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Preface

The theory of forms in Hilbert spaces has its origin in the 1830’s, when Johann Peter
Gustav Lejeune Dirichlet used the expression

∫
Ω
|∇u(x)|2 dx to find a function u satisfying

the Laplace equation ∆u = 0, with prescribed values of u on the boundary ∂Ω, for suitable
domains Ω ⊆ R3. In the language introduced by his student Riemann, this task is called
the “Dirichlet problem”. In his reasoning the expression

a(u, v) =

∫
Ω

∇u(x) ·∇v(x) dx,

for suitable functions u, v, played a decisive role; this expression nowadays is called the
“classical Dirichlet form”.

Forms were also the basic objects in Hilbert’s famous articles on integral equations
1904–1910; see [Hil12]. Only later, by the work of Hilbert’s students, Hilbert spaces were
introduced and operators became the central objects. In 1932, von Neumann redefined
the mathematical foundations of quantum mechanics in his book [Neu32a] which is still
valid today. There the central objects are unbounded self-adjoint operators. In the same
year, Stone [Sto32] used groups of unitary operators to solve the problem of describing
the dynamical behaviour in quantum theory. This in turn stimulated research on one-
parameter semigroups and led to its key result, the Hille–Yosida theorem from 1948,
which characterises the operators A that generate a contractive C0-semigroup on a Banach
space X. Here, A being the generator of a C0-semigroup means that the initial value
problem for the evolution equation

u′(t) = Au(t), u(0) = x

is well-posed for x ∈ dom(A). Many equations from mathematical physics belong to
this type of evolution equations; a prototype is the heat equation with various boundary
conditions whose solutions describe how the temperature distribution in the system evolves
in time. Equations of the above form, in particular parabolic equations, can be solved
and analysed by the theory of one-parameter semigroups. This theory was developed to a
large extent by Hille and Phillips [HiPh57], and today quite a few textbooks exist on the
subject.
Of special importance are semigroups on Hilbert spaces. From the modelling side they

occur in quantum theory by von Neumann’s mathematical approach but also in many
other physical situations, for example when the energy can be expressed by a Hilbert
space norm. But there is also a purely mathematical reason: the theorem of Fréchet–Riesz
expressing linear functionals in terms of the scalar product. A more elaborate version is the
Lax–Milgram lemma [LaMi54] from 1954 which is formulated for general sesquilinear forms
on a Hilbert space. For brevity we will use the term “form” instead of “sesquilinear form”.
Under some further assumptions, forms defined on a dense subspace of a Hilbert space H
have another most intriguing property: they are associated with an operator A in H that
generates a C0-semigroup on H (which is even very regular, namely holomorphic). In
the symmetric case this goes back to Friedrichs [Fri34] in 1934. In the general case, the
subject “evolution via forms” was developed much later by Kato, starting with his papers
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[Kat61b], [Kat61a] and elaborated to a wonderful theory in his book [Kat80], which first
appeared in 1966. In parallel, Lions [Lio61] established an equivalent theory using a
different language.

Our book is devoted to the study of evolution equations via form methods. We present
the theory in the language of Kato, with densely defined forms, and that of Lions, in the
spirit of Gelfand triples; in this sense our treatment is “bilingual”.

We now describe the contents of the book. In the first three chapters we give an
introduction to the theory of C0-semigroups. We prove the Hille–Yosida theorem and the
Euler representation formula for the semigroup. The characterisation of generators of
holomorphic semigroups that are contractive on a sector is proved in an easy non-standard
way by reducing it to the Hille–Yosida theorem. This approach avoids contour integrals,
and using the notion of accretivity we reformulate it as a “complex Lumer–Phillips
theorem”, Theorem 3.20. In Chapter 4 we present basic analytical tools needed for
applications, e.g. distributional derivatives of functions and the Sobolev space H1(Ω), and
we define the Dirichlet Laplacian in L2(Ω).

In Chapter 5 we start with the main subject of the book: the theory of forms. The
complex Lumer–Phillips theorem mentioned above leads to the central generation theorem
for forms, Corollary 5.11. Basically, this chapter is formulated in Lions’ language, but
we use the recent j-method introduced in [ArEl12b]: the Hilbert space V on which the
form is defined need not be embedded in the Hilbert space H where the generator is
defined and where the evolution takes place. This has several advantages, for example it
enables us to define the Dirichlet-to-Neumann operator in an elegant way, by using the
classical Dirichlet form on the Sobolev space H1(Ω) even though the evolution takes place
in L2(∂Ω), i.e. on the boundary of Ω; see Chapter 8.

The invariance of a closed convex set under the semigroup can be characterised in an
elegant fashion by properties of the form. Such results go back to Beurling and Deny in
1958 [BeDe58], [BeDe59] and were systematically developed by Ouhabaz [Ouh92], [Ouh05];
they are the subject of Chapter 9. Further topics concern interpolation in Chapter 10),
and as an application, semigroups generated by elliptic operators under diverse boundary
conditions in Chapter 11.

Sectorial forms, whose domain is just a vector space, are introduced in Chapter 12. In
principle, this is the formulation of Kato. An interesting aspect of our j-method is that it
allows us to avoid the notion of closability of the form; see Remark 12.13(b).

In Chapters 13 and 14 we investigate convergence of semigroups and forms. The
convergence results are used in Chapter 15 to treat a topic so far not found in book form:
the striking Trotter product formula for the sum of two forms, due to T. Kato for the
case of symmetric forms and to B. Simon concerning the generalisation to sectorial forms.

Chapter 16 is devoted to the Stokes operator, acting in an L2-space of divergence-free
vector-valued functions, and to properties of spaces of functions and distributions arising
in the treatment of the Navier–Stokes equation.

The last three chapters of the book concern non-autonomous evolution equations. We
present Lions’ elegant proof of existence and uniqueness of solutions via his representation
theorem of Lax–Milgram type. A natural problem is that of maximal regularity, which we
solve under some special conditions (Lipschitz continuity in time). The maximal regularity
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is applied to nonlinear problems in the last chapter.

The reader of the book is expected to have basic knowledge in analysis, functional
analysis and Lebesgue integration, as prerequisites. Concerning the organisation and
the style of the book a few comments are in order. Each of the 19 chapters is devoted
to one special subject, specified in the title of the chapter. It is one of our principles
to provide complete information, including proofs, on subjects from other areas that
are used in the development of the material and in applications, such as elements of
operator theory or vector-valued holomorphic functions. To achieve this aim we insert
“interludes” in the chapters where we give full proofs of results exceeding a certain level in
analysis and functional analysis. There are also some items that would exceed the frame
of an interlude. They are collected in appendices, for example on the Stone–Weierstrass
theorem, Hausdorff measure, Maz’ya’s inequality (related to the isoperimetric inequality),
the spectral theorem for self-adjoint operators, results on singular integrals, and the
Brouwer and Schauder fixed point theorems.
The book grew out of the Internet Seminar “Form Methods for Evolution Equations,

and Applications” for which the three authors figured as virtual lecturers in the academic
year 2014/15. The format “Internet Seminar” was conceived and launched in the late
1990’s by our colleague Rainer Nagel, Tübingen, and since then has taken place every
year, with a subject in the area of evolution equations and related topics. It consists of a
first phase with a series of weekly online lectures, including a discussion forum, followed
by a project phase in which groups of three or four students from different countries work
on various projects, and a final one-week workshop where the projects are presented and
additional talks round up the subject of the ISEM. Our internet seminar was the 18th in
the series.
The authors thank the co-organisers of this ISEM18, Ralph Chill and Christian Seifert,

for their help and support. Moreover we are grateful to all participants of the internet
seminar for their comments and enthusiasm.

Last but not least, we cordially thank our partners Frauke, Nele and Marianne for their
support and patience during the realisation of this book.

Ulm, Bremen, Dresden W. Arendt, H. Vogt, J. Voigt
August 2024 (Hi, hi???)
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Chapter 1

C0-semigroups

C0-semigroups serve to describe the time evolution of autonomous linear systems. The
objective of the present chapter is to introduce the notion of C0-semigroups and their
generators, and to derive some basic properties. In an “interlude” we provide basic
definitions concerning linear operators as well as fundamental facts about integration and
differentiation of Banach space valued functions.

1.1 Motivation

Let X be a Banach space, and let L(X) denote the space of bounded linear operators
on X. A C0-semigroup is a function T : [0,∞) → L(X) associated with the solutions of
the initial value problem for a linear autonomous differential equation on [0,∞),

u′ = Au, u(0) = x.

Here, A should be a suitable (usually unbounded) linear operator in X, defined on
its domain dom(A) ⊆ X. If x ∈ dom(A), then the function u : [0,∞) → X given by
u(t) := T (t)x should be the unique solution of the initial value problem given above.
These properties will be studied in more detail in the present chapter.

If the operator A is bounded, then the problem can be treated by the usual methods of
ordinary differential equations. The aim of the theory of C0-semigroups is to describe the
solution theory for the case when A is an unbounded operator. Typically, in applications
the Banach space will be a space of functions, defined on an open subset of Rn, and the
operator A will be a partial differential operator. A prototypical example is the heat
equation

∂tu = ∆u

which will be treated in the context of C0-semigroups; see e.g. Subsection 4.2.1.

1.2 Definition and some basic properties

Let X be a (real or complex) Banach space. A one-parameter semigroup on X is a
function T : [0,∞) → L(X) satisfying

(i) T (t+ s) = T (t)T (s) for all t, s ⩾ 0.
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If additionally

(ii) limt→0+ T (t)x = x for all x ∈ X,

then T is called a C0-semigroup on X (or a ‘strongly continuous semigroup’).
If T is defined on R instead of [0,∞), and property (i) holds for all t, s ∈ R, then

T is called a one-parameter group, and if additionally (ii) holds, then T is called a
C0-group.

1.1 Remarks. (a) Property (i) expresses that T describes the time evolution of an
autonomous system with state space X, i.e., the law governing the further evolution of a
state T (t)x reached at time t depends only on the current state T (t)x, but not on t.
(b) Property (i) implies that for t, s ⩾ 0 the operators T (t), T (s) commute; also, if

t1, t2, . . . , tn ⩾ 0, then T
(∑n

j=1 tj
)
=

∏n
j=1 T (tj).

(c) Property (i) implies that T (0) = T (0)2 is a projection.
(d) If T is a C0-semigroup, then T (0)x = limt→0+ T (t)T (0)x = limt→0+ T (t)x = x for all

x ∈ X, i.e. T (0) = I, the identity operator in X. △

In property (i) one immediately recognises the functional equation for the exponential
function, and in fact this will be our first example for a C0-group.

1.2 Example. Let A ∈ L(X). Then

T (t) := etA =
∞∑
j=0

1

j!
(tA)j

converges in L(X) for all t ∈ R and defines a C0-group T . In fact, R ∋ t 7→ T (t) ∈ L(X)
is even continuous with respect to the operator norm.
We leave this as an exercise (see Exercise 1.1). △

1.3 Lemma. Let T be a one-parameter semigroup on X, and assume that there exists
δ > 0 such that M := sup0⩽t<δ ∥T (t)∥ <∞. Then there exists ω ∈ R such that

∥T (t)∥ ⩽Meωt (t ⩾ 0).

Proof. There exists ω ⩾ 0 such that ∥T (δ)∥ ⩽ eωδ. For t ⩾ 0 there exists n ∈ N0 such
that nδ ⩽ t < (n+ 1)δ. The semigroup property (i) implies T (t) = T (t− nδ)T (δ)n, and
therefore

∥T (t)∥ ⩽ ∥T (t− nδ)∥∥T (δ)∥n ⩽Meωnδ ⩽Meωt.

1.4 Proposition. Let T be a C0-semigroup on X.
(a) Then there exist M ⩾ 0 and ω ∈ R such that

∥T (t)∥ ⩽Meωt (t ⩾ 0).

(b) For all x ∈ X the function [0,∞) ∋ t 7→ T (t)x ∈ X is continuous.
(c) If T is a C0-group on X, then there exist M ⩾ 0 and ω ∈ R such that

∥T (t)∥ ⩽Meω|t| (t ∈ R).

For all x ∈ X the function R ∋ t 7→ T (t)x ∈ X is continuous.
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Part (b) of the above proposition states that the function T is ‘strongly continuous’;
for the definition of this notion and more information we refer to Subsection 2.1.2.

Proof of Proposition 1.4. (a) In view of Lemma 1.3 it is sufficient to show that there exists
δ > 0 such that sup0⩽t<δ ∥T (t)∥ <∞. Assuming that there is no such δ, we can find a null
sequence (tn) such that ∥T (tn)∥ → ∞ as n → ∞. However, for all x ∈ X the sequence
(T (tn)x) is convergent (to x), by property (ii) of C0-semigroups. Therefore the uniform
boundedness theorem (see e.g. [Yos68; Sect. II.1, Corollary 1] or [Bre11; Theorem 2.2])
implies that supn∈N ∥T (tn)∥ <∞, a contradiction.
(b) Let x ∈ X, t > 0. Then T (t+h)x−T (t)x = T (t)(T (h)x−x) → 0 as h→ 0+, which

proves the right-sided continuity of T (·)x. In order to prove the left-sided continuity we
let −t ⩽ h < 0 and write T (t+ h)x− T (t)x = T (t+ h)(x− T (−h)x). Then we obtain

∥T (t+ h)x− T (t)x∥ ⩽
(
sup
0⩽s⩽t

∥T (s)∥
)
∥x− T (−h)x∥ → 0

as h→ 0−.
(c) First we show that, given x ∈ X, the orbit T (·)x is continuous. As the restriction

of T to [0,∞) is a C0-semigroup it follows from (b) that T (·)x is continuous on (0,∞).
Thus T (·)x = T (a)T (· − a)x is continuous on (a,∞) for all a ∈ R.
As a consequence, the function [0,∞) ∋ t 7→ T (−t) ∈ L(X) is a C0-semigroup, and

therefore satisfies an estimate as in (a). Putting the estimates for the C0-semigroups
t 7→ T (t) and t 7→ T (−t) together one obtains the asserted estimate.

In applications it is sometimes not immediately clear how to prove the strong conti-
nuity property (ii) of a one-parameter semigroup, whereas the boundedness condition of
Lemma 1.3 is easy to verify. The following condition is useful in such situations.

1.5 Lemma. Let T be a one-parameter semigroup on X. Assume that sup0⩽t⩽1 ∥T (t)∥ <
∞ and that there exists a dense subset D of X such that limt→0+ T (t)x = x for all x ∈ D.
Then T is a C0-semigroup.

This lemma is an immediate consequence of the next proposition, a fundamental fact of
operator theory.
Let X, Y be Banach spaces. We denote the space of bounded linear operators from

X to Y by L(X, Y ). (Writing L(X, Y ) we will always tacitly assume that the two
Banach spaces are over the same scalar field K ∈ {R,C}.) A sequence (Bn) in L(X, Y )
is called strongly convergent to B ∈ L(X, Y ), abbreviated B = s-limn→∞Bn, if Bx =
limn→∞Bnx for all x ∈ X. The uniform boundedness theorem implies that then the
sequence (Bn) is bounded.

1.6 Proposition. Let X, Y be Banach spaces, and let (Bn)n∈N be a bounded sequence in
L(X, Y ). Assume that the sequence (Bnx)n∈N is convergent for all x in a dense subset
of X.

Then Bx := limn→∞Bnx exists for all x ∈ X, and B : X → Y thus defined is an
operator B ∈ L(X, Y ). In other words, Bn → B strongly for some B ∈ L(X, Y ).

Proof. A standard ε/3-argument shows that (Bnx) is a Cauchy sequence in Y , for all
x ∈ X, and therefore convergent. The linearity and boundedness of B are then easy to
show.
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We note that in applications of this proposition, the limiting operator is often already
known, but the pointwise convergence is only known on a dense subset. (In the application
to Lemma 1.5, for instance, one has B = I.)
If Ω is a set and A ⊆ Ω, then 1A denotes the indicator function (also known as the

characteristic function) of A,

1A(x) :=

{
1 if x ∈ A,

0 if x ∈ Ω \ A.

1.7 Examples (Right translation on Lp(R), Lp(−∞, 0), Lp(0,∞) and Lp(0, 1),
for 1 ⩽ p < ∞). (a) On Lp(R): For t ∈ R we define T (t) ∈ L(Lp(R)) by

T (t)f(x) := f(x− t)
(
x ∈ R, f ∈ Lp(R)

)
.

It is clear that T (t) is an isometric isomorphism for all t ∈ R. Also, it is easy to show that
T is a one-parameter group. Let a, b ∈ R, a < b, and put f := 1[a,b]. Then it is easy to see
that T (t)f → f as t→ 0 (because p <∞). This carries over to all linear combinations of
such indicator functions. Now the linear span D of all these indicator functions is dense
in Lp(R). Therefore Lemma 1.5 implies that T is a C0-group.
(b) On Lp(−∞, 0): The operator T (t), for t ⩾ 0, is defined by

T (t)f(x) := f(x− t)
(
x ∈ (−∞, 0), f ∈ Lp(−∞, 0)

)
.

In this case the operators T (t) are not isometric for t > 0, but they satisfy ∥T (t)∥ = 1.
Again it is easy to see that T is a one-parameter semigroup (not a group), and as in (a)
one shows that T is a C0-semigroup.
(c) On Lp(0,∞): Denote by S the C0-semigroup of right translations on Lp(R), defined

in (a), but with time parameter t restricted to [0,∞). Consider Lp(0,∞) as the subspace{
f ∈ Lp(R) ; f |(−∞,0) = 0

}
of Lp(R). Clearly the semigroup operators S(t) leave this

subspace invariant, and therefore the restriction T of S to this subspace is a C0-semigroup.
The operator T (t) is isometric for all t ⩾ 0. However, T (t) is not surjective if t > 0.
(d) On Lp(0, 1): Analogously to part (b) one can define the C0-semigroup S of right

translations on Lp(−∞, 1). Similarly as in (c) one sees that S(t) leaves the subspace
Lp(0, 1) of Lp(−∞, 1) invariant, and therefore the restriction T of S to Lp(0, 1) is a
C0-semigroup. This semigroup has the property that ∥T (t)∥ = 1 for 0 ⩽ t < 1, and that
T (t) = 0 for t ⩾ 1. Because of the latter property it is called the nilpotent right translation
semigroup on Lp(0, 1). △

1.3 Interlude: operators, integration and differentiation

1.3.1 Operators

We have already indicated in Section 1.1 that, besides bounded linear operators between
normed spaces, one also needs linear operators defined on subspaces. One can (and should)
think of an operator A from X to Y as a linear mapping A : dom(A) → Y , where dom(A)
is a subspace of X. For some purposes, however, it is convenient to go back to the original
meaning of a mapping as a relation in X× Y possessing certain additional properties.
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Let X, Y be two vector spaces over the same field K ∈ {R,C}. For a linear relation
A in X× Y , i.e. a subspace of X× Y , we define the domain of A,

dom(A) := {x ∈ X ; there exists y ∈ Y such that (x, y) ∈ A},

the range of A,

ran(A) := {y ∈ Y ; there exists x ∈ X such that (x, y) ∈ A},

and the kernel (or null space) of A,

ker(A) := {x ∈ X ; (x, 0) ∈ A}.
The linear relation

A−1 := {(y, x) ; (x, y) ∈ A}

in Y × X is the inverse (relation) of A. If B is another linear relation in X × Y ,
satisfying A ⊆ B, then B is called an extension of A, and A a restriction of B. If the
spaces X and Y coincide and A is a linear relation in X ×X, then we will also call A a
linear relation in X.
In this setting, a linear operator from X to Y is a linear relation in X×Y satisfying

A ∩ ({0} × Y ) = {(0, 0)}.

Then for all x ∈ dom(A) there exists a unique y ∈ Y such that (x, y) ∈ A, and we will
write Ax = y. In this sense, A is also a mapping A : dom(A) → Y . As we will only
consider linear operators we will mostly drop ‘linear’ and simply speak of ‘operators’. If
the spaces X and Y coincide, then we call A an operator in X.
Next, let X and Y be Banach spaces. We define a norm on X× Y by

∥(x, y)∥X×Y := ∥x∥X + ∥y∥Y ((x, y) ∈ X× Y ),

which makes X × Y a Banach space. In this context an operator A from X to Y (or
a linear relation A ⊆ X × Y ) is called closed if A is a closed subset of X × Y . An
operator A from X to Y is closable if its closure A in X× Y is also an operator; we
refer to Exercises 1.2 and 1.3 for examples in which A is not an operator.
For a subspace D ⊆ dom(A), the restriction of A to D is the operator A|D :=

A ∩ (D × Y ). The set D is called a core for A if A is a restriction of the closure of A|D,
i.e. A ⊆ A|D .
Finally, if A and B are operators from X to Y , then the sum of A and B is the operator

defined by

dom(A+B) := dom(A) ∩ dom(B), (A+B)x := Ax+Bx (x ∈ dom(A+B)),

or, expressed differently,

A+B =
{
(x,Ax+Bx) ; x ∈ dom(A) ∩ dom(B)

}
⊆ X× Y.
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1.3.2 Integration of continuous functions

Let a, b ∈ R, a < b, and let X be a Banach space. We define the space of step functions
from [a, b] to X,

T ([a, b];X) := lin{1[s,t](·)x ; a ⩽ s ⩽ t ⩽ b, x ∈ X},

where 1[s,t](·)x denotes the function r 7→ 1[s,t](r)x and ‘lin’ denotes the linear span.
(The letter ‘T ’ stands for the German ‘Treppenfunktion’.) For f ∈ T ([a, b];X), f =∑n

j=1 1[sj ,tj ](·)xj, we define the integral∫ b

a

f(t) dt :=
n∑

j=1

(tj − sj)xj .

It is standard to show that this integral is well-defined, that the mapping f 7→
∫ b

a
f(t) dt

is linear, and that∥∥∥∥∫ b

a

f(t) dt

∥∥∥∥ ⩽
∫ b

a

∥f(t)∥ dt ⩽ (b− a) sup
a⩽t⩽b

∥f(t)∥
(
f ∈ T ([a, b];X)

)
. (1.1)

In short, the mapping T ([a, b];X) ∋ f 7→
∫ b

a
f(t) dt ∈ X is a bounded linear operator,

where T ([a, b];X) is provided with the supremum norm. This implies that there is a
unique continuous extension of the integral to functions in the closure of T ([a, b];X) in
the Banach space

ℓ∞([a, b];X) := {f : [a, b] → X ; f bounded},

provided with the supremum norm. We denote this closure by R([a, b];X) (the space
of ‘regulated functions’) and observe that R([a, b];X) contains the space of continuous
functions C([a, b];X). Moreover, the extension of the integral is linear, and the inequali-
ties (1.1) carry over to all f ∈ R([a, b];X). For X = R the functions in R([a, b];X) are
Riemann integrable, and the integral defined above is the Riemann integral.
Next we describe how operators act on integrals.

1.8 Theorem. Let X, Y be Banach spaces, and let a, b ∈ R, a < b.
(a) Let f : [a, b] → X be continuous, and let A ∈ L(X, Y ). Then

A

∫ b

a

f(t) dt =

∫ b

a

Af(t) dt.

(b) Let A be a closed operator from X to Y . Let f : [a, b] → X be continuous, f(t) ∈
dom(A) for all t ∈ [a, b], and t 7→ Af(t) ∈ Y continuous. Then

∫ b

a
f(t) dt ∈ dom(A), and

A

∫ b

a

f(t) dt =

∫ b

a

Af(t) dt.

Proof. (a) The equality is clear for step functions and carries over to continuous functions
(in fact, even to regulated functions) by continuous extension.
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(b) The hypotheses are just a complicated way of expressing that one is given a
continuous function t 7→ (f(t), g(t)) ∈ A ⊆ X× Y (where g(t) = Af(t)). Because A is a

closed subspace ofX×Y , and therefore a Banach space, it follows that
∫ b

a
(f(t), g(t)) dt ∈ A.

As the canonical projections from X× Y to X and to Y are bounded linear operators,
one concludes from part (a) that(∫ b

a

f(t) dt,

∫ b

a

g(t) dt
)
=

∫ b

a

(f(t), g(t)) dt ∈ A,

and this proves the assertions.

The last issue in this interlude is the connection between differentiation and integration,
i.e., the fundamental theorem of differential and integral calculus for Banach space valued
functions.

1.9 Theorem. Let X be a Banach space, and let a, b ∈ R, a < b.
(a) Let f : [a, b] → X be continuous,

F (t) :=

∫ t

a

f(s) ds (a ⩽ t ⩽ b).

Then F is continuously differentiable, and F ′ = f .
(b) Let g : [a, b] → X be continuously differentiable. Then∫ b

a

g′(t) dt = g(b)− g(a). (1.2)

Proof. (a) is proved in the same way as for scalar-valued functions; cf. Exercise 1.7(a).
(b) For η ∈ X ′ (= L(X,K), the dual space of X) the function η ◦ g is continuously

differentiable, and one has (η ◦ g)′ = η ◦ g′. The fundamental theorem of differential and
integral calculus for K-valued functions then implies that

η
(∫ b

a

g′(t) dt
)
=

∫ b

a

η(g′(t)) dt =

∫ b

a

(η ◦ g)′(t) dt

= (η ◦ g)(b)− (η ◦ g)(a) = η
(
g(b)− g(a)

)
.

As this holds for all η ∈ X ′, equation (1.2) follows from an application of the theorem of
Hahn–Banach (see e.g. [Bre11; Section 1.1] or [Voi20; Appendix A]).

1.4 The generator of a C0-semigroup

Let X be a Banach space. For a C0-semigroup T on X we define the generator (also
called the infinitesimal generator) A, an operator in X, by

A :=
{
(x, y) ∈ X ×X ; 1

h
(T (h)x− x) → y (h→ 0+)

}
.

In other words, since T (0)x = x, the domain of A consists of those x ∈ X for which the
orbit t 7→ T (t)x is (right-sided) differentiable at t = 0, and the image of x under A is the
derivative of this orbit at t = 0.
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1.10 Example. If A ∈ L(X), then A is the generator of the C0-group (etA)t∈R; see
Example 1.2 and Exercise 1.1. △

Similarly to the property that for the exponential function t 7→ eta the derivative a at 0
determines the function, we will see that the generator determines the C0-semigroup.
First we derive some fundamental properties of the generator.

1.11 Theorem. Let T be a C0-semigroup on X, with generator A. Then:
(a) For x ∈ dom(A) one has T (t)x ∈ dom(A) for all t ⩾ 0, the function t 7→ T (t)x is

continuously differentiable on [0,∞), and

d

dt
T (t)x = AT (t)x = T (t)Ax (t ⩾ 0).

(b) For all x ∈ X, t ⩾ 0 one has
∫ t

0
T (s)x ds ∈ dom(A),

A

∫ t

0

T (s)x ds = T (t)x− x.

(c) dom(A) is dense in X, and A is a closed operator.

Before the proof we insert a small fact on strong convergence of operators.

1.12 Lemma. Let X, Y be Banach spaces, and let (Bn) be a sequence in L(X, Y ),
Bn → B ∈ L(X, Y ) strongly as n→ ∞. Let (xn) in X, xn → x ∈ X as n→ ∞.
Then Bnxn → Bx as n→ ∞.

Proof. The uniform boundedness theorem implies thatM := supn∈N ∥Bn∥ <∞. Therefore

∥Bx−Bnxn∥ ⩽ ∥Bx−Bnx∥+ ∥Bn(x− xn)∥
⩽ ∥Bx−Bnx∥+M∥x− xn∥ → 0 (n→ ∞).

Proof of Theorem 1.11. (a) For t ⩾ 0, h > 0 one has

1

h

(
T (t+ h)x− T (t)x

)
=

1

h
(T (h)− I)T (t)x = T (t)

1

h
(T (h)x− x).

As h→ 0, the third of these expressions converges to T (t)Ax. Looking at the second term
one obtains T (t)x ∈ dom(A), and looking at the first term one concludes that t 7→ T (t)x
is right-sided differentiable, with right-sided derivative( d

dt

)
r
T (t)x = AT (t)x = T (t)Ax.

On the other hand, let t > 0, h ∈ (0, t). Then

1

−h
(
T (t− h)x− T (t)x

)
= T (t− h)

1

h

(
T (h)x− x

)
,

and this converges to T (t)Ax as h→ 0, by Lemma 1.12.
So we have shown that the continuous function t 7→ AT (t)x = T (t)Ax is the derivative

of t 7→ T (t)x.
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(b) For t ⩾ 0 we put f(t) :=
∫ t

0
T (s)x ds. Then Theorem 1.8(a) implies

T (h)f(t) =

∫ t

0

T (s+ h)x ds =

∫ t+h

h

T (s)x ds = f(t+ h)− f(h)

for all h ⩾ 0 (where we have used basic rules of the Riemann integral that are easily
seen to be valid for Banach space valued functions as well). By Theorem 1.9(a) it
follows that d

dh
T (h)f(t)|h=0 = f ′(t)− f ′(0) = T (t)x− x. Thus we obtain f(t) ∈ dom(A),

Af(t) = T (t)x− x.

(c) Let x ∈X. Then h−1
∫ h

0
T (s)x ds ∈ dom(A) for all h > 0, by part (b). Theorem 1.9(a)

implies that h−1
∫ h

0
T (s)x ds→ x (h→ 0+). This shows that dom(A) is dense in X.

Let
(
(xn, yn)

)
n∈N be a sequence in A, (xn, yn) → (x, y) in X ×X. From part (a) and

Theorem 1.9(b) we obtain

T (t)xn − xn =

∫ t

0

T (s)Axn ds

for all t > 0, n ∈ N. For n→ ∞ we conclude that

T (t)x− x =

∫ t

0

T (s)y ds,

and then
1

t
(T (t)x− x) =

1

t

∫ t

0

T (s)y ds→ y (t→ 0+).

This shows that (x, y) ∈ A.

Theorem 1.11(a) implies in particular that the function t 7→ T (t)x solves the initial
value problem u′ = Au, u(0) = x. We now show that this solution is unique and conclude
that the generator determines the C0-semigroup.

1.13 Theorem. Let T be a C0-semigroup on X, with generator A.
(a) Let b ∈ (0,∞], and let u : [0, b) → X be continuous, u(t) ∈ dom(A) for all t ∈ (0, b),

u differentiable on (0, b), and u′(t) = Au(t) for all t ∈ (0, b). Then u(t) = T (t)u(0) for
all t ∈ [0, b).

(b) Let S be a C0-semigroup on X, with generator B ⊇ A. Then S = T , B = A.

Proof. (a) Let 0 < t < b. Lemma 1.12 implies that the function [0, t] ∋ s 7→ T (t− s)u(s) ∈
X is continuous, and it is not difficult to see that this function is differentiable on (0, t],
with derivative

d

ds
T (t− s)u(s) = −T (t− s)Au(s) + T (t− s)u′(s) = 0

(a kind of product rule; see Exercise 1.8). Therefore Theorem 1.9(b) yields

T (t)u(0) = lim
s→0+

T (t− s)u(s) = T (t− t)u(t) = u(t).

(b) Let x ∈ dom(A), and put u(t) := T (t)x (t ⩾ 0). Then u satisfies the equation
u′(t) = Au(t) = Bu(t) (t ⩾ 0). From part (a) it follows that u(t) = S(t)u(0) = S(t)x
for all t ⩾ 0. This shows that S(t) = T (t) on dom(A). As dom(A) is dense in X one
obtains S(t) = T (t) for all t ⩾ 0. The equality of the semigroups implies equality of the
generators.
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If A is the generator of a C0-semigroup T , then sometimes one uses the notation
etA := T (t) (t ⩾ 0), analogously to the case when A ∈ L(X).

1.14 Remark. In Theorems 1.11 and 1.13 we have established important properties of
C0-semigroups and their generators which we summarise as follows, putting them into the
context of ‘well-posedness’. Let A be the generator of a C0-semigroup T . Then the initial
value problem (also called Cauchy problem)

u′(t) = Au(t) (t ⩾ 0), u(0) = x ∈ dom(A)

is well-posed, i.e., (i) it possesses a unique solution (given by u(t) = T (t)x), and (ii) the
solution depends continuously on the initial value, which in the present (linear) case is
expressed by sup0⩽t⩽b ∥u(t)∥ ⩽ sup0⩽t⩽b ∥T (t)∥∥x∥ for all b ∈ (0,∞).
These properties also serve as a motivation to characterise operators that are generators;

see Chapter 2. △

For determining the generators of the C0-semigroups described in Examples 1.7 the
following result will be useful.

1.15 Proposition (Nelson’s lemma). Let T be a C0-semigroup on X, and let A be
its generator. Let D be a subspace of dom(A) that is dense in X, and assume that D is
invariant under T (i.e. T (t)(D) ⊆ D for all t ⩾ 0).

Then D is a core for A.

Proof. Let x ∈ dom(A). We have to show that (x,Ax) ∈ A|D .
Let (xn) be a sequence in D, xn → x in X as n→ ∞. Let n ∈ N, t > 0. The function

[0, t] ∋ s 7→
(
T (s)xn, AT (s)xn

)
∈ A|D is continuous; therefore (recall Theorem 1.11(a) and

Theorem 1.9(b) for the first equality)(∫ t

0

T (s)xn ds, T (t)xn − xn

)
=

(∫ t

0

T (s)xn ds,

∫ t

0

AT (s)xn ds
)

=

∫ t

0

(
T (s)xn, AT (s)xn

)
ds ∈ A|D .

Letting n→ ∞ we conclude that(∫ t

0

T (s)x ds, T (t)x− x
)
∈ A|D .

Dividing by t and taking the limit t→ 0+ we obtain (x,Ax) ∈ A|D .

1.16 Example. Let T be the C0-group of right translations on Lp(R) (introduced in
Example 1.7(a)), and let A be its generator. It is not difficult to show that D := C1

c (R)
(the continuously differentiable functions with compact support) is a subspace of dom(A),
and Af = −f ′ for all f ∈ C1

c (R). Also C1
c (R) is obviously invariant under T , and is a

dense subspace of Lp(R). Thus D is a core for A, by Proposition 1.15. For the reader
familiar with Sobolev spaces: this implies that dom(A) =W 1

p (R). For p = 2 we refer to
Example 4.18(a).
We refer to Exercise 1.5 for the case of translation semigroups on spaces of continuous

functions. △
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Notes

The classical treatise on one-parameter semigroups is the monograph by Hille and Phillips
[HiPh57]. The notion ‘C0-semigroup’ goes back to Phillips [Phi55]; in [HiPh57; Sec-
tion 10.6] it is put into context with other properties of one-parameter semigroups. In
those days other continuity conditions were also considered, for instance

1

t

∫ t

0

T (s)x ds→ x (t→ 0)

for all x ∈ X, which leads to ‘C1-semigroups’.
Many authors use the terminology ‘strongly continuous semigroup’ instead of C0-

semigroup. However, in Chapter 13 we will encounter semigroups T that are strongly
continuous at the origin, while T (0) is not necessarily the identity. For this reason we
prefer the terminology ‘C0-semigroup’. Here is a – by far incomplete – list of books on
C0-semigroups: [Dav80], [Paz83], [Gol85], [Nag86], [EnNa00].
The idea of using semigroup invariance to establish a core property, as in Proposition 1.15,

is due to Nelson: in [Nel59; proof of Lemma 5.1] he implemented this idea for unitary
C0-groups on Hilbert spaces.
A core can also be seen as a ‘space of uniqueness’. In fact, given a subspace D of the

domain dom(A) of the generator A of a C0-semigroup the following holds. If D is a core
for A, then Theorem 1.13(b) implies that A is the only extension of A|D generating a
C0-semigroup, whereas there are infinitely many such extensions if D is not a core; see
[Nag86; Chap. A-II, Theorem 1.33].
The concept of well-posedness that we have introduced in Remark 1.14 is generally

attributed to Jacques Hadamard. Indeed, in [Had02] Hadamard discussed problems
for the Laplace equation and the wave equation, and he investigated whether they are
“parfaitement bien posé” (perfectly well posed), by which he meant that they are “possible”
and “déterminé” (i.e. the solution exists and is unique). Only much later, in [Had23; §19,
p. 35], he discussed continuous dependence on the initial data, for the wave equation.
To our knowledge, the three properties of existence, uniqueness and continuous depen-

dence were summed up to one notion for the first time in the book [CoHi37; Chap. III,
§7] by Courant and Hilbert. For a problem from mathematical physics to be “properly
posed” they set “the following basic requirements:

(1) The solution must exist.

