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Introduction

The aim of this thesis is to study the L,-theory of (formal) second order elliptic
differential operators with singular measurable coefficients. The main tool of
our study is the theory of strongly continuous semigroups (Cp-semigroups) of
bounded linear operators on Banach spaces. It is well-known that, if A, is an
operator realisation of a formal differential expression in L, with p(A,) # @, then
the abstract Cauchy problem

u'(t) + Apu(t) =0 (¢ >0), u(0) = f

has a unique solution for all f € D(A,) if and only if —A,, is the generator of a
Co-semigroup T}, on L,. In this case, the solution u is given by u(t) = T,(¢)f.

Another motivation to study L,-theory is that it often yields significant in-
formation for weak Lo-solutions of the corresponding elliptic and parabolic equa-
tions, such as integrability or smoothness properties of eigenfunctions and solu-
tions.

We confine ourselves to the case of real-valued coefficients so that the corre-
sponding semigroups will be positive. Our main interest lies in the case of singular
coefficients where the first problem one faces is constructing a Cy-semigroup on
a suitable L,-space, associated with the differential expression.

In the case of a uniformly elliptic principal part of the differential expression,
and bounded coefficients in the lower order terms, the associated semigroup exists
in the whole L,-scale, which follows, for instance, from classical estimates on the
fundamental solution of the corresponding parabolic equation [Aro67]. If the
coefficients of the lower order terms are allowed to have strong singularities then
a semigroup associated with the differential expression can be constructed in
L, for p from a proper subinterval of [1,00) only. This phenomenon was first
observed in the study of Schrodinger operators with singular negative potentials
([HeSI78], [KPS81]), later also for the operator —A + b -V in [KoSe90].

In this thesis we study general second order elliptic expressions in divergence
form with both first and zero order perturbations, namely

L:==-V-(aV)+b -V+V-b+7V,

on an open set  C R¥, for a wide class of boundary conditions. Generalising
results from [BeSe90], [Lis96], we establish a precise condition controlling the
interval of those p € [1,00) for which £ gives rise to a quasi-contractive Cp-semi-
group T, = (e7*%;t > 0) on L,(Q).

By the Lumer-Phillips theorem, T}, is quasi-contractive, i.e., there exists w € R
such that the operators e “'T,(t) are contractive, if and only if A, is quasi-
accretive. Thus, it is very natural to expect that the condition controlling the
interval of quasi-contractivity involves only the expression (Lu, uP~1) occurring in
the definition of quasi-accretivity, computed in a suitable sense (see page 59). We
have to overcome several technical problems in order to show that this natural
condition is indeed sufficient.



In general, the set of all p € [1,00) such that L is associated with a (not neces-
sarily quasi-contractive) Cy-semigroup on L, is strictly larger. It was already ob-
served in [KPS81] that the Schrodinger semigroup with negative L% weak-POtential
can be defined on L, for p from an interval strictly larger than the interval of
quasi-contractivity. In [Sem00] this result was extended to uniformly elliptic
second order divergence type operators on RY perturbed by a form small poten-
tial. Here we show that this behaviour is typical for rather general second order
uniformly elliptic operators.

A traditional way of constructing a semigroup associated with the differential
expression L is the form method. Since L is given in divergence form, it corre-
sponds to a sesquilinear form in Ly. If this form is densely defined, sectorial and
closed then it is associated with an m-sectorial operator A in L, which in turn
generates a Co-semigroup (e~*4;¢ > 0) on L, ([Kat80; Thms. VI.2.1, IX.1.24]). If
He_tA Lo, HLP_)LP < Ce*! for some p € [1,00) then (e~*4 [Lanr,it = 0) extends
to a semigroup on L,. For p > 1, this semigroup is always strongly continuous,
whereas for p = 1 this is the case if, e.g., the semigroup is positive (see [V0i92]).

The above approach was used for constructing semigroups which act in L,, for
all p € [1,00) (see [Dav89; Chapter 1] and the references there), or only for p from
some subinterval of [1,00) containing 2 (see, e.g., [BeSe90], [Lis96]). However,
we do not assume that the form corresponding to £ is sectorial, not even that
it is bounded from the left, so the traditional approach is not applicable. In
the case by = 0, V = 0, non-sectorial forms were studied in [KoSe90], [Lis96]
by approximating the coefficient b; in such a way that the approximating forms
became sectorial.

Here we develop a new approach to the construction of positive Cy-semi-
groups associated with sesquilinear forms. It includes cases of forms that can
be associated with a Cpy-semigroup on L, under assumptions when all known
representation theorems break down.

Our approach is based upon approximations by sectorial forms, however, not
related to approximations of the coefficients of the first order terms. In contrast,
we approximate the potential: we introduce a positive potential U which ‘absorbs’
all the singularities of the lower order terms of £ in the sense that, being added
to the corresponding form, it makes the sum sectorial. Under certain conditions,
this gives rise to a positive Cy-semigroup on L,, as described above. Finally, mak-
ing use of the perturbation theory for positive semigroups developed in [Voi86],
[Voi88], we subtract the potential U again. It is crucial for this construction that
the resulting semigroup turns out to be independent of the particular choice of
U.

In the context of Schrodinger operators with magnetic fields, and dominated
semigroups with singular complex potentials, a similar approximation idea was
used in [PeSe81] and in [LiMa97]—however, not in order to construct semigroups
but to study properties of semigroups constructed in a different way.

The L,-properties of the semigroups we study here include analyticity with p-
independent sector, and p-independence of the spectra of the generators. Assume
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that the differential expression £ is associated with a Cy-semigroup on L,, for
p from some subinterval of [1,00). If one of the semigroups is analytic then by
the Stein interpolation theorem one can show that, for p from the interior of
this interval, the semigroup on L, is analytic; the resulting angle of analyticity,
however, tends to zero as p approaches the endpoints of the interval.

E.M. Ouhabaz [Ouh95] was the first to establish analyticity of angle 7 in
L,(RY), p € [1,0), for symmetric semigroups satisfying Gaussian upper bounds.
E. B. Davies [Dav95a] extended this result to the more general setting of metric
spaces with polynomial volume growth. For symmetric semigroups acting on L,
for p from a subinterval of [1,00) only, analyticity of angle § was first shown in
[Sch96], under the assumption of certain weighted estimates. Here we prove an
analogous result for general uniformly elliptic second order operators.

Concerning the problem of L,-spectral independence, let us mention that
this is not a general property of second order elliptic operators (see, e.g.,
[HeVo86]). However, as first dicovered by R. Hempel and J. Voigt, it is generic
for Schrodinger type operators. Here we present rather general conditions on the
coefficients of second order elliptic operators under which p-independence of the

spectrum holds.

In order to treat the three problems described above, namely extension of the
semigroup to L,, analyticity, and L,-spectral independence, we first provide a
general setting in which these problems can be studied, and we formulate proper
sufficient conditions in terms of weighted norm estimates. Motivated by the
paper [Dav95a] mentioned above, we study semigroups on metric spaces with
exponentially bounded volume growth, not just on open subsets of RY. This
enables us to unify and generalise numerous previous results concerning the three
problems under consideration—see the discussion in Section 2.2.

As a specific application of the abstract results we obtain that the Schrodinger
semigroup on a Riemannian manifold with Ricci curvature bounded below is
analytic of angle  on L, for p from a certain subinterval of [1,00) (p € [1, 00)
if the negative part of the potential is in the Kato class). This result seems to
be new even for positive potentials—in this case the semigroup operators act as
contractions on all L,-spaces.

Many of the known results are proved under the assumption that the semi-
group acts on all L,-spaces and has an integral kernel satisfying a Gaussian upper
bound. Weighted norm estimates, i.e. estimates on the norm of the semigroup
operators as operators between weighted L,-spaces, were first used in [ScVo94]
to establish L,-spectral independence for Schrodinger operators on RY with form
small negative part of the potential. In this case the semigroup acts on L,(RY)
only for p from an interval around p = 2.

The proof in [ScVo94] relied on a discrete method where R is subdivided
into congruent cubes. It is clear that this method is essentially restricted to the
study of semigroups acting on (subsets of) R since in the case of a general
metric space there is no natural partition into countably many subsets. Here we
present a continuous version of the technique of weighted norm estimates which



is suitable for the general context.

The structure of the thesis is as follows. To a large extent, Chapter 1 is a
collection of known facts about Cy-semigroups and their generators (Section 1.1),
sectorial forms and the associated analytic semigroups (Section 1.2), Dirichlet
forms and the associated sub-Markovian semigroups (Section 1.5), and pertur-
bation of positive semigroups by real-valued potentials (Section 1.3). In Sec-
tion 1.4, the heart of the chapter, we provide the method that, as described
above, is needed in Chapter 3 to construct semigroups on L, associated with
(non-sectorial) forms.

Chapter 2 is devoted to the theory of weighted norm estimates for semigroups
on metric spaces with exponentially bounded volume growth. In Section 2.1 we
present our abstract results on extrapolation, analyticity and L,-spectral inde-
pendence. In Section 2.2 we give some account to the history of these three
problems, and we relate our results to the existing literature. As an application
we study perturbation of sub-Markovian semigroups satisfying Gaussian upper
bounds (such as the diffusion semigroup on a Riemannian manifold) by potentials.
The proofs of the main theorems are given in Sections 2.3-2.5.

In Chapter 3 we apply the abstract theory of Chapter 2 to our main subject,
the Ly-theory of second order elliptic differential operators. The main results
concerning the construction of the semigroup on L,, quasi-contractivity and an-
alyticity of the semigroups, and L,-spectral independence of the generators are
formulated in Section 3.1 and proved in the two subsequent sections. In Sec-
tion 3.4 we study to what extent the assumptions of our theorems are necessary.
The main result in this direction is that, for a wide class of coefficients, we can
characterise the set of all p for which the differential expression £ is associated
with a quasi-contractive Cy-semigroup on L.
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problems, and his way of approaching problems in a structured way had a great
influence on me. It was Prof. Dr. Vitali Liskevich who drew my attention to the
subjects presented in this thesis. I am grateful to him for inspiring discussions
during several visits to Bristol. I thank Amir Manavi and Zeev Sobol for many
valuable discussions and remarks. My research was partially supported by the
Deutsche Forschungsgemeinschaft. The support is gratefully acknowledged.



Chapter 1

Co-semigroups and sesquilinear
forms

In this chapter we provide the functional analytic tools needed in the two sub-
sequent chapters. In Sections 1.1 and 1.2 we collect basic facts about Cy-semi-
groups, analytic semigroups and sectorial forms, mainly in order to fix our nota-
tion but also to recall results frequently used in this thesis. In Section 1.3 we recall
J. Voigt’s perturbation theory for positive Cy-semigroups. This is fundamental
for Section 1.4 where we investigate sesquilinear forms 7 in Lo (p) fulfilling the first
Beurling-Deny criterion and show how to associate with 7 a positive Cy-semigroup
on Ly(p). Section 1.5 deals with the theory of (non-symmetric) Dirichlet forms,
the main example being the form corresponding to a homogeneous second order
elliptic differential operator with real coefficients.

1.1 C-semigroups

In this section we recall some basic definitions and results from the theory of Cjy-
semigroups, the main references being [Dav80] and [Paz83]. Let X be a Banach
space over C (throughout this thesis we assume C to be the underlying scalar
field). By £(X) we denote the space of all bounded linear operators from X to
X.

Definition 1.1. (a) A function 7 [0,00) — L(X) is called a semigroup on X if
T(0)=1and T(s+t) =T(s)T(t) for all s,t > 0. We say that T" is exponentially
bounded if |T(t)| < Ce“* for some C > 1, w € R and all ¢ > 0.
(b) A semigroup 7' is called strongly continuous or a Cy-semigroup if T'(t) f —
fast—0forall fe X.
(c) The generator of a Cy-semigroup T is the operator A in X defined by
D(A) := {u € X; Au:=lim 3 (T'(t)u — u) exists}.

t—0 ¢

Every Cp-semigroup is exponentially bounded. An exponentially bounded
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8 CHAPTER 1. Cy-SEMIGROUPS AND SESQUILINEAR FORMS

semigroup 7T is strongly continuous if and only if T'(t)f — f for all f from some
dense subset of X.

The generator of a Cy-semigroup 7' is a closed densely defined operator which
determines the semigroup T’ uniquely. We can therefore write e!4 := T'(¢) for the
semigroup operators. From time to time we will loosely speak of a Cy-semigroup
T(t) = e in order to express that T is a Cy-semigroup with generator A.

The type of a Cy-semigroup 7' is the infimum of all w € R for which there
exists C' > 1 such that |T'(¢)]| < Ce*! for all t > 0. If wy € [—00, 00) is the type
and A the generator of T' then

rep(A), AN-A) = / e MT(t)dt  for all A € C with Re A > wy,
0

where the integral is a strong integral.

In the literature, a semigroup T is often denoted by (T'(¢);¢ = 0), (T'(t)):0
or T'(-) in order to indicate that 7" depends on one parameter. We will mostly
use the symbol T only.

Let A be a linear operator in X. The numerical range of A is the set
O(A) = {2'(Au); u € D(A), |u| =1, 2" € X', |2'| =1, 2/(u) = 1}.
For X = L,(p), where (2, ;1) is a measure space and 1 < p < oo, we obtain
O(4) = {(Au, [ul" sgnu); u € D(A), Jul, = 1},

Here and in the sequel, (f, g) is defined as [, f(z) - g(x) du(z) whenever f -G €
Li(p), for f,g: © — C measurable.

The operator A is called m-accretive if O(A) C {z € C;, Rez > 0} and
—1 € p(A). It is called quasi-m-accretive if w + A is m-accretive for some w € R.
A semigroup T is called contractive if |T'(t)| < 1 for all ¢ > 0, and quasi-
contractive if |T(t)| < e** for some w € R and all ¢ > 0. The Lumer-Phillips
theorem states that —A generates a contractive Cy-semigroup if and only if A is
m-accretive.

Let E, F be Banach spaces, and assume that there exists a Hausdorff topolog-
ical vector space G such that £ — G, F' — G (continuous injections) and ENF
is dense in both F and F. Let Br and Br be bounded operators in £ and F',
respectively. We say that Bg and Bp are consistent if Bg|pnp = Brlgap. Two
semigroups Tg, Tr on E, F, respectively, are called consistent if the operators
Tg(t) and Tr(t) are consistent for all ¢t > 0.

Let Tg be a semigroup on F, D a dense subset of £ N F, and assume that
Tg(t)p extends to a bounded operator Tr(t) on F, for all ¢ > 0. Then Ty is a
semigroup on F', and Tg and Tr are consistent. In this case we will say that Tg
extrapolates to the semigroup Tr on F'.

Later on, we will make use of the following notion.
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Definition 1.2. ([Voi86; Def. 1.5]) Let T,, (n € N), T be Cp-semigroups on
X. We say that T,, converges strongly to T', in symbols T" = s-lim 7, or simply
T, — T,if T,(t)f — T(t)f as n — oo, uniformly for ¢ in bounded subsets of
[0,00), for all f € X.

Let A,,, A be the generators of T},, T, respectively. Then T,, — T' if and only
if A,, — A in the strong resolvent sense, by the Trotter-Kato-Neveu theorem.

1.2 Analytic semigroups and sectorial forms

For the theory of sectorial forms we refer to [Kat80; Chapter VI|, for the con-
nection with analytic semigroups to [Kat80; Sec. IX.1]. For symmetric forms see
also [Dav80; Sec. 4.2], for analytic semigroups also [Dav80; Sec. 2.5] and [Paz83;
Sec. 2.5].

Definition 1.3. (a) For § € (0, 5] let
Sp:={0+# 2 €C; |argz| < 0}.

A function T: Sy — L(X) is called exponentially bounded if |T(z)| < Ce*Re? for
some C' > 1, w € R and all z € Sy.

(b) A Cp-semigroup T on X is called analytic if T has an exponentially
bounded analytic extension to Sy, for some 6 € (0,%]. The supremum 6, of
such 0 is called the angle of analyticity of T'. The extension of 1" to Sy, will again
be denoted by T'.

Analytic semigroups are usually defined in a different way (see, e.g., [Dav80]),
but actually these definitions are equivalent: If a semigroup 7" has an analytic
extension to Sy for some ¢ € (0, 5] then T'(z + w) = T'(2)T(w) for all z,w € Sy,
by unique analytic continuation. If 7" is strongly continuous, and 6 < 7, then the
analytic extension to Sy is exponentially bounded if and only if limg,5, .0 T'(2) f =
f for all f € X. For the “only if” part note that {T°(t)f; ¢ >0, f € X} is dense
in X and that T is strongly continuous on t + Sy, for all ¢ > 0.

A linear operator A in X is called m-sectorial (of angle 0) if ©(A) C Sp — w
and —1 —w € p(A) for some w € R, 0 € (0,5). In particular, if A is m-sectorial
then A is quasi-m-accretive. Moreover, —A generates an analytic semigroup of
angle at least 2 — 0, with [e >4 < e*Re* for all z € Sz _p. However, if e~ is an
analytic semigroup then A need not be m-sectorial (the diffusion semigroup on
L1(RY) is analytic of angle % but its generator is not m-sectorial).

Let H be a Hilbert space. A Cy-semigroup T on H is symmetric, i.e. all
semigroup operators T'(t) are selfadjoint, if and only if the generator of T is
selfadjoint. In this case, T is in particular quasi-contractive, and analytic of
angle 7.

A sesquilinear form 7 in H is called symmetric if 7(u,v) = 7(v,u) for all
u,v € D(7). A symmetric form 7 is said to be bounded below if 7 > —w for some
we R, ie.,
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7(u) = 7(u,u) > —wlul? (u € D(T)).

In this case, 7(u,v) + (w + 1)(u,v) defines a scalar product on D(7), and 7 is
called closed if D(7) is a Hilbert space with respect to this scalar product. In the
following, if we speak of a closed symmetric form 7 then this implicitly means
that 7 is bounded below.

If 7 is a symmetric form which is bounded below then we define 7(u) := oo
for w € H\ D(7). With this definition, 7 is closed if and only if u — 7(u) is
a lower semicontinuous function from H to (—oo, 00| (see [Dav80; Thm. 4.12)).
Moreover, if we state an inequality of the type 7(u) < ¢ then this implicitly
expresses that u € D(7).

Let 7 be a sesquilinear form in H. We define the form 7* in H by 7*(u,v) :=
7(v,u) on D(7*) := D(1). Moreover,

T+ T T—7"

d 1 =
an mrT 5

Rer =

where the sum of two forms 7, 7 is defined by (71 +72)(u, v) := 71 (u, v) + 7o (u, v)
on D(my + 73) := D(11) N D(13). Then Re7 and Im 7 are symmetric forms, and
7 =Rer+ilm7, 7 = Rer —iIlm7. Note that (Re7)(u) = Re(r(u)) for all
u € D(7). (But not (Re7)(u,v) = Re(7(u,v)) for all u,v € D(7)!)

The numerical range of T is the set
7) = {7(u); u € D(7), |u| = 1}.

The form 7 is symmetric if and only if ©(7) C R (recall K = C). Moreover,
ReT > —w for some w € R if and only if ©(7) C {Z € C; Rez > w} In this
case, T is said to be bounded from the left.

We say that 7 is sectorial if O(T + w) C Sy for some w € R, 0 € (0,%), or
equivalently,

Im 7(u)| < tanf(Ret +w)(u) (u € D(1)).

In this case we endow D(7) with the form norm || - |, defined by |u|? := (ReT +
w+ 1)(u). It is easy to see that this definition does not depend on the particular
choice of w, up to equivalence of norms.

We say that a sectorial form 7 is closed if the symmetric form Re 7 is closed. By
Kato’s first representation theorem ([Kat80; Thm. I1.2.1]), every densely defined
closed sectorial form in H is associated with an m-sectorial operator A in H in
the sense that D(A) C D(7) and

(Au,v) = 7(u,v) for allu € D(A), v € D(1).

The operator A is selfadjoint if and only if 7 is symmetric. We will shortly write
7 < T to indicate that T is the analytic semigroup generated by —A. With this
notation, 7% < T* := (T(t)*;¢ > 0).
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Let 7 be a closed sectorial form, A the associated m-sectorial operator in H.
By [Kat80; Cor. 2.3] the numerical range ©(A) of A is a dense subset of the
numerical range ©(7) of 7. Therefore, — A generates a contractive Cy-semigroup
if and only if A is m-accretive, and the latter is true if and only if Re7 > 0.

A sectorial form 7 is called closable if it has a closed extension 7 O 7. The
smallest closed extension of 7 is denoted by 7. The sum of two closable (closed)
sectorial forms is again a closable (closed) sectorial form. A subspace D C D(7)
is called a core for 7 if D is dense in D(7) with respect to the form norm. If 7

is closable then this is equivalent to 7|, = 7, where we shortly write 7 for the
restriction of 7 to D x D.

Let 7,7 be symmetric forms. We write 74 < 7 if D(m) 2 D(7m2) and
71(u) < 12(u) for all u € D(13). (This is consistent with the definition of 7 > —w
if —w is interpreted as the form defined by —w(u,v) with domain H.)

Let H = Ly(p) for some measure space (§2, u), and V: Q@ — R measurable.
Then [ Vuvdp on the domain Q(V) := {u € La(p); V|ul* € Li(n)} defines a
symmetric form which we will also denote by V. The form V satisfies V > —w
for some w € R if and only if V > —w a.e., and V is closed in this case.

We conclude this section by a lemma which is useful for extrapolation of
analytic semigroups.

Lemma 1.4. Let (2, p) be a measure space, D a subspace of Ly(11)NLoo (1) which
is dense in Ly(p) for all 1 < p < 0o, and norming for Ly(p). Let 1 < p,q < oo,
S C C open, F: S — L(Ly(p)) an analytic function. If |F(-)[plp—p is locally
bounded then F(-)[p extends to an analytic function F,: S — L(L,).

Proof. 1t is clear that F(-)[, extends to a locally bounded function F,: S —
L(L,). The assumption implies that (F,(-)f, ¢) is analytic for all f,g € D. A
slight modification of [Kat80; Thm. III.3.12] shows that F}, is analytic. (For the
case p = 1 note that D is not necessarily dense in L., (u); it suffices that D is a
norming subspace for Li(u).) O

This result will be applied in Chapter 3 in the following situation: (£2,) is
an increasing sequence of measurable subsets of {2 such that u(€2,) < oo and
Q =, Q, (in particular, Q is o-finite). Then the space of all f € Lo () for
which there exists n € N such that f = 0 a.e. on Q\ €, is a suitable choice for
D.

1.3 Perturbation of positive Cy-semigroups by
real-valued potentials

In this section we give a short introduction to J. Voigt’s perturbation theory for
positive Cy-semigroups developed in [Voi86], [Voi88]. We include the proofs for
two reasons: they partly simplify the original proofs, and they demonstrate how
the theory works.
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Let (€, 1) be a measure space, 1 < p < oo. A semigroup T of positive
operators on Ly () is called positive, which we denote by 7" > 0. If T}, T are two
positive semigroups, then T} < Ty means T} (t) < Ty(t) as positive operators for
all £ > 0. If T'is a Cy-semigroup on L,(x) with generator —A, and V' € Lo (),
then Ty denotes the Cy-semigroup generated by —(A+ V). For the remainder of
this section let T, Ty, Ty be positive Cy-semigroups on Ly ().

The following two inequalities (see [Voi88; Prop. 1.3]) lie at the heart of Voigt’s
perturbation theory. Most of the subsequent proofs rely on these inequalities only.
Let V, V1, V5 € Lo(p) be real-valued. Then

i<V = Ty, 2Ty, 20,
V20 T1<Ty = 0< (Ty)y — (Th)y < Ty —T7.

The first statement and the first inequality of the second one follow from the Trot-
ter product formula, Ty () = s-lim, o (T(£)e?/")" for all t > 0 (cf. [EnNa00;
Exercise I11.5.11]). The second inequality in (1.2) is equivalent to T} — (T})y <
Ty — (Ty)y which in turn follows from Duhamel’s formula, T'(t) — Ty (t) =
f(f T(t —s)VTy(s)ds, since (T1)y < (Tx)v by the first inequality.

We are going to extend the definition of Ty, to unbounded real-valued poten-
tials, approximating V by V® := (V An) V (—n) and letting

Ty (t) = slim Tyon(t) (t>0) (1.3)

if the limits exist. Obviously, 7y is a semigroup in this case, and inequalities (1.1)
and (1.2) carry over to unbounded potentials whenever the corresponding limits
exist. Moreover, if V' > 0 or V' < 0 then (Ty,)) is monotone by (1.1). This leads
to the following definition.

Definition 1.5. ([Voi86; Def. 2.2], [Voi88; Def. 2.1], [Vo0i88; Def. 3.1]) Let
V:Q — [0,00) be measurable.

(a) If V' > 0 then the limit in (1.3) exists for all ¢ > 0 by dominated con-
vergence. If Ty is strongly continuous, V' is called T-admissible. In this case,
Tv(n) - Tv.

(b) If V"< 0 then V is called T-admissible if the limit in (1.3) exists for all
t > 0 and defines a C-semigroup. In this case, Ty, — Ty.

By monotone convergence, the limit exists if and only if sup,,cy |7y ()] <
oo for all ¢ > 0. By [Voi88; Prop. 2.2], V' is T-admissible if and only if
SUPo<s<t,nen [Ty (B)] < oo.

(¢) If V> 0 and V is T-admissible then —V is Ty-admissible since Ty <
(T\/)—V/\n < (TV/\n>—V/\n =T for alln € N by (11) and (12) If7T = (Tv)_v,
then V is called T'-reqular.

In the subsequent proofs we will make use of inequalities (1.1) and (1.2)
without further notice. The crucial result concerning the notion of admissibility
is as follows.
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Proposition 1.6. ([Voi88; Thm. 2.6]) Let U,V > 0 be measurable. Assume that
—U and V are T-admissible. Then V' is T _y-admissible, —U is Ty -admissible,

and (Ty)—v = (T_y)y = s-limy, 1n—oo Tvan—vam = Tv—u-

Proof. First observe that the semigroup (7 )y is strongly continuous since Ty, <
(T_v)y < T_y,ie., Vis T y(-)-admissible. The fact that —U is Ty (-)-admissible
will be shown simultaneously with (7v)_y = (T_v)v.

Let U, :=UAn, V, ==V An (n €N). For m € N we have

0< (Tv,)m-uv,, — (TV)m-v,, < Ty, =Ty = 0 (n — o0)

and hence (T, v, = (Tv,)-v,, — (ITv)_v,, (n — o0). Further,

0<(Tv)v, = (Tv,)v, < T-v = T-y,, (n,m€N),
which implies the second equality. Letting n — co we obtain
0< (Tv)yv - (Tv)-v, <Tv -1Tuy,,

so that (Ty)_u,, — (T-v)v as m — oo. This shows that —U is Ty (-)-admissible
and (Ty)_y = (T_y)v. To prove the last equality it suffices to note that

since Vay, — Uy, = (V = U™ >V, — Uy, O

Lemma 1.7. Let V > 0 be measurable, T\ < T5.

(a) (cf [LiMa97; Prop. 1.4(a), Prop. 1.5]) V is Ti-admissible if and only if
V' is T5-admissible.

(b) ([LiMa97; Cor. 1.15]) If V' is Ty-reqular then V is T -reqular.

Proof. (a) If V is T1-admissible then (73)y is strongly continuous since (77)y <
(T3)y < Ty. If V' is Ty-admissible then 0 < 17 — (T1)y < Ty — (T3)y implies that
Ti(t) — (T1)y(t) — 0 strongly as t — 0, hence (7})y is strongly continuous.

(b) V' is Ty-admissible by (a). With V,, :=V —V An we have (Ty)_va, = Ty,
by Proposition 1.6. Therefore, 0 < Ty — (T1)v, < Ty — (T»)y, implies that
((Tl)v>—V/\n — T} as n — oo. O

The converse of (b) is not true in general, but we have the following result.

Lemma 1.8. Let U,V > 0 be measurable.

(a) ([Voi88; Prop. 3.4]) If —U is T-admissible and V is T-reqular, then V is
T_y-reqular.

(b) (c¢f. [LiMa97; Cor. 1.16]) Assume that U is T-reqular. Then V is T-
reqular if and only of V' is Ty-reqular.
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Proof. (a) For m € N, V' is T,,,_yam-regular by Lemma 1.7(b) and hence Ty p,-
regular. Further,

0<Tv—(T-v)v—van < (Tv = T-vpm) + (T-vrm — (T-vAm)v-vn)

for all n,m € N. The assertion follows by choosing first m and then n large
enough.
(b) follows directly from (a) and Lemma 1.7(b) since (Ty)-y =T O

Another important application of Proposition 1.6 is the next result which,
roughly speaking, expresses that negative admissible potentials are always regu-
lar.

