

||vα1Bv
β
1 ||p→q,γ 6

(
c · 2N

)α+β · 2N sup
|ξ|=γ
||eξψBe−ξψ||p→q.

Lemma 2.9. (cf. [KuVo00; Lemma 6]) Let ψ: RN → R
N be Lipschitz continu-

ous. Define the semi-metric d on RN as in Proposition 2.8. Then the following
are equivalent:

(i) ψ is L1-regular,

(ii) there exists c > 0 such that λN(B(x, r)) 6 c(1 + r)N for all r > 0,

(iii) there exists c > 0 such that λN(B(x, r)) 6 cer/2 for all r > 0.

Proof. As above, let L > 0 such that d(x, y) 6 L|x − y|∞ for all x, y ∈ RN . For
j ∈ ZN let Qj := j + [−1

2
, 1

2
]N .

(i)⇒(ii) (cf. [LiVo00; Appendix A]). Let r > 0 and let n ∈ N with n − 1 <
r 6 n. Then

B(x, r) =
{
y ∈ RN ; ψ(y) ∈ ψ(x) + (−r, r)N

}
⊆
⋃{

ψ−1(ψ(x) + j + [0, 1]N); j ∈ {−n, . . . , n− 1}N
}
.
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It follows that λN(B(x, r)) 6 (2n)N supz∈RN λ
N
(
ψ−1(z+[0, 1]N)

)
. Since (2n)N 6

2N(1 + r)N it remains to show that the supremum is finite.
To this end, let z ∈ RN and Q := z + [0, 1]N . Let x0, y ∈ ψ−1(Q) and choose

k, j ∈ ZN with x0 ∈ Qk and y ∈ Qj. Then d(x0, y) 6 1 and d(x0, k), d(y, j) 6 L/2,
hence d(j, k) 6 L+ 1. Therefore ψ−1(Q) ⊆

⋃{
Qj; j ∈ ZN , d(j, k) 6 L+ 1

}
and

λN
(
ψ−1(Q)

)
6 #

{
j ∈ ZN ; d(j, k) 6 L+ 1

}
6
∑
j∈ZN

eL+1−d(j,k).

By the L1-regularity of ψ this shows that λN
(
ψ−1(Q)

)
can be estimated from

above independently of the cube Q.
The implication (ii)⇒(iii) is trivial.
(iii)⇒(i). For all k ∈ ZN we have∑

j∈ZN
e−|ψ(k)−ψ(j)| 6

∑
j∈ZN

eL/2
∫
Qj

e−|ψ(k)−ψ(y)| dy = eL/2
∫
RN

e−d(k,y) dy.

This shows (i) since∫
RN

e−d(k,y) dy 6
∞∑
n=1

e−(n−1)λN
(
B(k, n)

)
6

∞∑
n=1

ce−(n/2−1) <∞.

To conclude this section we want to show how our theorems can be applied in
the context of perturbation of Dirichlet forms by potentials. Let M,Ω, µ, d be as
in the introduction of Section 2.1. Based on Theorem 1.32 we are going to prove
the following result.

Theorem 2.10. Assume that (2.2) and (2.4) hold for vr(x) = µ(B(x, r)). Let
τ be a symmetric Dirichlet form in L2(Ω), and assume that the associated
symmetric sub-Markovian semigroup T on L2(Ω) satisfies the Gaussian upper
bound (2.10) with m = 2. Let V : Ω → R be measurable such that τ + V + is
densely defined and V − 6 βτ +V + + cβ for some β < 1, cβ ∈ R. Assume N > 2
in (2.4) and let p+ := 2

1−
√

1−β , pmax := N
N−2

p+, pmin := p′max.

(a) Then TV , the analytic semigroup on L2(Ω) associated with τ + V , extrap-
olates to an analytic semigroup TV,p on Lp(Ω) of angle π

2
, for all p ∈ (pmin, pmax).

(b) If the subexponential volume growth condition (2.7) holds instead of (2.2),
then the spectrum of the generators of the semigroups TV,p is independent of p ∈
(pmin, pmax).

Remark 2.11. (a) It was first observed by Yu. Semenov that the Lp-scale
[p−, p+] given in Theorem 1.32 can be extended: in [Sem00] he studied the form
τ corresponding to a selfadjoint second order uniformly elliptic operator on RN .
He showed that TV extrapolates to an analytic semigroup on Lp(R

N), for all
p ∈ (pmin, pmax), but he did not obtain the (optimal) angle π

2
.

More generally, the above theorem can be applied to the following situation.
Let M be a complete Riemannian manifold with Ricci curvature bounded below,
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d the Riemannian distance and µ the Riemannian volume. Then (2.2) and (2.4)
hold for vr(x) = µ(B(x, r)) and N the dimension of M , by Bishop’s comparison
principle. Let Ω ⊆ M be open, τ the form corresponding to a selfadjoint second
order uniformly elliptic operator on Ω subject to Dirichlet boundary conditions.
Then the associated semigroup on L2(Ω) satisfies a Gaussian upper bound of
order m = 2 (see [Sal92; Thm. 6.3]).

(b) For p ∈ [1,∞), let Tp be the positive C0-semigroup on Lp(Ω) associated
with τ . By Proposition 1.15, the above theorem can be reformulated as follows.

Assume that (2.7) and (2.3) hold for vr(x) = µ(B(x, r)) and that T2 sat-
isfies (2.10) with m = 2. Let V : Ω → R be measurable such that 1

β
V + is

T -admissible and − 1
β
V − is T 1

β
V +-admissible, for some β < 1. Assume N > 2

in (2.4) and define pmin, pmax as above.
Then, for all p ∈ (pmin, pmax), −V − is (Tp)V +-admissible,

(
(Tp)V +

)
−V −(t) =

e−tAV,p is analytic of angle π
2
, and the spectrum σ(AV,p) is independent of p ∈

(pmin, pmax).
Assume, more restrictively, that there exists α > 1 such that αV + is T1-

admissible and −αV − is (T1)αV +-admissible. Then one can show, with a similar
proof, that the assertions of Theorem 2.10 hold for all p ∈ [1,∞). In fact, only the
second part of the proof given below is needed, with slight changes and additions.

(c) An interesting point about Theorem 2.10 is the following. If V − 6 βτ +
V + + c for some β < 1, c ∈ R then τ + V is associated with a C0-semigroup on
Lp(Ω) for all p in [ 2N

N+2
, 2N
N−2

], an interval not depending on β. If one only knows
V − 6 τ+V + +c for some c ∈ R, but not V − 6 βτ+V + +c for any β < 1, c ∈ R,
then τ + V is associated with a C0-semigroup on L2(Ω), by Proposition 1.15(b).
In this situation it is not known whether τ +V is associated with a C0-semigroup
on Lp(Ω) for some p 6= 2.

In the proof of Theorem 2.10 we will make use of the following immediate
consequence of the Stein interpolation theorem (which is in fact a ‘pre-version’
of the Stein interpolation theorem). We fix an increasing sequence (Ωn) of mea-
surable subsets of Ω that have finite d-diameter (and hence finite µ-volume) such
that Ω =

⋃
n Ωn. By L∞,c we denote the space of all f ∈ L∞(Ω) for which there

exists n ∈ N such that f = 0 a.e. on Ω \ Ωn.

Lemma 2.12. Let S :=
{
z ∈ C; 0 6 Re z 6 1

}
, and F : S → L1(µ) + L∞(µ).

Assume that 〈F (·), f〉 is continuous and bounded, and analytic in the interior of
S, for all f ∈ L∞,c. Let p0, p1 ∈ [1,∞]. If there exist C0, C1 > 0 such that

||F (j + it)||pj 6 Cj (j = 0, 1, t ∈ R)

then ||F (θ)||pθ 6 C1−θ
0 Cθ

1 for all θ ∈ (0, 1), where 1
pθ

= 1−θ
p0

+ θ
p1

.

Proof of Theorem 2.10. By symmetry, we only need to study the case p > 2.
From Theorem 1.32 we already know that TV extrapolates to a positive C0-semi-
group TV,p on Lp(Ω), for all p ∈ [2, p+]. The idea is to apply Theorems 2.1 and 2.4
with p0 = p ∈ [2, p+) and q0 = rp, for all 1 < r < N

N−2
. For that purpose we
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need a weighted p→rp-estimate for v
1
p
− 1
rp√

t
TV (t). By means of Theorem 1.32 we

will show an unweighted estimate for v
1
p
− 1
rp√

t
TαV (t) for some α > 1 and then use

Lemma 2.12 to derive the desired weighted estimate.
Since (2.10) holds with m = 2 we obtain by Theorem 2.1 that

||v
1
p
− 1
q√

t
T (t)||p→q,γ 6 Ceωt+νγ

2t (t > 0, γ > 0, 1 6 p 6 q 6∞) (2.12)

for some C > 1, ω ∈ R, ν > 0. Without restriction assume that cβ = ω = 0.
Our first aim is to show the following Sobolev type inequality

||v
1

2r′√
t
u||2r 6 Cr

(
||u||22 + tτ(u)

) 1
2 (u ∈ D(τ), 0 < t 6 1) (2.13)

for all 1 < r < N
N−2

. Observe that ||u||22 + tτ(u) = ||(1 + tA)
1
2u||22, where A

is the selfadjoint operator in L2(Ω) associated with τ . We thus have to show

||v
1

2r′√
t
(1 + tA)−

1
2 ||2→2r 6 Cr. By the spectral theorem,

(1 + tA)−
1
2 = Γ(1

2
)−1

∫ ∞
0

s−
1
2 e−s(1+tA)ds.

Therefore,

||v
1

2r′√
t
(1 + tA)−

1
2 ||2→2r 6 Γ(1

2
)−1

∫ ∞
0

s−
1
2 e−s||v

1
2r′√
t
T (st)||2→2r ds.

Note that 1
2r′

= 1
2
− 1

2r
. For s > 1 we have v√t 6 v√st, so (2.12) yields

||v
1

2r′√
t
T (st)||2→2r 6 C (s > 1).

For s 6 1 we estimate v√t 6 c2

( √
t√
st

)N
v√st by (2.4), since

√
t 6 1. By (2.12) we

infer that

||v
1

2r′√
t
T (st)||2→2r 6

(
c2s
−N

2

) 1
2r′C (s 6 1).

Moreover, N
4r′

< 1
2

by the choice of r and hence

||v
1

2r′√
t
(1 + tA)−

1
2 ||2→2r 6 Γ(1

2
)−1C

(
c2

∫ 1

0

s−
1
2
− N

4r′ e−sds+

∫ ∞
1

s−
1
2 e−sds

)
=: Cr.

This proves (2.13).
Let now 2 6 p < p+, 1 < r < N

N−2
. By Theorem 1.32 we know that TV

extrapolates to a contractive analytic semigroup TV,p on Lp(Ω), and for the gene-
rator −AV,p of TV,p we have

τ(u
p
2 ) 6

(
4
pp′
− β

)−1〈AV,pu, up−1〉
(
0 6 u ∈ D(AV,p)

)
.



40 CHAPTER 2. ANALYTICITY AND LP -SPECTRAL INDEPENDENCE

Let 0 6 f ∈ Lp(Ω), ut := TV,p(t)f
(
∈ D(AV,p)

)
(t > 0). By (2.13) we obtain

||v
1
pr′√
t
ut||prp = ||v

1
2r′√
t
u
p
2
t ||22r 6 C2

r

(
||ut||pp + t( 4

pp′
− β)−1〈AV,put, up−1

t 〉
)

(0 < t 6 1).

Since TV,p is a contractive analytic semigroup, there exists c > 0 such that
||AV,pTV,p(t)|| 6 c

t
(t > 0). We conclude that

||v
1
pr′√
t
TV,p(t)f ||prp 6 C2

r

(
||f ||pp + ( 4

pp′
− β)−1c||f ||pp

)
(0 < t 6 1),

which amounts to an unweighted p→rp-estimate.
In order to derive the weighted estimate by Lemma 2.12, observe that 4

pp′
>

4
p+p−

= β since p ∈ [2, p+). Choose α > 1 such that αβ < 4
pp′

. Then (αV )− 6
αβτ + (αV )+, and the above implies that there exists K > 1 such that

||v
1
pr′√
t
TαV,p(t)f ||rp 6 K||f ||p

(
0 < t 6 1, 0 6 f ∈ Lp(Ω)

)
.

Let 0 < t 6 1, 0 6 f ∈ L∞,c. Note that

Tα(V +∧m−V −∧n)(t)f ↓ Tα(V +−V −∧n)(t)f (6 TαV (t)f) as m→∞.

Hence there exists mn ∈ N (depending on f !) such that, with Vn := V + ∧mn −
V − ∧ n,

||v
1
pr′√
t
TαVn(t)f ||rp 6 (K + 1)||f ||p (n ∈ N).

By (2.12) we also have, noting 1
p
− 1

rp
= 1

pr′
, that

||ργ,yv
1
pr′√
t
T (t)ρ−1

γ,yf ||rp 6 Ceνγ
2t||f ||p (y ∈M, γ > 0).

Lemma 2.12 yields

||ρα−1
α
γ,yv

1
pr′√
t
TVn(t)ρ−1

α−1
α
γ,y
f ||rp 6

(
Ceνγ

2t
)α−1

α (K + 1)
1
α ||f ||p.

Finally, we use TVn(t)g > TV +−V −∧n(t)g ↑ TV (t)g (0 6 g ∈ L2(Ω), n → ∞) and
the positivity of TV to obtain

||v
1
pr′√
t
TV (t)||p→rp,γ 6 C1− 1

α (K + 1)
1
α e

α
α−1

νγ2t (0 < t 6 1, γ > 0).

Now we are in a position to apply Theorem 2.1 with p0 := p and q0 := rp.
We obtain that TV,p extrapolates to a semigroup TV,q on Lq(Ω) which is analytic
of the same angle as TV,p, for all q ∈ (p, N

N−2
p). This holds for all p ∈ [2, p+), so

the proof of (a) is complete. In the same way we can apply Theorem 2.4 to prove
part (b) (observe that estimate (2.9) is fulfilled by Remark 2.6).
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2.3 Technique of weighted estimates

In this section we provide some technical tools needed in the proofs of Theo-
rems 2.1 and 2.4. The main goal is to show Proposition 2.16 below. Let the
notation and assumptions be as in the introduction of Section 2.1. Our first
result deals with norm estimates for integral operators on M .

Lemma 2.13. Let 1 6 p 6 q 6∞. Let k: M ×M → C be measurable, and for
s ∈ [1,∞] define

ns(k) := max
(
ess sup
x∈M

||k(x, ·)||s, ess sup
y∈M

||k(·, y)||s
)
∈ [0,∞].

(a) Let s ∈ [1,∞] with s−1 + p−1 = 1 + q−1. If ns(k) is finite then k defines a
bounded integral operator Ik: Lp(M)→ Lq(M), and ||Ik||p→q 6 ns(k).

(b) Let r, s ∈ [p, q] with p−1 + q−1 = r−1 + s−1, and f ∈ Lr(Ω). Then∣∣∣∣y 7→ ||k(y, ·)f ||Lp(Ω)

∣∣∣∣
Lq(M)

6 ns(k)||f ||r.

Proof. (a) is well-known and can be proved by an application of Fubini’s theorem
and Riesz-Thorin interpolation.

(b) In the case p =∞ there is nothing to show. For p <∞, (b) is equivalent
to ∣∣∣∣y 7→ ∫

Ω

|k|p(y, ·)|f |pdµ
∣∣∣∣
Lq/p(M)

6 ns(k)p||f ||pr = ns/p(|k|p)|||f |p||r/p

which in turn follows from (a) since ( s
p
)−1 + ( r

p
)−1 = 1 + ( q

p
)−1.

We are going to apply Lemma 2.13 to integral kernels of the type k(x, y) =
vr(x)−αvr(y)−βe−γd(x,y). The next result gives an estimate for ns(k).

Lemma 2.14. Let r > 0 and assume vR 6 c0e
crRvr for all R > r, for some

c0 > 1, cr > 0. Then

ns
(
(x, y) 7→ vr(x)−αvr(y)−βe−γd(x,y)

)
6 c2

0(1− e−γr/3)−1e2crr

for all 1 6 s 6∞, γ > 3cr and a, β 6 1 with α + β = s−1.

Proof. First note that assumption (2.1) implies

vr(x) 6 vr+d(x,y)(y) 6 c0e
cr(r+d(x,y))vr(y) (x, y ∈M),

and hence

vδr(x)/vδr(y) 6 c0e
crr+crd(x,y) (x, y ∈M, |δ| 6 1). (2.14)

If s =∞ then α = −β. By (2.14) we infer, since γ > cr, that

vr(x)−αvr(y)−βe−γd(x,y) 6 c0e
crr+(cr−γ)d(x,y) 6 c0e

crr (x, y ∈M).
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This proves the lemma in the case s =∞.
Secondly, we study the case s = 1. To this end, we first estimate the integral∫

M
e−γd(x,y)dµ(y) for all x ∈ M and γ > cr. For n ∈ N let Kn := B(x, nr) \

B(x, (n − 1)r). Due to the assumption we have µ(Kn) 6 vnr(x) 6 c0e
crnrvr(x),

and therefore∫
M

e−γd(x,y)dµ(y) =
∞∑
n=1

∫
Kn

e−γd(x,y)dµ(y) 6
∞∑
n=1

c0e
crnrvr(x)e−γ(n−1)r

= c0e
γr

∞∑
n=1

e(cr−γ)nrvr(x) =
c0e

crr

1− e(cr−γ)r
vr(x).

By (2.14) we have vr(x)−αvr(y)−β 6 c0e
crr+crd(x,y)vr(x)−1 since α + β = s−1 = 1.

For γ > 3cr we conclude that∫
M

vr(x)−αvr(y)−βe−γd(x,y)dµ(y) 6 c0e
crr · c0e

crr

1− e(cr−(γ−cr))r
=

c2
0e

2crr

1− e(2cr−γ)r
.

The same holds with α, β interchanged, or equivalently, with x, y interchanged.
This completes the proof in the case s = 1 since 2cr 6 2

3
γ.

Finally, the case 1 < s < ∞ will be reduced to the cases s = 1,∞ by
Lemma 2.12. (Alternatively, it could be reduced to the case s = 1 by direct
computation.) Without restriction assume α > β. Then 0 6 α 6 1. For
0 6 Re z 6 1 let kz(x, y) := vr(x)−αvr(y)α−ze−γd(x,y). Then |kz| = kRe z. Above
we obtained estimates for n1(k1+it) = n1(k1) and n∞(kit) = n∞(k0) (t ∈ R).
Making use of Lemma 2.12 we deduce the desired estimate for ns(k1/s).

Let us remark that a volume growth assumption of the type vR 6 cecRvr is
necessary in the above lemma: assume that the assertion of the lemma holds for
s = 1, α = 1, β = 0, γ = 3cr. Then we have, for almost all x ∈M :

µ(B(x,R)) 6
∫
M

eγR−γd(x,y)dµ(y) 6 n1

(
(x, y) 7→ vr(x)−1e−γd(x,y)

)
eγRvr(x)

6 c2
0(1− e−crr)−1e2crre3crRvr(x).

For γ > 0 and C > 1 we introduce a class of weight functions on M ,

P (γ, C) :=
{
ρ: M → (0,∞) measurable; ρ(x)/ρ(y) 6 Ceγd(x,y) for all x, y ∈M

}
.

For ρ ∈ P (γ, C) and y ∈M we have, by the definition of ργ,y,

ρ 6 Cρ−γ,yρ(y) and ρ(y) 6 Cρ−γ,yρ. (2.15)

Notice that, by the triangle inequality, ργ,y ∈ P (|γ|, 1) for all γ ∈ R, y ∈ M .
Moreover, if vR 6 c0e

crRvr for some r > 0 and all R > r then vδr ∈ P (c0e
crr, cr)

for all |δ| 6 1, by (2.14).



2.3. TECHNIQUE OF WEIGHTED ESTIMATES 43

We fix an increasing sequence (Ωn) of measurable subsets of Ω that have
finite d-diameter (and hence finite µ-volume) such that Ω =

⋃
n Ωn. By L1,loc we

denote the set of (equivalence classes of) all measurable functions f on Ω with
||χΩnf ||1 < ∞ for all n ∈ N, and by L∞,c the space of all f ∈ L∞(Ω) for which
there exists n ∈ N such that f = 0 a.e. on Ω \ Ωn. Note that the elements of
P (γ, C) are multiplication operators on L1,loc and L∞,c.

Remark 2.15. Let p, q ∈ [1,∞], B a bounded operator on Lp(Ω) and ρ1, ρ2 ∈
L∞,loc, i.e., ||χΩnρj||∞ < ∞ for all n ∈ N, j = 1, 2. Let D(ρ2, Lp) denote the
domain of the multiplication operator ρ2 on Lp(Ω). Then

||ρ1Bρ2�D(ρ2,Lp)||p→q = ||ρ1Bρ2�L∞,c||p→q.

This follows from an application of Fatou’s lemma.

The following result is one of the crucial tools in the proofs of Theorems 2.1
and 2.4. The archetype of this result is due to G. Schreieck and J. Voigt ([ScVo94;
Prop. 3.2]; see [Sem97; Lemma 5.2] and [KuVo00; Prop. 13] for improved ver-
sions). In the present form the result is new.

Proposition 2.16. Let r > 0, and assume vR 6 c0e
crRvr for all R > r, for

some c0 > 1, cr > 0. Further assume that µ(B(x, r)) > 0 for all x ∈ M . Let
γ0 > 8cr and α0, β0 > 0 with α0 + β0 = p−1

0 − q−1
0 . Then, for any linear operator

B: L∞,c → L1,loc satisfying ||vα0
r Bv

β0
r ||p0→q0,γ0 6 1 we have

||ρvαrBvβr ρ−1||p→q 6 C2c6
0(1− e−γ0r/8)−2e5γ0r

for all p0 6 p 6 q 6 q0, α, β > 0 with α+β = p−1−q−1, C > 1, ρ ∈ P (γ0/2, C).
In particular,

||vαrBvβr ||p→q,γ 6 c6
0(1− e−γ0r/8)−2e5γ0r (|γ| 6 γ0/2).

