A sharp condition for the chaotic behaviour of a size structured cell population

S. EL Mourchid¹, A. Rhandi², H. Vogt³, and J. Voigt³

Abstract

We show that the condition $0 \le \beta \le \frac{1}{2 \ln 2}$ is necessary for the chaoticity of the solution of the cell population model

$$(0.1) \qquad \begin{cases} \frac{\partial u(t,x)}{\partial t} = -\frac{\partial (xu(t,x))}{\partial x} + \gamma u(t,x) - \beta u(t,x) + 4\beta u(t,2x)\chi_{(0,\frac{1}{2})}(x), \\ u(0,\cdot) = f \in L^1(0,1). \end{cases}$$

(If $\gamma - 3\beta > 0$, then this condition is known to be sufficient.) The analysis depends on solving a forward delay equation.

1 Preliminaries

In [2] we studied the chaotic behaviour of the above simplified model of a size structured cell population. We supposed that $\gamma - 3\beta > 0$ and we proved that the evolution associated with (0.1) is chaotic if $0 \le \beta \le \frac{1}{2 \ln 2}$, and is subchaotic if $\beta > \frac{1}{2 \ln 2}$ (see [2; Theorem 2.3]). In the present note we show that in fact the evolution is not chaotic for $\beta > \frac{1}{2 \ln 2}$ (i.e., the space of subchaoticity is a proper subspace).

The following result due to Desch, Schappacher and Webb will be used to rule out chaoticity in our main result.

Theorem 1.1. ([1; Theorem 3.3]) If a C_0 -semigroup $T(\cdot)$ generated by A in a Banach space X is hypercyclic, then the adjoint A^* of A and the dual semigroup have the following properties:

¹Department of Mathematics, Faculty of Science Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakesh, Morocco.

e-mail: s.elmourchid@ucam.ac.ma

²DIIMA, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy.

e-mail: rhandi@diima.unisa.it

³Fachrichtung Mathematik, Technische Universität Dresden, 01062 Dresden, Germany.

e-mail: hendrik.vogt@tu-dresden.de e-mail: juergen.voigt@tu-dresden.de

- (i) If $\varphi \in X^*$, $\varphi \neq 0$, then the orbit $(T^*(t)\varphi : t \geq 0)$ is unbounded,
- (ii) the point spectrum of A^* is empty.

Remark 1.2. On a separable Banach space, a chaotic C_0 -semigroup is automatically hypercyclic (see [1; Definition 2.1 and Theorem 2.2]; see also [2; Definition 1.2] for "chaotic").

2 Main result

From [2] we know that, by the change of variable $x = e^{-y}$ (y > 0), one transforms equation (0.1) into

$$(2.1) \begin{cases} \frac{\partial v(t,y)}{\partial t} = e^y \frac{\partial (e^{-y}u(t,y))}{\partial y} + (\gamma - \beta)v(t,y) + 4\beta v(t,y - \ln 2)\chi_{(\ln 2,\infty)}(y) =: Av(t,y), \\ v(0,\cdot) = g \in L^1((0,\infty), e^{-y}dy), \end{cases}$$

with $g(y) = f(e^{-y})$ and $D(A) = \{v \in L^1((0, \infty), e^{-y}dy); \frac{\partial v}{\partial y} \in L^1((0, \infty), e^{-y}dy)\}$. By a standard perturbation argument one sees that A generates a C_0 -semigroup $T(\cdot)$ on $L^1((0, \infty), e^{-y}dy)$ and hence equation (2.1) (or (0.1)) is well-posed.

The following is the main result of this paper.

Theorem 2.1. If $\beta > \frac{1}{2 \ln 2}$, then the C_0 -semigroup associated with (2.1) is not hypercyclic, and therefore not chaotic.

Remark 2.2. Note that the hypothesis $\gamma - 3\beta > 0$ of [2; Theorem 2.3] is not needed in Theorem 2.1.

Proof of Theorem 2.1. In view of Theorem 1.1 and Remark 1.2 it is sufficient to show that the point spectrum of A^* is not empty.

A standard computation shows that A^* is given by

$$A^*\varphi(y) = -\varphi'(y) + (\gamma - \beta)\varphi(y) + 2\beta\varphi(y + \ln 2) \qquad (y \ge 0),$$

with $D(A^*) = \{ \varphi \in W^1_{\infty}(0, \infty); \varphi(0) = 0 \}.$

A function φ is an eigenfunction of A^* , associated with the eigenvalue λ , if and only if φ is a bounded C^1 -function satisfying

(2.2)
$$\begin{cases} \varphi'(y) = \omega \varphi(y) + 2\beta \varphi(y + \ln 2) & (y \ge 0), \\ \varphi(0) = 0, \end{cases}$$

with $\omega := \gamma - \beta - \lambda$.