Lemma 1.9. (¢f. [Voi88; Prop. 3.3(b)]) Let V- > 0 be measurable. If =V is
T-admissible, then (T_y)y =T, and V is T-reqular.

Proof. Since T' < (T_v)y < T_v, the semigroup (7_y )y is strongly continuous,
i.e., V is T_y-admissible. Lemma 1.7(a) implies that V' is T-admissible, hence
(Tv)-v = (T_v)v = T by Proposition 1.6. O

In the last two results of this section, let V' > 0 be measurable, and T, T,
consistent positive Cy-semigroups on Ly, (p), L,(4), respectively, for some p,q €
1, 00).

Lemma 1.10. ([Voi86; Prop. 3.1]) (a) (1,)v and (1,)y are consistent, and V
is Ty-admissible if and only if V' is T,-admissible.
(b) If =V is T,- and T,-admissible, then (T,)_y and (T,)_v are consistent.
(c) V is Ty-regular if and only if V' is T,-reqular.

Proof. (a) First, observe that (7,)van, (Tg)van are consistent (n € N) by the
Trotter product formula. Therefore, (T,,)v, (1,)v are consistent as limits of con-
sistent semigroups. By [Voi92], (T,)v is strongly continuous if and only if (T)v
is strongly continuous (since (7,)y and (7;)y are positive semigroups).

(b) is proved in the same way as (a).

(c) follows from (a) and (b) since —V is admissible with respect to (7,)y as
well as (T7)v. O

Corollary 1.11. Assume that =V isT,-admissible. Then —V is Tj,-admissible if
and only if (T,)—v extrapolates to a Cy-semigroup T, on Ly(1), and T, = (T,)—v
in this case.

Proof. If =V is T,-admissible then the semigroups (7,)_y and (7,)_y are con-
sistent, by Lemma 1.10(b). This shows the “only if” part, with T, = (7,)_y. To
show the other implication, assume that (7},)_y extrapolates to a Cp-semigroup
T, on Ly(p). By Lemma 1.9 and Lemma 1.10(a), T, = ((Ty)-v), and (T,)y are

~

consistent semigroups, i.e., (T,)y = T,. This shows the T,-admissibility of —V/,
and T, = (T,)_v follows from the consistency of (T},)_y and (T})_y. O
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1.4 The first Beurling-Deny criterion for sesqui-
linear forms

In Section 1.2 we recalled the well-known fact that with every densely defined
closed sectorial form in a Hilbert space one can associate an analytic semigroup on
H (Kato’s first representation theorem). In this section we are going to associate
a positive Cy-semigroup on L,(u) with a sesquilinear form in Lo(p) fulfilling the
first Beurling-Deny criterion ((£2, ) a measure space), even in cases when the
form is not bounded from the left. This is performed in Proposition 1.19 and
Definition 1.20 below.

The contents of the present section are partly new. This section, together
with the previous one, is fundamental for the understanding of Chapter 3.

Definition 1.12. Let 7 be a sesquilinear form in Lo(p).

(a) 7 is called real if Reu € D(7) for all u € D(7), and 7(u,v) € R for all
real-valued u,v € D(r).

(b) 7 is said to fulfil the first Beurling-Deny criterion if T is real and ut €
D(1), 7(u™,u”) < 0 for all real-valued u € D(7).

The following proposition, due to E.-M. Ouhabaz, shows the relevance of these
two notions.

Proposition 1.13. ([Ouh92b; Prop. 2.2 and Thm. 2.4]) Let T be a densely de-
fined closed sectorial form in Lo(u), T the associated analytic semigroup on
Lo(p). Then T is real (i.e., all semigroup operators are real) if and only if T
1s real, and T is positive if and only if T fulfils the first Beurling-Deny criterion.

The next lemma states that it suffices to verify the conditions of Defini-
tion 1.12 on a form core.

Lemma 1.14. Let 7 be a closable sectorial form. If T fulfils the first Beurling-
Deny criterion then so does T.

Proof. We first show that 7 is real. Without restriction Re7 > 0. Then
7(Reu) < 7(Rew) + 7(Imu) =Re7(u) (u€ D(1))

since 7 is real. From this we easily deduce: if v € D(7), (u,) C D(7) with
u, — w in D(T), then Rew € D(T) and Rew,, — Rew in D(7). By the latter we
show that 7(u,v) € R for all real-valued u,v € D(7), i.e., T is real.

From the above it follows that the set of all real-valued elements of D(r)
is dense in the set of all real-valued elements of D(7). Now, for real-valued
u € D(7r) we have T(ut,u — ut) = —7T(u",u”) > 0 and 7(u — u™,u") =
—7((=w)*,(—u)") = 0. Thus, we can apply [MaR392; Lemma 1.4.9] to con-
clude that ut € D(T), T(ut,u™) < 0 for all real-valued v € D(7T). O
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For the remainder of this section let 7 be a densely defined sesquilinear form
in Ly(p) fulfilling the first Beurling-Deny criterion. The next result characterises
admissibility of potentials via form conditions, in the case of symmetric forms.

Proposition 1.15. (¢f. [Voi86; Prop. 5.7, Prop. 5.8(a)]) Let T be symmetric
and closed, T the associated positive Co-semigroup on Lo(p), V:Q — [0,00)
measurable.

(a) The potential V' is T-admissible if and only if T+ V is densely defined,
and T +V < Ty in this case.

(b) The potential —V is T-admissible if and only if V' < 7+w for some w € R.
In this case, T —V is closable and 7 —V < T_y.

Proof. All the assertions of the proposition, except for the closability of 7—V, are
shown in [Voi86]. There the proof is given for the case of the diffusion semigroup
on RY only, but literally the same proof carries over to the general case. The
closability of 7 — V' is due to A. Manavi ([Man01; Prop. 12.1.7]); we present his
argument here.

Note that 7"y is a symmetric Cy-semigroup. Let 7 be the densely defined,
closed symmetric form in Ly(p) associated with T_y. By part (a) of the propo-
sition we have 7+ V < (T_y)y = T « 7, taking into account Lemma 1.9 and
the definition of 7. Hence 7+ V = 7. Since Q(V) O D(7), this implies that
727 —V,ie., 7—V has a closed extension. O

Proposition 1.15(a) is valid even for sectorial forms, see [Man0l; Kor.
12.1.4(a)]. Part (b), however, is not valid for sectorial forms 7: the inequal-
ity V' < Ret + w still implies that —V is T-admissible ([Man01; Prop. 12.1.11)),
but the converse is not true as we will see in Example 3.31 in Section 3.4.

It is clear that a sesquilinear form 7 fulfils the first Beurling-Deny criterion if
and only if the same holds for 7 + V', for some measurable function V: {2 — R
with Q(V) 2 D(7). Surprisingly, a similar result holds for closability. It is a
direct consequence of Proposition 1.15(b).

Corollary 1.16. (c¢f. [Man01; Kor. 12.1.14]) Let T be sectorial. Then T is clos-
able if and only if T +V s closable for some measurable function V' = 0 with

Q(V) 2 D().

Proof. Without restriction 7 is symmetric. Let V' > 0 be measurable with
Q(V) D D(r). If 7 is closable then it is clear that 7 + V is closable. If 7 + V' is
closable then V' < 7+ V + w for some w € R. Proposition 1.15(b) implies that
7+ V — V is closable. Thus, 7 is closable since 7 C 7+ V — V. ]

Definition 1.17. Let 7 be sectorial and closable, V' > 0 measurable. We say
that V' is 7-regular if D(7+ V) is a core for 7, i.e., D(7) N Q(V) is dense in D(7).

Obviously, if V' is 7-regular then V is T-regular, but the converse is not true
in general (D(7 4+ V) may be {0} although V' is T-regular, see [StVo85]). The
following lemma states in particular that form regularity implies semigroup reg-
ularity.
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Lemma 1.18. Let 7 be sectorial and closable, T the positive Cy-semigroup as-
sociated with 7, V' > 0 T-reqular. Then V is T-regular, and Ty <~ 17+ V.

Proof. Note that 7 4+ V fulfils the first Beurling-Deny criterion, by Lemma 1.14.
Let T7 be the positive Cy-semigroup associated with 7+ V.

Since D(7+4V) is a core for 7 and (7+V -V An)(u) — 7(u) for allu € D(7+V),
we can use [Kat80; Thm. VIIL3.6] to obtain (71)_ya, — 7. Thus, —V is Tj-
admissible, and (71)_y = T. Lemma 1.9 implies that V' is Tj-regular and that
Ty = Ty . The latter shows the second assertion, and V' is regular with respect to
T = (T})_v, by Lemma 1.8(a). O

In [Man01; Kor. 12.1.4(b)] it is shown that form regularity and semigroup
regularity are actually equivalent, but we do not need this fact here.

Now we are ready to formulate the main result of this section which is funda-
mental for Chapter 3.

Proposition 1.19. Let U > 0 be measurable, Q(U) O D(7), 7+ U sectorial
and closable, T+ U — Tyo. Let V > 0 be (7 + U)-regular, T+ V sectorial and
closable, T+ V < Ty,. Let p € [1,00).

Assume that Ty extrapolates to a positive Cy-semigroup Ty, on L,(p) and
that —U s Ty ,-admissible. Then the same holds with V' in place of U, V is

(Tu,p)—v-regular, and (Typ)—v = (Tvyp)—v.

Proof. Let T, := (Ty,)-u. It suffices to show that V' is Ty ,-regular and that
Tva, (T,)v are consistent: then V is T,-regular by Lemma 1.8(a) and thus
(Tup)-v = ((Tp)V)_v'

The potential U is (7 + V)-regular since Q(U) 2 D(7+ V), and V is (7 + U)-
regular by the assumptions. Lemma 1.18 implies that (Tyo)y < (1 + V) + U =
(1+U)+V < (Ty2)y and that U is Typ-regular. Therefore,

Tvp = ((TV,Z)U)_U = ((TUJ)V)—U'

Moreover, V' is Ty o-regular and hence Ty ,-regular by Lemma 1.10(c). Since —U
is Ty ,-admissible we obtain by Proposition 1.6 that

(To)v = ((Tvp)-v)y = (Tup)v) 4

Now we combine the above two equalities and conclude by Lemma 1.10(a) and (b)
that Ty o and (7,)y are consistent. O

Proposition 1.19 leads to the following definition. Recall that 7 is a densely
defined sesquilinear form fulfilling the first Beurling-Deny criterion.

Definition 1.20. Let p € [1,00). We say that 7 is associated with a positive
Co-semigroup T}, on Ly(p), 7« T}, on Ly(p) for short, if the following holds:
There exists U > 0 such that Q(U) 2 D(7), 7+ U is sectorial and closable,
the positive Cyp-semigroup Ty 2 on Lo(p) associated with 7 + U extrapolates to a
Co-semigroup 1y, on L,(p), —U is Ty ,-admissible, and T, = (1y,)-v-
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According to Proposition 1.19, the semigroup 7}, is uniquely determined by
the form 7. If 7 itself is sectorial and closable, we can choose U = 0. In the
context of forms fulfilling the first Beurling-Deny criterion, the above definition
is thus an extension of the corresponding definition of the analytic semigroup on
Ly(11) associated with a closed sectorial form in Lo(u).

The following result is a generalisation of Lemma 1.18.

Proposition 1.21. Letp € [1,00) and assume that T is associated with a positive
Co-semigroup T, on L,(u). Let U = 0 be measurable, Q(U) D D(1), and 7+ U
is sectorial and closable. If V' > 0 is (1 4+ U)-reqular then V is T,-reqular, and
T+V & (Tp>V~

Proof. First assume that V' > U. Then 7 4+ V is a closable sectorial form. Let
Ty 2 be the Cy-semigroup associated with 7+ V. By Proposition 1.19 we obtain
that Ty extrapolates to a Cp-semigroup Ty, on L,, (Ty,)-v = Tp, and V is
T,-regular. Lemma 1.9 implies that Ty, = (1,)v, i.e., 7+ V « (T))v.

In the general case we apply the above argument to U + V in place of V. We
conclude that (1 4+ V) + U < (T,)y+v and that U + V is T-regular. Thus, V is
T,-regular, by [Voi88; Prop. 3.3(a)]. Moreover, —U is (1,)y+v(-)-admissible and
((Tp)usv)_, = (Tp)v by [Voi88; Thm. 3.4]. Hence 7+ V « (T,)v. O

The next proposition deals with consistent semigroups and the adjoint semi-
group. Part (a) is similar to Corollary 1.11.

Proposition 1.22. Letp € [1,00) and assume that T is associated with a positive
Co-semigroup T, on L,(p).

(a) Let ¢ € [1,00) and T, a positive Cy-semigroup on Ly(un). Then T is
associated with T, if and only if T,,, T, are consistent. In this case, T is associated
with a family of consistent Cy-semigroups Ty on Lg(p), s € [p A q,pV ql.

(b) If p > 1 and T, denotes the adjoint semigroup on Ly (p) then the form 7*
is associated with T .

Note that, since T}, is a real semigroup, it makes no difference whether the
adjoint semigroup is taken with respect to the bilinear or with respect to the
sesquilinear duality bracket.

Proof of Proposition 1.22. Let U > 0 be such that Q(U) 2 D(7), 7+ U is
sectorial and closable, the positive Cy-semigroup Ty 2 on Lo(p) associated with
T + U extrapolates to a Cy-semigroup 1y, on L,(u), —U is Ty p,-admissible, and
T, = (Tup)-v-

(a) Assume that 7 is associated with 7,. Then Proposition 1.19 implies that
Ty extrapolates to a positive Cp-semigroup Ty, on Lg(p), that —U is Ty,
admissible, and T, = (Ty,)—y. The semigroups 1y, 1y, are consistent, so T,
T, are consistent by Lemma 1.10(b).

Conversely, assume that T),, T, are consistent. Then (7,)y, (T;)v are consis-
tent by Lemma 1.10(a). From Lemma 1.9 we know that

(Tp)U - ((TU,p)—U)U = TUJ"
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Since Ty2, T, are consistent, we conclude that T, extrapolates to the semigroup
(T,)u on Ly(p). The potential U is T,-regular by Proposition 1.19 and hence T-
regular by Lemma 1.10(c). Thus, —U is (T;)y-admissible, and ((Tq)U)_U =T
By Definition 1.20 this shows that 7 is associated with Tj.

The last assertion now follows by Riesz-Thorin interpolation.

(b) It is easy to see that 7" 4+ U is closable, fulfils the first Beurling-Deny
criterion, and that 7* + U = 7 + U . Thus, 7* + U is associated with the positive
Co-semigroup Tp;, which in turn extrapolates to the semigroup 777, on Ly (p).

Moreover, ((T&p)*U/\”)neN is an increasing sequence of semigroups, and
(T5p)-vrn = ((TU,p)—U/\n)* — 17 weakly as n — oo

since (Typ)-van — Tp. We deduce that (T77,) van — T, strongly as n — oo,
Hence, —U is Tp; -admissible and (137 ) v = T}, i.e., 7" is associated with T);. [

The following corollary shows that, in the case of symmetric forms, Defini-
tion 1.20 does not lead to new situations in which 7 can be associated with a
Co-semigroup on Ly ().

Corollary 1.23. Let 7 be symmetric.

(a) The form T is associated with a Cy-semigroup on Lo(p) if and only if T is
bounded below and closable.

(b) If T is associated with a Cy-semigroup on L,(u), for some p € [1,2), then
T is associated with a Cy-semigroup on Lg(p) for all q € [p,p'], g # oc.

Proof. (a) The “if” part is clear, so we prove the “only if” part. Let U > 0 be
such that Q(U) D D(1), 7 + U is sectorial and closable, and —U is admissible
with respect to the positive Cy-semigroup Ty 2 associated with 74+ U. Then, by
Proposition 1.15(b), we have U < 7 + U + ¢ for some ¢ € R. This implies 7 > —c¢
since Q(U) D D(r). Since 7 + U is closable we obtain by Corollary 1.16 that 7
is closable.

(b) This is a direct consequence of Proposition 1.22. O

For the last result of this section recall that I is an ideal of a lattice X if
uel, ve X, |v| <l|u| implies v € I.

Lemma 1.24. Let 7 be sectorial and closable, U > 0 measurable.
(a) Let D C D(7) be a dense ideal. Then D N Q(U) is dense in D(t + U).
(b) If V' > 0 is T-reqular then V is (7 + U)-regular. In particular, if U,V are
T-regular then U + V' s T-regular.

Proof. Without restriction, 7 is symmetric and 7 > 0.

(a) Since 7 + U fulfils the first Beurling-Deny criterion it suffices to consider
0 <wue D(r+U). Let (u,) € D such that u, — u in D(7) as n — oo.
Let v, := (Reu,)". Then v, € D, and v, — wu in Ly(p). Since 7 fulfils the
first Beurling-Deny criterion we have limsup,,_, . 7(v,,) < lim,,o 7(uy,) = 7(u).



20 CHAPTER 1. Cy-SEMIGROUPS AND SESQUILINEAR FORMS

From the lower semicontinuity of 7 we deduce that v, — u in D(7) as n — oo.
Moreover, 7((u — v,)*) < 7(u — v,) — 0 and thus v, Au=u— (u—v,)" — u
in D(7) as n — oo. Finally, v, Au € DNQ(U), and v, Au — u in Q(U) by
dominated convergence.

(b) Just apply (a) to D = D(1 + V). O

1.5 Dirichlet forms

In this section we introduce the notions of sub-Markovian semigroups and (non-
symmetric) Dirichlet forms, the main source being [MaR692]. For this thesis, the
main example of a Dirichlet form is the form corresponding to a homogeneous
second order elliptic differential operator with real coefficients—the principal part
of the type of elliptic operators we investigate in Chapter 3. At the end of the
section we present a perturbation result for symmetric sub-Markovian semigroups
which is due to V. Liskevich and Yu. Semenov.

Let (€, 1) be a measure space. An operator B € L(Ls(p)) is called sub-
Markovian if B is positive and L, -contractive, i.e., |Bf|leo < | flloo for all f €
Lo(p) N Lo (). It is easy to see that B is sub-Markovian if and only if f < 1 a.e.
implies that Bf < 1 a.e. for all f € Ly(p): for the “if” part note that f > 0 is
equivalent to —nf < 1 for all n € N.

A Cy-semigroup T on Ly(p) is called sub-Markovian if all semigroup operators
T(t) are sub-Markovian. The next result gives a characterisation of this property
for the case that T is associated with a closed sectorial form 7 > 0. We state the
result in a core version which we did not find in the literature, so we include a
proof. We write D(7), for the set of real-valued elements of D(7).

Proposition 1.25. (¢f. [MaR3692; Prop. 1.4.3, Thm. 1.4.4]) Let T be a densely
defined closed sectorial form in La(p), T = 0, and T the associated analytic
semigroup on Lo(p). Then T is sub-Markovian if and only if T is real and

uAN1€e D), TuANl,(u—1)*)>0 (ueD) (1.4)
for some dense subset D of D(T),.

Proof. 1f T is sub-Markovian then 7 is real by Proposition 1.13, and (1.4) follows
from [MaR692; Prop. 1.4.3 (ii) = (i), Thm. 1.4.4 (iv) = (i)], for D = D(7).

Conversely, assume that 7 is real and that (1.4) holds for a dense subset D of
D(7),. We will show that

(u—1)* e D7), 7(u,(u—1)") =0 (ue D(7),);

then it follows that 7" is sub-Markovian, by [MaR692; Prop. 1.4.3 (iii) = (ii)]. Let
first w € D. Note that u = u A1+ (u — 1)* (this in particular implies that
(u—1)" € D(7) in (1.4)), hence

Tu,(u =D =7(wAL,(u—D)"+7((u—1)") = 7((u—1)") > 0.
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From this we also obtain, by the sectoriality of 7 (see [Kat80; Sec. V1.3, (1.31)]),
that there exists ¢ > 1 such that

[(w=D)"17 = 7r((w—1)") +(w—1)"[3
< (r+ D, (uw—17) < cul (v —1)7]-.

Therefore, |(u — 1), < c|ul. for all real-valued u € D.
Let now u € D(7),. Let (u,) € D such that u,, — u in D(7). Then

(up, — )" € D(7), 7(tp, (u, — 1)T) =0

for all n € N. Thus, it remains to show (v — 1)" € D(7) and (u, — 1)" —
(u — 1)t weakly in D(7). This in turn follows from (u, — 1)* — (v —1)" in
Lo(), sup,ey |(un — 1)F|; < esup,ey |un]- < 0o and the lower semicontinuity
of Rer. O

The above proposition leads to the following definition.

Definition 1.26. A sesquilinear form 7 in Lo(p) is called Dirichlet form if T is
densely defined, real, sectorial and closed, ReT > 0 and

uAN1€D(r), T(unl,(u—1)") 20, 7((u—1)",uAnl) =0 (ue D(r),),
or equivalently, 7 and 7* fulfil condition (1.4) for some dense subset D of D(1),.

Observe that Re 7 is a Dirichlet form if 7 is a Dirichlet form; but it is easy to
show that the converse is not true.

By duality and interpolation we immediately obtain the fundamental result
about Dirichlet forms.

Theorem 1.27. Let T be a densely defined closed sectorial form in Lo(p), T the
associated analytic semigroup on Lo(p). Then T is a Dirichlet form if and only
if T' is positive and L,-contractive for all 1 < p < oo.

Now we introduce our main example of a Dirichlet form which will be the
starting point in Chapter 3. Let N € N, @ # Q C RY an open set and a: Q —
RN ® RN a measurable matrix-valued function. If a € Ly ., i.e., ajr € L110c(Q2)
for all 1 < j,k < N, then we can define a sesquilinear form 7 in Ly(Q2) by

7(u,v) :== (aVu,Vov), D(1):=CZ(Q).
Here, (f, g) is defined as [, f(x)-g(x) dz whenever f-g € Li(Q), for f,g: @ — CV

measurable.
We say that a is sectorial (with constant o > 0) if

}Im(a( . Z)‘ < aRe(aC-¢) a.e. forall ¢ € CY,

or equivalently, aC-C € Saretana a-€. for all ¢ € CV (here, Sy := (0, 00)). Obviously,
T is sectorial if @ is sectorial. By [Vog00] the converse is also true.
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In the following we assume that a is sectorial. Define the sectorial form 7y in
Ly(€2) by

™ (u,v) == (aVu, Vo), D(ry) = {u € W}, (Q) N Ly(Q); aVu-Vu € L(Q)}.

The index N indicates that the associated sectorial operator in Lo (£2) corresponds
to Neumann boundary conditions (in case 7y is a densely defined closed sectorial
form).

In order to see that 7y is defined on D(7y), i.e., aVu - Vv € Ly(Q) for all
u,v € D(1y), let ag := ag—aT denote the symmetric part of a. By the sectoriality
of a we obtain that

D(7n) = {u € W} 1,.(Q) N La(Q); a;Vu - Vu € Ly(Q)}.

Moreover, by [Kat80; Sec. VI.3, (1.31)], there exists ¢ > 1 such that

I

‘ag ' 77‘ < C(asf . E) (%77 ’ ﬁ)% (5777 € (CN) (15)

Thus,

N

laVu - V| < ¢(a,Vu - V)2 (a,Vo - VT)2 € Ly(Q)  (u,0 € D(r)),
i.e., 7y is defined on D(7y).

The matrix function a is called uniformly elliptic if a € Lo, i.e., a;i € Loo(2)
for all 1 < 7,k < N, and there exists € > 0 such that a > ¢ a.e., i.e.,

N
af - € = Z a;p&i&r > €l€)?  ae. for all £ € RY.

Jk=1

It is standard (see, e.g., [Dav89; Thm. 1.3.9]) that 7y is a Dirichlet form if
a is symmetric and uniformly elliptic. But we are going to study much more
general cases. First observe that, by the chain rule (cf. [BoMu82; Thm. 4.2]),
V(uA1) = XueyVu and V(u — 1)* = x>y Vu for all w € Wi, (Q). This
implies that uA1 € D(7y) and 7(uA 1, (u—1)") =7((u—1)*",uA1) =0 for all
real-valued u € D(7y). Moreover, it is easy to see that 7y is real, and Re7y > 0
since a is sectorial. Therefore, 7y is a Dirichlet form as soon as 7y is densely
defined and closed. More generally, if 7, is densely defined and closable then 7x
is a Dirichlet form.

If a € Ly o then C2°(2) C D(7y); in particular, 7y is densely defined in this
case. The following result is an easy criterion guaranteeing that 7y is closed.

Proposition 1.28. (c¢f. [R6Wi85; Thm. 3.2]) Assume that a is sectorial, a.e.
invertible, and a=' € Lijoc. Then the form 1y defined above is sectorial and
closed. In particular, if Ty is densely defined then it is a Dirichlet form.
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In the proof of this proposition we will make use of the next lemma which
shows that the assumption @ invertible, a=! € L joc is equivalent to as invertible,
a;' € Lyjpe. For a matrix a € RY @ RY we write |a| to denote the norm of the
operator a in Euclidean space RY. Observe that a, > 0 if a is sectorial, so the
square root a;/ % of a, exists and we obtain

Re(a¢ - ¢) = a,¢ - ¢ = [al/?¢|* (¢ € CY). (1.6)

Lemma 1.29. Let a € RN @ RY be sectorial with constant a. Then |a| < (a +
1)]as|, and a is invertible if and only if a, is invertible. If a is invertible then a™*
18 sectorial with constant o, and

as < a'a;ta < (1+ a?)ay, (1.7)
(™) <ot < (1+a)(a)s.

Proof. Let a := a — as denote the antisymmetric part of a. The sector condition
implies that

jag -l < ala?¢] - a0l (&n € RY)
(cf. (1.5)). From this we deduce

|a¢| < alal?||ay?¢] (€ € RY).

In particular, |a| < a|a§/2||a;/2| = aas| and thus |a| < (o + 1)|agl.

In order to show the second assertion, assume that a, is invertible. Then
al - & = |a;/2§|2 > 0 and hence a& # 0 for all 0 # ¢ € RV, i.e., a is invertible.
Conversely, if a, is not invertible then there exists 0 # ¢ € RY such that |ai/ %¢ > =
0. By the above, |a¢| < a|a;/2||ai/2§| = 0 and thus af = a;/2(ai/2§) +a =0,
i.e., a is not invertible.

Let now a be invertible. Then the sector condition implies that

ailc : Z = a(ailz) : (Cle) € Sarctana (C € (CN)7

i.e., a~! is sectorial with constant a. Since @ is antisymmetric, we have

a'a;'a = (a;+a)a;as+a)=as+a +a+a'a;'a=as+a'a;a.
Observe that a'a;'d = (as/*a) (as/?a) > 0. Thus, (1.7) is equivalent to

|a5_1/2d£| < a]a§/2§| for all £ € RY. This in turn follows from

ja;12a¢ - 1) = |a€ - o %n) < alal’3] - Inl (€, € RY).

The last assertion is a direct consequence of (1.7), the identity a'(a™!),a = as,
and the following elementary observation. Let b,c € RY @ RV be symmetric.
Then

b < ¢ if and only if a'ba < a'ca

since a is invertible. O
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By the functional calculus one can show that for a continuous function f: R —
C the mapping B — f(B), in the space of all selfadjoint operators B € L(R"), is
continuous. We infer that the function  + a,(z)"/? on Q is measurable. By (1.6)
we obtain that

D(7n) = {u € W] ,o(Q) N Ly(Q); al/*Vu € Ly()N}

and that the norm in D(7y) is given by |u|? = |u|3 + lat > V2.

Proof of Proposition 1.28. First we show a,s_l/2 € Ly jo.. Observe that a;l €
L1 if and only if |a;!| € Ly . Since |as /?| = |a;!|/2 we obtain that as/* €
L joc it and only if as_l € L1 joc- The latter holds by Lemma 1.29.

We only have to show that D(7y) is complete. Let (u,) be a Cauchy sequence
in D(ry). Then u, — u in Ly(Q2) and at*Vu, — f in Ly ()N for some u €
Ly(Q), f € Ly()N. Since as"? € Ly jpe we obtain Vi, — as /2f in Ly o)
This implies that u € W,,.(€), ai’Vu=f¢e Ly(€2). Therefore, u € D(7x) and
u, — uin D(Ty) as n — o0. O

Let the assumptions of Proposition 1.28 hold. If a € L j,. then we can define
the form 7p := Ty [ce (). The index D indicates that the associated sectorial
operator in Ly(€2) corresponds to Dirichlet boundary conditions.

Proposition 1.30. Assume that a is sectorial, a.e. invertible, and a,a™ € Ly .
Then W, () € D(tp), and Tp is a Dirichlet form.