Observe that the assumption µ(B(x, r)) > 0 is automatically fulfilled in the
case (p0, q0) 6= (1,∞) (cf. Remark 2.3(c)). For the proof of Proposition 2.16
we need some preparatory lemmas. The first one will be needed in the case
(p0, q0) = (1,∞). At the same time it proves Remark 2.3(d).

Lemma 2.17. Assume that there exists r > 0 such that µ(B(x, r)) > 0 for all
x ∈ M . Then there exists a sequence (xn) ⊆ M such that M =

⋃
n∈NB(xn, 2r).

In particular, if µ(B(x, r)) > 0 for all x ∈ M, r > 0 then M is separable.
Conversely, if M is separable then µ(B(x, r)) > 0 for all r > 0 and almost all
x ∈M .

Proof. Fix x0 ∈M and let k ∈ N. By Zorn’s lemma we can choose Mk ⊆ B(x0, k)
such that

(
B(x, r)

)
x∈Mk

is a maximal family of pairwise disjoint balls with radius

r and centre in B(x0, k). Then Mk is countable since µ(B(x0, k + r)) < ∞
and µ(B(x, r)) > 0 for all x ∈ Mk. By the maximality we have B(x0, k) ⊆⋃
x∈Mk

B(x, 2r). This proves the first assertion since M =
⋃
k∈NB(x0, k).
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Assume now that M is separable. Let r > 0 and choose (xn) ⊆ M such
that M =

⋃
n∈NB(xn,

r
2
). Then for all n ∈ N with µ(B(xn,

r
2
)) > 0 we obtain

µ(B(x, r)) > 0 for all x ∈ B(xn,
r
2
). This implies the second assertion.

Corollary 2.18. Let r > 0 and assume that µ(B(x, r)) > 0 for all x ∈ M . Let
γ > 0, B: L∞,c → L1,loc a linear operator. If ||B||1→∞,γ 6 1 then B has an
integral kernel k satisfying |k(x, y)| 6 e4γr−γd(x,y) for almost all x, y ∈ Ω.

Proof. Let w ∈M . By the Dunford-Pettis theorem, the assumption implies that
the operator Bw := ργ,wBρ

−1
γ,w has an integral kernel kw satisfying |kw| 6 1 a.e.

Therefore, B has an integral kernel k satisfying

k(x, y) = ργ,w(x)−1kw(x, y)ργ,w(y) (almost all x, y ∈ Ω).

According to Lemma 2.17 choose a sequence (wn) ⊆ M such that M =⋃
nB(wn, 2r). For all n ∈ N and almost all x ∈ B(wn, 2r), y ∈ Ω we obtain

|k(x, y)| = eγd(x,wn)−γd(y,wn) 6 e4γr−γd(x,y),

which concludes the proof.

The next lemma will be used in the case (p0, q0) 6= (1,∞). Here is the place
where the assumption vr(x) = µ(B(x, r)) enters. Though being elementary, this
lemma constitutes the main trick in the proof of Proposition 2.16.

Lemma 2.19. Let r > 0 and assume vr(x) = µ(B(x, r)) (x ∈ M). For γ > 0,
1 6 q 6∞ and f ∈ Lq(Ω) we then have

||f ||q 6 eγr
∣∣∣∣y 7→ ||ργ,yv−1/q

r f ||Lq(Ω)

∣∣∣∣
Lq(M)

.

Proof. By Fubini’s theorem we have, since ργ,y(x) = ργ,x(y) for all x, y ∈M ,∣∣∣∣y 7→ ||ργ,yv−1/q
r f ||Lq(Ω)

∣∣∣∣
Lq(M)

=
∣∣∣∣x 7→ ||ργ,x||Lq(M)vr(x)−1/qf(x)

∣∣∣∣
Lq(Ω)

.

This implies the assertion since eγr||ργ,x||Lq(M) > ||χB(x,r)||Lq(M) = µ(B(x, r))1/q

for all x ∈ Ω.

In order to present the idea of the proof of Proposition 2.16 in the case
(p0, q0) 6= (1,∞), let us first show a simple variant of Proposition 2.16: let
r > 0 and assume that vR 6 c0e

crRvr for all R > r, with vr(x) = µ(B(x, r)).
Let 1 6 p 6 q 6 ∞, γ > 3cr and B: L∞,c → L1,loc a linear operator satisfying

||v−1/q
r Bv

1/p
r ||p→q,γ 6 1. Then ||ργ,yv−1/q

r Bf ||q 6 ||ργ,yv−1/p
r f ||p for all f ∈ L∞,c,

y ∈M . By Lemma 2.19 and Lemma 2.13(b) we obtain

||Bf ||q 6 eγr
∣∣∣∣y 7→ ||ργ,yv−1/q

r Bf ||q
∣∣∣∣
Lq(M)

6 eγr
∣∣∣∣y 7→ ||ργ,yv−1/p

r f ||p
∣∣∣∣
Lq(M)

6 eγrnp
(
(x, y) 7→ ργ,y(x)vr(x)−1/p

)
||f ||q.

Thus, Lemma 2.14 yields ||B||q→q 6 c2
0(1− e−γr/3)−1e2crr+γr.
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Proof of Proposition 2.16. First case: (p0, q0) = (1,∞). By Corollary 2.18,
the assumption implies that the operator vα0

r Bv
β0
r has an integral kernel k satis-

fying

|k(x, y)| 6 e4γ0r−γ0d(x,y) (almost all x, y ∈ Ω).

Therefore, the kernel h of ρvαrBv
β
r ρ
−1 satisfies

|h(x, y)| 6 vr(x)α−α0vr(y)β−β0ρ(x)ρ(y)−1e4γ0r−γ0d(x,y) (almost all x, y ∈ Ω).

Note that α0 − α, β0 − β 6 1, (α0 − α) + (β0 − β) = 1 − p−1 + q−1 =: s−1, and
ρ(x)ρ(y)−1 6 Ce

γ0
2
d(x,y). Thus, Lemma 2.14 implies that

ns(h) 6 Ce4γ0r · c2
0(1− e−γ0r/6)−1e2crr.

By Lemma 2.13(a) we obtain the assertion since 2cr 6 γ0.
Second case: (p0, q0) 6= (1,∞). Then vr(x) = µ(B(x, r)) (x ∈ M). Let

ρ ∈ P (γ0/2, C), f ∈ L∞,c. We have to show that ||ρvαrBf ||q 6 C2c6
0(1−e−γ0r/8)−2 ·

e5γ0r||ρv−βr f ||p.
By Lemma 2.19 we have

||ρvαrBf ||q 6 e2γ0r
∣∣∣∣y 7→ ||ρ2γ0,yv

−1/q
r · ρvαrBf ||q

∣∣∣∣
Lq(M)

. (2.16)

Let s−1 := q−1 − q−1
0 and ρ1 := ρv

α−q−1
0 −α0

r . Then v
−1/q
r · ρvαr = v

−1/s
r ρ1v

α0
r , and

by Hölder’s inequality we estimate

||ρ2γ0,yv
−1/q
r ρvαrBf ||q 6 ||ρ3γ0/8,yv

−1/s
r ||s||ρ5γ0/8,yρ1 · ργ0,yv

α0
r Bf ||q0 (2.17)

for all y ∈M . Since 3γ0/8 > 3cr we can apply Lemma 2.14 to the first factor on
the right hand side of (2.17) and obtain

||ρ3γ0/8,yv
−1/s
r ||s 6 c2

0(1− e−γ0r/8)−1e2crr (almost all y ∈M).

To estimate the second factor, note that (2.14) implies that vδr ∈ P (cr, c0e
crr) for

all |δ| 6 1. Since cr 6 γ0/8, this yields ρ1 ∈ P (5
8
γ0, Cc0e

crr). Using (2.15) and
the assumption ||ργ0,yv

α0
r Bf ||q0 6 ||ργ0,yv

−β0
r f ||p0 , we thus obtain

||ρ5γ0/8,yρ1 · ργ0,yv
α0
r Bf ||q0 6 ||Cc0e

crrρ1(y) · ργ0,yv
α0
r Bf ||q0

6 Cc0e
crr||ρ1(y) · ργ0,yv

−β0
r f ||p0

6 C2c2
0e

2crr||ρ−5γ0/8,yρ1 · ργ0,yv
−β0
r f ||p0

6 C2c2
0e

2crr||ρ3γ0/8,yρv
a−q−1

0 −a0−β0
r f ||p0 .

Due to the assumption, α − q−1
0 − α0 − β0 = p−1 − q−1 − p−1

0 − β =: −β − s−1
1 .

By (2.17) we therefore conclude that

||ρ2γ0,yv
−1/q
r ρvαrBf ||q 6 C2c4

0(1− e−γ0r/8)−1e4crr||ρ3γ0/8,yv
−1/s1
r · ρv−βr f ||p0 .
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Inserting this into (2.16) yields, by Lemma 2.13(b) and Lemma 2.14,

||ρvαrBf ||q 6 e2γ0rC2c4
0(1− e−γ0r/8)−1e4crrns1

(
ρ3γ0/8,y(x)vr(x)−1/s1

)
· ||ρv−βr f ||p

6 C2c6
0(1− e−γ0r/8)−2e6crr+2γ0r||ρv−βr f ||p.

To complete the proof, note that 6cr 6 γ0.

We conclude this section by a lemma which will be used to show strong
continuity of consistent semigroups.

Lemma 2.20. Let 1 6 p < ∞ and (Bα) a bounded net in L(Lp(Ω)). Assume
that C := supα ||Bα||p→p,γ < ∞ for some γ < 0, and that there exists q > p such
that Bαf → f in Lq(Ω) for all f ∈ L∞,c. Then Bα → I strongly in L(Lp(Ω)).

Proof. Since (Bα) is bounded, it suffices to show Bαf → f in Lp(Ω) for all
f ∈ L∞,c. Given f , let x0 ∈ Ω, r0 > 0 such that supp f ⊆ B(x0, r0). For r > r0

we obtain (note that γ < 0!)

||Bαf − f ||p 6 ||(Bαf)�B(x0,r) − f ||p + ||(Bαf)�B(x0,r)c ||p
6 µ(B(x0, r))

p−1−q−1||Bαf − f ||q + ||eγrργ,x0Bαf ||p.

By the assumption we have ||ργ,x0Bαf ||p 6 C||ργ,x0f ||p. Since γ < 0 this implies
that ||eγrργ,x0Bαf ||p 6 eγrC||ργ,x0f ||p → 0 as r → ∞, and we conclude that
Bαf → f in Lp(Ω).

2.4 Extrapolation and analyticity

In order to apply Proposition 2.16 in the proof of Theorem 2.1, we need a refor-
mulation of our volume growth conditions: assume that (2.2) and (2.3) hold. We
claim that then for all ε > 0 there exists c0(ε) > 1 such that

vR 6 c0(ε)e(c1∨ εr )Rvr (R > r > 0). (2.18)

This is shown by a distinguishing three cases. If R > r > 1 then vR 6 c0e
c1Rv1

by (2.2), and we are done since v1 6 vr. If r < R 6 1 then vR 6 c2

(
R
r

)N
vr

by (2.4), and there exists c0(ε) > 1 such that c2

(
R
r

)N
6 c0(ε)e

ε
r
R for allR > r > 0.

Let now 0 < r 6 1 6 R. Then vR/vr = vR/v1 · v1/vr 6 c0e
c1R · c2

(
1
r

)N
. If

r > ε
2c1

then we conclude that vR/vr 6 c0c2

(
2c1
ε

)N
ec1R; if r < ε

2c1
then c1 <

ε
2r

and hence vR/vr 6 c0c2e
ε
2r
R
(
R
r

)N
6 c0(ε)e

ε
r
R for some c0(ε) > 1 not depending

on r, R. This shows (2.18).

Conversely, assume that (2.18) holds for some ε > 0, c0(ε) > 1. Then we
easily show estimates of the type (2.2) and (2.3).
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Remark 2.21. As a direct consequence of Proposition 2.16 we obtain the follow-
ing. Assume that (2.18) holds and that (Ω, d) is separable. Let B: L∞,c → L1,loc

be a linear operator, ε > 0. Then, with Kε :=
(
c0( ε

8
)
)6

(1− e−ε/8)−2,

||vαrBvβr ||p→q,γ 6 Kεe
5γ0r||vα0

r Bv
β0
r ||p0→q0,γ0

for all p0 6 p 6 q 6 q0, r > 0, γ0 > ε
r
∨ (8c1), |γ| 6 γ0/2, and α0, β0, α, β > 0

with α0 + β0 = p−1
0 − q−1

0 , α + β = p−1 − q−1.
For the proof recall from Remark 2.3(d) that the separability of (Ω, d) is

essentially equivalent to µ(B(x, r)) > 0 for all x ∈ M , r > 0. Then apply
Proposition 2.16 with c0 := c0( ε

8
) and cr := c1 ∨ ε

8r
, and observe that (1 −

e−γ0r/8)−2 6 (1− e−ε/8)−2 for all γ0 > 8cr = ε
r
∨ (8c1).

In the proof of Theorem 2.1 we will use the following result to pass from small
times to large times.

Lemma 2.22. Let T be a semigroup on Lp(Ω). Assume that there exist ε, t0 >
0, C > 1 and m > 1 such that ||T (t)||p→p,γ 6 C for all t 6 t0, 0 6 γ 6 εt−1/m.
Then there exist ω, ν > 0 such that

||T (t)||p→p,γ 6 Ceωt+νγ
mt (t, γ > 0).

Proof. For γ = 0 the assertion is well-known. In case γ > 0 let tγ := (γ/ε)−m∧t0.
For t > 0 choose n ∈ N with (n − 1)tγ 6 t < ntγ. Then n − 1 6 t/tγ 6(
(γ/ε)m + t−1

0

)
t and t

n
6 (γ/ε)−m ∧ t0, in particular γ 6 ε

(
t
n

)−1/m
. By the

assumption it follows that

||T (t)||p→p,γ 6 ||T ( t
n
)||np→p,γ 6 C · Cn−1 6 CelnC·((γ/ε)m+t−1

0 )t = Ceωt+νγ
mt

with ω = t−1
0 lnC and ν = ε−m lnC.

We further need to extend the weighted estimate in Lemma 2.22 from real
to complex times. The next proposition serves this purpose. Comparable results
are shown in [Dav89], [Sch96] and [Hie96] by means of the Phragmen-Lindelöf
theorem. But it seems to be more natural to use Stein interpolation, similar to
the proof of [Dav95b; Lemma 9] by means of the three lines theorem.

Proposition 2.23. Let ρ: Ω → (0,∞) with ρ, ρ−1 ∈ L∞,loc, and θ ∈ (0, π
2
]. Let

F : Sθ → L(Lp) be a bounded continuous function, analytic in the interior of Sθ,
satisfying the inequality

||ργF (t)ρ−γ|| 6 Ceνγ
mt (t, γ > 0)

for some C > 1, ν > 0, m > 1. Then for all ϕ ∈ (0, θ) there exists νϕ > 0 such
that

||ργF (z)ρ−γ|| 6 C1e
νϕγm Re z (z ∈ Sϕ, γ > 0),

with C1 = max{||F ||∞, C}. If θ = π
2

then one can choose νϕ = (1− 2
π
ϕ)−mν.
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Proof. Fix γ > 0 and let ϕ(z) := exp
(
−νγm

sin θ
ei(

π
2
−θz)) for 0 6 Re z 6 1. Then

|ϕ(z)| = exp
(
−νγm sin θx

sin θ
eθy
)
, where z = x+ iy. We apply the Stein interpolation

theorem to the function G defined by

G(z) := ϕ(z)ρzγF (eiθ(1−z))ρ−zγ (0 6 Re z 6 1).

For Re z = 0, the function z 7→ eiθ(1−z) describes the upper ray of the boundary
of Sθ, for Re z = 1 it describes the positive real semi-axis. For f, g ∈ L∞,c, the
function z 7→ 〈G(z)f, g〉 is analytic, and we have

|〈G(z)f, g〉| 6 |ϕ(z)|||F (eiθ(1−z))|| · ||ρ−zγf ||p||ρzγg||p′ 6 ||F ||∞ · c||f ||p||g||p′ <∞,

where c depends on γ and on the supports of f and g, but not on z.
The function ϕ is chosen in such a way that ||G(z)|| 6 C1 = max{||F ||∞, C}

for Re z = 0, 1. We infer that ||G(z)|| 6 C1 for all 0 6 Re z 6 1, so

||ρxγF (eiθ(1−x)eθy)ρ−xγ|| 6 C1/|ϕ(x+ iy)| = C1 exp
(
νγm sin θx

sin θ
eθy
)
.

Choose now x = 1− ϕ
θ

and let z := eiθ(1−x)eθy = eiϕeθy. Then

||ρxγF (z)ρ−xγ|| 6 C1 exp
(
νγm sin(θ−ϕ)

sin θ
Re z
cosϕ

)
.

Writing γ
x

= θ
θ−ϕγ instead of γ we obtain the assertion with νϕ = ν( θ

θ−ϕ)m sin(θ−ϕ)
sin θ cosϕ

.

Now we are in a position to show the following improved version of Theo-
rem 2.1.

Theorem 2.24. Assume that (2.18) holds and that (Ω, d) is separable. Let p0 6
s 6 q0 and T a semigroup on Ls(Ω). Assume that there exist ε, t0 > 0, m > 1
and α0, β0 > 0 with α0 + β0 = p−1

0 − q−1
0 such that

C0 := sup
0<t6t0

||vα0

t1/m
T (t)vβ0

t1/m
||p0→q0,εt−1/m <∞.

(a) Then T extrapolates to an exponentially bounded semigroup Tp on Lp(Ω),
for all p ∈ [p0, q0] \ {∞}.

(b) If one of the semigroups Tp is strongly continuous then so are all of them.
(c) Assume that Tp1 has an exponentially bounded analytic extension to Sθ

for some θ ∈ (0, π
2
], p1 ∈ [p0, q0] \ {∞}. Then Tp has an exponentially bounded

analytic extension to Sϕ for all ϕ ∈ (0, θ), p ∈ [p0, q0] \ {∞}.
(d) In case the assumption of (c) holds let I := [0, θ), otherwise I := {0},

S0 := (0,∞). Then for all ϕ ∈ I there exist Cϕ > 1, ωϕ ∈ R and νϕ > 0 such
that

||vα(Re z)1/mT (z)vβ
(Re z)1/m||p→q,γ 6 Cϕe

(ωϕ+νϕ|γ|m) Re z (2.19)

for all p0 6 p 6 q 6 q0, z ∈ Sϕ, γ ∈ R, α, β > 0 with α + β = p−1 − q−1. If
θ = π

2
the one can choose ωϕ = ω̃ + (8πc1)m(π

2
− ϕ)−m for some ω̃ ∈ R.
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Observe that, by our definition of an analytic semigroup, the above theorem
implies Theorem 2.1.

Proof of Theorem 2.24. It suffices to show (d): taking α = β = γ = 0,
z ∈ (0,∞), p = q, the weighted norm estimate (2.19) implies (a). If Tp is
strongly continuous for some p ∈ [p0, q0] \ {∞} then, for q ∈ [p0, q0] \ {1,∞}, the
strong continuity of Tq follows from [Voi92]; in the case q = p0 = 1 it follows from
Lemma 2.20. Finally, part (c) follows from Lemma 1.4.

We first show (2.19) for p = q and ϕ = 0, i.e., z ∈ (0,∞). Without restriction

assume εt
−1/m
0 > 8c1. Let t 6 t0 and γ0 := εt−1/m. Note that γ0 > εt

−1/m
0 > 8c1

and γ0t
1/m = ε. By Remark 2.21 we obtain

||vαt1/mT (t)vβ
t1/m
||p→q,γ 6 Kεe

5ε||vα0

t1/m
T (t)vβ0

t1/m
||p0→q0,εt−1/m

6 Kεe
5εC0 := C1 (t 6 t0, γ 6 εt−1/m/2)

(2.20)

for all p0 6 p 6 q 6 q0 and α, β > 0 with α+ β = p−1 − q−1. By Lemma 2.22 we
infer that there exist ω1, ν1 > 0 such that

||T (t)||p→p,γ 6 C1e
ω1t+ν1γmt (p ∈ [p0, q0], t, γ > 0).

In particular, T extrapolates to an exponentially bounded semigroup on Lp(Ω)
for all p ∈ [p0, q0] \ {∞}.

Assume that Tp1 has an exponentially bounded extension to Sθ for some θ ∈
(0, π

2
], p1 ∈ [p0, q0] \ {∞}. Let C2 > C1, ω2 > ω1 such that ||Tp1(z)|| 6 C2e

ω2 Re z

for all z ∈ Sθ. Then Proposition 2.23 implies that for all ϕ ∈ (0, θ) there exists
ν2 = ν2(ϕ) > 0 such that

||Tp1(z)||p1→p1,γ 6 C2e
(ω2+ν2γm) Re z (z ∈ Sϕ+θ

2
, γ > 0). (2.21)

If θ = π
2

then we can choose ν2(ϕ) = (1
2
− ϕ

π
)−mν1. If there is no exponentially

bounded extension then I = {0}, and (2.21) still holds for ϕ = 0, with θ := 0.
Now we show (2.19) for p = p0, q = q0, α = α1 := p−1

1 − q−1
0 , β = β1 :=

p−1
0 −p−1

1 and γ > 0. Let ϕ ∈ I and choose δ > 0 in such a way that z−2δRe z ∈
Sϕ+θ

2
for all z ∈ Sϕ. Let z ∈ Sϕ. Then tz := (δRe z) ∧ (2γ/ε)−m ∧ t0 6 t0,

γ 6 εt
−1/m
z /2, and z − 2tz ∈ Sϕ+θ

2
. From (2.20) and (2.21) we therefore obtain,

taking into account Remark 2.15,

||vα1

t
1/m
z

Tp1(z)vβ1

t
1/m
z

||p0→q0,γ

6 ||Tp0(tz)v
β1

t
1/m
z

||p0→p1,γ||Tp1(z − 2tz)||p1→p1,γ||vα1

t
1/m
z

Tp1(tz)||p1→q0,γ

6 C1 · C2e
(ω2+ν2γm) Re(z−2tz) · C1. (2.22)

To obtain the desired estimate (2.19) for vα1
rz Tp1(z)vβ1

rz , with rz := (Re z)1/m,
we have to estimate (vrz/vt1/mz

)α1+β1 . By (2.18), vR/vr 6 c0(1)eR/r for all r 6
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c−1
1 , R > r. Without restriction assume t

1/m
0 6 c−1

1 so that t
1/m
z 6 c−1

1 . We have

t
−1/m
z = (δRe z)−1/m ∨ 2γ

ε
∨ t−1/m

0 . Since m > 1 there exists c > 0 such that

rz/t
1/m
z 6 δ−1/m +

(
2γ
ε
∨ t−1/m

0

)
(Re z)1/m 6 c+ (1 + γm) Re z (Re z > 0).

