A sharp condition for the chaotic behaviour
of a size structured cell population
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Abstract

We show that the condition 0 < § < ﬁ is necessary for the chaoticity of the
solution of the cell population model

01) our) — _Oeulta)) oyt @) — Bult, o) + 4Bu(t, 20)xq,1) (),
' u(0,-) = f € L(0,1).

(If v — 38 > 0, then this condition is known to be sufficient.) The analysis depends
on solving a forward delay equation.

1 Preliminaries

In [2] we studied the chaotic behaviour of the above simplified model of a size structured
cell population. We supposed that v—33 > 0 and we proved that the evolution associated
with (0.1) is chaotic if 0 < 8 < 51—, and is subchaotic if 3 > 5.5 (see [2; Theorem 2.3]).
In the present note we show that in fact the evolution is not chaotic for 5 > ﬁ (i.e.,
the space of subchaoticity is a proper subspace).

The following result due to Desch, Schappacher and Webb will be used to rule out

chaoticity in our main result.

Theorem 1.1. ([1; Theorem 3.3]) If a Cy-semigroup T(-) generated by A in a Banach
space X is hypercyclic, then the adjoint A* of A and the dual semigroup have the following
properties:
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(i) If p € X*, o # 0, then the orbit (T*(t)p : t > 0) is unbounded,
(i) the point spectrum of A* is empty.

Remark 1.2. On a separable Banach space, a chaotic Cy-semigroup is automatically hy-
percyclic (see [1; Definition 2.1 and Theorem 2.2]; see also [2; Definition 1.2] for “chaotic”).

2 Main result

From [2] we know that, by the change of variable x = e™¥ (y > 0), one transforms
equation (0.1) into

(2.1) { 61)&4/) = ey zz(t’y)) + (v = B)v(t,y) +46v(t,y — In2)X(n2,.00)(y) =2 Av(t,y),
U<07 ) =gc Ll((oa OO), e_ydy),
with g(y) = f(e7¥) and D(A) = {v € L'((0, oo),e_ydy);g—z € L'((0,00),e7¥dy)}. By
a standard perturbation argument one sees that A generates a Cy-semigroup 7'(-) on
L'((0,00), e ¥dy) and hence equation (2.1) (or (0.1)) is well-posed.
The following is the main result of this paper.

Theorem 2.1. If( > ﬁ, then the Cy-semigroup associated with (2.1) is not hypercyclic,

and therefore not chaotic.

Remark 2.2. Note that the hypothesis v — 33 > 0 of [2; Theorem 2.3] is not needed in
Theorem 2.1.

Proof of Theorem 2.1. In view of Theorem 1.1 and Remark 1.2 it is sufficient to show
that the point spectrum of A* is not empty.
A standard computation shows that A* is given by

A" o(y) = —¢'(y) + (v = B)e(y) + 2Bp(y +1n2)  (y >0),

with D(A%) = {p € WL (0, 50); (0) = 0}.
A function ¢ is an eigenfunction of A*, associated with the eigenvalue )\, if and only if
¢ is a bounded C*-function satisfying

¢'(y) = wely) + 280y +1n2) (y >0),
22) { ©(0) =0,

withw:i=~vy—0—- A\
By setting h(y) := e~ @ 2Wp(yIn2), ¢ := 231In2e*™2 we transform problem (2.2) into
a problem for a “forward delay equation”,

W(y)=ch(y+1) (y=>0),
(2:3) { h(0) = 0.



The function h(y) := ye¥ is a solution of (2.3), for ¢ = L.

solution ¢ of (2.2) we obtain

For the corresponding

o(yIn2) = e(wan)yh(y) _ ye(wln2+l)y.

From ¢ = ¢! and 231n2 > 1 we obtain that wIn2+1 =Ingrs +1=-In(26In2) <0.

We conclude that ¢ is bounded, and therefore ¢ is an eigenfunction of A*. O]
Combining Theorem 2.1 and [2; Theorem 2.3], we obtain the following conclusion.

Corollary 2.3. Assume that v — 33 > 0. Then the Cy-semigroup associated with (2.1)
is chaotic if and only if 0 < 3 < ﬁ

Appendix. On solutions of A/(y) = ch(y + 1)

In this appendix we present further solutions of problem (2.3), and we explain how we
found the above solution.
We start with the observation that for any A € C the function gy(y) := e satisfies

Ah(y) = e ga(y +1).

If \i, Ao € C, A\; # )o, are such that \je™™ = l\ye™*2, then obviously h := I, — G, 1S 2
non-trivial solution of (2.3).
Let ¢ < 1. We are looking for n > 0 such that

(& +in)eCF = (& —in)e” =),

ie., (&4 in)e €T is real, 0 = Im ((§ + in)e~ €M) = ncosn — Esinny, & = L0 The

sinn

function 7 — U%Sn’z maps the interval [0,7) continuously and strictly decreasingly onto

(=00, 1]. Therefore there exists a unique i (=: 7¢) € (0,7) such that § = L221. Moreover,

ne depends continuously and strictly decreasingly on &, and e — 0 as £ — 1. For a pair
(&,m) of this kind one concludes that
1

h(y) == 5(6(£+in)y _ 6(£—in)y) — ¢ gin ny
1

is a solution of (2.3), for ¢ = ¢¢ 1= (£ +in)e” ¢+ = e=¢(E cosn + nsinn) = e ¢ -2

sinn*
Using the function h above we obtain that

hely) = v Y
Te

is a solution of (2.3), for ¢ = ¢¢. Taking the pointwise limit one obtains

h(y) = lim he(y) = ye*,

and it is easy to check that h satisfies (2.3) for ¢ = e™! = limg_, c¢.
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