Proof. The first assertion follows from a standard convolution argument, us-
ing a € Ly and the lower semicontinuity of Re7p (see [LiVo00; proof of
Lemma B4(i)]). By Proposition 1.28, 7y is a Dirichlet form. Thus, for the
second assertion it suffices to show uA1 € D(7p) for all u € C2°(Q2). This follows
from the first assertion. O

For the remainder of the section, (€2, ) will be a measure space. Recall that a
function ¢: C — C is called a normal contraction if ¢(0) = 0 and |¢(z) —(y)| <
|z — y| for all z,y € C, i.e., ¢ is Lipschitz continuous with constant 1. Then we
will also say, for all measurable u: {2 — C, that the function ¢ o u is a normal
contraction of u. The crucial result on normal contractions is as follows (recall
that Re 7 is a symmetric Dirichlet form if 7 is a Dirichlet form).

Proposition 1.31. (¢f. [ReSi78; Thm. XII1.51]) Let T be a Dirichlet form in
Lo(p). If uw € D(7) and v is a normal contraction of u then v € D(T) and
Ret(v) < Ret(u).

We conclude this section by a result on perturbation of Dirichlet forms by
real-valued potentials which is essentially due to V. Liskevich and Yu. Semenov.
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Theorem 1.32. (cf. [LiSe93; Thm. 2/, [LiSe96; Thm. 3.2]) Let T be a symmetric
Dirichlet form in La(u), V: Q — R measurable. Assume that T+ V% is densely
defined, and V= < 1+ V' +cs for some 3 <1, cg € R. Let py = ﬁ (the
roots of the equation % =0).

(a) Then 7+ V is a densely defined closable symmetric form, and for all p €
[p—, p+] the associated analytic semigroup Ty on Lay(u) extrapolates to a positive
Co-semigroup Ty, on Ly(u), with |Tv,(t)| < e*' (t > 0). Forp € (p—,p+), the
semigroup Ty, 1s analytic.

(b) For the generator —Ay,, of Ty, we have

(Avpu, [ulP sgnu) > (]%T + V) (Jul?sgnu) (u€ D(Avp)).

In particular, for p € (p_,py) we obtain |u|? sgnu € D(1) for all u € D(Ay,),
and

(Avpu, [uP~sgnu) > (o — B)7(lul® sgnu) — cslul}p.

Remarks 1.33. (a) In [LiSe93], [LiSe96], the above theorem is proved in the
more general setting of perturbation by sub-Markovian generators, not only by
potentials. But the assumption on the perturbation is slightly more restrictive,
namely (expressed for perturbation by a potential) V_ < B(1 + V4) + ¢, with
V_,Vi: Q2 — [0,00) such that V =V, —V_.

(b) Note that the inequality V= < 7 + V't + ¢5 obviously implies 57 +
V 4+ ¢ = 0, but the converse is not true: For example, choose V' < 0 such that
D(t +V) = {0}. Then trivially 7+ V > 0, but V~ & 7. Nevertheless we have
the following equivalence: V'~ < 87+ V™ 4 ¢z if and only if 57+ V +¢5 > 0 and
QV7)2D(r)NQ(VT).

(c) For p € [1,00), let T, be the positive Cp-semigroup on L,(u) associated
with 7. By Proposition 1.15 we have Ty, = ((Tz)v+)_v_- Thus, by Corol-
lary 1.11, part (a) of the theorem can be expressed differently: V'~ is (T,)y+-
admissible for all p € [p_,py]. (But V™ is not T,-admissible in general!) By
Proposition 1.22(a) we obtain yet another reformulation of part (a): for all
p € [p_,py], the form 7+ V is associated with a quasi-contractive Cp-semigroup
on L.

(d) The following trivial example shows that the interval [p_, p,] obtained in
Theorem 1.32 is not always significant. Let U: @ — [0, 00) be measurable and
unbounded, 7 := U, V := —%U. Then V~ < 87 + ¢ holds only if § > % But
T4V = %U is associated with a contractive Cy-semigroup on L, for all p € [1, 00).

Nevertheless, we will show in Section 3.4 that the interval [p_, p,] is sharp if
7 is the form corresponding to a second order elliptic differential operator: let
Q C RY be open, a: Q@ — RY @ RY measurable and symmetric, a > 0 a.e. in the
matrix sense, a,a”! € L1 joe. Let 7y be the symmetric Dirichlet form given by
Proposition 1.28, and 7 C 75 a Dirichlet form. In Theorem 3.22 we will show
that 7+ V is associated with a quasi-contractive Cy-semigroup on L, if and only
it VvV~ < %,T#—VJr +c for some ¢ € R. For a particular example see Example 3.27.



26 CHAPTER 1. Cy-SEMIGROUPS AND SESQUILINEAR FORMS

(e) In Section 2.2 we will show that, under some additional conditions on
the measure space and the semigroup, the L,-scale [p_,p.] of existence of the
semigroup can be extended, but in general without quasi-contractivity outside
[p—,p+]. The proof of this extension result (Theorem 2.10) will reveal the rele-
vance of Theorem 1.32(b).

The proof of Theorem 1.32 relies on [LiSe96; Thm. 2.1] and the following
auxiliary result which is an L,-version of Proposition 1.15. Here we use the
notation v, (u) := |u|% sgnu and w,(u) := [u’"'sgnu for u: @ — C, 1 < p < c0.
Notice that u - wy(u) = v,(u) - vy(u) = |ulP.

Lemma 1.34. Let 1 <p < oo, T(t) = et a positive contractive Cy-semigroup
on L,(p), and by a closed symmetric form in Lo(p). Assume that

<Au,wp(u)> > h(vp(u)) (u € D(A)).

Let V: Q — R be measurable, with T-admissible V', and V- < §+V*. Then
—V~ is Ty+-admissible, eV := (Ty+)_y-(t) is contractive, and

<Avu,wp(u)> > f)—i——V(vp(u)) (u € D(AV)). (1.8)

Proof. Notice that h + V is closable by Proposition 1.15. It suffices to study the
cases V' >0, V < 0. Let first V' > 0. Then we only have to show (1.8).

Let u € D(Ay). Without restriction assume that 0 € p(A +V A n) for all
n € N. Then u,, := (A+V An)"'Ayu — u in L, and hence wy(u,) — w,(u) in
L, as n — oo. Therefore,

5+ VAR (vp(un)) < (A4 V An)up, wy(uy)) — (Avu, wy(u))  (n — o0).

Without restriction v,(u,) — v,(u) a.e. and in Ly. By Fatou’s lemma and the
lower semicontinuity of h we infer that Vv, (u)|* = lim, o [v,(u,)* € Li(p),
vp(u) € D(h) and

(h+ V) (vp(u) < (Avu,wy(u)).

Now we study the case V' < 0. Recall that V(™ = V'V (—n). The assumption
V= < b implies that

<(A + V("))u,wp(u)> > (h+ V("))(vp(u)) >0 (u € D(A), n€ N).

Thus, by the Lumer-Phillips theorem, T, is a contractive semigroup for all
n € N. By [Voi88; Prop. 2.2] we infer that V' is T-admissible. To show (1.8), let
u € D(Ay) and assume without restriction that 0 € p(A + V™) for all n € N.
Then we have u,, := (A+V®)"*Ayu — uin L, as n — oo. Note that u,, € D(A)
implies that v,(u,) € D(h) C D(h + V). Therefore,

b+ V(vp(un)) < (b+ V) (0,(un))
< <(A + V(”))un,wp(un)> — <Avu,wp(u)> (n — 00),

and the lower semicontinuity of h + V' implies (1.8). O



1.5. DIRICHLET FORMS 27

Proof of Theorem 1.32. Without restriction assume that ¢z = 0 (cf. Re-
mark 1.33(b)). By Proposition 1.15, the symmetric form %7’ + V is closable
if z% > (,1.e.p € [p_,ps]. In particular, 7 4+ V is closable.

Let p € [p_,py], T,(t) = e~ the positive Cy-semigroup on L, (1) associated
with 7. By [LiSe96; Thm. 2.1] we have

4
<Apu, wp(u)> > @T(vp(u)) (u € D(Ap)).

(In [LiSe96], this inequality was shown for o-finite measures i only, for the general
case one should argue as in [NaVo96].) Now Lemma 1.34 implies that —V~ is
(T),)v+-admissible, that Ty, is contractive and that (b) holds. The analyticity of

Ty, for p € (p—, p4) follows from the analyticity of 72 and Stein interpolation.
[



Chapter 2

Extrapolation, Analyticity, and
L,-spectral independence

Given a measure space (M, p) and a Cy-semigroup T, on L,(€2) for some mea-
surable subset Q2 C M, ¢ € [1,00), we are going to investigate the following
two problems: under which conditions does the semigroup 7| extrapolate to a
consistent family of Cy-semigroups T}, on L,(2) with p-independent angle of an-
alyticity, for p from some interval in [1,00) containing ¢? Secondly, assuming
T, does extrapolate to consistent Cy-semigroups 7}, on L,(Q2) for p from some
interval, when is the spectrum of the semigroup generators p-independent? The
conditions on both the space M and the semigroup 7, will be formulated in terms
of a measurable semi-metric on M.

The chapter is organised as follows. In Section 2.1 we introduce the framework
and formulate our main results. In Section 2.2 we give some account to the
history of the problems of L,-spectral independence and analyticity of semigroups
and relate our results to the existing literature. As an application we continue
the study of perturbation of sub-Markovian semigroups by potentials. For our
main application, the L,-theory of second order elliptic differential operators, see
Chapter 3.

In Section 2.3 we develop the technique of weighted estimates which consti-
tutes a major tool in the proofs of our results. We reformulate and prove the
result on extrapolation and analyticity in a more general form in Section 2.4.
In Section 2.5 we prove the theorem on L,-spectral independence for semigroup
generators by reducing it to a theorem on L,-spectral independence for bounded
operators.

2.1 Framework and main results
Throughout this chapter let 1 < py < ¢o < oo be fixed, and (M, ) a o-finite

measure space with p(M) > 0. Let d a measurable semi-metric on M, i.e.,
d: M x M — [0,00) is measurable. Then d(z,-) is measurable for all x € M

28
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since the function y — (z,y) is measurable. The open ball with respect to d with
centre x and radius r will be denoted by B(xz,r). We assume p(B(z,r)) < oo for
all z € M, r > 0. In the case (po, q) # (1,00) let v,.(z) := pu(B(z,r)) (x € M,
r > 0), whereas in the case (po, qo) = (1,00) we only assume v,: M — [0, 00) to
be measurable functions satisfying u(B(x,r)) < v.(z) for all x € M, r > 0 and

v, Kvgon M (R>r>0), v.(2) < Urpday(y) (x,y € M, r>0). (2.1)

Note that (2.1) is automatically fulfilled if v,.(z) = u(B(x,r)) since B(x,r) C
Bly,r +d(z,y)).

Fix a measurable subset {2 C M. We tacitly assume that functions defined on
Q) are extended by 0 outside {2 when considered as functions on M. In the follow-
ing we consider semigroups on L,(£2), 1 < p < oco. The reason for introducing
the space M is that the functions u(B(-,7)) on M can behave much better than
the functions p(B(-,7) N Q) on . An important example for this situation is
M = R" and an open subset  C R¥.

For the problem of extrapolation and analyticity we will need two volume
growth conditions,

v, < cpevyon M (r > 1), (2.2)
vy < coup on M (0 <7 < 3), (2.3)

for some ¢y > 1, ¢; > 0. Condition (2.2) means that the volume of balls grows at
most exponentially, condition (2.3) is the doubling property for small balls. The
latter is known to be equivalent to

vg < cz(g)er 0<r<R<1) (2.4)
for some N > 0. (In ‘(2.3) = (2.4)’ one obtains ¢y = ¢y, N = log, co.)

In the case M = RY d the supremum metric (this will turn out to be conve-
nient) and p the Lebesgue measure, conditions (2.2) and (2.3) are trivially fulfilled
with v, (2) = pu(B(z,r)) = (2r)Y. If M is a complete Riemannian manifold with
Ricci curvature bounded below, d the Riemannian distance and p the Riemannian
volume, then (2.2) and (2.4) hold for v,(z) = p(B(x,r)) and N the dimension
of M, by Bishop’s comparison principle (see, e.g., [GHLI0; Thm. 4.19]). In the
latter case, v, is a function heavily depending on the space variable: in contrast
to the flat space case it is not bounded below in general.

In order to formulate our main results we need the following notation. By
means of the semi-metric d, we define weight functions p,, on M,

Prry(T) = e (z,y € M, v €R).

Let B be a linear operator in Li(M) + Lo (M), and 1 < p < ¢ < co. We denote
the norm of B as an operator from L, to L, by

| Bllp—q == sup{|Bflq: f € Lp(M) N D(B), | f], < 1} € [0,00],
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and for v € R we define the weighted operator norm

|1Bllp—gy = yséljg ”P%pr;;/ r{feLp(M);p?ﬁ;fGD(B)}”I"H‘Y

= inf{c >0;VfeDB)yeM: ||p7,ny||q < c”pv,yf”p} € [0, oc].

We will call an estimate of the type |B|,—q, < 00 a weighted p—q-estimate or
weighted norm estimate.

Theorem 2.1. Assume that (M,d) is separable and that (2.2) and (2.3) hold.
Let py < s < qo and Ty a Cy-semigroup on Ly(SY). Assume that there exist m > 1,
to > 0 and ag, By = 0 with ag + Gy = pal — qo_1 such that

B
oiltlgo “U;(}st(t)vtlo/m lpo—q0.-1/m

< 00. (2.5)
Then T extrapolates to a consistent family of Co-semigroups T, on L,(Q2), p €
(Do, qo] \ {00}, with angle of analyticity not depending on p.

Moreover, there exist C >0, w € R, v > 0 such that

|08/ Tu (800 gy < CeH7™0 (£ >0, 4 2 0) (2.6)

forallpp<p<q<qy, ,3=20witha+p=p ' —q"

By the phrase ‘angle of analyticity not depending on p’ we mean the following.
If one of the semigroups 7}, is analytic of angle 0, then all of them are analytic of
angle 6; if one of the semigroups is not analytic, then none of them is analytic.
We point out that the above theorem contributes to the solution of two prob-
lems, extrapolation as well as analyticity of semigroups. So to say, it deals with
extension of the L,-scale as well as extension of the time scale.

For the case of Euclidean space RY we immediately obtain, recalling v, =

(2r)N:
Corollary 2.2. Let Q C RY be measurable, py < s < qo and Ty a Cy-semigroup
on Lg(§2). Assume that there exist m > 11, to,C' > 0 such that

IT.(t) <Ot mleTw) (0 <t <t)

Hpo—>qo7t’1/m
Then T extrapolates to a consistent family of Co-semigroups T, on L,(Q), p €
(Do, qo] \ {00}, with angle of analyticity not depending on p.

Remarks 2.3. (a) The set of estimates in (2.6) can be considered as a generalised
Gaussian upper bound (cf. [Sch96; p. 44]). Notice that (2.6) trivially implies (2.5).

In the case (po, qo) = (1, 00), estimate (2.6) withp =1, ¢ =00, a = = % is
equivalent to the following Gaussian upper bound of order m on the semigroup

kernel:

1 _1

ke(z,9)] < C(vpsm(@)vam(y)) 2 exp(wt — c(d(x’ty)m)m’l) (t>0, z,y € Q).
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The equivalence will be shown by Davies’ trick, see Proposition 2.7 below. P. Lie
and S. T. Yau [LiYa86] proved that a Gaussian upper bound of order m = 2 holds
for the heat semigroup on Riemannian manifolds with Ricci curvature bounded
below.

(b) The measure p is assumed to be o-finite since this is a necessary condition
for the property that all balls B(z,r) have finite volume: for fixed g € M we
have M = J,,cn B(2o, 7).

(c) Observe that (2.2) and (2.3) imply that v, > 0 for all » > 0: recall
that (M) > 0. Thus, for all x € M there exists R > 0 such that vg(z) >
w(B(z, R)) > 0. By (2.2) and (2.3) we obtain v,(z) > 0 for all » > 0. In the case
(po,qo) # (1,00) we thus have u(B(x,r)) > 0 for all z € M, r > 0.

(d) In Lemma 2.17 below we will show the following. (M,d) is separable
as soon as 0 < pu(B(z,r)) < oo for all x € M, r > 0. In particular, (M,d)
is separable if (2.2) and (2.3) hold for v,(xz) = u(B(z,r)). Conversely, if M is
separable then p(B(z,r)) > 0 for all 7 > 0 and almost all z € M. After removing
a null set we can (and do) therefore assume pu(B(x,r)) > 0 for allx € M, r >0
also in the case (po, o) = (1, 00).

For the second result which deals with L,-spectral independence, the expo-
nential volume growth condition (2.2) is too weak. In fact, it is known that in the
case of exponential volume growth the L,-spectrum of the semigroup generators
typically does depend on p (see, e.g., [Stu93; Prop. 2(b)]). Instead, we need the
following subexponential volume growth condition

Ve>0de. >0Vr>1:v, <cevy, (2.7)
as in [Stu93; p.443]. We further assume
w(B(z,1)) >0 (x € M). (2.8)

Observe that, if (2.7) holds then the latter condition is automatically fulfilled in
the case (po,qo) # (1,00) (cf. Remark 2.3(c)). Moreover, if (M,d) is separable
then (2.8) holds (without restriction, cf. Remark 2.3(d)). Recall that v,.(z) =
w(B(x,r)) in the case (po,qo) # (1,00), whereas u(B(x,r)) < v.(x) in the case
(po,q0) = (1,00), for all x € M, r > 0.

Theorem 2.4. Assume that (2.7) and (2.8) hold. Let T,(t) = e~*4* be consistent
Co-semigroups on L,(2), p € [po, qo]\{oo}. Assume that there exist C, K, to,vo >
0 and a, 3 > 0 with a + 3 =py" — g5 ' such that

[03 T (80 [y a0 < CEF (0 <t < ). (2.9)

Then the spectrum o(A,) does not depend on p € [po, qo] \{o0}, and the operators
A, have consistent resolvents.



32 CHAPTER 2. ANALYTICITY AND Lp-SPECTRAL INDEPENDENCE

Corollary 2.5. Let Q C RY be measurable, T,(t) = e ' consistent Cy-semi-
groups on L,(2), p € [po, qo] \ {oo}. Assume that there exist C, K, ty,v0 > 0 such
that

| To0 () lpo—qore < CEH (0 <t < o).

Then the spectrum o(A,) does not depend on p € [po, o]\ {o0}, and the operators
A, have consistent resolvents.

Remark 2.6. Condition (2.9) is in particular fulfilled if the doubling prop-
erty (2.3) holds and there exists m > 1 such that

sup ||Uta1/mTpo (t)vfl/m”po—mﬁo < 0.
0<t<to

In this case, we can choose K = %(pio — qio) in (2.9), with N from (2.4). Thus,
if (2.3) holds then we have the following relation between the assumptions of
Theorems 2.1 and 2.4: The volume growth assumption (2.7) for large balls is
more restrictive than (2.2) in Theorem 2.1, whereas assumption (2.9) on the
semigroup is less restrictive than (2.5) in Theorem 2.1:

In estimate (2.9) the size of the exponent — K of ¢ does not matter. In contrast,
it is important that the number N occurring in the corresponding estimate in
Corollary 2.2 is the dimension of the underlying space RY. Moreover, in (2.9)
the weighted estimate is only needed for a fixed ~y whereas in (2.5) it is crucial

that v(t) = ¢t~m tends to oo in the right way as t — 0.

2.2 Comments and Examples

The problem of L,-spectral independence for generators of consistent Cp-semi-
groups has a long history going back to B. Simon [Sim82] where the question was
posed for Schrédinger operators. The main breakthrough was made by R. Hempel
and J. Voigt [HeVo86] who answered the question in the affirmative for the case
that the negative part of the potential is from the Kato class. This result was a
starting point for many extensions in different directions.

The three crucial properties of Schrodinger semigroups used in the proof in
[HeVo86] are the following. The underlying space is Euclidean space, the semi-
group has an integral kernel satisfying a Gaussian upper bound (in particular, the
semigroup acts on the whole L,-scale), and the semigroup on L, is symmetric.
W. Arendt proved in [Are94] an abstract result saying that these three conditions
are already enough to ensure L,-spectral independence.

In the subsequent investigations, different results were proved assuming only
two of the conditions (possibly replacing the third one by another condition).
K.-Th. Sturm showed that the method of [HeVo86] can be adapted to the setting
of Riemannian manifolds. In [Stu93] he proved L,-spectral independence for
uniformly elliptic second order operators on Riemannian manifolds with Ricci
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curvature bounded below, assuming a volume growth condition slightly weaker
than (2.7). In the setting of metric spaces with polynomially bounded volume,
an abstract approach was developed by E. B. Davies in [Dav95a.

G. Schreieck and J. Voigt were the first to investigate the problem for semi-
groups not acting on the whole L,-scale. In [ScVo94| they established L,-spectral
independence for Schrodinger operators on RY with form small negative part of
the potential. In this case we have consistent Cyp-semigroups on L,(R™) only for
p from an interval around p = 2 (see Theorem 1.32). As a result, the semigroup
has no integral kernel enjoying a pointwise Gaussian upper bound. The ideas
from [ScVo94] were put in a more general context in [Sch96]. A similar method
was used in [Dav95b] to show L,-spectral independence for higher order elliptic
operators with bounded measurable coefficients. Further progress was made by
Yu. Semenov [Sem97] who studied selfadjoint second order elliptic operators with
unbounded coefficients in the principal part, adapting the method from [ScVo94].

In [HiSc99], again in the context of pointwise Gaussian upper bounds, the
symmetry assumption on the semigroup was replaced by certain commutator
estimates. P.C. Kunstmann showed in [Kun99] that the symmetry assumption
can actually be dropped. Further generalisations combining the above ones can
be found in [Kun00], [LiVo00] and [KuVo00]. Most of all these extensions of the
result in [HeVo86] are unified in Theorem 2.4.

Most of the known results concerning the problem of analyticity are about
semigroups acting on the whole L,-scale. Then the question of analyticity in L;
is of particular interest since for 1 < p < o0, analyticity can be shown by Stein
interpolation (but with angle depending on p). In general, L;-analyticity does
not hold, even if the semigroup on L is symmetric and sub-Markovian (see, e.g.,
[Dav89; Thm. 4.3.6], [Voi96]). Starting from [Ama83], there are several specific
results on certain classes of elliptic operators on domains of RY stating that the
semigroup on L; is analytic, but not giving the optimal angle ([Kat86], [CaVeS88|,
[ArBa93], only to mention a few).

E.-M. Ouhabaz was the first to establish analyticity of angle = in L;(R"). In
his thesis ([Ouh92a]) he observed that a Gaussian upper bound on the semigroup
kernel for complex times proved in [Dav89; Thm. 3.4.8] can be used to show the
following. If Ty is a symmetric sub-Markovian semigroup on Ly(RY) satisfying
a Gaussian upper bound then the corresponding consistent Cy-semigroups 7}, on
L,(RY) are analytic of angle %, for all p € [1,00). See [Ouh95] for a more general
version not assuming the semigroup to be sub-Markovian.

Ouhabaz’ result was generalised in [Dav95a] from Euclidean space to metric
spaces with polynomially bounded volume. Again in the context of Euclidean
space, the symmetry assumption was dropped in [Hie96], with a result stating
p-independence of the angle of analyticity. For a comprehensive discussion of the
case (po,qo) = (1,00) see [Are97].

Concerning the case (pg, qo) # (1, 00) there are few results so far, and they are
restricted to Euclidean space. E. B. Davies proved the following in [Dav95b]. If H
is a selfadjoint superelliptic operator on RY of order 2m < N, with bounded mea-



34 CHAPTER 2. ANALYTICITY AND Lp-SPECTRAL INDEPENDENCE

surable coefficients, then e *# extrapolates to an analytic semigroup on L,(RY)
of angle 7, for all p € | Nijgm, sz]\zfm] Analyticity of angle 7 (but not extrapola-
tion) was also shown in [Sch96; Sec. 3.3] in a more general setting assuming a
generalised Gaussian upper bound similar to (2.6). On the other hand, extrapo-
lation was studied in [Sem00] for generalised Schrédinger semigroups with form

small negative part of the potential, but without showing analyticity of angle 7.

s s

We will show that the results on L,-spectral independence and analyticity
discussed above are covered by Theorems 2.1 and 2.4 (and Theorem 2.26 in Sec-
tion 2.5 below), except for the following. In [Stu93] a slightly weaker assumption
than the subexponential volume growth condition (2.7) was used, but the proof
heavily depends on the symmetry of the semigroup in Ly and existence on the
whole L,-scale. In [Kun00], [KuVo00] there are more sophisticated results con-
cerning L,-spectral independence in the case (po, go) = (1, 00).

For the case (po, o) = (1,00) it is important to observe that the set of esti-
mates in (2.6) in Theorem 2.1 is equivalent to a Gaussian upper bound of order
m.

Proposition 2.7. Assume that (M, d) is separable. Let Ty be a Cy-semigroup on
Ly(Q). Then the estimates in (2.6) hold with o« = =3, p=1, ¢ = 00 if and
only if the semigroup operators Ty(t) have integral kernels k; satisfying

1 S
k] < C(vprm @ vpm) 2 exp(wt — cp(L)™T) (¢ >0), (2.10)

With ¢ = (M — 1)m~m-1.

Proof. Let D C M be countable and dense, t > 0. By the Dunford-Pettis
theorem, (2.6) holds if and only if T5(¢) has an integral kernel k; satisfying

: _ _1 1 R
e, 9)| < b (@)™ 0pam (2) 720000 (4) 72 o ()7

1 m
= C(vp/m (2)vy/m(y)) et imdley)
for almost all z,y € ) and all rational v > 0. We now optimise with respect to
1
v (Davies’ trick): setting v = (%) m=1 yields the desired conclusion. O

Gaussian upper bounds are known to hold for wide classes of uniformly elliptic
operators, e.g. for

(a) second order uniformly elliptic operators in divergence form on RY
with real coefficients [Aro67],
with complex coefficients in dimensions 1 and 2 [AMT98],
with uniformly continuous complex coefficients in higher dimensions [Aus96];

(b) superelliptic operators of order 2m in dimensions N < 2m [Dav95b];

(¢) second order uniformly elliptic operators in divergence form on Riemannian
manifolds with Ricci curvature bounded below [Sal92].
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For more detailed discussions of examples for which Gaussian upper bounds are
valid, we refer to [HiSc99], [Kun99].

Until recently, all results concerning the case (po, qo) # (1, 00) were restricted
to M = RN, u = AV the Lebesgue measure. The proofs relied on the ‘box
method’ where RY is subdivided into congruent cubes @; and one works in spaces
l,(Ly,(Q;)). In contrast, our proofs of Theorems 2.1 and 2.4 do not use the box
method but rely on Lemma 2.19 as a substitute. Indeed, working in a general
measure space which carries a semi-metric it is not clear what one should use
instead of the partition into cubes of equal size.

The weight functions p,, were not used in the context of weighted norm
estimates until [KuVo00]. In [ScVo94] the functions pe defined by pe(z) := €5*
(z,& € RY) were used to prove L,-spectral independence, in [Sch96] also to prove
analyticity of angle 7. It was set forth in [Dav95b] that (approximations of)
these weight functions pg are suitable for studying all three problems of interest
in the present chapter: extrapolation, analyticity and L,-spectral independence.
For the technique of weighted estimates, which we develop in the next section,
the crucial advantage of the weights p,, = e =vl~ i that they are integrable
for v > 0 whereas the weights p; grow exponentially in direction &.

In [Sem97] and later in [LiVo00], the weights had the more general form
pe = ¥, with an Ly -regular function ¢: RN — R¥ i.e., ¢ is Lipschitz continuous
and

sup Z e ROl < o0, (2.11)
kezZN jezN

With these weight functions at hand, it was possible to study elliptic operators
with singular coefficients not only in the lower order terms but also in the principal
part. Note that ¢)(x) = x is Li-regular. We will see that the more general weights
are suitable for the problem of L,-spectral independence only.

Before [KuVo00], all results concerning the case (po,qo) # (1,00) involved
weighted operator norms of the type sup¢_, | peB pgl |p—4 instead of the weighted
norm |B|,_g, defined via p,,. We point out that in the case of higher order
elliptic operators on RY (see [Dav95b]), it is hard to estimate ||B|,_,~ directly
since the functions p, , have only one bounded weak derivative. Nevertheless we
have the following result.