(2.23)

Therefore, vrz/vt1/mz
6 c0(1)ec+(1+γm) Re z. Since α1+β1 6 1, estimate (2.22) yields

||vα1
rz Tp1(z)vβ1

rz ||p0→q0,γ 6 C3e
(ω3+ν3γm) Re z (z ∈ Sϕ),

with C3 = C2
1C2c0(1)ec, ω3 = ω2 + 1, ν3 = ν3(ϕ) = ν2(ϕ) + 1.

Finally, let p0 6 p 6 q 6 q0, z ∈ Sϕ, γ ∈ R and α, β > 0 with α + β =
p−1 − q−1. For γ0 := (2|γ|) ∨ r−1

z ∨ (8c1) we obtain, noting r−mz = (Re z)−1, that

||vα1
rz Tp1(z)vβ1

rz ||p0→q0,γ0 6 C3e
ω3 Re z+ν3((2|γ|)m+r−mz +(8c1)m) Re z

= C4e
(ω4+ν4|γ|m) Re z,

with C4 = C4(ϕ) = C3e
ν3(ϕ), ω4 = ω4(ϕ) = ω3 + (8c1)mν3(ϕ), ν4 = ν4(ϕ) =

2mν3(ϕ). Note that γ0 > 1
rz
∨ (8c1) and |γ| 6 γ0/2. Thus, Remark 2.21 yields

||vαrzTp1(z)vβrz ||p→q,γ 6 K1e
5γ0rz · C4e

(ω4+ν4|γ|m) Re z.

As in (2.23), there exists c > 1 such that 5γ0rz 6 c + (1 + |γ|m) Re z, and we
obtain the desired estimate (2.19).

For the case θ = π
2

we compute

ωϕ := ω4(ϕ) + 1 = ω2 + 2 + (8c1)m
(
(1

2
− ϕ

π
)−mν1 + 1

)
.

This yields the last assertion.

Remark 2.25. Let T (t) = e−tA be a semigroup on a Banach space X which is
analytic of angle π

2
. Assume that there exist C > 1, ω ∈ R, ν > 0, m > 1 such

that

||T (z)|| 6 Ce(ω+ν(π
2
−arg z)−m) Re z (Re z > 0).

Then there exist ω1 ∈ R, ν1 > 0 such that the spectrum σ(A) lies in the ‘filled
generalised parabola’ {

x+ iy ∈ C; x > ν1|y|
m
m−1 − ω1

}
.

This easily follows by optimisation from the following fact. If ϕ ∈ [0, π
2
) and

||T (z)|| 6 CeωRe z for all z ∈ Sϕ then

σ(A) ⊆
{
x+ iy ∈ C; x > |y| tanϕ− ω

}
.
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2.5 Lp-spectral independence

Throughout this section we assume that conditions (2.7) and (2.8) hold. We
are going to prove Theorem 2.4 which deals with Lp-spectral independence for
generators −Ap of consistent C0-semigroups Tp. By the formula

(λ+ Ap)
−n =

∫ ∞
0

tn−1

(n−1)!
e−λtTp(t) dt, (2.24)

which holds for λ greater than the type of Tp, the theorem will be reduced to the
following result on Lp-spectral independence for consistent bounded operators.

Theorem 2.26. (cf. [KuVo00; Thms. 1 and 2]) Let B: L∞,c → L1,loc be a linear
operator satisfying

||vα1Bv
β
1 ||p0→q0,γ0 <∞

for some γ0 > 0, α, β > 0 with α+β = p−1
0 −q−1

0 . Then B extends to a consistent
family of bounded operators Bp on Lp(Ω), p ∈ [p0, q0]\{∞}, the spectrum σ(Bp) is
independent of p ∈ [p0, q0]\{∞}, and the operators Bp have consistent resolvents.

In [KuVo00] this theorem was proved under the additional assumption that
ε 6 v1 6 ε−1 for some ε > 0. The general theorem can be reduced to this case by
resorting to the weighted measure space (M, v−1

1 µ) and using [KuVo00; Thms. 23
and 26] (see [Vog01]). As we are going to present a selfcontained proof here, we
will use a direct approach instead.

Using the methods introduced in this section, one can show the following
for the case q0 = ∞: under the assumptions of Theorem 2.26, B extends to a
weak∗-continuous operator B∞ on L∞(Ω), and σ(B∞) = σ(Bp0). Similarly, the
other results of this section hold without the restriction p < ∞, after suitable
reformulation for the case p =∞. We don’t pursue this for the sake of simplicity.

In the case (p0, q0) = (1,∞), Theorem 2.26 is not optimal in two respects:
firstly, a weighted 1→∞-estimate is a strong assumption on the integral kernel of
B (cf. Corollary 2.18). It is possible to replace this assumption by an appropriate
integrability assumption. Secondly, if we know more than the subexponential
volume growth in (2.7), e.g. if the volume growth is polynomial, then the weight
functions ργ,y can be adjusted to this particular volume growth. See [KuVo00;
Thm. 2].

For the proof of Theorem 2.26 we need several preparatory results. The proof
of Theorem 2.4 will be given at the end of the section.

In order to prove the inclusion ρ(Bp) ⊆ ρ(Bq) for p, q ∈ [p0, q0] \ {∞} one has
to show that for λ ∈ ρ(Bp) the operator (λ − Bp)

−1�L∞,c extends to a bounded
operator on Lq(Ω). This is expressed in the following elementary lemma which is
stated in the general context of topological spaces (cf. [LiVo00; Prop. 4], [Are94;
Prop. 2.3]).

Let E,F,G be Hausdorff spaces with E,F ↪→ G (continuous injections) such
that E ∩F is dense in both E and F . Let D ⊆ E ∩F be a subset which is dense
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with respect to the initial topology induced by the imbeddings E ∩ F ↪→ E and
E ∩ F ↪→ F .

Lemma 2.27. ([KuVo00; Lemma 9]) Let BE: E → E and BF : F → F be con-
tinuous mappings satisfying BE�D = BF �D. Assume that BE is continuously
invertible and that B−1

E �D extends to a continuous mapping R: F → F . Then BF

is continuously invertible, and B−1
F = R.

Proof. Since D is dense in E ∩ F and E,F ↪→ G, we have BE�E∩F = BF �E∩F
and B−1

E �E∩F = R�E∩F . Hence RBF = BFR = I on E ∩F . This yields the claim
since E ∩ F is dense in F .

We will apply this lemma in the situation E = Lp(Ω), F = Lq(Ω), G = L1,loc

and D = L∞,c.
In the proof of Theorem 2.26, we will make use of Proposition 2.16 in the

following form.

Remark 2.28. Let B: L∞,c → L1,loc be a linear operator, γ0 > 0. Then

||vα1Bv
β
1 ||p→q,γ 6 Kγ0||vα0

1 Bvβ0

1 ||p0→q0,γ0

for all p0 6 p 6 q 6 q0, |γ| 6 γ0/2, and α0, β0, α, β > 0 with α0 +β0 = p−1
0 − q−1

0 ,
α+β = p−1− q−1. Here we can choose Kγ0 := c6

γ0/8
(1−e−γ0/8)−2e5γ0/8, with cγ0/8

from (2.7).
For the proof, apply Proposition 2.16 with cr := γ0

8
and c0 := cγ0/8.

The crucial part in the proof of Theorem 2.26 is the following estimate which
implies convergence of weighted operators (cf. [Sch96; Lemma 3.2.3], [LiVo00;
Prop. 5(iii)]).

Proposition 2.29. (cf. [KuVo00; Prop. 15]) Let B: L∞,c → L1,loc be a linear
operator, 1 6 p <∞, γ0 > 0. There exist δγ0,γ > 0 with δγ0,γ → 0 as γ → 0 such
that

||ρBρ−1 −B||p→p 6 δγ0,γ||B||p→p,γ0

for all 0 < γ < γ0 and ρ ∈ P (γ, 1). In particular, for all |γ| < γ0, ργ,yBρ
−1
γ,y

extends to a bounded operator Bγ,y on Lp(Ω), and Bγ,y → B0,y in the norm as
γ → 0, uniformly in y ∈M .

Proof. Let 0 < γ < γ0 and ρ ∈ P (γ, 1). By (2.7) there exists c0 > 0 such that

vr 6 c0e
(γ0−γ)rv1 for all r > 1. By (2.14) this implies v := v

−1/p
1 ∈ P (γ0 − γ, C),

with C := c0e
γ0−γ.

Let f ∈ L∞,c. By Lemma 2.19 we have

||(ρBρ−1 −B)f ||p 6 e2γ0
∣∣∣∣y 7→ ||ρ2γ0,yv(ρBρ−1 −B)f ||p

∣∣∣∣
Lp(M)

. (2.25)

We now write

ρBρ−1 −B = ρρ(y)−1B(ρ(y)ρ−1 − 1) + (ρρ(y)−1 − 1)B =: B1 +B2,
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insert this into (2.25), use the triangle inequality and estimate the two resulting
terms separately. For the second term we have, using Lemma 2.13(b) and (2.15),∣∣∣∣y 7→ ||ρ2γ0,yvB2f ||p

∣∣∣∣
Lp(M)

6 np
(
v(x)ρ2γ0,y(x)(ρ−γ,y(x)− 1)

)
||B||p→p||f ||p.

Using (2.15) and Lemma 2.13(b) again, we can estimate the first term by∣∣∣∣y 7→ ||ρ2γ0,yvB1f ||p
∣∣∣∣
Lp(M)

6 C
∣∣∣∣y 7→ ||ργ0,yv(y)B(ρ(y)ρ−1 − 1)f ||p

∣∣∣∣
Lp(M)

6 C||B||p→p,γ0

∣∣∣∣y 7→ ||ργ0,yv(y)(ρ−γ,y − 1)f ||p
∣∣∣∣
Lp(M)

6 C||B||p→p,γ0np
(
v(y)ργ0,y(x)(ρ−γ,y(x)− 1)

)
||f ||p.

To complete the proof, note that ||B||p→p 6 Kγ0||B||p→p,γ0 by Remark 2.28 and
that

np
(
v(x)ργ0,y(x)(ρ−γ,y(x)− 1)

)
6 np

(
v(x)e−γ0d(x,y)/2

)
sup
r>0

e−γ0r/2(eγr − 1)→ 0

as γ → 0, where we used ργ0,y = (ργ0/2,y)
2.

The following consequence of Proposition 2.29 will be used in the proof of
Theorem 2.26.

Corollary 2.30. (cf. [KuVo00; Cor. 16]) Let 1 6 p < ∞ and B a bounded
operator on Lp(Ω) satisfying ||B||p→p,γ0 < ∞ for some γ0 > 0. Let λ ∈ ρ(B).
Then there exists γ1 > 0 such that ||(λ−B)−1||p→p,γ <∞ for all |γ| 6 γ1.

Proof. Let λ ∈ ρ(B). By the assumption we have ||λ − B||p→p,γ0 < ∞. Recall
that inversion is continuous in the open set of invertible elements in L(Lp(Ω)).
Thus, by Proposition 2.29 there exists γ1 > 0 such that λ−Bγ,y is invertible for
all y ∈M , |γ| < γ1, and

sup
y∈M
||(λ−Bγ,y)

−1||p→p <∞.

In order to prove ||(λ−B)−1||p→p,γ <∞ it remains to show (λ−Bγ,y)
−1�D(ρ−1

γ,y ,Lp) =

ργ,y(λ−B)−1ρ−1
γ,y for all y ∈M . The latter is a consequence of the following two

facts: (λ − Bγ,y)�D(ρ−1
γ,y ,Lp) = ργ,y(λ − B)ρ−1

γ,y for all y ∈ M , and the operator

ρ−1
γ,y: D(ρ−1

γ,y, Lp)→ Lp(Ω) is bijective since ργ,y is bounded.

Proof of Theorem 2.26. By Remark 2.28 it is clear that B extends to a
bounded operator Bp on Lp(Ω), for all p ∈ [p0, q0]\{∞}. Let p, q ∈ [p0, q0]\{∞}.
The operators Bp and Bq are consistent since L∞,c is dense in Lp(Ω) ∩ Lq(Ω).
So we have to prove the inclusion ρ(Bp) ⊆ ρ(Bq) and the consistency of the
resolvents. Let λ ∈ ρ(Bp).

First we study the case λ 6= 0. Then we can rewrite the resolvent R(λ) of Bp

as

R(λ) = λ−1I + λ−2Bp + λ−2BpR(λ)Bp.



54 CHAPTER 2. ANALYTICITY AND LP -SPECTRAL INDEPENDENCE

We have to show that λ ∈ ρ(Bq) and that (λ−Bp)
−1, (λ−Bq)

−1 are consistent,
which by Lemma 2.27 amounts to showing Lq-boundedness of R(λ)�L∞,c .

It is clear that λ−1I+λ−2B is Lq-bounded; we will show that BpR(λ)B is Lq-
bounded. According to Corollary 2.30 we have ||R(λ)||p→p,γ <∞ for some 0 < γ <
γ0

2
. Let α := p−1

0 −p−1, β := p−1−q−1
0 . Then ||Bvα1 ||p0→p,γ <∞ and ||vβ1B||p→q0,γ <

∞ by Remark 2.28. Remark 2.15 implies that ||vβ1BpR(λ)Bvα1 ||p0→q0,γ < ∞.
Another application of Remark 2.28 yields Lq-boundedness of BpR(λ)B.

In the case λ = 0 we simply write R(λ) = BpR(λ)3Bp. By the above we have

||vβ1R(λ)vα1 ||p0→q0,γ <∞. Again ||R(λ)||q→q <∞ by Remark 2.28.

Remark 2.31. Let 1 6 p < q 6 ∞ and α := p−1 − q−1. Let Bp be a bounded
operator on Lp(Ω) with 0 ∈ ρ(Bp) and ||vα1Bp||p→q < ∞. Then ||vα1 : Lp(Ω) →
Lq(Ω)|| 6 ||B−1

p ||p→p||vα1Bp||p→q <∞. Therefore (Ω, µ) cannot contain a sequence
(Mn) of bounded subsets satisfying Mn ⊇ Mn+1 (n ∈ N) and 0 < µ(Mn) → 0
(n→∞).

Then Ω =
⋃∞
n=0 Mn where µ(M0) = 0, and Mn are pairwise disjoint atoms of

(Ω, µ) (n > 1). Therefore, for all s <∞, the space Ls(Ω) is isometrically isomor-
phic to the weighted space of sequences

{
(xn);

∑
n |xn|sµ(Mn) <∞

}
, and L∞(Ω)

is isometrically isomorphic to l∞. In this case we have ||Bp�L1(Ω)∩Lp(Ω)||1→∞ <∞.

In order to derive Theorem 2.4 from Theorem 2.26 we need some more prepa-
ration. Part (b) of the following lemma is inspired by [Kar00; Lemma 6.3].

Lemma 2.32. Let A be a closed operator in a Banach space X, and n ∈ N.
(a) Let λ0 ∈ ρ(A), λ ∈ C such that (λ0 − λ)−n ∈ ρ

(
(λ0 − A)−n

)
. Then

λ ∈ ρ(A), and

(λ− A)−1 =
n∑
k=1

(λ0 − λ)k−n−1(λ0 − A)−k
(
(λ0 − λ)−n − (λ0 − A)−n

)−1
.

(b) Assume that σ(A) ⊆
{
λ ∈ C; Reλ 6 ω

}
for some ω ∈ R. Then for all

λ ∈ ρ(A) there exists λ0 > ω such that (λ0 − λ)−n ∈ ρ
(
(λ0 − A)−n

)
.

Proof. (a) Let B := (λ0−A)−1, α := (λ0−λ)−1, S :=
∑n

1 (λ0−λ)k−n−1(λ0−A)−k.
Then

(λ− A)S = (B−1 − α−1)
n∑
k=1

αn+1−kBk = (α−B)
n∑
k=1

αn−kBk−1 = αn −Bn,

and hence (λ−A)S(αn −Bn)−1 = id. In the same way, S(αn −Bn)−1(λ−A) =
idD(A) (note that S and (αn −Bn)−1 commute). This proves (a).

(b) Let λ ∈ ρ(A). By the spectral mapping theorem for bounded operators
we have to show that there exists λ0 > ω such that

(λ0 − λ)−1e2πi k
n ∈ ρ

(
(λ0 − A)−1

)
(k = 0, . . . , n− 1).

By the spectral mapping theorem for the resolvent, the latter is equivalent to
µk := λ0 − (λ0 − λ)e2πi k

n ∈ ρ(A) (k = 0, . . . , n − 1). For k = 0 this is true since
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λ ∈ ρ(A). For k = 1, . . . , n − 1 we have Reµk > λ0(1− cos 2πk
n

)− |λ|, so by the
assumption on σ(A) we obtain that µk ∈ ρ(A) if λ0 is sufficiently large.

For the next result let E, F be Banach spaces, and assume that there exists
a Hausdorff topological vector space G such that E ↪→ G, F ↪→ G (continuous
injections) and E ∩ F is dense in both E and F .

Proposition 2.33. Let AE, AF be closed operators in E, F , respectively, with
σ(AE), σ(AF ) ⊆

{
λ ∈ C; Reλ 6 ω

}
for some ω ∈ R. Let n ∈ N. Assume

that, for all λ0 > ω, the resolvents (λ0 −AE)−1, (λ0 −AF )−1 are consistent, and
(λ0−AE)−n, (λ0−AF )−n have equal spectra and consistent resolvents. Then AE,
AF have equal spectra and consistent resolvents.

Proof. We have to show ρ(AE) ⊆ ρ(AF ) and the consistency of the resolvents.
Let λ ∈ ρ(AE). By Lemma 2.32(b) there exists λ0 > ω such that (λ0 − λ)−n ∈
ρ
(
(λ0 − AE)−n

)
, so (λ0 − λ)−n ∈ ρ

(
(λ0 − AF )−n

)
by the assumption. Since

λ0 ∈ ρ(AE) ∩ ρ(AF ), the assertions of Lemma 2.32(a) are fulfilled for A = AE as
well as A = AF . Thus, λ ∈ ρ(AF ), and (λ − AE)−1, (λ − AF )−1 are consistent
since (λ0−AE)−1, (λ0−AF )−1 are consistent and (λ0−AE)−n, (λ0−AF )−n have
consistent resolvents.

Proof of Theorem 2.4. We are going to show a weighted norm estimate for
(λ+ Ap)

−n in order to apply Theorem 2.26 to this operator.
By Remark 2.28 it follows from assumption (2.9) that

||vp
−1
0 −p−1

1 Tp0(t)||p0→p,γ0/2 6 Kγ0 · C
(
t0
2

)−K
=: C0

(
t0
2
6 t 6 t0, p0 6 p 6 q0

)
.

With α := p−1
0 − q−1

0 and ω := t−1
0 lnC0 we deduce that

||vα1 Tp0(t)||p0→q0,γ0/2 6 C0e
ωt (t > t0).

For small times, Remark 2.28 applied to assumption (2.9) yields

||vα1 Tp0(t)||p0→q0,γ0/2 6 Kγ0 · Ct−K (0 < t 6 t0).

Let n ∈ N with n > K. For λ0 > ω we obtain, using the representation of
(λ0 + Ap0)−n given in (2.24),

||vα1 (λ0 + Ap0)−n||p0→q0,γ0/2 <∞.

Note that the operators (λ0 + Ap)
−n are consistent, by (2.24). Therefore, by

Theorem 2.26, they have spectrum independent of p ∈ [p0, q0]\{∞} and consistent
resolvents. We conclude the proof by an application of Proposition 2.33.

In the case (p0, q0) 6= (1,∞) we could avoid using (2.24), and we would need
Proposition 2.33 only for the simple case n = 1: By the assumption of Theo-
rem 2.4, for all r ∈ [p0, q0] \ {∞} there exists Cr > C such that ||Tr(t)|| 6 Cr
(t 6 t0). Let p, q ∈ [p0, q0] \ {∞} with p < q, and let θ := θp,q ∈ (0, 1] such that
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p−1−q−1 = θ(p−1
0 −q−1

0 ). Then Stein interpolation between the bounds (2.9) and
||Tr(t)|| 6 C0 for suitable r ∈ [p, q] yields

||vθα1 Tp(t)v
θβ
1 ||p→q,θγ0 6 Crt

−θK (0 < t 6 t0).

Now assume that θp,q <
1
K

, i.e., p−1 − q−1 < 1
K

(p−1
0 − q−1

0 ). Then we obtain,
as in the above proof,

||vθα1 (λ0 + Ap)
−1vθβ1 ||p→q,θγ0 <∞. (2.26)

It remains to apply Theorem 2.26 and the spectral mapping theorem for the re-
solvent to obtain that σ(Ar) is independent of r ∈ [p, q], whenever p−1 − q−1 <
1
K

(p−1
0 − q−1

0 ). The consistency of the resolvents of the operators Ar is straight-
forward from the consistency of the resolvents of the operators (λ0 +Ar)

−1. This
proves Theorem 2.4.

Observe that the above idea of proof is not applicable in the case (p0, q0) =
(1,∞): then we only have the assumption vr(x) 6 µ(B(x, r)). Hence the weighted
p→q-estimate (2.26) is of no use —Theorem 2.26 requires a weighted 1→∞-
estimate.