(2) The solution should be uniquely determined.

(3) The solution should depend continuously on the data (requirement of stability).”

(Our quotation is from the English edition [CoHi62; Chap. III, §6].) In many cases the
converse of (3) is obvious, namely that the data depend continuously on the solution.
Then, for linear problems, continuous dependence of the solution on the data follows
automatically from existence and uniqueness, by the bounded inverse theorem (see e.g.
[Yos68; Section II.5] or [Bre11; Corollary 2.7] for this theorem).
We refer to [Goc16; Section 2.3.3], [MaSh98; Section 15.1] and [MaSc65] for more

information on well-posedness and on Hadamard’s contributions concerning this topic. In
Chapter 19 we will investigate some nonlinear problems that are not well-posed.
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Equations that involve time are frequently called evolution equations ; the idea is that
the solution evolves in time from a given initial value. In this context, an autonomous
driving mechanism and well-posedness together with linearity lead naturally to the concept
of a C0-semigroup. In this book we will see that many physical evolutionary problems are
well-posed and yield a semigroup. So, Hille’s famous sentence from the foreword of his
monograph [Hil48] from 1948 will be confirmed: “I hail a semi-group when I see one and I
seem to see them everywhere!”

Exercises

1.1 Let X be a Banach space, and let A,B ∈ L(X) satisfy AB = BA.
(a) Show that eA :=

∑∞
j=0

1
j!
Aj is absolutely convergent in L(X), ∥eA∥ ⩽ e∥A∥, and that

eA+B = eAeB = eBeA.
(b) Show that t 7→ etA is a one-parameter group, that the function is continuously

differentiable as an L(X)-valued function, and that d
dt
etA = AetA for all t ∈ R. (In

particular, A is the generator of (etA)t∈R.)
(c) Show that ezI = ezI for all z ∈ K.

1.2 Let x0 ∈ [0, 1], and define the operator A from L2(0, 1) to K by dom(A) := C[0, 1],

Af := f(x0) (f ∈ C[0, 1]).

Show that A = L2(0, 1)×K. (Thus A is not closable.)

1.3 Let X and Y be Banach spaces.
(a) Let A be an operator from X to Y . Show that A is closable if and only if for every

null sequence (xn) in dom(A) for which (Axn) is convergent one has limn→∞Axn = 0.
(b) Let (xn) be a linearly independent null sequence inX, and let (yn) be a sequence in Y

converging to some element y ̸= 0 in Y . Define an operator A from X to Y by extending
the assignments Axn := yn for all n ∈ N by linearity to dom(A) := lin{x1, x2, . . . }. Show
that the operator A is not closable.

1.4 For a locally compact subset G of Rn we define Cc(G) := {f ∈ C(G) ; spt f compact}.
(Here C(G) denotes the space of continuous K-valued functions, and the support of f

is defined by spt f := [f ̸= 0]
G
, where [f ̸= 0] := {x ∈ G ; f(x) ̸= 0}. We recall that a

topological space is called locally compact if every point possesses a compact neighbour-
hood. Local compactness is not needed for solving this exercise; it is required because the
notation Cc and C0 is only common for locally compact spaces.)
The space C0(G) is defined as the closure of Cc(G) in Cb(G) (the space of bounded

continuous functions, provided with the supremum norm).
(a) Show that every function in C0(G) is uniformly continuous.
(b) Show that

C0(G) =
{
f ∈ C(G) ; ∀ε > 0: [|f | ⩾ ε] compact

}
(where [|f | ⩾ ε] := {x ∈ G ; |f(x)| ⩾ ε}).
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Hint: For the inclusion ⊇ show first that it is sufficient to treat the case of real-valued
functions. Then approximate real-valued functions f by max{f − ε, 0}+min{f + ε, 0}.
(c) Show that

C0(−∞, 0] =
{
f ∈ C(−∞, 0] ; lim

x→−∞
f(x) = 0

}
and that C0(0, 1] ∼= {f ∈ C[0, 1] ; f(0) = 0}.

1.5 (a) Convince yourself that analogously to Example 1.7 one can define the one-
parameter semigroup T of right translations on each of the spaces C0(R), C0(−∞, 0],
C0(0,∞), C0(0, 1] (defined in Exercise 1.4), and show that T is a C0-semigroup.
(b) Show that the generator A of T on C0(R) is given by

dom(A) =
{
f ∈ C1(R) ; f, f ′ ∈ C0(R)

}
, Af = −f ′.

(c) Show that the generator A of T on C0(0, 1] is given by

dom(A) =
{
f ∈ C1(0, 1] ; f, f ′ ∈ C0(0, 1]

}
, Af = −f ′.

1.6 Let (Ω,A, µ) be a measure space, and let 1 ⩽ p <∞. Let a : Ω → K be a measurable
function.
(a) The maximal multiplication operator Ma induced by the function a is defined

by
Ma =

{
(f, g) ∈ Lp(µ)× Lp(µ) ; g = af

}
.

Show that Ma is closed and densely defined.
(b) Assume additionally that Re a(x) ⩽ 0 (x ∈ Ω). For t ⩾ 0 define T (t) ∈ L(Lp(µ)) by

T (t)f := etaf (f ∈ Lp(µ)).

Show that T is a C0-semigroup on Lp(µ) and that Ma is the generator of T .

1.7 Let X be a Banach space.
(a) Let f : [0, 1] → X be continuous. Show that limh→0+ h

−1
∫ h

0
f(t) dt = f(0). (This is

the main step for proving Theorem 1.9(a).)
(b) Let T be a C0-semigroup on X that is continuous with respect to the operator norm.

Show that then the generator A of T is an operator A ∈ L(X).
Hint: Show that, for small t, the operator

∫ t

0
T (s) ds is invertible in L(X); this is a

consequence of the Neumann series, which we will recall in Remark 2.3(a). Note that
Theorem 1.11(b) implies that the operator x 7→ A

∫ t

0
T (s)x ds belongs to L(X).

1.8 Let X be a Banach space, and let T be a C0-semigroup on X with generator A.
Let I ⊆ [0,∞) be an interval, let u : I → X be differentiable at some point t0 ∈ I, and
suppose that u(t0) ∈ dom(A). Show that the function I ∋ t 7→ T (t)u(t) is differentiable
at t0, with derivative AT (t0)u(t0) + T (t0)u

′(t0) = T (t0)(Au(t0) + u′(t0)).





Chapter 2

Characterisation of generators of
C0-semigroups

Generators of C0-semigroups have special spectral properties. We will study these prop-
erties in Section 2.2 and use them to characterise generators of C0-semigroups in the
Hille–Yosida theorem, the main result of this chapter. The exponential formula for C0-
semigroups presented in Section 2.3 will be important for applications. We start with an
interlude on spectral theory of operators as well as on more facts about integration.

2.1 Interlude: the resolvent of operators, and some more
integration

2.1.1 Resolvent set, spectrum and resolvent

Let X be a Banach space over K, and let A be an operator in X.

We define the resolvent set of A,

ρ(A) :=
{
λ ∈ K ; λI − A : dom(A) → X bijective, (λI − A)−1 ∈ L(X)

}
.

The mapping

R(·, A) : ρ(A) → L(X), λ 7→ R(λ,A) := (λI − A)−1

is called the resolvent of A. The spectrum of A is the set

σ(A) := K \ ρ(A).

2.1 Remarks. (a) If ρ(A) ̸= ∅ and λ ∈ ρ(A), then (λI − A)−1 ∈ L(X) is closed – note
that every operator belonging to L(X) is closed. Hence λI −A is closed, and therefore A
is closed, by the reasoning presented subsequently in part (b).

(b) If A is a closed operator and B ∈ L(X), then the sum A+B is a closed operator.
Indeed, if

(
(xn, yn)

)
is a sequence in A+B, (xn, yn) → (x, y) in X ×X as n→ ∞, then

Bxn → Bx, and therefore Axn = (A+B)xn −Bxn → y −Bx, and the hypothesis that
A is closed implies that (x, y −Bx) ∈ A, i.e., x ∈ dom(A) and y = Ax+Bx.
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(c) Let A be a closed operator. Assume that λ ∈ K is such that λI −A : dom(A) → X
is bijective. Then the inverse (λI −A)−1 is a closed operator which is defined on all of X.
Therefore the closed graph theorem (see e.g. [Yos68; Sect. II.6, Theorem 1] or [Bre11;
Theorem 2.9]) implies that (λI − A)−1 ∈ L(X). It follows that

ρ(A) = {λ ∈ K ; λI − A : dom(A) → X bijective}.

(d) Usually, in treatments of operator theory, the above notions are only defined for the
case of complex Banach spaces, because many important results of spectral theory depend
on complex analysis of one variable. For our purpose it is – for the moment – possible
and convenient to include the case of real scalars. △

Before proceeding we include a piece of notation that will be used in different contexts.
If (M,d) is a metric space, x ∈M and r ∈ (0,∞], then

B(x, r) := {y ∈M ; d(y, x) < r} and B[x, r] := {y ∈M ; d(y, x) ⩽ r}

are the open ball and closed ball with centre x and radius r, respectively. If necessary,
we may also write BM (x, r) and BM [x, r] for making it clear in which metric space we are.

The following theorem contains the basic results concerning the resolvent.

2.2 Theorem. Let A be a closed operator in X.
(a) If λ ∈ ρ(A), x ∈ dom(A), then AR(λ,A)x = R(λ,A)Ax.
(b) For all λ, µ ∈ ρ(A) one has the resolvent equation

R(λ,A)−R(µ,A) = (µ− λ)R(µ,A)R(λ,A); (2.1)

in particular, the resolvents R(µ,A), R(λ,A) commute.
(c) For λ ∈ ρ(A) one has B

(
λ, 1

∥R(λ,A)∥

)
⊆ ρ(A), and for µ ∈ B

(
λ, 1

∥R(λ,A)∥

)
one has

R(µ,A) =
∞∑
n=0

(λ− µ)nR(λ,A)n+1. (2.2)

As a consequence, ρ(A) is an open subset of K, and R(·, A) : ρ(A) → L(X) is analytic
(i.e. R(·, A) can be written as a power series about every point of ρ(A)).

2.3 Remarks. (a) For the proof of Theorem 2.2 we recall the Neumann series: if
B ∈ L(X) satisfies ∥B∥ < 1, then I −B is invertible in L(X), and the inverse is given by
(I −B)−1 =

∑∞
n=0B

n, with absolute convergence of the series.
(b) Let A ∈ L(X). Then part (a) implies that λI − A = λ

(
I − 1

λ
A
)
is invertible in

L(X) for all λ ∈ K with |λ| > ∥A∥, with inverse

(λI − A)−1 =
∞∑
n=0

1

λn+1
An.

As a consequence, {λ ∈ K ; |λ| > ∥A∥} ⊆ ρ(A). △



17

Proof of Theorem 2.2. (a) AR(λ,A)x− λR(λ,A)x = −x = R(λ,A)Ax−R(λ,A)λx.
(b) Multiplying the identity

(µI − A)− (λI − A) = (µ− λ)I |dom(A)

from the right by R(λ,A) and from the left by R(µ,A), one obtains the resolvent equation.
(c) Let λ ∈ ρ(A) and µ ∈ B

(
λ, 1

∥R(λ,A)∥

)
. Then the operator I − (λ − µ)R(λ,A) is

invertible in L(X) since |λ− µ|∥R(λ,A)∥ < 1 (Neumann series). Therefore the identity

µI − A = (λI − A)− (λ− µ)I =
(
I − (λ− µ)R(λ,A)

)
(λI − A)

shows that the mapping µI − A : dom(A) → X is bijective, with inverse

(µI − A)−1 = R(λ,A)
(
I − (λ− µ)R(λ,A)

)−1 ∈ L(X).

Hence µ ∈ ρ(A), and the formula (2.2) for the resolvent is a consequence of the Neumann
series. It follows that ρ(A) is an open subset of K and that R(·, A) is analytic.

2.4 Remarks. (a) Theorem 2.2(c) shows that ∥R(λ,A)∥ ⩾ dist(λ, σ(A))−1 for all λ ∈ ρ(A).
Therefore the norm of the resolvent has to blow up if λ approaches σ(A).

(b) As in first year analysis, the analyticity of R(·, A) implies that R(·, A) is infinitely
differentiable, and from the power series (2.2) one can read off the derivatives,( d

dλ

)n
R(λ,A) = (−1)n n!R(λ,A)n+1 (λ ∈ ρ(A), n ∈ N0). △

2.1.2 Integration of operator-valued functions, and improper integrals

2.5 Proposition. Let X, Y be Banach spaces, a, b ∈ R, a < b. Let F : [a, b] → L(X, Y )
be strongly continuous. Then the mapping

X ∋ x 7→
∫ b

a

F (t)x dt ∈ Y

belongs to L(X, Y ) and has norm less or equal
∫ b

a
∥F (t)∥ dt.

Some comments: strongly continuous means that t 7→ F (t)x is continuous for all
x ∈ X. (In other words, it means that F is continuous with respect to the strong
operator topology on L(X, Y ), which is defined as the initial topology with respect to
the family of mappings

(
L(X, Y ) ∋ A 7→ Ax ∈ Y

)
x∈X .) It will be part of the proof that

the function ∥F (·)∥ is bounded and measurable.

Proof of Proposition 2.5. (i) First we observe that, in view of the uniform boundedness
theorem, the boundedness of {∥F (t)x∥ ; t ∈ [a, b]} for all x ∈ X implies that {∥F (t)∥ ;
t ∈ [a, b]} is bounded.
Next, one easily sees that the set {t ∈ [a, b] ; ∥F (t)∥ ⩽ α} is closed for all α ∈ R, and

this shows that ∥F (·)∥ is measurable. (For completeness, we mention that the previous
property is called lower semi-continuity of ∥F (·)∥.)
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(ii) The linearity of the mapping x 7→
∫ b

a
F (t)x dt is obvious. For x ∈ X we estimate∥∥∥∥∫ b

a

F (t)x dt

∥∥∥∥ ⩽
∫ b

a

∥F (t)x∥ dt ⩽
∫ b

a

∥F (t)∥ dt ∥x∥,

and this establishes the asserted norm estimate.

Abbreviating, we will write
∫ b

a
F (t) dt for the mapping defined in Proposition 2.5. This

integral is called the strong integral; one has to keep in mind that, in general, it is not
the integral of an L(X, Y )-valued function as treated in Subsection 1.3.2.
We will also need ‘improper integrals’ of continuous Banach space valued functions. For

simplicity we restrict our attention to integrals over [0,∞) (because this is what will be
needed next).

2.6 Proposition. Let X be a Banach space, let f : [0,∞) → X be continuous, and assume
that the function [0,∞) ∋ t 7→ ∥f(t)∥ is integrable. Then∫ ∞

0

f(t) dt := lim
a→∞

∫ a

0

f(t) dt

exists.

We omit the (easy) proof of this proposition and mention that Proposition 2.5 has its
analogue for improper integrals.

2.2 Characterisation of generators of C0-semigroups

In this section let X be a Banach space.

2.7 Theorem. Let T be a C0-semigroup on X, and let A be its generator. Let M ⩾ 1,
ω ∈ R be such that

∥T (t)∥ ⩽Meωt (t ⩾ 0)

(cf. Proposition 1.4(a)).
Then {λ ∈ K ; Reλ > ω} ⊆ ρ(A), and for all λ ∈ K with Reλ > ω one has

R(λ,A) =

∫ ∞

0

e−λtT (t) dt (strong improper integral; see Subsection 2.1.2),

∥R(λ,A)n∥ ⩽
M

(Reλ− ω)n
(n ∈ N). (2.3)

The formula for the resolvent in this theorem means that λ 7→ R(λ,A) is the Laplace
transform of the semigroup; see [ABHN11; Chapter 2].
In the proof we will use the concept of rescaling. If T is a C0-semigroup on X with

generator A, λ ∈ K, and one defines

Tλ(t) := e−λtT (t) (t ⩾ 0),

then Tλ is also a C0-semigroup, called a rescaled semigroup, and the generator of Tλ is
given by A− λI; see Exercise 2.1.
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Proof of Theorem 2.7. Let λ ∈ K, Reλ > ω. Observe that the rescaled semigroup Tλ
satisfies the estimate

∥Tλ(t)∥ ⩽Me(ω−Reλ)t (t ⩾ 0)

and that the resolvent of A at λ corresponds to the resolvent of A− λI at 0. Thus for
the proof of λ ∈ ρ(A) and of the formula for the resolvent we can assume without loss of
generality that ω < 0 and λ = 0.

The estimate ∥T (t)∥ ⩽Meωt (t ⩾ 0) implies that the strong improper integral

R :=

∫ ∞

0

T (t) dt

defines an operator R ∈ L(X). On the one hand, for all x ∈ dom(A) we have

RAx =

∫ ∞

0

T (t)Ax dt = lim
a→∞

∫ a

0

d

dt
T (t)x dt = lim

a→∞
(T (a)x− x) = −x.

On the other hand, if x ∈ X, then by Theorem 1.11(b) we obtain A
∫ a

0
T (t)x dt =

T (a)x− x→ −x as a→ ∞. Since
∫ a

0
T (t)x dt→ Rx as a→ ∞ and A is closed, it follows

that Rx ∈ dom(A), ARx = −x. Thus we have proved the two equalities RA = −I |dom(A)

and AR = −I, which imply that 0 ∈ ρ(A) and R(0, A) = (−A)−1 = R.

For the powers of R(λ,A) we now obtain (recall Remark 2.4(b))

R(λ,A)n = (−1)n−1 1

(n− 1)!

( d

dλ

)n−1
∫ ∞

0

e−λtT (t) dt

=
1

(n− 1)!

∫ ∞

0

tn−1e−λtT (t) dt.

(2.4)

(The last equality is obtained by differentiation under the integral; we delegate the details
to Exercise 2.2. See also the subsequent Remark 2.8.) By Proposition 2.5 we conclude
that

∥R(λ,A)n∥ ⩽
1

(n− 1)!
M

∫ ∞

0

tn−1e(ω−Reλ)t dt

=
1

(n− 1)!
M

( d

dω

)n−1
∫ ∞

0

e(ω−Reλ)t dt

=
1

(n− 1)!
M

( d

dω

)n−1 1

Reλ− ω
=

M

(Reλ− ω)n
.

2.8 Remark. We will mainly be interested in C0-semigroups satisfying the estimate of
Proposition 1.4(a) with M = 1, in which case the semigroup is called quasi-contractive.
For such C0-semigroups it is sufficient to prove the resolvent estimate (2.3) in Theorem 2.7
for n = 1 (because then taking powers one obtains the estimate for all n ∈ N). Note that
for n = 1 the second equality in (2.4) is trivial.

The resolvent estimate (2.3) can also be proved by a reduction to the case of a con-
tractive C0-semigroup T , i.e. ∥T (t)∥ ⩽ 1 for all t ⩾ 0; cf. Exercise 2.3. △
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Next we show that the necessary conditions for the generator we have derived so far
are also sufficient. We restrict ourselves to the quasi-contractive case and delegate the
proof of the general case to Exercise 2.5.

2.9 Theorem (Hille–Yosida, quasi-contractive case). Let A be a closed, densely
defined operator in X. Assume that there exists ω ∈ R such that (ω,∞) ⊆ ρ(A) and

∥R(λ,A)∥ ⩽
1

λ− ω
(λ ∈ (ω,∞)).

Then A is the generator of a C0-semigroup T satisfying the estimate

∥T (t)∥ ⩽ eωt (t ⩾ 0).

As a preliminary remark we note that it is sufficient to treat the case ω = 0. Indeed,
Ã := A − ωI satisfies the conditions of Theorem 2.9 with ω = 0. Having obtained the
contractive C0-semigroup T̃ with generator Ã one obtains the C0-semigroup generated by
A = Ã+ ωI as the rescaled semigroup T̃−ω.
We now define the Yosida approximations

An := A
(
I − 1

n
A
)−1

= nAR(n,A) = n2R(n,A)− nI ∈ L(X) (n ∈ N)

of A. The proof of Theorem 2.9 will consist of three steps:

In the first step we show that the operators An generate contractive semigroups.
In the second step we show that these semigroups converge strongly to a C0-semigroup.
In the third step we show that A is the generator of the limiting semigroup.

Before proceeding with the proof we explain why the operators An can be considered as
approximations of A; note that the operator occurring in part (b) of the following lemma
equals An for λ = n ∈ N.

2.10 Lemma. Let A be a closed, densely defined operator in X. Assume that there exists
λ0 ⩾ 0 such that (λ0,∞) ⊆ ρ(A) and M := supλ>λ0

∥λR(λ,A)∥ <∞. Then:
(a) λR(λ,A)x→ x (λ→ ∞) for all x ∈ X.
(b) A

(
λR(λ,A)

)
x→ Ax (λ→ ∞) for all x ∈ dom(A).

Proof. (a) If x ∈ dom(A), then

λR(λ,A)x = (λI − A+ A)R(λ,A)x = x+R(λ,A)Ax→ x (λ→ ∞).

As ∥λR(λ,A)∥ ⩽ M for all λ > λ0 and dom(A) is dense in X, the convergence carries
over to all x ∈ X, by Proposition 1.6.
(b) For x ∈ dom(A) the convergence proved in part (a) implies

A
(
λR(λ,A)

)
x = λR(λ,A)Ax→ Ax (λ→ ∞).

IfX is a reflexive Banach space, then the denseness hypothesis for dom(A) in Lemma 2.10
can be omitted because it follows from the remaining hypotheses; see Exercise 2.7.
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Proof of Theorem 2.9. Recall that, without loss of generality, we only treat the case ω = 0.
(i) For n ∈ N, t ⩾ 0 we obtain the estimate∥∥etAn

∥∥ =
∥∥etn2R(n,A)e−tnI

∥∥ ⩽ etn
2∥R(n,A)∥e−tn ⩽ 1.

For this computation recall Exercise 1.1(a), and note that ∥R(n,A)∥ ⩽ 1
n because ω = 0.

(ii) For x ∈ X, t > 0 and m,n ∈ N we compute

etAmx− etAnx =

∫ t

0

d

ds

(
e(t−s)AnesAmx

)
ds =

∫ t

0

e(t−s)An(Am − An)e
sAmx ds

=

∫ t

0

e(t−s)AnesAm(Am − An)x ds,

where in the last equality we have used the fact that Am, An as well as the generated
semigroups commute. Thus by step (i) we obtain the estimate∥∥etAmx− etAnx

∥∥ ⩽ t
∥∥(Am − An)x

∥∥. (2.5)

Let a > 0. For n ∈ N we define the operator T a
n : X → C([0, a];X) by

T a
n x :=

[
t 7→ etAnx

]
(x ∈ X)

(where C([0, a];X) denotes the Banach space of continuous X-valued functions, provided
with the supremum norm). Then step (i) shows that T a

n is a contraction, and inequality
(2.5) shows that∥∥T a

mx− T a
n x

∥∥ ⩽ a∥Amx− Anx∥ (x ∈ X, m, n ∈ N).

For x ∈ dom(A) this implies that (T a
n x)n∈N is a Cauchy sequence, because (Anx)n∈N is

convergent (to Ax), by Lemma 2.10(b). Applying Proposition 1.6 we conclude that there
exists T a ∈ L

(
X,C([0, a];X)

)
such that T a

n → T a strongly as n→ ∞.
Clearly, if 0 < a < b, then T bx|[0,a] = T ax for all x ∈ X, and therefore we can define

T : [0,∞) → L(X) by

T (t)x := T ax(t) (0 ⩽ t ⩽ a, x ∈ X).

From T (·)x|[0,a] = T ax (a > 0, x ∈ X) we infer that T is strongly continuous. Clearly

T (0) = I. Taking the strong limit n → ∞ in e(t+s)An = etAnesAn (t, s ⩾ 0) we see that
T is a one-parameter semigroup (recall Lemma 1.12). Altogether, T is a contractive
C0-semigroup.
(iii) Let B be the generator of T . Let x ∈ dom(A). Using the notation of step (ii), with

a := 1, we see that T 1
n x→ T 1x and (T 1

n x)
′ = T 1

nAnx→ T 1Ax in C([0, 1];X) as n→ ∞
(recall Lemma 1.12). This implies that T (·)x|[0,1] = T 1x is differentiable with continuous
derivative T 1Ax, and therefore x ∈ dom(B) and Bx = Ax.
So far we have shown that A ⊆ B. We also know that (0,∞) ⊆ ρ(B), by Theorem 2.7,

and that (0,∞) ⊆ ρ(A), by hypothesis. Now from I −A ⊆ I −B, the injectivity of I −B
and ran(I −A) = X we obtain I −A = I −B, because a surjective mapping cannot have
a proper injective extension, and hence A = B.
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2.11 Remarks. (a) The proof of the Hille–Yosida theorem for the general case can be
given along the same lines; see Exercise 2.5.
(b) As an interesting feature in the proof of Theorem 2.9 we point out that the

approximating semigroups are continuous with respect to the operator norm, whereas in
general the limiting semigroup is only strongly continuous. The norm continuity is lost
because the approximating semigroups only converge strongly (and generally not with
respect to the operator norm). △

2.3 Euler’s exponential formula

Given a ∈ K, there are two well-known ways of approximating eta besides the exponential
series, namely

eta = lim
n→∞

(
1 +

t
n
a
)n

and eta = lim
n→∞

(
1− t

n
a
)−n

.

The attempt to replace a by an unbounded generator in the first formula leads to hopeless
problems with the domains of the powers of the operators involved, whereas the second
formula looks more promising because the occurring inverses are just those whose existence
is guaranteed by Theorem 2.7. (In fact, the resulting formulas are those known in numerical
analysis as ‘backward Euler method’.)
We now show that this approximation idea works for arbitrary C0-semigroups. The

proof is independent of the Hille–Yosida theorem (which was proved by a different kind of
approximation).

2.12 Theorem (Euler’s exponential formula). Let T be a C0-semigroup on a Banach
space X, with generator A. Then

T (t)x = lim
n→∞

(
I − t

n
A
)−n

x

for all x ∈ X, with uniform convergence for t in compact subsets of [0,∞).

2.13 Remarks. (a) Let M ⩾ 1 and ω ∈ R be such that ∥T (t)∥ ⩽Meωt for all t ⩾ 0. Let
r > 0. If 1

r > ω, then Theorem 2.7 implies 1
r ∈ ρ(A),

(I − rA)−1 =
1
r

(
1
r
I − A

)−1

∈ L(X),∥∥(I − rA)−n
∥∥ ⩽

(
1
r

)n
M

(
1
r
− ω

)−n

=M(1− rω)−n (n ∈ N).

Now let a > 0. Then by the above, the operator (I − t
nA)

−n is defined for all t ∈ [0, a]
if n > aω, and ∥(I − t

nA)
−n∥ ⩽ M(1 − t

nω)
−n. (In fact, if ω ⩽ 0, then these properties

hold for all t ⩾ 0 and n ∈ N.)
(b) We note that the expressions (I−rA)−1 = 1

r

(
1
rI−A

)−1 for small r > 0 correspond to
expressions λ(λI−A)−1 for large λ > 0. By Lemma 2.10(a) it follows that (I− rA)−1 → I
strongly as r → 0. △
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Proof of Theorem 2.12. Let M ⩾ 1 and ω ⩾ 0 be such that ∥T (t)∥ ⩽Meωt for all t ⩾ 0.
Let r ∈ (0, 1

ω ) (where
1
ω should be read as ∞ if ω = 0). For s ∈ (0, 1

ω ) \ {r} we compute

1

s− r

(
(I − sA)−1 − (I − rA)−1

)
=

1

s− r
(I − sA)−1

(
(I − rA)− (I − sA)

)
(I − rA)−1

= (I − sA)−1A(I − rA)−1 → A(I − rA)−2

as s → r. This shows that r 7→ (I − rA)−1 is continuously differentiable on (0, 1
ω ) and

that d
dr
(I − rA)−1 = A(I − rA)−2.

Now fix a > 0 and let n > aω, as in Remark 2.13(a). If 0 < s ⩽ a, then 0 < s
n <

1
ω , and

applying the product and chain rules we obtain

d

ds

(
I − s

n
A
)−n

= n

((
I − s

n
A
)−1

)n−1
1
n
A
(
I − s

n
A
)−2

= A
(
I − s

n
A
)−n−1

.

Let t ∈ (0, a], x ∈ dom(A). Then the function [0, t] ∋ s 7→ T (t − s)(I − s
nA)

−nx is
continuous as well as continuously differentiable on (0, t], with derivative

d

ds

(
T (t− s)

(
I − s

n
A
)−n

x

)
= T (t− s)

(
−A+ A

(
I − s

n
A
)−1

)(
I − s

n
A
)−n

x

= T (t− s)
(
I − s

n
A
)−n

((
I − s

n
A
)−1

− I

)
Ax;

see Exercise 1.8. By the fundamental theorem of calculus (Theorem 1.9) it follows that∥∥(I − t
nA)

−nx− T (t)x
∥∥

=
∥∥∥∫ t

0

T (t− s)(I − s
nA)

−n
(
(I − s

nA)
−1 − I

)
Ax ds

∥∥∥ (2.6)

⩽ a sup
0⩽s⩽t⩽a

∥∥T (t− s)(I − s
nA)

−n
∥∥ sup

0⩽s⩽a

∥∥((I − s
nA)

−1 − I
)
Ax

∥∥.
Using Remark 2.13(a) we estimate∥∥T (t− s)(I − s

nA)
−n

∥∥ ⩽Meω(t−s) ·M(1− s
nω)

−n

⩽M2eωa sup
n>aω

(1− a
nω)

−n =:M0 <∞,

where the supremum is finite because the sequence
(
(1− a

nω)
−n

)
n>aω is convergent (to eaω).

Hence (2.6) yields

sup
0⩽t⩽a

∥∥(I − t
nA)

−nx− T (t)x
∥∥ ⩽ aM0 sup

0⩽s⩽a

∥∥((I − s
nA)

−1 − I
)
Ax

∥∥,
which tends to 0 as n→ ∞ (recall Remark 2.13(b)).

Now the proof is completed pretty much as in step (ii) of the proof of Theorem 2.9. For
n > aω we define T a

n : X → C([0, a];X),

T a
n x :=

[
t 7→ (I − t

nA)
−nx

]
(x ∈ X).

Then
∥∥T a

n

∥∥ ⩽M0 for all n > aω, and T a
n x→ T (·)x|[0,a] (n→ ∞) for all x ∈ dom(A), as

shown above. Using the fact that dom(A) is dense and applying Proposition 1.6 we obtain
T a
n x→ T (·)x|[0,a] (n→ ∞) for all x ∈ X.
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2.14 Remark. Euler’s exponential formula will be used repeatedly later in the book, for
instance in the proof of the invariance of a closed set C ⊆ X under a C0-semigroup, as
follows. If C is invariant under (I − rA)−1 for small r > 0, then Theorem 2.12 implies
that C is invariant under T as well; see also Proposition 9.1.

The exponential formula can also be derived from the Chernoff product formula, for
which we refer to Section 13.3; in particular see Example 13.17(b). △

Notes

The Hille–Yosida theorem is basic for the theory of C0-semigroups and can be found (with
varying proofs) in any treatment of C0-semigroups. Our proof is Yosida’s original proof in
[Yos48]. A different proof, based on the exponential formula, can be found in §§1.2, 1.3,
1.4 of the beautiful Chapter IX in [Kat80], which is a concise introduction to semigroups.

The discovery of the Hille–Yosida theorem in 1948 was a major event in functional
analysis and operator theory. Previously known was Stone’s theorem from 1932 [Sto32]
(announced in [Sto30]): an operator A in a complex Hilbert space generates a one-parameter
group of unitary operators if and only if iA is self-adjoint. Stone was motivated by quantum
mechanics, for which John von Neumann developed the mathematical foundations in the
years between 1927 and 1932. Von Neumann’s work on this subject culminated in his
monograph “Mathematische Grundlagen der Quantenmechanik” [Neu32a], which was
the first rigorous mathematical treatment of quantum mechanics focusing on unbounded
self-adjoint operators. The theory von Neumann developed is still used today whith great
success.

Unitary groups describe the dynamics in quantum mechanics. More generally, one-
parameter groups describe evolutionary processes that are reversible and in which the
states exist for all times. It is natural to consider time evolution for positive times only;
this leads to semigroups and the problem of describing their generators. E. Hille and
K. Yosida found the solution independently, for the case of contractive semigroups: Yosida
published his proof in the first volume of the Journal of the Mathematical Society of
Japan [Yos48], where he introduced the Yosida approximations An of the unbounded
operator A and constructed the semigroup as the limit of etAn , as we did in this chapter.
Hille, in his book [Hil48; Sections 12.2 and 12.3], employed the inverse Laplace transform
and the exponential formula (see Theorem 2.12) to prove the theorem for a slightly more
general than the contractive case.

The general case of the Hille–Yosida theorem was proved independently by Miyadera
[Miy52; Theorem 2], Phillips [Phi53; Section 2] and Feller [Fel53; Theorem 3]. (The general
version of the theorem is sometimes called “Hille–Yosida–Phillips theorem”, maybe because
Phillips’ paper was submitted first.) Hille’s book mentioned above has been extended in
collaboration with Phillips to [HiPh57]. In this monograph the authors offer two proofs
of the general Hille–Yosida theorem: the first is an adaptation of Yosida’s proof to the
general case, the second relies on the exponential formula; see [HiPh57; Section 12.3].

The proof via the exponential formula can be considered as an application of the



25

backward Euler scheme to the numerical solution of the Cauchy problem

u′(t) = Au(t) (t ⩾ 0), u(0) = x.