Proposition 2.8. Let : RY — RN be Lipschitz continuous, Q@ C RN open,
B: Lo () — L110c(2) a linear operator, v > 0, 1 < p < q < oco. Define
a semi-metric d on RY by d(x,y) := |[¥(x) — ¥(y)|eo, and let | - |p—q, be the
corresponding weighted operator norm. Then

| Bllp—q < 2N sup HewBeiw lp—q-

€=

Proof. Let E = {j:fyej; g=1,... ,N} where e; are the standard unit vectors of
RY. Fix y € RY, and for ¢ € E let pg := 5¥=¥W). Then

-1 - 0o -1
p’%y = 6’”1[} ¢(y)\ f— rgleaE)(pg .
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We will make use of the fact that B has a dual operator B’: Lo o(§2) — L1 10¢(£2)
and that |B'|y—p = |B|y—q (see [KuVo00; Lemma 10]). For f € L .(£2) we
obtain

pr yB,p’Y ofly < Z Hpng'pgpglp%nyp/ < Z Hpg_lB/PE”q’Hp/Hpg_lpmyfuq’-
§EE ¢EE

Note that pglp%y < 1. By duality and the definition of p; we conclude that

||pv prv y||p—>q ”/’_IB//’%y ||q’—>p’ < Z ||pg_lB,P£”q’—>p’ < 2N I?Gaé( ||6£¢B€_w”p—>q
E€EE

which completes the proof. O

Let us now first consider the case 1)(z) = x. Then the semi-metric d defined
above is just the supremum metric, and we have AN (B(z,r)) = (2r)Y for all x €
RY, r > 0. Hence, the volume growth conditions of both Corollaries 2.2 and 2.5
are satisfied. Moreover, we can use Proposition 2.8 to estimate |T'(¢)]p—q.--

A typical example for an L;-regular function on R! is as follows. Define v
on R by ¢(2n +z) = 2n + 227" for all n € Z, |z[ < 1. Then Y[, 14, = 21
for all n € Z and hence AN (B(xz,7)) > 1if (x — 5, o+ %) N[2n — 1,2n] # & for
some n € Z. From this we easily see that the doubling property (2.3) does not
hold, i.e., the conditions of Theorem 2.1 are not fulfilled. But we show that the
conditions of Theorem 2.4 do hold for L;-regular :

First observe the following. If 1 is Lipschitz continuous then there exists
L > 0 such that d(z,y) < L|lr — y|s for all z,y € RY. This implies that
B(x,1) 2 z + [, 1Y, Hence \N(B(z,1)) > (%)N for all x € RY, ie., (2.8)
holds. Now, (i) = (ii) of the following lemma shows that (2.7) holds for L;-
regular ¢ and, by Proposition 2.8, that

+8 _
|02 BUY gy < (c-2Y)*7 2N up |ef¥ Be~¢Y,_,
=Y

Lemma 2.9. (c¢f. [KuVo00; Lemma 6]) Let v: RN — RN be Lipschitz continu-
ous. Define the semi-metric d on RN as in Proposition 2.8. Then the following
are equivalent:

(i) v is Ly-regular,

(ii) there exists ¢ > 0 such that AN (B(x,7)) < c(1 + 1)V for all r > 0,
(iii) there exists ¢ > 0 such that AN (B(x,7)) < ce’/? for all r > 0.
<

Proof. As above, let L > 0 such that d(z,y)
JEZN let Q;:=j+ [_Evi]N'

(i)=(ii) (cf. [LiVo00; Appendix A]). Let r > 0 and let n € N with n — 1 <
r <n. Then

B(I7 = {y € RN' ¢( ) € lb(x) + (_T’ T)N}
v w@) +5+0.1V)5 € {-n,....n—1}"}.

L|z — y|s for all z,y € RY. For
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It follows that AN (B(xz,7)) < (2n)N sup,cpn AV (v (2+[0,1]")). Since (2n)" <
2V(1 4 7)Y it remains to show that the supremum is finite.

To this end, let z € RN and Q := 2 + [0, 1]". Let zg,y € ¥ ~1(Q) and choose
k,j € ZN withzy € Q andy € Q;. Then d(xo,y) < 1 and d(zo, k), d(y,j) < L/2,
hence d(j, k) < L + 1. Therefore v(Q) C U{Qy; j € ZV,d(j, k) < L+ 1} and

AWEQ) < #{j €z d(j k) S L+1} <) eH0h,
jEZN

By the Li-regularity of 7 this shows that A\ (@D’I(Q)) can be estimated from
above independently of the cube Q.

The implication (ii)=-(iii) is trivial.

(iii)=(i). For all k € Z" we have

T 0l ¢ 37 (b2 / -0 gy — oL/ / e~ dha) gy
. RN
J

jezN jezN

This shows (i) since

/ e~ MkY) 4y < Z e~ (AN (B(k:,n)) < Zce_(”/z_l) < 00. 0
RN n=1 n=1

To conclude this section we want to show how our theorems can be applied in
the context of perturbation of Dirichlet forms by potentials. Let M, 2, i, d be as
in the introduction of Section 2.1. Based on Theorem 1.32 we are going to prove
the following result.

Theorem 2.10. Assume that (2.2) and (2.4) hold for v.(x) = p(B(z,r)). Let
T be a symmetric Dirichlet form in Lo(S2), and assume that the associated
symmetric sub-Markovian semigroup T on Ly(Q)) satisfies the Gaussian upper
bound (2.10) with m = 2. Let V: Q — R be measurable such that 7 + V7T is
densely defined and V— < BT+ V' + ¢ for some f <1, cg € R. Assume N > 2
in (2.4) and let py := #, Pmax := %m, Prmin = Py -

(a) Then Ty, the analytic semigroup on Ls(Q2) associated with T + V', extrap-
olates to an analytic semigroup Ty, on L,(§2) of angle 5, for all p € (Pmin, Pmax)-

(b) If the subexponential volume growth condition (2.7) holds instead of (2.2),
then the spectrum of the generators of the semigroups Ty, is independent of p €

(pmina pmax) .

Remark 2.11. (a) It was first observed by Yu. Semenov that the L,-scale
[p—, p+] given in Theorem 1.32 can be extended: in [Sem00] he studied the form
7 corresponding to a selfadjoint second order uniformly elliptic operator on R¥.
He showed that Ty extrapolates to an analytic semigroup on L,(RY), for all
P € (Pmins Pmax), but he did not obtain the (optimal) angle 7.

More generally, the above theorem can be applied to the following situation.
Let M be a complete Riemannian manifold with Ricci curvature bounded below,



38 CHAPTER 2. ANALYTICITY AND Lp-SPECTRAL INDEPENDENCE

d the Riemannian distance and p the Riemannian volume. Then (2.2) and (2.4)
hold for v,.(z) = u(B(x,r)) and N the dimension of M, by Bishop’s comparison
principle. Let  C M be open, 7 the form corresponding to a selfadjoint second
order uniformly elliptic operator on €2 subject to Dirichlet boundary conditions.
Then the associated semigroup on Lo(§2) satisfies a Gaussian upper bound of
order m = 2 (see [Sal92; Thm. 6.3]).

(b) For p € [1,00), let T}, be the positive Cy-semigroup on L,(2) associated
with 7. By Proposition 1.15, the above theorem can be reformulated as follows.

Assume that (2.7) and (2.3) hold for v,.(x) = pu(B(x,r)) and that T, sat-
isfies (2.10) with m = 2. Let V:Q — R be measurable such that %VJF is

T-admissible and —%V* is T 1 v+-admissible, for some 3 < 1. Assume N > 2

in (2.4) and define pyin, Pmax as above.
Then, for all p € (Pmin; Pmax), =V~ is (T)v+-admissible, ((T,)v+)_,, () =

e Ve is analytic of angle Z, and the spectrum o(Ay,,) is independent of p €

27
(pmina pmax) .

Assume, more restrictively, that there exists v > 1 such that oV™* is Tj-
admissible and —aV' ™ is (T}),y+-admissible. Then one can show, with a similar
proof, that the assertions of Theorem 2.10 hold for all p € [1,00). In fact, only the
second part of the proof given below is needed, with slight changes and additions.

(c¢) An interesting point about Theorem 2.10 is the following. If V'~ < g7 +
V* + ¢ for some § < 1, ¢ € R then 7 + V is associated with a Cy-semigroup on
L,() for all p in []\Q,—fz, ]\2,—]_\[2], an interval not depending on (. If one only knows
Vo< 7+VT+cforsomece R, butnot V- < Br+V*t+cforany < 1, c € R,
then 7 + V is associated with a Cy-semigroup on Ls(2), by Proposition 1.15(b).
In this situation it is not known whether 74V is associated with a Cy-semigroup

on L,(€) for some p # 2.

In the proof of Theorem 2.10 we will make use of the following immediate
consequence of the Stein interpolation theorem (which is in fact a ‘pre-version’
of the Stein interpolation theorem). We fix an increasing sequence (£2,,) of mea-
surable subsets of ) that have finite d-diameter (and hence finite p-volume) such
that Q = J,, Q. By Lo we denote the space of all f € Ly (2) for which there
exists n € N such that f =0 a.e. on Q\ Q.

Lemma 2.12. Let S := {z € C; 0 < Rez < 1}, and F: S — Li(11) + Loo(p).
Assume that (F(-), f) is continuous and bounded, and analytic in the interior of
S, for all f € Loo.. Let po,p1 € [1,00]. If there exist Cy, Cy > 0 such that
I1FG+ i)y, <C; (5=0,1, teR)

then |F'(0)],, < Ca~°CY for all 0 € (0,1), where pig = 1p;06 + p%.

Proof of Theorem 2.10. By symmetry, we only need to study the case p > 2.
From Theorem 1.32 we already know that Ty extrapolates to a positive Cy-semi-
group Ty, on L,(Q2), for all p € [2, p;]. The idea is to apply Theorems 2.1 and 2.4

N

with po = p € [2,p4) and qo = 7p, for all 1 < r < 3=. For that purpose we
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1
need a weighted p—rp-estimate for v’ " Ty (t). By means of Theorem 1.32 we

1_ 1
will show an unweighted estimate for v\pf T,y (t) for some a > 1 and then use

Lemma 2.12 to derive the desired weighted estimate.
Since (2.10) holds with m = 2 we obtain by Theorem 2.1 that

1_1
[0 “T(O)lpgry < CeH7 (1> 0, 720, 1 <p< g < o0) (2.12)

for some C' > 1, w € R, v > 0. Without restriction assume that czg = w = 0.
Our first aim is to show the following Sobolev type inequality

[02 ular < Cr(Juld + tr(w)®  (ue D(r), 0<t<1) (2.13)

for all 1 < r < 5. Observe that |ul} + ¢tr(u) = ||(1 + tA)zul?, where A

is the selfadjoint operator in Lo(§2) associated with 7. We thus have to show
||v "(1+tA) 2|35 < C,. By the spectral theorem,

(1+tA)2 :F(%)_l/ s ze A g,
0
Therefore,
IR B S
o7 (14 £4) Haar S TR [ s he o T (st ds
0

Note that 2%, = — % For s > 1 we have v ; < v /g, so (2.12) yields

1
2

1
[o5 T(st)l2mr < C° (s 2 1).
For s < 1 we estimate v ; < ¢ (%)N’U@ by (2.4), since vt < 1. By (2.12) we
infer that
T Ny
vz T'(st)]2—ar < (cas™2)>"C (s <1).
Moreover, X 7 <3 by the choice of r and hence

1 o)
Hv T(14+tA) 72y <T(L)” 10( / sT2 e Sds+/ s—%e—Sds) = C,.
0 1

This proves (2.13).
Let now 2 < p < py, 1 <r < % By Theorem 1.32 we know that Ty
extrapolates to a contractive analytic semigroup 7y, on L,(2), and for the gene-

rator — Ay, of Ty, we have

T(u?) < (2 - ﬁ)fl(AV,pu,up_l) (0 <we D(Ay,)).

pp
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Let 0 < f € Ly(Q), u, :=Ty,(t)f (€ D(Av,)) (t > 0). By (2.13) we obtain

1

1 p _
lo27 wdll, = o2 w3, < C2 (el + (o = B) " (Avpu, uf ™)) (0 <t <1).

Since Ty, is a contractive analytic semigroup, there exists ¢ > 0 such that
|Av,Tv,(t)] < ¢ (t > 0). We conclude that

1

[ Tvn M F 12, < CEIFI+ G = B)elfly) (0<t< 1),

which amounts to an unweighted p—rp-estimate.

In order to derive the weighted estimate by Lemma 2.12, observe that pip, >
pw = [ since p € [2,p4). Choose a > 1 such that aff < %. Then (aV)~ <
aft + (aV)T, and the above implies that there exists K > 1 such that

1

l07: Tavo (O f ey < KNl (0<t <1, 0< f € Ly(Q).

Let 0 <t <1, 0< f € Lo, Note that

To(v+am—v-nn) t)f1 Tov+-v-nn) O f (KTov(t)f) asm — oo.

Hence there exists m,, € N (depending on f!) such that, with V,, := V* Am,, —
V= An,

1

[07 Tov, ) flrp < (K + DI fl, (n €N).

By (2.12) we also have, notlng i1 that

rp pr’ ?

1

v 2
015027 T3y flw < CET Nl (y € M, 7 20).

Lemma 2.12 yields

[pazt,, fTVn( Joars, Fllw < (Ce™) S (K + 1)% | ],

Finally, we use Ty, (t)g = Ty+_v-pn(t)g T Ty (t)g (0 < g € La(2), n — o0) and
the positivity of Ty to obtain

1 1 o,
[0 T () lprpy < C' 75 (K 4 D)mea™s?™ (0<t <1, v >0).

Now we are in a position to apply Theorem 2.1 with py := p and ¢y := rp.
We obtain that Ty, extrapolates to a semigroup Ty, on L,(£2) which is analytic
of the same angle as Ty, for all ¢ € (p, :25p). This holds for all p € [2,p4), so
the proof of (a) is complete. In the same way we can apply Theorem 2.4 to prove
part (b) (observe that estimate (2.9) is fulfilled by Remark 2.6). O



2.3. TECHNIQUE OF WEIGHTED ESTIMATES 41

2.3 Technique of weighted estimates

In this section we provide some technical tools needed in the proofs of Theo-
rems 2.1 and 2.4. The main goal is to show Proposition 2.16 below. Let the
notation and assumptions be as in the introduction of Section 2.1. Our first
result deals with norm estimates for integral operators on M.

Lemma 2.13. Let 1 < p<g<oo. Let k: M x M — C be measurable, and for
s € [1,00] define

n,(k) := max (esssup |k(z,-)|s, esssup [k(-, y)[s) € [0, c0].
xeM yeM

(a) Let s € [1,00] with st +p~' =14 ¢~ . If ng(k) is finite then k defines a
bounded integral operator Ij;: L,(M) — Ly(M), and |Ix]py—q < ns(k).
(b) Letr,s € [p,q| withp™ +q ' =r"1+s1 and f € L. (). Then

ly = 16w ) Ly ary < PG

Proof. (a) is well-known and can be proved by an application of Fubini’s theorem
and Riesz-Thorin interpolation.

(b) In the case p = oo there is nothing to show. For p < oo, (b) is equivalent
to

b= [ PP il oy < e UAIE = KL P

which in turn follows from (a) since (5)™' + (3)™" =1+ (1)~ O

We are going to apply Lemma 2.13 to integral kernels of the type k(x,y) =
v, (2) "0, (y) ~Pe™74=Y) | The next result gives an estimate for ny(k).

Lemma 2.14. Let r > 0 and assume vg < coefv, for all R > r, for some
co =1, ¢. >0. Then

B ((,9) > 00(2) 20, (y) e < (1 — ) ger
foralll <s< oo, v=3¢ anda, <1 witha+ 3 =571,
Proof. First note that assumption (2.1) implies
0:(2) < Vo) (9) < e @D (1) (2, € M),
and hence
o3(@) /o3 (y) < cocT oD (3, € M, |8] < 1). (2.14)
If s = 0o then a = —3. By (2.14) we infer, since v > ¢,, that

vr(as)_avr(y)_ﬁeﬂd(“y) < coetrmTler™MNA@Y) oo etrm (x,y € M).
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This proves the lemma in the case s = oo.

Secondly, we study the case s = 1. To this end, we first estimate the integral
[ €7@ dp(y) for all z € M and v > ¢,. For n € N let K,, := B(z,nr) \
B(z,(n — 1)r). Due to the assumption we have pu(K,) < v,(x) < coe"v,(x),
and therefore

/ e —~d(z,y) du Z/ e 'ydzy)dlu ZC ey, f'y(nfl)r
M

coe’"
[ elerr

= cpe” Z eler=Imy (z) =

n=1

v ().

By (2.14) we have v,.(2)™%v,(y) ™% < coecrmTerd@y, (2)7! since o+ = s~ = 1.
For v > 3¢, we conclude that

crr 2 2¢cpr
coe™" (1 T

—a —B ,—d(z,y) e _
[ @ e ) < o g = T

The same holds with «, # interchanged, or equivalently, with z,y interchanged.
This completes the proof in the case s = 1 since 2¢, < %7.

Finally, the case 1 < s < oo will be reduced to the cases s = 1,00 by
Lemma 2.12. (Alternatively, it could be reduced to the case s = 1 by direct
computation.) Without restriction assume o > (. Then 0 < a < 1. For
0 < Rez < 1let ku(z,y) := v.(2) v, (y)**e74=%) Then |k.| = kre.. Above
we obtained estimates for ni(k11y) = ni(k1) and ne (ki) = ne(ko) (t € R).
Making use of Lemma 2.12 we deduce the desired estimate for n (k). O

Let us remark that a volume growth assumption of the type vy < ceFo, is

necessary in the above lemma: assume that the assertion of the lemma holds for
s=1, a=1, =0, v=3c,. Then we have, for almost all x € M:

p(B G ) < [ D) < (29) - o) e ) )
< cg\Zl ey TLleZer ooty (0
For v > 0 and C' > 1 we introduce a class of weight functions on M,
P(v,C) = {p: M — (0,00) measurable; p(z)/p(y) < Ce @) for all z,y € M}.
For p € P(y,C) and y € M we have, by the definition of p,,

S Cpyyply) and  p(y) < Cp_yyp. (2.15)

Notice that, by the triangle inequality, p,, € P(|y],1) for all v € R, y € M.
Moreover, if vp < cpe® v, for some r > 0 and all R > r then vf € P(coe“", c,)
for all |§] < 1, by (2.14).
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We fix an increasing sequence (£2,,) of measurable subsets of Q that have
finite d-diameter (and hence finite p-volume) such that Q = J, Q,. By Ly o, we
denote the set of (equivalence classes of) all measurable functions f on € with
Ixa, fli < oo for all n € N, and by Lo, the space of all f € Lo () for which
there exists n € N such that f = 0 a.e. on Q\ ,. Note that the elements of
P(~,C) are multiplication operators on Lj jo. and Lo .

Remark 2.15. Let p,q € [1,00|, B a bounded operator on L,(£2) and p1, p2 €
Lo joes 1€., |xanpillo < 0o for all n € N, j = 1,2. Let D(ps, L,) denote the
domain of the multiplication operator py on L,(£2). Then

lp1Bp2] p(ps, 1) lp—a = o1 Bp2lp . .

p—q-
This follows from an application of Fatou’s lemma.

The following result is one of the crucial tools in the proofs of Theorems 2.1
and 2.4. The archetype of this result is due to G. Schreieck and J. Voigt ([ScVo94;
Prop. 3.2|; see [Sem97; Lemma 5.2] and [KuVo00; Prop. 13] for improved ver-
sions). In the present form the result is new.

Proposition 2.16. Let » > 0, and assume vgp < coe“ v, for all R > r, for
some co = 1, ¢, > 0. Further assume that pu(B(z,r)) > 0 for all x € M. Let
Yo = 8¢, and g, By = 0 with ag + Bo = py* — q5 ' Then, for any linear operator
B: Looe — Lo satisfying |20 Bo® ||, g0~ < 1 we have

g Bop g < CP(1 — &0 2

forallpy < p <qo, ,3>0witha+B=pt—q?t, C>1, pe P(y/2,0C).
In partzcular,

[0 By < (1= 07526707 (3] < 30/2).

Observe that the assumption p(B(z,7)) > 0 is automatically fulfilled in the
case (po,qo) # (1,00) (cf. Remark 2.3(c)). For the proof of Proposition 2.16
we need some preparatory lemmas. The first one will be needed in the case
(o, q0) = (1,00). At the same time it proves Remark 2.3(d).

Lemma 2.17. Assume that there exists v > 0 such that p(B(z,r)) > 0 for all
x € M. Then there exists a sequence (x,) € M such that M = \J, oy B(xy, 2r).
In particular, if w(B(x,r)) > 0 for all x € M, r > 0 then M is separable.
Conversely, if M is separable then p(B(x,r)) > 0 for all ¥ > 0 and almost all
xr e M.

Proof. Fix zg € M and let k € N. By Zorn’s lemma we can choose My, C B(xo, k)
such that (B (z, T))xe M, is a maximal family of pairwise disjoint balls with radius
r and centre in B(zg, k). Then My is countable since p(B(zo,k + 1)) < 00
and p(B(z,r)) > 0 for all z € M. By the maximality we have B(zg, k) C
U.enr, B(w,2r). This proves the first assertion since M = (J, .y B(wo, k).
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Assume now that M is separable. Let r > 0 and choose (z,) € M such
that M = J,cy B(2n, 5). Then for all n € N with pu(B(x,,5)) > 0 we obtain
w(B(x,r)) > 0 for all z € B(zy, 5). This implies the second assertion. O

Corollary 2.18. Let r > 0 and assume that p(B(x,r)) > 0 for all x € M. Let
v >0, B: Loe — Lijoe a linear operator. If |Bli—ocry < 1 then B has an
integral kernel k satisfying |k(x,y)| < e %@V for almost all z,y € Q.

Proof. Let w € M. By the Dunford-Pettis theorem, the assumption implies that
the operator By, := p,.,Bp, ! has an integral kernel k,, satisfying |k,| < 1 a.e.
Therefore, B has an integral kernel k satisfying

k(x,y) = p%w(w)_lkw(x,y)p%w(y) (almost all z,y € Q).

According to Lemma 2.17 choose a sequence (w,) C M such that M =
\U,, B(wy,2r). For all n € N and almost all z € B(w,,2r), y € {2 we obtain

|k(z,y)| = (@ wn)—yd(y,wn) < €4vrfvd(wyy)’

which concludes the proof. O

The next lemma will be used in the case (po, qo) # (1,00). Here is the place
where the assumption v,(x) = pu(B(z,r)) enters. Though being elementary, this
lemma constitutes the main trick in the proof of Proposition 2.16.

Lemma 2.19. Let r > 0 and assume v,.(z) = p(B(z,r)) (x € M). For~ >0,
1< g¢g<ooand f e Ly(Q) we then have

1£le <"y = lorvr Ve fleae |, oy
Proof. By Fubini’s theorem we have, since p,,(z) = p,.(y) for all z,y € M,
o = Dor Pl | yqary = b2 = Dovlzaanen (&) @), 0

This implies the assertion since € ||py.|r,ar) = |XB@n .00 = #(B(z, 1))
for all z € €. ]

In order to present the idea of the proof of Proposition 2.16 in the case
(po,q0) # (1,00), let us first show a simple variant of Proposition 2.16: let
r > 0 and assume that vp < coe“Po, for all R > r, with v,.(z) = u(B(z,r)).
Let 1 <p<qg<oo, v2=3¢ and B: Loo . — L1 o a linear operator satisfying
Jor "By P pqy < L. Then oy yur "By < lpyyor " f, for all f € Lo,
y € M. By Lemma 2.19 and Lemma 2.13(b) we obtain

1Bflly < e ”y = ”P%yvr_l/fo”tzHLq(M)

<€y = 1oy P F Lol 1y < €T (@) = pry(@)on(@) 7).

Thus, Lemma 2.14 yields | B|,—, < 3(1 — e77/3)"e2ertnr,
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Proof of Proposition 2.16. First case: (pg,qo) = (1,00). By Corollary 2.18,
the assumption implies that the operator v2° Bu® has an integral kernel k satis-

fying
k(z,y)| < ePor—0d@y) (almost all z,y € Q).
Therefore, the kernel h of pv®BvPp~1 satisfies
[P(x, y)| < vp(2)* 00, (y)7 % px)ply) ~ e oMY (almost all z,y € Q).

Note that ao —a,f—0B<1, (g—a)+ (B —p) =1 —plag = s and
p(z)p(y)~! < Cex e . Thus, Lemma 2.14 implies that

ng(h) < Ce*0m . c2(1 — e 0r/6)~Le2err

By Lemma 2.13(a) we obtain the assertion since 2¢, < 7.

Second case: (po,qo) # (1,00). Then v.(z) = u(B(x,r)) (x € M). Let
p € P(7/2,C), f € Loy Wehave to show that |pveBf|, < C2cS(1—e™07/8)=2
v fl,

By Lemma 2.19 we have

o0 By < € [y = loo 07 /- 02 B Lol 0 (2.16)

-1
Let s7':= ¢! —¢;" and p; := pv;” © ™. Then o e pus = vfl/sp v and
by Holder’s inequality we estimate

”02704/“7«_1/qung||<1 < ”,0370/8,@/“7«_1/8 ”8”10570/8,.1;/01 : pvo,yU?OBf”qo (2-17)

for all y € M. Since 3v¢/8 > 3¢, we can apply Lemma 2.14 to the first factor on
the right hand side of (2.17) and obtain

HP?)'yo/s,yUfl/sHs <c(l— e’w"/g)’le%”" (almost all y € M).

To estimate the second factor, note that (2.14) implies that v° € P(c,, coe") for
all |6] < 1. Since ¢, < 70/8, this yields p; € P(270, Ccoe"). Using (2.15) and
the assumption [py, 02 B fle < [0V flpy, We thus obtain

”pfwo/&ypl Proa VB fllao <[ Ccoe p1(y) - pryoy 0 Bf g
< Caoe”" p1(Y) - Prowr ™ fllpo
02 ; QCTT“P—\’)Wo/S,ypl : p’ymyvajﬁof”po

<
J— _1_ —
< ”PS”/O/&?JIOU? o —40 ﬁof”po

02 2 2crr

Due to the assumption, a — ¢! —ag— o =p t —q¢ ' —py' — B = —B—s7"
By (2.17) we therefore conclude that

HpQ’YO yUr 1/quanHq <C? 4( e_%r/g) ! 4CTer 370/8,yUr s 'pvr_ﬁf”pw
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Inserting this into (2.16) yields, by Lemma 2.13(b) and Lemma 2.14,

e C2Y(1 = e (g sy ()0 () - o £,

C2e(1 = e /8) 2|y A ),

lovr Bl

VASV/AN

To complete the proof, note that 6¢, < . O

We conclude this section by a lemma which will be used to show strong
continuity of consistent semigroups.

Lemma 2.20. Let 1 < p < oo and (B,) a bounded net in L(L,(S2)). Assume
that C' = sup, || Balp—p~ < 00 for some v < 0, and that there exists ¢ > p such
that Bof — f in Ly(Q?) for all f € Lo .. Then B, — I strongly in L(L,(2)).

Proof. Since (B,) is bounded, it suffices to show B,f — f in L,(Q2) for all
f € Looe. Given f, let xp € Q, ro > 0 such that supp f C B(xg,ro). For r > rg
we obtain (note that v < 0!)

HBaf - f”p < H(BOéf) rB(zQ,r) - f”p + ”(Baf) [B(xo,r)cup
< pU(B(wo, )P " | Baf = fllg + 1€ pr0 Baf -

By the assumption we have |py s, Bafly < Clpyaofly Since 7 < 0 this implies
that € pyo0Baflp < €"Clpyaoflp — 0 as r — oo, and we conclude that
Bof — f in L,(Q). O

2.4 Extrapolation and analyticity

In order to apply Proposition 2.16 in the proof of Theorem 2.1, we need a refor-
mulation of our volume growth conditions: assume that (2.2) and (2.3) hold. We
claim that then for all £ > 0 there exists ¢y(g) > 1 such that

vg < co(e)eV By, (R>r >0). (2.18)

This is shown by a distinguishing three cases. If R > r > 1 then vg < cpefiuy
by (2.2), and we are done since v; < v.. If r < R < 1 then vy < cz(g)er

by (2.4), and there exists ¢y(g) > 1 such that CQ(§)N < cole)erfforall R > r > 0.
Let now 0 < 7 < 1 < R. Then vg/v, = vg/vy - v1/v, < coe?- CQ(I)N. If

-
& 2c1\N a1R. & £
r > 5o then we conclude that vg/v, < coca (21) e B if 1 < 5 then ¢ < 5

and hence vg/v, < 000262571%(%)]\[ < coe)er® for some co(e) > 1 not depending
on 7, R. This shows (2.18).

Conversely, assume that (2.18) holds for some ¢ > 0, ¢o(e) > 1. Then we
easily show estimates of the type (2.2) and (2.3).
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Remark 2.21. As a direct consequence of Proposition 2.16 we obtain the follow-
ing. Assume that (2.18) holds and that (2, d) is separable. Let B: Lo . — L1 oc

be a linear operator, ¢ > 0. Then, with K, := (co(g))G(l —e7e/8)72
||UQBUB||p—>q AN K 65’YOT ”Ua0 B'UBO ||p0—>qo Y0

for all po <p<qg<qo, >0, %= =2V (8a), |7 < /2, and ap, fo,a, B >
with ag + Go=py ' —¢p ', a+B=p ' —¢ L.