Chapter 3

Lp-properties of elliptic
differential operators

This chapter is devoted to the Lp-theory of second order elliptic differential op-
erators on an open set Ω ⊆ RN , N ∈ N, corresponding to the formal differential
expression

L := −∇ · (a∇) + b1 · ∇+∇ · b2 + V

with singular measurable coefficients a: Ω→ R
N ⊗RN , b1, b2: Ω→ R

N , V : Ω→
R. We are going to construct a positive C0-semigroup on Lp := Lp(Ω), whose
generator is associated with L in a natural way which will be made precise below.
As it is well-known, this implies well-posedness of the corresponding Cauchy
problem.

There is vast literature concerning the case that one can associate a consistent
family of C0-semigroups on all Lp-spaces with the differential expression L. This,
however, is not the case of major interest here. In general, L will be associated
with a C0-semigroup on Lp for p from a proper subinterval of [1,∞).

The chapter is organised as follows. In Section 3.1 we motivate and formulate
our main results concerning the construction of a family of positive C0-semigroups
on Lp associated with L. Moreover, we investigate the problems of extrapolation,
analyticity and Lp-spectral independence for these semigroups. The proofs of the
main theorems are given in the two subsequent sections. Finally, in Section 3.4
we discuss to what extent our results are sharp.

The contents of this chapter are partly contained in [SoVo00], [LSV00].

3.1 Construction of the semigroup on Lp and

main properties

Elliptic operators in divergence form with measurable coefficients are usually
defined by means of the form method. The form associated with the above

57
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differential expression L is defined by

τ(u, v) := 〈a∇u,∇v〉+ 〈∇u, b1v〉 − 〈b2u,∇v〉+ 〈V u, v〉 (3.1)

on a suitable domain D(τ) corresponding to the boundary conditions. Here and
in the following, 〈f, g〉 is defined as

∫
Ω
f(x) · g(x) dx whenever f · g ∈ L1, for

f, g: Ω→ C or f, g: Ω→ C
N measurable. We will consider the lower order terms

of τ as (not necessarily form bounded) perturbations of the second order term.

Assume that τ is densely defined and fulfils the first Beurling-Deny criterion.
(The latter holds if and only if (Reu)+ ∈ D(τ) for all u ∈ D(τ); in this case
we have τ(u, v) ∈ R and τ(u+, u−) = 0 for all real-valued u, v ∈ D(τ)—see
Definition 1.12.) Then the precise formulation of the problem is as follows: Given
p ∈ [1,∞), under which conditions on the coefficients a, b1, b2, V and the domain
D(τ) is τ associated with a positive C0-semigroup Tp on Lp, in the sense of
Definition 1.20? If τ is associated with Tp(t) = e−tAp , we can regard Ap as the
Lp-realisation of L with boundary conditions prescribed by D(τ).

The present section is organised as follows. First we formulate conditions
on the form τ ensuring that τ is densely defined and fulfils the first Beurling-
Deny criterion. We then investigate for which p ∈ [1,∞) one can expect τ to be
associated with a quasi-contractive C0-semigroup on Lp. A comprehensive answer
is given in Theorem 3.2; see also Corollary 3.5.

In general, the set of all p ∈ [1,∞) such that τ is associated with a positive C0-
semigroup Tp on Lp is strictly larger than the set I determined in Theorem 3.2.
In Theorem 3.8 we will show, under some additional restrictions, that I can
be extended to the left and to the right if a is uniformly elliptic. Moreover,
we show that under these restrictions we have p-independence of the angle of
analyticity and of the Lp-spectrum. Our last result, Theorem 3.10, shows that
the conditions needed to obtain Lp-spectral independence, for p ∈ I only, are
considerably weaker.

We make the following qualitative assumptions on the coefficients of L.

(a) a is a.e. invertible, a, a−1 ∈ L1,loc, and a is sectorial, i.e.,∣∣Im(aζ · ζ)
∣∣ 6 αRe(aζ · ζ) a.e. for all ζ ∈ CN

for some α > 0. Recall from Proposition 1.28 that

τN(u, v) := 〈a∇u,∇v〉, D(τN) :=
{
u ∈ W 1

1,loc ∩ L2; a∇u · ∇u ∈ L1

}
defines a (non-symmetric) Dirichlet form in L2. Let τa ⊆ τN be a Dirichlet
form.

(bV) The potentials Wj := bj
>a−1

s bj (j = 1, 2) and V + are τa-regular, and

Q(V −) ⊇ D(τa) ∩Q(W1 +W2 + V +) (recall that as = a+a>

2
).
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We define the form τ on D(τ) := D(τa) ∩ Q(W1 + W2 + V +) by (3.1). This
is possible since for all u, v ∈ D(τ) and j = 1, 2 we have, by the Cauchy-Schwarz
inequality,

|∇u · bjv| =
∣∣a1/2
s ∇u · a−1/2

s bjv
∣∣ 6 (as∇u · ∇u)1/2(

Wj|v|2
)1/2 ∈ L1. (3.2)

Since τa is a Dirichlet form we have (Reu)+ ∈ D(τ) for all u ∈ D(τ). Therefore,
τ fulfils the first Beurling-Deny criterion. Of course, we can define τ in the same
way as above without assuming (bV). The reason for assuming (bV) is that then
D(τ) is dense in D(τa), by Lemma 1.24(b); in particular, τ is densely defined.

Our first aim is to determine the interval of those p ∈ [1,∞) for which τ is
associated with a quasi-contractive C0-semigroup on Lp. The only quantitative
condition we need is seen from the Lumer-Phillips theorem by a formal compu-
tation. Suppose τ is associated with a positive quasi-contractive C0-semigroup
Tp(t) = e−tAp on Lp, for some 1 < p < ∞. Then Ap is quasi-accretive which, by
the positivity of Tp, is equivalent to 〈Apu, up−1〉 > −ωp||u||pp for all 0 6 u ∈ D(Ap),
for some ωp ∈ R.

Formally, Apu = Lu, ∇up−1 = (p − 1)up−2∇u = 2
p′
u
p
2
−1∇u p2 , and similarly

∇u = 2
p
u1− p

2∇u p2 . Thus,

〈Apu, up−1〉 =
〈
−∇ · (a∇u) + b1 · ∇u+∇ · (b2u) + V u, up−1

〉
= 4

pp′
〈a∇u p2 ,∇u p2 〉+ 〈(2

p
b1 − 2

p′
b2)u

p
2 ,∇u p2 〉+ 〈V up〉

(here and in the following, 〈f〉 :=
∫

Ω
f(x) dx for all f ∈ L1). We define symmetric

forms τp on D(τp) := D(τ) (1 < p <∞), as real parts of sesquilinear forms, by

τp(u) := Re
(

4
pp′
〈a∇u,∇u〉+ 2

p
〈∇u, b1u〉 − 2

p′
〈b2u,∇u〉+ 〈V u, u〉

)
= 4

pp′
Re τa(u) + 2

p
〈∇|u|, b1|u|〉 − 2

p′
〈b2|u|,∇|u|〉+ 〈V |u|2〉

(note that Re(u∇u) = |u|∇|u| for all u ∈ W 1
1,loc [LeSi81; Appendix, Cor. 1]).

Then the natural condition for Lp-accretivity is

τp(u) > −ωp||u||22 for all 0 6 u ∈ D(τ).

This is equivalent to τp > −ωp since τp fulfils the first Beurling-Deny criterion.
Note that τ2 = Re τ (as to be expected). Further, we define the symmetric forms
τ1, τ∞ by setting p = 1,∞ in the above definition:

τ1(u) := 2〈∇|u|, b1|u|〉+ 〈V |u|2〉,
τ∞(u) := −2〈b2|u|,∇|u|〉+ 〈V |u|2〉

on D(τ1) := D(τ∞) := D(τ).
Now we can explain why we do not just assume V − to be τa-regular in (bV).

Suppose that τp > −ωp for some p ∈ [1,∞], ωp ∈ R. Then

〈V −u2〉 6 4
pp′

Re τa(u) + 〈(2
p
b1 − 2

p′
b2)u,∇u〉+ 〈(V + + ωp)u

2〉
(
0 6 u ∈ D(τ)

)
.
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If V − is τa-regular then it is (τa + W1 + W2 + V +)-regular, by Lemma 1.24(b).
Thus, the above inequality is valid for all 0 6 u ∈ D(τa) ∩ Q(W1 + W2 + V +),
so (bV) holds. In other words, if the assumption on V − in (bV) does not hold
then none of the forms τp is bounded below.

The forms τp play a crucial role in all our results on elliptic operators. In the
following proposition we collect several simple properties of the forms τ and τp
which are important for the understanding of the subsequent theorems.

Proposition 3.1. Assume that (a) and (bV) hold. Let I be the set of all p ∈
[1,∞) such that ωp := inf{ω ∈ R; τp > −ω} <∞ (then τp > −ωp for all p ∈ I).

(a) For all potentials U > W1 + W2 + V −, the form τ + U is sectorial and
closed. For all 1 < p <∞ and U > p′W1 +pW2 +V −, the symmetric form τp+U
is closed. In particular, τp is closable for all p ∈ I \ {1}.

(b) The set I is an interval and, for all p ∈
◦
I, there exist εp > 0, cp ∈ R such

that τp > εp Re τa − cp. If τpj > −ωpj (j = 0, 1) for some 1 6 p0 < p < p1 6 ∞
then we can choose εp = 4( 1

p0
− 1

p
)(1
p
− 1

p1
), cp = ωp0 ∨ ωp1.

(c) For all p, q ∈
◦
I, the norms || · ||τp and || · ||τq are equivalent.

Note that, in case τ1, τ∞ > 0, part (b) of the proposition reads τp > 4
pp′

Re τa.

Proof of Proposition 3.1. (a) From (3.2) we deduce by Euclid’s inequality
(|ab| 6 ε

2
a2 + 1

2ε
b2 for all a, b ∈ R, ε > 0) that the sum of the first order terms of

τ is form small with respect to τa + W1 + W2. Thus, τ + U is a closed sectorial
form for any potential U > W1 + W2 + V −. The analogous argument works for
τp if 1 < p <∞. By Corollary 1.16 we obtain that τp is closable if it is bounded
below, i.e., p ∈ I.

The proof of (b) and (c) relies on the following identity which results directly
from the definition of the forms τp: for all p0, p1 ∈ I, θ ∈ (0, 1) and pθ defined by
1
pθ

= 1−θ
p0

+ θ
p1

we have

τpθ = (1− θ)τp0 + θτp1 + 4

(
1

pθp′θ
− 1− θ

p0p′0
− θ

p1p′1

)
Re τa. (3.3)

In order to prove (b), it now suffices to show that

1

pθp′θ
− 1− θ

p0p′0
− θ

p1p′1
=

(
1

p′θ
− 1

p′0

)(
1

pθ
− 1

p1

)(
=

(
1

p0

− 1

pθ

)(
1

pθ
− 1

p1

))
,

which in turn follows from the equality

1

pθp′0
+

1

p′θp1

=

(
1− θ
p0

+
θ

p1

)
1

p′0
+

(
1− θ
p′0

+
θ

p′1

)
1

p1

=
1− θ
p0p′0

+
θ

p1p′1
+

1

p′0p1

.

(c) By (3.3) we have τpθ > (1− θ)τp0 + θτp1 . We deduce that, for all p, q ∈
◦
I,

there exist ε > 0, ω ∈ R such that τp > ετq − ω and τq > ετp − ω.
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The form τ itself need not be sectorial. In fact, Theorem 3.2 below includes
cases where τ is not even bounded from the left. However, the form τ + W1 +
W2 + V − is sectorial and closed by Proposition 3.1(a). This enables us to make
use of Definition 1.20 in the first main theorem of this chapter which reads as
follows.

Theorem 3.2. Assume that (a) and (bV) hold. Let I be the interval of all
p ∈ [1,∞) such that ωp = inf{ω ∈ R; τp > −ω} < ∞. Then the following
assertions hold.

(a) The form τ is associated with a consistent family of positive C0-semigroups
Tp(t) = e−tAp on Lp, p ∈ I, with ||Tp(t)|| 6 eωpt for all p ∈ I, t > 0.

(b) For all p ∈ I \ {1} and u ∈ D(Ap) we have |u| p2 sgnu ∈ D(τp) and

Re〈Apu, u|u|p−2〉 > τp(|u|
p
2 sgnu). (3.4)

(c) If, in addition,∣∣Im〈(b1 + b2)u,∇u〉
∣∣ 6 c1τp(u) + c2||u||22

(
u ∈ D(τ)

)
(3.5)

for some p ∈
◦
I, c1 > 0, c2 ∈ R then Ap is an m-sectorial operator for all p ∈

◦
I,

in particular, Tp extends to an analytic semigroup on Lp.

Remarks 3.3. (a) We point out that the semigroups Tp are associated with
the form τ , not with the forms τp. These forms, however, determine important
properties of the semigroups Tp.

The method used in the theorem to construct the semigroups Tp is much
more natural than it may seem at first sight. The construction amounts to an
approximation of the lower order perturbations: not of the first order terms as
one might expect but of the potential—recall that we apply Definition 1.20. See
also Corollary 3.4(b) below.

(b) The domain of τa determines the ‘boundary conditions’ under consid-
eration (the standard examples are the case of Neumann boundary conditions
τa = τN and of Dirichlet boundary conditions τa = τD := τN�C∞c (Ω)). Assump-
tion (bV) expresses that the lower order perturbations must not disturb the
boundary conditions prescribed by D(τa). In the case of Dirichlet boundary
conditions, assumption (bV) is fulfilled in particular if W1,W2, V ∈ L1,loc.

Suppose that assumption (bV) is not fulfilled, but D(τ) is dense in L2. Let
τ̃a := τN�D(τ). Then assumptions (a) and (bV) are fulfilled with τ̃a in place of
τa, so Theorem 3.2 is still applicable to the form τ . (Note that τ̃a is a Dirichlet
form since condition (1.4) is fulfilled for D = D(τ)—see Definition 1.26.)

(c) If the form τ itself is sectorial then it is closable by Proposition 3.1(a) and
Corollary 1.16. In this case we have 2 ∈ I, and the operator A2 constructed in
Theorem 3.2 is just the m-sectorial operator associated with τ (cf. the paragraph
following Definition 1.20).

(d) We point out that the case I = {1} is quite possible. By definition, 1 ∈ I
if τ1 > −ω for some ω ∈ R. Note that the coefficient b2 is not involved in this
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condition. In particular, if (a) holds, b1 = 0 and V > 0 then τ is associated with
a positive contractive C0-semigroup on L1, whenever b2

>a−1
s b2 is τa-regular.

(e) For the case p = ∞ we obtain the following by considering the adjoint
picture in L1. If τ∞ > −ω∞ for some ω∞ ∈ R then we can associate a weak∗-
continuous semigroup T∞ on L∞ with the form τ , which satisfies ||T∞(t)|| 6 eω∞t

for all t > 0. Observe that the condition on τ∞ imposes no restriction on b1.
(f) Estimate (3.4) is analogous to the corresponding estimate in Theo-

rem 1.32(b). In former results on second order elliptic operators with singular
first order terms ([Lis96], [LiSe96]), an inequality similar to (3.4) was proved only
for |u| p2 in place of |u| p2 sgnu. (Note that τp(v) > τp(|v|) for all v ∈ D(τp) since
τp is a closed symmetric form fulfilling the first Beurling-Deny criterion.)

Corollary 3.4. Let the assumptions and notation be as in Theorem 3.2, and
p ∈ I.

(a) Let U > 0 be τa-regular. Then U is Tp-regular, and τ + U ↔ (Tp)U .
(b) Let (Un)n∈N0 be a sequence of positive potentials such that U0 is τa-regular,

Un 6 U0, τ+Un is sectorial (n ∈ N0) and Un → 0 a.e. as n→∞. Then τ+Un is
closable, the analytic semigroup TUn,2 associated with τ + Un extrapolates to the
C0-semigroup (Tp)Un on Lp, and Un is Tp-regular. In particular, (Tp)Un → Tp as
n→∞.

Proof. (a) Let W := W1 + W2 + V −. Then τ + W is a closed sectorial form,
by Proposition 3.1(a). By Lemma 1.24(b), U is (τa + W )-regular and hence
(τ +W )-regular. By Proposition 1.21 we obtain the assertions of (a).

(b) Let n ∈ N0. By Proposition 3.1(a), τ + Un + W is closed, so τ + Un is
closable by Corollary 1.16. By (a), Un is Tp-regular, and τ + Un ↔ (Tp)Un , i.e.,
TUn,2 and (Tp)Un are consistent. Finally, by [Voi88; Cor. 3.6], (Tp)Un → Tp as
n→∞ since U0 is Tp-regular.

As a direct consequence of Theorem 3.2 we obtain a more explicit version of
that theorem.

Corollary 3.5. Let V+, V− > 0 be τa-regular with V+ − V− = V , and τ+ :=
Re τa + V+. Assume that (a) and (bV) hold and that

(−1)j〈bju,∇u〉 6 βjτ+(u) +Bj||u||22, 〈V−u2〉 6 γτ+(u) +G||u||22

(0 6 u ∈ D(τ)∩Q(V+), j = 1, 2) for some constants β1, β2, γ > 0, B1, B2, G ∈ R.
Let I0 :=

{
p ∈ [1,∞); 4

pp′
− 2

p
β1 − 2

p′
β2 − γ > 0

}
. Then, with the notation of

Theorem 3.2, I ⊇ I0, and ωp 6 2
p
B1 + 2

p′
B2 +G for all p ∈ I0. Moreover, for all

p ∈
◦
I0 and u ∈ D(Ap) we have vp := |u| p2 sgnu ∈ D(τ+) and

Re〈Apu, u|u|p−2〉 >
(

4
pp′
− 2

p
β1 − 2

p′
β2 − γ

)
τ+(vp)−

(
2
p
B1 + 2

p′
B2 +G

)
||u||pp.

If, in addition,∣∣Im〈(b1 + b2)u,∇u〉
∣∣ 6 c1τ+(u) + c2||u||22

(
u ∈ D(τ) ∩Q(V+)

)
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for some c1 > 0, c2 ∈ R then Tp extends to an analytic semigroup on Lp for all
p ∈

◦
I.

Proof. Since τ+(|u|) 6 τ+(u) for all u ∈ D(τ+), and 1 > 4
pp′

, the assumptions
imply that

τp(u) = 4
pp′

Re τa(u) + 〈V+|u|2〉 −
(
−2
p
〈b1|u|,∇|u|〉

)
− 2

p′
〈b2|u|,∇|u|〉 − 〈V−|u|2〉

>
(

4
pp′
− 2

p
β1 − 2

p′
β2 − γ

)
τ+(u)−

(
2
p
B1 + 2

p′
B2 +G

)
||u||22

for all p ∈ [1,∞), u ∈ D(τ) ∩ Q(V+). Let W := W1 + W2 + |V |. Then τp is a
bounded form on D(τa + W ). Since V+ is (τa + W )-regular by Lemma 1.24(b),
we deduce that τp > −

(
2
p
B1 + 2

p′
B2 + G

)
for all p ∈ I0. Thus, Theorem 3.2(a)

implies the first two assertions. In order to obtain the remaining assertions, note
that the above also implies that

τp >
(

4
pp′
− 2

p
β1 − 2

p′
β2 − γ

)
τ+ −

(
2
p
B1 + 2

p′
B2 +G

)
for all p ∈

◦
I0.

Remarks 3.6. (a) The interval I0 defined in Corollary 3.5 can be non-empty
only in the cases γ < 1, and γ = 1, β1 = β2 = 0 (then I0 = {2}).

(b) The assumptions of Corollary 3.5 are in particular fulfilled if Wj 6 β2
j τ+ +

2βjBj for j = 1, 2 and V− 6 γτ+ + G: then we have, by (3.2) and Euclid’s
inequality,

|〈bju,∇u〉| 6
βj
2
〈as∇u,∇u〉+

1

2βj
〈Wj|u|2〉

6
βj
2

Re τa(u) +
1

2βj

(
β2
j τ+(u) + 2βjBj||u||22

)
6 βjτ+(u) +Bj||u||22

and thus also∣∣Im〈(b1 + b2)u,∇u〉
∣∣ 6 (β1 + β2)τ+(u) + (B1 +B2)||u||22

for all u ∈ D(τ) ∩Q(V+). In this way, we reobtain [Lis96; Thms. 1-5] as special
cases of Corollary 3.5.

We point out that, besides some additional restrictions, b2 was assumed to be
0 in [Lis96]. In this case, the semigroup associated with τ +V − is L∞-contractive
(see Remark 3.3(e)). This leads to considerable simplifications in the proofs.
However, if b2 6= 0 then it is not clear whether there exists a τa-regular potential
U such that the semigroup associated with τ + U is L∞-bounded.

One of the major disadvantages of the assumption Wj 6 β2
j τ+ + 2βjBj (in

comparison with the corresponding assumption in Corollary 3.5) is that it does
not respect the sign of the drift: if the assumption is fulfilled for bj then also for
−bj.

(c) The example of the Ornstein-Uhlenbeck operator L = −∆ +Bx ·∇ shows
that the conditions posed on b1, b2 in Corollary 3.5 are much less restrictive than



64 CHAPTER 3. ELLIPTIC DIFFERENTIAL OPERATORS

the conditions studied in (b). Let Ω = R
N , a = id, D(τa) = W 1

2 (RN). Let
V = 0, b2 = 0, and define b1 by b1(x) = Bx for some B ∈ RN ⊗ RN . Then
W1 = |b1|2 is τa-regular. Moreover,

−〈b1∇u, u〉 = −1

2
〈b1,∇u2〉 =

1

2
trB||u||22

(
0 6 u ∈ C1

c (RN)
)
,

so we obtain that the assumptions of Corollary 3.5 hold with V+ = V− = 0,
β1 = β2 = B2 = γ = G = 0, B1 = 1

2
trB. Hence, τ is associated with a

consistent family of positive quasi-contractive C0-semigroups Tp on Lp, p > 1,

with ||Tp(t)|| 6 e
t
p

trB for all t > 0, p > 1.
Now we show that the conditions posed in (b) are not fulfilled with γ < 1

(cf. (a)) unless B = 0. Assume that there exist β1 > 0, γ ∈ [0, 1), B1, G ∈ R,
V+ = V− measurable (so that V+ − V− = 0) such that W1 6 β2

1(τa + V+) + 2β1B1

and V− 6 γ(τa + V+) +G. Then (1− γ)V+ 6 γτa +G and hence W1 6 c(τa + 1)
for some c > 0. If B 6= 0 then W1 = |b1|2 increases at infinity, in some direction
x. More precisely, there exists x ∈ RN such that W1 > λ2 on B(λx, 1), for all
λ > 1. It is easy so see that this contradicts W1 6 c(τa + 1).