Indeed, fixing n ∈ N and subdividing the interval [0, t] into n equal parts, one can discretise
the differential equation u′ = Au to derive the difference equation

uk − uk−1

t/n
= Auk (k = 1, . . . , n),

where uk plays the role of u( knt). (For comparison, the forward Euler scheme would
involve the term Auk−1 on the right-hand side instead of Auk.) Starting from the initial
value u0 = x, one easily shows that for large n the solution is given by uk = (I − t

nA)
−kx

(k ∈ {0, . . . , n}); in particular, for k = n one obtains the approximation (I − t
nA)

−nx for
u(t) from the exponential formula. We mention that the backward Euler method even
works in the theory of nonlinear semigroups, where the central generation theorem is due
to Crandall and Liggett; see [CHA&87; Theorem 2.3].

Our entire book demonstrates the power of the Hille–Yosida theorem. We have restricted
our proof to the special case of quasi-contractive semigroups; this will be sufficient for
our application of the theorem to operators in Hilbert spaces associated with forms, in
Section 5.3.

Exercises

2.1 Let T be a C0-semigroup on a Banach space X, with generator A. Let λ ∈ K. Show
that

Tλ(t) := e−λtT (t) (t ⩾ 0)

defines a C0-semigroup (the rescaled semigroup) and that the generator of Tλ is given by
A− λI.

2.2 Prove the second equality in (2.4).

2.3 Let T be a bounded C0-semigroup on a Banach space X, with generator A, and let
M := supt⩾0 ∥T (t)∥.
(a) Show that

|||x||| := sup
t⩾0

∥T (t)x∥ (x ∈ X)

defines a norm ||| · ||| on X which is equivalent to ∥·∥, and that T is a contractive C0-semi-
group on (X, ||| · |||).
(b) For any α1, . . . , αn > 0, show that∥∥(I − α1A)

−1 · · · (I − αnA)
−1
∥∥ ⩽M.
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2.4 Let T be a C0-semigroup on a Banach space X, with generator A. Let M ⩾ 1, ω ∈ R
be such that ∥T (t)∥ ⩽Meωt for all t ⩾ 0. For x ∈ X and λ ∈ K with Reλ > ω show that

R(λ,A)nx =

∫ ∞

0

· · ·
∫ ∞

0

e−λ(t1+···+tn)T (t1 + · · ·+ tn)x dt1 . . . dtn .

Use this identity to give another proof of the resolvent estimate (2.3).

2.5 Prove the Hille–Yosida theorem for the general case:
Let A be a closed, densely defined operator in a Banach space X. Assume that there

exist M ⩾ 1 and ω ∈ R such that (ω,∞) ⊆ ρ(A) and

∥R(λ,A)n∥ ⩽
M

(λ− ω)n
(λ ∈ (ω,∞), n ∈ N).

Then A is the generator of a C0-semigroup T satisfying the estimate

∥T (t)∥ ⩽Meωt (t ⩾ 0).

(Hint: Proceed as in the proof of Theorem 2.9, with adapted estimates.)

2.6 Let T be a C0-semigroup on a Banach space X. For h > 0 put Ah := h−1(T (h)− I).
Show that etAhx → T (t)x (h → 0) for all x ∈ X, uniformly for t in compact subsets
of [0,∞). (Hint: Use a procedure similar to the proof of the exponential formula,
Theorem 2.12.)

2.7 Let X be a reflexive Banach space, let A be a closed operator in X, and assume that
there exists λ0 ⩾ 0 such that (λ0,∞) ⊆ ρ(A), M := supλ>λ0

∥λR(λ,A)∥ <∞.
Show that dom(A) is dense in X.
Hints: 1. Show that λR(λ,A)x→ x (λ→ ∞) for all x ∈ dom(A); cf. Lemma 2.10(a).

2. Now let x ∈ X. Show that there exists a sequence (λn) in (λ0,∞), λn → ∞ (n→ ∞)
such that (λnR(λn, A)x) converges weakly to some y ∈ X. (See e.g. [Yos68; Sect. V.2,
Theorem 1] or [Lax02; Sect. 10.2, Theorem 7] for the fact that every bounded sequence in
a reflexive Banach space contains a weakly convergent subsequence.) 3. Choose µ ∈ ρ(A).
Show that λnR(λn, A)R(µ,A)x → R(µ,A)x, but also R(µ,A)λnR(λn, A)x → R(µ,A)y
weakly.



Chapter 3

Holomorphic semigroups

The objective of this chapter is to introduce semigroups for which the ‘time parameter’ t
can also be chosen in a complex neighbourhood of the positive real axis. The foundations
of these ‘holomorphic semigroups’ will be given in Section 3.2. Then we characterise
which operators generate contractive holomorphic C0-semigroups. Finally, in Section 3.4
we treat the special case of holomorphic semigroups on Hilbert spaces. We start with an
interlude on Banach space valued holomorphy.

3.1 Interlude: vector-valued holomorphic functions

In this section let X, Y be complex Banach spaces. The first issue is to show that for
Banach space valued functions several notions of holomorphy coincide.
Let Ω ⊆ C be an open set, f : Ω → X. The function f is called holomorphic if f is

(complex) differentiable at each point of Ω, and f is weakly holomorphic if x′ ◦ f is
holomorphic for all x′ ∈ X ′ (= L(X,C), the dual space of X). Recall that f is analytic
if f can be represented as a power series in a neighbourhood of each point of Ω.

3.1 Remarks. (a) It is evident that holomorphy of a function implies weak holomorphy.
(b) Using part (a) one can prove the identity theorem for a holomorphic function

f : Ω → X, where Ω ⊆ C is open and connected: if [f = 0] has a cluster point in Ω, then
f = 0. (We use the notation [f = 0] := {z ∈ Ω; f(z) = 0}; sets like [f ⩾ 0], [f > 0] etc.,
occurring later in the book, are defined analogously.)
Indeed, for each x′ ∈ X ′ the zeros of the function x′ ◦ f have a cluster point in Ω, and

therefore x′ ◦ f = 0, by the identity theorem for C-valued holomorphic functions. From
x′ ◦ f = 0 for all x′ ∈ X ′ one obtains f = 0.
The reasoning presented here is an example of how properties of complex-valued

holomorphic functions may be transferred to vector-valued functions. An alternative
approach is to assure oneself that the proofs in classical complex analysis also work out in
the vector-valued case; cf. part (c).
(c) Let Ω ⊆ C be an open set, and let f : Ω → X be holomorphic. The following facts

can be proved in the same way as in the case of C-valued functions.
If Ω is convex, and γ is a piecewise continuously differentiable closed path in Ω, then∫

γ
f(z) dz = 0 (Cauchy’s integral theorem). Note that the path integral is defined by

a parametrisation of the path and therefore reduces to integrals over intervals. As a
consequence, path integrals fit into the context explained in Subsection 1.3.2.
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If z0 ∈ Ω, r > 0 are such that B[z0, r] ⊆ Ω, then f satisfies Cauchy’s integral formula

f(z) =
1

2πi

∫
|ζ−z0|=r

f(ζ)

ζ − z
dζ (z ∈ B(z0, r)).

The function f is analytic, and one has Cauchy’s integral formulas for the derivatives,

f (n)(z) =
n!

2πi

∫
|ζ−z0|=r

f(ζ)

(ζ − z)n+1
dζ (z ∈ B(z0, r), n ∈ N),

with z0 and r as before. △

A set E ⊆ X ′ is separating (for X) if for all 0 ̸= x ∈ X there exists x′ ∈ E such that
x′(x) ̸= 0. The set E is called almost norming (for X) if

∥x∥E := sup
{
|x′(x)| ; x′ ∈ E, ∥x′∥ ⩽ 1

}
(x ∈ X)

defines a norm that is equivalent to the norm on X; it is called norming if ∥·∥E = ∥·∥
on X. It is a consequence of the Hahn–Banach theorem that E = X ′ is norming for X.

3.2 Theorem. Let Ω ⊆ C be an open set, f : Ω → X. Then the following properties are
equivalent.

(i) f is holomorphic.

(ii) f is weakly holomorphic.

(iii) There exists an almost norming closed subspace E ⊆X ′ such that x′◦f is holomorphic
for all x′ ∈ E.

(iv) f is locally bounded, and there exists an almost norming set E ⊆ X ′ such that x′ ◦ f
is holomorphic for all x′ ∈ E.

(v) f is continuous, and there exists a separating set E ⊆ X ′ such that x′ ◦ f is
holomorphic for all x′ ∈ E.

Proof. (i)⇒ (ii) is clear (and was already noted above).
(ii)⇒ (iii) is clear, with E = X ′.
(iii) ⇒ (iv). Note that the mapping κ : X → L(E,C) = E ′, κx := [E ∋ x′ 7→ x′(x)]

satisfies ∥κx∥ = ∥x∥E for all x ∈ X, by the definition of ∥·∥E. Since E is almost norming
for X, it thus suffices to show that κ ◦ f is locally bounded. For each x′ ∈ E the function
z 7→ (κ ◦ f(z))x′ = x′(f(z)) is holomorphic and hence locally bounded. Therefore the
uniform boundedness theorem implies the assertion.
(iv)⇒ (v). Since almost norming subsets are separating we only have to show that f is

continuous.
Let z0 ∈ Ω, r > 0 be such that B[z0, r] ⊆ Ω; then M := sup

{
∥f(ζ)∥ ; |ζ − z0| = r

}
<∞.

For x′ ∈ E, z ∈ B[z0, r/2] we then obtain, using Cauchy’s integral formula for the
derivative,∣∣∣∣ ddzx′(f(z))

∣∣∣∣ = ∣∣∣∣ 1

2πi

∫
|ζ−z0|=r

x′(f(ζ))

(ζ − z)2
dζ

∣∣∣∣ ⩽ 1

2π
2πr∥x′∥ M

(r/2)2
=

4M

r
∥x′∥.
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For z′, z′′ ∈ B[z0, r/2] this implies

|x′(f(z′)− f(z′′))| ⩽ 4M

r
∥x′∥|z′ − z′′| (x′ ∈ E),

and therefore

∥f(z′)− f(z′′)∥E ⩽
4M

r
|z′ − z′′|.

Since the norm ∥·∥E is equivalent to the norm on X, it follows that f is continuous on
B[z0, r/2].
(v)⇒ (i). Let z0 ∈ Ω. We show that f can be expanded into a power series about z0.
Without loss of generality we assume that z0 = 0. There exists r > 0 such that

B[0, r] ⊆ Ω. For n ∈ N0 we put

an :=
1

2πi

∫
|ζ|=r

f(ζ)

ζn+1
dζ.

With M := sup
{
∥f(ζ)∥ ; |ζ| = r

}
(< ∞) we obtain ∥an∥ ⩽ M/rn for all n ∈ N0, and

therefore the power series g(z) :=
∑∞

n=0 z
nan converges for all z ∈ B(0, r). For x′ ∈ E,

|z| < r we compute, using Cauchy’s integral formulas for the derivatives,

x′(g(z)) =
∞∑
n=0

zn
1

2πi

∫
|ζ|=r

x′(f(ζ))

ζn+1
dζ =

∞∑
n=0

(x′ ◦ f)(n)(0)
n!

zn = x′(f(z)),

where the last equality is just the power series expansion of the holomorphic function
x′ ◦ f . Since E is separating we conclude that f(z) = g(z).

Note that in the proof of the implication ‘(v) ⇒ (i)’ it is also shown that f is analytic.

3.3 Remarks. (a) If X is a dual Banach space, then the predual is a norming closed
subspace of its bidual X ′. (For instance, c0 is norming for ℓ1.) This illustrates a possible
application of condition (iii) of Theorem 3.2.
(b) If X is reflexive and E ⊆ X ′ is separating, then linE is dense in X ′ and hence

norming; cf. [ArNi00; Remark 1.2 d)]. We refer to [DaLi72] and [ArNi00; Remark 1.2 f)]
for examples of separating subspaces that are not almost norming, in the situation of
non-reflexive spaces. △

Next we come to the characterisation of holomorphy for L(X, Y )-valued functions. As
L(X, Y ) is a Banach space, all the previous criteria apply. However, weak holomorphy is
not a useful concept in this case, because typically one has no explicit description of the
dual of L(X, Y ).

3.4 Theorem. Let Ω ⊆ C be open, F : Ω → L(X, Y ). Let B be a dense subset of X, and
let C ⊆ Y ′ be almost norming for Y . Then the following properties are equivalent.

(i) F is holomorphic (as an L(X, Y )-valued function).

(ii) F is locally bounded, and F (·)x is holomorphic for all x ∈ B.

(iii) F is locally bounded, and y′(F (·)x) is holomorphic for all x ∈ B, y′ ∈ C.
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Proof. (i)⇒ (ii)⇒ (iii) is clear.
(iii)⇒ (i). It follows from the hypotheses on B and C that the set

E :=
{
A 7→ y′(Ax) ; x ∈ B, y′ ∈ C

}
⊆ L(X, Y )′

is almost norming for L(X, Y ). Therefore Theorem 3.2, (iv)⇒ (i), implies the assertion.

The last issue of this section is the convergence of sequences of holomorphic functions.

3.5 Theorem. Let Ω ⊆ C be open, and let (fn) be a sequence of holomorphic functions
fn : Ω → X. Assume that (fn) is locally uniformly bounded (i.e., for each z0 ∈ Ω there
exists r > 0 such that B(z0, r) ⊆ Ω and sup

{
∥fn(z)∥ ; z ∈ B(z0, r), n ∈ N

}
< ∞) and

that f(z) := limn→∞ fn(z) exists for all z ∈ Ω.
Then (fn) converges to f locally uniformly, and f is holomorphic.

Proof. In the first step we show that the sequence (fn) is locally uniformly equicontinuous.
Let z0 ∈ Ω, r > 0 be such that B[z0, r] ⊆ Ω. Then M := supz∈B[z0,r], n∈N ∥fn(z)∥ <∞, by
hypothesis. From Cauchy’s integral formula for the derivative,

f ′
n(z) =

1

2πi

∫
|ζ−z0|=r

fn(ζ)

(ζ − z)2
dζ (z ∈ B(z0, r), n ∈ N),

we infer that for all z ∈ B[z0, r/2] one has

∥f ′
n(z)∥ ⩽M

4
r

(n ∈ N),

and we conclude that the sequence (fn) is uniformly equicontinuous on B[z0, r/2].
The local uniform equicontinuity of the sequence (fn) together with the pointwise

convergence implies that (fn) converges to f locally uniformly; see Exercise 3.2(a). Thus
x′ ◦ fn → x′ ◦ f locally uniformly, for all x′ ∈ X ′. It follows that f is weakly holomorphic,
and therefore holomorphic, by Theorem 3.2.

3.6 Corollary. Let Ω ⊆ C be open, and let (Fn) be a sequence of holomorphic functions
Fn : Ω → L(X, Y ). Assume that (Fn) is locally uniformly bounded and that F (z) :=
s-limn→∞ Fn(z) exists for all z ∈ Ω.
Then F is holomorphic.

Proof. The hypotheses in combination with Theorem 3.5 imply that F (·)x is holomorphic
for all x ∈ X. Therefore F is holomorphic, by Theorem 3.4.

3.2 Holomorphic semigroups

Let X be a complex Banach space. For θ ∈ (0, π/2] we define the (open) sector

Σθ :=
{
reiα ; r > 0, |α| < θ

}
⊆ C.

We will also use the notation Σθ,0 := Σθ ∪ {0}. A holomorphic semigroup on X (of
angle θ) is a function T : Σθ,0 → L(X), holomorphic on Σθ, satisfying



31

(i) T (z1 + z2) = T (z1)T (z2) for all z1, z2 ∈ Σθ,0.

If additionally

(ii) limΣθ′∋z→0 T (z)x = x for all x ∈ X and all θ′ ∈ (0, θ),

then T (0) = I, by Remark 1.1(d), and T is called a holomorphic C0-semigroup (of
angle θ).
Saying that T is a holomorphic semigroup we will always mean that T brings along its

domain of definition, in particular, the angle of T is defined.

3.7 Remarks. (a) It follows from the definition of a holomorphic C0-semigroup that for
all θ′ ∈ (0, θ) there exist M ′ ⩾ 1, ω′ ∈ R such that

∥T (z)∥ ⩽M ′eω
′ Re z (z ∈ Σθ′);

see Exercise 3.4.
(b) The reader might wonder why θ is restricted to the interval (0, π/2] in the above

definition. The reason is that using the same definition with θ ∈ (π/2, π] one automatically
obtains a bounded generator; see Exercise 3.5. As a consequence, the semigroup has a
holomorphic extension to all of C. △

The following lemma shows that it suffices to check the semigroup property for real
times.

3.8 Lemma. Let θ ∈ (0, π/2], and let T : Σθ → L(X) be a holomorphic function satisfying
T (t+ s) = T (t)T (s) for all t, s > 0.
Then T (z1 + z2) = T (z1)T (z2) for all z1, z2 ∈ Σθ.

Proof. Fixing z1 ∈ (0,∞), we know that the functions Σθ ∋ z2 7→ T (z1 + z2) and Σθ ∋
z2 7→ T (z1)T (z2) are holomorphic and coincide on (0,∞). The identity theorem (see
Remark 3.1(b)) implies that they are equal on Σθ. Another application of the identity
theorem, with fixed z2 ∈ Σθ, yields the assertion.

3.9 Proposition. Let T be a C0-semigroup on X, and assume that there exist θ ∈ (0, π/2]
and an extension of T to Σθ,0, also called T , holomorphic on Σθ and satisfying

sup
z∈Σθ, |z|<1

∥T (z)∥ <∞.

Then limΣθ∋z→0 T (z)x = x for all x ∈ X, and T is a holomorphic C0-semigroup.

Proof. First note that Lemma 3.8 implies property (i) from above.
Let x ∈ D :=

⋃
t>0 ran(T (t)), i.e., there exist y ∈ X, t > 0 such that x = T (t)y. Then

limΣθ∋z→0 T (z)x = x, by the continuity of the mapping z 7→ T (z)x = T (z + t)y at 0. Note
that D is dense in X, because T (t) → I strongly as t → 0. Therefore the boundedness
assumption implies the assertion (recall Proposition 1.6).

For a holomorphic C0-semigroup T we now compute its derivative in terms of the
generator A of the C0-semigroup T |[0,∞), and we discuss C0-semigroups that are given by
the restriction of T to rays eiα[0,∞).
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3.10 Theorem. Let T be a holomorphic C0-semigroup of angle θ ∈ (0, π/2], and let A be
the generator of the C0-semigroup T |[0,∞). Then:

(a) For all z ∈ Σθ one has ran(T (z)) ⊆ dom(A) and T ′(z) = AT (z). For all x ∈ dom(A),
z ∈ Σθ one has T ′(z)x = T (z)Ax.
(b) For all x ∈ dom(A), θ′ ∈ (0, θ) one has

lim
Σθ′∋z→0

1
z

(
T (z)x− x

)
= Ax.

(c) For each α ∈ (−θ, θ) the mapping [0,∞) ∋ t 7→ Tα(t) := T (eiαt) is a C0-semigroup.
The generator Aα of Tα equals eiαA.

Proof. (a) Let x ∈ X, z ∈ Σθ. Then

T ′(z)x = lim
h→0+

1

h

(
T (z + h)x− T (z)x

)
= lim

h→0+

1

h
(T (h)− I)T (z)x.

This implies that T (z)x ∈ dom(A) and T ′(z)x = AT (z)x.
If x ∈ dom(A), then also T ′(z)x = T (z) limh→0+

1
h
(T (h)x− x) = T (z)Ax.

(b) Let x ∈ dom(A), θ′ ∈ (0, θ). Then the restriction of T (·)Ax to Σθ′,0 is continuous.
Using part (a) one finds for z ∈ Σθ′ that

1

z

(
T (z)x− x

)
=

1

z

∫ 1

0

d

ds
T (sz)x ds =

∫ 1

0

T (sz)Ax ds,

and the latter tends to Ax as z → 0 in Σθ′ .
(c) It is clear that Tα is a C0-semigroup. Let x ∈ dom(A). Then by part (b) one obtains

1

h

(
Tα(h)x− x

)
= eiα

1

eiαh

(
T (eiαh)x− x

)
→ eiαAx

as h→ 0+, and hence x ∈ dom(Aα), Aαx = eiαAx. This shows that eiα(λ−A) ⊆ eiαλ−Aα

for all λ > 0. Now choose λ so large that λ ∈ ρ(A) and eiαλ ∈ ρ(Aα). Then the above
operator inclusion is in fact an equality because a surjective mapping cannot have a proper
injective extension, and it follows that eiαA = Aα.

3.11 Remarks. (a) Note that holomorphic C0-semigroups are much more regular on
(0,∞) than general C0-semigroups. They are always continuous on (0,∞), even infinitely
differentiable with respect to the operator norm.
(b) Theorem 3.10(a) implies that, for all x ∈ X, the function [0,∞) ∋ t 7→ T (t)x ∈ X

is continuous, continuously differentiable on (0,∞), and solves the initial value problem

u′(t) = Au(t) (t ∈ (0,∞)), u(0) = x.

By Theorem 1.13(a) the solution is unique. △

Let T be a holomorphic C0-semigroup. In the light of Theorem 3.10(b) it is justified to
say that the generator of the C0-semigroup T |[0,∞) is also the generator of the holomorphic
C0-semigroup T . Clearly, the application of Theorem 2.7 yields estimates for the resolvents
of the generator. We will not pursue this issue in full generality but restrict our attention
to contractive holomorphic semigroups.
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3.3 Generation of contractive holomorphic semigroups

As before, let X be a complex Banach space. We call a holomorphic semigroup of angle
θ ∈ (0, π/2] contractive if ∥T (z)∥ ⩽ 1 for all z ∈ Σθ,0.
The following theorem characterises the generation of contractive holomorphic C0-semi-

groups.

3.12 Theorem. For θ ∈ (0, π/2] and an operator A in X, the following properties are
equivalent.

(i) A is the generator of a contractive holomorphic C0-semigroup of angle θ.

(ii) For all α ∈ (−θ, θ), eiαA is the generator of a contractive C0-semigroup.

(iii) A is closed and densely defined, Σθ ⊆ ρ(A), and∥∥(λI − A)−1
∥∥ ⩽

1

|λ|
(λ ∈ Σθ).

Proof. (i)⇒ (ii) follows from Theorem 3.10(c).
(ii)⇒ (iii). ‘Closed’ and ‘densely defined’ are clear by Theorem 1.11(c). For α ∈ (−θ, θ),

we know from Theorem 2.7 that (0,∞) ⊆ ρ(eiαA) and ∥(µI − eiαA)−1∥ ⩽ 1/µ for all µ > 0.
The identity (µI − eiαA) = eiα(e−iαµI − A) then shows that {e−iαµ ; µ > 0} ⊆ ρ(A) and
∥(e−iαµI − A)−1∥ ⩽ 1/µ for all µ > 0.
(iii)⇒ (i). We employ the exponential formula, Theorem 2.12. For n ∈ N we define the

holomorphic function Fn : Σθ → L(X),

Fn(z) := (I − z
nA)

−n =
(
n
z (

n
z − A)−1

)n
.

(For the holomorphy of Fn recall Remark 2.4(b).) The hypotheses imply that ∥Fn(z)∥ ⩽ 1
for all z ∈ Σθ, n ∈ N. They further imply that for each α ∈ (−θ, θ) the operator eiαA
generates a contractive C0-semigroup Tα, by Theorem 2.9 (Hille–Yosida) and the same
computation as in the proof of ‘(ii) ⇒ (iii)’. Let z ∈ Σθ, z = eiαt with suitable t > 0,
α ∈ (−θ, θ). Then Fn(z) = (I − t

ne
iαA)−n → Tα(t) strongly as n→ ∞, by Theorem 2.12,

so
T (z) := s-limn→∞ Fn(z)

exists for all z ∈ Σθ,0, and T |[0,∞) = T0 is the C0-semigroup generated by A. Combining
Corollary 3.6 and Proposition 3.9 we conclude that T is a contractive holomorphic
C0-semigroup of angle θ.

In Theorem 3.20 we will present a further equivalence to the properties stated in
Theorem 3.12, for the case of Hilbert spaces.
We add some comments on the generation of holomorphic semigroups that are not

necessarily contractive.

3.13 Remarks. (a) The same proof as given for Theorem 3.12 can be used to prove the
following equivalence.
Let θ ∈ (0, π/2], M ⩾ 1. Then an operator A is the generator of a bounded holomor-

phic C0-semigroup of angle θ and with bound M if and only if for each α ∈ (−θ, θ) the
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operator eiαA is the generator of a bounded C0-semigroup with bound M . (We call the
holomorphic semigroup T of angle θ bounded if supz∈Σθ

∥T (z)∥ <∞. We point out that
the terminology ‘bounded holomorphic semigroup’ is sometimes used differently.)
(b) If A is the generator of a bounded C0-semigroup on X with bound M ⩾ 1, then

[Re > 0] := {λ ∈ C ; Reλ > 0} ⊆ ρ(A) and∥∥(λI − A)−1
∥∥ ⩽

M

Reλ
(Reλ > 0),

by Theorem 2.7. If θ′ ∈ (0, π/2) and λ ∈ Σθ′ , then
Reλ
|λ| ⩾ cos θ′, and this implies

∥∥(λI − A)−1
∥∥ ⩽

M

Reλ
⩽

M

cos θ′
1

|λ|
.

Together with Theorem 3.10(c) the above considerations show that, if A is the generator
of a bounded holomorphic semigroup of angle θ ∈ (0, π/2], then

Σθ+π/2 ⊆ ρ(A) and sup
λ∈Σθ′

∥∥λ(λI − A)−1
∥∥ <∞ (θ′ ∈ (0, θ + π/2)). (3.1)

This fact has a kind of converse: a closed, densely defined operator A in X is the
generator of a holomorphic C0-semigroup of angle θ ∈ (0, π/2] that is bounded on all
sectors Σθ′ with θ

′ ∈ (0, θ) if and only if (3.1) holds (see [Kat80; Chap. IX, §1.6], [EnNa00;
Section II.4.a]). Remarkably, one does not need the estimate in (3.1) for powers of
λ(λI − A)−1. △

3.4 The Lumer–Phillips theorem

Let H be a Hilbert space over K. The scalar product of two elements x, y ∈ H will be
denoted by (x | y), and it is defined to be linear in the first and antilinear in the second
argument. An operator A in H is called accretive if

Re(Ax |x) ⩾ 0 (x ∈ dom(A)).

3.14 Lemma. Let A be an operator in H.
(a) Then A is accretive if and only if

∥(λI + A)x∥ ⩾ λ∥x∥ (x ∈ dom(A)) (3.2)

for all λ > 0.
(b) For λ > 0 with ran(λI + A) = H, inequality (3.2) holds if and only if λ ∈ ρ(−A)

and ∥(λI + A)−1∥ ⩽ λ−1.

Proof. (a) Assume that A is accretive, and let λ > 0, x ∈ dom(A). Then

∥(λI + A)x∥∥x∥ ⩾ Re((λI + A)x |x) ⩾ (λx |x) = λ∥x∥2.

This establishes the asserted inequality (3.2).
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On the other hand, assume that (3.2) holds for all λ > 0, and let x ∈ dom(A). Then

0 ⩽ ∥(λI + A)x∥2 − λ2∥x∥2 = 2λRe(Ax |x) + ∥Ax∥2

for all λ > 0, and this implies Re(Ax |x) ⩾ 0.
(b) follows from the next remark, which is valid in a more general context.

3.15 Remark. Let X, Y be Banach spaces, B an operator from X to Y , and α > 0.
Then

∥Bx∥Y ⩾ α∥x∥X (x ∈ dom(B))

if and only if B is injective and ∥B−1y∥ ⩽ α−1∥y∥ for all y ∈ ran(B). If these properties
are satisfied and additionally ran(B) = Y , then B−1 ∈ L(Y,X) and ∥B−1∥ ⩽ α−1. △

An accretive operator A in H satisfying ran(I + A) = H is called m-accretive. A his-
torical note on the prefix ‘m’: it should be remindful of the word ‘maximal’. A maximal
accretive operator is an accretive operator of which no proper extension is also an accretive
operator. With this definition, a densely defined operator is m-accretive if and only if it is
a maximal accretive operator; see [Phi59; Corollary of Theorem 1.1.1] (or Exercise 14.7(c)).
However, there exist maximal accretive operators that are not m-accretive; see [Phi59;
footnote (6)]. (We point out that such operators still have proper m-accretive extensions
that are relations ; see Exercise 14.7(b).)

3.16 Theorem (Lumer–Phillips). Let A be an operator in H. Then −A is the generator
of a contractive C0-semigroup if and only if A is m-accretive.

Note the minus sign that makes −A a generator. The background is that one likes the
operator A to have the “positivity” property of accretivity; see also Remark 3.21.
An essential part of the proof of Theorem 3.16 is contained in the following lemma.

3.17 Lemma. Let A be an accretive operator in H, and assume that there exists λ0 > 0
such that ran(λ0I +A) = H. Then [Re > 0] = {λ ∈ K ; Reλ > 0} ⊆ ρ(−A) (in particular,
A is m-accretive), ∥∥(λI + A)−1

∥∥ ⩽
1

λ
(λ > 0),

A is closed, and dom(A) is dense in H.

Proof. From Lemma 3.14 one obtains λ0 ∈ ρ(−A). Moreover, if 0 < λ ∈ ρ(−A), then
∥(λI+A)−1∥ ⩽ 1/λ, and Theorem 2.2(c) implies B(λ, λ) ⊆ B

(
λ, ∥(λI+A)−1∥−1

)
⊆ ρ(−A).

Combining these statements one sees that [Re > 0] ⊆ ρ(−A). In particular it follows that
A is closed, by Remark 2.1(a).
Now let x ∈ dom(A)⊥. Then y := (I + A)−1x ∈ dom(A), and hence

0 = Re(x | y) = Re((I + A)y | y) ⩾ ∥y∥2.

This implies that y = 0, x = (I + A)y = 0; therefore dom(A)⊥ = {0}, and it follows that
dom(A) = dom(A)⊥⊥ = H.
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3.18 Remark. Every accretive operator A ∈ L(H) is automatically m-accretive. This
follows from Lemma 3.17 because {λ ∈ R ; λ > ∥A∥} ⊆ ρ(−A), by Remark 2.3(b). △

Proof of Theorem 3.16. If −A generates a contractive C0-semigroup, then Theorem 2.7
and Lemma 3.14 imply that A is m-accretive. The reverse implication follows from
Lemma 3.17 and Theorem 2.9.

For the remainder of this section we assume that H is a complex Hilbert space. In
order to formulate a conclusion concerning the generation of holomorphic semigroups
we need the following notions. For an operator A in H we define the numerical range
num(A) :=

{
(Ax |x) ; x ∈ dom(A), ∥x∥ = 1

}
. We call A sectorial of angle θ ∈ [0, π/2)

if

num(A) ⊆ Σθ =
{
reiα ; r ⩾ 0, |α| ⩽ θ

}
,

and we call A m-sectorial (of angle θ) if additionally ran(I + A) = H. Here we
supplement the notation introduced in Section 3.2 by Σ0 := (0,∞). (Recall that previously
Σθ was defined only for 0 < θ ⩽ π/2.)

We note that our definition of ‘sectorial’ is slightly more restrictive than the one used
in [Kat80; Chap. V, §3.10]. Unhappily, our terminology also conflicts with a notion
introduced in [PrSo93; Section 3] that has become an important concept in the functional
calculus for closed operators.

3.19 Remarks. Let A be an operator in H.
(a) Obviously A is accretive if and only if num(A) ⊆ [Re ⩾ 0].
(b) We note that for any angle α one has num(eiαA) = eiα num(A). Let θ ∈ (0, π/2].

Then it follows from (a) that eiαA is accretive for all α ∈ (−θ, θ) if and only if num(A) ⊆
Σπ/2−θ. △

We now draw a conclusion of the Lumer–Phillips theorem for generators of contractive
holomorphic semigroups.

3.20 Theorem. Let A be an operator in the complex Hilbert space H, and let θ ∈ (0, π/2].
Then −A generates a contractive holomorphic C0-semigroup of angle θ if and only if A is
m-sectorial of angle π/2− θ.

Proof. By Theorems 3.12 and 3.16 it suffices to prove the equivalence

eiαA is m-accretive for all α ∈ (−θ, θ) ⇐⇒ A is m-sectorial of angle π/2− θ.

Either property implies that A is m-accretive, and hence ran(I+eiαA) = ran(e−iαI+A) =H
for all α ∈ (−θ, θ), by Lemma 3.17. Thus the equivalence follows from Remark 3.19(b).

3.21 Remark. In the context of generators of contractive C0-semigroups on Banach
spaces, one usually considers dissipative instead of accretive operators. An operator A is
called dissipative if −A is accretive. One reason we prefer using the notion of accretive
operators is that they will arise naturally in the context of forms. △



37

Notes

The equivalence of (i), (ii), (iii) in Theorem 3.2 is due to Dunford [Dun38; Theorem 76].
Theorem 3.4 is also due to Dunford; see [Hil39; footnote to Theorem 1], [HiPh57; Theo-
rem 3.10.1].
Surprisingly, the properties (iv) and (v) of Theorem 3.2 can be relaxed jointly to a more

general condition: f is holomorphic if f is locally bounded and there exists a separating
set E ⊆ X ′ such that x′ ◦ f is holomorphic for all x′ ∈ E. This generalisation is due to
Grosse-Erdmann [GrE92] (published in [GrE04]); a short proof, based on the theorem of
Krein–Šmulian, has been given in [ArNi00; Theorem 3.1] (see also [Voi20; Example 12.2]).
An even further weakening can be found in [ABK20; Theorem 1.1], where it is shown
that instead of local boundedness of f it suffices to assume that there exists a function
g ∈ L1,loc(Ω) such that ∥f(z)∥ ⩽ g(z) for a.e. z ∈ Ω. An extra assumption of this kind
cannot be omitted entirely: in [ArNi00; Theorem 1.5] a function f is constructed such
that f has a discontinuity but nevertheless x′ ◦ f is holomorphic for all x′ from a norming
(non-closed!) subspace of X ′; cf. [ArNi00; Remark 1.4 f)].

The generation theorem for holomorphic semigroups, Theorem 3.12, is classically treated
by defining the semigroup as a contour integral. We refer to the literature for this kind of
proof. Our proof is a variant of the approaches presented in [AEH97; Section 4] and in
[ArEl12a; Section 2]. We note that the characterisation stated at the end of Remark 3.13(b)
can also be proved without writing the semigroup as a contour integral; see [AEH97;
Theorem 4.3].

For a C0-semigroup T on a complex Banach space, the asymptotic behaviour of T (t) for
t→ 0+ determines whether or not T is holomorphic, by which we mean that there exists
0 < θ ⩽ π/2 such that T extends to a holomorphic semigroup of angle θ. For example,
T is holomorphic if

lim sup
t→0+

∥T (t)− I∥ < 2.