For the proof recall from Remark 2.3(d) that the separability of (2,d) is
essentially equivalent to u(B(z,r)) > 0 for all x E M, r > 0. Then apply
Proposition 2.16 with ¢y := ¢y(g) and ¢, := ¢; V &, and observe that (1 —
e /82 L (1 — e /%) 2 for all 7o > 8¢, = ¢ (801)

In the proof of Theorem 2.1 we will use the following result to pass from small
times to large times.

Lemma 2.22. Let T be a semigroup on L,(S). Assume that there exist €ty >
0, C > 1 and m > 1 such that |T(t)|p—p, < C for all t < tg, 0 <y < et™ Y™,
Then there exist w,v > 0 such that

IT®)lp—py < Ce70 (7 2 0).

Proof. For v = 0 the assertion is well-known. In case v > 0 let ¢, := (y/e) ™™ Ato.
For t > 0 choose n € N with (n — 1)t, < t < nt,. Then n —1 < t/t, <
((v/e)™ + tg")t and L < (y/e)™™ A to, in particular v < 8(%)_1/"1. By the
assumption it follows that

||T( )”p—*p’y ”T( )”p—>p'y On ! < Celnc <(7/€)m+t ) CQWt+V7mt

with w = ;' InC and v = e ™ InC. O

We further need to extend the weighted estimate in Lemma 2.22 from real
to complex times. The next proposition serves this purpose. Comparable results
are shown in [Dav89], [Sch96] and [Hie96] by means of the Phragmen-Lindel6f
theorem. But it seems to be more natural to use Stein interpolation, similar to
the proof of [Dav95b; Lemma 9] by means of the three lines theorem.

Proposition 2.23. Let p: Q — (0,00) with p,p~" € Logjoc, and 6 € (0,5]. Let
F: Sy — L(L,) be a bounded continuous function, analytic in the interior of Sy,

satisfying the inequality

[P F(t)p™ | < Ce”™  (t,5

\%

0)

for some C > 1, v >0, m > 1. Then for all € (0,6) there exists v, > 0 such
that

lp7F(2)p77 < Cre™?"Fe% (2 € 8, v 2 0),

with Cy = max{|F|s,C}. If = % then one can choose v, = (1 — 2¢)™™v.
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Proof. Fix v = 0 and let ¢(2) := exp(— %e 2 92) for 0 < Rez < 1. Then
m sin fx 9y

lp(2)| = exp(—vy™ERbeel)  where z = x + iy. We apply the Steln interpolation
theorem to the function GG defined by

G(2) == p(2)p? F(e?=)p™*7 (0 < Rez < 1).

For Re z = 0, the function z — €??(0~2) describes the upper ray of the boundary
of Sy, for Rez = 1 it describes the positive real semi-axis. For f,g € L, the
function z — (G(z)f, g) is analytic, and we have

(G ()] 9] < leNEE D17 Flplo™ gl < 1F N - el flplgly < oo,

where ¢ depends on v and on the supports of f and g, but not on z.
The function ¢ is chosen in such a way that |G(2)| < C} = max{|F|,C}
for Rez = 0,1. We infer that |G(z)| < C) for all 0 < Rez < 1, so
o™ F (e e™)p™ | < Crfp(a +iy)| = Crexp(vy™ 2 e™).

sin 0

Choose now z =1 — % and let z := ¢?(1=2)e% — 1%  Then

07 F(2)p| < Cy exp iy Sl ez

sinf cosp/”

m sin(6—¢)

Writing 1 = &7 instead of v we obtain the assertion with v, = 1/(&) SnOcos s

Now we are in a position to show the following improved version of Theo-
rem 2.1.

Theorem 2.24. Assume that (2.18) holds and that (§2,d) is separable. Let py <
s < qo and T a semigroup on L (Q) Assume that there exist ,tg > 0, m > 1

and g, By = 0 with ag + By = —qy " such that
Cp := sup Hvtoj‘}mT( ) V) lpp—qo.ct-1/m < 0.
0<t<to

(a) Then T extrapolates to an exponentially bounded semigroup T, on L,(€2),
for all p € [po, qo] \ {oc}.

(b) If one of the semigroups T, is strongly continuous then so are all of them.

(c) Assume that T,, has an exponentially bounded analytic extension to Sy
for some 0 € (0,%], p1 € [po,qo] \ {oo}. Then T, has an exponentially bounded
analytic extension to S, for all ¢ € (0,6), p € [po, o] \ {00}

(d) In case the assumption of (c) holds let I := |[0,6), otherwise I := {0},
So = (0,00). Then for all p € I there exist C, > 1, w, € R and v, > 0 such
that

[0 2y1m T (20 1 lpmay < CipeletreI™Re2 (2.19)

forallpp <p<q<q, 2€ 8, yeER, a,f 20 witha+ 3 =p ' —q¢ ' If

0 = 5 the one can choose w, = @ + (8mcy)™ (5 — )™ for some & € R.
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Observe that, by our definition of an analytic semigroup, the above theorem
implies Theorem 2.1.

Proof of Theorem 2.24. It suffices to show (d): taking « = § = v = 0,
z € (0,00), p = ¢, the weighted norm estimate (2.19) implies (a). If T, is
strongly continuous for some p € [po, qo] \ {oo} then, for ¢ € [po, qo] \ {1, 00}, the
strong continuity of 7, follows from [Voi92]; in the case ¢ = py = 1 it follows from
Lemma 2.20. Finally, part (c) follows from Lemma 1.4.

We first show (2.19) for p = g and ¢ = 0, i.e., z € (0,00). Without restriction
assume 5t51/m > 8c;. Let t <ty and vy := et~ 1/m Note that vy > 5750 = 8¢y
and yt'/™ = ¢. By Remark 2.21 we obtain
KE€5EHU;(}mT< ) tl/m ”poﬂf]o et=1/m

Hvﬁ/mT(t)vﬁ/meﬂm <
< K.e*Cy:=Cy (t<ty, v<et/m/2)

(2.20)

forall pp <p<qg<qand o, > 0witha+3=p ! —¢ ! ByLemma 2.22 we
infer that there exist wq,v; > 0 such that

”T( )”p—mv Cy ettt (p € LPO»QOL t,y 2 0)-

In particular, T" extrapolates to an exponentially bounded semigroup on L, (€2)

for all p € [po, go] \ {o0}
Assume that 7}, has an exponentially bounded extension to Sy for some 6 €

(0,Z], p1 € [po, qo] \ {o0}. Let Cy > C', wy > wy such that T, (z)] < Chev2Re*
for all z € Syp. Then Proposition 2.23 implies that for all ¢ € (0,6) there exists
Vo = 15(p) = 0 such that

[T, (2l pr oy < Coel®™27REZ (2 € Sena, 4 2 0). (2.21)

If = % then we can choose 15(p) = (3 — €)™y If there is no exponentially
bounded extension then I = {0}, and (2.21) still holds for ¢ = 0, with 6 := 0.

Now we show (2.19) for p = po, ¢ = qo, @ = a; :==p;' —qy ', B =B =
pot—p;tand v > 0. Let » € I and choose § > 0 in such a way that z—20Re z €
S¢T+e for all z € S,. Let z € S,. Then t, := (0Rez) A (2v/e)™™ Aty < 1o,
v < stz_l/m/Q, and z — 2t, € Se+e. From (2.20) and (2.21) we therefore obtain,
taking into account Remark 2.152,

[0 T (Z)U Uy lpo—a0)
< po( )U (L/m ||po—>p1 7” (2= )||p1—>p1 ’YHU 1/mT (t Z)”p1—>qo,’y

<O - C*Qe<w2+”27 JRe(z=2t:) . ), (2.22)

To obtain the desired estimate (2.19) for v217T,, (z)v?, with r, := (Re z)"/™,

T

we have to estimate ('UTZ/’Utl/m)al—hBl. By (2.18), vg/v, < co(1)ef/" for all r <
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, R > r. Without restriction assume tO/ < ¢! so that tm < < ;. We have

2—1/m = (§Rez)V/mv & v, YmSince m > 1 there exists ¢ > 0 such that

ro ™ < §/m + (2 v, 1/m)(Rez)1/m <c+(14+49™Rez (Rez>0).
(2.23)

Therefore, vy, /v,1/m < co(1)etH™Re= Since ay + 01 < 1, estimate (2.22) yields

vt T, (2)v 2oy, Hlpo—aor < Cse (s tusy™) Rez (z € 8,),

with Cg = 0120200(1)607 W3 = Wy + ]., V3 = Vg(QO) = VQ(QO) + 1.
Finally, let po < p < ¢ < q, 2 € Sp, ¥ € Rand o, > 0 with a + 3 =
p ' — g7t For v := (2|y|) Vr;' V (8¢;) we obtain, noting ;™ = (Re 2)~!, that

[0 Ty, (2)02 Ipg—sgore < Caes Reztra(@hb s (8ea)™) Res

_ Cewstvihi™) Rez

with 04 04( ) C’ge”“ , Wp = w4(<p) = w3 + (8C1)mV3(QD), Vy = I/4<g0) =
2™us(p). Note that v = - V (8¢1) and |y| < 7p/2. Thus, Remark 2.21 yields

Tl € i i,

As in (2.23), there exists ¢ > 1 such that 5y, < ¢+ (1 + |7|/™) Re 2, and we
obtain the desired estimate (2.19).
For the case § = 5 we compute

wp 1= wa(p) + 1 =wz + 2+ (8c1)™((3 — £) "1 +1).
This yields the last assertion. O

Remark 2.25. Let T(t) = e %! be a semigroup on a Banach space X which is
analytic of angle 7. Assume that there exist C' > 1, w € R, v >0, m > 1 such
that

IT(2)| < Celerv(G-aea) ") Rez (Ro 2~ ),

Then there exist w; € R, v; > 0 such that the spectrum o(A) lies in the ‘filled
generalised parabola’

{z+iyeCiz>unly

m— l —wl}

This easily follows by optimisation from the following fact. If ¢ € [0,7) and
IT(2)] < Ce?Re® for all z € S, then

o(A) C{z+iyeCyz = |y/tanp — w}.
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2.5 L,-spectral independence

Throughout this section we assume that conditions (2.7) and (2.8) hold. We
are going to prove Theorem 2.4 which deals with L,-spectral independence for
generators —A,, of consistent Cy-semigroups 7,,. By the formula

A+ A,)™ = / Lo (1) dt, (2.24)
0

which holds for A greater than the type of T}, the theorem will be reduced to the
following result on L,-spectral independence for consistent bounded operators.

Theorem 2.26. (c¢f. [KuVo00; Thms. 1 and 2]) Let B: Lo . — L1 o be a linear
operator satisfying

HU?Bvlﬁ HPOHQONO <00

for some >0, a, 3 >0 witha+3 =py* —qy*. Then B extends to a consistent
family of bounded operators B, on L,(S2), p € [po,qo]\{o0}, the spectrum o(B,) is
independent of p € [po, qo] \ {00}, and the operators B, have consistent resolvents.

In [KuVo00] this theorem was proved under the additional assumption that
e < v < e !for some e > 0. The general theorem can be reduced to this case by
resorting to the weighted measure space (M, v; ') and using [KuVo00; Thms. 23
and 26| (see [Vog01]). As we are going to present a selfcontained proof here, we
will use a direct approach instead.

Using the methods introduced in this section, one can show the following
for the case gy = oo: under the assumptions of Theorem 2.26, B extends to a
weak*-continuous operator By, on Ly (§2), and 0(Bs) = 0(B,,). Similarly, the
other results of this section hold without the restriction p < oo, after suitable
reformulation for the case p = co. We don’t pursue this for the sake of simplicity.

In the case (po,qo) = (1,00), Theorem 2.26 is not optimal in two respects:
firstly, a weighted 1—o0-estimate is a strong assumption on the integral kernel of
B (cf. Corollary 2.18). It is possible to replace this assumption by an appropriate
integrability assumption. Secondly, if we know more than the subexponential
volume growth in (2.7), e.g. if the volume growth is polynomial, then the weight
functions p,, can be adjusted to this particular volume growth. See [KuVo00;
Thm. 2.

For the proof of Theorem 2.26 we need several preparatory results. The proof
of Theorem 2.4 will be given at the end of the section.

In order to prove the inclusion p(B,) C p(B,) for p,q € [po, qo] \ {o0} one has
to show that for A € p(B,) the operator (A — B,)"'[,_ extends to a bounded
operator on L,(€2). This is expressed in the following elementary lemma which is
stated in the general context of topological spaces (cf. [LiVo00; Prop. 4], [Are94;
Prop. 2.3]).

Let E, F, G be Hausdorff spaces with E, F' <— G (continuous injections) such
that ENF is dense in both £ and F'. Let D C EN F be a subset which is dense
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with respect to the initial topology induced by the imbeddings £ N F' — FE and
ENF—F.

Lemma 2.27. ([KuVo00; Lemma 9]) Let Bg: E — E and Bp: F — F be con-
tinuous mappings satisfying Bg|p = Brlp. Assume that Bg is continuously
invertible and that Bgl [ p extends to a continuous mapping R: F — F. Then Bp
is continuously invertible, and Bn' = R.

Proof. Since D is dense in EN F and E, F — G, we have Bg|pnr = Brlgar
and B! gnp = Rl pnp. Hence RBr = BpR = I on ENF. This yields the claim
since /' N F'is dense in F'. O

We will apply this lemma in the situation E = L,(2), F' = Ly(2), G = L1 joc
and D = Lo ..

In the proof of Theorem 2.26, we will make use of Proposition 2.16 in the
following form.

Remark 2.28. Let B: Lo, . — Lj .. be a linear operator, vy > 0. Then
va‘BvlﬁHquﬁ < Ky, HU?OBU?) lpo—a0:70

for all py < p < ¢ < o, |7 < %0/2, and ag, By, a, B = 0 with ag+ 3y = py* — g5
a+f=p ' —q ' Here we can choose K., 1= & (1 —e/8)72e50/8 with ¢, /s
from (2.7).

For the proof, apply Proposition 2.16 with ¢, := ¢ and ¢y := ¢,y s.

The crucial part in the proof of Theorem 2.26 is the following estimate which
implies convergence of weighted operators (cf. [Sch96; Lemma 3.2.3], [LiVo00;
Prop. 5(iii)]).

Proposition 2.29. (¢f. [KuVo00; Prop. 15]) Let B: Lo — L10c be a linear
operator, 1 < p < 00, v > 0. There exist 0, > 0 with 65, , — 0 asy — 0 such
that

Hpo_l - BHpﬂp < 57077”BHPHP,70

for all 0 < v < v and p € P(y,1). In particular, for all || < v, pyyBp7,,
extends to a bounded operator B, on L,(Q?), and B,, — By, in the norm as
v — 0, uniformly iny € M.

Proof. Let 0 < v < 79 and p € P(v,1). By (2.7) there exists ¢y > 0 such that
v, < coel0 ™7y for all r > 1. By (2.14) this implies v := vfl/p € P(y —7,0),
with C := ¢ge’ 7.

Let f € Lo . By Lemma 2.19 we have

[(pBp™ = B)flly < ™[y = Ip21000(0Bp™" = B flol oy (2.25)
We now write

pBp~' — B = pp(y) ' Blp(y)p~" = 1)+ (pp(y) "' —=1)B =: By + By,
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insert this into (2.25), use the triangle inequality and estimate the two resulting
terms separately. For the second term we have, using Lemma 2.13(b) and (2.15),

Hy = ||p2W07?JUB2f||p”Lp(M) < np(U(x)pho,y(x)(P—%y(x) - 1))||B||p~p||f||p'
Using (2.15) and Lemma 2.13(b) again, we can estimate the first term by
< Cly = 1o @Bl = 1ol ar)
< C”B”pﬂpno ”y = ”pvo,yv(y) (p—%y - 1>f||p”Lp(M)
< CHBHpHpryonp (U(y)p707y(5’5) (p,%y(:c) - 1))Hf|‘p

To complete the proof, note that |B|,—, < Ky |B|p—pr by Remark 2.28 and
that

HZ/ = “P%myUBlfHPHLp(M)

Mp (U@)P“fo,y(x)(p—%y(x) - 1)) < My (U@)e_%d(m’y)/z) S‘ig e —1) = 0

as v — 0, where we used py, ., = (pro/2.4)° O

The following consequence of Proposition 2.29 will be used in the proof of
Theorem 2.26.

Corollary 2.30. (c¢f. [KuVo00; Cor. 16]) Let 1 < p < oo and B a bounded
operator on L,(S) satisfying |B|p—pr, < 00 for some v > 0. Let A\ € p(B).
Then there exists y1 > 0 such that |(A — B) | p—p, < 00 for all |y| < 7.

Proof. Let A € p(B). By the assumption we have |[A — B|,—p,, < 00. Recall
that inversion is continuous in the open set of invertible elements in £(L,(£2)).
Thus, by Proposition 2.29 there exists ; > 0 such that A — B, , is invertible for
ally € M, |v| < v, and

sup (A = By ) ™ pp < 00.
yeM

In order to prove | (A—B) ™[, < oo it remains to show (A=B,,) "' p(,-1 1) =
pyy(A = B)'p7, for all y € M. The latter is a consequence of the following two
facts: (A — Byy)lpp-t 1) = Pry(A — B)p;, for all y € M, and the operator

05y D(p5 4, Lp) — Lyp(Q) is bijective since p,, is bounded. O

Proof of Theorem 2.26. By Remark 2.28 it is clear that B extends to a
bounded operator B, on L,(2), for all p € [po, o] \ {oc}. Let p, q € [po, q0] \ {o0}-
The operators B, and B, are consistent since Lo, is dense in L,(2) N L,(£2).
So we have to prove the inclusion p(B,) C p(B,) and the consistency of the
resolvents. Let A € p(B,).

First we study the case A # 0. Then we can rewrite the resolvent R(\) of B,
as

RA) =X+ X 2%B,+ A 2B,R(\)B,.
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We have to show that A\ € p(B,) and that (A — B,)™', (A — B,)~! are consistent,
which by Lemma 2.27 amounts to showing L,-boundedness of R(A\)[,__ .

It is clear that A™'/ +A"2B is L,-bounded; we will show that B,R(\)B is L,-
bounded. According to Corollary 2.30 we have |R(A)|,—p, < oo for some 0 < v <
B Leta = Py =p~" Bi=p" =gy Then | Bvf|p—p, < coand ”U?B“p—ﬂzon <
0o by Remark 2.28. Remark 2.15 implies that |[v) B,R(\)B§|py—qy < 00.
Another application of Remark 2.28 yields L,-boundedness of B,R(\)B.

In the case A = 0 we simply write R(\) = B,R()\)3B,. By the above we have
|07 RO py—qoy < 00. Again |R(A)]q4—q < 00 by Remark 2.28. O

Remark 2.31. Let 1 <p< g < ooand a:=p ' —qg ' Let B, be a bounded
operator on L,(€2) with 0 € p(B,) and [[v{By|,—y < co. Then |v: L,(Q) —
Lo Q)| < 1B, lp—plvf Bplp—g < 00. Therefore (2, 1) cannot contain a sequence
(M,,) of bounded subsets satisfying M,, 2 M, 1 (n € N) and 0 < u(M,) — 0

Then Q = {J,-, M,, where u(My) = 0, and M, are pairwise disjoint atoms of
(Q, ) (n = 1). Therefore, for all s < oo, the space L(f2) is isometrically isomor-
phic to the weighted space of sequences { (z,,); Y, [2n]* (M) < 00}, and Lo (£2)
is isometrically isomorphic to l. In this case we have | B, [, )z, @) li—0 < 0.

In order to derive Theorem 2.4 from Theorem 2.26 we need some more prepa-
ration. Part (b) of the following lemma is inspired by [Kar00; Lemma 6.3].

Lemma 2.32. Let A be a closed operator in a Banach space X, and n € N.
(a) Let Ao € p(A), X € C such that (A\g — N)™™ € p((Ao — A)™). Then
A€ p(A), and
A=A =D A=V = A (=N = (A — A7)

k=1

(b) Assume that o(A) C {\ € C; ReX < w} for some w € R. Then for all
A € p(A) there exists Ao > w such that (Ag — A)™™ € p((Xo — A)™").

Proof. (a) Let B:= (\—A)7!, a:=(X—A)"1, S =D TAo— A" (N—A)"
Then

-1

A=A)S=(B"—a)> o™ *B" = (a~B)Y o"*B"!' =a" - B",
k=1 k=1
and hence (A — A)S(a" — B")~! = id. In the same way, S(a™ — B")"'(A — A) =
idp(a) (note that S and (o — B")~! commute). This proves (a).
(b) Let A € p(A). By the spectral mapping theorem for bounded operators
we have to show that there exists A\g > w such that

Mo—=N) e ep((ho—A)7) (k=0,...,n—1).

By the spectral mapping theorem for the resolvent, the latter is equivalent to
-k
i = Xo — (Mg — N)e*™n € p(A) (k=0,...,n—1). For k = 0 this is true since
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A€ p(A). For k=1,...,n—1 we have Re i, = Ao(1 — cos ZZ%) — ||, so by the
assumption on o(A) we obtain that p € p(A) if g is sufficiently large. O

For the next result let £/, F' be Banach spaces, and assume that there exists
a Hausdorff topological vector space G such that £ — G, F — G (continuous

injections) and £ N F is dense in both F and F.

Proposition 2.33. Let Ag, Ar be closed operators in E, F, respectively, with
o(Ag),0(Ar) € {N € C; ReX < w} for some w € R. Let n € N. Assume
that, for all \g > w, the resolvents (A\g — Ag)™', (Ao — Ar)~! are consistent, and
(Mo—Ag)™, (Ao— Apr)™™ have equal spectra and consistent resolvents. Then Ag,
Ar have equal spectra and consistent resolvents.

Proof. We have to show p(Ag) C p(Ar) and the consistency of the resolvents.
Let A € p(Ag). By Lemma 2.32(b) there exists Ay > w such that (A\g — \)™™ €
p((Ao — Ag)™), s0 (Ao — A)™" € p((Ao — Ar)™™) by the assumption. Since
Ao € p(Ag) N p(Afr), the assertions of Lemma 2.32(a) are fulfilled for A = Ag as
well as A = Ap. Thus, A € p(Ar), and (A — Ag)~!, (A — Ap)~! are consistent
since (A\g— Ag)™!, (Ao — Ap)~! are consistent and (\g— Ag)™", (A\g — Ar) ™™ have
consistent resolvents. O]

Proof of Theorem 2.4. We are going to show a weighted norm estimate for
(A+ A,)~" in order to apply Theorem 2.26 to this operator.
By Remark 2.28 it follows from assumption (2.9) that

[ Ty (Bl pne < Ko~ C(8) ™ =G0 ($ <t <to <P <a0).
With a :=p;' — ¢y and w = t;" In Cy we deduce that
107 To0 () lpo—a0.20/2 < Coe" (¢ = to).
For small times, Remark 2.28 applied to assumption (2.9) yields
||U?Tpo (t)”poﬂqo:yoﬂ S Ky Cct* (0 <t < tO)-

Let n € N with n > K. For \g > w we obtain, using the representation of
(Ao + Ap,) ™ given in (2.24),

”v(lx()‘o + A;DO)_n||100ﬂqo,’70/2 < 0.

Note that the operators (Ao + A,)~" are consistent, by (2.24). Therefore, by
Theorem 2.26, they have spectrum independent of p € [py, go]\{oc} and consistent
resolvents. We conclude the proof by an application of Proposition 2.33. O]

In the case (po, qo) # (1,00) we could avoid using (2.24), and we would need
Proposition 2.33 only for the simple case n = 1: By the assumption of Theo-
rem 2.4, for all 7 € [pg, qo] \ {00} there exists C, > C such that |T,(t)] < C.
(t <tp). Let p,q € [po, qo] \ {oo} with p < ¢, and let § := 6, , € (0,1] such that
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pt—q ' =0(p;"' —q;"). Then Stein interpolation between the bounds (2.9) and
|IT..(t)| < Cy for suitable r € [p, ¢ yields

10T ()0 e < Cot ™% (0 <t < o).

-1

Now assume that 6,, < &, i.e., p~' — ¢ < £(py" — ¢5"). Then we obtain,

as in the above proof,
o 1.6
”U? (Ao + Ap) lvlﬁnp—wﬂvo < 0. (2.26)

It remains to apply Theorem 2.26 and the spectral mapping theorem for the re-
solvent to obtain that o(A,) is independent of r € [p, q], whenever p~! — ¢! <
L(py"' — ¢;"). The consistency of the resolvents of the operators A, is straight-
forward from the consistency of the resolvents of the operators (Ag+ A,)~*. This
proves Theorem 2.4.

Observe that the above idea of proof is not applicable in the case (pg,qo) =
(1,00): then we only have the assumption v, (z) < p(B(z,r)). Hence the weighted
p—q-estimate (2.26) is of no use—Theorem 2.26 requires a weighted 1—o0-
estimate.



Chapter 3

L,-properties of elliptic
differential operators

This chapter is devoted to the L,-theory of second order elliptic differential op-
erators on an open set Q C RY, N € N, corresponding to the formal differential
expression

Li=-V (aV)+b -V+V -bp+V

with singular measurable coefficients a: QO — RY @ RV, by, by: Q@ - RN, V: Q —
R. We are going to construct a positive Cy-semigroup on L, := L,(2), whose
generator is associated with £ in a natural way which will be made precise below.
As it is well-known, this implies well-posedness of the corresponding Cauchy
problem.

There is vast literature concerning the case that one can associate a consistent
family of Ciy-semigroups on all L,-spaces with the differential expression £. This,
however, is not the case of major interest here. In general, £ will be associated
with a Cy-semigroup on L, for p from a proper subinterval of [1, c0).

The chapter is organised as follows. In Section 3.1 we motivate and formulate
our main results concerning the construction of a family of positive Cy-semigroups
on L, associated with £. Moreover, we investigate the problems of extrapolation,
analyticity and L,-spectral independence for these semigroups. The proofs of the
main theorems are given in the two subsequent sections. Finally, in Section 3.4
we discuss to what extent our results are sharp.

The contents of this chapter are partly contained in [SoVo00], [LSV00].

3.1 Construction of the semigroup on L, and
main properties

Elliptic operators in divergence form with measurable coefficients are usually
defined by means of the form method. The form associated with the above

57
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differential expression L is defined by
7(u,v) == (aVu, Vv) + (Vu, byv) — (bou, Vo) + (Vu,v) (3.1)

on a suitable domain D(7) corresponding to the boundary conditions. Here and
in the following, (f,g) is defined as [, f(z) - g(x) dz whenever f -G € Ly, for
f,9: Q— Cor f,g: Q — C» measurable. We will consider the lower order terms
of 7 as (not necessarily form bounded) perturbations of the second order term.

Assume that 7 is densely defined and fulfils the first Beurling-Deny criterion.
(The latter holds if and only if (Reu)t € D(7) for all u € D(7); in this case
we have 7(u,v) € R and 7(u*,u”) = 0 for all real-valued u,v € D(7)—see
Definition 1.12.) Then the precise formulation of the problem is as follows: Given
p € [1,00), under which conditions on the coefficients a, by, bo, V' and the domain
D(r) is 7 associated with a positive Cy-semigroup 7, on L,, in the sense of
Definition 1.207 If 7 is associated with T),(t) = e '*, we can regard A, as the
L,-realisation of £ with boundary conditions prescribed by D(7).

The present section is organised as follows. First we formulate conditions
on the form 7 ensuring that 7 is densely defined and fulfils the first Beurling-
Deny criterion. We then investigate for which p € [1,00) one can expect 7 to be
associated with a quasi-contractive Cp-semigroup on L,,. A comprehensive answer
is given in Theorem 3.2; see also Corollary 3.5.

In general, the set of allp € [1, 00) such that 7 is associated with a positive Cp-
semigroup 7, on L, is strictly larger than the set I determined in Theorem 3.2.
In Theorem 3.8 we will show, under some additional restrictions, that I can
be extended to the left and to the right if a is uniformly elliptic. Moreover,
we show that under these restrictions we have p-independence of the angle of
analyticity and of the Ly-spectrum. Our last result, Theorem 3.10, shows that
the conditions needed to obtain L,-spectral independence, for p € I only, are
considerably weaker.

We make the following qualitative assumptions on the coefficients of L.
(a) ais a.e. invertible, a,a™ € Ly ., and a is sectorial, i.e.,
‘Im(a{’ . Z)| < aRe(a¢-¢) a.e. forall (e CY
for some o > 0. Recall from Proposition 1.28 that

v (u,v) == (aVu, Vv), D(ty) = {ue W}

1,loc

ﬂLg, aVu-Vu e Ll}

defines a (non-symmetric) Dirichlet form in L. Let 7, C 7y be a Dirichlet
form.