For further examples, in particular where τ is associated with a semigroup on
Lp only for p from some subinterval of [1,∞), see Section 3.4.

In the remainder of the section we make the following assumption (cf. [Sem97;
Def. 3.1]).

(BC) For all 0 6 ϕ ∈ W 1
∞ (i.e., ϕ bounded and Lipschitz continuous) that

satisfy

as∇ϕ · ∇ϕ 6 c(Re τa +W1 +W2 + V + + 1) for some c > 0,

u ∈ D(τ) implies ϕu ∈ D(τ).

The above assumption is a restriction on the type of boundary conditions.
Below we show that it holds in the case of Neumann and of Dirichlet boundary
conditions. However, (BC) does not hold for periodic type boundary conditions.
In the case a ∈ L∞, (BC) simply reads ϕu ∈ D(τ) for all 0 6 ϕ ∈ W 1

∞, u ∈ D(τ).
Thus, if a ∈ L∞ then we have the following. Assume that (BC) holds, τ̃a ⊆ τa is
a Dirichlet form, and that D(τ̃a) is an ideal of D(τa) (u ∈ D(τ̃a), v ∈ D(τa) and
|v| 6 |u| imply v ∈ D(τ̃a)). Then (BC) holds with τ̃a in place of τa.

Proposition 3.7. ([LiVo00; Prop. 9]) Let (a) and (bV) hold. If τa = τN or
τa = τD (see Propositions 1.28 and 1.30) then assumption (BC) is fulfilled.

Proof. Let W := W1 +W2 + V + + 1. Recall that D(τ) = D(τa +W ).
Let first τa = τN . Let 0 6 ϕ ∈ W 1

∞ with as∇ϕ · ∇ϕ 6 c(Re τN +W ) for some
c > 0, and 0 6 u ∈ D(τN +W ). Then, by Euclid’s inequality,

as∇(ϕu) · ∇(ϕu) = ϕ2as∇u · ∇u+ u2as∇ϕ · ∇ϕ+ 2ϕuas∇ϕ · ∇u
6 2||ϕ||2∞as∇u · ∇u+ 2u2as∇ϕ · ∇ϕ ∈ L1.

(3.6)
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Hence ϕu ∈ D(τN), and it is clear that ϕu ∈ Q(W ). This proves the assertion
for τa = τN since τN +W fulfils the first Beurling-Deny criterion.

Now let τa = τD. Let 0 6 ϕ ∈ W 1
∞ with as∇ϕ · ∇ϕ 6 c(Re τD +W ) for some

c > 0 (this does not imply as∇ϕ ·∇ϕ 6 c(Re τN +W )!). Obviously, D(τD)∩L∞,c
is a dense ideal of D(τD). Thus, by Lemma 1.24(a), D(τD + W ) ∩ L∞,c =: D∞,c
is dense in D(τD + W ). Let 0 6 u ∈ D∞,c. Below we show that ϕu ∈ D(τD).
Then we obtain, by (3.6) and the assumption on ϕ,

(τD +W )(ϕu) 6 2||ϕ||2∞τD(u) + 2〈as∇ϕ · ∇ϕ, u2〉+ ||ϕ||2∞〈Wu2〉
6 2(||ϕ||2∞ + c)(τD +W )(u).

Since D∞,c is a lattice and τD + W is a Dirichlet form, we conclude that ϕ acts
as a bounded multiplication operator from D∞,c ⊆ D(τD + W ) to D(τD + W ).
This yields the assertion since D∞,c is dense in D(τD +W ).

So, let 0 6 u ∈ D∞,c. We have to show ϕu ∈ D(τD). Let (vn) ⊆ C∞c
such that vn → u in D(τD) as n → ∞. Let un := |vn| ∧ ||u||∞ (∈ W 1

∞,c). Then
supn∈N τD(un) 6 supn∈N Re τD(vn) < ∞ since τD is a Dirichlet form. Let ψ ∈
C∞c such that ψu = u. Let wn := ϕψun. Then ϕψ,wn ∈ W 1

∞,c ⊆ D(τD) by
Proposition 1.30. By (3.6) we obtain that

τD(wn) 6 2||ϕψ||2∞τD(un) + 2||un||2∞τD(ϕψ),

which implies that supn∈N τD(wn) < ∞ (recall that ||un||∞ 6 ||u||∞). Further,
wn → ϕψu = ϕu in L2 as n → ∞. Hence ϕu ∈ D(τD), by the lower semiconti-
nuity of τD.

The following is our main result on extrapolation for second order elliptic
differential operators.

Theorem 3.8. Let (a), (bV) and (BC) hold, and N > 3. Let I and Tp (p ∈ I)
be defined as in Theorem 3.2. Assume that

(i) a ∈ L∞, and there exist p ∈
◦
I, εp > 0, cp ∈ R such that the form τp

admits the Sobolev imbedding

τp(u) > εp||u||22N
N−2
− cp||u||22

(
u ∈ D(τ)

)
;

(ii) there exist p ∈
◦
I, Cp > 0 such that Tp is analytic, and∣∣〈(b1 + b2)u2〉

∣∣ 6 Cp||u||τp ||u||2
(
0 6 u ∈ D(τ)

)
.

Let p+ := sup I, p− := inf I, pmax := N
N−2

p+, pmin :=
(

N
N−2

p′−
)′

. In case
1 ∈ I let Imax := [1, pmax), otherwise Imax := (pmin, pmax). Then τ is associated
with an analytic semigroup Tp(t) = e−tAp on Lp, for all p ∈ Imax. The angle of
analyticity of Tp and the spectrum σ(Ap) are independent of p ∈ Imax.



66 CHAPTER 3. ELLIPTIC DIFFERENTIAL OPERATORS

Remarks 3.9. (a) Note that, by Proposition 3.1(c) and Stein interpolation, both
assumptions (i) and (ii) of the above theorem are fulfilled for some p ∈

◦
I if and

only if they are fulfilled for all p ∈
◦
I.

(b) Concerning assumption (i), the reader should think of a uniformly elliptic
matrix function a. Then, by Proposition 3.1(b), (i) is fulfilled if either of the
following three conditions holds: D(τa) ⊆ W 1

2,0, Ω has the cone property, or Ω
has the extension property (see [Ada75]).

(c) Concerning assumption (ii), note that it is much less restrictive to pose a
condition on

∣∣〈(b1 + b2)u2〉
∣∣ than on

〈
|b1 + b2|u2

〉
.

Assumption (ii) is in particular fulfilled if a is uniformly elliptic and

|b1 + b2|2 6 Kpτp + ω̃p

for some Kp > 0, ω̃p ∈ R. To see this, first observe that the latter condition is
equivalent to ||(b1 + b2)u||2 6 kp||u||τp for some kp > 0 and all u ∈ D(τp).

In order to show that Tp is analytic, we check condition (3.5) of Theorem 3.2.
For all u ∈ D(τ) we have∣∣〈(b1 + b2)u,∇u〉

∣∣ 6 ||(b1 + b2)u||2||∇u||2 6 kp||u||τp ||∇u||2.

By Proposition 3.1(b) and the uniform ellipticity of a, there exists c > 0 such
that ||∇u||2 6 c||u||τp for all u ∈ D(τp). Thus,∣∣〈(b1 + b2)u,∇u〉

∣∣ 6 kpc||u||2τp = kpc
(
τp(u) + (ωp + 1)||u||22

) (
u ∈ D(τ)

)
.

By Theorem 3.2(c) we infer that Tp is analytic.
Moreover, for all 0 6 u ∈ D(τ) we have∣∣〈(b1 + b2)u2〉

∣∣ 6 ||(b1 + b2)u||2||u||2 6 kp||u||τp ||u||2,

i.e., assumption (ii) of Theorem 3.8 is fulfilled.
(d) In the cases N = 1, 2, it should be possible to prove an analogue of

Theorem 3.8 with Imax = (1,∞) or even Imax = [1,∞). Of course assumption (i)
has to be reformulated for N = 1, 2.

We conclude the section by a result on Lp-spectral independence which is
a generalisation of [LiVo00; Thm. 2]. Recall the notion of L1-regularity from
Section 2.2, (2.11).

Theorem 3.10. Let (a), (bV) and (BC) hold. Let I and Tp(t) = e−tAp (p ∈ I)

be defined as in Theorem 3.2. Assume that there exist p ∈
◦
I, r > 1, εp > 0,

cp ∈ R such that the form τp admits the Sobolev imbedding

τp(u) > εp||u||22r − cp||u||22
(
u ∈ D(τ)

)
.

(a) Assume that there exists an L1-regular function ψ = (ψ1, . . . , ψN): RN →
R
N fulfilling the following two inequalities for some p ∈

◦
I, c0 > 0, c1 ∈ R, for
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all j = 1, . . . , N :

a∇ψj · ∇ψj 6 c0τp + c1,∣∣〈(b1 + b2) · ∇ψj, u2〉
∣∣ 6 c0τp(u) + c1||u||22

(
0 6 u ∈ D(τ)

)
.

Then the spectrum σ(Ap) is independent of p ∈ I \{1}, and the operators Ap have
consistent resolvents.

(b) If, more restrictively than in (a), there exist c > 0, ε ∈ (0, 2], p ∈
◦
I such

that

〈a∇ψj · ∇ψj, u2〉+
∣∣〈(b1 + b2) · ∇ψj, u2〉

∣∣ 6 c||u||2−ετp ||u||
ε
2

for all 0 6 u ∈ D(τ), j = 1, . . . , N then σ(Ap) is independent of p ∈ I, and the
operators Ap have consistent resolvents.

Remarks 3.11. (a) Note that the function ψ(x) = x is L1-regular, and∇ψj = ej
for all j = 1, . . . , N , where ej are the standard unit vectors of RN . Thus, the
assumptions of Theorem 3.10 are much weaker than the assumptions of Theo-
rem 3.8. In particular, we do not need to assume the matrix function a to be
bounded—if ψ(x) = x then the first condition in Theorem 3.10(a) is just form
boundedness of ajj with respect to τp, for all j = 1, . . . , N . The attentive reader
will note that the latter is a self-referential condition on a. It allows a to have
strong local singularities.

(b) The following example reveals the relevance of the notion of L1-regularity:
Let Kn 6= ∅ (n ∈ N) be compact subsets of RN such that

sup
n∈N

diam(Kn) <∞, inf
n6=m

dist(Kn, Km) > 0.

For n ∈ N fix some xn ∈ Kn. Define the function ψ0 on
⋃
n∈NKn by ψ0(x) := xn

for all n ∈ N, x ∈ Kn. Then ψ0 is Lipschitz continuous.

By Kirszbraun’s theorem (see, e.g., [Fed96; 2.10.43.]), ψ0 has a Lipschitz
continuous extension ψ to RN . Without restriction assume that for all j ∈ ZN
there exists n ∈ N such that dist(j,Kn) 6 1 (otherwise add {j} to the collection
of Kn). Then it is easy to see that supj∈ZN |ψ(j) − j| < ∞. From this we
deduce that ψ is L1-regular. By the construction, ∇ψj�Kn = 0 for all n ∈ N,
j = 1, . . . , N . Thus, by the assumptions on a∇ψj · ∇ψj and (b1 + b2) · ∇ψj in
Theorem 3.10 we pose no restrictions on the coefficients a, b1, b2 on

⋃
n∈NKn.

3.2 Quasi-contractive C0-semigroups

In this section we prove Theorem 3.2. We separate the core of the proof into a
lemma. Fix p ∈ (1,∞). For u ∈ L1,loc, n ∈ N let un,p :=

(
|u| p2−1

)
∧ n, vn,p :=

uun,p, wn,p := uu2
n,p, and vp(u) := u|u| p2−1, wp(u) := u|u|p−2 as in Lemma 1.34.
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Lemma 3.12. Let τ be a densely defined sesquilinear form in L2 fulfilling the
first Beurling-Deny criterion. Let h be a closed symmetric form in L2, h > −ω for
some ω ∈ R. Assume that there exists a sequence (Un)n∈N0 of positive potentials
such that D(U0) ⊇ D(τ), τ + U0 is sectorial and closed, Un ↓ 0 as n→∞, and

wn,p ∈ D(τ), vn,p ∈ D(h), Re τ(u,wn,p) > h(vn,p)− 〈Un|vn,p|2〉 (3.7)

for all u ∈ D(τ), n ∈ N.
(a) Then τ is associated with a positive C0-semigroup Tp(t) = e−tAp on Lp

with ||Tp(t)|| 6 eωt (t > 0), and for all u ∈ D(Ap) we have

Re〈Apu,wp(u)〉 > h(vp(u)). (3.8)

(b) If, in addition,

|Im τ(u,wn,p)| 6M(Re τ + Un + ω̃)(u,wn,p) (u ∈ D(τ), n ∈ N)

for some M > 0, ω̃ ∈ R, then Ap is m-sectorial of angle arctanM . In particular,
Tp is an analytic semigroup.

Proof. (a) Without restriction assume ω = 0. Let A0 be the m-sectorial operator
in L2 associated with τ + U0. In a first step we show that e−tA0 extrapolates
to a contractive C0-semigroup T0,p(t) = e−tA0,p on Lp. Then we make use of
Lemma 1.34 to prove the assertions of (a).

(i) By the exponential formula, it suffices to show that, given f ∈ L2∩Lp and
0 < λ ∈ ρ(−A0), one has ||(λ + A0)−1f ||p 6 1

λ
||f ||p. Let u := (λ + A0)−1f . Then

u ∈ D(τ +U0) = D(τ). This implies that vn,p ∈ Q(U0). By assumption (3.7) and
the equality uwn,p = |vn,p|2 we have, for all n ∈ N,

λ||vn,p||22 + (h + U0 − Un)(vn,p) 6 λ〈u,wn,p〉+ Re(τ + U0)(u,wn,p)

= Re
〈
(λ+ A0)u,wn,p

〉
6 ||f ||p||wn,p||p′ .

(3.9)

Observe that |wn,p|p
′

= |u|p′u2p′
n,p 6 |u|2u2

n,p = |vn,p|2. Hence ||wn,p||p′ 6 ||vn,p||
2
p′
2 ,

and from (3.9) we obtain, noting h + U0 − Un > h > 0,

||vn,p||
2
p

2 6
1
λ
||f ||p (n ∈ N).

Since |vn,p| ↑ |vp(u)| we conclude by monotone convergence that vp(u) ∈ L2, and

||(λ+ A0)−1f ||p = ||u||p = ||vp(u)||
2
p

2 6
1
λ
||f ||p.

(ii) With the quantities introduced in (i) we proceed as follows. By dominated
convergence, vn,p → vp(u) in L2 and wn,p → wp(u) in Lp′ as n → ∞. Further,
A0u = f − λu ∈ Lp. From estimate (3.9) we obtain

lim inf
n→∞

(
h(vn,p) + 〈(U0 − Un)|vn,p|2〉

)
6 lim

n→∞
Re〈A0u,wn,p〉 = Re〈A0u,wp(u)〉.
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By monotone convergence, (U0 − Un)|vn,p|2 ↑ U0|vp(u)|2 in L1. Hence, the left
hand side of the previous inequality equals lim infn→∞ h(vn,p) + 〈U0|vp(u)|2〉. The
lower semicontinuity of h implies that

vp(u) ∈ D(h), (h + U0)(vp(u)) 6 Re〈A0u,wp(u)〉. (3.10)

So far we have proved inequality (3.10) for all u from the coreD := (λ+A0)−1(L2∩
Lp) of A0,p, where λ > 0 is some element of ρ(−A0).

Let now u ∈ D(A0,p). Choose (u(m)) ⊆ D such that u(m) → u in D(A0,p).
Then vp(u

(m))→ vp(u) in L2 and wp(u
(m))→ wp(u) in Lp′ . By (3.10) we obtain

lim inf
m→∞

(h + U0)(vp(u
(m))) 6 lim

m→∞
Re〈A0,pu

(m), wp(u
(m))〉 = Re〈A0,pu,wp(u)〉,

so the lower semicontinuity of h+U0 implies that (3.10) holds for all u ∈ D(A0,p).
Now we are in a position to apply Lemma 1.34, with h + U0 in place of h,

A = A0,p, and V = −U0. By (3.10) we infer that −U0 is T0,p-admissible, that
Tp := (T0,p)−U0 is a contractive C0-semigroup, and that (3.8) holds, with −Ap the
generator of Tp.

(b) Recall that τ + U0 ↔ e−tA0,p . For m ∈ N let Am := A0,p − U0 ∧m. Then
τ + (U0 −m)+ ↔ e−tAm . Let u ∈ D(A0)∩D(A0,p). Then, since uwn,p = |vn,p|2 is
real and A0,pu = A0u,

Im〈Amu,wn,p〉 = Im〈(A0 − U0 ∧m)u,wn,p〉 = Im τ(u,wn,p) (m,n ∈ N). (3.11)

By (3.10) we know that Un|uwn,p| 6 U0|vp(u)|2 ∈ L1. Thus, 〈Unu,wn,p〉 → 0 by
dominated convergence. By (3.11) and the assumption of (b) we conclude that

|Im〈Amu,wp(u)〉| = lim
n→∞

|Im τ(u,wn,p)|

6 lim
n→∞

M(Re τ + (U0 −m)+ + Un + ω̃)(u,wn,p) = M Re〈(Am + ω̃)u,wp(u)〉.

This estimate carries over to all u ∈ D(Am) since D(A0) ∩D(A0,p) is a core for
Am.

Let now u ∈ D(Ap). We have Am → Ap in the strong resolvent sense. Thus,
u(m) := (1 +Am)−1(1 +Ap)u→ u in Lp and wp(u

(m))→ wp(u) in Lp′ as m→∞.
Since

u(m) + Amu
(m) = u+ Apu,

we also have Amu
(m) → Apu in Lp as m→∞. Hence,

|Im〈Apu,wp(u)〉| = lim
m→∞

|Im〈Amu(m), wp(u
(m))〉|

6 lim
m→∞

M Re〈(Am + ω̃)u(m), wp(u
(m))〉 = M Re〈(Ap + ω̃)u,wp(u)〉,

which shows the m-sectoriality of Ap, with angle arctanM .
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From the proof we easily see: In order to show τ ↔ Tp on Lp with ||Tp(t)|| 6 eωt

it suffices to require τ(u,wn,p) + 〈Unv2
n,p〉 > −ω for all 0 6 u ∈ D(τ), n ∈ N.

In order to use Lemma 3.12 in the proof of Theorem 3.2, we need to know that
vn,p and wn,p are multiples of normal contractions of u. This is a consequence of
the following lemma.

Lemma 3.13. Let ϕ: [0,∞)→ R such that ϕ(0) = 0 and |ϕ(s)− ϕ(t)| 6 |s− t|
for all s, t > 0. Then ϕ̂(z) := ϕ(|z|) sgn z defines a normal contraction ϕ̂ on C.

Proof. Let s, t > 0, α, β ∈ [0, 2π). Then we have∣∣ϕ̂(seiα)− ϕ̂(teiβ)
∣∣2 = |ϕ(s)eiα − ϕ(t)eiβ|2 = ϕ(s)2 + ϕ(t)2 − 2ϕ(s)ϕ(t) Re eiα−iβ

=
(
ϕ(s)− ϕ(t)

)2
+ 2ϕ(s)ϕ(t)

(
1− Re eiα−iβ

)
6 (s− t)2 + 2st

(
1− Re eiα−iβ

)
=
∣∣seiα − teiβ∣∣2.

In the application to the functions vn,p, wn,p, the function ϕ is of the type

ϕα,r(x) = x(xα ∧ r) =

{
xα+1 if xα < r,
rx if xα > r,

with α ∈ R, r > 0. Here, x0 := 1 for all x > 0. In the next lemma we compute
the gradient of ϕ̂α,r ◦ u for u ∈ W 1

1,loc.

Lemma 3.14. Let α ∈ R, r > 0, u ∈ W 1
1,loc, uα,r := |u|α ∧ r. Then uuα,r =

ϕ̂α,r ◦ u is a multiple of a normal contraction of u, uuα,r ∈ W 1
1,loc, and

∇(uuα,r) = uα,r
(
∇u+ α sgnu · χ[|u|α<r]∇|u|

)
.

Proof. The first assertion follows from Lemma 3.13 and the Lipschitz continuity of
the function ϕα,r defined above. In the case α 6∈ (0, 1), the function [0,∞) 3 x 7→
xα ∧ r is Lipschitz continuous, hence uα,r ∈ W 1

1,loc, so the remaining assertions
follow by an application of the product rule and the chain rule (for the latter
see, e.g., [BoMu82; appendix]—the proof given there for u ∈ W 1

2,0 works also for
u ∈ W 1

1,loc).
In the case α ∈ (0, 1), we approximate |u| by uδ := |u|+ δ (δ > 0). Note that

(uαδ ∧ r)∇u ∈ L1,loc and

u∇(uαδ ∧ r) = αuuα−1
δ χ[uαδ<r]

∇uδ = (uαδ ∧ r) · α
u

uδ
χ[uαδ<r]

∇|u| ∈ L1,loc.

By the product rule we obtain that

∇
(
u(uαδ ∧ r)

)
= (uαδ ∧ r)

(
∇u+ α

u

uδ
χ[uαδ<r]

∇|u|
)
.