This result was obtained independently by Beurling [Beu70] and Kato [Kat70]. Earlier
in the same year, Neuberger [Neu70] had proved that under the same hypothesis T is
differentiable on (0,∞) with respect to the operator norm. The converse of the Beurling–
Kato theorem is true if T is contractive and X is uniformly convex, in particular if X is an
Lp-space, with 1 < p <∞; this is due to Pazy [Paz83; Chap. 2, Corollary 5.8]. (We refer
to [Ada75; Corollary 2.29] for the uniform convexity of Lp-spaces; see also Exercise 10.4.)
A result of Beurling [Beu70; Theorem III] allows the following characterisation of

holomorphy that is valid for arbitrary C0-semigroups and arbitrary complex Banach spaces.
The C0-semigroup T is holomorphic if and only if there exists a complex polynomial p
such that

lim sup
t→0+

∥p(T (t))∥ < sup
|z|⩽1

|p(z)|; (3.3)

see Fackler [Fac13; Section 2], where further details and some simplifications of Beurling’s
proofs can be found. See also Exercise 3.6(b), where the reader is asked to show that for
every holomorphic C0-semigroup there exists a polynomial as in (3.3).
The notion of accretivity and the Lumer–Phillips theorem can be generalised to Banach

spaces; see [Paz83; Section 1.4], [EnNa00; Section II.3.b]. The Hilbert space case is all
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we need in this book, and the restriction to this case makes our treatment significantly
simpler.

Exercises

3.1 Define the subspace E of c ′0 = ℓ1 by

E :=
{
x = (xn) ∈ ℓ1 ;

∞∑
n=1

xn = 0
}
.

Show that E is almost norming, but not norming for c0.

3.2 (a) Let M be a compact metric space, X a Banach space, (fn) an equicontinuous
sequence in C(M ;X). Show that the sequence (fn) is uniformly equicontinuous.
Assume further that f(s) := limn→∞ fn(s) exists for all s ∈M . Show that f ∈ C(M ;X)

and that ∥fn − f∥∞ → 0 as n→ ∞.
(b) Let X, Y be Banach spaces, (Tn) a sequence in L(X, Y ), Tn → T ∈ L(X, Y ) strongly.

Let M ⊆ X be compact. Show that Tnx → Tx (n → ∞) uniformly for x ∈ M . (Hint:
Recall the uniform boundedness theorem.)

3.3 Let Ω ⊆ C be an open set. Let (fn) be a bounded sequence of bounded holomorphic
functions fn : Ω → C (i.e. supz∈Ω, n∈N |fn(z)| < ∞). Define the function f : Ω → ℓ∞ by
f(z) := (fn(z))n∈N.
(a) Show that f is holomorphic. (Hint: Find a suitable norming set for ℓ∞, and use

Theorem 3.2.)
(b) Assume additionally that f∞(z) := limn→∞ fn(z) exists for all z ∈ Ω. Show that

then f : Ω → c is holomorphic (where c denotes the subspace of ℓ∞ consisting of the
convergent sequences), and that f∞ is holomorphic.
(c) Show that the convergence fn → f∞ is locally uniform. (Hint: Use the continuity of

f : Ω → c.)
(Comment: The whole setup of this exercise could also start with X-valued functions,

thereby yielding an alternative proof of Theorem 3.5.)

3.4 Let X be a complex Banach space, and let T be a holomorphic C0-semigroup on X
of angle θ ∈ (0, π/2].
(a) Show that for each θ′ ∈ (0, θ) there exists δ > 0 such that

sup
z∈Σθ′ ,Re z⩽δ

∥T (z)∥ <∞.

(b) Prove the statement in Remark 3.7(a).
(c) Show that the estimate in Remark 3.7(a) can be written equivalently as follows: for

each θ′ ∈ (0, θ) there exist M ′′ ⩾ 1, ω′′ ∈ R such that

∥T (z)∥ ⩽M ′′eω
′′|z| (z ∈ Σθ′).
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3.5 Let X be a complex Banach space, and let π/2 < θ ⩽ π. Suppose that T is a
holomorphic C0-semigroup of angle θ (with the same definition as in Section 3.2, but now
for θ ∈ (π/2, π]). Show that the generator of T belongs to L(X). (Hint: Show that the
C0-group S defined by S(s) := T (is) (s ∈ R) is continuous with respect to the operator
norm.)

3.6 Let T be a holomorphic C0-semigroup, with generator A, on a complex Banach
space X.
(a) Assume that T is bounded. Show that there exists c > 0 such that ∥AT (t)∥ ⩽ c/t

for all t > 0. (Hint: Use Cauchy’s integral formula for the derivative.)
(b) For n ∈ N let pn be the polynomial given by pn(z) := zn+1 − zn (z ∈ C). Show that

there exists n ∈ N such that

sup
0<t<1/n

∥pn(T (t))∥ < sup
|z|⩽1

|pn(z)|.

(Hint: Show by rescaling that an estimate as in part (a) holds for all t ∈ (0, 2). Then use

the equality pn(T (t)) = T (nt+ t)− T (nt) =
∫ (n+1)t

nt
AT (s) ds (strong integral).)

3.7 Let T be a bounded holomorphic C0-semigroup of angle θ ∈ (0, π/2], with generator A.
(a) Show that there exists a strongly continuous extension (also called T ) to the closure

of Σθ,0. (Hint: Show first that the extension can be defined on
⋃

t>0 ran(T (t)).)
(b) Show that T±θ, defined by T±θ(t) := T (e±iθt) (t ⩾ 0), are C0-semigroups (the

boundary semigroups of T ), with generators e±iθA. (Hint concerning the generator
property: For x ∈ dom(A) and |α| < θ consider the functions t 7→ T (eiαt)x and their
derivatives; then take the limits as α → ±θ.)
(c) If θ = π/2, then show that Tπ/2(t) := T (it) (t ∈ R) defines a C0-group Tπ/2 (the

boundary group of T ), with generator iA.

3.8 Let A be an operator in a complex Hilbert space.
(a) Let 0 < θ < π/2 and suppose that e±iθA generate contractive C0-semigroups.

Show that A generates a contractive holomorphic C0-semigroup of angle θ. (Hint: Use
Theorem 3.20.)

(b) Show that the assertion in (a) does not hold for θ = π/2.





Chapter 4

The Sobolev space H1, and applications

In Section 4.1 we present the definition and some basic properties of the Sobolev space H1.
The treatment is prepared by several important tools from analysis. The main objective
of this chapter is the Hilbert space treatment of the Laplace operator in Section 4.2. In
particular, the Dirichlet Laplacian will be presented as our first non-trivial example of a
generator of a contractive holomorphic C0-semigroup.

4.1 The Sobolev space H1

4.1.1 Convolution

Convolution is an important tool for regularizing locally integrable functions. We recall
that the space of locally integrable functions on an open set Ω ⊆ Rn is given by

L1,loc(Ω) :=
{
f : Ω → K ; ∀x ∈ Ω ∃r > 0: B(x, r) ⊆ Ω, f |B(x,r) ∈ L1(B(x, r))

}
(where as usual functions are identified if they agree a.e.). Moreover, Ck

c (Ω) := Ck(Ω) ∩
Cc(Ω) is the space of k times continuously differentiable functions with compact support,
for k ∈ N0, and similarly C∞

c (Ω) := C∞(Ω) ∩ Cc(Ω).

4.1 Lemma. Let f ∈ L1,loc(Rn), k ∈ N0 ∪{∞}, ρ ∈ Ck
c (Rn). We define the convolution

of ρ and f ,

ρ ∗ f(x) :=
∫
Rn

ρ(x− y)f(y) dy =

∫
Rn

ρ(y)f(x− y) dy (x ∈ Rn).

Then ρ ∗ f ∈ Ck(Rn), and for all α ∈ Nn
0 , |α| ⩽ k, one has

∂α(ρ ∗ f) = (∂αρ) ∗ f.

Proof. (i) The integrals exist because ρ is bounded and has compact support.
(ii) Continuity of ρ ∗ f : There exists R > 0 such that spt ρ ⊆ B(0, R). Let R′ > 0,

δ > 0. For x, x′ ∈ B(0, R′), |x− x′| < δ, one obtains

|ρ ∗ f(x)− ρ ∗ f(x′)| =
∣∣∣∣∫

B(0,R+R′)

(
ρ(x− y)− ρ(x′ − y)

)
f(y) dy

∣∣∣∣
⩽ sup

{
|ρ(z)− ρ(z′)| ; |z − z′| < δ

}∫
B(0,R+R′)

|f(y)| dy.
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The second factor in the last expression is finite because f is locally integrable, and the
first factor becomes small for small δ because ρ is uniformly continuous. This completes
the proof if k = 0. For the remainder of the proof let k ⩾ 1.
(iii) Let j ∈ {1, . . . , n}. The existence of the partial derivative of ρ∗f with respect to the

j-th variable and the equality ∂j(ρ∗f) = (∂jρ)∗f are a consequence of the differentiability
of integrals with respect to a parameter. The function (∂jρ) ∗ f is continuous, by step (ii)
above, and therefore ρ ∗ f is continuously differentiable with respect to the j-th variable.
(iv) Induction establishes the assertion for all α ∈ Nn

0 , |α| ⩽ k.

A sequence (ρk)k∈N in Cc(Rn) is called a delta sequence if ρk ⩾ 0,
∫
ρk(x) dx = 1 and

spt ρk ⊆ B[0, 1/k] for all k ∈ N. (The term ‘delta sequence’ is motivated by the fact that
the sequence

(
C∞

c (Rn) ∋ φ 7→
∫
ρkφ dx

)
k∈N approximates the ‘Dirac delta distribution’

C∞
c (Rn) ∋ φ 7→ φ(0).)

4.2 Remarks. (a) We recall the standard example of a C∞
c -function φ. The source of

this function is the well-known function ψ ∈ C∞(R),

ψ(t) :=

{
0 if t ⩽ 0,

e−1/t if t > 0.

Then φ(x) := ψ(1− |x|2) (x ∈ Rn) defines a function 0 ⩽ φ ∈ C∞
c (Rn), with the property

that φ(x) ̸= 0 if and only if |x| < 1.
(b) If 0 ⩽ ρ ∈ Cc(Rn),

∫
ρ(x) dx = 1, spt ρ ⊆ B[0, 1], and we define

ρk(x) := knρ(kx) (x ∈ Rn, k ∈ N),

then (ρk) is a delta sequence. △

4.3 Proposition. Let (ρk) be a delta sequence in Cc(Rn).
(a) Let f ∈ C(Rn). Then ρk ∗ f → f uniformly on compact subsets of Rn as k → ∞.
(b) Let 1 ⩽ p ⩽ ∞, f ∈ Lp(Rn). Then ρk ∗ f ∈ Lp(Rn),

∥ρk ∗ f∥p ⩽ ∥f∥p (k ∈ N).
If 1 ⩽ p <∞, then

∥ρk ∗ f − f∥p → 0 (k → ∞).

Proof. (a) The assertion is an easy consequence of the uniform continuity of f on compact
subsets of Rn.
(b) (i) For p = ∞ the estimate is straightforward.
If 1 < p <∞ and 1

p +
1
q = 1, then we estimate, using Hölder’s inequality in the second

step,

|ρk ∗ f(x)| =
∣∣∣∣∫ ρk(x− y)

1
q+

1
pf(y) dy

∣∣∣∣
⩽

(∫
ρk(x− y) dy

)1/q(∫
ρk(x− y)|f(y)|p dy

)1/p

=

(∫
ρk(x− y)|f(y)|p dy

)1/p

.
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This estimate also holds (trivially) for p = 1. Thus, with Fubini’s theorem in the second
step, ∫

|ρk ∗ f(x)|p dx ⩽
∫∫

ρk(x− y)|f(y)|p dy dx

=

∫∫
ρk(x− y) dx |f(y)|p dy = ∥f∥pp .

(ii) Now let 1 ⩽ p < ∞. For k ∈ N we define Tk ∈ L(Lp(Rn)) by Tkg := ρk ∗ g for
g ∈ Lp(Rn); then step (i) shows that ∥Tk∥ ⩽ 1.
If g ∈ Cc(Rn), then Tkg → g in Lp(Rn) as k → ∞. Indeed, there exists R > 0 such that

spt g ⊆ B[0, R]. It is easy to check that this implies that spt(ρk ∗ g) ⊆ B[0, R + 1] for all
k ∈ N; see also Exercise 4.2(a). Moreover ρk ∗ g → g uniformly on B[0, R+1], by part (a).
Therefore ρk ∗ g → g in Lp(Rn) as k → ∞.
Now the denseness of Cc(Rn) in Lp(Rn) – see Remark 4.4 below – together with

Proposition 1.6 implies that Tkg → g in Lp(Rn) as k → ∞, for all g ∈ Lp(Rn).

4.4 Remark. For an open set Ω ⊆ Rn and 1 ⩽ p <∞, the set Cc(Ω) is dense in Lp(Ω).
For this property we refer to [Kna05; Corollary 6.4(a)]; the proof given in this reference
for Ω = Rn and p ∈ {1, 2} carries over to the more general case stated above. For a more
elementary proof we refer to Exercise G.3. △

4.5 Corollary. Let Ω ⊆ Rn be open, 1 ⩽ p <∞. Then C∞
c (Ω) is dense in Lp(Ω).

Proof. Let (ρk) be a delta sequence in C∞
c (Rn).

Let g ∈ Cc(Ω), and let g̃ be the extension of g to Rn by zero. Then ρk∗ g̃ ∈ C∞(Rn) for all
k ∈ N, by Lemma 4.1. If 1/k < dist(spt g,Rn \Ω), then spt(ρk ∗ g̃) ⊆ spt g+B[0, 1/k] ⊆ Ω
(see Exercise 4.2(a)), and therefore (ρk ∗ g̃)|Ω ∈ C∞

c (Ω). From Proposition 4.3 we know
that ρk ∗ g̃ → g̃ in Lp(Rn) as k → ∞. So, we have shown that C∞

c (Ω) is dense in Cc(Ω)
with respect to the Lp-norm.

Now the denseness of Cc(Ω) in Lp(Ω) yields the assertion.

Note that in the above proof, dist(spt g,Rn \ Ω) = ∞ in the case Ω = Rn.

4.1.2 Distributional derivatives

We start with a simple version of integration by parts for functions on an open set Ω ⊆ Rn.
Let ψ ∈ C1

c (Ω) and j ∈ {1, . . . , n}. Then∫
Ω

∂jψ(x) dx = 0. (4.1)

Indeed, let ψ̃ be the extension of ψ to Rn by zero. Then Fubini’s theorem yields∫
Ω

∂jψ(x) dx =

∫
Rn

∂jψ̃(x) dx =

∫
x̌j∈Rn−1

(∫
xj∈R

∂jψ̃(x) dxj

)
dx̌j = 0,

where we use the notation x̌j = (x1, . . . , xj−1, xj+1, . . . , xn), and where the integral over
xj ∈ R vanishes by the fundamental theorem of calculus. Now let f ∈ C1(Ω), φ ∈ C∞

c (Ω).
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Then, applying (4.1) to the function fφ and observing the product rule of differentiation,
we obtain ∫

Ω

∂jf(x)φ(x) dx = −
∫
Ω

f(x)∂jφ(x) dx. (4.2)

This equality is fundamental for the subsequent definition of distributional derivatives.
Let P (∂) =

∑
α∈Nn

0 , |α|⩽k aα∂
α be a partial differential operator with constant coefficients

aα ∈ K (|α| ⩽ k), where k ∈ N. (An important example is P (∂) =
∑n

j=1 ∂
2
j = ∆, the

Laplace operator.) Let Ω ⊆ Rn be open, f ∈ Ck(Ω). Then for all “test functions”
φ ∈ C∞

c (Ω), repeated application of (4.2) implies∫
Ω

(
P (∂)f

)
φ dx =

∫
Ω

f
∑
|α|⩽k

(−1)|α|aα∂
αφ dx.

Now let f ∈ L1,loc(Ω). We say that P (∂)f ∈ L1,loc(Ω) if there exists g ∈ L1,loc(Ω) such
that ∫

Ω

gφ dx =

∫
Ω

f
∑
|α|⩽k

(−1)|α|aα∂
αφ dx

for all φ ∈ C∞
c (Ω), and we then say that P (∂)f = g holds in the distributional sense.

In particular, if ∂αf ∈ L1,loc(Ω), then we call ∂αf a distributional (or ‘generalised’, or
‘weak’) derivative of f .

In order to justify this definition we have to show that g = P (∂)f is unique as an element
of L1,loc(Ω). This uniqueness is immediate from the following “fundamental lemma of the
calculus of variations”.

4.6 Lemma. Let Ω ⊆ Rn be an open set, f ∈ L1,loc(Ω),∫
Ω

fφ dx = 0 (φ ∈ C∞
c (Ω)).

Then f = 0.

The statement ‘f = 0’ means that f is the zero element of L1,loc(Ω), i.e., if f is a
representative, then f = 0 a.e.

Proof of Lemma 4.6. Let ψ ∈ C∞
c (Ω). We show that ψf = 0 a.e. Defining

g(x) :=

{
ψ(x)f(x) if x ∈ Ω,

0 if x ∈ Rn \ Ω,
we have g ∈ L1(Rn).

Let (ρk) be a delta sequence in C∞
c (Rn). From Proposition 4.3 we know that ρk ∗ g → g

in L1(Rn). For x ∈ Rn, k ∈ N we obtain

ρk ∗ g(x) =
∫
Ω

ρk(x− y)ψ(y)f(y) dy = 0,

because ρk(x − ·)ψ ∈ C∞
c (Ω). We have shown that ρk ∗ g = 0, and hence g = 0 (as an

L1-function).
From ψf = 0 a.e. for all ψ ∈ C∞

c (Ω) we conclude that f = 0 a.e.; see Exercise 4.1.
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4.7 Remark. It follows from Lemma 4.6 and the preceding considerations that the
distributional definition of P (∂)f given above is consistent with the ‘classical’ definition.
To be more precise, let f ∈ Ck(Ω) and put g := P (∂)f , computed with classical derivatives.
Then P (∂)f exists in L1,loc(Ω) in the distributional sense and has the (unique) continuous
representative g. △
In the remainder of this subsection we give more information on the one-dimensional

case. The aim is to establish the following distributional variant of the fundamental
theorem of calculus.

4.8 Proposition. Let −∞ ⩽ a < x0 < b ⩽ ∞, f, g ∈ L1,loc(a, b). Then f ′ = g in the
distributional sense if and only if there exists c ∈ K such that

f(x) = c+

∫ x

x0

g(y) dy (a.e. x ∈ (a, b)).

Note that the right-hand side of the previous equality is continuous as a function of x,
and that therefore f has a continuous representative.
For the proof of Proposition 4.8 we need a preparatory lemma.

4.9 Lemma. Let −∞ ⩽ a < b ⩽ ∞, h ∈ L1,loc(a, b), and assume that h′ = 0 in the
distributional sense. Then there exists c ∈ K such that h = c a.e.

Proof. (i) We start with the observation that a function ψ ∈ C∞
c (a, b) is the derivative of a

function in C∞
c (a, b) if and only if

∫
ψ(x) dx = 0; in this case one obtains

∫
ψ(x)h(x) dx = 0

since h′ = 0. (We omit the domain (a, b) of integration from our notation.)
(ii) Let ρ ∈ C∞

c (a, b),
∫
ρ(x) dx = 1, and put c :=

∫
ρ(x)h(x) dx. For all φ ∈ C∞

c (a, b)
one obtains∫

φ(x)
(
h(x)− c

)
dx =

∫
φ(x)h(x) dx−

∫
φ(y) dy

∫
ρ(x)h(x) dx

=

∫ (
φ(x)−

∫
φ(y) dy ρ(x)

)
h(x) dx = 0

by step (i) because
∫ (
φ(x)−

∫
φ(y) dy ρ(x)

)
dx = 0. Now the assertion is a consequence

of Lemma 4.6.

Proof of Proposition 4.8. (i) We first prove the sufficiency. Let φ ∈ C∞
c (a, b), and choose

x1 ∈ (a, inf sptφ). Then

f(x) = c1 +

∫ x

x1

g(y) dy (a.e. x ∈ (a, b)),

with c1 := c+
∫ x1

x0
g(y) dy. Since sptφ ⊆ (x1, b) and

∫ b

a
φ′(x) dx = 0, we obtain∫ b

a

φ′(x)f(x) dx =

∫ b

x1

φ′(x)
(
c1 +

∫ x

x1

g(y) dy
)
dx =

∫∫
x1<y<x<b

φ′(x)g(y) dy dx

=

∫∫
x1<y<x<b

φ′(x)g(y) dx dy = −
∫ b

a

φ(y)g(y) dy.

Thus f ′ = g.
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(ii) Conversely assume that f ′ = g, and put

h(x) := f(x)−
∫ x

x0

g(y) dy (a < x < b).

Then step (i) implies that h′ = f ′ − g = 0 in the distributional sense, so by Lemma 4.9
there exists c ∈ K such that h = c a.e.

4.1.3 Definition of H1(Ω)

Let Ω ⊆ Rn be an open set. We define the Sobolev space

H1(Ω) :=
{
f ∈ L2(Ω) ; ∂jf ∈ L2(Ω) (j = 1, . . . , n)

}
,

with scalar product

(f | g)H1 := (f | g)L2
+

n∑
j=1

(∂jf | ∂jg)L2

(where

(f | g)L2
:=

∫
Ω

f(x)g(x) dx

denotes the usual scalar product on L2(Ω)) and associated norm

∥f∥H1 :=
(
∥f∥22 +

n∑
j=1

∥∂jf∥22
)1/2

.

4.10 Theorem. The space H1(Ω) is a separable Hilbert space.

For the proof we single out an important property concerning the convergence of
distributional derivatives, valid in a more general context.

4.11 Lemma. Let Ω ⊆ Rn be open, and let α ∈ Nn
0 . Let (fk) be a sequence in L1,loc(Ω),

with ∂αfk ∈ L1,loc(Ω) for all k ∈ N, let f, g ∈ L1,loc(Ω), and assume that fk|K → f |K,
∂αfk|K → g|K (k → ∞) in L1(K), for all compact sets K ⊆ Ω.
Then ∂αf = g ∈ L1,loc(Ω).

Proof. Let φ ∈ C∞
c (Ω). Then∫

∂αfk(x)φ(x) dx = (−1)|α|
∫
fk(x)∂

αφ(x) dx

for all k ∈ N. Taking the limit k → ∞ we obtain∫
g(x)φ(x) dx = (−1)|α|

∫
f(x)∂αφ(x) dx.

This establishes the assertion.
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Proof of Theorem 4.10. Clearly H1(Ω) is a pre-Hilbert space.
Let J : H1(Ω) →

⊕n
j=0 L2(Ω) be defined by Jf := (f, ∂1f, . . . , ∂nf), where

⊕n
j=0 L2(Ω)

denotes the orthogonal direct sum. Then clearly J is an isometric operator. Therefore
H1(Ω) is complete if and only if the range of J is a closed subspace of the Hilbert space⊕n

j=0 L2(Ω). Let (fk) be a sequence in H1(Ω) such that (Jfk) is convergent in
⊕n

j=0 L2(Ω)

to an element (f 0, . . . , fn). This means that fk → f 0 and ∂jfk → f j (j = 1, . . . , n) in
L2(Ω) as k → ∞. Lemma 4.11 implies f j = ∂jf

0 (j = 1, . . . , n), so we have shown that
f := f 0 ∈ H1(Ω) and that (f 0, . . . , fn) = Jf ∈ J(H1(Ω)).
The space L2(Ω) is separable, therefore

⊕n
j=0 L2(Ω) is separable, the subspace J(H

1(Ω))

of
⊕n

j=0 L2(Ω) is separable, and thus H1(Ω) is separable because J is isometric.

As in Subsection 4.1.2 we give additional information on the one-dimensional case.

4.12 Theorem. Let −∞ < a < b <∞. Then every f ∈ H1(a, b) possesses a representative
in C[a, b], and the embedding H1(a, b) ↪→ C[a, b] thus defined is continuous.

Proof. By Proposition 4.8, every function f ∈ H1(a, b) has a representative of the form
f(x) = c +

∫ x

x0
f ′(y) dy, with x0 ∈ (a, b) and c ∈ K. Since f ′ ∈ L2(a, b) ⊆ L1(a, b), this

representative is continuous as a function of x ∈ [a, b].
Let f ∈ H1(a, b), with f chosen as the continuous representative. Then

∥f∥C[a,b] ⩽ inf
x0∈(a,b)

|f(x0)|+
∫ b

a

|f ′(y)| dy ⩽
1

b− a

∫ b

a

|f(y)| dy +
∫ b

a

|f ′(y)| dy

⩽ (b− a)−1/2∥f∥2 + (b− a)1/2∥f ′∥2 ⩽
(
(b− a)−1/2 + (b− a)1/2

)
∥f∥H1 .

(4.3)

This inequality shows that the embedding is a bounded operator.

4.13 Remarks. (a) If X, Y are normed spaces, then X ↪→ Y is an abbreviation for saying
that X is embedded into Y by an injective operator in L(X, Y ). Usually this means that
X ⊆ Y in a natural way and that for some constant c > 0 one has

∥x∥Y ⩽ c∥x∥X (x ∈ X).

Such a constant is called an embedding constant.
(b) As an easy consequence of Theorem 4.12 one also obtains continuous embed-

dings H1(−∞, d) ↪→ C0(−∞, d], H1(d,∞) ↪→ C0[d,∞), for d ∈ R, and H1(−∞,∞) ↪→
C0(−∞,∞), with embedding constant c = 2. To see this, observe that the restriction of
an H1-function to a subinterval (a, b) belongs to H1(a, b) and apply the estimate 4.3 to
subintervals of length b− a = 1.
(c) Theorem 4.12 is a simple instance of a Sobolev embedding theorem. △

4.1.4 Denseness properties

Let Ω ⊆ Rn be an open set. For f ∈ L1,loc(Ω) we define the support of f by

spt f := Ω \
⋃{

U ⊆ Ω; U open, f |U = 0 a.e.
}
;
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this definition is consistent with the already defined support for continuous functions.
Observe that f = 0 a.e. on Ω \ spt f , by Exercise 4.1(b). Furthermore we define

H1
c (Ω) :=

{
f ∈ H1(Ω) ; spt f compact in Ω

}
,

H1
0 (Ω) := H1

c (Ω)
H1(Ω)

.

4.14 Remarks. (a) In a generalised sense, functions in H1
0 (Ω) ‘vanish at the boundary

of Ω’. For sets Ω with regular boundary, this will be made more precise in Section 7.2.
(b) For f ∈ H1

0 (Ω) the extension to Rn by zero belongs to H1(Rn); see Exercise 4.7.
(One first shows this for f ∈ H1

c (Ω) and then uses a denseness argument.) △

4.15 Theorem. (a) H1
0 (Rn) = H1(Rn).

(b) H1
0 (Ω) = C∞

c (Ω)
H1(Ω)

.

We need the following auxiliary result.

4.16 Lemma. (a) Let α ∈ Nn
0 , f, ∂

αf ∈ L1,loc(Rn), ρ ∈ C∞
c (Rn). Then

∂α(ρ ∗ f) = ρ ∗ (∂αf).

(b) Let f ∈ H1(Rn), and let (ρk) be a delta sequence in C∞
c (Rn). Then ρk ∗ f → f in

H1(Rn) as k → ∞.

Proof. (a) Using Lemma 4.1 in the first equality and the definition of the distributional
derivative in the third, we obtain

∂α(ρ ∗ f)(x) =
∫
∂αρ(x− y)f(y) dy = (−1)|α|

∫
∂α[ρ(x− ·)](y)f(y) dy

=

∫
ρ(x− y)∂αf(y) dy = ρ ∗ ∂αf(x).

(b) From Proposition 4.3(b) we know that ρk ∗ f → f in L2(Rn) as k → ∞. Using
part (a) we further obtain

∂j(ρk ∗ f) = ρk ∗ ∂jf → ∂jf (k → ∞)

in L2(Rn), for j = 1, . . . , n, and the assertion follows.

Proof of Theorem 4.15. (a) Let f ∈ H1(Rn), φ ∈ C∞
c (Rn). Then from Exercise 4.5(c) we

obtain ∂j(φf) = ∂jφf + φ∂jf ∈ L2(Rn) for all j ∈ {1, . . . , n}. Hence φf ∈ H1
c (Rn).

Choose ψ ∈ C∞
c (Rn), ψ|B(0,1) = 1, and put ψk := ψ(·/k) (k ∈ N). Then ψkf → f

and ∂j(ψkf) = ∂jψkf + ψk∂jf → 0 ·f + ∂jf in L2(Rn) as k → ∞. Thus the functions
ψkf ∈ H1

c (Rn) approximate f in H1(Rn).
(b) The inclusion ‘⊇’ is trivial. The proof of ‘⊆’ is analogous to the proof of Corollary 4.5:

it is sufficient to show that each f ∈ H1
c (Ω) can be approximated by elements of C∞

c (Ω).
This, however, is a consequence of Remark 4.14(b) and Lemma 4.16(b).
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4.17 Remark. In general, the spaces H1(Ω) and H1
0 (Ω) do not coincide. We prove this

for the case of bounded Ω ̸= ∅, using Theorem 4.15(b).
Note that for all f ∈ H1

0 (Ω) one has
∫
∂1f(x) dx = 0. This is clear if f ∈ C∞

c (Ω) and
carries over to H1

0 (Ω) by continuity. Now let f ∈ H1(Ω) be defined by f(x) := x1 (x ∈ Ω).
Then

∫
∂1f(x) dx ̸= 0 and therefore f ∈ H1(Ω) \H1

0 (Ω). △

4.18 Examples (Right translation semigroups). We come back to Examples 1.7 and
describe the generator A, but only for the case p = 2.
(a) On L2(R): Recall from Example 1.16 that D := C1

c (R) is a core for A, i.e. A = A|D,
and that Af = −f ′ for all f ∈ D. Thus A|D, considered as a subspace of L2(R)× L2(R),
is isomorphic to C1

c (R) as a subspace of H1(R) (cf. the proof of Theorem 4.10), and one
obtains

dom(A) = C1
c (R)

H1(R)
= H1

0 (R) = H1(R), Af = −f ′ (f ∈ dom(A)).

(b) On L2(0,∞): Similarly to part (a) one obtains

dom(A) = C1
c (0,∞)

H1(0,∞)
= H1

0 (0,∞), Af = −f ′ (f ∈ dom(A)).

(c) On L2(−∞, 0): In this case, the set C1
c (−∞, 0] is a subset of dom(A), Af = −f ′

for all f ∈ C1
c (−∞, 0], and C1

c (−∞, 0] is invariant under T ; hence by Proposition 1.15,
C1

c (−∞, 0] is a core for A. Then as in part (a) we can conclude that

dom(A) = C1
c (−∞, 0]

H1(−∞,0)
= H1(−∞, 0), Af = −f ′ (f ∈ dom(A)),

once we know that C1
c (−∞, 0] is dense in H1(−∞, 0).

In order to obtain this denseness property we first note that the method of the proof
of Theorem 4.15(a) shows that {f ∈ H1(−∞, 0) ; spt f bounded} is dense in H1(−∞, 0).
Now let a < 0, f ∈ H1(−∞, 0), spt f ⊆ (a, 0). Then there exists a sequence (φn) in
Cc(−∞, 0) with sptφn ⊆ (a, 0) for all n ∈ N such that φn → f ′ in L2(−∞, 0) as n→ ∞.
Putting

fn(x) :=

∫ x

−∞
φn(y) dy (x ∈ (−∞, 0), n ∈ N),

one easily sees that fn ∈ C1
c (−∞, 0] for all n ∈ N, and fn → f in H1(−∞, 0) as n→ ∞.

(d) On L2(0, 1): As in part (c) one first shows that C1
c (0, 1] is a core for A and then

obtains

dom(A) = C1
c (0, 1]

H1(0,1)
=

{
f ∈ H1(0, 1) ; f(0) = 0

}
, Af = −f ′ (f ∈ dom(A)).

The required denseness of C1
c (0, 1] is seen as follows. For a function f ∈ H1(0, 1) with

f(0) = 0 one chooses a sequence (φn) in Cc(0, 1) approximating f ′ in L2(0, 1). Then

fn(x) :=

∫ x

0

φn(y) dy (x ∈ (0, 1), n ∈ N)

defines a sequence (fn) in C
1
c (0, 1] approximating f in H1(0, 1). △
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4.2 A variant of the Poisson problem, and the Dirichlet
Laplacian

An important partial differential equation from mathematical physics is the Poisson
equation

−∆u = f on Ω, u|∂Ω = 0,

for a given function f on an open set Ω ⊆ Rn. The first aim of the present section is to
solve a variant of this equation. One might look for a solution u that is twice differentiable
on Ω and continuous on the closure. We will not treat the problem in this form but rather
weaken the requirements.

More explicitly, the boundary condition u|∂Ω = 0 will be modified to the requirement
that u should belong to H1

0 (Ω), and the equation itself will only be required to hold in
the distributional sense.
In the second part of the section we will establish the connection to m-accretivity of

the negative Dirichlet-Laplacian in L2(Ω) and holomorphic semigroups.

4.2.1 The equation u − ∆u = f

4.19 Theorem. Let Ω ⊆ Rn be open, and let f ∈ L2(Ω). Then there exists a unique
function u ∈ H1

0 (Ω) such that u−∆u = f in the distributional sense.

We insert a lemma expressing the distributional equality in another form.

4.20 Lemma. Let u ∈ H1(Ω), g ∈ L2(Ω). Then −∆u = g in the distributional sense if
and only if

(v | g)L2
=

n∑
j=1

(∂jv | ∂ju)L2
(v ∈ H1

0 (Ω)). (4.4)

Proof. By the definition of distributional derivatives, the equation −∆u = g is equivalent
to

(φ | g) = −(∆φ |u) =
n∑

j=1

(∂jφ | ∂ju) (φ ∈ C∞
c (Ω)),

i.e. to the validity of equation (4.4) for all v ∈ C∞
c (Ω). As both mappings H1(Ω) ∋

v 7→ (v | g) ∈ K and H1(Ω) ∋ v 7→
∑n

j=1(∂jv | ∂ju) ∈ K are continuous, the equality

of the terms in (4.4) extends to the closure of C∞
c (Ω) in H1(Ω), i.e. to H1

0 (Ω) (recall
Theorem 4.15(b)).

Proof of Theorem 4.19. We define a bounded linear functional η : H1
0 (Ω) → K by

η(v) := (v | f)L2
(v ∈ H1

0 (Ω)).

Applying the representation theorem of Fréchet–Riesz (see e.g. [Bre11; Theorem 5.5]) we
obtain u ∈ H1

0 (Ω) such that

η(v) = (v |u)H1
0 (Ω) (v ∈ H1

0 (Ω)).



51

Putting this equation and the definition of η together we obtain

(v | f) = (v |u)H1
0 (Ω) = (v |u) +

n∑
j=1

(∂jv | ∂ju) (v ∈ H1
0 (Ω)).

Shifting the first term on the right-hand side to the left and applying Lemma 4.20 we
conclude that −∆u = f − u in the distributional sense.
The uniqueness of u is a consequence of the uniqueness in the Fréchet–Riesz representa-

tion theorem.

4.2.2 The Dirichlet Laplacian

In this subsection we reformulate the result of Subsection 4.2.1 in operator language. As
before, let Ω ⊆ Rn be an open set.
We define the Dirichlet Laplacian ∆D in L2(Ω),

∆D :=
{
(u, f) ∈ L2(Ω)× L2(Ω) ; u ∈ H1

0 (Ω), ∆u = f
}
.