(bV) The potentials W; := b;'a;'b; (j = 1,2) and V' are 7,-regular, and
Q(V™) 2 D(7,) N Q(Wy + Wy + V) (recall that a, = 9£20).
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We define the form 7 on D(7) := D(7,) N Q(Wy + Wy + V1) by (3.1). This
is possible since for all u,v € D(7) and j = 1,2 we have, by the Cauchy-Schwarz
inequality,

V- b = |a/*Vu - a; V2] < (a,Vu-va) P (Wio?)? e L. (3.2)

Since 7, is a Dirichlet form we have (Reu)™ € D(7) for all u € D(7). Therefore,
7 fulfils the first Beurling-Deny criterion. Of course, we can define 7 in the same
way as above without assuming (bV). The reason for assuming (bV) is that then
D(r) is dense in D(7,), by Lemma 1.24(b); in particular, 7 is densely defined.

Our first aim is to determine the interval of those p € [1,00) for which 7 is
associated with a quasi-contractive Cy-semigroup on L,. The only quantitative
condition we need is seen from the Lumer-Phillips theorem by a formal compu-
tation. Suppose 7 is associated with a positive quasi-contractive Cy-semigroup
T,(t) = et on L,, for some 1 < p < oo. Then A, is quasi-accretive which, by
the positivity of T, is equivalent to (A,u, u?~") > —w,|ul? for all 0 < u € D(A4,),
for some w, € R.

Formally, A,u = Lu, VuP™' = (p — DuP>Vu = I%u
Vu:z u'~2Vu?. Thus,

P P
2 2

“Wu?z, and similarly
(Apu, w1ty = <—V (aVu) + by - Vu+ V- (bou) + Vu, up—1>
= ,%@Nu%,vua +((2b — 2b)ub, Vub) + (V)

(here and in the following, (f) := [, f(z)dz for all f € L;). We define symmetric
forms 7, on D(7,) := D(7) (1 <p< oo) as real parts of sesquilinear forms, by

Tp(u) == Re( (aVu, Vu) + <Vu, biu) — I%(bgu, Vu) + (Vu, u))
= I%Refa( u) + ;<VIU|,bl|u|> — 2 (bful, V]ul) + (V]ul?)

(note that Re(wVu) = |u|Vl]u| for all u € W}, [LeSi81; Appendix, Cor. 1]).
Then the natural condition for L,-accretivity is

T(u) = —w,llull; for all 0 < u e D(7).

This is equivalent to 7, > —w, since 7, fulfils the first Beurling-Deny criterion.
Note that 7 = Re 7 (as to be expected). Further, we define the symmetric forms
Ti, Teo Dy setting p = 1, 00 in the above definition:

7i(u) = 2(Vul, bilul) + (V]ul),
Too () 1= =2{baful, V]ul) + (V[u[*)

on D(7y) := D(7) := D(7).
Now we can explain why we do not just assume V'~ to be 7,-regular in (bV).
Suppose that 7, > —w, for some p € [1,0], w, € R. Then

(Vou?) < o5 Rerg(u) + (3 — Zbo)u, Vu) + (VF +w,)u?) (0 <ue D(7)).
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If V™ is 7,-regular then it is (7, + Wi 4+ Wy + VT )-regular, by Lemma 1.24(Db).
Thus, the above inequality is valid for all 0 < u € D(7,) N Q(Wy + Wy + V),
so (bV) holds. In other words, if the assumption on V'~ in (bV) does not hold
then none of the forms 7, is bounded below.

The forms 7, play a crucial role in all our results on elliptic operators. In the
following proposition we collect several simple properties of the forms 7 and 7,
which are important for the understanding of the subsequent theorems.

Proposition 3.1. Assume that (a) and (bV) hold. Let I be the set of all p €
[1,00) such that w, :=inf{w € R; 7, > —w} < 0o (then 1, > —w, forallp e I).
(a) For all potentials U > Wy + Wy + V=, the form T + U is sectorial and
closed. For alll <p < oo and U = p'Wy+pWa+V~, the symmetric form 7,4+ U
is closed. In particular, T, is closable for all p € I\ {1}.
(b) The set I is an interval and, for all p € f, there exist ¢, > 0, ¢, € R such
that 7, > e, Rety —¢p. If 7, = —wy, (1 =0,1) for some 1 < py < p < p1 < o0
1

_ X1 _
then we can choose e, = 4(5- — 2)(5 — =), ¢ = Wy, V wp,.

(c) For all p,q € I, the norms |-, and | - |-, are equivalent.

Note that, in case 71, 7o = 0, part (b) of the proposition reads 7, > pip/ Re,.

Proof of Proposition 3.1. (a) From (3.2) we deduce by Euclid’s inequality
(Jab| < £a* + 52b? for all a,b € R, € > 0) that the sum of the first order terms of
7 is form small with respect to 7, + W1 + W5. Thus, 7 4+ U is a closed sectorial
form for any potential U > W; + W5 + V~. The analogous argument works for
7, if 1 < p < 0co. By Corollary 1.16 we obtain that 7, is closable if it is bounded
below, i.e., p € I.

The proof of (b) and (c) relies on the following identity which results directly
from the definition of the forms 7,: for all py,p; € I, 6 € (0,1) and py defined by
1 0

L —1=0 4 0 we have
Do Po P1

1 1-46 0
Ty, = (1 —0)7, +971~|—4( — — )ReTa. 3.3
v = (1= )T 0, pepy  DoPy P (3:3)

In order to prove (b), it now suffices to show that

1 1-6 9 (1 1)(1 1) <1 1)(1 1)
PoDy PPy Piph Py Do) \pe D1 po po) \poe m) )
which in turn follows from the equality
1 1 1—-0 0 1 1—-0 0 1 1—-06 0 1
/ + o= + — v + / + o) = / + / + / :
PoPy  DPpb1 Po P1/) Do Do b1/ D1 DPoPg DP1Py PoP1

(c) By (3.3) we have 7,, > (1 — 0)7,, + 07,,. We deduce that, for all p,q € Io,
there exist e > 0, w € R such that 7, > e7, —w and 7, > €7, — w. O
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The form 7 itself need not be sectorial. In fact, Theorem 3.2 below includes
cases where 7 is not even bounded from the left. However, the form =+ W; +
Wy 4+ V'~ is sectorial and closed by Proposition 3.1(a). This enables us to make
use of Definition 1.20 in the first main theorem of this chapter which reads as
follows.

Theorem 3.2. Assume that (a) and (bV) hold. Let I be the interval of all
p € [1,00) such that w, = inf{w € R; 7, > —w} < oco. Then the following
assertions hold.

(a) The form T is associated with a consistent family of positive Cy-semigroups
T,(t) = e on L,, p eI, with |T,(t)| < e forallpe I, t > 0.

(b) For allp € T\ {1} and u € D(A,) we have |u|2 sgnu € D(7,) and

Re(Ayu, uluP™2) > 75(|u|? sgnu). (3.4)
(c) If, in addition,
!Im((bl + by)u, Vu)‘ < amp(u) + callul3 (u € D(T)) (3.5)

for some p € f, c1 =20, cg € R then A, is an m-sectorial operator for all p € f,
in particular, T, extends to an analytic semigroup on L.

Remarks 3.3. (a) We point out that the semigroups 7, are associated with
the form 7, not with the forms 7,. These forms, however, determine important
properties of the semigroups 7.

The method used in the theorem to construct the semigroups 7, is much
more natural than it may seem at first sight. The construction amounts to an
approximation of the lower order perturbations: not of the first order terms as
one might expect but of the potential—recall that we apply Definition 1.20. See
also Corollary 3.4(b) below.

(b) The domain of 7, determines the ‘boundary conditions’ under consid-
eration (the standard examples are the case of Neumann boundary conditions
7, = 7ny and of Dirichlet boundary conditions 7, = 7p = Ty [¢e(q)). Assump-
tion (bV) expresses that the lower order perturbations must not disturb the
boundary conditions prescribed by D(7,). In the case of Dirichlet boundary
conditions, assumption (bV) is fulfilled in particular if Wy, W5, V' € Ly jo,.

Suppose that assumption (bV) is not fulfilled, but D(7) is dense in Ly. Let
Ta = TN |p(r)- Then assumptions (a) and (bV) are fulfilled with 7, in place of
T4, 80 Theorem 3.2 is still applicable to the form 7. (Note that 7, is a Dirichlet
form since condition (1.4) is fulfilled for D = D(7)—see Definition 1.26.)

(c) If the form 7 itself is sectorial then it is closable by Proposition 3.1(a) and
Corollary 1.16. In this case we have 2 € I, and the operator Ay constructed in
Theorem 3.2 is just the m-sectorial operator associated with 7 (cf. the paragraph
following Definition 1.20).

(d) We point out that the case I = {1} is quite possible. By definition, 1 € T
if m > —w for some w € R. Note that the coefficient b, is not involved in this
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condition. In particular, if (a) holds, by = 0 and V' > 0 then 7 is associated with
a positive contractive Cy-semigroup on L, whenever bQTCLs_lbg is 7,-regular.

(e) For the case p = oo we obtain the following by considering the adjoint
picture in Ly. If 7., > —ws for some w,, € R then we can associate a weak*-
continuous semigroup T,, on Ly, with the form 7, which satisfies || T, (¢)] < "
for all t > 0. Observe that the condition on 7., imposes no restriction on b;.

(f) Estimate (3.4) is analogous to the corresponding estimate in Theo-
rem 1.32(b). In former results on second order elliptic operators with singular
first order terms (|Lis96], [LiSe96]), an inequality similar to (3.4) was proved only
for [u|% in place of |u|? sgnu. (Note that 7,(v) > 7(|v|) for all v € D(7;) since
7, is a closed symmetric form fulfilling the first Beurling-Deny criterion.)

Corollary 3.4. Let the assumptions and notation be as in Theorem 3.2, and
pel.

(a) Let U > 0 be 1,-reqular. Then U is T,-reqular, and 7 + U « (T,)v.

(b) Let (Up)nen, be a sequence of positive potentials such that Uy is T,-reqular,
Un, < Uy, 74U, is sectorial (n € Ny) and U,, — 0 a.e. asn — oo. Then 7+U, is
closable, the analytic semigroup 1y, o associated with T+ U, extrapolates to the
Co-semigroup (T,,)u, on L,, and U, is T,-regular. In particular, (T,)y, — T, as
n — oo.

Proof. (a) Let W := Wy + Wy + V~. Then 7 + W is a closed sectorial form,
by Proposition 3.1(a). By Lemma 1.24(b), U is (1, + W)-regular and hence
(1 + W)-regular. By Proposition 1.21 we obtain the assertions of (a).

(b) Let n € Ny. By Proposition 3.1(a), 7 + U, + W is closed, so 7 + U, is
closable by Corollary 1.16. By (a), U, is T,-regular, and 7 + U,, < (T})u,, i.e.,
Ty, 2 and (T,)y, are consistent. Finally, by [Voi88; Cor. 3.6, (1,)y, — T, as
n — oo since Uy is T),-regular. O

As a direct consequence of Theorem 3.2 we obtain a more explicit version of
that theorem.

Corollary 3.5. Let V., V_ > 0 be 14-reqular with V., —V_ =V and 7, =
Ret, + Vi. Assume that (a) and (bV) hold and that

(=1)7{bju, Vu) < B (u) + Billulz,  (Vou?) < yri(u) + Glul;

(0 <ue D(T)NQV,L), 7 =1,2) for some constants 1, B2,y = 0, By, By, G € R.
Let Iy .= {p € [1,00); & — %ﬁl — I%ﬁg -7 2 0}. Then, with the notation of

’opp’
Theorem 3.2, I D Iy, and w, < %Bl + Z%Bg + G for all p € Iy. Moreover, for all
pE o and u € D(A,) we have v, := |u|? sgnu € D(ry) and
Re{Ayu, ulul?2) > (2 — 26, — 26> — 4)7 (1) — (2By + 2By + G)Julf,
If, in addition,

Im((by + ba)u, Vu)| < e174 (u) + 2ful3 (v € D(r)NQ(Vs))
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for some ¢ 2 0, ¢z € R then T, extends to an analytic semigroup on L, for all
pel.

Proof. Since 7y (Ju]) < 74(u) for all w € D(7y), and 1 > ;z%’ the assumptions
imply that

7p(u) = o Re7a(w) + (Vilul?) — (=2(bsul, Vul)) = 2 (bolul, Vul) — (V_|ul?)
> (20 - 1%52 — )7 (u) = (%Bl + Z%Bz +G) ul3

pp p

for all p € [1,00), u € D(7)NQ(Vy). Let W := Wy + Wy + |V|. Then 7, is a
bounded form on D(1, + W). Since V. is (1, + W)-regular by Lemma 1.24(b),
we deduce that 7, > —(%Bl + I%BQ + G) for all p € Iy. Thus, Theorem 3.2(a)
implies the first two assertions. In order to obtain the remaining assertions, note
that the above also implies that

= (2 - %ﬁl - 1%62 — )7 — (%Bl + I%Bz +G)

for allpefo. O

Remarks 3.6. (a) The interval /; defined in Corollary 3.5 can be non-empty
only in the cases v < 1, and v =1, ; = B2 = 0 (then I, = {2}).

(b) The assumptions of Corollary 3.5 are in particular fulfilled if W; < ﬁ?nr +
28,Bj for j = 1,2 and V_ < 774 + G: then we have, by (3.2) and Euclid’s
inequality,

; 1
[(bju, Vu)| < %(asVu, Vu) + —

2
5 Wil
B 1
2

< 5 Rema(u) + 5= (8774 (u) + 26, Bj|ul3) < B () + Bjlul;

283;

and thus also
{Im((bl + bo)u, Vu)‘ < (B1 4 Bo)1e(u) + (B + Bg)||u\|§

for all w € D(7) N Q(V,). In this way, we reobtain [Lis96; Thms. 1-5] as special
cases of Corollary 3.5.

We point out that, besides some additional restrictions, b, was assumed to be
0 in [Lis96]. In this case, the semigroup associated with 7+ V= is L.-contractive
(see Remark 3.3(e)). This leads to considerable simplifications in the proofs.
However, if by # 0 then it is not clear whether there exists a 7,-regular potential
U such that the semigroup associated with 7 4+ U is L..-bounded.

One of the major disadvantages of the assumption W; < ﬁfﬁr + 26;B; (in
comparison with the corresponding assumption in Corollary 3.5) is that it does
not respect the sign of the drift: if the assumption is fulfilled for b; then also for
_b].

(¢) The example of the Ornstein-Uhlenbeck operator £ = —A + Bx -V shows
that the conditions posed on by, by in Corollary 3.5 are much less restrictive than
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the conditions studied in (b). Let Q = RY, a = id, D(r,) = W3 (R"Y). Let
V =0, by = 0, and define b; by by(z) = Bz for some B € RY @ RY. Then

Wy = |b1|? is 7,-regular. Moreover,
1 1
—(01Vu, u) = _§<bl,w2> = §trBHuH§ (0 < ue CHRY)),

so we obtain that the assumptions of Corollary 3.5 hold with V, = V_ = 0,
0y =0y = By =~v=G =0, B = %trB. Hence, 7 is associated with a
consistent family of positive quasi-contractive Cy-semigroups 7, on L,, p > 1,
with |T,(t)] < er"Porallt >0, p> 1.

Now we show that the conditions posed in (b) are not fulfilled with v < 1
(cf. (a)) unless B = 0. Assume that there exist 8; > 0, v € [0,1), By,G € R,
V. = V_ measurable (so that V, —V_ = 0) such that W} < 83(r, + V) + 26, By
and V_ < y(7, + Vi) + G. Then (1 — )V, < 47, + G and hence Wy < ¢(7, + 1)
for some ¢ > 0. If B # 0 then W; = |b;|? increases at infinity, in some direction
x. More precisely, there exists z € RY such that W; > A? on B(\z, 1), for all
A > 1. It is easy so see that this contradicts Wy < ¢(7, + 1).

For further examples, in particular where 7 is associated with a semigroup on
L, only for p from some subinterval of [1,00), see Section 3.4.

In the remainder of the section we make the following assumption (cf. [Sem97;
Def. 3.1]).

(BC) For all 0 < p € WL (i.e., ¢ bounded and Lipschitz continuous) that
satisfy

asVo-Vo <c(Ret, + Wi+ Wy + VT +1) for some ¢ > 0,

u € D(7) implies pu € D(1).

The above assumption is a restriction on the type of boundary conditions.
Below we show that it holds in the case of Neumann and of Dirichlet boundary
conditions. However, (BC) does not hold for periodic type boundary conditions.
In the case a € Lo, (BC) simply reads gu € D(7) forall 0 < ¢ € WL, uw e D(r).
Thus, if a € Ly, then we have the following. Assume that (BC) holds, 7, C 7, is
a Dirichlet form, and that D(7,) is an ideal of D(7,) (u € D(7,), v € D(7,) and

|v| < |u| imply v € D(7,)). Then (BC) holds with 7, in place of 7,.

Proposition 3.7. ([LiVo00; Prop. 9]) Let (a) and (bV) hold. If 7, = T or
T, = Tp (see Propositions 1.28 and 1.30) then assumption (BC) is fulfilled.

Proof. Let W := Wy + Wy + VT 4 1. Recall that D(7) = D(7, + W).
Let first 7, = 7. Let 0 < p € WL with a,Vyp - Ve < c(ReTy + W) for some
¢>0,and 0 < u € D(ry + W). Then, by Euclid’s inequality,

asV(pu) - V(pu) = ¢*a;Vu - Vu + u?a Ve - Vo + 2pua, Ve - Vu

2 2 (3.6)
<2|plZasVu - Vu+ 2u”asVp - Vo € Ly.
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Hence pu € D(7y), and it is clear that pu € Q(W). This proves the assertion
for 7, = Ty since 7y + W fulfils the first Beurling-Deny criterion.
Now let 7, = 7p. Let 0 < ¢ € WL with a,Vy - Vo < c¢(Retp + W) for some
¢ > 0 (this does not imply a;Vy- Ve < ¢(Rery +W)!). Obviously, D(7p) N Leo .
is a dense ideal of D(7p). Thus, by Lemma 1.24(a), D(7p + W) N Lo =: Deoc
is dense in D(7p + W). Let 0 < u € Dy .. Below we show that pu € D(rp).
Then we obtain, by (3.6) and the assumption on ¢,
(mp + W)(pu) < 2l5m(u) +2(a; Ve - Vo, u®) + oo (W)
<2AIgl + ) (7p + W) ().

Since Do . is a lattice and 7p + W is a Dirichlet form, we conclude that ¢ acts
as a bounded multiplication operator from Do, . C D(mp + W) to D(mp + W).
This yields the assertion since Do is dense in D(tp + W).

So, let 0 < w € Dy,.. We have to show gu € D(rp). Let (v,) C CX
such that v, — u in D(7p) as n — oo. Let u, = |vg| A |ul|os (€ W ). Then
SUP,en 7o (Un) < sup,ey Re7p(v,) < oo since 7p is a Dirichlet form. Let ¢ €
C2° such that ¢u = u. Let w, = ppu,. Then @i, w, € W . € D(1p) by
Proposition 1.30. By (3.6) we obtain that

7p(wn) < 2] ePleTp (Un) + 2lunlop(00),

which implies that sup,cy7p(w,) < oo (recall that |u,le < |u]|s). Further,
wy, — pu = pu in Ly as n — oo. Hence pu € D(1p), by the lower semiconti-
nuity of 7p. O

The following is our main result on extrapolation for second order elliptic
differential operators.

Theorem 3.8. Let (a), (bV) and (BC) hold, and N > 3. Let I and T, (p € I)
be defined as in Theorem 3.2. Assume that

(i) @ € Lo, and there exist p € IO, ep > 0, ¢, € R such that the form T,
admits the Sobolev imbedding

p(u) 2 plul’ey —lul; (v € D(r));
(ii) there exist p € ;, C, = 0 such that T}, is analytic, and
(b1 + bo)u?)| < Cpllull, Julz (0 < w e D(r)).
Let p, == supl, p_ = infl, ppax = %m., Pmin = (%pL),. In case
1 €1 let Ijax = [1, Pmax), otherwise Inax := (Pmin, Pmax)- Then T is associated

with an analytic semigroup T,(t) = e~ on L,, for all p € Lya. The angle of
analyticity of T,, and the spectrum o(A,) are independent of p € Iyax.
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Remarks 3.9. (a) Note that, by Proposition 3.1(c) and Stein interpolation, both
assumptions (i) and (ii) of the above theorem are fulfilled for some p € I if and
only if they are fulfilled for allp € I.

(b) Concerning assumption (i), the reader should think of a uniformly elliptic
matrix function a. Then, by Proposition 3.1(b), (i) is fulfilled if either of the
following three conditions holds: D(r,) C W21,07 ) has the cone property, or €2
has the extension property (see [Ada75]).

(c¢) Concerning assumption (ii), note that it is much less restrictive to pose a
condition on |{(by + bz)u?)| than on (|by + ba|u?).

Assumption (ii) is in particular fulfilled if a is uniformly elliptic and

by + b2|2 < K1+ wp

for some K, > 0, @, € R. To see this, first observe that the latter condition is
equivalent to [[(by + bo)ul2 < kp|ull,, for some k, > 0 and all v € D(7,).

In order to show that T}, is analytic, we check condition (3.5) of Theorem 3.2.
For all uw € D(7) we have

(b1 + b2)u, V)| < [(by + ba)ul 2| Vulz < Kpllulz, |Vl

By Proposition 3.1(b) and the uniform ellipticity of a, there exists ¢ > 0 such
that |Vul, < c|uf,, for all u € D(7,). Thus,

(b1 + ba)u, V)| < hyelull, = Rpe(my) + (w, + Dlulf)  (u€ D(r)).

By Theorem 3.2(c) we infer that T, is analytic.
Moreover, for all 0 < u € D(7) we have

(b1 + b2)u)| < (01 + ba)ullalul2 < Kpllul s, fullz,

i.e., assumption (ii) of Theorem 3.8 is fulfilled.

(d) In the cases N = 1,2, it should be possible to prove an analogue of
Theorem 3.8 with Iy = (1,00) or even Iy, = [1,00). Of course assumption (i)
has to be reformulated for N =1, 2.

We conclude the section by a result on L,-spectral independence which is
a generalisation of [LiVo00; Thm. 2]. Recall the notion of L;-regularity from
Section 2.2, (2.11).
Theorem 3.10. Let (a), (bV) and (BC) hold. Let I and T,(t) =e Y (pe 1)

o

be defined as in Theorem 3.2. Assume that there existp € I, r > 1, g, > 0,
¢y € R such that the form 7, admits the Sobolev imbedding

7p(u) = gyluly, — 6lul; (v € D(r)).

(a) Assume that there exists an Li-regular function = (1, ..., 0n): RY —
RN fulfilling the following two inequalities for some p € I, ¢y > 0, ¢; € R, for
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allj=1,...,N:

@V¢j'v¢
(b1 + b2) - Vi, u?)]

CoTp + cl,

<
< comp(u) + erfuls (0 <uwe D()).
Then the spectrum o(A,) is independent of p € I\{1}, and the operators A, have
consistent resolvents. .

(b) If, more restrictively than in (a), there exist ¢ >0, € € (0,2], p € I such
that

(@Vehy - Vb, ) + [((by + b2) - Vaby, u)| < clull?[uls

for all0 <w e D(r), j=1,...,N then o(A,) is independent of p € I, and the
operators A, have consistent resolvents.

Remarks 3.11. (a) Note that the function ¢(x) = z is L;-regular, and Vi); = e;
for all j = 1,..., N, where ¢; are the standard unit vectors of RY. Thus, the
assumptions of Theorem 3.10 are much weaker than the assumptions of Theo-
rem 3.8. In particular, we do not need to assume the matrix function a to be
bounded—if ¢ (z) = x then the first condition in Theorem 3.10(a) is just form
boundedness of a;; with respect to 7, for all j = 1,..., N. The attentive reader
will note that the latter is a self-referential condition on a. It allows a to have
strong local singularities.

(b) The following example reveals the relevance of the notion of L;-regularity:
Let K,, # @ (n € N) be compact subsets of RV such that

supdiam(K,) < oo, inf dist(K,, K,,) > 0.

neN n#m

For n € N fix some x,, € K,,. Define the function vy on | J, oy I by ¥o(z) :=
for all n € N, x € K,,. Then v is Lipschitz continuous.

By Kirszbraun’s theorem (see, e.g., [Fed96; 2.10.43.]), 1o has a Lipschitz
continuous extension v to RY. Without restriction assume that for all j € Z¥
there exists n € N such that dist(j, K,,) < 1 (otherwise add {j} to the collection
of K,). Then it is easy to see that sup,czv [¢(j) — j| < oco. From this we
deduce that v is Li-regular. By the construction, V[, = 0 for all n € N,
j =1,...,N. Thus, by the assumptions on aV,; - Vi); and (b + bs) - Vi); in
Theorem 3.10 we pose no restrictions on the coefficients a, b1, by on |J,,cry K-

3.2 Quasi-contractive Cj-semigroups

In this section we prove Theorem 3.2. We separate the core of the proof into a

lemma. Fix p € (1,00). For u € Ly e, n € N let u,, = (|u|g_1) AN, Upy =
2

2, and vp(u) := ulu| 571, w,(u) := uu/P~? as in Lemma 1.34.

Uy, py, Wy p i= UU
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Lemma 3.12. Let 7 be a densely defined sesquilinear form in Lo fulfilling the
first Beurling-Deny criterion. Let b be a closed symmetric form in Ly, § > —w for
some w € R. Assume that there exists a sequence (Uy)nen, of positive potentials
such that D(Uy) 2 D(7), T+ Uy is sectorial and closed, U, | 0 as n — oo, and

Wy € D(T), vyp € D(B), ReT(u,wnp) = H(vny) — (Unlvn,®) (3.7)

for allu € D(r), n € N.
(a) Then T is associated with a positive Cy-semigroup T,(t) = e~ on L,
with |T,(t)| < et (t>0), and for all u € D(A,) we have

Re(Apu, wy(u)) > b(uy(u). 33)
(b) If, in addition,
Im 7 (w, wyp)| < M(ReT 4+ U, +@)(u, wnyp) (uwe D(1), n€N)

for some M >0, w € R, then A, is m-sectorial of angle arctan M. In particular,
T, is an analytic semigroup.

Proof. (a) Without restriction assume w = 0. Let Ay be the m-sectorial operator
in L, associated with 7+ Uy. In a first step we show that e *4 extrapolates
to a contractive Cy-semigroup Ty, (t) = e o on L,. Then we make use of
Lemma 1.34 to prove the assertions of (a).

(i) By the exponential formula, it suffices to show that, given f € Ly N L, and
0 < A€ p(—A), one has (A + Ag) ™" fll, < 5 fl,- Let u:= (A + Ag)~"f. Then
uw € D(1+Uy) = D(7). This implies that v, , € Q(Up). By assumption (3.7) and
the equality uw,, , = |v,,|* we have, for all n € N,

)\||Un,p||§ + (b 4+ Up — Up)(vnp) < MNu,wypp) + Re(T + Up) (u, w,p)

(3.9)
= Re((A + Ao)u, wnp) < | flplwnplly-

2
Observe that |wnp|p = |u|p 2p |u np = |Un |2' Hence ”wn,pHp’ < ”Un,p”gv
and from (3.9) we obtain, notlng [) +Us—-U,=2h>

2
[onplls < 31f1p (n€N).

Since |vy,p| T |vp(u)| we conclude by monotone convergence that v,(u) € Ly, and

[+ A0) 7 fllp = Tully = lop ()3 < X171

(ii) With the quantities introduced in (i) we proceed as follows. By dominated
convergence, v,, — Up(u) in Ly and w,, — w,(u) in L, as n — oo. Further,
Apu = f — Au € L,. From estimate (3.9) we obtain

liminf (h(vnp) + ((Us — Un)|vnpl?)) < lim Re(Agu, wy ) = Re(Agu, wy(u)).

n—oo
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By monotone convergence, (Uy — U,)|vnpl® T Uplvp(uw)|? in Ly. Hence, the left
hand side of the previous inequality equals lim inf,, o §(v,,) + (Up|v,(u)|?). The
lower semicontinuity of f implies that

vp(u) € D(h), (b + Uo)(vp(u)) < Re(Aou, wpy(u)). (3.10)

So far we have proved inequality (3.10) for all u from the core D := (A4Ag) ™ (LN
L,) of Ay, where A > 0 is some element of p(—A,).

Let now u € D(Ap,). Choose (u™) C D such that u™ — w in D(Ag,).
Then v, (u™) — v,(u) in Ly and w,(u™) — w,(u) in L,. By (3.10) we obtain

lim inf (b + Up) (v, (u™)) < lim Re(Ag,u™, w,(u™)) = Re(Ag pyu, wy(u)),

m—00 m—o0

so the lower semicontinuity of h+ U, implies that (3.10) holds for all u € D(Ay,).