Finally, u(uαδ ∧ r)→ uuα,r and

∇
(
u(uαδ ∧ r)

)
→ uα,r

(
∇u+ α sgnu · χ[|u|α<r]∇|u|

)
in L1,loc as δ → 0. This implies the assertion.
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Proof of Theorem 3.2. Let p ∈ I, i.e., τp > −ωp. Let U0 := W1 + W2 + V −.
By Proposition 3.1(a), τ + U0 is a closed sectorial form.

First we study the case p > 1. Let u ∈ D(τ). Then vn,p, wn,p ∈ D(τ) as
multiples of normal contractions of u. At the end of the proof we will show that

Re τ(u,wn,p) > τp(vn,p)− 1
2
〈χn(W1 +W2)|vn,p|2〉, (3.12)

where χn is the indicator of the set [|u| p−2
2 > n]. Applying Lemma 3.12(a)

with h = τp and Un = 1
2
χn(W1 + W2) (n ∈ N), we obtain all the assertions of

Theorem 3.2(a) and (b).
Let now assumption (3.5) hold for some p ∈

◦
I. Then it holds for all p ∈

◦
I, by

Proposition 3.1(b). To prove the analyticity of Tp we need the inequality

|Im τ(u,wn,p)| 6 |Im τa(vn,p)|+ |1p −
1
p′
|Re τa(vn,p) + |Im〈(b1 + b2)vn,p,∇vn,p〉|,

(3.13)

which is also shown at the end of the proof. The first term on the right hand
side of (3.13) can be estimated by αRe τa(vn,p), due to assumption (a). Thus,
by (3.5) we obtain that

|Im τ(u,wn,p)| 6
(
α + |1

p
− 1

p′
|
)

Re τa(vn,p) + c1τp(vn,p) + c2||vn,p||2.

By Proposition 3.1(b) and estimate (3.12) we have

Re τa(vn,p) 6 C(τp + ω̃1)(vn,p) 6 C(Re τ + Un + ω̃1)(u,wn,p)

for some ω̃1 ∈ R, C > 0 depending on p. We conclude that

|Im τ(u,wn,p)| 6
[
C
(
α + |1

p
− 1

p′
|
)

+ c1

]
(Re τ + Un + ω̃2)(u,wn,p)

for some ω̃2 ∈ R, so Lemma 3.12(b) implies that Ap is an m-sectorial operator.
The proof for the case p = 1 is based on the assertions of the theorem in the

case p > 1, applied to the form τ̃ := τ + U0, with U0 as above. Recall that τ̃ is a
closed sectorial form in L2. Let T0 be the associated analytic semigroup on L2.
Let 1 < p <∞ and τ̃p := τp + U0. For all 0 6 u ∈ D(τ̃) = D(τ) we have

τ̃p(u) = 4
pp′
τa(u)− 2

p′
〈b2u,∇u〉+ 1

p

(
2〈∇u, b1u〉+ 〈V u2〉

)
+ 〈( 1

p′
V + U0)u2〉.

We apply Euclid’s inequality to the second term, and the estimate

τ1(u) = 2〈∇u, b1u〉+ 〈V u2〉 > −ω1||u||22

to the third term on the right hand side, to obtain

τ̃p(u) > 4
pp′
τa(u)− 2

p′

(
1
2
τa(u) + 1

2
〈W2u

2〉
)
− ω1

p
||u||22 + 〈(U0 − 1

p′
V −)u2〉

= 1
p′

(4
p
− 1)τa(u)− ω1

p
||u||22 + 〈(U0 − 1

p′
(V − +W2))u2〉.
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For 1 < p 6 4, Theorem 3.2(a) and (b) applied to τ̃ imply: T0 extrapolates to a
C0-semigroup T0,p on Lp, and for the generator −A0,p of T0,p we have

〈A0,pu, u
p−1〉 > 〈(U0 − 1

p′
(V − +W2))up〉 − ω1

p
||u||pp

(
0 6 u ∈ D(A0,p)

)
. (3.14)

In particular, ||T0,p(t)||p→p 6 e
ω1
p
t for all t > 0, 1 < p 6 4 (recall U0 = W1 +W2 +

V −). Since T0 is a positive C0-semigroup, [Voi92] implies that T0 extrapolates to
a C0-semigroup T0,1 on L1.

Let now Un,m :=
(
U0− 1

m
(V − +W2)

)
∧ n for n,m ∈ N. It follows from (3.14)

that

||(T0,p)−Un,m(t)||p→p 6 e
ω1
p
t (t > 0)

for all n ∈ N, m > 2 and 1 < p 6 m
m−1

(i.e., 1
p′
6 1

m
). Since (T0,p)−Un,m and

(T0,1)−Un,m are consistent by Lemma 1.10(b), we obtain ||(T0,1)−Un,m(t)||1→1 6 eω1t

for all t > 0, n ∈ N, m > 2. Since Un,m ↑ U0 ∧ n as m → ∞, we have
(T0,1)−Un,m → (T0,1)−U0∧n for all n ∈ N, by [Voi86; Prop. A.2]. Hence

sup
n∈N
||(T0,1)−U0∧n(t)||1→1 6 eω1t (t > 0).

Finally, [Voi88; Prop. 2.2] implies that −U0 is T0,1-admissible, and we obtain
τ ↔ (T0,1)−U0 =: T1, with ||T1(t)||1→1 6 eω1t for all t > 0.

To complete the proof it remains to show inequalities (3.12) and (3.13). Let

χcn := 1 − χn, i.e., the indicator of the set [|u| p−2
2 < n]. We write un = un,p,

vn = vn,p
(
= u(|u| p−2

2 ∧n)
)

and wn = wn,p
(
= u(|u|p−2∧n2)

)
for short. Lemma 3.14

implies that

∇vn = un
(
∇u+ p−2

2
χcn sgnu∇|u|

)
= sgnu

(
un sgnu∇u+ p−2

2
χcnun∇|u|

)
.

Let ϕn := un Re(sgnu∇u) = un∇|u| and ψn := un Im(sgnu∇u). Then we have

sgnu∇vn = (ϕn + iψn) + p−2
2
χcnϕn = (p

2
χcn + χn)ϕn + iψn.

In the same way, with ρn := (p− 1)χcn + χn, we have

∇wn = u2
n

(
∇u+ (p− 2)χcn sgnu∇|u|

)
= un sgnu(ρnϕn − iψn).

Now we compute the different terms occurring in τ(u,wn) and τp(vn) separately.

a∇u · ∇wn = a(un sgnu∇u) · (ρnϕn − iψn) = a(ϕn + iψn)(ρnϕn − iψn), (3.15)

a∇vn · ∇vn = a(sgnu∇vn) · (sgnu∇vn)

= (p
2

4
χcn + χn)asϕn · ϕn + asψn · ψn + i(a− as)ψn · (pχcn + 2χn)ϕn.

(3.16)

Therefore Re a∇u·∇wn =
(
(p−1)χcn+χn

)
asϕn·ϕn+asψn·ψn. Noting 4

pp′
p2

4
= p−1

we obtain

Re τa(u,wn) = 4
pp′

Re τa(vn) + (1− 4
pp′

)〈χnasϕn · ϕn + asψn · ψn〉.
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For the first order terms we compute

vn∇vn = |vn|
(
(p

2
χcn + χn)ϕn + iψn

)
,

wn∇u = |vn|un sgnu∇u = |vn|(ϕn + iψn), (3.17)

u∇wn = |vn|(ρnϕn − iψn).

Thus, Re vn∇vn = Re vn∇vn = (p
2
χcn + χn)|vn|ϕn. We obtain that

Rewn∇u = (χcn + χn)|vn|ϕn = 2
p

Re(vn∇vn) + (1− 2
p
)χn|vn|ϕn

and, since 2
p′
p
2

= p− 1,

Reu∇wn =
(
(p− 1)χcn + χn

)
|vn|ϕn = 2

p′
Re(vn∇vn) + (1− 2

p′
)χn|vn|ϕn.

Let now εp := 1
p′
− 1

p
= 1− 2

p
= −(1− 2

p′
). Then ε2

p = 1− 4
pp′

. We get

Re τ(u,wn) = Re τa(u,wn) + Re〈∇u, b1wn〉 − Re〈b2u,∇wn〉+ 〈V u,wn〉
= τp(vn) + ε2

p〈χnasϕn · ϕn + asψn · ψn〉+ εp〈χn(b1 + b2)|vn| · ϕn〉.

This implies (3.12) since εpχn|(b1+b2)vn ·ϕn| 6 ε2
pχnasϕn ·ϕn+ 1

2
χn(W1+W2)|vn|2,

by Euclid’s inequality.
To prove (3.13), we first compute Im τa(u,wn). By (3.15),

Im(a∇u · ∇wn) = ((p− 1)χcn + χn)aψn · ϕn − aϕn · ψn
= (p− 2)χcnasψn · ϕn + (pχcn + 2χn)(a− as)ψn · ϕn.

The second term on the right hand side equals Im(a∇vn · ∇vn), by (3.16). The
first term we estimate, using Euclid’s inequality and (3.16), as follows:

|(p− 2)χcnasψn · ϕn| 6 |p− 2|χcn
(
p
4
asϕn · ϕn + 1

p
asψn · ψn

)
= |1− 2

p
|χcn
(
p2

4
asϕn · ϕn + asψn · ψn

)
6 |1

p
− 1

p′
|Re(a∇vn · ∇vn).

For the first order terms we have, by (3.17),

Im
(
〈∇u, b1wn〉 − 〈b2u,∇wn〉

)
= 〈(b1 + b2)|vn|, ψn〉 = − Im〈(b1 + b2)vn,∇vn〉.

Thus, inequality (3.13) follows.

3.3 Weighted estimates for second order elliptic

differential operators

In this section we prove Theorems 3.8 and 3.10. In order to apply the abstract
results of Section 2.1, we need to show appropriate weighted estimates for the
semigroups Tp constructed in Theorem 3.2. Recall that the semigroups Tp are
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associated with the form τ which is defined in (3.1). We will establish estimates
on the ‘twisted semigroups’ ρTpρ

−1, where ρ is a weight function, by studying the
‘twisted form’ τρ which is formally defined by τρ(u, v) = τ(ρ−1u, ρv). We point
out that it is a nontrivial technical problem to establish relationship between τρ
and ρTpρ

−1 (see, e.g., [Sem97; Prop. 3.4]). A comprehensive solution is given in
Theorem 3.15 below.

Throughout this section we assume that (a) and (bV) are fulfilled. Let τa,
τ , τp (1 6 p <∞) be the forms defined in Section 3.1. Recall that

I =
{
p ∈ [1,∞); ωp = inf{ω ∈ R; τp > −ω} <∞

}
.

Let ρ: Ω → (0,∞) be locally Lipschitz continuous, Φρ := ρ−1∇ρ = ∇ ln ρ,
p ∈

◦
I. Assume that

asΦρ · Φρ = ρ−2as∇ρ · ∇ρ 6 δτp + cρ (3.18)

for some δ > 0, cρ ∈ R. Then we can define a form τρ by

τρ(u, v) := τ(u, v) + 〈∇u, a>Φρv〉 − 〈aΦρu,∇v〉 −
〈[
asΦρ ·Φρ + (b1 + b2)·Φρ

]
u, v
〉

on D(τρ) := D(τ), due to the following observations. Firstly, by Euclid’s inequal-
ity, |bj · Φρ| 6 1

4
asΦρ · Φρ + Wj for j = 1, 2. Secondly, by (a) and by (1.7) from

Lemma 1.29,

(aΦρ)
>a−1

s (aΦρ) = Φρ
>a>a−1

s aΦρ 6 (1 + α2)asΦρ · Φρ, (3.19)

and in the same way (a>Φρ)
>a−1

s (a>Φρ) 6 (1 + α2)asΦρ · Φρ. In particular, the
form τρ is of the same type as the form τ , with new lower order coefficients

b̃1 = b1 + a>Φρ, b̃2 = b2 + aΦρ, Ṽ = V − asΦρ · Φρ − (b1 + b2) · Φρ

satisfying assumption (bV).
By a straightforward computation we obtain, using the product rule,

τρ(u, v) = τ(ρ−1u, ρv)
(
u, v ∈ D(τρ) such that ρ−1u, ρv ∈ D(τ)

)
.

Theorem 3.15. Assume that (a) and (bV) hold. Let p ∈
◦
I, ε ∈ (0, 1). Then

there exist δ > 0, k > 1, ω̃ ∈ R such that, for all locally Lipschitz continuous
weights ρ: Ω→ (0,∞) satisfying

asΦρ · Φρ 6 δτp + cρ,

〈(b1 + b2) · Φρ, u
2〉 6 ε

2
τp(u) + cρ||u||22

(
0 6 u ∈ D(τ)

)
for some cρ ∈ R, the following assertions hold:

(a) The form τρ is associated with a positive C0-semigroup Tρ,p(t) = e−tAρ,p

on Lp, and

〈Aρ,pu, u|u|p−2〉 > (1− ε)τp
(
|u|

p
2 sgnu

)
− (ω̃ + kcρ)||u||pp

(
u ∈ D(Aρ,p)

)
.
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(b) If ρ ∧ n is a multiplication operator on D(τ) for all n ∈ N then

Tρ,p(t)f = ρTp(t)ρ
−1f (f ∈ L∞,c, t > 0),

where Tp is the positive C0-semigroup on Lp associated with τ .

Remark 3.16. If ρ(x) = ρξ(x) = eξx for some ξ ∈ RN then Φρξ = ξ. Thus,
if a ∈ L∞ then (3.18) is fulfilled with δ = 0, cρ = ||asξ · ξ||∞ 6 ||as||∞|ξ|2. If
condition (ii) of Theorem 3.8 holds then by Proposition 3.1(c) we obtain: for
all p ∈

◦
I there exists Cp > 0 such that

∣∣〈(b1 + b2)u2〉
∣∣ 6 Cp||u||τp ||u||2 for all

0 6 u ∈ D(τ). Therefore,∣∣〈(b1 + b2) · ξ, u2〉
∣∣ 6 |ξ| · ∣∣〈(b1 + b2)u2〉

∣∣ 6 ||u||τp · Cp|ξ|||u||2
6

1

4
||u||2τp + C2

p |ξ|2||u||22 =
1

4
τp(u) +

(1

4
(ωp + 1) + C2

p |ξ|2
)
||u||22.

Let n ∈ N, ϕn := ρξ ∧ n. Then ϕn ∈ W 1
∞ and as∇ϕn · ∇ϕn 6 ||as||∞||∇ϕn||2∞ <

∞. Thus, if (BC) holds then ϕn is a multiplication operator on D(τ), and by
Theorem 3.15 we obtain the following.

Let p ∈
◦
I. Then there exist νp > 0, ω̃p ∈ R such that for all ξ ∈ RN , the form

τρξ is associated with a positive C0-semigroup Tξ,p on Lp satisfying

||Tξ,p(t)|| 6 eω̃pt+νp|ξ|
2t, Tξ,p(t) = eξxTp(t)e

−ξx on L∞,c (t > 0).

Proof of Theorem 3.15. (a) In order to apply Theorem 3.2 we need to intro-
duce the symmetric form τρ,p defined by

τρ,p(u) := Re τa(u) + 2
p
〈∇|u|, b̃1|u|〉 − 2

p′
〈b̃2|u|,∇|u|〉+ 〈Ṽ |u|2〉

= τp(u) +
〈
(2
p
a>− 2

p′
a)Φρ|u|,∇|u|

〉
−
〈[
asΦρ · Φρ + (b1 + b2) · Φρ

]
|u|2
〉

on D(τρ,p) := D(τρ). By Euclid’s inequality we obtain, using (3.19),

τρ,p(u) > τp(u)− λ(α2 + 1)τa(|u|)−
〈[

(1 + 1
λ
)asΦρ · Φρ + (b1 + b2) · Φρ

]
|u|2
〉

for all λ > 0, u ∈ D(τ). By Proposition 3.1(b) we can choose λ > 0, ω̃ ∈ R such
that

λ(α2 + 1) Re τa 6
ε

4
τp + ω̃.

Using the assumption on (b1 + b2) · Φρ, we thus obtain

τρ,p >
(
1− ε

4
− ε

2

)
τp − ω̃ − cρ − (1 + 1

λ
)asΦρ · Φρ.

Now choose δ = ε
4
(1 + 1

λ
)−1 and k = 2 + 1

λ
. Then τρ,p > (1 − ε)τp − (ω̃ + kcρ)(

> −(1 − ε)ωp − ω̃ − kcρ
)

by the assumption on asΦρ · Φρ. An application of
Theorem 3.2 completes the proof of (a).
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(b) Let Uρ := (α2 + 1)asΦρ ·Φρ +W1 +W2 + |V |. Then U := 5Uρ is τa-regular
by (bV), the assumption on asΦρ ·Φρ, and Lemma 1.24(b). Making use of (3.19),
(3.2) and Euclid’s inequality, we obtain that

Re τρ >
1

4
Re τa − 4Uρ (3.20)

and that τ + U, τρ + U are densely defined closed sectorial forms, with domains
D(τa + Uρ). For m ∈ N let Um := (U − m)+, and Am, Aρ,m the m-sectorial
operators associated with τ +Um, τρ +Um, respectively. Due to Corollary 3.4(b),
part (b) will follow by passing to the limit in

e−tAρ,mf = ρe−tAmρ−1f (f ∈ L∞,c, t > 0).

The latter formula in turn is equivalent to

(λ+ Aρ,m)−1f = ρ(λ+ Am)−1ρ−1f (m ∈ N, λ > m, f ∈ L∞,c). (3.21)

Let m, λ, f be given. First we show that (3.21) holds if ρ satisfies the condi-
tion

ρv ∈ Q := D(τa + Uρ) for all v ∈ D := (λ+ Am)−1L∞,c. (3.22)

Then u := ρ(λ+Am)−1ρ−1f ∈ Q since ρ−1f ∈ L∞,c. Moreover, ρ−1u ∈ D(Am) ⊆
Q. For all v ∈ D we have ρv ∈ Q and hence

(τρ + Um)(u, v) = (τ + Um)(ρ−1u, ρv) = 〈Amρ−1u, ρv〉.

Observe that D is dense in D(Am) and hence dense in Q = D(τρ + Um). Thus
we obtain that u ∈ D(Aρ,m) and Aρ,mu = ρAmρ

−1u. Therefore (λ+ Aρ,m)u = f ,
i.e., (3.21) holds.

It remains to show that the assumption of (b) implies (3.22). Let g ∈ L∞,c,
v := (λ+Am)−1g (∈ Q), ρn := ρ∧n (n ∈ N). Then ρnv ∈ Q for all n ∈ N, by the
assumption on ρ. In particular, ρn satisfies condition (3.22). Thus, (3.21) holds
with ρn in place of ρ, and we obtain

(λ+ Aρn,m)−1(ρg) = ρn(λ+ Am)−1ρ−1
n (ρg) = ρnv

for n ∈ N so large that ρ−1
n ρg = g. Moreover, by (3.20) we can estimate

Re τρn + Um >
1

4
Re τa − 4Uρn + Um >

1

4
Re τa + Uρ −m

(
> −m

)
.

This implies ||(λ+ Aρn,m)−1|| 6 1
λ−m and (since λ > m)

(1
4

Re τa + Uρ)(ρnv) 6 Re(τρn + Um + λ)(ρnv) = Re〈ρg, ρnv〉 6
1

λ−m
||ρg||22.

Therefore, (ρnv) is a bounded sequence in Q. Moreover, (|ρnv|) is pointwise in-
creasing, and ρnv → ρv a.e. as n→∞. Hence ρv ∈ L2 by monotone convergence,
and ρnv → ρv in L2 by dominated convergence. We conclude that ρv ∈ Q, i.e.,
ρ satisfies (3.22).
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The proof of Theorem 3.8 is based on Theorem 3.15 and the following conse-
quence of Corollaries 2.2 and 2.5.

Proposition 3.17. Let 1 6 p < ∞, T a C0-semigroup on Lp. Assume that
there exist q > p, C > 1, ω ∈ R, ν > 0, m > 1 such that

||eξxT (t)e−ξx||p→p 6 Ceωt+ν|ξ|
mt,

||T (t)||p→q 6 Ct−
N
m

( 1
p
− 1
q

)eωt,

for all t > 0, ξ ∈ RN . Then T extrapolates to a family of consistent C0-semi-
groups Tr(t) = e−tAr on Lr, r ∈ [p, q), and the angle of analyticity of Tr and the
spectrum σ(Ar) do not depend on r ∈ [p, q).

If, in addition, T is L1-contractive then the same holds with [1, q) in place of
[p, q).

Proof. Without restriction ω = 0. Let θ ∈ (0, 1) and define qθ by 1
qθ

= 1−θ
q

+
θ
p
. Then (1 − θ)(1

p
− 1

q
) = 1

p
− 1

qθ
. By Stein interpolation we obtain from the

assumptions that

||eθξxT (t)e−θξx||p→qθ 6 Ct
−N
m

( 1
p
− 1
qθ

)
eθν|ξ|

mt (t > 0, ξ ∈ RN).

Let d be the supremum metric on RN , ργ,y := e−γd(·,y) for all γ ∈ R, y ∈ RN ,
and || · ||p→q,γ the corresponding weighted operator norm. Replace ξ by ξ

θ
in the

above estimate. Then Proposition 2.8, applied with ψ(x) = x, yields

||T (t)||p→qθ,γ 6 2NCt
−N
m

( 1
p
− 1
qθ

)
eθ

1−mνγmt (t, γ > 0).

Now we are in a position to apply Corollaries 2.2 and 2.5, and we obtain the first
set of assertions.

The last assertion follows from the estimate

||T (t)||1→qθ,γ 6 C1t
−N
m

(1− 1
qθ

)
eν1γmt (t, γ > 0),

for some C1, ν1 > 0, which in turn is a consequence of the next proposition.