In other words,
dom(∆D) :=

{
u ∈ H1

0 (Ω) ; ∆u ∈ L2(Ω)
}
,

∆Du := ∆u (u ∈ dom(∆D)).

The name ‘Dirichlet Laplacian’ may be ambiguous, so we give a short explanation. In
principle, ‘Dirichlet boundary conditions’ are of the form u|∂Ω = φ for a given function
φ defined on ∂Ω. Recall that the membership of u in H1

0 (Ω) is a version of Dirichlet
boundary condition zero. So, ‘Dirichlet Laplacian’ should be regarded as an abbreviation
of ‘Laplacian with Dirichlet boundary condition zero’.

4.21 Theorem. The negative Dirichlet Laplacian −∆D is m-accretive. The operator ∆D

is the generator of a contractive C0-semigroup on L2(Ω).
In the complex case, −∆D is m-sectorial of angle 0, and ∆D is the generator of a

contractive holomorphic C0-semigroup of angle π/2 on L2(Ω;C).

Proof. Theorem 4.19 states that ran(I −∆D) = L2(Ω). For u ∈ dom(∆D) an application
of Lemma 4.20 yields

(−∆Du |u) = (−∆u |u) =
n∑

j=1

(∂ju | ∂ju) ∈ [0,∞).

This implies that −∆D is m-accretive, and in the complex case it also shows that −∆D is m-
sectorial of angle 0. The remaining assertions follow from Theorem 3.16 (Lumer–Phillips)
and Theorem 3.20.

The statement that −∆D is m-sectorial of angle 0 is equivalent to saying that −∆D is
an accretive self-adjoint operator; this will be explained in Chapter 6.
The semigroup T generated by ∆D describes heat propagation in Ω. In fact, let u0 ∈

L2(Ω), and put u(t) := T (t)u0 for t ⩾ 0. Then u ∈ C([0,∞);L2(Ω)) ∩ C∞(0,∞;L2(Ω)),
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u(t) ∈ dom(∆D) for all t > 0, and

u′(t) = ∆u(t), u(t)|∂Ω = 0 (t > 0),

u(0) = u0 ;

see Remarks 3.11 and 4.14(a) (as well as Exercise 4.9 for the case K = R). If we consider
a homogeneous body Ω (a bounded open subset of Rn) and u0(x) as the temperature
at x ∈ Ω at time 0, then u(t)(x) is the temperature at time t > 0 at x. The boundary
condition means that the temperature is kept at 0 at the boundary. One expects that
limt→∞ u(t) = 0. That this is indeed the case will be seen in Exercise 5.2(c).

Notes

The theory of partial differential equations started in the 18th century, after the invention
of Newton’s “fluxions” and Leibnitz’ ingenious contribution, the introduction of the
symbols of differential and integral calculus. Up to the beginning of the 20th century,
solutions of differential equations were always discussed under the basic assumption that
all the derivatives of the solution appearing in the equation are classical derivatives.
It was in the early 20th century, in connection with the development of functional

analysis and integration theory, that ‘generalised solutions’ of problems in differential
equation were considered. The pioneering idea appears to be contained in the paper of
Beppo Levi [Lev06] from 1906: in his discussion of the Dirichlet problem (in two space
dimensions) he used an approximation procedure to find a continuous solution whose
generalised first partial derivatives belong to L2. (For more information on the Dirichlet
problem we refer to the Notes of Chapter 7.)
The groundbreaking contribution of Sergei Lvovich Sobolev [Sob38] in 1938 was to

introduce normed spaces of functions with distributional derivatives belonging to Lp

and to study embeddings between certain of these spaces. (Our Theorem 4.12 is a
particularly simple instance of a ‘Sobolev embedding theorem’.) In the early 1950’s,
French mathematicians were in search of a name for this kind of spaces. The suggestion to
call them ‘Beppo Levi spaces’ was strongly opposed by Levi himself; as a result, the name
‘Sobolev spaces’ was coined and now is universally accepted. For a detailed account of the
above sketchy description of the development in the 20th century we refer to [WKK09;
Section 10.1] and to [Nau02].
In Section 4.1 we have collected basics of Sobolev spaces as far as we have needed

them in this chapter. Additional properties will be presented in subsequent chapters,
according to what will be needed and used later. In this book we will mainly need
the ‘Hilbert-Sobolev spaces’ H1(Ω) and H1

0 (Ω), with the exception of Chapter 17 and
Appendices D and H, where we use W 1

1 (Ω). More generally, for k ∈ N0 and p ∈ [1,∞],
the Sobolev space W k

p (Ω) is defined by

W k
p (Ω) :=

{
u ∈ Lp(Ω) ; ∂

αu ∈ Lp(Ω) (α ∈ Nn
0 , |α| ⩽ k)

}
,

where the derivatives ∂αu are understood in the distributional sense. For more information
we refer to [AdFo05]. We mention that one also defines Sobolev spaces of negative order;
for an example we refer to the definition of H−1(Ω) in Section 16.1.
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Exercises

4.1 Let Ω ⊆ Rn be open.

(a) Show that there exists a standard exhaustion (Ωk)k∈N of Ω, i.e., Ωk is open,
relatively compact in Ωk+1 (k ∈ N), and

⋃
k∈NΩk = Ω. (Hint: For Ω ̸= Rn use

Ωk :=
{
x ∈ Ω; |x| < k, dist(x,Rn \ Ω) > 1/k

}
.)

(b) Let f ∈ L1,loc(Ω), and assume that f = 0 locally, i.e., for all x ∈ Ω there exists r > 0
such that B(x, r) ⊆ Ω and f |B(x,r) = 0. Show that f = 0. (All ‘= 0’ should be interpreted
as a.e.)

4.2 (a) Let f ∈ L1,loc(Rn), ρ ∈ Cc(Rn). Show that spt(ρ ∗ f) ⊆ spt f + spt ρ. (Hint:
Show first that spt f + spt ρ is closed.)

(b) Let K ⊆ U ⊆ Rn, K compact, U open. Show that there exists ψ ∈ C∞
c (Rn) such

that sptψ ⊆ U and 1K ⩽ ψ ⩽ 1. (Hint: Note that dist(K,Rn \ U) > 0. Find ψ as the
convolution of a suitable function ρ ∈ C∞

c (Rn) with a suitable indicator function.)

4.3 (a) Let K be a compact subset of a metric spaceM , and let (Uj)j=1,...,m be a covering
of K by open subsets of M . Show that there exists a shrinking of (Uj)j=1,...,m, i.e. an open
covering (Vj)j=1,...,m of K such that Vj ⊆ Uj for all j ∈ {1, . . . ,m}.
Hints: Use the compactness of K to find a finite covering

(
B(x, rx)

)
x∈F of K, with a

finite set F ⊆ K and rx > 0 for all x ∈ F , such that for each x ∈ F the closed ball B[x, rx]
is contained in one of the sets Uj. Then put

Vj :=
⋃

x∈F with B[x,rx]⊆Uj

B(x, rx) (j = 1, . . . ,m).

(b) Let Ω ⊆ Rn be open, K ⊆ Ω compact, (Uj)j=1,...,m a covering of K by open subsets
of Ω. Show that there exists a family (χj)j=1,...,m in C∞

c (Ω), χj ⩾ 0 and sptχj ⊆ Uj for all
j ∈ {1, . . . ,m}, such that

∑m
j=1 χj(x) = 1 for all x ∈ K. The family (χj)j=1,...,m is called

a partition of unity on K subordinate to the covering (Uj)j=1,...,m of K.

Hints: Use part (a) to find a shrinking (Vj)j=1,...,m of (Uj)j=1,...,m with the additional
property that each set Vj is bounded. Construct a family (Wj)j=1,...,m of pairwise dis-
joint measurable sets such that

⋃m
j=1Wj =

⋃m
j=1 Vj. Then choose ρ ∈ C∞

c (Rn)+ with∫
ρ(x) dx = 1, spt ρ ⊆ B(0, ε) for suitably small ε > 0 and put χj := ρ ∗ 1Wj

to obtain the
asserted partition of unity.

(c) Let Ω ⊆ Rn be open. Let P (∂) be a partial differential operator with constant
coefficients, f, g ∈ L1,loc(Ω), and assume that g = P (∂)f in the distributional sense
locally on Ω, i.e., for every x ∈ Ω there exists an open neighbourhood Ux such that
g|Ux

= P (∂)(f |Ux
) in the distributional sense. Show that g = P (∂)f in the distributional

sense.

Hint: For φ ∈ C∞
c (Ω), K := sptφ and a finite covering (Ux)x∈F of K by sets as above

use a partition of unity as indicated in part (b).
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4.4 Let H ⊆ R2 be the half-plane H := {(x1, x2) ; x1 ⩾ 0}, and let f ∈ L1,loc(R2) be
defined by f := 1H .
(a) Show that

∫
∂1φf dx = −

∫
x2∈R φ(0, x2) dx2 for all φ ∈ C∞

c (R2) and that there is no

g ∈ L1,loc(R2) such that
∫
∂1φf dx =

∫
φg dx for all φ ∈ C∞

c (R2).
(b) Decide which of the partial derivatives ∂1f, ∂2f, ∂

(1,1)f belong to L1,loc(R2).

4.5 Let Ω ⊆ Rn be open.
(a) Let α, β ∈ Nn

0 and f, ∂αf ∈ L1,loc(Ω). Show that

∂α+βf ∈ L1,loc(Ω) ⇐⇒ ∂β(∂αf) ∈ L1,loc(Ω) =⇒ ∂α+βf = ∂β(∂αf).

(b) Let f ∈ L1,loc(Ω), ∇f := (∂1f, . . . , ∂nf)
⊤ ∈ L1,loc(Ω;Kn). Show that

∆f ∈ L1,loc(Ω) ⇐⇒ div∇f ∈ L1,loc(Ω) =⇒ ∆f = div∇f.

(It is part of the task to give a definition of the distributional divergence divw ∈ L1,loc(Ω)
of a vector field w ∈ L1,loc(Ω;Kn), analogously to the definition of distributional derivatives
in Subsection 4.1.2.)
(c) Let j ∈ {1, . . . , n}, f, ∂jf ∈ L1,loc(Ω), and let φ ∈ C∞(Ω). Show that ∂j(φf) =

∂jφf + φ∂jf .

4.6 Let Ω ⊆ Rn be open. Let α ∈ Nn
0 and f, ∂αf ∈ L1,loc(Ω).

(a) Show that spt ∂αf ⊆ spt f . (Hint: Look at the complements of the supports.)
(b) Assume additionally that spt f is compact in Ω, and define f̃ as the extension of f

to Rn by zero. Show that ∂αf̃ ∈ L1(Rn) and that ∂αf̃ is the extension of ∂αf to Rn by
zero. (Hint: Using Exercise 4.2, choose a function ψ ∈ C∞

c (Rn) such that sptψ ⊆ Ω and
ψ = 1 in a neighbourhood of spt f .)

4.7 Let Ω ⊆ Rn be open.
(a) Let f ∈ H1

0 (Ω), and define f̃ as the extension of f to Rn by zero. Show that
f̃ ∈ H1(Rn) and that ∂j f̃ is the extension of ∂jf to Rn by zero, for j = 1, . . . , n. (Hint:
First consider f ∈ H1

c (Ω) and apply Exercise 4.6(b).)
(b) Let Ω := (−1, 0) ∪ (0, 1). Find a function f ∈ H1(Ω) \H1

0 (Ω) with the property
that the extension f̃ to R by zero belongs to H1(R).

4.8 Let n ⩾ 3. Show that H1(Rn) = H1
0 (Rn \ {0}). For the more ambitious reader: Show

this property for n = 2 as well.

4.9 Let Ω ⊆ Rn be open. Denote by AK the Dirichlet-Laplacian ∆D in L2(Ω;K) and by
TK the C0-semigroup on L2(Ω;K) generated by AK. Show that TC(t)f = TR(t)f for all
t ⩾ 0, f ∈ L2(Ω;R).



Chapter 5

Forms and operators

We now introduce the main object of this book – namely forms in Hilbert spaces. They
are very popular in analysis because, in combination with the Lax–Milgram lemma, they
are best adapted for establishing existence and uniqueness of weak solutions of elliptic
partial differential equations. Moreover, having the Lumer–Phillips machinery at our
disposal, we can go much further and associate holomorphic semigroups with forms.

5.1 Forms: algebraic properties

In this section we introduce forms and put together some algebraic properties. As the
domain we consider a vector space V over K.
A sesquilinear form on V is a mapping a : V × V → K such that

a(u+ v, w) = a(u,w) + a(v, w), a(λu,w) = λa(u,w),

a(u, v + w) = a(u, v) + a(u,w), a(u, λv) = λa(u, v)

for all u, v, w ∈ V , λ ∈ K. (It is common usage to call a a form on V , although a is
defined on V × V – rather than on V .)
If K = R, then a sesquilinear form is the same as a bilinear form. If K = C, then a is

linear in the first and antilinear in the second argument, i.e., only half of the linearity
conditions are satisfied for the second argument: the form is 11

2
-linear, or sesquilinear

since the Latin ‘sesqui’ means ‘one and a half’.
For simplicity we will mostly use the term form instead of sesquilinear form. A form a

is called symmetric if
a(u, v) = a(v, u) (u, v ∈ V ),

and a is accretive if
Re a(u, u) ⩾ 0 (u ∈ V ).

In the literature, a symmetric form is also called “positive” if it is accretive, but we will
not use this terminology.
We will frequently use the notation

a(u) := a(u, u) (u ∈ V )

for the associated quadratic form.
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5.1 Remarks. (a) Each form a on V satisfies the parallelogram identity

a(u+ v) + a(u− v) = 2a(u) + 2a(v) (u, v ∈ V ).

If a is symmetric, one has

Re a(u, v) =
1

4

(
a(u+ v)− a(u− v)

)
(u, v ∈ V ).

(b) If K = C, then each form a satisfies the polarisation identity

a(u, v) =
1

4

(
a(u+ v)− a(u− v) + i

(
a(u+ iv)− a(u− iv)

))
(u, v ∈ V ),

as an elementary computation shows. In particular, each form is determined by its
quadratic terms. This in turn implies that a is symmetric if and only if a(u) ∈ R for
all u ∈ V . (Consider the form b(u, v) := a(u, v)− a(v, u) and its quadratic terms b(u).)
It follows that a is symmetric and accretive if and only if a(u) ∈ [0,∞) for all u ∈ V .
Clearly, these two characterisations are only true if K = C.
(c) If K = R and a is symmetric, then part (a) implies the polarisation identity in

the variant

a(u, v) =
1

4

(
a(u+ v)− a(u− v)

)
(u, v ∈ V ). △

Now let again K = C or R. We present a version of the Cauchy–Schwarz inequality that
involves two different symmetric forms, which will be useful later on. Recall that a scalar
product is a symmetric form a that is positive definite, i.e. a(u) > 0 for all u ∈ V \ {0}.
For the Cauchy–Schwarz inequality to hold we do not need definiteness.

5.2 Proposition (Cauchy–Schwarz inequality). Let a, b : V×V → K be two symmetric
forms. Assume that |a(u)| ⩽ b(u) for all u ∈ V . Then

|a(u, v)| ⩽ b(u)1/2b(v)1/2 (u, v ∈ V ). (5.1)

Proof. Let u, v ∈ V . In order to prove (5.1) we may assume that a(u, v) ∈ R (in the
complex case replace u by γu with a suitable γ ∈ C, |γ| = 1). Then from Remark 5.1(a)
and the hypothesis one obtains

|a(u, v)| ⩽ 1

4

(
|a(u+ v)|+ |a(u− v)|

)
⩽

1

4

(
b(u+ v) + b(u− v)

)
=

1

2

(
b(u) + b(v)

)
.

Let s > b(u)1/2, t > b(v)1/2. Then

|a(u, v)| = st

∣∣∣∣a( 1

s
u,

1

t
v
)∣∣∣∣ ⩽ st · 1

2

(b(u)
s2

+
b(v)

t2

)
⩽ st.

Taking the infimum over s and t we obtain (5.1).
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Next we introduce the adjoint form. Let a : V × V → K be a form. Then

a∗(u, v) := a(v, u) (u, v ∈ V )

defines a form a∗ : V × V → K. Note that a is symmetric if and only if a = a∗. In the case
of complex scalars, the forms

Re a :=
1

2
(a+ a∗) and Im a :=

1

2i
(a− a∗)

are symmetric, and
a = Re a+ i Im a.

We call Re a the real part and Im a the imaginary part of a. Observe that (Re a)(u) =
Re a(u) and (Im a)(u) = Im a(u) for all u ∈ V .
There is another algebraic notion – only used for the case K = C – that will play an

important role. A form a : V × V → C is sectorial if there exists θ ∈ [0, π/2) such that
a(u) ∈ Σθ for all u ∈ V . If we want to specify the angle, we say that a is sectorial of
angle θ. It is obvious that a form a : V × V → C is sectorial if and only if a is accretive
and there exists a constant c ⩾ 0 such that

|Im a(u)| ⩽ cRe a(u) (u ∈ V ). (5.2)

(The angle θ and the constant c are related by c = tan θ. Note that without accretivity
of a, the estimate (5.2) with c = 0 would just imply that a(u) ∈ R for all u ∈ V .)

5.2 Representation theorems

We now consider forms whose domain is a Hilbert space V over K. We recall the classical
representation theorem of Fréchet–Riesz: if η is a bounded linear functional on V , then
there exists a unique v ∈ V such that

η(u) = (u | v)V (u ∈ V ).

The purpose of this section is to generalise this result.
First of all, it will be natural to use the antidual V ∗ of V instead of the dual space V ′.

More precisely, if K = R, then V ∗ = V ′ is the dual space of V , and if K = C, then we
denote by V ∗ the space of all continuous antilinear functionals. Note that η is antilinear
if and only if η =

[
u 7→ η(u)

]
is linear. The space V ∗ is a Banach space for the norm

∥η∥V ∗ = sup∥v∥V ⩽1 |η(v)|. For η ∈ V ∗ we will mostly write

⟨η, v⟩ := η(v) (v ∈ V ).

The theorem of Fréchet–Riesz can be reformulated by saying that for each η ∈ V ∗ there
exists a unique u ∈ V such that

η(v) = (u | v)V (v ∈ V ).

The mapping Φ: V → V ∗, u 7→ (u | ·)V is the Fréchet–Riesz isomorphism: it is easy to
see that Φ is linear and isometric; the Fréchet–Riesz theorem shows that Φ is surjective.
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We now aim for the generalisation of the Fréchet–Riesz theorem, the omnipresent
Lax–Milgram lemma.
A form a : V × V → K is called bounded if there exists M ⩾ 0 such that

|a(u, v)| ⩽M∥u∥V ∥v∥V (u, v ∈ V ).

This condition is equivalent to continuity of a; see Exercise 5.1. If a is a bounded form
on V , then a(u, ·) ∈ V ∗ for all u ∈ V , with ∥a(u, ·)∥ ⩽M∥u∥V , so we obtain a bounded
linear operator A : V → V ∗, u 7→ a(u, ·) satisfying

⟨Au, v⟩ = a(u, v) (u, v ∈ V ) (5.3)

and ∥A∥L(V,V ∗) ⩽M . The operator A is called the Lax–Milgram operator associated
with the form a. If, in addition, a is coercive, i.e. if there exists α > 0 such that

Re a(u) ⩾ α∥u∥2V (u ∈ V ), (5.4)

then A is an isomorphism; this is the famous Lax–Milgram lemma shown below.
We first treat the ‘operator version’ of the lemma, which is based on the following

definition. An operator A in V is called strictly accretive if there exists α > 0 such that

Re(Au |u)V ⩾ α∥u∥2V (u ∈ dom(A)) (5.5)

(expressed differently, A− αI is accretive), and A is strictly m-accretive if A is strictly
accretive and m-accretive. Lemma 3.17 implies that A is strictly m-accretive if and only
if A is strictly accretive and ran(A) = V .

5.3 Lemma. Let V be a Hilbert space, and let A ∈ L(V ) be strictly accretive. Then A is
invertible in L(V ), and ∥A−1∥ ⩽ 1

α , with α > 0 as in (5.5).

Proof. The operator A − αI is accretive and hence m-accretive by Remark 3.18. Thus
Lemma 3.17 implies that A = αI + (A− αI) has the asserted properties.

5.4 Theorem (Lax–Milgram lemma). Let V be a Hilbert space, and let a : V×V → K be
a bounded coercive form. Then the operator A : V → V ∗ defined in (5.3) is an isomorphism,
and ∥A−1∥L(V ∗,V ) ⩽

1
α with α > 0 from (5.4). In particular, for every η ∈ V ∗ there exists

u ∈ V such that η(v) = a(u, v) for all v ∈ V .

Proof. Composing A with the inverse of the Fréchet–Riesz isomorphism Φ: V → V ∗ we
obtain an operator Φ−1A ∈ L(V ) satisfying

Re
(
Φ−1Au

∣∣u)
V
= Re⟨Au, u⟩ = Re a(u, u) ⩾ α∥u∥2V (u ∈ V ).

From Lemma 5.3 we conclude that Φ−1A is invertible in L(V ) and that ∥(Φ−1A)−1∥ ⩽ 1
α .

As Φ is an isometric isomorphism we obtain the assertions.

If the form is symmetric, then the Lax–Milgram lemma is the same as the theorem of
Fréchet–Riesz. In fact, then a is an equivalent scalar product, i.e. a(u)1/2 defines an
equivalent norm on V .
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5.3 Semigroups by forms

Here we come to the heart of this book: we prove the first generation theorem. With
a bounded coercive form we associate an operator that is strictly m-accretive and thus
yields a contractive C0-semigroup, by the Lumer–Phillips theorem, Theorem 3.16. In
the complex case the associated operator is m-sectorial and thus yields a contractive
holomorphic C0-semigroup, by Theorem 3.20. Recall that m-accretivity and m-sectoriality
of an operator A involve the condition ran(I + A) = H. In applications, proving this
range condition often amounts to solving a partial differential equation (usually of elliptic
type); see Section 4.2, for instance. If the operator is associated with a form, then the
Lax–Milgram lemma does this job, so the range condition is automatically satisfied.
The setup we describe below is sometimes referred to as the “complete case” in the

literature because the form domain V is a Hilbert space. Once we have presented a series
of examples in the further development, we will also introduce – in Chapter 12 – the
“incomplete case” in which the form domain is just a vector space.

First we will explain how we associate an operator with a form. Let V, H be Hilbert
spaces over K, and let a : V × V → K be a bounded form. Let j ∈ L(V,H) be an operator
with dense range. We define

A :=
{
(x, y) ∈ H ×H ; ∃u ∈ V : j(u) = x, a(u, v) = (y | j(v)) (v ∈ V )

}
; (5.6)

here and in what follows, scalar products without index are scalar products in H.

5.5 Proposition. Assume that

u ∈ ker(j), a(u) = 0 implies u = 0. (5.7)

(a) Then the relation A defined above is a linear operator in H. We call A the operator
associated with (a, j) and write A ∼ (a, j).

(b) If a is accretive, then A is accretive.
(c) If K = C and a is sectorial, then A is sectorial of the same angle as a.

Proof. (a) It is easy to see that A is a subspace of H ×H. Let (0, y) ∈ A; we have to show
that y = 0. By definition there exists u ∈ V such that j(u) = 0 and a(u, v) = (y | j(v))
for all v ∈ V . In particular, a(u) = (y | j(u)) = 0. Assumption (5.7) implies that u = 0.
Hence (y | j(v)) = 0 for all v ∈ V . Since j has dense range, it follows that y = 0.
(b), (c) If x ∈ dom(A), then there exists u ∈ V such that j(u) = x and a(u, v) =

(Ax | j(v)) for all v ∈ V , in particular a(u) = (Ax | j(u)) = (Ax |x).
Thus we have shown that {(Ax |x) ; x ∈ dom(A)} ⊆ {a(u) ; u ∈ V }, and this proves (b)

as well as (c).

We now prove the first generation theorem for forms. Note that coercivity implies (5.7).

5.6 Theorem (Generation theorem, part 1). Let a : V × V → K be bounded coercive
form, and let j ∈ L(V,H) have dense range. Let A be the operator associated with (a, j).
Then A is strictly m-accretive; in particular, −A generates a contractive C0-semigroup
on H.
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Proof. By hypothesis, there exists α > 0 such that Re a(u) ⩾ α∥u∥2V for all u ∈ V .
Also, there exists c > 0 such that ∥j(u)∥H ⩽ c∥u∥V for all u ∈ V . Let x ∈ dom(A).
From the definition of A we know that there exists u ∈ V such that j(u) = x and
a(u, u) = (Ax | j(u)) = (Ax |x); hence

Re(Ax |x) = Re a(u) ⩾ α∥u∥2V ⩾
α

c2
∥x∥2H .

This shows that A is strictly accretive.
For the proof of strict m-accretivity we show that ran(A) = H. Let y ∈ H. Then

η(v) := (y | j(v)) defines a functional η ∈ V ∗. By the Lax–Milgram lemma, Theorem 5.4,
there exists u ∈ V such that

a(u, v) = η(v) = (y | j(v)) (v ∈ V ).

Therefore x := j(u) ∈ dom(A) and y = Ax ∈ ran(A).
Now the Lumer–Phillips theorem, Theorem 3.16, implies that −A generates a contractive

C0-semigroup.

We point out that, in the situation of Theorem 5.6, there exists ε > 0 such that
∥T (t)∥ ⩽ e−εt for all t ⩾ 0; see Exercise 5.2(b).
In an implicit way, the proof of Theorem 5.6 contains a formula for A−1. This formula

will be helpful in the proof of Proposition 6.18 and very important in the proofs of
Theorems 14.17 and 15.2. For this reason we state it explicitly, as follows.

5.7 Proposition. Let the hypotheses be as in Theorem 5.6. Let A : V → V ∗ be the
Lax–Milgram operator associated with the form a as in (5.3), and define k : H → V ∗,
y 7→ (y | j(·)). Then k ∈ L(H,V ∗), and

A−1 = jA−1k.

(Recall from Theorem 5.4 that A is invertible with inverse in L(V ∗, V ).)

Proof. The boundedness of k is seen from

|⟨k(y), v⟩| ⩽ ∥y∥H∥j(v)∥H ⩽ ∥j∥∥y∥H∥v∥V (y ∈ H, v ∈ V ).

We return to the notation used in the proof of Theorem 5.6. Starting with y ∈ H we
obtain η = k(y), u = A−1η, x = j(u). This results in x = jA−1k(y), and using Ax = y
and the invertibility of A we conclude that A−1 = jA−1k.

In the complex case one also obtains results concerning sectoriality.

5.8 Theorem (Generation theorem, part 2). Let K = C, let a : V × V → C be a
bounded coercive form, and let j ∈ L(V,H) have dense range. Let A be the operator
associated with (a, j). Then the form a is sectorial, and the operator A is m-sectorial, i.e.,
−A generates a contractive holomorphic C0-semigroup on H.
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Proof. By assumption there exist M ⩾ 0, α > 0 such that

|a(u, v)| ⩽M∥u∥V ∥v∥V , Re a(u) ⩾ α∥u∥2V

for all u, v ∈ V . Thus
|Im a(u)|
Re a(u)

⩽
M∥u∥2V
α∥u∥2V

=
M

α

for all u ∈ V \ {0}. This implies that there exists θ ∈ [0, π/2) such that a(u) ∈ Σθ for
all u ∈ V , i.e. a is sectorial. The remaining assertions are immediate consequences of
Proposition 5.5(c), Theorem 5.6 and Theorem 3.20.

We give a first example as an illustration.

5.9 Example (Multiplication operators). Let (Ω, µ) be a measure space, and let
m : Ω → K be measurable. Assume that there exist δ, c > 0 such that

w(x) := Rem(x) ⩾ δ, |m(x)| ⩽ cRem(x)

for all x ∈ Ω. Let V := L2(Ω, wµ). Then a(u, v) :=
∫
uvm dµ defines a bounded coercive

form a on V . Let H := L2(Ω, µ), j(u) := u for all u ∈ V . Then j ∈ L(V,H) because
w ⩾ δ, and ran(j) = V is dense in H since V is the domain of the maximal multiplication
operator induced by the function

√
w; see Exercise 1.6(a). Let A ∼ (a, j). Then A is the

maximal multiplication operator induced by m, i.e.

dom(A) = {u ∈ L2(Ω, µ) ; mu ∈ L2(Ω, µ)},
Au = mu.

Proof. If u ∈ L2(Ω, µ) is such that mu ∈ L2(Ω, µ), then u ∈ V and

a(u, v) =

∫
uvm dµ = (mu | v) (v ∈ V );

hence u ∈ dom(A) and Au = mu. On the other hand, if u ∈ dom(A), then f := Au ∈
L2(Ω, µ) satisfies ∫

uvm dµ = a(u, v) = (f | v) =
∫
fv dµ

for all v ∈ V . In particular, given n ∈ N, this equality holds for all v ∈ L2(Ω, µ)
with [v ̸= 0] ⊆ [|m| ⩽ n], and it follows that mu = f a.e. on [|m| ⩽ n]. Hence from
Ω =

⋃
n∈N [|m| ⩽ n] we obtain mu = f a.e.

In many applications the coercivity (accretivity, sectoriality) assumption in the above
results can only be reached by ‘shifting’ the form a. From Section 2.2 we recall the
concept of rescaling a C0-semigroup, which corresponds to ‘shifting’ the generator: if −A
is the generator of a C0-semigroup T and ω ∈ R, then −(A+ ω) generates the semigroup
Tω = (e−ωtT (t))t⩾0. (The notation ‘A+ ω’ is an abbreviation of ‘A+ ωI’; the ω stands
for multiplication by the scalar ω, which is just the operator ωI.)
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One frequently uses the word “quasi” as prefix if something is true after rescaling.
An operator A in a Hilbert space H is quasi-accretive or quasi-m-accretive if there
exists ω ∈ R such that A+ ω is accretive or m-accretive, respectively. By Theorem 3.16
(Lumer–Phillips), an operator A is quasi-m-accretive if and only if −A is the generator of
a quasi-contractive C0-semigroup.
In the case of a complex Hilbert spaceH, an operator A inH is quasi-sectorial or quasi-

m-sectorial if there exists ω ∈ R such that A+ ω is sectorial or m-sectorial, respectively.
A quasi-contractive holomorphic semigroup is a holomorphic semigroup T such that
∥e−ωzT (z)∥ ⩽ 1 for all z ∈ Σθ, for some θ ∈ (0, π/2] and some ω ∈ R. Thus A is quasi-m-
sectorial if and only if −A generates a quasi-contractive holomorphic C0-semigroup.
Next we explain how to shift on the level of forms.

5.10 Remark. Let a : V × V → K be a bounded form, and let j ∈ L(V,H) have dense
range. Let ω ∈ R, and define the shifted form aω on V by

aω(u, v) := a(u, v) + ω(j(u) | j(v)) (u, v ∈ V ). (5.8)

Assume that (5.7) is satisfied. Then clearly the form aω satisfies (5.7) as well (with a
replaced by aω). We show that A+ ω is the operator associated with (aω, j).
Let Aω be the operator associated with (aω, j). Let x, y ∈ H. Then for all u, v ∈ V

with j(u) = x we have

aω(u, v) = (y | j(v)) ⇐⇒ a(u, v) = (y − ωx | j(v)).

This shows that

(x, y) ∈ Aω ⇐⇒ (x, y − ωx) ∈ A ⇐⇒ (x, y) ∈ A+ ωI. △

Let a : V ×V → K be a bounded form, and let j ∈ L(V,H) have dense range. In analogy
to our terminology for operators we could say that a is quasi-coercive (with respect to j)
if one of the forms aω is coercive, i.e., if there exist ω ∈ R, α > 0 such that

Re a(u) + ω∥j(u)∥2H ⩾ α∥u∥2V (u ∈ V ); (5.9)

for simplicity we prefer to call the form a j-coercive in this case. (This property has
been introduced in [ArEl12b] under the name ‘j-elliptic’.) It is obvious that (5.9) implies
(5.7); thus Proposition 5.5 is applicable to j-coercive forms.

From Theorems 5.6 and 5.8 we now obtain the following more general generation result;
we refer to Exercises 5.3 and 5.4 for a discussion of whether the hypotheses are necessary.

5.11 Corollary. Let j ∈ L(V,H) have dense range, let a : V × V → C be a bounded
j-coercive form, and let A be the operator associated with (a, j).
(a) Then A is quasi-m-accretive. If additionally a is accretive, then A is m-accretive.
(b) If K = C, then A is quasi-m-sectorial. If additionally a is sectorial, then A is

m-sectorial of the same angle as a.

Proof. Define the form aω on V by (5.8), with ω as in (5.9). Then aω is coercive, and
A+ω ∼ (aω, j), by Remark 5.10. Hence the operator A+ω is m-accretive (by Theorem 5.6),
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and in the case K = C it is m-sectorial (by Theorem 5.8). This proves the first assertions
of (a) and (b).
For the second assertion of (a) we recall Proposition 5.5(b), which shows that A is

accretive. Applying Lemma 3.17 one concludes that A is m-accretive. For the second
assertion of (b) one argues analogously, recalling Proposition 5.5(c).

In Corollary 5.11, the operator −A generates a holomorphic C0-semigroup on H if
K = C. (If K = R, then −A generates a C0-semigroup T on H that is analytic on (0,∞).
This can be proved by a complexification procedure; see for instance [Ouh05; Remark
following Theorem 1.54].)

5.12 Remarks. (a) Note that operators associated with forms as described above are
always quasi-m-accretive, and hence the associated C0-semigroups are always quasi-
contractive.
(b) We point out that in the definition of the operator associated with a form the specific

scalar product of the Hilbert space enters decisively. Changing it to an equivalent scalar
product one obtains a different associated operator, which need not be quasi-accretive in
the original scalar product. For an example illustrating this issue we refer to Exercise 5.9.
(c) It is important to keep in mind that not all quasi-m-accrective operators are

associated with a form as in Corollary 5.11. We illustrate this with the operator A
of differentiation in H := L2(R), given by dom(A) := H1(R), Af := f ′. Recall from
Example 4.18(a) that −A is the generator of the (contractive!) C0-group T of right
translations, hence A is m-accretive.
In the case K = C, an operator associated with a form as in Corollary 5.11(b) is always

minus the generator of a holomorphic semigroup. However, the C0-semigroup T is not
holomorphic. For the case K = R we refer to Exercise 5.10(c). △

Later – in Chapter 8 – we will meet interesting situations in which j is not injective. In
most applications, however, j is an embedding; then we call (a, j) an embedded form,
and we will usually suppress the letter j.
We conclude this section with a brief description of the embedded case. Let V and

H be Hilbert spaces, V
d
↪→H. This is an abbreviation for saying that V is continuously

embedded into H (see Remark 4.13(a)) and that V is dense in H. Now let a : V × V → K
be a bounded form. We say that a is quasi-coercive if

Re a(u) + ω∥u∥2H ⩾ α∥u∥2V

for all u ∈ V and some α > 0, ω ∈ R. (This means that, in the previous terminology, the
form a is j-coercive, where j : V ↪→ H is the embedding.) In this case the definition of
the operator A associated with a (abbreviated by A ∼ a, without mentioning the given
embedding of V into H) reads as follows. For x, y ∈ H one has

x ∈ dom(A), Ax = y ⇐⇒ x ∈ V, a(x, v) = (y | v)H (v ∈ V ).