Now we are in a position to apply Lemma 1.34, with § + Uy in place of b,
A=Ay, and V = —U,. By (3.10) we infer that —Uj is T ,-admissible, that
T, = (T ) -v, is a contractive Cp-semigroup, and that (3.8) holds, with —A, the
generator of T,.

(b) Recall that 7 + Uy < e *o». For m € N let A,, := Ay, — Uy A m. Then
7+ (Up—m)T « e . Let u € D(Ag) N D(Ap,). Then, since ut,, , = |v,,|? is
real and Ao ,u = Agu,

Im (A, u, w,,) = Im((Ag — Uy A m)u, wy,,) = Im7(u, w,,) (m,neN). (3.11)

By (3.10) we know that U, |uw,,,| < Up|v,(u)[* € Ly. Thus, (U,u,w,,) — 0 by
dominated convergence. By (3.11) and the assumption of (b) we conclude that

1A, w, ()| = lim [T (s, w, )

< lim M(Ret+ (Ug —m)* + U, + @) (v, wnyp) = M Re((Ap + @)u, wy(u)).

n—oo

This estimate carries over to all u € D(A,,) since D(Ag) N D(Ap,) is a core for
A

Let now u € D(A,). We have A,, — A, in the strong resolvent sense. Thus,
u™ = (1+ A,) Y (1+ Ay))u — win L, and w,(u™) — w,(u) in L, as m — oo.
Since

w™ 4 Amu(m) =u+ Ay,
we also have A,,u™ — A,uin L, as m — oco. Hence,

(At ) = i [l (™, ()

m—00

< lim M Re((An, + @)ul™, w,(u™)) = M Re((A, + &)u, w,(u)),

which shows the m-sectoriality of A,, with angle arctan M. O
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From the proof we easily see: In order to show 7 <> T, on L, with ||7,,(¢)] < e**
it suffices to require 7(u, wyp) + (Unvy ) > —w for all 0 < u € D(7), n € N.

In order to use Lemma 3.12 in the proof of Theorem 3.2, we need to know that
Uy,p and wy, , are multiples of normal contractions of u. This is a consequence of
the following lemma.

Lemma 3.13. Let ¢: [0,00) — R such that ¢(0) =0 and |p(s) — ¢(t)] < |s — 1
for all s,t > 0. Then ¢(z) := ¢(|z|) sgn z defines a normal contraction ¢ on C.

Proof. Let s,t >0, a, 3 € [0,27). Then we have

[B(se®) — Q1) = ()™ — o) = o(5)? + plt)” — 2o(s)p(t) Re ™™
= (p(s) — 9(£)” + 20(s) (1) (1 — Re %)
< (s—1)° +2st(1 — Ree™ ) = |se’™ — tem|2. O
In the application to the functions v, ,, wy,,, the function ¢ is of the type
ot if 2 <7,
re itz >,

Gar(T) =2(2* A7) = {

with o € R, r > 0. Here, 2° := 1 for all z > 0. In the next lemma we compute

the gradient of g, o u for u € Wy,

Lemma 3.14. Let a € R, r > 0, u € Wiloc,
Pa,r 0 U 15 a multiple of a normal contraction of u, uuq, € W117

Ugyr = |u|* Ar. Then utg, =

locs @nd

v(uua,r) = Uq,r (VU +asgnu - X[|u\"‘<r}v|u’) .

Proof. The first assertion follows from Lemma 3.13 and the Lipschitz continuity of
the function ¢, , defined above. In the case o & (0, 1), the function [0, 00) > x
x* A1 is Lipschitz continuous, hence u,, € W}, so the remaining assertions
follow by an application of the product rule and the chain rule (for the latter
see, e.g., [BoMu82; appendix|—the proof given there for u € W2170 works also for
u€ Wi.).

In the case a € (0,1), we approximate |u| by us := |u| + 9 (§ > 0). Note that
(ug Ar)Vu € Ly 0. and

_ o u
uV(ug A1) = auu§ lx[ugq]Vu(; = (ug A1) - au—6X[ug<r]V|u| € L1 o
By the product rule we obtain that
« (03 u
V(uug A7) = (u§ Ar)(Vu+ Oéu—6X[ug<r}V|U|)-

Finally, u(u§ A1) — ut,, and
V (u(ug A1) = ttar (Vi + asgnu - X(uje <, Vul)

in Ly joc as 0 — 0. This implies the assertion. O]
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Proof of Theorem 3.2. Let p € [, ie., 7, > —w,. Let Uy :== W1 + Wy + V.
By Proposition 3.1(a), 7 + Uy is a closed sectorial form.

First we study the case p > 1. Let w € D(7). Then v,,,w,, € D(T) as
multiples of normal contractions of u. At the end of the proof we will show that

ReT(uvwmp) > Tp(vn,p) - %(Xn(Wl + W2)|Un,p|2>a (3.12)

where x,, is the indicator of the set [|u|¥ > n]. Applying Lemma 3.12(a)
with b = 7, and U, = $x,(W1 + W) (n € N), we obtain all the assertions of
Theorem 3.2(a) and (b). i i
Let now assumption (3.5) hold for some p € I. Then it holds for all p € I, by
Proposition 3.1(b). To prove the analyticity of T, we need the inequality

[T 7 (2, whp)| < [T 7o (V)| + 15 = 57 Re 7a(vnp) + I ((b1 + b2)vnp, VUr)l,
(3.13)

which is also shown at the end of the proof. The first term on the right hand
side of (3.13) can be estimated by aRe7,(v,,), due to assumption (a). Thus,
by (3.5) we obtain that

I 7 (u, wnyp)| < (@ + ][5 = 5l) ReTa(vnp) + c17p(vnp) + caf[vny[*.
By Proposition 3.1(b) and estimate (3.12) we have
Re 7,(vnp) < C(1 4+ @1)(vnyp) < C(ReT + Uy + @1)(u, Wy p)
for some w; € R, C' > 0 depending on p. We conclude that

Im 7 (u, wy)| < [C(a+ |% - I%D + 1) (ReT 4+ Uy + @2) (u, wy p)
for some Wy € R, so Lemma 3.12(b) implies that A, is an m-sectorial operator.
The proof for the case p = 1 is based on the assertions of the theorem in the
case p > 1, applied to the form 7 := 7 4 Uy, with Uy as above. Recall that 7 is a
closed sectorial form in Ls. Let Ty be the associated analytic semigroup on L.
Let 1 <p < oo and 7, := 7, + Up. For all 0 <wu € D(7) = D(7) we have
Folu) = S7,(u) — Z%(bgu, Vu) + %(2(Vu, biu) + (Vu?)) + <(I%V + Up)u?).

T pp

We apply Euclid’s inequality to the second term, and the estimate
m1(u) = 2(Vu, biu) + (Vu®) = —wi|ul;
to the third term on the right hand side, to obtain

p(u) = oy7alu) = 5 (57a(w) + 5(Wau)) — 2ullf + (Vo — 5V 7)u?)

I P

= 5 (5 = Dra(u) — 2 ul + (Vo — 5 (V™ + Wa))u?).

p
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For 1 < p < 4, Theorem 3.2(a) and (b) applied to 7 imply: Tj extrapolates to a
Co-semigroup Ty, on L, and for the generator —A,, of T, we have

(Agpu, uP™1) > (Uy — ]%(V_ + Wa))uP) — <Hulp (0<wueD(Ayy). (3.14)

In particular, |70, (t)]p,—p < ePlforallt >0, 1<p<4 (recall Uy = Wy + Wy +
V7). Since Ty is a positive Cy-semigroup, [Voi92] implies that Ty extrapolates to
a Cyp-semigroup Ty on L.

Let now U, ,, := (UO — %(V‘ + Wg)) An for n,m € N. It follows from (3.14)
that

[(Top) s (B)lp—p < €7 (t > 0)

ie, & < L) Since (Tyyp)-v,.,. and

g (1

(To,1)-u,.,. are consistent by Lemma 1. 1 ( ), we obtaln 1(To,1) -t ()11 < €
forallt > 0, n € N, m > 2. Since U,,, T Uy An as m — oo, we have
(To,1)-vnm — (To,1)-voan for all n € N, by [Voi86; Prop. A.2]. Hence

foralln e N, m > 2and 1 < p <

w1t

S [(To.1) vna ()11 < e (> 0).
ne

Finally, [Voi88; Prop. 2.2] implies that —Uj is Tj ;-admissible, and we obtain
7 (To1)-v, =: Th, with |T1(¢)|1—1 < €' for all ¢ > 0.

To complete the proof it remains to show inequalities (3.12) and (3.13). Let
X5 = 1 — xn, Le., the indicator of the set Hu\% < n]. We write u, = Upp,
Un =V p (= u(|u|"= An)) and w, = w, , (= u(|u|"~2An?)) for short. Lemma 3.14
implies that

Vu, = un(Vu + p2 X sgan|u|) = sgnu(un senuVu + %X%UHVWD.
Let ¢, := u, Re(sgnuVu) = u, V]u| and ¢, := u, Im(sgnuVu). Then we have
sgn UV, = (@n + ithn) + 52X500n = (BXS + Xn)Pn + ithn.
In the same way, with p, := (p — 1)x¢ + X, we have
vV, =u? (Vﬂ +(p—2)x;, sgnﬂV|u|) = Uy, SENTU(Prn — 1y).
Now we compute the different terms occurring in 7(u, w,) and 7,(v,) separately.

aVu -V, = a(u, sgnuVu) - (pppn — ihn) = al(@n + 10n) (Pnpn — i), (3.15)
aVu, - VU, = a(sgnuVu,) - (sgnuVv,) (3.16)
= (BXE 4 Xn)@sfn - P + A5ty - Yo + i@ — ag)n - (DX + 2Xn)Pne

Therefore Re aVu-Vw, = ((p—1)X&4Xn) @5 @ntasthn-1y. Noting pip/% —p-1
we obtain

Re Ta(uawn) = pip/ Re Ta<vn) + (1 - %)<Xnas‘;0n " Pn + aswn : wn>
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For the first order terms we compute

U, VU, = |y ((ngz + Xn)n + “/Jn)v
W, Vu = v |un sgnaVu = |v,|(@n + i),), (3.17)

Thus, Re?, Vv, = Rev, V1, = (5x7, + Xn)|vn|@n. We obtain that
Re®@,Vu = (X;, + Xn)|vnlon = 2 Re(0, V) + (1 = 2)Xn|vnln

and, since 58 =p—1,

ReuVw, = ((p— 1)x;, + xn) [valn = 5 Re(vaVT,) + (1 = Z)Xn|va@n-

Let now ¢, := =—(1—2). Then &) =1 — . We get

/

Re 7(u, w,) = Re 1,(u, w,) + Re(Vu, bjw,) — Re(bou, Vw,) + (Vu,w,)
= Tp(vn) + 5§<Xnas(pn " Pn + aswn : Zﬂn> + €p<Xn(b1 + bQ)‘“n‘ ! @n)

This implies (3.12) since e,Xn| (b1 +b2) V- 00| < E2Xnsn On+5Xn (W1 +Wa) |vp|?,
by Euclid’s inequality.
To prove (3.13), we first compute Im 7,(u, w,). By (3.15),

Im(aVu - Vw,) = ((p — 1)X;, + Xn)a®n - 00 — apy - Py
= (p - 2)X;as¢n * Pn + (pr;, + 2Xn)(a - as)¢n * Pn-

The second term on the right hand side equals Im(aVwv, - V©,,), by (3.16). The
first term we estimate, using Euclid’s inequality and (3.16), as follows:
|(p - Q)szaswn . Qpn| < |p - 2|X%(§a590n “Pn + ]loafs"vbn : ¢n)
= |1 - %|X%(§as§0n *Pn + aswn ' 1/%) < 1 Z%| Re(avvn : Vﬂn)

p

For the first order terms we have, by (3.17),
Im((Vu, blwn> - <b2U, vwn)) = <(b1 + b?)yvnlv 7vZJn> - = Im<(bl + b2)vn> VUn)

Thus, inequality (3.13) follows. O

3.3 Weighted estimates for second order elliptic
differential operators
In this section we prove Theorems 3.8 and 3.10. In order to apply the abstract

results of Section 2.1, we need to show appropriate weighted estimates for the
semigroups 7, constructed in Theorem 3.2. Recall that the semigroups 7, are
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associated with the form 7 which is defined in (3.1). We will establish estimates
on the ‘twisted semigroups’ pT,,p~", where p is a weight function, by studying the
‘twisted form’ 7, which is formally defined by 7,(u,v) = 7(p~'u, pv). We point
out that it is a nontrivial technical problem to establish relationship between 7,
and pT,p~! (see, e.g., [Sem97; Prop. 3.4]). A comprehensive solution is given in
Theorem 3.15 below.

Throughout this section we assume that (a) and (bV) are fulfilled. Let 7,
7, T, (1 < p < 00) be the forms defined in Section 3.1. Recall that

I={pel,o0);w,=inf{weR; 7, > —w} < oco}.

Let p: 2 — (0,00) be locally Lipschitz continuous, ®, := p'Vp = Vinp,
p € I. Assume that

as®, ®,=p*a;Vp-Vp <01, +¢, (3.18)
for some 6 > 0, ¢, € R. Then we can define a form 7, by
7o(u,v) == 7(u,v) + (Vu,a' ®,0) — (a®,u,Vv) — ([as®, P, + (b + bs)-P,|u, v)

on D(7,) := D(7), due to the following observations. Firstly, by Euclid’s inequal-
ity, [bj - @, < ;as®, - ®, + W, for j = 1,2. Secondly, by (a) and by (1.7) from
Lemma 1.29,

(a®,) a; ' (a®,) = ®,'a’a;'a®, < (1 + a?)asd, - ©,, (3.19)

and in the same way (a'®,)'a;'(a'®,) < (14 a?)as®, - ®,. In particular, the
form 7, is of the same type as the form 7, with new lower order coefficients

Elzbl—l—(l—r@p, 52:b2+a@p, V:V—aSCI>p-CI>p—(b1+b2)-<I>p

satisfying assumption (bV).
By a straightforward computation we obtain, using the product rule,

Tp(u,v) = 7(p~'u, pv)  (u,v € D(7,) such that p~'u, pv € D(7)).

Theorem 3.15. Assume that (a) and (bV) hold. Let p € I, ce (0,1). Then
there exist 0 > 0, k > 1, @ € R such that, for all locally Lipschitz continuous
weights p: Q — (0, 00) satisfying

as®, - O, <07, + ¢y,
<

£
((by + by) - ®,,u%) < §Tp(u) +cpluls (0 <ue D(r))
for some c, € R, the following assertions hold:
(a) The form 1, is associated with a positive Cy-semigroup T,,(t) = e
on Ly, and

_tAPaP

(Appu, uluP~?) = (1= &) (Jul® sgnu) — (@ + key)[ullh - (u € D(A,,)).
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(b) If p A n is a multiplication operator on D(T) for all n € N then

TP»P@)JC = pr@)pilf (f € LOO,Ca > O),

where T}, is the positive Cy-semigroup on L, associated with T.

Remark 3.16. If p(z) = pe(z) = € for some £ € RY then ®,, = & Thus,
if a € Lo then (3.18) is fulfilled with 6 = 0, ¢, = [as€ - Elloo < Jlas]oolé]?. If
condition (ii) of Theorem 3.8 holds then by Proposition 3.1(c) we obtain: for
all p € I there exists C, = 0 such that |((by + bo)u®)| < Cplul-, Julz for all
0 < u € D(7). Therefore,

[{(b1+b2) - €, uP)| < !5\ (b1 + b2)u?)| <l - Cylé]lul

1 1
< 30l + CRIEP Il = () + (3 + 1) + CREP) Bl

Let n € N, ¢, := p¢ An. Then ¢, € WL and a;Vep, - Vi, < |as]e| Vel <
oo. Thus, if (BC) holds then ¢, is a multiplication operator on D(7), and by
Theorem 3.15 we obtain the following.

Let p € I. Then there exist v, > 0, @, € R such that for all ¢ € RV, the form

Ty 18 associated with a positive Cy-semigroup T¢ , on L, satisfying

w vp|€)? T
| Tep(6)] < e w00 T (1) = T, (1)e ™ on Lag,e (2 0).

Proof of Theorem 3.15. (a) In order to apply Theorem 3.2 we need to intro-
duce the symmetric form 7,, defined by

Top(tt) = Re7y(u) + 2(V]ul, bulul) — 2 {(balul, V]ul) + (V]ul*)
= 7,(u) + <(129 — 2%a)<1>p|u|, V|u|> - <[as® - @, + (by + by) - }|u| >
on D(7,,) := D(7,). By Euclid’s inequality we obtain, using (3.19),
Top() = 7p(u) = Ma? + Da(ful) = ([(1+ 3)as®, - @y + (b + b) - @] |uf?)

for all A > 0, w € D(1). By Proposition 3.1(b) we can choose A > 0, @ € R such
that

Ma? +1)Re7, < ZTP +@.
Using the assumption on (b + by) - ®,, we thus obtain
Top = (1= =5 —0—c,— (14 §)as®, - D,

Now choose § = £(14 §)' and k = 2+ ;. Then 7,;, > (1 — )7, — (@ + kc,)

(2 —(1—-e)w, — @ — k:cp) by the assumption on a,®, - ®,. An application of
Theorem 3.2 completes the proof of (a).
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(b) Let U, := (a® +1)as®, - ®,+ Wi+ Wa+ |V|. Then U := 5U,, is 7,-regular
by (bV), the assumption on a;®,-®,, and Lemma 1.24(b). Making use of (3.19),
(3.2) and Euclid’s inequality, we obtain that

1
Ret, > 2 Rer, — 4U, (3.20)

and that 7 + U, 7, + U are densely defined closed sectorial forms, with domains
D(r, + U,). For m € Nlet U, := (U—m)", and A,,, A,,, the m-sectorial
operators associated with 7+ U,,, 7,4+ U,,, respectively. Due to Corollary 3.4(b),
part (b) will follow by passing to the limit in

e them f = peAmpTl [ (f € Loge, t = 0).
The latter formula in turn is equivalent to
A+ A,)  f=pA+A) " f (meN, A>m, € Lu,). (3.21)
Let m, A, f be given. First we show that (3.21) holds if p satisfies the condi-
tion
p€Q:=D(r,+U,) forallveD:= A+ Ap) Loy (3.22)
Then u := p(A+ A,,) " 'p~'f € Q since p~ ' f € Ly .. Moreover, p~'u € D(A,,) C
Q. For all v € D we have pv € ) and hence
(7o + Un)(u,0) = (7 + Un) (0™ ", pv) = (Apup™ i, pv).

Observe that D is dense in D(A,,) and hence dense in @ = D(7, + U,,). Thus
we obtain that u € D(A,,,) and A, ,u = pA,p~tu. Therefore (A + A, )u = f,
i.e., (3.21) holds.

It remains to show that the assumption of (b) implies (3.22). Let g € Lo,
vi=(A+A,)"g(€Q), pn:=pAn (n €N). Then p,v € Q for all n € N, by the
assumption on p. In particular, p, satisfies condition (3.22). Thus, (3.21) holds
with p, in place of p, and we obtain

A+ Appm) " (p9) = pu(X+ A) " 1 (pg) = puv

for n € N so large that p, !pg = g. Moreover, by (3.20) we can estimate
1 1
Ret,, + U, = ZReTa —4U,, +Up = ZReTa +U,—m (2 —m).

This implies (A + A,, ) ! < 55 and (since A > m)

(i Re7, + Up)(pnv) < Re(Tpn + Un + )‘) (pnv) = Re(pg, pnv> < ||pg||§

A—m
Therefore, (p,v) is a bounded sequence in (). Moreover, (|p,v|) is pointwise in-
creasing, and p,v — pv a.e. as n — oo. Hence pv € Ly by monotone convergence,
and p,v — pv in Ly by dominated convergence. We conclude that pv € @), i.e.,
p satisfies (3.22). O
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The proof of Theorem 3.8 is based on Theorem 3.15 and the following conse-
quence of Corollaries 2.2 and 2.5.

Proposition 3.17. Let 1 < p < oo, T a Cy-semigroup on L,. Assume that
there exist q >p, C >1, we R, v >0, m > 1 such that

ST ()40, < et e,
IT(2) 0 <

for allt >0, £ € RN. Then T extrapolates to a family of consistent Cy-semi-
groups T,(t) = e on L,, v € [p,q), and the angle of analyticity of T, and the
spectrum o(A,.) do not depend on r € [p,q).

If, in addition, T is Li-contractive then the same holds with [1,q) in place of

[p,q)-

Proof. Without restriction w = 0. Let # € (0,1) and define gy by % = % +

8 Then (1 —6)(2 1) =1_- L By Stein interpolation we obtain from the
p ) P g P 4
assumptions that

1_1 m
Heeng(t)eigéprﬂqg < Ct m(r@)ewlé\ t (t >0, £ RN).

Let d be the supremum metric on RY, p, , := e for all v € R, y € R,
and | - |p—q,- the corresponding weighted operator norm. Replace £ by % in the
above estimate. Then Proposition 2.8, applied with ¢ (z) = x, yields

N(l_L) Pl—mpyymi
T |p—goy < 2NCt ™7 w07e (t,y>0).

Now we are in a position to apply Corollaries 2.2 and 2.5, and we obtain the first
set of assertions.
The last assertion follows from the estimate

_ N _ 1 m
IT() 1 gpry < Ot~ 3™ (1,4 > 0),

for some C',v; > 0, which in turn is a consequence of the next proposition. [J

Proposition 3.18. Let T be a contractive Cy-semigroup on Ly and p:  —
(0,00) a weight function. Assume that

—a(io1ly ,am
[T (@) pq < Ot (2,7 > 0)

for some 1 < p < q, Ca,v > 0, m > 1. Then there exist C1,v; > 0 (not
depending on T, p) such that

[07T(£)p "1 < Crt~ 07D e™ (1, > 0).
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Proof. For 0 < 6 < 1 let py := (g + %)_1, Qo = (g + 1;19)_1. By Stein
interpolation, the assumptions imply that

[T ()™ gy < COP2GTD™ (2,5 > 0). (3.23)

Let ¢, > 0, determine 6 € (0,1) such that go = p, and let ), := 0%, t;, = Ot
(k € Ng) and 8 := a(z—l) — %) Then py, = qo,., (k € Ny), and (3.23) yields
T R o G R

for all £ € Nyg. We use this as a starting point for a Moser type iteration: let
f € L. Since g = qg, we obtain by Fatou’s lemma that

AT )
k=0

17T (=)ol < lmmint

9,

< lim inf [T (CO07mM0n=00Bel™0) | £,

n—oo nt1’
k=0
Let 1= 1" 0 = 5 and s := Y7 k(= ﬁ). By the choice of 6 we have
Y reo Ok = ﬁ(qie - %) =a(l — %) We conclude that

—a(1=L) pyym
|7 T (=m)p ™ fllg < CTO7mPte 0™ | £],.

This yields the assertion with C; = C"6~™5%(1 — Hm)*o‘u*%) and 1, = (1 —
0™ )rv. 0

Proof of Theorem 3.8. Recall that assumptions (i) and (ii) of the theorem are

fulfilled for all p € 1 (see Remark 3.9(a)). Let p € [ = (p_,py), Ty(t) = et
the positive Cy-semigroup on L, associated with the form 7. We are going to
apply Proposition 3.17 with ¢ = %p and m = 2. By Remark 3.16 we have

[ T (D)e ™ [y < T F (1> 0, € € RY),

i.e., the first estimate assumed in Proposition 3.17 holds.

In order to show the second estimate, let 0 < f € L,, t > 0, u := T,(t)f.
Then u € D(A,) since T, is analytic, and v > 0. By Theorem 3.2(b) and
assumption (i) of the theorem we have

(g, w ™) 2 7(u8) 2 pluf o, — cplub B

Without restriction assume ¢, = 0. Then 7}, is contractive. Since (p —1)p’ =p
we obtain, using Holder’s inequality and the analyticity of 7,

(A, u? ™) < AT flpl (T () £ i < gllf I () £ < %Ilf I
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for some ¢ > 0 (not depending on t, f). Combining the above two estimates, we
arrive at

AT (01, < SII,

so that, by the positivity of T},
1Ty )], , < Ctr = Ct 20D (1> 0), (3.24)

By Proposition 3.17 we conclude that T}, extrapolates to an analytic semigroup
T,(t) = e on L,, for all r € [p, %p), and that the angle of analyticity of
T, and the spectrum o(A,) are r-independent. In case 1 € I, the same holds
with [1, %p) in place of [p, %p) Moreover, the semigroups T, are associated
with 7, by Proposition 1.22(a). Thus, in case 1 € I the proof is complete while
otherwise we obtain the assertions of the theorem only with (p_, pmax) in place
of (pminypmax)-

To complete the proof in the case 1 € I, we apply the above to the form 7% in
place of 7. The form 7" is of the same type as the form 7, with coefficients a = a’,
by = —by, by = —by, V = V. It is easy to see that (7*), = 7, for all p € (1,00).
Therefore, 7* is associated with an analytic semigroup Tr(t) = e t4 on L,, for
all r € (., Plyin)> and the angle of analyticity of T. and the spectrum O'(Ar) are
r-independent. By Proposition 1.22(b) we conclude that 7 is associated with the
positive Cp-semigroup T (t) = e on L,, for all r € (pmin, p+). It now remains

to note the following: T;“, is analytic of angle § € (0, 7] if and only if T, is analytic

of angle 6, and o(A*) = o(Ay) (= 0(A,) since T, is a real semigroup). O

In the proof of Theorem 3.10, it will be a bit more difficult to prove p—g¢-
smoothing for the semigroup since the assumptions do not ensure analyticity. In
fact, it is easier to show p—g-smoothing for the resolvent and use Theorem 2.26
instead of Theorem 2.4 to obtain L,-spectral independence. We will use the latter
approach for the case p > 1. As above, the case p = 1 requires additional expense.
In order to show a weighted 1—g-estimate, we are going to use Proposition 3.18.
For this reason we need to show p—¢-smoothing for the semigroup. Alternatively,
we could prove an analogue of Proposition 3.18 for resolvents, cf. [Sem97; proof
of Prop. 4.2].

Both p—¢g-smoothing for the semigroup and for the resolvent are consequences
of an improved accretivity estimate. We present this well-known technique in a
separate lemma. As a preparation we need the following fact.

Lemma 3.19. Let (2, 1) be a measure space, p € (1,00), @ # J C R an
interval. Let u: J — Ly(p) be differentiable, u(t) > 0 for all t € J. Then the
function uP: J — Ly(p) is differentiable, with

(uP) = puP~t.



80 CHAPTER 3. ELLIPTIC DIFFERENTIAL OPERATORS

Proof. We first show that for x,y > 0 we have

<2l =y —py e —y)<|z -yl (1<p<2),
<aP -y —py Nz —y) <splp—D(@Vy)PPlz—y (p=2).

For the proof let f: [0,00) — [0,00), f(z) := aP. Then f is convex, and z +—
y? + pyP~!(x — y) is the tangent to f in (y,y?), for all y > 0. This shows the
left hand sides of the inequalities. For the proof of the right hand side for p > 2,
just apply Taylor’s theorem with Lagrangian remainder to f. It remains to show
that g,(z) == a? —y? —py?'(z —y) — [z —y[P < 0in case 1 < p < 2, for all
x,y = 0. We have g,(y) = 0, and %g;(x) =P ! — P~ — |z — yP~tsgn(x — y).
The subadditivity of the function z — 2P~! shows that g,(z) = 0 for z <y and
g,(x) <0 for z > y. This completes the proof of (3.25).
Let now s,t € J, s # t, and assume that p < 2. Applying (3.25) to = = u(s)
and y = u(t) we obtain, after division by |s — |,
u(s)” —u(t)” (typ-1 u(s) — u(t)

U
s—t p s—t

(3.25)

p

u(s) — ult)

< s —tPt
‘\|S | s—1

Letting s — t yields the assertion for 1 < p < 2. The case p > 2 is proved
similarly (use the fact that [[v*~>w?|y < |Jv[2~*|w]? for all v, w € Ly(u)). O

If we allow u to be complex-valued in the above lemma then we obtain
(|u\p)/ = plulP~' Re(u'sgnw). This follows from |ul'(t) = Re(w/'(¢)sgnu(t)) +
[u' ()| X[ut)=0) (cf. [Nag86; Prop. B-11.2.3, Example C-11.2.3]) and the chain rule.