Proposition 3.18. Let T be a contractive C0-semigroup on L1 and ρ: Ω →
(0,∞) a weight function. Assume that

||ργT (t)ρ−γ||p→q 6 Ct−α( 1
p
− 1
q

)eνγ
mt (t, γ > 0)

for some 1 < p < q, C, α, ν > 0, m > 1. Then there exist C1, ν1 > 0 (not
depending on T, ρ) such that

||ργT (t)ρ−γ||1→q 6 C1t
−α(1− 1

q
)eν1γmt (t, γ > 0).
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Proof. For 0 < θ 6 1 let pθ :=
(
θ
p

+ 1−θ
1

)−1
, qθ :=

(
θ
q

+ 1−θ
1

)−1
. By Stein

interpolation, the assumptions imply that

||ρθγT (t)ρ−θγ||pθ→qθ 6 Cθt−θα( 1
p
− 1
q

)eθνγ
mt (t, γ > 0). (3.23)

Let t, γ > 0, determine θ ∈ (0, 1) such that qθ = p, and let θk := θk, tk := θmk t
(k ∈ N0) and β := α(1

p
− 1

q
). Then pθk = qθk+1

(k ∈ N0), and (3.23) yields

||ργT (tk)ρ
−γ||qθk+1

→qθk 6 Cθkt−θkβk eθkν(γ/θk)mtk = Cθk(θmkt)−θkβeθkνγ
mt

for all k ∈ N0. We use this as a starting point for a Moser type iteration: let
f ∈ L∞,c. Since q = qθ0 we obtain by Fatou’s lemma that

||ργT ( t
1−θm )ρ−γf ||q 6 lim inf

n→∞

∣∣∣∣∣∣ργT( n∑
k=0

tk
)
ρ−γf

∣∣∣∣∣∣
qθ0

6 lim inf
n→∞

n∏
k=0

(
Cθkθ−mβkθkt−θkβeθkνγ

mt
)
· ||f ||qθn+1

.

Let r :=
∑∞

k=0 θk = 1
1−θ and s :=

∑∞
k=0 kθk(=

θ
(1−θ)2 ). By the choice of θ we have∑∞

k=0 θkβ = α
1−θ (

1
qθ
− 1

q
) = α(1− 1

q
). We conclude that

||ργT ( t
1−θm )ρ−γf ||q 6 Crθ−mβst−α(1− 1

q
)erνγ

mt||f ||1.

This yields the assertion with C1 = Crθ−mβs(1 − θm)−α(1− 1
q

) and ν1 = (1 −
θm)rν.

Proof of Theorem 3.8. Recall that assumptions (i) and (ii) of the theorem are

fulfilled for all p ∈
◦
I (see Remark 3.9(a)). Let p ∈

◦
I = (p−, p+), Tp(t) = e−tAp

the positive C0-semigroup on Lp associated with the form τ . We are going to
apply Proposition 3.17 with q = N

N−2
p and m = 2. By Remark 3.16 we have

||eξxTp(t)e−ξx||p→p 6 eω̃pt+νp|ξ|
2t (t > 0, ξ ∈ RN),

i.e., the first estimate assumed in Proposition 3.17 holds.
In order to show the second estimate, let 0 6 f ∈ Lp, t > 0, u := Tp(t)f .

Then u ∈ D(Ap) since Tp is analytic, and u > 0. By Theorem 3.2(b) and
assumption (i) of the theorem we have

〈Apu, up−1〉 > τp(u
p
2 ) > εp||u

p
2 ||22N

N−2
− cp||u

p
2 ||22.

Without restriction assume cp = 0. Then Tp is contractive. Since (p − 1)p′ = p
we obtain, using Hölder’s inequality and the analyticity of Tp,

〈Apu, up−1〉 6 ||ApTp(t)f ||p||(Tp(t)f)p−1||p′ 6
c

t
||f ||p||Tp(t)f ||p−1

p 6
c

t
||f ||pp
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for some c > 0 (not depending on t, f). Combining the above two estimates, we
arrive at

εp||Tp(t)f ||pN
N−2

p
6
c

t
||f ||pp,

so that, by the positivity of Tp,

||Tp(t)||p→ N
N−2

p 6 Ct−
1
p = Ct−

N
2

(p−1−( N
N−2

p)−1) (t > 0). (3.24)

By Proposition 3.17 we conclude that Tp extrapolates to an analytic semigroup
Tr(t) = e−tAr on Lr, for all r ∈ [p, N

N−2
p), and that the angle of analyticity of

Tr and the spectrum σ(Ar) are r-independent. In case 1 ∈ I, the same holds
with [1, N

N−2
p) in place of [p, N

N−2
p). Moreover, the semigroups Tr are associated

with τ , by Proposition 1.22(a). Thus, in case 1 ∈ I the proof is complete while
otherwise we obtain the assertions of the theorem only with (p−, pmax) in place
of (pmin, pmax).

To complete the proof in the case 1 6∈ I, we apply the above to the form τ ∗ in
place of τ . The form τ ∗ is of the same type as the form τ , with coefficients ã = a>,
b̃1 = −b2, b̃2 = −b1, Ṽ = V . It is easy to see that (τ ∗)p = τp′ for all p ∈ (1,∞).

Therefore, τ ∗ is associated with an analytic semigroup T̂r(t) = e−tÂr on Lr, for
all r ∈ (p′+, p

′
min), and the angle of analyticity of T̂r and the spectrum σ(Âr) are

r-independent. By Proposition 1.22(b) we conclude that τ is associated with the
positive C0-semigroup T̂ ∗r′(t) = e−tA

∗
r′ on Lr, for all r ∈ (pmin, p+). It now remains

to note the following: T̂ ∗r′ is analytic of angle θ ∈ (0, π
2
] if and only if T̂r′ is analytic

of angle θ, and σ(Â∗r′) = σ(Âr′) (= σ(Âr′) since T̂r′ is a real semigroup).

In the proof of Theorem 3.10, it will be a bit more difficult to prove p→q-
smoothing for the semigroup since the assumptions do not ensure analyticity. In
fact, it is easier to show p→q-smoothing for the resolvent and use Theorem 2.26
instead of Theorem 2.4 to obtain Lp-spectral independence. We will use the latter
approach for the case p > 1. As above, the case p = 1 requires additional expense.
In order to show a weighted 1→q-estimate, we are going to use Proposition 3.18.
For this reason we need to show p→q-smoothing for the semigroup. Alternatively,
we could prove an analogue of Proposition 3.18 for resolvents, cf. [Sem97; proof
of Prop. 4.2].

Both p→q-smoothing for the semigroup and for the resolvent are consequences
of an improved accretivity estimate. We present this well-known technique in a
separate lemma. As a preparation we need the following fact.

Lemma 3.19. Let (Ω, µ) be a measure space, p ∈ (1,∞), ∅ 6= J ⊆ R an
interval. Let u: J → Lp(µ) be differentiable, u(t) > 0 for all t ∈ J . Then the
function up: J → L1(µ) is differentiable, with

(up)′ = pup−1u′.
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Proof. We first show that for x, y > 0 we have

0 6 xp − yp − pyp−1(x− y) 6 |x− y|p (1 < p 6 2),

0 6 xp − yp − pyp−1(x− y) 6 1
2
p(p− 1)(x ∨ y)p−2|x− y|2 (p > 2).

(3.25)

For the proof let f : [0,∞) → [0,∞), f(x) := xp. Then f is convex, and x 7→
yp + pyp−1(x − y) is the tangent to f in (y, yp), for all y > 0. This shows the
left hand sides of the inequalities. For the proof of the right hand side for p > 2,
just apply Taylor’s theorem with Lagrangian remainder to f . It remains to show
that gy(x) := xp − yp − pyp−1(x − y) − |x − y|p 6 0 in case 1 < p 6 2, for all
x, y > 0. We have gy(y) = 0, and 1

p
g′y(x) = xp−1 − yp−1 − |x − y|p−1 sgn(x − y).

The subadditivity of the function x 7→ xp−1 shows that g′y(x) > 0 for x 6 y and
g′y(x) 6 0 for x > y. This completes the proof of (3.25).

Let now s, t ∈ J , s 6= t, and assume that p 6 2. Applying (3.25) to x = u(s)
and y = u(t) we obtain, after division by |s− t|,∣∣∣∣u(s)p − u(t)p

s− t
− pu(t)p−1u(s)− u(t)

s− t

∣∣∣∣ 6 |s− t|p−1

∣∣∣∣u(s)− u(t)

s− t

∣∣∣∣p .
Letting s → t yields the assertion for 1 < p 6 2. The case p > 2 is proved
similarly (use the fact that ||vp−2w2||1 6 ||v||p−2

p ||w||2p for all v, w ∈ Lp(µ)).

If we allow u to be complex-valued in the above lemma then we obtain(
|u|p
)′

= p|u|p−1 Re(u′ sgnu). This follows from |u|′(t) = Re
(
u′(t) sgnu(t)

)
+

|u′(t)|χ[u(t)=0] (cf. [Nag86; Prop. B-II.2.3, Example C-II.2.3]) and the chain rule.

Lemma 3.20. Let (Ω, µ) be a measure space, p ∈ (1,∞). Let T (t) = e−tA be a
positive C0-semigroup on Lp(µ) satisfying

〈Au, up−1〉 > ε||u||prp
(
0 6 u ∈ D(A)

)
for some r > 1, ε > 0.

(a) Then A is m-accretive, and ||(λ+ A)−1||(rp′)′→rp 6 1
ε

for all λ > 0.
(b) Assume that ||T (t)||rp→rp 6 C (t > 0) for some C > 1. Then ||T (t)||p→rp 6

C(εpt)−
1
p for all t > 0.

Proof. (a) The semigroup T is contractive since it is positive and 〈Au, up−1〉 > 0
for all 0 6 u ∈ D(A). Thus, A is m-accretive. Let now λ > 0, 0 6 f ∈
Lp(µ) ∩ L(rp′)′(µ), and u := (λ+ A)−1f . Then u > 0 and hence

〈f, up−1〉 = 〈(λ+ A)u, up−1〉 > ε||u||prp.

We estimate the left hand side, using Hölder’s inequality and noting (p−1)p′ = p,

〈f, up−1〉 6 ||f ||(rp′)′||up−1||rp′ = ||f ||(rp′)′||u||p−1
rp .

Combining the above two estimates, we obtain ε||u||rp 6 ||f ||(rp′)′ . By the positiv-
ity of T , this proves (a).
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(b) Let 0 6 f ∈ D(A), and ut := T (t)f for all t > 0. Then − d
ds
us = Aus for

all s > 0 and hence, by Lemma 3.19,

− d

ds
||us||pp = − d

ds
〈ups〉 = p〈Aus, up−1

s 〉 > εp||us||prp.

By the assumption of (b), ||ut||rp 6 C||us||rp for all 0 6 s 6 t, so we obtain

εpt||ut||prp 6
∫ t

0

εpCp||us||prp ds 6 Cp

∫ t

0

(
− d

ds
||us||pp

)
ds 6 Cp||f ||pp (t > 0),

noting u0 = f and ||ut||pp > 0. Thus, ||T (t)f ||rp 6 C(εpt)−
1
p ||f ||p for all t > 0,

0 6 f ∈ D(A). The set of those f is dense in
{
f ∈ Lp(µ); f > 0

}
, so the proof

is complete by the positivity of T .

If we do not assume the semigroup T to be positive then the assertions of the
above lemma still hold if we replace the assumption by

Re〈Au, u|u|p−2〉 > ε||u||prp
(
u ∈ D(A)

)
.

We will apply Theorem 2.26 in the proof of Theorem 3.10 via the following
result.

Proposition 3.21. ([LiVo00; Thm. 1]) Given 1 6 p < q < ∞, let Ap, Aq be
closed operators in Lp, Lq, respectively. Assume that there exist p0 6 p, q0 > q,
γ > 0, C < ∞, λ0 ∈ ρ(Ap) ∩ ρ(Aq), and an L1-regular function ψ: RN → R

N

such that (λ0 − Ap)−1, (λ0 − Aq)−1 are consistent and

||eξψ(λ0 − Ap)−1e−ξψ||p0→q0 6 C for all ξ ∈ RN , |ξ| 6 γ.

Then σ(Ap) = σ(Aq), and (λ − Ap)
−1, (λ − Aq)

−1 are consistent for all λ ∈
ρ(Ap) = ρ(Aq).

Proof. Let µ be the Lebesgue measure on RN and d the semi-metric on RN defined
by d(x, y) := |ψ(x) − ψ(y)|∞. For x ∈ RN =: M , r > 0 let vr(x) := µ(B(x, r)).
By the paragraph preceding Lemma 2.9 we know the following. Conditions (2.7)
and (2.8) are fulfilled, and there exists C1 > 0 such that, with the weighted
operator norm corresponding to the semi-metric d, we have

||vα1 (λ0 − Ap)−1||p0→q0,γ 6 C1 (0 6 α 6 1).

By Remark 2.28 we conclude that

||v
1
p
− 1
q

1 (λ0 − Ap)−1||p→q, γ
2
6 KγC1.

Now Theorem 2.26 implies that (λ0 − Ap)
−1, (λ0 − Aq)

−1 have equal spectra
and consistent resolvents. The spectral mapping theorem for the resolvent yields
σ(Ap) = σ(Aq), and the consistency of the resolvents follows from the identity (λ−
A)−1 = (λ0−λ)−1(λ0−A)−1

(
(λ0−λ)−1−(λ0−A)−1

)−1
(cf. Proposition 2.33).
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Proof of Theorem 3.10. Recall from Proposition 3.1(c) that the first assump-
tion of the theorem implies that for all p ∈

◦
I there exist εp > 0, cp ∈ R such

that

τp(u) > εp||u||22r − cp||u||22
(
u ∈ D(τ)

)
. (3.26)

(a) For ξ ∈ RN let ρξ := eξψ, and τρξ the corresponding form defined in the
beginning of the section. Then Φρξ = ∇ ln ρξ = ∇(ξψ). By Euclid’s inequality it
follows that

asΦρξ · Φρξ =
N∑

j,k=1

ξjξkas∇ψj · ∇ψk 6 c|ξ|2
N∑
j=1

as∇ψj · ∇ψj, (3.27)

with a constant c > 1 depending only on the dimension N . Similarly,

∣∣〈(b1 + b2) · Φρξ , u
2〉
∣∣ 6 |ξ| N∑

j=1

∣∣〈(b1 + b2) · ∇ψj, u2〉
∣∣ (

0 6 u ∈ D(τ)
)
.

Let p ∈
◦
I, Tp the C0-semigroup associated with τ . Let ε = 1

2
and choose δ, k, ω̃

as in Theorem 3.15. By Proposition 3.1(c) and the assumptions of (a), the above
two estimates imply

asΦρξ · Φρξ 6 |ξ|2
(
c0,pτp + c1,p

)
, (3.28)

〈(b1 + b2) · Φρξ , u
2〉 6 |ξ|

(
c0,pτp(u) + c1,p||u||22

) (
0 6 u ∈ D(τ)

)
,

for some c0,p, c1,p > 0 and all ξ ∈ RN . Thus the assumptions of Theorem 3.15 are
fulfilled for ρ = ρξ, with cρ = 1, if |ξ| is sufficiently small.

We conclude that there exists γ > 0 such that, for all |ξ| 6 γ, the form τρξ is
associated with a positive C0-semigroup Tξ,p(t) = e−tAξ,p on Lp, and

〈Aξ,pu, up−1〉 > 1

2
τp
(
u
p
2

)
− (ω̃ + k)||u||pp

(
0 6 u ∈ D(Aξ,p)

)
.

By (3.26) we obtain that there exists Cp ∈ R such that

〈Aξ,pu, up−1〉 > 1

2
εp||u

p
2 ||22r − Cp||u

p
2 ||22 =

εp
2
||u||prp − Cp||u||pp

(
0 6 u ∈ D(Aξ,p)

)
.

Let n ∈ N, ϕn := eξψ ∧ n. Then ϕn ∈ W 1
∞, ∇ϕn = eξψχ[eξψ<n]∇(ξψ) =

ϕnχ[ϕn<n]Φρξ . Hence, by (3.28),

as∇ϕn · ∇ϕn 6 n2asΦρξ · Φρξ 6 cξ(Re τa +W1 +W2 + V + + 1)

for some cξ > 0. Since (BC) holds, ϕn is a multiplication operator on D(τ) for

all n ∈ N, so Theorem 3.15(b) yields Tξ,p(t)f = eξψTp(t)e
−ξψf for all f ∈ L∞,c,

t > 0. Thus, (λ+ Aξ,p)
−1f = eξψ(λ+ Ap)

−1e−ξψf for all f ∈ L∞,c, λ > Cp.
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Now, since 〈(Cp + Aξ,p)u, u
p−1〉 > εp

2
||u||prp

(
0 6 u ∈ D(Aξ,p)

)
, Lemma 3.20(a)

implies that ||eξψ(λ + Ap)
−1e−ξψ||(rp′)′→rp 6 2

εp
for all λ > Cp, |ξ| 6 γ. By

Proposition 3.21 we infer that σ(Aq) is independent of q ∈ [(rp′)′, rp] ∩ I, for all

p ∈
◦
I, and that the operators Aq have consistent resolvents. This proves (a).

(b) Assume that 1 ∈ I; otherwise there is nothing to show. Let p ∈
◦
I such

that p 6 r and p2 ∈ I. In a first step, we use Theorem 3.15 to obtain a weighted
p→p-estimate for the semigroup Tp. Then we use Proposition 3.18 to derive a
weighted 1→q-estimate, for some q ∈ (1, p).

(i) For all δ > 0, u ∈ D(τ) we have

||u||2−ετp ||u||
ε
2 = ||δu||2−ετp ||δ

1− 2
εu||ε2 6 ||δu||2τp + ||δ1− 2

εu||22.

We deduce that, for all δ > 0, u ∈ D(τ), ξ ∈ RN ,

|ξ|2||u||2−ετp ||u||
ε
2 6 |ξ|2

(√
δ
|ξ|

)2||u||2τp + |ξ|2
(√

δ
|ξ|

)2− 4
ε ||u||22 = δ||u||2τp + δ1− 2

ε |ξ|
4
ε ||u||22.

Let ε = 1
2

and choose δ, k, ω̃ as in Theorem 3.15. By (3.27) and the assump-
tion of (b), the above implies that

asΦρξ · Φρξ 6 c|ξ|2
N∑
j=1

as∇ψj · ∇ψj 6 δτp + C(1 + |ξ|
4
ε ) (ξ ∈ RN),

for some C > 1. In the same way,∣∣〈(b1 + b2) · Φρξ , u
2〉
∣∣ 6 1

4
τp(u) + C(1 + |ξ|

2
ε )||u||22 6

1

4
τp(u) + C

(
2 + |ξ|

4
ε

)
||u||22

for all u ∈ D(τ), ξ ∈ RN . Thus, for all ξ ∈ RN the assumptions of Theorem 3.15

are fulfilled for ρ = ρξ, with cρ = C(2 + |ξ| 4ε ). Since assumption (BC) holds we
can apply Theorem 3.15, as in the proof of (a), to conclude that

||eξψTp(t)e−ξψ||p→p 6 e

(
ω̃+kC(2+|ξ|

4
ε )
)
t

(t > 0, ξ ∈ RN).

(ii) Recall that p 6 r. Thus, ||u||22r > ||u||22p − ||u||22 for all u ∈ L2 ∩ Lr. By
Theorem 3.2(b) and (3.26) we obtain that

〈Apu, up−1〉 > τp(u
p
2 ) > εp

(
||u

p
2 ||22p − ||u

p
2 ||22
)
− cp||u

p
2 ||22

(
0 6 u ∈ D(Ap)

)
.

Let ω := (cp + εp)∨ωp2 . Then 〈(ω+Ap)u, u
p−1〉 > εp||u||pp2 for all 0 6 u ∈ D(Ap).

Moreover, e−ωtTp2(t) is a contractive semigroup, so by Lemma 3.20(b) we infer
that

||Tp(t)||p→p2 6
(
εppt

)− 1
p eωt =

(
εppt

)−p′( 1
p
− 1
p2

)
eωt (t > 0).

Let now q ∈ (1, p). Then Stein interpolation between the above p→p2-esti-
mate and the weighted p→p-estimate obtained in step (i) yields

||eξψTp(t)e−ξψ||p→pq 6 C1t
−p′( 1

p
− 1
pq

)eν1(1+|ξ|
4
ε )t (t > 0, ξ ∈ RN)
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for some C1, ν1 > 0. Finally, we apply Proposition 3.18, and once again Stein
interpolation, to obtain

||eξψTp(t)e−ξψ||1→q 6 C2t
−p′(1− 1

q
)eν2(1+|ξ|

4
ε )t (t > 0, ξ ∈ RN)

for some C2, ν2 > 0. Note that the t-exponent is greater that −1 since q < p.
From this we deduce that the assumptions of Proposition 3.21 are fulfilled, with
p0 = p = 1 and q0 = q. Thus, A1 and Aq have equal spectra and consistent
resolvents.

3.4 Sharpness of the results

In this section we show that, under some conditions additional to (a) and (bV),
the interval I of quasi-contractivity obtained in Theorem 3.2 cannot be enlarged
(up to possibly adding p = 1). Expressed differently, if τ is associated with a
quasi-contractive C0-semigroup on Lp, for some p ∈ (1,∞), then τp is bounded
below.

Later on, we give an example of coefficients b1, b2, V where the interval of
existence of the semigroup obtained in Theorem 3.8 cannot be further extended.
In this sense, the interval extension given in Theorem 3.8 is optimal. The contents
of this section are partly due to Z. Sobol.

The following theorem is the main part of our sharpness result. It is valid
under an assumption slightly weaker than (bV), namely

(bV’) the potentials W1, W2, |V | are τa-regular.

Under this assumption, the forms τ and τp can be defined in the same way as in
Section 3.1, on D(τ) = D(τp) = D(τa +W1 +W2 + |V |).

Theorem 3.22. Let (a) and (bV’) hold, and p ∈ (1,∞). Assume that τ ↔ Tp
on Lp, with ||Tp(t)|| 6 eωpt (t > 0) for some ωp ∈ R. In the case p > 2 (p < 2)
additionally assume that supt>0 ||(Tp)U(t)||∞→∞ <∞ (supt>0 ||(Tp)U(t)||1→1 <∞)
for some τa-regular potential U > 0. Then τp > −ωp.