The operator A is quasi-m-accretive by Corollary 5.11, and quasi-m-sectorial if K = C.
In the literature, quasi-coercive forms are sometimes called H-elliptic or just elliptic.
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5.4 The classical Dirichlet form

Let Ω be an open subset of Rn. The classical Dirichlet form on H1
0 (Ω) is defined by

a(u, v) :=

∫
Ω

∇u · ∇v dx =
n∑

j=1

∫
Ω

∂ju ∂jv dx (u, v ∈ H1
0 (Ω)),

where ξ · η :=
∑n

j=1 ξjηj for ξ, η ∈ Kn (which for ξ, η ∈ Rn is the standard scalar product).
It is clear that a is bounded; in fact

|a(u, v)| ⩽ ∥∇u∥2∥∇v∥2 ⩽ ∥u∥H1∥v∥H1 .

Here ∇u = (∂1u, . . . , ∂nu)
⊤ is the gradient of u, and ∥∇u∥2 :=

(∑n
j=1

∫
Ω
|∂ju|2 dx

)
1/2;

thus ∥u∥2H1 = ∥u∥22 + ∥∇u∥22.
We will prove that the Dirichlet form is coercive if Ω is bounded, or more generally, if

Ω is contained in a slab, i.e., there exist β > 0 and j0 ∈ {1, . . . , n} such that |xj0| ⩽ β
for all x ∈ Ω.

5.13 Theorem (Poincaré’s inequality). Assume that Ω is contained in a slab. Then
there exists a constant cP > 0 such that∫

Ω

|u(x)|2 dx ⩽ cP

∫
Ω

|∇u(x)|2 dx (u ∈ H1
0 (Ω)).

Proof. By Theorem 4.15(b) it suffices to prove the inequality for all u ∈ C∞
c (Ω). Let β > 0

and j0 ∈ {1, . . . , n} be such that |xj0| ⩽ β for all x = (x1, . . . , xn) ∈ Ω. We may assume
that j0 = 1; otherwise we permute the coordinates. Let h ∈ C1[−β, β], h(−β) = 0. Then
by Hölder’s inequality we estimate∫ β

−β

|h(x)|2 dx =

∫ β

−β

∣∣∣∣∫ x

−β

h′(y) dy

∣∣∣∣2dx ⩽
∫ β

−β

(∫ x

−β

|h′(y)|2 dy
)(∫ x

−β

1 dy

)
dx

⩽ (2β)2
∫ β

−β

|h′(y)|2 dy.

Now let u ∈ C∞
c (Rn), sptu ⊆ Ω. Applying the above estimate to h(r) := u(r, x2, . . . , xn)

we obtain∫
Ω

|u(x)|2 dx ⩽ 4β2

∫
R
· · ·

∫
R

∫ β

−β

|∂1u(x1, . . . , xn)|2 dx1 · · · dxn ⩽ 4β2

∫
Ω

|∇u(x)|2 dx.

In fact, we saw that the constant cP in Theorem 5.13 can be chosen as d2, where d := 2β
is an upper estimate for the width of Ω. (For bounded domains the best constant can be
determined as cP = 1/λD1 , where λ

D
1 is the first eigenvalue of −∆D; we will come back to

this fact in Example 6.19.) Next we revisit the Dirichlet Laplacian.

5.14 Example (Dirichlet Laplacian). Let Ω ⊆ Rn be an open set. Let H := L2(Ω),

V := H1
0 (Ω) and observe that V

d
↪→H. As before, define a : V × V → K by

a(u, v) :=

∫
Ω

∇u · ∇v dx.
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Then a is bounded and quasi-coercive. The operator A in H associated with a is given by

dom(A) =
{
u ∈ H1

0 (Ω) ; ∆u ∈ L2(Ω)
}
,

Au = −∆u,

i.e. −A is the Dirichlet Laplacian ∆D defined in Subsection 4.2.2.
The form a is symmetric and accretive. If Ω is contained in a slab, then a is coercive.

Proof. The inequality a(u) + 1∥u∥2H ⩾ ∥u∥2V (u ∈ V ) – in fact an equality – shows that a
is quasi-coercive. For u, f ∈ L2(Ω) one has u ∈ dom(A), Au = f if and only if u ∈ H1

0 (Ω)
and ∫

Ω

∇u · ∇v dx =

∫
Ω

fv dx (v ∈ H1
0 (Ω)).

By Lemma 4.20 the latter is equivalent to −∆u = f in the distributional sense.
Symmetry and accretivity of a are obvious. Now assume that Ω is contained in a

slab. Let u ∈ H1
0 (Ω). Then a(u) ⩾ 1

cP

∫
Ω
|u|2 dx by Poincaré’s inequality, and thus

a(u) ⩾ 1
2

∫
Ω
|∇u|2 dx + 1

2cP

∫
Ω
|u|2 dx ⩾ α∥u∥2H1 , where α = min{1

2
, 1
2cP

}. Hence a is
coercive.

Finally we give an example in which j is not a canonical embedding.

5.15 Example (Multiplicative perturbation of ∆D). Let Ω ⊆ Rn be an open set
that is contained in a slab. Let m : Ω → C be measurable, |m(x)| ⩾ ε > 0 for all x ∈ Ω.
Define the operator A in L2(Ω) by

dom(A) =
{
u ∈ L2(Ω) ; mu ∈ dom(∆D), m∆(mu) ∈ L2(Ω)

}
,

Au = −m∆(mu).

Then A is m-sectorial of angle 0.

Proof. Let H := L2(Ω), V := H1
0 (Ω), a(u, v) :=

∫
Ω
∇u · ∇v dx, and let j ∈ L(V,H) be

given by j(v) := 1
mv. Then j has dense range. Indeed, if g ∈ j(V )⊥, then

∫
Ω

1
mvg dx = 0

for all v ∈ C∞
c (Ω), and hence 1

mg = 0 by Lemma 4.6. It follows that j(V )⊥ = {0}, which
implies that j(V ) is dense in L2(Ω).
Clearly a is sectorial of angle 0, so the operator B ∼ (a, j) is m-sectorial of angle 0, by

Corollary 5.11(b). We show that A = B. For u, f ∈ L2(Ω) one has u ∈ dom(B) and Bu = f
if and only if there exists w ∈ H1

0 (Ω) such that w
m = u and

∫
Ω
∇w · ∇v dx =

∫
Ω
f ( v

m) dx

for all v ∈ H1
0 (Ω). This in turn is equivalent to mu ∈ dom(∆D) and −∆(mu) = f

m
, i.e.

u ∈ dom(A) and Au = f .

Notes

The approach to forms presented here is the “French approach” following Lions [DaLi92].
As a new ingredient we have introduced the mapping j, following the paper [ArEl12b]
by Arendt and ter Elst (see also [ArEl12a]). It will bear fruit when we investigate the
Dirichlet-to-Neumann operator (in Chapter 8) and also in Chapter 12, where we consider
what is called the “incomplete case” in [ArEl12b] and [ArEl12a].
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The Lax–Milgram lemma was proved in 1954 [LaMi54; Theorem 2.1] and has been the
standard tool for establishing weak solutions since then.
As an interesting bit of history, we note that Hilbert used bilinear forms to treat integral

equations in his famous papers from the beginning of the 20th century. His ideas led
his students to develop the notion of operators in Hilbert spaces. As a result, operators
have taken a more central role, and physical and other problems are formulated with
the help of operators. In the 1950’s, form methods were developed to solve equations
defined by operators. Forms are most appropriate for numerical treatments because a
form a : V × V → C can easily be restricted to a finite-dimensional subspace Vm × Vm ,
whereas for operators there might be only few invariant subspaces. The method of finite
elements is based on such restrictions.
If a form is symmetric, then solving the associated inhomogeneous equation Au = L

(see below for the notation) is equivalent to a minimisation problem. We want to explain
this in more detail. Let V be a real Hilbert space and a : V ×V → R a symmetric bounded
coercive form. Consider the associated Lax–Milgram operator A : V → V ∗, given by

⟨Au, v⟩ = a(u, v).

Given L ∈ V ∗, the Lax–Milgram lemma says that there is a unique u ∈ V such that
Au = L. It turns out that u is the unique element of V minimising the function

V ∋ w 7→ 1
2
a(w)− ⟨L,w⟩.

Indeed, let v ∈ V . Then

1
2
a(u+ v)− ⟨L, u+ v⟩ = 1

2
a(u) + a(u, v) + 1

2
a(v)− ⟨L, u⟩ − ⟨L, v⟩

= 1
2
a(u) + 1

2
a(v)− ⟨L, u⟩ > 1

2
a(u)− ⟨L, u⟩

unless v = 0.
Because of this argument, form methods are also called ‘variational methods’: we

look at the ‘variations’ a(u+ v) of a(u). It was Johann Peter Gustav Lejeune Dirichlet
(1805–1859) who proposed such a variational method for the solution of the Dirichlet
problem. We refer to the Notes of Chapter 7 for more information.

Exercises

5.1 (a) Let V be a Hilbert space, and let a : V × V → K be a sesquilinear form. Show
that the properties

(i) a is bounded,

(ii) there exists A ∈ L(V ) such that a(u, v) = (Au | v) for all u, v ∈ V ,

(iii) a is continuous

are equivalent.
(b) Show that one has the additional equivalence

(iv) there exists M ⩾ 0 such that |a(u)| ⩽M∥u∥2V for all u ∈ V

if a is symmetric or K = C.
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Hint: Use the Cauchy–Schwarz inequality, Proposition 5.2, and in the complex case use
the decomposition a = Re a+ i Im a.
(c) Find an unbounded form a : V × V → R such that a(u) = 0 for all u ∈ V , with the

real Hilbert space V := ℓ2(N;R2). (This will show that condition (iv) is not equivalent to
(i), (ii), (iii) without the additional requirement in part (b).)

Hint: First find a suitable definition of a on the space ℓ2,c(N;R2)× ℓ2,c(N;R2), where the
index ‘c’ means that in (un) ∈ ℓ2,c(N;R2) only finitely many components are ̸= 0. In order
to achieve the extension of a to V × V , supplement the canonical basis B̌ of ℓ2,c(N;R2) to
an (algebraic) basis B of V and define a(b1, b2) := 0 for (b1, b2) ∈ (B ×B) \ (B̌ × B̌).

5.2 (a) Let A be an operator in a Hilbert space H. Show that A is strictly m-accretive
if and only if −A generates a C0-semigroup T satisfying ∥T (t)∥ ⩽ e−εt (t ⩾ 0) for some
ε > 0.
(b) Let V, H be Hilbert spaces, let j ∈ L(V,H) have dense range, and let a : V ×V → K

be a bounded coercive form. Let A ∼ (a, j), and let T be the semigroup generated by −A.
Show that there exists ε > 0 such that ∥T (t)∥ ⩽ e−εt for all t ⩾ 0.
(c) Let Ω ⊆ Rn be an open set that is contained in a slab. Show that∥∥et∆D

∥∥
L(L2(Ω))

⩽ e−εt (t ⩾ 0)

for some ε > 0. Express ε > 0 in terms of the width d of Ω; see the remark after the proof
of Theorem 5.13.

5.3 Let V andH be Hilbert spaces, V
d
↪→H, let a : V×V → K be a bounded quasi-coercive

form, and let A ∼ a.
(a) Show that dom(A) is dense in V . (Hints: Without loss of generality assume that a

is coercive. Then the Lax–Milgram operator A∗ : V → V ∗, associated with the adjoint
form a∗, is surjective, and A is surjective as well. Use these two facts to show that the
orthogonal complement of dom(A) in V equals {0}.)
(b) Show that a is accretive if (and only if) A is m-accretive.
(c) In the case K = C, show that a is sectorial if (and only if) A is m-sectorial.

(d) Let V1 be a Hilbert space, V1
d
↪→H, and let a1 : V1 × V1 → K be a bounded quasi-

coercive form with the property that also A ∼ a1. Show that V1 = V and a1 = a. (Hint:
Observe that a1 = a on dom(A)× dom(A), and exploit the fact that dom(A) is dense in
V and in V1.)

5.4 Let a, b, c, d ∈ K, and define a form γ on K2 by γ(u, v) :=
(
( a b
c d )u

∣∣ v).
(a) Under what conditions on a, b, c, d is the form γ accretive? (Hint: The matrix

C := ( a b
c d ) is accretive if and only if the self-adjoint matrix C + C∗ is accretive.)

(b) Let j : K2 → K, u 7→ u1. Show that the operator A associated with (γ, j) is the
operator of multiplication by a − bc/d if d ̸= 0. Under what conditions on d is γ a
j-coercive form?
(c) Find a, b, c, d such that the form γ is j-coercive and not accretive, but the operator A

associated with (γ, j) is accretive. (The existence of such an example explains why in
Exercise 5.3(b) one needs to assume a to be an embedded form.)
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5.5 Let −∞ < a < b <∞. In this exercise we will always use the continuous representa-
tive for a function in H1(a, b); recall Theorem 4.12 for the embedding H1(a, b) ↪→ C[a, b].
(a) Show that each u ∈ H1(a, b) is Hölder continuous with exponent 1/2, i.e. |u(t)−

u(s)| ⩽ c|t− s|1/2 (t, s ∈ [a, b]) for some c > 0.
(b) Show that the embedding H1(a, b) ↪→ C[a, b] is compact (i.e., the unit ball of H1(a, b)

is relatively compact in C[a, b]).
(c) Let H2(a, b) := {u ∈ L2(a, b) ; u

′, u′′ ∈ L2(a, b)}. On H2(a, b) we define the norm

by ∥u∥H2 :=
(
∥u∥22 + ∥u′∥22 + ∥u′′∥22

)
1/2. Show that H2(a, b) is a Hilbert space and that

H2(a, b) ↪→ C1[a, b] if C1[a, b] carries the norm ∥u∥C1 = ∥u∥C[a,b]+ ∥u′∥C[a,b]. (Hint: Recall
Exercise 4.5(a).)

5.6 Let −∞ < a < b <∞.
(a) Show that C1[a, b] is dense in H1(a, b). (Hint: Given f ∈ H1(a, b), approximate

f ′ in L2(a, b) by a sequence (gn) in Cc(a, b). With x0 and c from Proposition 4.8 define
fn ∈ C1[a, b] by fn(x) := c+

∫ x

x0
gn(y) dy.)

(b) Let f, g ∈ H1(a, b). Show that fg ∈ H1(a, b), (fg)′ = f ′g + fg′ and∫ b

a

f ′g dx = f(b)g(b)− f(a)g(a)−
∫ b

a

fg′ dx.

(Hint: Use Theorem 4.12.)

5.7 Let −∞ < a < b <∞ and α, β > 0. Define the operator A in L2(a, b) by

dom(A) =
{
u ∈ H2(a, b) ; −u′(a) + αu(a) = 0, u′(b) + βu(b) = 0

}
,

Au = −u′′.

(See Exercise 5.5(c) for the definition of H2(a, b) and the existence of u′(a) and u′(b).)
(a) Show that A is m-accretive. (Hint: Consider the form

H1(a, b)×H1(a, b) ∋ (u, v) 7→
∫ b

a

u′v′ dx+ αu(a)v(a) + βu(b)v(b)

and use Exercise 5.6(b).)
(b) Show that ∥e−tA∥L(L2(a,b))

⩽ e−εt (t ⩾ 0) for some ε > 0.

5.8 Let V and H be complex Hilbert spaces, j ∈ L(V,H) an operator with dense range,
a : V × V → C a bounded form satisfying (5.7), and let A ∼ (a, j). Let H0 denote the
real Hilbert space obtained from H by restricting scalars to R and defining the modified
scalar product on H0 by

(x | y)0 = Re(x | y) (x, y ∈ H0 = H).

(a) Define a0 : V0 × V0 → R (where V0 is the real Hilbert space associated with V ) by

a0(u, v) := Re a(u, v) (u, v ∈ V0).

Show that a0 is a bounded form satisfying (5.7). For A0 ∼ (a0, j), show that A0 = A.
(b) Assume additionally that a is j-coercive. Show that then a0 is j-coercive, and that

T0 = T , where T and T0 are the C0-semigroups generated by −A and −A0, respectively.
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5.9 (a) Let Ω ⊆ Rn be an open set, and let m ∈ L∞(Ω;R), δ > 0 be such that m ⩾ δ
a.e. Show that the operator m∆D generates a bounded holomorphic C0-semigroup on
H := L2(Ω) (where ∆D is the Dirichlet Laplacian; see Example 5.14).
Hint: Consider the (equivalent) scalar product on H given by (u | v)m :=

∫
Ω
uv 1

m dx

and show that A := −m∆D is associated with the classical Dirichlet form on H1
0 (Ω)

d
↪→

(H, ( · | ·)m).
(b) Let Ω := R and put m := 2 on (−∞, 0], m := 1 on (0,∞). Show that the C0-semi-

group generated by m∆D is not quasi-contractive on L2(R), by showing that A = −m∆D

is not quasi-accretive with respect to the standard scalar product ( · | ·) on L2(R).
Hints: 1. For u ∈ C∞

c (R;R), show that (Au |u) =
∫
R |u

′|2m dx− u(0)u′(0). 2. Choose
u, v ∈ C∞

c (R;R) with u(0) = 1, v′(0) = 1. For k ∈ N put uk := u+ 1
k
v(k2·). Show that

(uk)k is a bounded sequence in H1
0 (R) and that (Auk |uk) → −∞ as k → ∞.

5.10 (a) Let A be a quasi-m-sectorial operator in a complex Hilbert space H. Show that
there exist c ⩾ 0, ω ∈ R such that

|(Ax | y)| ⩽ c
(
Re(Ax |x)+ω∥x∥2

)1/2(
Re(Ay | y)+ω∥y∥2

)1/2
(x, y ∈ dom(A)). (5.10)

(Hint: Choose ω ⩾ 0 such that A+ ω is sectorial.)
(b) Let V, H be Hilbert spaces, let j ∈ L(V,H) have dense range, and let a : V ×V → K

be a bounded j-coercive form. Show that the operator A ∼ (a, j) satisfies (5.10) for some
c ⩾ 0, ω ∈ R. (By part (a) and Corollary 5.11(b) this is clear if K = C.) Conclude that A
is bounded if Re(Ax |x) = 0 for all x ∈ dom(A).
Hint: Given x ∈ dom(A), let u ∈ V be as in the definition (5.6) of A. Show that

α∥u∥2V ⩽ Re(Ax |x) + ω∥x∥2H , with α > 0, ω ∈ R as in (5.9). Then use the boundedness
of a.
(c) Let K = R, and let A be the operator of differentiation in H := L2(R), given by

dom(A) := H1(R), Af := f ′. Show that (Af | f) = 0 for all f ∈ dom(A), and conclude
that A is not associated with a bounded j-coercive form.





Chapter 6

Adjoint operators, and compactness

The main objective of this chapter is to show that, for a bounded open set Ω ⊆ Rn,
the space L2(Ω) has an orthonormal basis consisting of eigenfunctions of the Dirichlet
Laplacian ∆D on Ω. The proof is based on two crucial facts: (I −∆D)

−1 is a compact
self-adjoint operator, and for such operators there exist sufficiently many eigenfunctions.
One of the aims of this chapter is to explain all the notions used in the previous sentence.

6.1 Adjoints of operators, and self-adjoint operators

Throughout this section let G and H be Hilbert spaces over K. We want to prove the
following result.

6.1 Theorem. Let A be an operator in H. Then the following properties are equivalent.

(i) A is self-adjoint and accretive.

(ii) A is symmetric and m-accretive.

If H is a complex Hilbert space, then there is the following additional equivalent property.

(iii) A is m-sectorial of angle 0.

Evidently, before proceeding to the proof, we first have to explain the notions of
self-adjointness and symmetry. The proof will be given at the very end of this section.
Before defining the adjoint of an operator we explain the idea behind this notion. If A

is an operator from G to H, then the adjoint A∗ should be the maximal operator from H
to G such that

(Ax | y)H = (x |A∗y)G
(
x ∈ dom(A), y ∈ dom(A∗)

)
.

We recall that the orthogonal direct sum G⊕H is the product space G×H provided
with the scalar product(

(x, y)
∣∣ (x1, y1))G⊕H

:= (x |x1)G + (y | y1)H
(
(x, y), (x1, y1) ∈ G×H

)
,

which makes it a Hilbert space.
For an operator A from G to H we define the adjoint

A∗ :=
{
(y, x) ∈ H×G ; ∀x1 ∈ dom(A) : (Ax1 | y)H = (x1 |x)G

}
=

{
(y, x) ∈ H⊕G ; ∀(x1, y1) ∈ A :

(
(x1,−y1)

∣∣ (x, y))
G⊕H

= 0
}

= ((−A)⊥)−1.
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It is obvious from the last equality that A∗ is a closed subspace of H⊕G. We mention
that the operator −A, as a linear relation, is given by

−A = {(x,−y) ; (x, y) ∈ A}.

(It is somewhat unfortunate that, in principle, A∗ is already defined as the antidual space
to the subspace A of G⊕H. We think that this ambiguity will not be a problem.)

6.2 Remarks. Let A be an operator from G to H.
(a) If B is an operator from H to G such that

(Ax | y)H = (x |By)G
(
x ∈ dom(A), y ∈ dom(B)

)
,

then it is immediate from the definition of the adjoint that B ⊆ A∗ and A ⊆ B∗.
(b) If A∗ is an operator, then the definition implies that (Ax | y)H = (x |A∗y)G for all

x ∈ dom(A), y ∈ dom(A∗).
(c) If B is an operator from G to H, A ⊆ B, then clearly B∗ ⊆ A∗. △

6.3 Theorem. Let A be an operator from G to H.
(a) Then A∗ is an operator if and only if dom(A) is dense in G.
(b) Assume that dom(A) is dense. Then A∗∗ := (A∗)∗ = A, and dom(A∗) is dense if

and only if A is closable.
(c) If A ∈ L(G,H), then A∗ ∈ L(H,G) and ∥A∗∥ = ∥A∥.

Proof. (a) From the definition of A∗ it is easy to see that {x ∈ G ; (0, x) ∈ A∗} = dom(A)⊥.
This equality implies the assertion.

(b) It is easy to see that in the expression ((−A)⊥)−1 for A∗ the order of the operations
A 7→ −A, A 7→ A⊥ and A 7→ A−1 does not matter. It follows that A∗∗ = A⊥⊥ = A.
By part (a), dom(A∗) is dense if and only if (A∗)∗ is an operator, and because A∗∗ = A,

the latter is equivalent to the closability of A.
(c) For each y ∈H the mappingG ∋ x 7→ (Ax | y) is a bounded linear functional; hence by

the Fréchet–Riesz representation theorem there exists z ∈ G such that (Ax | y)H = (x | z)G
for all x ∈ G, and this implies y ∈ dom(A∗). Then |(Ax | y)H | = |(x |A∗y)G| for all
x ∈ G, y ∈ H, and taking the supremum over all x, y with ∥x∥ ⩽ 1, ∥y∥ ⩽ 1 one obtains
∥A∥ = ∥A∗∥.
6.4 Example. We define the operator A in L2(R) by

dom(A) := C∞
c (R), Af := f ′ (f ∈ dom(A)).

Then for f, g ∈ L2(R) we obtain:

(g, f) ∈ A∗ ⇐⇒ ∀φ ∈ C∞
c (R) : (Aφ | g) = (φ | f)

⇐⇒ ∀φ ∈ C∞
c (R) :

∫
gφ′ =

∫
fφ

⇐⇒ f = −g′ in the distributional sense.

This shows that dom(A∗) = H1(R), A∗g = −g′ (g ∈ dom(A∗)); in particular, A ⊆ −A∗.
Now it follows that A = −A∗ because the subspace −A∗ of L2(R)⊕L2(R) is isometrically

isomorphic to H1(R), under the mapping −A∗ ∋ (g, g′) 7→ g ∈ H1(R), and dom(A) =
C∞

c (R) is dense in H1(R), by Theorem 4.15. △



73

An operator A in H is called symmetric if dom(A) is dense and A ⊆ A∗; A is called
self-adjoint if A = A∗ (note that then dom(A) is dense, by Theorem 6.3(a)).
We collect some properties of symmetric operators.

6.5 Remarks. Let A be an operator in H, dom(A) dense.
(a) Then A is symmetric if and only if (Ax | y) = (x |Ay) for all x, y ∈ dom(A). This

follows immediately from Remark 6.2.
(b) If H is complex, then A is symmetric if and only if (Ax |x) ∈ R for all x ∈ dom(A).

This follows from Remark 5.1(b), applied to the form dom(A)×dom(A) ∋ (x, y) 7→ (Ax | y),
and part (a) above.
(c) If A is symmetric, then A is closable, and A is symmetric. Indeed, from A ⊆ A∗

and the fact that A∗ is a closed operator one concludes that A is closable and that
A ⊆ A∗ = A

∗
(where the last equality is clear from the definition). In this situation one

says that A is essentially self-adjoint if A is self-adjoint. △

Particularly simple examples of self-adjoint operators are those possessing ‘sufficiently
many’ eigenvectors, which we will present next. We note that an eigenvalue of a symmetric
operator A is always real: if 0 ̸= x ∈ H, Ax = λx, then λ(x |x) = (Ax |x) ∈ R.

6.6 Example (Diagonal self-adjoint operators). Let A be a self-adjoint operator
in an infinite-dimensional separable Hilbert space H, and assume that there exists an
orthonormal basis (en)n∈N of H consisting of eigenvectors of A, with corresponding
eigenvalues (λn)n∈N. Then

dom(A) =
{
x ∈ H ;

∞∑
n=1

|λn|2|(x | en)|2 <∞
}
,

Ax =
∞∑
n=1

λn(x | en)en (x ∈ dom(A)),

and lin{en ; n ∈ N} is a core for A.
We call A the diagonal operator associated with the orthonormal basis (en)n∈N and

the sequence λ := (λn)n∈N.

Proof. Using the unitary operator J : H → ℓ2, x 7→
(
(x | en)

)
n∈N, we transform the

situation to the case when A is a self-adjoint operator in the Hilbert space ℓ2, possessing
the canonical unit vectors as eigenvectors.
Now we apply Exercise 6.1 to the maximal multiplication operator Mλ in ℓ2, choosing

N with counting measure as the measure space and the sequence (λn)n∈N as the multiplying
functionm. Observe that Af =Mλf for all f ∈ cc := lin{en ; n ∈ N}, i.e., A is an extension
of the operator A0 := Mλ|cc defined in Exercise 6.1. Moreover A0 = Mλ by part (c) of
that exercise, i.e. cc = dom(A0) is a core for Mλ. Because A is closed, we conclude that
Mλ ⊆ A and hence, by Remark 6.2(c), that A = A∗ ⊆ M∗

λ = Mλ. Thus A = Mλ is the
operator described above.

6.7 Remark. Assume that in the above example λn ⩾ 0 for all n ∈ N. Then it follows
from Exercise 1.6(b) that −A generates the C0-semigroup (Me−tλ)t⩾0, written in the
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representation of A mentioned at the beginning of the proof given above. Spelling this
out in the setting on H, the C0-semigroup T generated by −A is given by

T (t)x =
∞∑
n=1

e−tλn(x | en)en (t ⩾ 0, x ∈ H). △

In order to connect self-adjointness with m-accretivity we need some preliminary results.

6.8 Lemma. Let A be an operator from G to H. Then ker(A∗) = ran(A)⊥.

Proof. Let y ∈ H, and recall that y ∈ ker(A∗) means (y, 0) ∈ A∗. Hence, by the definition
of A∗, y ∈ ker(A∗) is equivalent to (Ax | y)H = 0 for all x ∈ dom(A), i.e., to y ⊥ ran(A).

We point out that in the following result, denseness of dom(A) is not part of the
hypotheses.

6.9 Proposition. Let A be an operator in H, (Ax | y) = (x |Ay) for all x, y ∈ dom(A),
and ran(A) = H. Then A is self-adjoint.

Proof. Remark 6.2(a) shows that A ⊆ A∗, and Lemma 6.8 yields ker(A∗) = ran(A)⊥ = {0}.
These two facts, together with ran(A) = H, imply that A∗ = A. (This follows the principle
that ‘a surjective mapping cannot have a proper injective extension’ – which also holds
for relations.)

6.10 Lemma. Let A be an operator in H, dom(A) dense, and let λ ∈ K. Then (λI+A)∗ =
λI + A∗.

Proof. For x ∈ dom(A), y ∈ dom(A∗) we compute(
(λ+ A)x

∣∣ y) = (
x
∣∣λy)+ (

x
∣∣A∗y

)
=

(
x
∣∣ (λ+ A∗)y

)
,

and using Remark 6.2(a) we obtain λ+ A∗ ⊆ (λ+ A)∗. This inclusion also implies that

A∗ = (−λ+ (λ+ A))∗ ⊇ −λ+ (λ+ A)∗,

i.e. λ+ A∗ ⊇ (λ+ A)∗. The two inclusions prove the assertion.

We can now prove the main result of this section.

Proof of Theorem 6.1. (i) ⇒ (ii), (iii). Clearly it suffices to show that ran(I + A) = H.
Recall that ∥(I + A)x∥ ⩾ ∥x∥ for all x ∈ dom(A), by the accretivity of A; therefore
(I +A)−1 : ran(I +A) → X is continuous. As A is closed, and hence (I +A)−1 is closed, it
follows that ran(I +A) = dom((I +A)−1) is closed, so it remains to show that ran(I +A)
is dense.
By Lemma 6.10 the operator I + A is self-adjoint, and I + A is injective since A is

accretive. Now Lemma 6.8 yields ran(I + A)⊥ = ker((I + A)∗) = ker(I + A) = {0}.
(ii) ⇒ (i). The hypothesis implies that I + A satisfies the conditions in Proposition 6.9,

and therefore I + A is self-adjoint. Then Lemma 6.10 shows that A is self-adjoint.
(iii) ⇒ (ii). Being an m-sectorial operator, A is m-accretive. Sectoriality of angle 0

means that (Ax |x) ⩾ 0 for all x ∈ dom(A). Applying Remark 6.5(b) one concludes that
A is symmetric.
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6.2 Adjoints of forms and operators

In this section we assume that V and H are Hilbert spaces over K and that j ∈ L(V,H)
has dense range. Let a : V × V → K be a bounded j-coercive form. For the reader’s
convenience we recall the definition of the operator A associated with (a, j),

A =
{
(x, y) ∈ H ×H ; ∃u ∈ V : j(u) = x, a(u, v) = (y | j(v)) (v ∈ V )

}
;

see Section 5.3. We note that the adjoint form a∗ is j-coercive as well.
The following result shows the close connection between adjoints of forms and operators.

6.11 Theorem. Let A ∼ (a, j), B ∼ (a∗, j). Then B = A∗. If a is symmetric, then A is
self-adjoint.

Proof. Without loss of generality we suppose that a is coercive; see Remark 5.10 and
Lemma 6.10. Then for x ∈ dom(A), y ∈ dom(B) there exist u, v ∈ V such that j(u) = x,
j(v) = y and

(Ax | y) = (Ax | j(v)) = a(u, v) = a∗(v, u) = (By | j(u)) = (x |By).

Hence B ⊆ A∗, by Remark 6.2(a).
From Theorem 5.6 we know that ran(B) = ran(A) = H, and therefore Lemma 6.8

implies that A∗ is injective. These properties imply that B = A∗ (recall that a surjective
mapping cannot have a proper injective extension).
If a is symmetric, then A = B = A∗.

6.3 The spectral theorem for compact self-adjoint
operators

We recall that, for Banach spaces X, Y , an operator A : X → Y is called compact if
A(BX(0, 1)) is a relatively compact subset of Y , where BX(0, 1) is the open unit ball
of X. The set K(X, Y ) of compact operators is a closed subspace of L(X, Y ), and the
composition of a compact operator with a bounded operator is compact. The latter is
called the ideal property of compact operators.
The following result is the spectral theorem for compact self-adjoint operators in a

Hilbert space H.

6.12 Theorem (Hilbert). Let A ∈ L(H) be compact and self-adjoint. Then there
exist J ⊆ N and an orthonormal system (en)n∈J of eigenvectors of A with corresponding
eigenvalues (λn)n∈J in R \ {0}, λn → 0 as n→ ∞ if J is infinite, such that

Ax =
∑
n∈J

λn(x | en)en (x ∈ H).

6.13 Remark. Note that in the preceding theorem it follows that {en ; n ∈ J}⊥ = ker(A);
in particular, (en)n∈J is an orthonormal basis if and only if A is injective. △
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For the proof of Theorem 6.12 we need the following two propositions.

6.14 Proposition. Let A ∈ L(H) be self-adjoint. Then

∥A∥ = sup{|(Ax |x)| ; ∥x∥ ⩽ 1}.

Proof. ‘⩾’ is obvious from |(Ax |x)| ⩽ ∥A∥∥x∥2.
‘⩽’. For x, y ∈ H we put a(x, y) := (Ax | y) and b(x, y) := M (x | y), where M :=

sup{|a(x)| ; ∥x∥ ⩽ 1}. Then the Cauchy–Schwarz inequality (Proposition 5.2) implies that
|(Ax | y)| ⩽M ∥x∥∥y∥ (x, y ∈ H); therefore ∥A∥ ⩽M .

6.15 Proposition. Let 0 ̸= A ∈ L(H) be self-adjoint. Then ∥A∥ ∈ σ(A) or −∥A∥ ∈ σ(A).
If additionally A is compact, then ∥A∥ or −∥A∥ is an eigenvalue of A.

Proof. By Proposition 6.14 there exist a sequence (xn) in H with ∥xn∥ = 1 (n ∈ N) and
λ ∈ R with |λ| = ∥A∥ such that (Axn |xn) → λ. Then

∥Axn − λxn∥2 = ∥Axn∥2 − 2λ(Axn |xn) + λ2 ⩽ 2λ2 − 2λ(Axn |xn) → 0;

hence Axn − λxn → 0 as n→ ∞. This implies that λ ∈ σ(A).
If A is compact, then there exists a subsequence (xnk

) of (xn) such that (Axnk
) converges

to some y ∈ H. It follows that

xnk
=

1

λ
(λxnk

− Axnk
) +

1

λ
Axnk

→ 1

λ
y =: x,

Ax = limk→∞Axnk
= y = λx and ∥x∥ = 1.

Proof of Theorem 6.12. We prove the assertion with J = N or J = {1, . . . , N} for some
N ∈ N0. The orthonormal system (en)n∈J and the corresponding family (λn)n∈J with the
properties described in the theorem will be constructed recursively.
Assume that k ∈ N0 and that e1, . . . , ek and λ1, . . . , λk have been constructed. Let

Hk+1 := {e1, . . . , ek}⊥. Then A(Hk+1) ⊆ Hk+1; indeed, x ⊥ en implies (Ax | en) =
(x |Aen) = λn(x | en) = 0 for n = 1, . . . , k. Then Ak+1 := A|Hk+1

, considered as an
operator in Hk+1, is compact. If Ak+1 = 0, then the construction is complete, with
J = {1, . . . , k}. If Ak+1 ̸= 0, then Proposition 6.15 implies that there exist λk+1 ∈ R \ {0}
with |λk+1| = ∥Ak+1∥ and ek+1 ∈ Hk+1 with ∥ek+1∥ = 1 such that Ak+1ek+1 = λk+1ek+1.