Lemma 3.20. Let (2, 1) be a measure space, p € (1,00). Let T(t) = e be a
positive Cy-semigroup on L,(u) satisfying

(Au,v~") > eful?, (0 <ue D(A))

for somer >1, ¢ > 0.
(a) Then A is m-accretive, and |(A+ A) ™y —mp < £ for all X > 0.
(b) Assume that |T'(t)|rp—rp < C (t = 0) for some C > L. Then |T(t)]p—rp <

C(Ept)ﬁ for all t > 0.
Proof. (a) The semigroup T is contractive since it is positive and (Awu, uP~1) >
f

for all 0 < w € D(A). Thus, A is m-accretive. Let now A > 0, 0 <
L,(pn)N L(Tp/)/(,u), and v := (A + A)~'f. Then u > 0 and hence

0
c
(fou™h) = (A + A, ™) > efull,

We estimate the left hand side, using Holder’s inequality and noting (p—1)p’ = p,
L™y < I Ny 1™ oy = 1yl

Combining the above two estimates, we obtain el|u|,, < | f|py. By the positiv-
ity of 7', this proves (a).
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(b) Let 0 < f € D(A), and u, :=T(t)f for all t > 0. Then —<Lu, = Au, for
all s > 0 and hence, by Lemma 3.19,

d d _
sl = = () = plAug, w2 ) > eplu,

By the assumption of (b), |ut],p < Clusly, for all 0 < s < ¢, so we obtain

t t
d
eptlue?, < / epCPlus|?, ds < O”/ (—EHUSHQ ds < CP|fI; (£>0),
0 0

noting ug = f and |ugp > 0. Thus, |T(t)f]., < C(apt)_%Hpr for all ¢ > 0,
0 < f € D(A). The set of those f is dense in {f € L,(n); f > 0}, so the proof
is complete by the positivity of T O

If we do not assume the semigroup 71" to be positive then the assertions of the
above lemma still hold if we replace the assumption by

Re(Au, ulu[P~?) > eful?, (ue D(A)).

We will apply Theorem 2.26 in the proof of Theorem 3.10 via the following
result.

Proposition 3.21. ([LiVo00; Thm. 1]) Given 1 < p < q¢ < oo, let A,, A, be
closed operators in L,, L,, respectively. Assume that there exist py < p, qo = q,
v >0, C <oo, A € p(A,) Np(A,), and an L*-regular function : RY — RY
such that (Ao — A,)~t, (Mo — A,) ™" are consistent and

||6£¢()\0 - Ap)_le_gw”’po—wo <C forall§ € RN7 |€| <7

Then o(A,) = o(4,), and (A — A,)~', (A — A,)~" are consistent for all \ €
p(A4p) = p(Ay).

Proof. Let p be the Lebesgue measure on RY and d the semi-metric on RY defined
by d(z,y) = [(x) — (y)|so. For z € RN =: M, r > 0 let v,(x) := u(B(x,r)).
By the paragraph preceding Lemma 2.9 we know the following. Conditions (2.7)

and (2.8) are fulfilled, and there exists C; > 0 such that, with the weighted
operator norm corresponding to the semi-metric d, we have

HU?(/\O - Ap)_lupo—n]oﬂ <G (0 <a< 1).

By Remark 2.28 we conclude that

1_1

||U1;75(/\0 - Ap)_lnpﬂq,% < KL Ch.

Now Theorem 2.26 implies that (Ag — A,)7%, (Ao — A,)! have equal spectra
and consistent resolvents. The spectral mapping theorem for the resolvent yields
o(A,) = 0(A,), and the consistency of the resolvents follows from the identity (A—

A= (Mo=N) " o= A) " (Ao—A) "= (No—A)"1) " (ct. Proposition 2.33). O
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Proof of Theorem 3.10. Recall from Proposition 3.1(c) that the first assump-
tion of the theorem implies that for all p € I there exist €, > 0, ¢, € R such
that

7p(u) = epllulz. — pluly (v € D(7)). (3.26)

(a) For £ € RY let pe := €, and 7y the corresponding form defined in the
beginning of the section. Then ®,, = VInp; = V(£¢). By Euclid’s inequality it
follows that

N N
0By - By = Y E&a V- Vb <€) a Vi - Vi, (3.27)
j=1

k=1
with a constant ¢ > 1 depending only on the dimension N. Similarly,

N

(b1 + b2) - (I)p5>u2>‘ < €] Z [((by + b2) - Vi, u*)| (0 <we D(r)).

Jj=1

Let p € f, T, the Cy-semigroup associated with 7. Let ¢ = % and choose ¢, k, @
as in Theorem 3.15. By Proposition 3.1(c) and the assumptions of (a), the above

two estimates imply

d, < €7 (copr + p) (3.28)
u?) < €] (copmp(u) + crplul3) (0 <ue D(r)),

for some g, c1, > 0 and all £ € RY. Thus the assumptions of Theorem 3.15 are
fulfilled for p = pg, with ¢, = 1, if || is sufficiently small.

We conclude that there exists v > 0 such that, for all [§] < 7, the form 7, is
associated with a positive Cy-semigroup T¢ ,(t) = e ~ter on L, and

((by + b2) per U

(Agpu,uP™") > §T_p(u%) — @+ k)uly (0<ue D(Ag,)).

By (3.26) we obtain that there exists C), € R such that
— 1 P D €
(Agpu,u”™) = Seplluz [, — Coplluz I3 = Zully, — Collulp (0 < w e D(Ae,)).

Let n € N, ¢, = eY A n. Then ©On € Wolo, Vo, = @€¢X[ew<n}v(§¢) _
OnX[pn<n)Pp.- Hence, by (3.28),

asVn - Vo, < nZGSq)pg ’ CI)pE < Cg(Re Ta + Wi+ Wy + vVt + 1)

for some ¢, > 0. Since (BC) holds, ¢, is a multiplication operator on D(7) for
all n € N, so Theorem 3.15(b) yields T ,(t)f = e*VT,(t)e ¢V f for all f € Ly,
t>0. Thus, A+ Aep) ' f =N+ Ay te ¥ f for all f € Lo, A>C,.
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Now, since ((Cp + Aep)u, uP~) > Z[ul?, ( u € D(A¢,)), Lemma 3.20(a)
implies that [e(A + A,)7'e oy < Z for all A > Cp, [§] < 7. By
Proposition 3.21 we infer that o(A,) is independent of g € [(rp),rp] N I, for all
pE I , and that the operators A, have consistent resolvents. This proves (a).

(b) Assume that 1 € I; otherwise there is nothing to show. Let p € I such
that p < 7 and p? € I. In a first step, we use Theorem 3.15 to obtain a weighted
p—p-estimate for the semigroup 7,. Then we use Proposition 3.18 to derive a

weighted 1—g-estimate, for some ¢ € (1, p).
(i) For all 6 > 0, u € D(7) we have

lull2, <lulls = 16ul2,#16" 2 uls < [dul?, + 6= ul3.
We deduce that, for all § > 0, u € D(7), £ € RY,

€l ul2 < luls < €17 (6) ul?, + 1€P (\Q)Q"IIUHQ = Slull?, + 8¢ 1€

Let ¢ = 5 and choose 6, k, @ as in Theorem 3.15. By (3.27) and the assump-
tion of (b), the above implies that

< Jul?.

N
0@y, - By < €Y a V- Vi <01+ C(L+[E]7) (€ € RY),
j=1

for some C' > 1. In the same way,
1 2 1 4
[{(br +b2) - D, u?)| < 77 (w) + CAF €] [ulz < J7(w) + C(2+ [€]7) [ulz

for all u € D(7), € € RN. Thus, for all ¢ € RY the assumptions of Theorem 3.15

are fulfilled for p = pg, with ¢, = C( 2). Since assumption (BC) holds we
can apply Theorem 3.15, as in the proof of (a), to conclude that

- 4
9T, (£)e €y < eFHCCHED) (5 0 ¢ e RY).

(i) Recall that p < 7. Thus, |ul3, > |ul3, — |u[3 for all w € Ly N L,. By
Theorem 3.2(b) and (3.26) we obtain that

(Apu, u ™) = T(u?) > ep(uzlz, — Juz)3) — cplutly (0 <ue D(4)).

Let w := (¢, +&,) Vwpz. Then ((w+ A,)u, uP™t) > epllul for all 0 < u € D(4,).
Moreover, e“*T2(t) is a contractive semigroup, so by Lemma 3.20(b) we infer
that

3=

_1 _p/(1_ 1
1T ()l < (e5pt) 7€ = (eppt) 777 et (> 0).

Let now ¢ € (1,p). Then Stein interpolation between the above p— p*-esti-
mate and the weighted p—p-estimate obtained in step (i) yields

||€§pr(t)e_£w||p_>pq Cit™ G Pq)eyl(l—i_lf‘ )t (t>0, &€ RN)
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for some C4,v; > 0. Finally, we apply Proposition 3.18, and once again Stein
interpolation, to obtain

, 4
1€S8T, (1)e 8% |1g < Cot 70— e20HE (1 5 0, ¢ € RY)

for some Cy, 15 > 0. Note that the t-exponent is greater that —1 since ¢ < p.
From this we deduce that the assumptions of Proposition 3.21 are fulfilled, with
po =p = 1and ¢ = ¢. Thus, A; and A, have equal spectra and consistent
resolvents. O

3.4 Sharpness of the results

In this section we show that, under some conditions additional to (a) and (bV),
the interval I of quasi-contractivity obtained in Theorem 3.2 cannot be enlarged
(up to possibly adding p = 1). Expressed differently, if 7 is associated with a
quasi-contractive Cp-semigroup on L,, for some p € (1,00), then 7, is bounded
below.

Later on, we give an example of coefficients by, by, V' where the interval of
existence of the semigroup obtained in Theorem 3.8 cannot be further extended.
In this sense, the interval extension given in Theorem 3.8 is optimal. The contents
of this section are partly due to Z. Sobol.

The following theorem is the main part of our sharpness result. It is valid
under an assumption slightly weaker than (bV), namely

(bV?) the potentials Wy, Wy, |V are 7,-regular.

Under this assumption, the forms 7 and 7, can be defined in the same way as in
Section 3.1, on D(7) = D(7,) = D(7, + Wi + Wo + |V]).

Theorem 3.22. Let (a) and (bV’) hold, and p € (1,00). Assume that 7 < T,
on Ly, with |T,(t)| < e*r' (t = 0) for some w, € R. In the case p > 2 (p < 2)
additionally assume that sup,sg [|(T)v(t)]lso—oe < 00 (SUPssg [(Tp)v(t)[1-1 < 00)
for some 1,-regular potential U > 0. Then 7, = —w,.

The additional assumption in the case p > 2 is in particular fulfilled in the
following situation. Suppose that (Vu,byu) < wlul? for all 0 < u € D(1) (e.g.
by =0). Let U :=V~ 4+ w. Then 7+ U < (1,)y by Corollary 3.4(a). Note that
(Too + U)(u) = 0 for all 0 < w € D(7). Thus, |(1,)v(t)]ecmee < 1 for all ¢ > 0,
by Remark 3.3(e).

The proof of Theorem 3.22 is based on the following lemma.

Lemma 3.23. Let (M,pu) be a measure space, b a Dirichlet form in Lo(p),
D(h)y the set of positive elements of D(h), and r > 1.

(a) Then Dy := {u € D(h); N Los(p); u"/" € D(h)} is dense in D(h)..

(b) Let by be a densely defined closed sectorial form in Lo(p) fulfilling the first
Beurling-Deny criterion, A the m-sectorial operator associated with b;. Assume
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that D(h1) = D(h), and |e oo < C (0 < t < 1) for some C > 0. Then
Dy :={u"; 0 < u € D(A) N Loo(p), Au € Loo(p) } is dense in D(h).

Proof. (a) For n € N define ¢,: [0,00) — [0,n] by @,(s) := s A (ns") An. It is
easy to show that ¢, is Lipschitz continuous with constant r, 90,11/ " is Lipschitz
continuous, and ¢, (s) — s as n — oo (s > 0). For u € D(h); we conclude that
¢n(u) € Dy, and from [Anc76; Prop. 11] we deduce that ¢,(u) — uw in D(h) as
n — oo.

(b) By (a), it remains to show that Ds is dense in D; with respect to |- |5. Let
u € Dy and v := u'/". Then v € D(h) N Loo(i). By [MaR692; Thm. 1.2.13(ii)]
we have vy := A(A + A)~'v — v in D(h;) and thus in D(h) as A — oo. The
assumptions on h; and A imply that 0 < vy € D(A) N Ly and [[vy] e < 20|00
for sufficiently large A. Moreover, we have Avy = A(v — v)) € Ly. Therefore,
v} € Do. Note that the function s +— s in Lipschitz continuous on [0, 2C|v] ]
Hence, by [Anc76; Théoreme 10], v} — v" = w in D(h) as A — oc. O

We further need the following trivial but nevertheless important fact. Let F,
F be Banach spaces, and assume that there exists a vector space GG such that
EF— G, F—G.

Lemma 3.24. Let Ag, Ar be closed operators in E, F, respectively. Assume that
there exists X € p(Ag) N p(Ar) such that (A — Ag)™', (\— Ar)~! are consistent.
Let u € D(Ag) N F such that Agu € F. Then u € D(Ar), Aru = Agu.

Proof. We have (A — Ag)u € EN F. Hence
This implies u € D(Ar), (A — Ap)u = (A — Ag)u. O

Proof of Theorem 3.22. It suffices to study the case p > 2. Then the assertion
for the case p < 2 follows by an application of Proposition 1.22(b) (recall from
the proof of Theorem 3.8 that 7, = (7*),/). In the case p > 2 assume without
restriction that U > Uy := Wi +W,+42|V| (see Lemma 1.24(b)). In the case p = 2
let U := Uy. Then 74U is a closed sectorial form in Ly (cf. Proposition 3.1(a); the
factor 2 is needed since we do not assume Q(V~) 2 D(7,) N QW + Wy + V).

Let A,, A,y be the generators of T}, (1,)u, respectively. By the Lumer-
Phillips theorem and the assumption on T}, we have (Apu, u|u[P~?) > —w,|lul? for
all w € D(A,). By Lemma 1.34 we infer that

(Apvu, ulul™?) > (U = wp)[ul’)  (u€ D(A,p)). (3.29)

We have to prove 7, > —w, on D(1,) = D(1, + Up). Notice that 7, is a
bounded form on D(7, + Up). Since U is (7, + Up)-regular, by Lemma 1.24(b), it
therefore suffices to show 7,(u) = —w,|u|? for all u € D(7, + U). Let first p = 2.
Then A,y is the m-sectorial operator associated with 74 U, so

(2 +U)(u) = Re(r + U)(u) = Re(As pu,u) > (U — wa)u?) (u € D(Az,U)),
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by (3.29). This shows the assertion for p = 2 since D(As ) is dense in D(74+U) =
D(r, +U).

Let now p > 2. Let Ay be the m-sectorial operator in Ly associated with
T+ U. Below we show that

P
2

o(u8) > —w (3.:30)
for all 0 < u € D(Ay) N Ly such that Ayu € L. Then, an application of
Lemma 3.23(b) with h =7, + U, h; = 7+ U, and A = Ay shows that 7,(u) >
—wp|ull3 for all 0 < u € D(7, + U). This completes the proof since 7, fulfils the
first Beurling-Deny criterion.

So, let 0 < w € D(Ay) N Ly, Apyu € Ls. Then u € D(7, + U) N Ly
and hence u" € D(7, + U) N Loy, Vu" = ru""'Vu for all » > 1. From this
we easily obtain 7(u,u?~') = 7,(u?) (cf. the computation on page 59) and thus,
by the definition of Ay, (Agu,u?~') = (1, + U)(u2). By Corollary 3.4(a) we
have 7 4+ U « e *»U. Since u, Ayu € Lo N Ly C L,, Lemma 3.24 implies that
u € D(A,p) and A, yu = Apyu. By (3.29) we obtain

(7p +U) (U%) = (Apuu, Up_l) > (U = wp)u”),
i.e., (3.30) holds. O

Remark 3.25. Theorem 3.22 is in particular applicable in the case of weakly
differentiable b; and b,. For j = 1,2, we assume that b, is of 7,-regular divergence,
i.e., there exists a measurable function div b; such that |div b;| is 7,-regular and

2(bju, Vu) = —((div b;)v*) (0 < w € D(r) N Q(|div b;])).
Let U := V™~ + |div by| + |div by|. Then

(1 + U)(u)
(Too + U)(u) =

N

(=div by + V +U)u?) > 0,
(div by + V 4+ U)u*) > 0

forall 0 <wu e D(r+U), so (T,)y is L;- and L-contractive.
As an example, we are going to study the formal differential expression
~A+e|z|*r -V + clz|* on Q:=RY,

with «, ¢1, co € R. In Remark 3.6(c) we already studied the case o = 0 in slightly
greater generality, so we will assume a # 0 here. The case @« = —2 will be
of particular interest (see also Example 3.31 below). Before we proceed to the
example we collect some facts about form bounds of the potential »* with respect
to —A. Here and in the following, r: RY — R, r(z) := |z|.
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Remark 3.26. Let a be the identity matrix, D(7,) = W}(R"Y). Then 7, is the
standard Dirichlet form, 7,(u) = |[Vu|3. We will make use of the following Hardy
inequality (see [KaWa72; Lemma 1]). If N > 3 then

u

r

2

< —IVul: (we Wi®Y).

This inequality is sharp in the sense that there exist no g < ﬁ, ¢ € R with
1402 < B|Vulz + c|uls for all uw € W3 (RY). Moreover, for N = 1,2 there exist
no (3, c at all for which the inequality is valid. Expressed in the form language,
Hardy’s inequality states that r =2 is form bounded with respect to 7, (]\;22 > < T,.

Let now o < —2. Then for all € > 0 there exists ¢. > 0 such that r—2 <
er® 4+ c.. Since Hardy’s inequality is sharp this implies that r® is not form
bounded with respect to 7, i.e., r* £ ¢(7, + 1) for all ¢ > 0. The same holds for
a > 0 since then |z|* — oo as |z| — 0.

Finally, let @ € (=2,0). Then for all ¢ > 0 there exists ¢. > 0 such that
r® < er~?+4c.. If N > 3 then Hardy’s inequality implies that r® has zero form
bound with respect to 7,. The same holds for N = 2. This is an easy consequence

of the Sobolev imbedding [u], < ¢,|ul21 for all ¢ € [2,00), u € W3 (R?):

(rlul®) < nfulls + 10" = n) gy lul’ly < nllul + 1" = n)*lgyegluls,.
It remains to note that [[(r® —n)* 1) — 0 as n — oo if ¢ is sufficiently large.

Example 3.27. Let N > 2 and, as above, 7, the standard Dirichlet form on R".
Let b, = 0 and define by, V' by

bi(x) :=b(x) = c1|z|x, V() := cox|¥,

for some a, ci,co € R, a # 0. Then Wy = [b]? and |V| are 7,-regular, i.e., (bV?)
is fulfilled. Let

7(u,v) == (Vu, Vo) + (Vu, bv) + (Vu,v)

on D(7) := D(1, + |b]* + |V]). If ¢, =0 then D(7) = D(7, +r*) (unless ¢, = 0).

If ¢y # 0 then D(7) = D(7, + r?@*V) since Q(r®) 2 D(7, + r?@*V) (for a > 0

and for ov < —2 this is trivial; for a € (—2,0) it follows from Remark 3.26).
Observe that b is of 7,-regular divergence,

2(bu, Vu) = —¢;(N + o) (r*v?) (0 <ue D(7)).

(For 0 < u € CHRY \ {0}) apply partial integration; for general u the claim
follows by density.) For p € [1, 00] we thus obtain

T(u) = [ Vuls + (2 = el (N +a)) (r*w?) (0 <u e D(r)). (3.31)

Now let us investigate for which values of «, ¢1, ¢ and for which p € [1, 00) the
form 7 is associated with a positive quasi-contractive Cyp-semigroup on L,(R").
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First we consider the three cases @ < —2, a > 0, and N = 2 = —a. Then, by
Remark 3.26, the potential * in not form bounded with respect to 7,. Thus,
the above implies that 7, is bounded below if and only if ¢, — %cl(N +a) =0,
and 7, > 0 in this case. By Theorems 3.2(a) and 3.22 we obtain, for p € (1, 00),
that 7 is associated with a quasi-contractive Cy-semigroup on L, if and only if
co — %cl(N +a) > 0. Let I be the set of all p € (1, 00) fulfilling this inequality.

The set I is of one of the types (1, 00), (1, po], [po, 0), @. If co > (cl(N -+ a))+
then I = (1,00); if ¢ < (e1(N +a)) A0 then I = @. If ¢;(N + a) < ¢ < 0 then
I'=(1L2(N+a);if0<c <ca(N+a)then I =[2(N +a),00). In particular
we obtain: if « = —N, ¢y > 0 then, for arbitrary ¢; € R, the form 7 is associated
with a consistent family of contractive Cy-semigroups on L,, p > 1.

Now we consider the case a € [—2,0), (N,«) # (2,—2). Of course, 7 is
associated with a contractive Cj-semigroup on L, in the cases discussed above,
but we obtain more. If & € (—2,0) then, by Remark 3.26, for all € > 0 there exists
¢ > 0 such that 7, > (z% — 5)7’a — ¢.. Thus, 7 is associated with a consistent
family of quasi-contractive Cy-semigroups on L,, p > 1.

Now assume a = —2 (and N > 3). Then, by (3.31) and Hardy’s inequality,

4 (N —2)?

T, = (—lg - E(N —2)+ 62) r2.
4 p

Since Hardy’s inequality is sharp we obtain that 7, is bounded below if and only

if M — Cl% + ¢y > 0, and 7, > 0 in this case. Thus, by Theorems 3.2(a)

pp
and 3.22, 7 is associated with a quasi-contractive Cy-semigroup on L, for p €

(1,00), if and only if (ij)Q — N;Q + ¢y > 0. For ¢y = 0 this condition simplifies
N-2

to o > 0. Thus, if ¢; > N —2 then there is no quasi-contractive semigroup

on any L, associated with 7. If ¢; € (0, N —2) (or ¢; < 0) then 7 is associated
with a contractive Cyp-semigroup on L, for all p > #‘_201 (orp>1).

Finally we show that, for « = —2, N > 3, the form 7 studied above constitutes
an example in which the interval in the L,-scale obtained in Theorem 3.8 cannot
be extended. So let, from now on, N > 3, b(x) := c;|z| 2z, V(x) := co|x|2. As
above let r(z) = |z|, and

7(u,v) = (Vu, Vo) + (Vu, bv) + (Vu,v)
on D(t) = W3 (RY).

Proposition 3.28. Assume that T is associated with a Cy-semigroup e~ on
L,, for somep > 1. Then

D(A,) 2 D, = {u € Ly; Au, |Vu|, 5u € L,},

and Apu = (=A+b-V+V)u for allu € D,.
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Proof. Define the operator £ in L, by Lu := (=A+b-V +V)u, D(L) := D,.
Let U := |b|* 4+ |V|. Then 7 + U is a closed sectorial form in L,. Let Ay be the
associated m-sectorial operator in L,. By Proposition 1.19, e~*v extrapolates
to a Co-semigroup Ty, (t) = e~ on L, and T, = (Ty,) _uv.

Let first u € C°(RY \ {0}). Then u € D(7 + U) and

(1 +U)(u,v) = (L A+ U)u,v) (’U € D(T+U)).

Hence u € D(Ay) and Ayu = (L + U)u. Since u, Ayu € L,, Lemma 3.24
implies that u € D(Ay,), Avpu = (£ + U)u. Thus, Ay, and £+ U coincide on
C>(RM\ {0}). By [Voi86; Cor. 2.7] we have A, D Ay, —U, so A, and L coincide
on C2=(RY \ {0}).

Let now u € D, N L, (RN \ {0}), p, the standard mollifier. Then p, * u €
C>(RN \ {0}) for large n, and it is easy to see that p, x u — u, L(p,*u) — Lu
in L,. This implies A,u = Lu since A, is a closed operator.

Finally, let u € D,. Let ¢ € CZ(R") such that 0 < ¢ < 1, @lpey = 1,
suppy C B(0,2). Let ¢ (z) == ¢(2) - (1 — ¢)(2nz) for € RY. Then ¢, €
Cx(RM\ {0}), 0< ¢, <1, and ¢, — 1 a.e. as n — co. Let

B, := (B(0,2n) \ B(0,n)) U (B(0,%) \ B(0,5-)).
It is straightforward that
IVonl < 2IVelooxp.,  [A¢al < 5lA¢wxs, (2 €N).
Thus, by dominated convergence we obtain that
L(opu) = ppLu — 2V, - Vu+ (b- Ve, — Ap,)u — Ly in L,
as n — 00. So u € D(A,) and Ayu = Lu since @, u — u in Ly,. O

tA

Corollary 3.29. Assume that 7 is associated with a Cy-semigroup e=** on L,

T

for some p € [1,00). Let 0 < % —2, u:=r"%"z. Thenu € D(A,) and
Au= (%0 = (N-2—-c¢))o —c2) + N —¢; — 20 — r?)u.

Proof. By Proposition 3.28 we have u € D(A,) and Ayu = (A +0b-V +V)u
since u € D,. The second assertion now results from a direct computation. [

The next extrapolation lemma is a modification of the result from [Cou91]
with literally the same proof.

Lemma 3.30. Let py < p < q < p1. Let T be a semigroup on L, satisfying
||T(t)||p0—>po <0, ||T(t)||p1—>p1 <C, and

IT(O)pq < CEG7D (2> 0),
for some C' > 1, a > 0. Then

_a(l_ 1
IT() oy < CE 573 (2> 0).
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Example 3.31. Let ¢; := ﬁ% and ¢y 1= —7% with 0 < 3<2, 0<y<
(1—2)% By (3.31) we have

rp(u) = LIVuld — L2 (284 9) |43 (ue D(r)).

Hence, by Hardy’s inequality,

N—2)2 u
p(u) > 2 (41 (1 = 1) =281 — ) |23 (v e D(7)).
Let 1 < p_ < p;y < oo such that i are the roots of the equation

dr(l—2) =280 —y=—4(x* -~ (1 - Dz +7) =0. (3.32)

Then 7, is bounded below if and only if p € [p_, p;]. Hence, by Theorem 3.8, 7
is associated with a consistent family of Cy-semigroups e *4» on L,

Pmin ‘= (%pi)/ <p< %er = Pmax-

By Theorems 3.2(a) and 3.22, e~*4» is quasi-contractive if and only if p € [p_, p.].
We are going to show that, for ¢ € (Pmin, Pmax), the form 7 is not associated
with a Cp-semigroup on L,. Let

N N-2 N

- . _ (. N 1Y
7T e Py po'_0+2_(N‘2p+>'

Then %; is a root of equation (3.32). Hence, 0 — (NQ— 2— ﬁ%)o—i—y% —
0. Observe that py € (Pumin,p+). Let u := 17”7z, ¢ == N — B% — 20,
P € (Pmin, Po). Then o < % — 2. By Corollary 3.29, A,u = (¢ — r*)u < cu and
hence u < etc=4»)y for all t > 0.

Now assume that 7 is associated with a Cy-semigroup T}, on L,, for some
¢ 2 Pmax- Then T, T, are consistent by Proposition 1.22(a). By (3.24) and
Lemma 3.30, e~*: L, — L, for all t > 0. In particular, e~*»u € L,. Since

e'e=4p)y, > wu, this contradicts the fact that u ¢ L, (recall o = prﬁx > %)
—tA

» does not extrapolate to a

Considering the adjoint semigroup we show that e
semigroup on L,, for any ¢ < pmin.

In the case of Schrédinger semigroups, i.e. 8 = 0, this example was first given
in [KPS81]. More precisely, for a certain class of potentials it was shown that the
Schrodinger semigroup acts on L,(RY) for p € (pumin, Pmax), and it was claimed
that for potentials of the type -5 with ¢ < 0 the interval is maximal. A strict
proof of this claim was given by Yu. Semenov (private communication).

Finally, let us return to the remark in the paragraph following the proof of
Proposition 1.15. There the following was claimed. Given a densely defined closed
sectorial form 7 fulfilling the first Beurling-Deny criterion, 1" the associated Cjy-

semigroup, and V' > 0 measurable, the T-admissibility of —V does not imply
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V < Ret 4+ w for some w € R. We now show that the above constitutes an
example.

Let 0 < # < 1. Then there exists 0 < v < (1 — §)2 such that p, <2 < p_,
where pnin, p— are defined as above. We have shown that 7 is associated with a
positive Cy-semigroup T on L, which is not quasi-contractive. Define the form
To in Lo by

T0(u,v) := (Vu, Vo) + (Vu, bv)

on D(15) = W3 (RY). Then 7y is a densely defined closed sectorial form fulfilling
the first Beurling-Deny criterion. Let T be the associated (contractive) Cp-
semigroup on L. Let U = =V = 7(1\;22)2. Then 79 = 7+ U. Since 7 is
associated with the Cy-semigroup 7' on Lo, Proposition 1.19 implies that —U is
To-admissible. But we do not have U < Rery + w for some w € R: this would
imply 75 = Re7 = Re7y — U > —w, contradicting 2 & [p_, py].

We point out that, in the above situation, 7 is a form that is not sectorial—it
is not even bounded from the left. Nevertheless, by means of Definition 1.20, 7

is associated with a Cy-semigroup on L.
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