The additional assumption in the case p > 2 is in particular fulfilled in the
following situation. Suppose that 〈∇u, b2u〉 6 ω||u||22 for all 0 6 u ∈ D(τ) (e.g.
b2 = 0). Let U := V − + ω. Then τ + U ↔ (Tp)U by Corollary 3.4(a). Note that
(τ∞ + U)(u) > 0 for all 0 6 u ∈ D(τ). Thus, ||(Tp)U(t)||∞→∞ 6 1 for all t > 0,
by Remark 3.3(e).

The proof of Theorem 3.22 is based on the following lemma.

Lemma 3.23. Let (M,µ) be a measure space, h a Dirichlet form in L2(µ),
D(h)+ the set of positive elements of D(h), and r > 1.

(a) Then D1 :=
{
u ∈ D(h)+ ∩ L∞(µ); u1/r ∈ D(h)

}
is dense in D(h)+.

(b) Let h1 be a densely defined closed sectorial form in L2(µ) fulfilling the first
Beurling-Deny criterion, A the m-sectorial operator associated with h1. Assume
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that D(h1) = D(h), and ||e−tA||∞→∞ 6 C (0 6 t 6 1) for some C > 0. Then
D2 :=

{
ur; 0 6 u ∈ D(A) ∩ L∞(µ), Au ∈ L∞(µ)

}
is dense in D(h)+.

Proof. (a) For n ∈ N define ϕn: [0,∞) → [0, n] by ϕn(s) := s ∧ (nsr) ∧ n. It is

easy to show that ϕn is Lipschitz continuous with constant r, ϕ
1/r
n is Lipschitz

continuous, and ϕn(s)→ s as n→∞ (s > 0). For u ∈ D(h)+ we conclude that
ϕn(u) ∈ D1, and from [Anc76; Prop. 11] we deduce that ϕn(u) → u in D(h) as
n→∞.

(b) By (a), it remains to show that D2 is dense in D1 with respect to || · ||h. Let
u ∈ D1 and v := u1/r. Then v ∈ D(h) ∩ L∞(µ). By [MaRö92; Thm. I.2.13(ii)]
we have vλ := λ(λ + A)−1v → v in D(h1) and thus in D(h) as λ → ∞. The
assumptions on h1 and A imply that 0 6 vλ ∈ D(A) ∩ L∞ and ||vλ||∞ 6 2C||v||∞
for sufficiently large λ. Moreover, we have Avλ = λ(v − vλ) ∈ L∞. Therefore,
vrλ ∈ D2. Note that the function s 7→ sr in Lipschitz continuous on [0, 2C||v||∞].
Hence, by [Anc76; Théorème 10], vrλ → vr = u in D(h) as λ→∞.

We further need the following trivial but nevertheless important fact. Let E,
F be Banach spaces, and assume that there exists a vector space G such that
E ↪→ G, F ↪→ G.

Lemma 3.24. Let AE, AF be closed operators in E, F , respectively. Assume that
there exists λ ∈ ρ(AE)∩ ρ(AF ) such that (λ−AE)−1, (λ−AF )−1 are consistent.
Let u ∈ D(AE) ∩ F such that AEu ∈ F . Then u ∈ D(AF ), AFu = AEu.

Proof. We have (λ− AE)u ∈ E ∩ F . Hence

u = (λ− AE)−1(λ− AE)u = (λ− AF )−1(λ− AE)u.

This implies u ∈ D(AF ), (λ− AF )u = (λ− AE)u.

Proof of Theorem 3.22. It suffices to study the case p > 2. Then the assertion
for the case p < 2 follows by an application of Proposition 1.22(b) (recall from
the proof of Theorem 3.8 that τp = (τ ∗)p′). In the case p > 2 assume without
restriction that U > U0 := W1+W2+2|V | (see Lemma 1.24(b)). In the case p = 2
let U := U0. Then τ+U is a closed sectorial form in L2 (cf. Proposition 3.1(a); the
factor 2 is needed since we do not assume Q(V −) ⊇ D(τa)∩Q(W1 +W2 + V +)).

Let Ap, Ap,U be the generators of Tp, (Tp)U , respectively. By the Lumer-
Phillips theorem and the assumption on Tp we have 〈Apu, u|u|p−2〉 > −ωp||u||pp for
all u ∈ D(Ap). By Lemma 1.34 we infer that

〈Ap,Uu, u|u|p−2〉 > 〈(U − ωp)|u|p〉
(
u ∈ D(Ap,U)

)
. (3.29)

We have to prove τp > −ωp on D(τp) = D(τa + U0). Notice that τp is a
bounded form on D(τa +U0). Since U is (τa +U0)-regular, by Lemma 1.24(b), it
therefore suffices to show τp(u) > −ωp||u||22 for all u ∈ D(τa +U). Let first p = 2.
Then A2,U is the m-sectorial operator associated with τ + U , so

(τ2 + U)(u) = Re(τ + U)(u) = Re〈A2,Uu, u〉 > 〈(U − ω2)u2〉
(
u ∈ D(A2,U)

)
,
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by (3.29). This shows the assertion for p = 2 since D(A2,U) is dense in D(τ+U) =
D(τa + U).

Let now p > 2. Let AU be the m-sectorial operator in L2 associated with
τ + U . Below we show that

τp(u
p
2 ) > −ωp||u

p
2 ||22 (3.30)

for all 0 6 u ∈ D(AU) ∩ L∞ such that AUu ∈ L∞. Then, an application of
Lemma 3.23(b) with h = τa + U , h1 = τ + U , and A = AU shows that τp(u) >
−ωp||u||22 for all 0 6 u ∈ D(τa + U). This completes the proof since τp fulfils the
first Beurling-Deny criterion.

So, let 0 6 u ∈ D(AU) ∩ L∞, AUu ∈ L∞. Then u ∈ D(τa + U) ∩ L∞
and hence ur ∈ D(τa + U) ∩ L∞, ∇ur = rur−1∇u for all r > 1. From this
we easily obtain τ(u, up−1) = τp(u

p
2 ) (cf. the computation on page 59) and thus,

by the definition of AU , 〈AUu, up−1〉 = (τp + U)(u
p
2 ). By Corollary 3.4(a) we

have τ + U ↔ e−tAp,U . Since u,AUu ∈ L2 ∩ L∞ ⊆ Lp, Lemma 3.24 implies that
u ∈ D(Ap,U) and Ap,Uu = AUu. By (3.29) we obtain

(τp + U)(u
p
2 ) = 〈Ap,Uu, up−1〉 > 〈(U − ωp)up〉,

i.e., (3.30) holds.

Remark 3.25. Theorem 3.22 is in particular applicable in the case of weakly
differentiable b1 and b2. For j = 1, 2, we assume that bj is of τa-regular divergence,
i.e., there exists a measurable function div bj such that |div bj| is τa-regular and

2〈bju,∇u〉 = −〈(div bj)u
2〉

(
0 6 u ∈ D(τ) ∩Q(|div bj|)

)
.

Let U := V − + |div b1|+ |div b2|. Then

(τ1 + U)(u) =
〈
(−div b1 + V + U)u2

〉
> 0,

(τ∞ + U)(u) =
〈
(div b2 + V + U)u2

〉
> 0

for all 0 6 u ∈ D(τ + U), so (Tp)U is L1- and L∞-contractive.

As an example, we are going to study the formal differential expression

−∆ + c1|x|αx · ∇+ c2|x|α on Ω := RN ,

with α, c1, c2 ∈ R. In Remark 3.6(c) we already studied the case α = 0 in slightly
greater generality, so we will assume α 6= 0 here. The case α = −2 will be
of particular interest (see also Example 3.31 below). Before we proceed to the
example we collect some facts about form bounds of the potential rα with respect
to −∆. Here and in the following, r: RN → R, r(x) := |x|.
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Remark 3.26. Let a be the identity matrix, D(τa) = W 1
2 (RN). Then τa is the

standard Dirichlet form, τa(u) = ||∇u||22. We will make use of the following Hardy
inequality (see [KaWa72; Lemma 1]). If N > 3 then∣∣∣∣∣∣u

r

∣∣∣∣∣∣
2
6

2

N − 2
||∇u||2

(
u ∈ W 1

2 (RN)
)
.

This inequality is sharp in the sense that there exist no β < 2
N−2

, c ∈ R with

||u
r
||2 6 β||∇u||2 + c||u||2 for all u ∈ W 1

2 (RN). Moreover, for N = 1, 2 there exist
no β, c at all for which the inequality is valid. Expressed in the form language,

Hardy’s inequality states that r−2 is form bounded with respect to τa,
(N−2)2

4r2 6 τa.
Let now α < −2. Then for all ε > 0 there exists cε > 0 such that r−2 6

εrα + cε. Since Hardy’s inequality is sharp this implies that rα is not form
bounded with respect to τa, i.e., rα 66 c(τa + 1) for all c > 0. The same holds for
α > 0 since then |x|α →∞ as |x| → ∞.

Finally, let α ∈ (−2, 0). Then for all ε > 0 there exists cε > 0 such that
rα 6 εr−2 + cε. If N > 3 then Hardy’s inequality implies that rα has zero form
bound with respect to τa. The same holds for N = 2. This is an easy consequence
of the Sobolev imbedding ||u||q 6 cq||u||2,1 for all q ∈ [2,∞), u ∈ W 1

2 (R2):

〈rα|u|2〉 6 n||u||22 + ||(rα − n)+||( q
2

)′|||u|2|| q
2
6 n||u||22 + ||(rα − n)+||( q

2
)′cq||u||22,1.

It remains to note that ||(rα − n)+||( q
2

)′ → 0 as n→∞ if q is sufficiently large.

Example 3.27. Let N > 2 and, as above, τa the standard Dirichlet form on RN .
Let b2 = 0 and define b1, V by

b1(x) := b(x) := c1|x|αx, V (x) := c2|x|α,

for some α, c1, c2 ∈ R, α 6= 0. Then W1 = |b|2 and |V | are τa-regular, i.e., (bV’)
is fulfilled. Let

τ(u, v) := 〈∇u,∇v〉+ 〈∇u, bv〉+ 〈V u, v〉

on D(τ) := D(τa + |b|2 + |V |). If c1 = 0 then D(τ) = D(τa + rα) (unless c2 = 0).
If c2 6= 0 then D(τ) = D(τa + r2(α+1)) since Q(rα) ⊇ D(τa + r2(α+1)) (for α > 0
and for α 6 −2 this is trivial; for α ∈ (−2, 0) it follows from Remark 3.26).

Observe that b is of τa-regular divergence,

2〈bu,∇u〉 = −c1(N + α)〈rαu2〉
(
0 6 u ∈ D(τ)

)
.

(For 0 6 u ∈ C1
c (RN \ {0}) apply partial integration; for general u the claim

follows by density.) For p ∈ [1,∞] we thus obtain

τp(u) = 4
pp′
||∇u||22 +

(
c2 − 1

p
c1(N + α)

)
〈rαu2〉

(
0 6 u ∈ D(τ)

)
. (3.31)

Now let us investigate for which values of α, c1, c2 and for which p ∈ [1,∞) the
form τ is associated with a positive quasi-contractive C0-semigroup on Lp(R

N).
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First we consider the three cases α < −2, α > 0, and N = 2 = −α. Then, by
Remark 3.26, the potential rα in not form bounded with respect to τa. Thus,
the above implies that τp is bounded below if and only if c2 − 1

p
c1(N + α) > 0,

and τp > 0 in this case. By Theorems 3.2(a) and 3.22 we obtain, for p ∈ (1,∞),
that τ is associated with a quasi-contractive C0-semigroup on Lp if and only if
c2 − 1

p
c1(N + α) > 0. Let I be the set of all p ∈ (1,∞) fulfilling this inequality.

The set I is of one of the types (1,∞), (1, p0], [p0,∞), ∅. If c2 >
(
c1(N + α)

)+

then I = (1,∞); if c2 6
(
c1(N + α)

)
∧ 0 then I = ∅. If c1(N + α) < c2 < 0 then

I = (1, c1
c2

(N + α)]; if 0 < c2 < c1(N + α) then I = [ c1
c2

(N + α),∞). In particular
we obtain: if α = −N , c2 > 0 then, for arbitrary c1 ∈ R, the form τ is associated
with a consistent family of contractive C0-semigroups on Lp, p > 1.

Now we consider the case α ∈ [−2, 0), (N,α) 6= (2,−2). Of course, τ is
associated with a contractive C0-semigroup on Lp in the cases discussed above,
but we obtain more. If α ∈ (−2, 0) then, by Remark 3.26, for all ε > 0 there exists
cε > 0 such that τp >

(
4
pp′
− ε
)
τa − cε. Thus, τ is associated with a consistent

family of quasi-contractive C0-semigroups on Lp, p > 1.

Now assume α = −2 (and N > 3). Then, by (3.31) and Hardy’s inequality,

τp >

(
4

pp′
(N − 2)2

4
− c1

p
(N − 2) + c2

)
r−2.

Since Hardy’s inequality is sharp we obtain that τp is bounded below if and only

if (N−2)2

pp′
− c1

N−2
p

+ c2 > 0, and τp > 0 in this case. Thus, by Theorems 3.2(a)
and 3.22, τ is associated with a quasi-contractive C0-semigroup on Lp, for p ∈
(1,∞), if and only if (N−2)2

pp′
− c1

N−2
p

+ c2 > 0. For c2 = 0 this condition simplifies

to N−2
p′
−c1 > 0. Thus, if c1 > N−2 then there is no quasi-contractive semigroup

on any Lp associated with τ . If c1 ∈ (0, N − 2) (or c1 6 0) then τ is associated
with a contractive C0-semigroup on Lp for all p > N−2

N−2−c1 (or p > 1).

Finally we show that, for α = −2, N > 3, the form τ studied above constitutes
an example in which the interval in the Lp-scale obtained in Theorem 3.8 cannot
be extended. So let, from now on, N > 3, b(x) := c1|x|−2x, V (x) := c2|x|−2. As
above let r(x) = |x|, and

τ(u, v) = 〈∇u,∇v〉+ 〈∇u, bv〉+ 〈V u, v〉

on D(τ) = W 1
2 (RN).

Proposition 3.28. Assume that τ is associated with a C0-semigroup e−tAp on
Lp, for some p > 1. Then

D(Ap) ⊇ Dp :=
{
u ∈ Lp; ∆u, 1

r
|∇u|, 1

r2u ∈ Lp
}
,

and Apu = (−∆ + b · ∇+ V )u for all u ∈ Dp.
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Proof. Define the operator L in Lp by Lu := (−∆ + b · ∇ + V )u, D(L) := Dp.
Let U := |b|2 + |V |. Then τ + U is a closed sectorial form in L2. Let AU be the
associated m-sectorial operator in L2. By Proposition 1.19, e−tAU extrapolates
to a C0-semigroup TU,p(t) = e−tAU,p on Lp, and Tp = (TU,p)−U .

Let first u ∈ C∞c (RN \ {0}). Then u ∈ D(τ + U) and

(τ + U)(u, v) = 〈(L+ U)u, v〉
(
v ∈ D(τ + U)

)
.

Hence u ∈ D(AU) and AUu = (L + U)u. Since u,AUu ∈ Lp, Lemma 3.24
implies that u ∈ D(AU,p), AU,pu = (L+ U)u. Thus, AU,p and L+ U coincide on
C∞c (RN \{0}). By [Voi86; Cor. 2.7] we have Ap ⊇ AU,p−U , so Ap and L coincide
on C∞c (RN \ {0}).

Let now u ∈ Dp ∩ Lp,c(RN \ {0}), ρn the standard mollifier. Then ρn ∗ u ∈
C∞c (RN \ {0}) for large n, and it is easy to see that ρn ∗ u→ u, L(ρn ∗ u)→ Lu
in Lp. This implies Apu = Lu since Ap is a closed operator.

Finally, let u ∈ Dp. Let ϕ ∈ C∞c (RN) such that 0 6 ϕ 6 1, ϕ�B(0,1) = 1,

suppϕ ⊆ B(0, 2). Let ϕn(x) := ϕ(x
n
) · (1 − ϕ)(2nx) for x ∈ RN . Then ϕn ∈

C∞c (RN \ {0}), 0 6 ϕn 6 1, and ϕn → 1 a.e. as n→∞. Let

Bn :=
(
B(0, 2n) \B(0, n)

)
∪
(
B(0, 1

n
) \B(0, 1

2n
)
)
.

It is straightforward that

|∇ϕn| 6 2
r
||∇ϕ||∞χBn , |∆ϕn| 6 4

r2 ||∆ϕ||∞χBn (n ∈ N).

Thus, by dominated convergence we obtain that

L(ϕnu) = ϕnLu− 2∇ϕn · ∇u+ (b · ∇ϕn −∆ϕn)u→ Lu in Lp

as n→∞. So u ∈ D(Ap) and Apu = Lu since ϕnu→ u in Lp.

Corollary 3.29. Assume that τ is associated with a C0-semigroup e−tAp on Lp,

for some p ∈ [1,∞). Let σ < N
p
− 2, u := r−σe−

r2

2 . Then u ∈ D(Ap) and

Apu =
(
− 1
r2 (σ2 − (N − 2− c1)σ − c2) +N − c1 − 2σ − r2

)
u.

Proof. By Proposition 3.28 we have u ∈ D(Ap) and Apu = (−∆ + b · ∇ + V )u
since u ∈ Dp. The second assertion now results from a direct computation.

The next extrapolation lemma is a modification of the result from [Cou91]
with literally the same proof.

Lemma 3.30. Let p0 6 p < q 6 p1. Let T be a semigroup on Lp satisfying
||T (t)||p0→p0 6 C, ||T (t)||p1→p1 6 C, and

||T (t)||p→q 6 Ct−α( 1
p
− 1
q

) (t > 0),

for some C > 1, α > 0. Then

||T (t)||p0→p1 6 Ct
−α( 1

p1
− 1
p0

)
(t > 0).
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Example 3.31. Let c1 := βN−2
2

and c2 := −γ (N−2)2

4
with 0 6 β < 2, 0 < γ <

(1− β
2
)2. By (3.31) we have

τp(u) = 4
pp′
||∇u||22 −

(N−2)2

4

(
2
p
β + γ

)
||u
r
||22

(
u ∈ D(τ)

)
.

Hence, by Hardy’s inequality,

τp(u) > (N−2)2

4

(
41
p
(1− 1

p
)− 2β 1

p
− γ
)
||u
r
||22

(
u ∈ D(τ)

)
.

Let 1 < p− < p+ <∞ such that 1
p±

are the roots of the equation

4x(1− x)− 2βx− γ = −4
(
x2 − (1− β

2
)x+ γ

4

)
= 0. (3.32)

Then τp is bounded below if and only if p ∈ [p−, p+]. Hence, by Theorem 3.8, τ
is associated with a consistent family of C0-semigroups e−tAp on Lp,

pmin :=
(

N
N−2

p′−
)′
< p < N

N−2
p+ =: pmax.

By Theorems 3.2(a) and 3.22, e−tAp is quasi-contractive if and only if p ∈ [p−, p+].
We are going to show that, for q 6∈ (pmin, pmax), the form τ is not associated

with a C0-semigroup on Lq. Let

σ :=
N

pmax

=
N − 2

p+

, p0 :=
N

σ + 2
=
(

N
N−2

p′+
)′
.

Then σ
N−2

is a root of equation (3.32). Hence, σ2− (N − 2−βN−2
2

)σ+γ (N−2)2

4
=

0. Observe that p0 ∈ (pmin, p+). Let u := r−σe−
r2

2 , c := N − βN−2
2
− 2σ,

p ∈ (pmin, p0). Then σ < N
p
− 2. By Corollary 3.29, Apu = (c − r2)u 6 cu and

hence u 6 et(c−Ap)u for all t > 0.
Now assume that τ is associated with a C0-semigroup Tq on Lq, for some

q > pmax. Then Tp, Tq are consistent by Proposition 1.22(a). By (3.24) and
Lemma 3.30, e−tAp : Lp → Lq for all t > 0. In particular, e−tApu ∈ Lq. Since
et(c−Ap)u > u, this contradicts the fact that u 6∈ Lq (recall σ = N

pmax
> N

q
).

Considering the adjoint semigroup we show that e−tAp does not extrapolate to a
semigroup on Lq, for any q 6 pmin.

In the case of Schrödinger semigroups, i.e. β = 0, this example was first given
in [KPS81]. More precisely, for a certain class of potentials it was shown that the
Schrödinger semigroup acts on Lp(R

N) for p ∈ (pmin, pmax), and it was claimed
that for potentials of the type c

r2 with c < 0 the interval is maximal. A strict
proof of this claim was given by Yu. Semenov (private communication).

Finally, let us return to the remark in the paragraph following the proof of
Proposition 1.15. There the following was claimed. Given a densely defined closed
sectorial form τ fulfilling the first Beurling-Deny criterion, T the associated C0-
semigroup, and V > 0 measurable, the T -admissibility of −V does not imply
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V 6 Re τ + ω for some ω ∈ R. We now show that the above constitutes an
example.

Let 0 < β < 1. Then there exists 0 < γ < (1− β
2
)2 such that pmin < 2 < p−,

where pmin, p− are defined as above. We have shown that τ is associated with a
positive C0-semigroup T on L2 which is not quasi-contractive. Define the form
τ0 in L2 by

τ0(u, v) := 〈∇u,∇v〉+ 〈∇u, bv〉

on D(τ0) = W 1
2 (RN). Then τ0 is a densely defined closed sectorial form fulfilling

the first Beurling-Deny criterion. Let T0 be the associated (contractive) C0-

semigroup on L2. Let U := −V = γ (N−2)2

4r2 . Then τ0 = τ + U . Since τ is
associated with the C0-semigroup T on L2, Proposition 1.19 implies that −U is
T0-admissible. But we do not have U 6 Re τ0 + ω for some ω ∈ R: this would
imply τ2 = Re τ = Re τ0 − U > −ω, contradicting 2 6∈ [p−, p+].

We point out that, in the above situation, τ is a form that is not sectorial—it
is not even bounded from the left. Nevertheless, by means of Definition 1.20, τ
is associated with a C0-semigroup on L2.
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