The construction yields |λn| = ∥An∥ (n ∈ J), and since (∥An∥)n∈J is decreasing, so is
(|λn|)n∈J .

If J = N, then en → 0 weakly as n→ ∞. It follows that |λn| = ∥Aen∥ → 0 as n→ ∞
because A is compact; see Exercise 6.6(a).
Finally we establish the representation of A. For x ∈ H we have∥∥∥∥Ax− k∑

n=1

λn(x | en)en
∥∥∥∥ =

∥∥∥∥Ak+1

(
x−

k∑
n=1

(x | en)en
)∥∥∥∥ ⩽ ∥Ak+1∥∥x∥,

which is 0 if J = {1, . . . , k} and converges to 0 as k → ∞ if J = N.
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An operator A in a Banach space X is said to have compact resolvent if there exists
λ ∈ ρ(A) such that R(λ,A) is a compact operator. It follows from the resolvent equation
and the ideal property of compact operators that then R(µ,A) is compact for all µ ∈ ρ(A).
The following theorem is an application of Hilbert’s theorem to accretive self-adjoint

operators with compact resolvent. It shows that Example 6.6 – with a sequence (λn) in
[0,∞) tending to ∞ – is generic for these operators.

6.16 Theorem. Let A be an accretive self-adjoint operator with compact resolvent in an
infinite-dimensional Hilbert space H. Then there exist an orthonormal basis (en)n∈N and
a sequence (λn)n∈N in [0,∞) with limn→∞ λn = ∞ such that A is the associated diagonal
operator.

Proof. It follows from Theorem 6.1 that (I +A)−1 exists in L(H), and by hypothesis this
operator is compact. It is easy to see that (I + A)−1 is symmetric, hence self-adjoint.
Applying Theorem 6.12 to (I + A)−1 one obtains an orthonormal system (en)n∈J of
eigenvectors, with a corresponding family (µn)n∈J in R \ {0} of eigenvalues, such that
(I + A)−1x =

∑
n∈J µn(x | en)en for all x ∈ H. This representation together with the

injectivity of (I + A)−1 implies that (en)n∈J is an orthonormal basis; see Remark 6.13.
Hence J is countably infinite, without loss of generality J = N.
One easily sees that en is an eigenvector of A with eigenvalue λn := µ−1

n − 1, for all
n ∈ N. The accretivity of A implies

λn = (λnen | en) = (Aen | en) ⩾ 0 (n ∈ N).

Since (µn)n∈N is a null sequence, it follows that limn→∞ λn = ∞.
In view of Example 6.6, this completes the proof.

A sequence (λn) in R with limn→∞ λn = ∞ can always be rearranged to an increasing
sequence, and in applications of Theorem 6.16 one usually assumes the sequence of
eigenvalues to be increasing. Note that the hypotheses of Theorem 6.16 imply that H is
separable.
We now describe how diagonal operators and operators with compact resolvent arise in

the context of forms. We start by presenting an example illustrating these issues.

6.17 Example (Diagonal forms). Let V, H be infinite-dimensional separable Hilbert

spaces, j : V
d
↪→ H an embedding, let a be a symmetric bounded quasi-coercive form

on V , and let A ∼ (a, j). Let (en)n∈N be an orthonormal basis of H, and let (λn)n∈N be a
sequence in R that is bounded below.
Then A is the diagonal operator associated with (en)n∈N and (λn)n∈N (as defined in

Example 6.6) if and only if

V =
{
u ∈ H ;

∞∑
n=1

|λn||(u | en)H |
2 <∞

}
,

a(u, v) =
∞∑
n=1

λn(u | en)H(en | v)H (u, v ∈ V ).
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(Then an appropriate scalar product on V is given by (u | v)V := a(u, v) + ω(u | v)H
(u, v ∈ V ), for large enough ω ∈ R.)

Indeed, if the form a is as stated above, then every en is an eigenvector of the (self-adjoint)
operator A, with corresponding eigenvalue λn, and A is as described in Example 6.6.
The reverse implication is a consequence of the uniqueness of the form discussed in
Exercise 5.3(d).
We add the observation that the embedding j is compact if and only if limn→∞ λn = ∞.

Indeed, if the latter property holds, then one easily sees that the finite rank operators Pnj,
where Pn denotes the orthogonal projection onto lin{e1, . . . , en}, approximate j in the
operator norm. On the other hand, if there exists a bounded subsequence (λnj

) of (λn),
then the sequence (enj

) is a bounded sequence in V that does not have a convergent
subsequence in H.
By an analogous argument (or by Theorem 6.16 and Proposition 6.18 below) one also

sees that A has compact resolvent if and only if limn→∞ λn = ∞. △

If A is an operator associated with a form, then one has the following convenient
condition for A to have compact resolvent.

6.18 Proposition. Let V, H be Hilbert spaces, let j ∈ L(V,H) have dense range, let
a : V × V → K be a bounded j-coercive form, and let A ∼ (a, j). Assume additionally that
j is compact.
Then A has compact resolvent.

Proof. Without loss of generality we may suppose that a is coercive. Then by Proposi-
tion 5.7, the inverse of A can be expressed explicitly as A−1 = jA−1k. As A−1 and k are
bounded operators, we see that A−1 is compact.

We finally apply our results to the Dirichlet Laplacian ∆D in L2(Ω), for bounded open
Ω ⊆ Rn, as announced in the introduction of this chapter. We will use the compactness
of the embedding H1

0 (Ω) ↪→ L2(Ω), which will be proved in the next section.

6.19 Example (Spectral decomposition of the Dirichlet Laplacian). If Ω ⊆ Rn is
a bounded open set, then ∆D has compact resolvent. There exist an orthonormal basis
(φk)k∈N of L2(Ω) and an increasing sequence (λk)k∈N in (0,∞), with limk→∞ λk = ∞, such
that −∆D is the associated diagonal operator. In particular, φk ∈ dom(∆D) and

−∆Dφk = λkφk

for all k ∈ N. One has Poincaré’s inequality∫
Ω

|u|2 dx ⩽ cP

∫
Ω

|∇u|2 dx (u ∈ H1
0 (Ω)),

with optimal constant cP = 1
λ1
.

Proof. From Example 5.14 we know that −∆D is associated with the classical Dirichlet
form on H1

0 (Ω) (which is coercive by Theorem 5.13) and j : H1
0 (Ω) ↪→ L2(Ω). Combining

Theorems 5.6 and 6.11 we conclude that that −∆D is a strictly accretive self-adjoint
operator. As the embedding j is compact by Theorem 6.21 below, Proposition 6.18 implies
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that −∆D has compact resolvent, and the assertions concerning the sequences (φk) and
(λk) follow from Theorem 6.16. (Note that 0 cannot be an eigenvalue because −∆D is
strictly accretive.)
Now for u ∈ dom(−∆D) we obtain∫

Ω

|∇u|2 dx = (−∆Du |u) =
( ∞∑

k=1

λk(u |φk)φk

∣∣∣u) =
∞∑
k=1

λk|(u |φk)|2 ⩾ λ1∥u∥22 ,

with equality for u = φ1. As dom(∆D) contains C
∞
c (Ω) and hence is dense in H1

0 (Ω), the
inequality

∫
Ω
|∇u|2 dx ⩾ λ1∥u∥22 carries over to all u ∈ H1

0 (Ω).

6.20 Remark. The existence of an orthonormal basis of eigenvectors of −∆D is a highlight
and triumph of Hilbert space theory as applied to partial differential equations. There is
no way to obtain this kind of result by computing eigenfunctions, even if the boundary is
nice.
In the case of an interval in one dimension it is not difficult to compute the eigenfunctions

(see Exercise 6.9), and this can be generalised to n-dimensional rectangles. There is also a
formula for balls, but this is more complicated and involves Bessel functions. △

6.4 Interlude: compactness of the embedding
H1

0(Ω) ↪→ L2(Ω)

In this section we prove the following special case of the Rellich–Kondrachov theorem.

6.21 Theorem (Rellich–Kondrachov). Let Ω ⊆ Rn be a bounded open set. Then the
embedding j : H1

0 (Ω) ↪→ L2(Ω) is compact.

The next result, a key ingredient for the proof of Theorem 6.21, provides the link to a
basic fact concerning compactness in function spaces, the Arzelà–Ascoli theorem.

6.22 Proposition. Let ρ ∈ Cc(R), let Ω ⊆ Rn be a bounded open set, and let 1 ⩽ p ⩽ ∞.
Then the mapping

Jρ : Lp(Rn) → Lp(Ω), u 7→ (ρ ∗ u)|Ω
is compact.

Proof. We show that

F :=
{
(ρ ∗ u)|Ω ; u ∈ Lp(Rn), ∥u∥p ⩽ 1

}
is relatively compact in C(Ω). Clearly, the set is bounded because |ρ ∗ u(x)| ⩽ ∥ρ∥q∥u∥p
for all x ∈ Rn (where 1

q +
1
p = 1, as usual). Moreover, the estimate

|ρ ∗ u(x)− ρ ∗ u(y)| ⩽
∫ ∣∣(ρ(x− z)− ρ(y − z)

)
u(z)

∣∣ dz ⩽ ∥ρ(x− ·)− ρ(y − ·)∥q∥u∥p

shows that F is equicontinuous. By the Arzelà–Ascoli theorem it follows that F is
relatively compact in C(Ω). The embedding C(Ω) ↪→ Lp(Ω) is continuous, and therefore
F is also relatively compact in Lp(Ω), i.e. Jρ is compact.
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We will also need the following observation concerning approximation.

6.23 Lemma. Let u ∈ H1(Rn). Then ∥u(· − y)− u∥2 ⩽ |y|∥u∥H1 for all y ∈ Rn.

Proof. It suffices to prove the estimate for u from the dense subspace C1
c (Rn) of H1(Rn).

Note that u(x− y)− u(x) =
∫ 1

0
d
dt
u(x− ty) dt for all x, y ∈ Rn. By the Cauchy–Schwarz

inequality it follows that |u(x− y)− u(x)|2 ⩽
∫ 1

0

∣∣∇u(x− ty) · y
∣∣2 dt, and integration over

x ∈ Rn yields ∥u(· − y)− u∥22 ⩽
∫ 1

0
∥∇u(· − ty)∥22 |y|2 dt ⩽ |y|2∥u∥2H1 .

Proof of Theorem 6.21. (i) We define bounded operators E : H1
0 (Ω) → H1(Rn), Eu := ũ

(extension of functions to Rn by zero) and R : L2(Rn) → L2(Ω), Rf := f |Ω (restriction
of functions to Ω). Let (ρk) be a delta sequence in Cc(Rn). For k ∈ N let Jk : H

1(Rn) →
L2(Rn), Jkf := ρk ∗ f ; then Proposition 6.22 implies that RJk is compact. We will show
that Jk → J in L(H1(Rn), L2(Rn)), where J : H1(Rn) ↪→ L2(Rn) is the embedding. Then
j = RJE = limk→∞RJkE is compact by the ideal property of compact operators and the
closedness of K(H1(Ω), L2(Ω)) in L(H1(Ω), L2(Ω)).
(ii) Let u ∈ C1

c (Rn) and k ∈ N. For x ∈ Rn we compute, using the Cauchy–Schwarz
inequality in the second step,

|ρk ∗ u(x)− u(x)| =
∣∣∣∣∫ ρk(y)

1/2ρk(y)
1/2

(
u(x− y)− u(x)

)
dy

∣∣∣∣
⩽

(∫
ρk(y) dy

)1/2(∫
ρk(y)|u(x− y)− u(x)|2 dy

)1/2

.

Integrating over x ∈ Rn we obtain, with Fubini’s theorem in the second step,

∥ρk ∗ u− u∥22 ⩽
∫∫

ρk(y)|u(x− y)− u(x)|2 dy dx =

∫
ρk(y)∥u(· − y)− u∥22 dy.

By Lemma 6.23 it follows that ∥ρk ∗ u − u∥2 ⩽ 1
k
∥u∥H1 . We conclude that Jk → J in

L(H1(Rn), L2(Rn)) since C1
c (Rn) is dense in H1(Rn).

Notes

It is difficult to attribute the development of adjoint operators to a source. One of the first
more systematic treatments is given in [Neu32b]. The idea of also including linear relations
is contained in [Are61]. In Section 14.1 we will treat the adjoint for linear relations and
self-adjoint linear relations.
The first version of the spectral theorem for compact self-adjoint operators appeared in

[Hil06]. (This paper is also contained in the collection [Hil12].) The diagonal structure of
the Dirichlet Laplacian seems to be classical and difficult to attribute; however, the use of
compactness methods for this purpose can be attributed to Rellich [Rel30]. In this paper
the first version of the Rellich–Kondrachov theorem appeared as well as the application
to the Dirichlet Laplacian. The proof we give for the Rellich–Kondrachov theorem is not
the one usually found in textbooks.
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Exercises

6.1 Let (Ω, µ) be a measure space, and let m : Ω → K be measurable. Let

C :=
{
C ⊆ Ω; C measurable, µ(C) <∞, sup

x∈C
|m(x)| <∞

}
,

and define the operator A0 in L2(Ω, µ) by

dom(A0) := lin{1C ; C ∈ C},
A0f := mf (f ∈ dom(A0)).

(a) Show that dom(A0) is dense in L2(Ω, µ), and that A∗
0 = Mm, where Mm denotes

the maximal multiplication operator induced by m,

dom(Mm) := {f ∈ L2(Ω, µ) ; mf ∈ L2(Ω, µ)},
Mmf := mf (f ∈ dom(Mm)).

(b) Show further that M∗
m =Mm (maximal multiplication operator induced by m).

(c) Show that A0 =Mm, i.e. dom(A0) is a core for Mm.

6.2 Let A be a self-adjoint operator in a complex Hilbert space H. Show that σ(A) ⊆ R.
(Hint: Argue as in the proof of Theorem 6.1.)

6.3 Let H be a Hilbert space.
(a) Let B ∈ L(H). Show that ∥B∗B∥ = ∥B∥2. (Hint: For the less trivial inequality

start with ∥B∗B∥ = sup∥x∥,∥y∥⩽1 |(B∗Bx | y)| ⩾ sup∥x∥⩽1 |(B∗Bx |x)|.)
(b) Let T be a bounded C0-semigroup on H, with generator A. Show that T (t) is

self-adjoint for all t ⩾ 0 if and only if −A is an accretive self-adjoint operator, and that in
this case ∥T (t)∥ ⩽ 1 for all t ⩾ 0.
Hint: Use part (a) to show that the boundedness hypothesis together with the self-

adjointness of T (t) implies that ∥T (t)∥ ⩽ 1. For the proof of the self-adjointness of A
recall Proposition 6.9.
(c) Suppose that H is a complex Hilbert space, and let A be an accretive self-adjoint

operator. Show that −A generates a holomorphic C0-semigroup of angle π/2, ∥T (z)∥ ⩽ 1
for all Re z > 0.

6.4 (a) Let H and V be Hilbert spaces, V
d
↪→H, let a : V × V → K be a bounded quasi-

coercive form, and let A ∼ a. Show that a is symmetric if (and only if) A is self-adjoint.
(Hint: Exercise 5.3(a).)

(b) Use the setup of Exercise 5.4 to find an example showing that in part (a) one needs
to assume a to be an embedded form.

6.5 (a) Let X be a vector space, Y an n-dimensional subspace, Z an (n−1)-codimensional
subspace (i.e., there exists an (n−1)-dimensional subspace Z0 of X such that Z ∩Z0 = {0}
and Z + Z0 = X). Show that Y ∩ Z ̸= {0}.
(b) Let V, H be infinite-dimensional Hilbert spaces, V

d
↪→H, and let a be a symmetric

bounded quasi-coercive form on V . Assume that the operator A associated with a is a
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self-adjoint diagonal operator in H as described in Example 6.6 and that the sequence of
eigenvalues (λn)n∈N is increasing.
For a finite-dimensional subspace W of V , W ̸= {0}, define

Ma(W ) := max{a(u) ; u ∈ W, ∥u∥H = 1}.

Prove the min-max principle:

λn = min
{
Ma(W ) ; W subspace of V, dimW = n

}
(n ∈ N).

(Hint: Use the description of a from Example 6.17.)
(c) Let Ω1 ⊆ Ω2 ⊆ Rn be bounded open sets, and let ∆j be the Dirichlet Laplacian in

L2(Ωj) and (λjk)k∈N the corresponding increasing sequence of eigenvalues, for j = 1, 2.
Prove the domain monotonicity of eigenvalues: λ1k ⩾ λ2k for all k ∈ N.

6.6 Let X, Y be Banach spaces, A ∈ L(X, Y ).
(a) Assume that A is a compact operator. Show that A maps weakly convergent

sequences in X to convergent sequences in Y .
(b) Show that the converse of (a) is true if X is reflexive: if A maps weakly convergent

sequences in X to convergent sequences in Y , then A is compact.
Hints: 1. Recall that a sequence (xn) in X is called weakly convergent to x ∈ X if

η(xn) → η(x) for all η ∈ X ′, and that, if X is reflexive, every bounded sequence in X
contains a weakly convergent subsequence.
2. Recall that A ∈ L(X, Y ) is also continuous with respect to the weak topologies on X

and Y ; in particular, if a sequence (xn) in X is weakly convergent to x ∈ X, then (Axn)
is weakly convergent to Ax in Y .

6.7 Let G, H be Hilbert spaces, A ∈ L(G,H). Show that the following properties are
equivalent:

(i) A is compact,

(ii) A∗ is compact,

(iii) A∗A is compact.

Hint concerning ‘(iii) ⇒ (i)’: Given a sequence (xn) in G converging weakly to 0, show
that ∥Axn∥2 → 0; then apply Exercise 6.6.
Note. The equivalence of (i) and (ii) is a special case of “Schauder’s theorem”: For

Banach spaces X, Y , an operator A ∈ L(X, Y ) is compact if and only if the dual operator
A′ ∈ L(Y ′, X ′) is compact.

6.8 Let V, H be Hilbert spaces, let j ∈ L(V,H) have dense range, let a : V × V → K be
a bounded j-coercive form, and let A ∼ (a, j). Show that j is compact if (and only if)
A has compact resolvent. (Note that, in contrast to Exercises 5.3(b) and 6.4(a), j is not
supposed to be an embedding.)
Hint: Assume without loss of generality that a is coercive, and let A, k be as in

Proposition 5.7. Proceed similarly as in Exercise 6.7 to prove that k is compact, showing
that a(A−1kxn) → 0 for any weak null sequence (xn) in H. Then derive the compactness
of j by arguing once again with weak null sequences.
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6.9 (a) Let −∞ ⩽ a < x0 < b ⩽ ∞, let f ∈ C(a, b), and assume that g1 :=
(
f |(a,x0)

)′ ∈
L1(a, x0), g2 :=

(
f |(x0,b)

)′ ∈ L1(x0, b). Define g ∈ L1(a, b) by g|(a,x0) := g1, g|(x0,b) := g2.
Show that f ′ = g. (Hint: Use Proposition 4.8.)
(b) Let −∞ < a < b <∞. Show that H1

0 (a, b) = {f ∈ H1(a, b) ; f(a) = f(b) = 0}.
Hint: For f ∈ H1(a, b) with f(a) = f(b) = 0, show that the extension of f to R by

zero belongs to H1(R). Then decompose f as f = g + h with g, h ∈ H1(R), spt g ⊆ [a, b),
spth ⊆ (a, b], and show that g, h ∈ H1

0 (a, b), using Example 1.7(a).
(c) Compute the orthonormal basis of eigenfunctions and the eigenvalues of −∆D

for Ω = (0, π). Determine the optimal value of the Poincaré constant for the open set
(0, π) (see Example 6.19).





Chapter 7

Neumann and Robin boundary
conditions

So far our study of the Laplacian was restricted to homogeneous Dirichlet boundary
conditions. Our aim in this chapter is to investigate Neumann boundary conditions

∂νu = 0 on ∂Ω

and more generally Robin boundary conditions

∂νu+ βu = 0 on ∂Ω.

If we think of heat conduction in a body Ω, then Neumann boundary conditions describe
an isolated body, whereas Robin boundary conditions describe when part of the heat is
absorbed at the boundary at a rate β.
We start with the description of properties of the boundary for an open subset of Rn.

The main issue of Section 7.1 will be the discussion of Gauss’ theorem and some of its
consequences. In an interlude in Section 7.2 we present properties of H1(Ω) that will be
needed in Sections 7.4 and 7.5 to formulate Neumann and Robin boundary conditions
and to derive properties of the corresponding operators.

7.1 Gauss’ theorem

Before formulating Gauss’ theorem we introduce some notation; in particular we define
the notions of open sets with C1-boundary and of the outer unit normal. Throughout
this section, Ω ⊆ Rn is a bounded open set.

Wz

ν(z)

Ω

Let W ⊆ ∂Ω be an open subset (of the metric
space ∂Ω). We say that W is a standard C1-graph
(with respect to Ω) if there exist an open set W ′ ⊆
Rn−1, an open interval (a, b) ⊆ R and a C1-function
g : W ′ → (a, b) such that W =

{
(y, g(y)) ; y ∈W ′}, i.e.

W is the graph of g, and for every (y, t) ∈ W ′ × (a, b)
one has

(y, t) ∈ Ω if and only if t < g(y).
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It is easy to see that then (y, t) /∈ Ω if and only if t > g(y). The set W is called a
C1-graph (with respect to Ω) if there exists an orthogonal matrix B ∈ Rn×n such that
B(W ) is a standard C1-graph with respect to B(Ω). This means of course that W is a
standard C1-graph with respect to another cartesian coordinate system. We say that Ω
has C1-boundary if for each z ∈ ∂Ω there exists an open neighbourhood W ⊆ ∂Ω of z
such that W is a C1-graph with respect to Ω.
Similarly we now define other regularity properties of the boundary.

7.1 Remarks. (Ck-, Lipschitz, continuous boundary)
(a) For k ∈ N ∪ {∞} we call W a Ck-graph if the function g : W ′ → (a, b) in the

definition given above is a Ck-function. We speak of a Lipschitz graph if g is Lipschitz
continuous (and not necessarily C1). We call W a continuous graph if we merely require
that g is continuous.
(b) We say that Ω has Ck-boundary (Lipschitz boundary, continuous boundary)

if for each z ∈ ∂Ω there exists an open neighbourhood W ⊆ ∂Ω of z such that W is a
Ck-graph (Lipschitz graph, continuous graph). △

In this way we have defined a hierarchy of regularity properties. Continuous boundary
is the weakest property we consider – it will suffice for many of our results – and C∞-
boundary is the strongest. If Ω has C1-boundary, then it also has Lipschitz boundary.
Each polygon in R2 and each convex polyhedron in R3 has Lipschitz boundary, but not
C1-boundary; so there are good reasons to consider Lipschitz boundary. Nevertheless we
will assume C1-boundary in many results that would only require Lipschitz boundary,
because then things become much easier.
Next we introduce the outer (or exterior) normal of an open set with C1-boundary. It

can be characterised intrinsically by basic geometrical properties as follows; see [ArUr23;
Theorem 7.4 and its proof].

7.2 Remark. Assume that Ω has C1-boundary. Then for each z ∈ ∂Ω there is a unique
vector ν(z) ∈ Rn satisfying

(i) |ν(z)| = 1;

(ii) if γ ∈ C1(−1, 1;Rn) is such that γ(0) = z and γ(t) ∈ ∂Ω for all t ∈ (−1, 1), then
ν(z) ⊥ γ′(0);

(iii) there exists ε > 0 such that z + tν(z) /∈ Ω (and z − tν(z) ∈ Ω) for all 0 < t < ε.

We call ν(z) the outer unit normal at z. Condition (ii) says that ν(z) is orthogonal to
the boundary and (iii) that ν(z) points out of Ω.
If W is as in the description of a standard C1-graph, then for z = (y, g(y)) ∈ W the

outer unit normal is given by

ν(z) =
1√

|∇g(y)|2 + 1

(
−∇g(y)

1

)
.

The function ν is continuous on ∂Ω with values in Rn. △

We assume that the reader is acquainted with the integration of functions on (n−1)-
dimensional C1-manifolds in Rn. We point out that the boundary ∂Ω of a bounded open
set Ω with C1-boundary is an (n−1)-dimensional C1-manifold. The surface measure on



87

∂Ω will be denoted by σ. The following formula is basic and can be taken as the definition
of σ. If Ω is a bounded open set with C1-boundary, W ⊆ ∂Ω is a standard C1-graph, and
W ′, g are as in the definition, then∫

∂Ω

h(z) dσ(z) =

∫
W ′
h(y, g(y))

√
1 + |∇g(y)|2 dy

for all h ∈ C(∂Ω) with support in W . The weight factor in the integral on the right-hand
side is such that the (n−1)-dimensional Lebesgue measure on W ′ is transferred to the
appropriate Borel measure σ on the (n−1)-dimensional manifold ∂Ω. For more information
about the surface measure σ we refer to Section A.1; in particular see formula (A.3).
We insert a few comments concerning Borel measures on a topological space (X, τ).

The Borel σ-algebra B of X is defined as the σ-algebra generated by τ , i.e. as the
smallest σ-algebra containing all open sets in X. The members of B are called Borel
sets. A Borel measure µ on X is a (positive) locally finite measure defined on B, where
‘locally finite’ means that every point of X possesses an open neighbourhood U with
µ(U) <∞. If X is compact, then every Borel measure on X is finite.
We can now formulate Gauss’ theorem. By C1(Ω) we denote the space of all functions

u ∈ C(Ω) ∩ C1(Ω) for which ∂ju has a continuous extension to Ω for each j ∈ {1, . . . , n};
we keep the notation ∂ju for this extension. (Concerning the notation C1(Ω) we point
out Exercise 7.1.)

7.3 Theorem (Gauss). Let Ω ⊆ Rn be a bounded open set with C1-boundary. Then for
all u ∈ C1(Ω), j ∈ {1, . . . , n} one has∫

Ω

∂ju(x) dx =

∫
∂Ω

u(z)νj(z) dσ(z). (7.1)

Here ν ∈ C(∂Ω;Rn) is the outer unit normal, ν(z) = (ν1(z), . . . , νn(z)).

A proof of Theorem 7.3 is given in Section A.2. We mention that σ is the unique Borel
measure on ∂Ω such that (7.1) holds; see [ArUr23; Section 7.2].
As it should be, the notions introduced above can be interpreted for the case n = 1. To

get a start, the Lebesgue measure on R0 = {0} is the counting measure, and all functions
g : R0 → R are differentiable with derivative 0. As a consequence, a bounded set Ω ⊆ R
has C1-boundary (or continuous boundary, or C∞-boundary, for that matter) if and only
if it is a finite union of bounded open intervals whose closures are pairwise disjoint. The
surface measure on ∂Ω, the set of the endpoints of the intervals, is the counting measure.
Specifically, for an interval Ω = (a, b) we have ∂Ω = {a, b}, ν(a) = −1, ν(b) = 1.

Applying Gauss’ theorem with u ∈ C1[a, b] = C1((a, b)) we obtain∫ b

a

u′(x) dx =

∫
{a,b}

u(z)ν(z) dσ(z) = u(b)− u(a),

the second part of the fundamental theorem of calculus.
Next we derive an important consequence of Gauss’ theorem. We define C2(Ω) :=

{
u ∈

C1(Ω) ; ∂ju ∈ C1(Ω) (j = 1, . . . , n)
}
. Then for u ∈ C2(Ω) the functions ∂j∂ku are in C(Ω)
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for all j, k ∈ {1, . . . , n}. For u ∈ C1(Ω) the function ∂νu : ∂Ω → K, given by

∂νu(z) := ν(z) · ∇u(z) =
n∑

j=1

νj(z)∂ju(z),

is called the normal derivative of u. Note that ∂νu ∈ C(∂Ω).

7.4 Corollary (Green’s formulas). Let Ω ⊆ Rn be a bounded open set with C1-boundary,
and let u ∈ C2(Ω). Then∫

Ω

(∆u)v dx+

∫
Ω

∇u · ∇v dx =

∫
∂Ω

(∂νu)v dσ (v ∈ C1(Ω)), (7.2)∫
Ω

(v∆u− u∆v) dx =

∫
∂Ω

(v∂νu− u∂νv) dσ (v ∈ C2(Ω)). (7.3)

Proof. By Gauss’ theorem one has∫
Ω

(∂2ju)v dx+

∫
Ω

∂ju ∂jv dx =

∫
Ω

∂j
(
(∂ju)v

)
dx =

∫
∂Ω

(∂ju)v νj dσ.

Summation over j = 1, . . . , n yields (7.2).
Exchanging u and v in (7.2) and subtracting the result from (7.2) one obtains (7.3).

In the literature one finds various definitions of C1-boundary (all equivalent to our
definition). The following equivalence is useful for showing that a given set has C1-
boundary; its proof relies on the implicit function theorem. A bounded open set Ω ⊆ Rn

has C1-boundary if and only if for each z ∈ ∂Ω there exist an open neighbourhood
U ⊆ Rn of z and a C1-function h : U → R such that Ω∩U = [h < 0] and ∇h(z) ̸= 0 for all
z ∈ ∂Ω∩U . We mention that then the outer unit normal is given by ν(z) = ∇h(z)/|∇h(z)|
for all z ∈ ∂Ω ∩ U .
For instance, for the open unit ball Ω := B(0, 1) in Rn the formula Ω = {x ∈ Rn ;

|x|2 − 1 < 0} immediately shows that Ω has C1-boundary. (In this case the proof by
finding local parametrisations of the boundary is not difficult, but carrying out all the
details is somewhat tedious.)

7.2 Interlude: more on H1(Ω); denseness, trace and
compactness

In this section we present some fundamental properties of the Sobolev space H1(Ω) that
are needed for our treatment of the Neumann and Robin Laplacians in Sections 7.4 and 7.5
below. According to the general philosophy of this book, we give complete proofs of these
properties. In a first reading the reader might want to skip some of the more technical
proofs and first look at the application of the results.
The first major issue is a denseness property for H1(Ω). Denseness results are needed

to transfer inequalities or equalities for smooth functions to more general functions. An



89

example for this procedure is the proof of Poincaré’s inequality in Chapter 5; further
examples follow in this section.
In the proof of the denseness result as well as in later arguments we need the following

property of bounded open sets with continuous boundary.

7.5 Lemma. Let Ω ⊆ Rn be a bounded open set with continuous boundary. Then for each
x ∈ ∂Ω there exist an open neighbourhood U ⊆ Rn of x and a vector y ∈ Rn \ {0} such
that

(Ω ∩ U)− τy ⊆ Ω, (∂Ω ∩ U) + τy ⊆ Rn \ Ω (0 < τ < 1).

Proof. There exists an open neighbourhood W ⊆ ∂Ω of x such that W is a continuous
graph with respect to Ω. Without loss of generality we assume that W is a standard
continuous graph. Let W ′ ⊆ Rn−1 and (a, b) be as in the beginning of Section 7.1. Then
there exists ε > 0 such that U :=W ′×(a+ε, b−ε) is an open neighbourhood of x, and one
easily sees that the assertions are satisfied for y = εen, with the n-th unit vector en.

The property stated in Lemma 7.5 is in fact equivalent to Ω having continuous boundary.
This follows from Exercise 7.2(b), where the reader is asked to show that Ω having
continuous boundary is equivalent to the ‘segment property’ in [Ada75; Chap. III, 3.17]
(see property (ii) formulated in Exercise 7.2(b)).

The following lemma contains ‘local versions’ of Proposition 4.3(a) and Lemma 4.16(b)
that will be needed below.

7.6 Lemma. Let Ω,Ω′ ⊆ Rn be open sets, Ω relatively compact in Ω′.
(a) Let δ > 0, ρ ∈ C∞

c (Rn), spt ρ ⊆ B(0, δ). Let f, g ∈ L1,loc(Rn), f = g on Ω+B(0, δ).
Then ρ ∗ f = ρ ∗ g on Ω.

(b) Let (ρk) be a delta sequence in C∞
c (Rn). If u ∈ H1(Ω′), then (ρk ∗ ũ)|Ω → u|Ω in

H1(Ω) as k → ∞. If u ∈ C(Ω′), then (ρk ∗ ũ)|Ω → u|Ω in C(Ω) as k → ∞. (As before, ũ
denotes the extension of u to Rn by zero.)

Proof. (a) follows immediately from the definition of convolution.
(b) Either assumption on u implies that ũ ∈ L1,loc(Rn). There exist δ > 0 and φ0 ∈

C∞
c (Ω′) such that φ0 = 1 on Ω0 := Ω + B(0, δ). Then u0 := φ0u satisfies ũ0 = ũ on Ω0.

For k > 1/δ one has spt ρk ⊆ B(0, δ) and hence ρk ∗ ũ0 = ρk ∗ ũ on Ω by part (a).
Now if u ∈ H1(Ω′), then u0 ∈ H1

c (Ω
′) by Exercise 4.5(c), and thus ũ0 ∈ H1(Rn)

by Exercise 4.7(a), so ρk ∗ ũ0 → ũ0 in H1(Rn) by Lemma 4.16(b). It follows that
(ρk ∗ ũ)|Ω = (ρk ∗ ũ0)|Ω → ũ0|Ω = u|Ω in H1(Ω).

If u ∈ C(Ω′), then ũ0 ∈ C(Rn), and applying Proposition 4.3(a) one obtains the second
assertion of (b).

We now turn to the announced denseness property for H1(Ω).

7.7 Theorem. Let Ω ⊆ Rn be a bounded open set with continuous boundary. Then the set

Č∞(Ω) :=
{
φ|Ω ; φ ∈ C∞

c (Rn)
}

is dense in H1(Ω). In particular, C1(Ω) is dense in H1(Ω).
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Proof. (i) Let x ∈ ∂Ω. Choose an open neighbourhood U ⊆ Rn of x and a vector
y ∈ Rn \ {0} as in Lemma 7.5. Let u ∈ H1(Ω) have relatively compact support in U ; we
show that u can be approximated by functions in Č∞(Ω).
Let ũ denote the extension of u to Rn by zero. Then Wu := ∂Ω ∩ spt ũ is compact

in U , and Wu + τy ⊆ Rn \ Ω for all τ ∈ (0, 1); see Lemma 7.5. By Exercise 7.3 we have

ũ ∈ H1(Rn \Wu) and ∂jũ = ∂̃ju on Rn \Wu for j = 1, . . . , n. We shift ũ ‘outwards’,
putting uτ := ũ(· − τy) for τ ∈ (0, 1); then

uτ ∈ H1
(
Rn \ (Wu + τy)

)
, Ω ⊆ Rn \ (Wu + τy). (7.4)

In particular, uτ |Ω ∈ H1(Ω) and ∂j(uτ |Ω) = ∂jũ(· − τy)|Ω for j = 1, . . . , n. Applying
Exercise 7.4(a) we conclude that uτ |Ω → u in H1(Ω) as τ → 0. Now fix τ ∈ (0, 1), and
let (ρk)k∈N be a delta sequence in C∞

c (Rn). Then ρk ∗ uτ ∈ C∞
c (Rn) for all k ∈ N, and in

view of (7.4), Lemma 7.6(b) shows that (ρk ∗ uτ )|Ω → uτ |Ω in H1(Ω) as k → ∞. All in
all we have established that the functions (ρk ∗ uτ )|Ω ∈ Č∞(Ω) approximate u in H1(Ω).
(ii) A compactness argument shows that ∂Ω can be covered by open sets U1, . . . , Um ⊆ Rn

such that for each k ∈ {1, . . . ,m}, each function u ∈H1(Ω) with relatively compact support
in Uk can be approximated by functions in Č∞(Ω). Putting U0 := Ω we obtain an open
covering (Uk)k=0,...,m of Ω. There exists a partition of unity (φk)k=0,...,m in C∞

c (Rn)+ on Ω,
subordinate to (Uk)k=0,...,m; see Exercise 4.3(b).
Let u ∈ H1(Ω). Then φku ∈ H1(Ω) for k = 0, . . . ,m, by Exercise 4.5(c). Now, φ0u ∈

H1
c (Ω) can be approximated by C∞

c (Ω)-functions, by Theorem 4.15(b), and φ1u, . . . , φmu
can be approximated by Č∞(Ω)-functions, by the choice of U1, . . . , Um. As a consequence,
u can be approximated by Č∞(Ω)-functions.

