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Abstract

We show that the condition 0 ≤ β ≤ 1
2 ln 2 is necessary for the chaoticity of the

solution of the cell population model

(0.1)

{
∂u(t,x)

∂t = −∂(xu(t,x))
∂x + γu(t, x)− βu(t, x) + 4βu(t, 2x)χ(0, 1

2
)(x),

u(0, ·) = f ∈ L1(0, 1).

(If γ − 3β > 0, then this condition is known to be sufficient.) The analysis depends
on solving a forward delay equation.

1 Preliminaries

In [2] we studied the chaotic behaviour of the above simplified model of a size structured

cell population. We supposed that γ−3β > 0 and we proved that the evolution associated

with (0.1) is chaotic if 0 ≤ β ≤ 1
2 ln 2

, and is subchaotic if β > 1
2 ln 2

(see [2; Theorem 2.3]).

In the present note we show that in fact the evolution is not chaotic for β > 1
2 ln 2

(i.e.,

the space of subchaoticity is a proper subspace).

The following result due to Desch, Schappacher and Webb will be used to rule out

chaoticity in our main result.

Theorem 1.1. ([1; Theorem 3.3]) If a C0-semigroup T (·) generated by A in a Banach

space X is hypercyclic, then the adjoint A∗ of A and the dual semigroup have the following

properties:
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(i) If ϕ ∈ X∗, ϕ 6= 0, then the orbit (T ∗(t)ϕ : t ≥ 0) is unbounded,

(ii) the point spectrum of A∗ is empty.

Remark 1.2. On a separable Banach space, a chaotic C0-semigroup is automatically hy-

percyclic (see [1; Definition 2.1 and Theorem 2.2]; see also [2; Definition 1.2] for “chaotic”).

2 Main result

From [2] we know that, by the change of variable x = e−y (y > 0), one transforms

equation (0.1) into

(2.1)

{
∂v(t,y)

∂t
= ey ∂(e−yu(t,y))

∂y
+ (γ − β)v(t, y) + 4βv(t, y − ln 2)χ(ln 2,∞)(y) =: Av(t, y),

v(0, ·) = g ∈ L1((0,∞), e−ydy),

with g(y) = f(e−y) and D(A) = {v ∈ L1((0,∞), e−ydy); ∂v
∂y

∈ L1((0,∞), e−ydy)}. By

a standard perturbation argument one sees that A generates a C0-semigroup T (·) on

L1((0,∞), e−ydy) and hence equation (2.1) (or (0.1)) is well-posed.

The following is the main result of this paper.

Theorem 2.1. If β > 1
2 ln 2

, then the C0-semigroup associated with (2.1) is not hypercyclic,

and therefore not chaotic.

Remark 2.2. Note that the hypothesis γ − 3β > 0 of [2; Theorem 2.3] is not needed in

Theorem 2.1.

Proof of Theorem 2.1. In view of Theorem 1.1 and Remark 1.2 it is sufficient to show

that the point spectrum of A∗ is not empty.

A standard computation shows that A∗ is given by

A∗ϕ(y) = −ϕ′(y) + (γ − β)ϕ(y) + 2βϕ(y + ln 2) (y ≥ 0),

with D(A∗) = {ϕ ∈ W 1
∞(0,∞); ϕ(0) = 0}.

A function ϕ is an eigenfunction of A∗, associated with the eigenvalue λ, if and only if

ϕ is a bounded C1-function satisfying

(2.2)

{
ϕ′(y) = ωϕ(y) + 2βϕ(y + ln 2) (y ≥ 0),

ϕ(0) = 0,

with ω := γ − β − λ.

By setting h(y) := e−(ω ln 2)yϕ(y ln 2), c := 2β ln 2 eω ln 2, we transform problem (2.2) into

a problem for a “forward delay equation”,

(2.3)

{
h′(y) = c h(y + 1) (y ≥ 0),

h(0) = 0.
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The function h(y) := yey is a solution of (2.3), for c = e−1. For the corresponding

solution ϕ of (2.2) we obtain

ϕ(y ln 2) = e(ω ln 2)yh(y) = ye(ω ln 2+1)y.

From c = e−1 and 2β ln 2 > 1 we obtain that ω ln 2 + 1 = ln c
2β ln 2

+ 1 = − ln(2β ln 2) < 0.

We conclude that ϕ is bounded, and therefore ϕ is an eigenfunction of A∗.

Combining Theorem 2.1 and [2; Theorem 2.3], we obtain the following conclusion.

Corollary 2.3. Assume that γ − 3β > 0. Then the C0-semigroup associated with (2.1)

is chaotic if and only if 0 ≤ β ≤ 1
2 ln 2

.

Appendix. On solutions of h′(y) = c h(y + 1)

In this appendix we present further solutions of problem (2.3), and we explain how we

found the above solution.

We start with the observation that for any λ ∈ C the function gλ(y) := eλy satisfies

g′λ(y) = λe−λgλ(y + 1).

If λ1, λ2 ∈ C, λ1 6= λ2, are such that λ1e
−λ1 = λ2e

−λ2 , then obviously h := gλ1 − gλ2 is a

non-trivial solution of (2.3).

Let ξ < 1. We are looking for η > 0 such that

(ξ + iη)e−(ξ+iη) = (ξ − iη)e−(ξ−iη),

i.e., (ξ + iη)e−(ξ+iη) is real, 0 = Im
(
(ξ + iη)e−(ξ+iη)

)
= η cos η − ξ sin η, ξ = η cos η

sin η
. The

function η 7→ η cos η
sin η

maps the interval [0, π) continuously and strictly decreasingly onto

(−∞, 1]. Therefore there exists a unique η (=: ηξ) ∈ (0, π) such that ξ = η cos η
sin η

. Moreover,

ηξ depends continuously and strictly decreasingly on ξ, and ηξ → 0 as ξ → 1. For a pair

(ξ, η) of this kind one concludes that

h(y) :=
1

2i
(e(ξ+iη)y − e(ξ−iη)y) = eξy sin ηy

is a solution of (2.3), for c = cξ := (ξ + iη)e−(ξ+iη) = e−ξ(ξ cos η + η sin η) = e−ξ η
sin η

.

Using the function h above we obtain that

hξ(y) := eξy sin ηξy

ηξ

is a solution of (2.3), for c = cξ. Taking the pointwise limit one obtains

h(y) := lim
ξ→1

hξ(y) = yey,

and it is easy to check that h satisfies (2.3) for c = e−1 = limξ→1 cξ.
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