By setting $h(y) := e^{-(\omega \ln 2)y} \varphi(y \ln 2)$, $c := 2\beta \ln 2 e^{\omega \ln 2}$, we transform problem (2.2) into a problem for a "forward delay equation",

(2.3)
$$\begin{cases} h'(y) = c h(y+1) & (y \ge 0), \\ h(0) = 0. \end{cases}$$

The function $h(y) := ye^y$ is a solution of (2.3), for $c = e^{-1}$. For the corresponding solution φ of (2.2) we obtain

$$\varphi(y \ln 2) = e^{(\omega \ln 2)y} h(y) = y e^{(\omega \ln 2 + 1)y}.$$

From $c=e^{-1}$ and $2\beta \ln 2 > 1$ we obtain that $\omega \ln 2 + 1 = \ln \frac{c}{2\beta \ln 2} + 1 = -\ln(2\beta \ln 2) < 0$. We conclude that φ is bounded, and therefore φ is an eigenfunction of A^* .

Combining Theorem 2.1 and [2; Theorem 2.3], we obtain the following conclusion.

Corollary 2.3. Assume that $\gamma - 3\beta > 0$. Then the C_0 -semigroup associated with (2.1) is chaotic if and only if $0 \le \beta \le \frac{1}{2 \ln 2}$.

Appendix. On solutions of h'(y) = c h(y+1)

In this appendix we present further solutions of problem (2.3), and we explain how we found the above solution.

We start with the observation that for any $\lambda \in \mathbb{C}$ the function $g_{\lambda}(y) := e^{\lambda y}$ satisfies

$$g'_{\lambda}(y) = \lambda e^{-\lambda} g_{\lambda}(y+1).$$

If $\lambda_1, \lambda_2 \in \mathbb{C}$, $\lambda_1 \neq \lambda_2$, are such that $\lambda_1 e^{-\lambda_1} = \lambda_2 e^{-\lambda_2}$, then obviously $h := g_{\lambda_1} - g_{\lambda_2}$ is a non-trivial solution of (2.3).

Let $\xi < 1$. We are looking for $\eta > 0$ such that

$$(\xi + i\eta)e^{-(\xi + i\eta)} = (\xi - i\eta)e^{-(\xi - i\eta)},$$

i.e., $(\xi + i\eta)e^{-(\xi + i\eta)}$ is real, $0 = \operatorname{Im}\left((\xi + i\eta)e^{-(\xi + i\eta)}\right) = \eta\cos\eta - \xi\sin\eta$, $\xi = \frac{\eta\cos\eta}{\sin\eta}$. The function $\eta \mapsto \frac{\eta\cos\eta}{\sin\eta}$ maps the interval $[0,\pi)$ continuously and strictly decreasingly onto $(-\infty,1]$. Therefore there exists a unique η (=: η_{ξ}) $\in (0,\pi)$ such that $\xi = \frac{\eta\cos\eta}{\sin\eta}$. Moreover, η_{ξ} depends continuously and strictly decreasingly on ξ , and $\eta_{\xi} \to 0$ as $\xi \to 1$. For a pair (ξ,η) of this kind one concludes that

$$h(y) := \frac{1}{2i} (e^{(\xi + i\eta)y} - e^{(\xi - i\eta)y}) = e^{\xi y} \sin \eta y$$

is a solution of (2.3), for $c = c_{\xi} := (\xi + i\eta)e^{-(\xi + i\eta)} = e^{-\xi}(\xi \cos \eta + \eta \sin \eta) = e^{-\xi} \frac{\eta}{\sin \eta}$. Using the function h above we obtain that

$$h_{\xi}(y) := e^{\xi y} \frac{\sin \eta_{\xi} y}{\eta_{\xi}}$$

is a solution of (2.3), for $c = c_{\xi}$. Taking the pointwise limit one obtains

$$h(y) := \lim_{\xi \to 1} h_{\xi}(y) = ye^{y},$$

and it is easy to check that h satisfies (2.3) for $c = e^{-1} = \lim_{\xi \to 1} c_{\xi}$.

References

- [1] W. Desch, W. Schappacher, and G. F. Webb, *Hypercyclic and chaotic semigroups of linear operators*, Ergodic Theory Dynam. Systems **17** (1997), 793–819.
- [2] S. EL Mourchid, G. Metafune, A. Rhandi, and J. Voigt, On the chaotic behaviour of size structured cell populations, J. Math. Anal. Appl. 339 (2008), 918-924.