7.8 Remarks. The procedure used in the proof of Theorem 7.7 yields simultaneous
approximation with respect to other properties:
(a) If u ∈ H1(Ω) ∩ C(Ω), then the approximations additionally converge to u in the

supremum norm, an observation that will be important in the proof of Theorem 7.11.
Indeed, multiplication of u by C∞

c -functions does not effect the continuity property of u.
Then in step (i) of the proof of Theorem 7.7 one sees that uτ |Ω → u and (ρk ∗uτ )|Ω → uτ |Ω
uniformly, where the first convergence follows from the uniform continuity of u, and for
the second convergence one applies the second assertion of Lemma 7.6(b).
(b) Another instance is the property that positive functions in H1(Ω) can be approxi-

mated by positive functions in Č∞(Ω). In order to see this, one just has to note that the
product as well as the convolution of two positive functions is again a positive function.
(c) For use in the next proof we observe that in step (i) of the above proof one has the

estimate ∥uτ |Ω − u∥2 ⩽ τ |y|∥u∥H1 for all τ ∈ (0, 1) (similarly as in Lemma 6.23).
Indeed, by Theorem 7.7 it is sufficient to prove the estimate for u ∈ C1(Ω). Then

uτ (x) − u(x) =
∫ 1

0
d
dt
ũ(x − tτy) dt for all x ∈ Ω. By the Cauchy–Schwarz inequality it

follows that |uτ (x)− u(x)|2 ⩽
∫ 1

0

∣∣∇ũ(x− tτy) · τy
∣∣2 dt, and integration over x ∈ Ω yields

∥uτ − u∥22 ⩽
∫ 1

0
∥∇ũ(· − tτy)|Ω∥22τ 2|y|2 dt ⩽ τ 2|y|2∥u∥2H1 . △

For Ω with continuous boundary we can now transfer the compactness of the embedding
H1

0 (Ω) ↪→ L2(Ω) (shown in Theorem 6.21) to H1(Ω).
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7.9 Theorem (Rellich–Kondrachov). Let Ω ⊆ Rn be a bounded open set with continu-
ous boundary. Then the embedding j : H1(Ω) ↪→ L2(Ω) is compact.

Proof. (i) We start with the following observation: if Ω′ ⊆ Rn is open, Ω relatively compact
in Ω′, then the mapping R : H1(Ω′) → L2(Ω), Ru := u|Ω is compact.
Indeed, there exists ψ ∈ C∞

c (Ω′) such that ψ = 1 on Ω. We defineB : H1(Ω′)→ L2(Ω
′) by

Bu := ψu. Since B acts as a bounded operator from H1(Ω′) to H1
0 (Ω

′) (cf. Exercise 4.5(c)),
Theorem 6.21 implies that B is compact. Now R is compact since Ru = (Bu)|Ω for all
u ∈ H1(Ω′).
(ii) Let U0, . . . , Um and φ0, . . . , φm be as in step (ii) of the proof of Theorem 7.7. There

exist vectors y1, . . . , ym ∈ Rn (pointing ‘out of Ω’) such that (∂Ω ∩ Uk) + τyk ⊆ Rn \ Ω
for k = 1, . . . ,m and τ ∈ (0, 1); see Lemma 7.5. We write j =

∑m
k=0 Jk, with Jk ∈

L(H1(Ω), L2(Ω)), Jku := φku for k = 0, . . . ,m. Note that J0 is compact by the same
reasoning as in step (i) above. If k ∈ {1, . . . ,m} and τ ∈ (0, 1), then for the open set
Ω′ := Rn \

(
(∂Ω ∩ sptφk) + τyk

)
the mapping H1(Ω) ∋ u 7→ (φkũ)(· − τyk) ∈ H1(Ω′) is a

bounded operator (recall (7.4)), and hence step (i) implies that

Jτ,k : H
1(Ω) → L2(Ω), Jτ,ku := (φkũ)(· − τyk)|Ω

is a compact operator. Since Jτ,k → Jk in L(H1(Ω), L2(Ω)) as τ → 0 by Remark 7.8(c), it
follows that j is compact.

We refer to [EdEv87; Theorem 4.17] for a different proof of Theorem 7.9.
The following proposition is an important characterisation of H1

0 (Ω). Its proof uses
a method similar to the proof of Theorem 7.7. For a function u : Ω → K we will again
denote by ũ the extension of u to Rn by zero.

7.10 Proposition. Let Ω ⊆ Rn be a bounded open set with continuous boundary. Then

H1
0 (Ω) =

{
u ∈ H1(Ω) ; ũ ∈ H1(Rn)

}
.

Proof. The inclusion ‘⊆’ was noted in Remark 4.14(b). (In fact, this inclusion holds for
arbitrary open sets Ω.)
In order to prove ‘⊇’ we assume that u ∈ H1(Ω) is such that ũ ∈ H1(Rn). Let φ0, . . . , φm

be as in step (ii) of the proof of Theorem 7.7. There exist vectors y1, . . . , ym ∈ Rn

(pointing ‘out of Ω’) such that spt(φkũ)− τyk ⊆ Ω and hence (φkũ)(·+ τyk)|Ω ∈ H1
c (Ω)

for k = 1, . . . ,m, 0 < τ < 1 (see Lemma 7.5). Exercise 7.4(b) shows that (φkũ)(·+ τyk) →
φkũ in H1(Rn) as τ → 0, for k = 1, . . . ,m. Since φ0ũ ∈ H1

c (Ω) as well, the previous
considerations show that u can be approximated by functions belonging to H1

c (Ω). This
implies that u ∈ H1

0 (Ω).

We point out that in the proof given above the functions φkũ are shifted in the direction
opposite to the one in the proof of Theorem 7.7, step (i). In the present case the functions
are shifted ‘inwards’ to produce compact support, in the former proof they are shifted
‘outwards’ in order to produce smoothness on Ω.

Next we show that for a set Ω with C1-boundary one can define a trace mapping
tr : H1(Ω) → L2(∂Ω) such that for u ∈ C1(Ω) one has tru = u|∂Ω. Here and in what
follows, L2(∂Ω) denotes the L2-space with respect to the surface measure σ.
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7.11 Theorem. Let Ω ⊆ Rn be a bounded open set with C1-boundary. Then:

(a) There exists c ⩾ 0 such that

∥u|∂Ω∥2L2(∂Ω) ⩽ c∥u∥L2(Ω)∥u∥H1(Ω) (7.5)

for all u ∈ C1(Ω).

(b) There is a unique bounded linear operator tr : H1(Ω) → L2(∂Ω), called the trace
operator, such that tru = u|∂Ω for all u ∈ C(Ω) ∩H1(Ω), and then (7.5) holds for all
u ∈ H1(Ω) (with u|∂Ω replaced by tru on the left-hand side).

(c) The mapping tr is a compact operator.

Proof. (a) Let x ∈ ∂Ω, and let y := ν(x) be the outer unit normal at x. Since ν is
continuous, by Remark 7.2, there exists an open neighbourhood U ⊆ Rn of x such that
y · ν(z) ⩾ 1

2
for all z ∈ U ∩ ∂Ω. Let φ ∈ C∞

c (Rn) satisfy sptφ ⊆ U , φ ⩾ 0, and φ = 1 on
a neighbourhood of x. Then φ = 1 on an open neighbourhood Wx ⊆ ∂Ω of x.

Let u ∈ C1(Ω). Then, by Theorem 7.3 (Gauss),

1

2

∫
Wx

|u|2 dσ ⩽
∫
∂Ω

(φu)uy · ν dσ =

∫
Ω

(
∇(φu)u+ (φu)∇u

)
· y dx

⩽ ∥φu∥H1∥u∥L2
+ ∥φu∥L2

∥u∥H1 ⩽ cφ∥u∥L2
∥u∥H1 ,

with a constant cφ > 0 only depending on φ.

We have shown that for each x ∈ ∂Ω there exist an open neighbourhood Wx ⊆ ∂Ω and
a constant cx ⩾ 0 such that ∫

Wx

|u|2 dσ ⩽ cx∥u∥L2
∥u∥H1

for all u ∈ C1(Ω). A standard compactness argument completes the proof of (7.5) for
u ∈ C1(Ω).

(b) The inequality (7.5) together with the denseness of C1(Ω) in H1(Ω) implies that
the mapping u 7→ u|∂Ω has a continuous extension tr : H1(Ω) → L2(∂Ω).

So far we only know that tru = u|∂Ω holds for u ∈ C1(Ω). In order to prove this
equality for u ∈ C(Ω)∩H1(Ω), we use the remarkable feature of the proof of Theorem 7.7
mentioned in Remark 7.8(a). As explained there, for u ∈ C(Ω)∩H1(Ω) an approximating
sequence (uk) in C

1(Ω) can be chosen that converges to u in C(Ω) as well as in H1(Ω). For
this sequence, (uk|∂Ω) converges to tru in L2(∂Ω) and uniformly to u|∂Ω, which implies
tru = u|∂Ω.
(c) Let (uk) be a bounded sequence in H1(Ω). By Theorem 7.9 (Rellich–Kondrachov)

there exists a subsequence (ukm) converging in L2(Ω), and then (7.5) implies that (trukm)
is a Cauchy sequence in L2(∂Ω), hence convergent.

Sometimes, by abuse of notation, we still write u|∂Ω := tru for u ∈H1(Ω). In integrals we
will frequently omit the trace notation to make things more readable, writing ∥tru∥2L2(∂Ω) =∫
∂Ω

|u|2 dσ for example.

The trace is compatible with our definition of H1
0 (Ω) as the following result shows.
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7.12 Theorem. Let Ω ⊆ Rn be a bounded open set with C1-boundary. Then

H1
0 (Ω) =

{
u ∈ H1(Ω) ; tru = 0

}
.

Proof. The inclusion ‘⊆’ follows from the continuity of the trace operator and the denseness
of C∞

c (Ω) in H1
0 (Ω).

For the proof of ‘⊇’ we first note that∫
Ω

∂ju v dx+

∫
Ω

u ∂jv dx =

∫
∂Ω

uv νj dσ (7.6)

for all u, v ∈ H1(Ω), j = 1, . . . , n. This is immediate from Theorem 7.3 (Gauss) if
u, v ∈ Č∞(Ω), and (7.6) carries over to general u, v by Theorems 7.7 and 7.11.
As before, the extension to Rn by zero of a function defined on Ω will be denoted by a

tilde. Let u ∈ H1(Ω) be such that tru = 0. Then (7.6) implies∫
Rn

ũ ∂jφ dx =

∫
Ω

u ∂jφ dx = −
∫
Ω

∂juφ dx

for all φ ∈ C∞
c (Rn). This shows that ũ ∈ H1(Rn) (with distributional derivative ∂jũ = ∂̃ju

for j = 1, . . . , n), and hence u ∈ H1
0 (Ω), by Proposition 7.10.

For a different proof of Theorem 7.12 we refer to [Eva10; Sect. 5.5, Theorem 2].

7.3 Weak normal derivative

In this section we define the normal derivative in a weak sense for certain functions in
H1(Ω), by requiring the validity of Green’s formula (7.2). Let Ω ⊆ Rn be a bounded open
set with C1-boundary, and let u ∈ H1(Ω), ∆u ∈ L2(Ω). We say that ∂νu ∈ L2(∂Ω) if
there exists h ∈ L2(∂Ω) such that∫

Ω

(∆u)v dx+

∫
Ω

∇u · ∇v dx =

∫
∂Ω

hv dσ (v ∈ H1(Ω)).

In this case we define the weak normal derivative of u by ∂νu := h. In order to prove
the uniqueness of h we note that C1(Ω) ⊆ H1(Ω). The Stone–Weierstrass theorem (see
Appendix B, Theorem B.2) implies that the set

{
φ|∂Ω ; φ ∈ C1(Ω)

}
is dense in C(∂Ω).

As C(∂Ω) is dense in L2(∂Ω) – see Theorem G.9 – we obtain the uniqueness. (Recall that
L2(∂Ω) is understood with respect to the surface measure σ.)
Now let Ω ⊆ Rn be any open set, and let u ∈ H1(Ω) be such that ∆u ∈ L2(Ω). If Ω is

bounded and has C1-boundary, then by the definition given above, ∂νu = 0 if and only if∫
Ω

(∆u)v dx+

∫
Ω

∇u · ∇v dx = 0 (v ∈ H1(Ω)). (7.7)

It is remarkable that this condition makes sense for an arbitrary open set Ω ⊆ Rn.
Therefore, for a function u ∈ H1(Ω) with ∆u ∈ L2(Ω) we will write ‘∂νu = 0’ (including
the quotes!) if (7.7) holds.
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7.4 The Neumann Laplacian

Let Ω ⊆ Rn be an open set (not necessarily bounded). Using the notation ‘∂νu = 0’, intro-
duced in Section 7.3, we define the Laplacian with Neumann boundary conditions
or simply Neumann Laplacian ∆N in L2(Ω) by

dom(∆N) :=
{
u ∈ H1(Ω) ; ∆u ∈ L2(Ω), ‘∂νu = 0’

}
,

∆Nu := ∆u (u ∈ dom(∆N)).

7.13 Theorem. The negative Neumann Laplacian −∆N is self-adjoint and accretive; it
is associated with the classical Dirichlet form on H1(Ω).

Proof. Define a : H1(Ω) × H1(Ω) → K by a(u, v) =
∫
Ω
∇u · ∇v dx. Then a is bounded.

We consider H1(Ω) as a subspace of L2(Ω). Since a(u) + ∥u∥2L2(Ω) = ∥u∥2H1(Ω), the form
a is quasi-coercive. Moreover a is symmetric and accretive. Let A ∼ a. We show that
A = −∆N; then the assertions follow.
Let u ∈ dom(A), Au = f . Then by definition u ∈ H1(Ω) and

∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx

for all v ∈ H1(Ω). Inserting test functions v ∈ C∞
c (Ω) one obtains −∆u = f . Thus∫

Ω
∇u · ∇v dx +

∫
Ω
(∆u)v dx = 0 for all v ∈ H1(Ω), i.e. ‘∂νu = 0’. We have shown that

A ⊆ −∆N. Conversely, if u ∈ dom(∆N) and −∆Nu = f , then

a(u, v) =

∫
Ω

∇u · ∇v dx+
∫
Ω

(∆u)v dx+

∫
Ω

fv dx =

∫
Ω

fv dx (v ∈ H1(Ω)).

Thus u ∈ dom(A) and Au = f .

Applying Theorem 7.9 we now conclude that A has compact resolvent if Ω satisfies our
weakest regularity property.

7.14 Theorem (Spectral decomposition of the Neumann Laplacian). If Ω ⊆ Rn

is a bounded open set with continuous boundary, then ∆N has compact resolvent. There
exist an orthonormal basis (φk)k∈N of L2(Ω) and an increasing sequence (λk)k∈N in [0,∞),
with λ1 = 0 and limk→∞ λk = ∞, such that −∆N is the associated diagonal operator. In
particular, φk ∈ dom(∆N) and

−∆Nφk = λkφk

for all k ∈ N. If Ω is connected, then λ2 > 0.

Proof. From Theorem 7.9 (Rellich–Kondrachov) we know that the embedding j : H1(Ω) ↪→
L2(Ω) is compact. Therefore Proposition 6.18 – in combination with Theorem 7.13 –
implies that ∆N has compact resolvent.
The statement concerning the eigenfunctions and eigenvalues now follows from The-

orem 6.16, except for the properties of λ1 and λ2. However, it is immediate that
φ1 = voln(Ω)

−1/21Ω is an eigenfunction of −∆N with eigenvalue 0.
Now assume that Ω is connected. If φ ∈ dom(∆N) satisfies −∆Nφ = 0, then ∥∇φ∥22 =

(−∆Nφ |φ) = 0; hence Lemma 7.15 – proved below – implies that φ is constant. This
shows that the eigenspace belonging to the eigenvalue λ1 = 0 is one-dimensional.
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The property that for connected Ω one has λ2 > 0, together with the formula for the
associated semigroup T from Remark 6.7, gives important information concerning the
asymptotic behaviour of T (t) as t→ ∞.

7.15 Lemma. Let Ω ⊆ Rn be a connected open set, and let u ∈ L1,loc(Ω), ∇u = 0 in the
distributional sense. Then u is constant.

Proof. For each x ∈ Ω we will construct a neighbourhood on which u has a constant
representative; then the assertion follows because Ω is connected. Let φ ∈ C∞

c (Ω) be
such that φ = 1 in a neighbourhood of x, and let v denote the extension of φu to Rn by
zero. Then ∂jv ∈ L1(Rn) by Exercises 4.5(c) and 4.6(b), for j = 1, . . . , n, and ∇v = 0 in
a neighbourhood of x.
Let (ρk) be a delta sequence in C∞

c (Rn); then ρk ∗ v → v in L1(Rn). Moreover
∇(ρk ∗v) = ρk ∗∇v by Lemma 4.16(a), and by Lemma 7.6(a) there exists a neighbourhood
U ⊆ Ω of x such that u = v and ρk ∗ ∇v = 0 on U for large enough k. We conclude that
u|U = v|U is the limit of constant functions and thus has a constant representative.

7.5 The Robin Laplacian

Let Ω ⊆ Rn be a bounded open set with C1-boundary. Given β ∈ L∞(∂Ω), we define
the Laplacian with Robin boundary conditions or briefly Robin Laplacian ∆β in
L2(Ω) by

dom(∆β) :=
{
u ∈ H1(Ω) ; ∆u ∈ L2(Ω), ∂νu+ βu|∂Ω = 0

}
,

∆βu := ∆u (u ∈ dom(∆β)).

Note that the condition ‘∂νu + βu|∂Ω = 0’ should be read as ‘∂νu = −β tru’, with the
weak normal derivative ∂νu as defined in Section 7.3.

7.16 Theorem. Let β be real-valued. Then the operator −∆β is self-adjoint and quasi-
accretive, with compact resolvent. In particular, ∆β generates a quasi-contractive C0-semi-
group Tβ on L2(Ω). If β ⩾ 0, then −∆β is accretive and ∥Tβ(t)∥ ⩽ 1 for all t ⩾ 0.

Proof. Define the form a : H1(Ω)×H1(Ω) → K by a(u, v) =
∫
Ω
∇u · ∇v dx+

∫
∂Ω
βuv dσ.

Then |a(u, v)| ⩽ ∥∇u∥2∥∇v∥2+∥β∥L∞(∂Ω)∥tru∥L2(∂Ω)∥tr v∥L2(∂Ω). Since the trace operator
tr : H1(Ω) → L2(∂Ω) is bounded, it follows that a is bounded.
We consider H1(Ω) as a subspace of L2(Ω) and show that a is quasi-coercive. By

Theorem 7.11 and the ‘Peter–Paul inequality’ (i.e. Young’s inequality, ab ⩽ 1
2

(
γa2 + 1

γ b
2)

for all a, b ⩾ 0, γ > 0) there exists c > 0 such that∣∣∣∫
∂Ω

β|u|2 dσ
∣∣∣ ⩽ ∥β∥L∞(∂Ω)∥tru∥

2
L2(∂Ω) ⩽

1

2
∥u∥2H1(Ω) + c∥u∥2L2(Ω)

for all u ∈ H1(Ω). This implies

a(u) ⩾
∫
Ω

|∇u|2 dx− 1

2
∥u∥2H1(Ω) − c∥u∥2L2(Ω) =

1

2
∥u∥2H1(Ω) − (1 + c)∥u∥2L2(Ω)

for all u ∈ H1(Ω), and thus a is quasi-coercive.
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Let A be the operator associated with a. We show that A = −∆β. Let (u, f) ∈ A.
Then u ∈ H1(Ω) and∫

Ω

∇u · ∇v dx+
∫
∂Ω

βuv dσ =

∫
Ω

fv dx (v ∈ H1(Ω)). (7.8)

Taking v ∈ C∞
c (Ω) we see that −∆u = f . Replacing f by −∆u in (7.8) we find∫
Ω

∇u · ∇v dx+
∫
Ω

(∆u)v dx = −
∫
∂Ω

βuv dσ (v ∈ H1(Ω)), (7.9)

i.e. ∂νu = −βu|∂Ω. Thus (u, f) ∈ −∆β. Conversely, if u ∈ dom(∆β), then (7.9) holds.
Putting f = −∆u we obtain (7.8) and thus (u, f) ∈ A.
Since a is symmetric and quasi-coercive, A is self-adjoint and quasi-accretive. By

Theorem 7.9 (Rellich–Kondrachov) the embedding H1(Ω) ↪→ L2(Ω) is compact, so A has
compact resolvent.
Finally, for β ⩾ 0 the form a is accretive, and this implies the last assertion of the

theorem.

Notes

In Section 7.1 we partially follow [ArUr23]. It is possible to extend Gauss’ theorem to
open sets with Lipschitz boundary, for which a suitable surface measure on ∂Ω is defined
analogously. The theorem of Gauss is due to Lagrange in 1792 but has been rediscovered by
Carl Friedrich Gauss in 1813, by George Green in 1825, and by Mikhail V. Ostrogradsky in
1831. For this reason one finds it in the literature under these different names. Obviously
it can also be written as ∫

Ω

div u dx =

∫
∂Ω

u · ν dσ,

for each vector field u ∈ C1(Ω;Rn). In this form it is frequently called the divergence
theorem. Physicists and engineers love this version of the theorem because of its
immediate interpretation.
Victor Gustave Robin (1855–1897) was a French mathematician. (The reader should

correctly pronounce the nasal in the second syllable of “Robin”.) He was teaching
mathematical physics at the Sorbonne in Paris. Not much is known about him since
he burnt his manuscripts. But he worked on thermodynamics, and the Russian school
introduced the name Robin boundary conditions. In fact, these boundary conditions had
already been introduced by Isaac Newton (1643–1727). We refer to [GuAb98a], [GuAb98b]
for the interesting history of Gustave Robin and “his” boundary conditions. Neumann
boundary conditions carry their name to honour Carl G. Neumann (1832–1925) who was
a professor at Halle, Basel, Tübingen and Leipzig. He introduced the Neumann series for
matrices.
Using the tools presented in this chapter we can now continue the considerations started

at the end of the Notes of Chapter 5. In his lectures in Berlin, Dirichlet introduced methods
for solving partial differential equations via forms. The most famous is the Dirichlet
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problem, which is the following. Let Ω ⊆ Rn be a bounded open set, and let g ∈ C(∂Ω).
The classical Dirichlet problem consists in finding a function u ∈ C(Ω) ∩ C2(Ω) such
that ∆u = 0 on Ω and u|∂Ω = g. The term “Dirichlet problem” was coined by Bernhard
Riemann, in honour of his teacher. And in fact Dirichlet promoted a strategy to its
solution. The solution should be the function u with u|∂Ω = g having the least energy∫
Ω
|∇u|2 dx. On the basis of our knowledge obtained so far, we are able to make this

precise, albeit in a slightly different context. Let us assume that Ω has C1-boundary and
that g : ∂Ω → R is the trace of some G ∈ H1(Ω), i.e. g = trG. Then the following holds.

Dirichlet’s principle. There is a unique function u ∈ H1(Ω) such that ∆u = 0 and
tru = g. Moreover u is the unique minimiser of the function

G+H1
0 (Ω) = {v ∈ H1(Ω) ; tr v = g} ∋ v 7→

∫
Ω

|∇v|2 dx. (7.10)

(See Theorem 7.12 for the equality in (7.10). Weyl’s lemma, see Appendix C, implies that
the solution u in fact belongs to C∞(Ω).)
For the proof observe that for u ∈ H1(Ω) one has ∆u = 0 and tru = g if and only if for

the function w := G− u one has w ∈ H1
0 (Ω) and∫

Ω

∇w · ∇v dx =

∫
Ω

∇G · ∇v dx (v ∈ H1
0 (Ω)), (7.11)

and that by the Fréchet–Riesz theorem there is a unique w ∈ H1
0 (Ω) satisfying (7.11).

(Recall that, by Poincaré’s inequality, the scalar product (u | v)0 :=
∫
∇u · ∇v dx is

equivalent to the standard scalar product on H1
0 (Ω).) Moreover, by the ‘variational

method’ formulated in the Notes of Chapter 5, w is the unique minimiser of the function

H1
0 (Ω) ∋ v 7→

∫
Ω

|∇v|2 dx− 2

∫
Ω

∇G · ∇v dx =

∫
|∇(G− v)|2 dx−

∫
|∇G|2 dx.

This shows that u = G− w ∈ G+H1
0 (Ω) is the unique minimiser of (7.10).

In 1906, Hadamard [Had06] showed that there are cases in which the Dirichlet problem
cannot be treated by the variational method even if the set Ω is ‘nice’ and a classical solution
exists. More precisely, for Ω = BR2(0, 1) he constructed a function u ∈ C(Ω) ∩ C2(Ω)
satisfying ∆u = 0 and u /∈ H1(Ω); then u is the unique solution corresponding to the
boundary function g = u|∂Ω ∈ C(∂Ω) (see e.g. [ArUr23; Example 6.67]). This phenomenon
does not occur for more regular boundary data g.
The classical Dirichlet problem was finally settled by Oskar Perron [Per23] in 1923.

His treatment can be considered as the final point of a development in which Poincaré,
Lebesgue, Courant, Lichtenstein, Zaremba and others had contributed. The existence of a
solution requires some boundary regularity. In particular, if Ω ⊆ Rn is a bounded open
set with Lipschitz boundary, then the Dirichlet problem has a solution u ∈ C(Ω) ∩ C2(Ω)
for any g ∈ C(∂Ω). We refer to [WKK09; Satz 3.3.10, Satz 3.4.3 and Bemerkung 3.4.4]
for a proof of this result; see also [Joh82; Section 4.4]. The relation between Perron’s and
the variational solutions is discussed in [ArDa08a]. For a thorough historical account of
the Dirichlet problem and Dirichlet’s principle in the 19th and early 20th centuries we
refer to [G̊ar79], [WKK09; Section 1.4].
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A bounded open set Ω is called Dirichlet regular if for each g ∈ C(∂Ω) there exists a
(necessarily unique, see Exercise C.3) function u ∈ C(Ω) such that ∆u = 0 and u|∂Ω = g.
In this terminology, Perron’s result implies that every bounded open set with Lipschitz-
boundary is Dirichlet regular. Lebesgue’s cusp provides an example of an open bounded
set Ω ⊆ R3 that has continuous boundary but is not Dirichlet regular (see e.g. [CoHi62;
Chap. IV, §1.4], [ArDa08b; Section 7]).

Exercises

7.1 In this exercise we illustrate that the space C1(Ω) does not only depend on Ω. Let
Γ ⊆ [0, 1] denote Cantor’s ternary set, and let Ω := (0, 1) \Γ. Then Ω = [0, 1] = (0, 1). Let
u : [0, 1] → [0, 1] be the “Cantor function”, the increasing function generating the usual
singular continuous measure on Γ; to wit,

u(0) = 0, u = 1/2 on (1/3, 2/3), u(1) = 1,

u = 1/4 on (1/9, 2/9), u = 3/4 on (7/9, 8/9),

u = 1/8 on (1/27, 2/27), etc.

and u extended to [0, 1] by continuity. Show that u ∈ C1(Ω) \ C1((0, 1)).

7.2 (a) Let M be a compact metric space, and let g : M → R be such that the graph
{(x, g(x)) ; x ∈M} of g is compact. Show that g is continuous.
(b) Let Ω ⊆ Rn be a bounded open set. Show that the following properties are equivalent:

(i) Ω has continuous boundary;

(ii) Ω has the ‘segment property’, i.e. for each x ∈ ∂Ω there exist an open neighbourhood
U ⊆ Rn of x and a vector y ∈ Rn such that (Ω ∩ U)− (0, 1)y ⊆ Ω.

(The implication ‘(i) ⇒ (ii)’ was shown in Lemma 7.5.)
Hint: Transform property (ii) to the ‘standard situation’ in which y is a positive multiple

of the n-th unit vector en. Without loss of generality suppose that U = W ′ × (a, b)
with an open set W ′ ⊆ Rn−1 and a, b ∈ R, a < b. For z ∈ W := ∂Ω ∩ U show that
(z − (0,∞)y)∩ U ⊆ Ω and (z + (0,∞)y)∩ U ⊆ Rn \Ω. Then apply part (a) to show that
W is the graph of a continuous function g : W ′

0 → (a, b), with an open(!) set W ′
0 ⊆ W ′.

(The point is that W is the graph of a function g that is not continuous a priori, but will
be continuous automatically, by part (a).)

7.3 Let Ω ⊆ Rn be an open set, u ∈ H1(Ω), ũ the extension of u to Rn by zero.
(a) Show that spt ũ = sptu.

(b) Define Wu := spt ũ ∩ ∂Ω. Show that ũ ∈ H1(Rn \Wu), ∂jũ = ∂̃ju on Rn \Wu for
j = 1, . . . , n. (Hint: Use Exercise 4.3(c).)

7.4 (a) Let 1 ⩽ p < ∞. For x ∈ Rn define Tx ∈ L(Lp(Rn)) by Txf := f(· − x) for
f ∈ Lp(Rn). Show that the function Rn ∋ x 7→ Tx ∈ L(Lp(Rn)) is strongly continuous.
Hint: Show that x 7→ Txφ ∈ Lp(Rn) is continuous for all φ ∈ Cc(Rn), and use the

denseness of Cc(Rn) in Lp(Rn).
(b) Let u ∈ H1(Rn). Show that u(· − x) → u in H1(Rn) as x→ 0.
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7.5 Let Ω ⊆ Rn be a connected bounded open set with C1-boundary. Let 0 < β ∈ L∞(∂Ω)
(i.e. 0 ⩽ β ∈ L∞(∂Ω) \ {0}). Denote by Tβ the C0-semigroup on L2(Ω) generated by the
Robin Laplacian ∆β. Show that

∥Tβ(t)∥ ⩽ e−εt (t ⩾ 0)

for some ε > 0. (Hint: Use Lemma 7.15.)

7.6 Let Ω ⊆ Rn be a C1-domain with a hole; more precisely, assume that there exist
bounded open sets Ω̃ and ω with C1-boundary such that ω ⊆ Ω̃ and Ω = Ω̃ \ ω. Then one
may write ∂Ω = Γ1 ∪ Γ2, where Γ1 := ∂Ω̃ and Γ2 := ∂ω. Let β ∈ L∞(Γ2) be real-valued.
Define the Laplacian with Robin boundary condition ∂νu+ βu = 0 on Γ2 and Dirichlet
boundary condition zero on Γ1, and show that it is a self-adjoint operator. (It is part of
the task to give a proper definition of the indicated boundary conditions and to ‘translate’
the boundary conditions into a suitable bounded quasi-coercive form.)

7.7 Let a : V × V → C be a symmetric bounded form that is j-coercive, where V, H
are complex Hilbert spaces and j ∈ L(V,H) has dense range. Let b : V × V → C be a
bounded form and assume that there exists c ⩾ 0 such that

|b(u)| ⩽ c∥u∥V ∥j(u)∥H (u ∈ V ).

(a) Show that a+ b : V × V → C is j-coercive.
(b) Denote by A the (quasi-m-sectorial) operator associated with (a+ b, j). Show that

the numerical range num(A) is contained in the region ‘surrounded’ by a parabola with
vertex on the real axis and opened in the direction of the positive real axis.

(c) Show that A is quasi-m-sectorial of any angle φ ∈ (0, π/2) and that −A generates a
holomorphic C0-semigroup of angle π/2. (Hint: Look at the operator A+ω, for arbitrarily
large ω ∈ R, and remember rescaled semigroups.)

7.8 LetK = C, and let Ω ⊆ Rn be a bounded open set with C1-boundary. Let β ∈ L∞(∂Ω)
(not necessarily real-valued), and let ∆β be the Robin Laplacian in L2(Ω).

(a) Show that −∆β has the properties described in parts (b) and (c) of Exercise 7.7.
(b) Suppose that Re β ⩾ 0. Show that −∆β is accretive and that ∆β generates a

contractive C0-semigroup on L2(Ω).

7.9 Convince yourself that Dirichlet’s principle from the above Notes holds for arbitrary
bounded open sets Ω ⊆ Rn if formulated as follows: for each G ∈ H1(Ω) there exists
a unique function u ∈ H1(Ω) such that ∆u = 0, G − u ∈ H1

0 (Ω), and u is the unique
minimiser of G+H1

0 (Ω) ∋ v 7→ ∥∇v∥22.





Chapter 8

The Dirichlet-to-Neumann operator

The Dirichlet-to-Neumann operator plays an important role in the theory of inverse
problems. For instance, from measurements of electrical currents at the surface of the
human body one wishes to determine conductivity inside the body. But the Dirichlet-to-
Neumann operator also plays a big role in many other parts of analysis. Here we use form
methods to show that it is a self-adjoint operator in L2(∂Ω). It becomes important that
our setting allows the mapping j to be non-injective: throughout this chapter j will be
the trace operator.

8.1 The Dirichlet-to-Neumann operator for the Laplacian

Let Ω ⊆ Rn be a bounded open set with C1-boundary. We use the classical Dirichlet form

a(u, v) =

∫
Ω

∇u · ∇v dx (u, v ∈ H1(Ω)). (8.1)

If we choose the canonical injection of H1(Ω) into L2(Ω), the associated operator is the
Neumann Laplacian. Here we will choose as j the trace operator from H1(Ω) to L2(∂Ω),
introduced in Theorem 7.11; then j has dense range, as noted in Section 7.3. We will show
that the form a is j-coercive and investigate the self-adjoint operator in L2(∂Ω) associated
with (a, j). It turns out that this is the Dirichlet-to-Neumann operator D0 which maps
the ‘Dirichlet data’ u|∂Ω ∈ L2(∂Ω) of a harmonic function u ∈ H1(Ω) to the ‘Neumann
data’ ∂νu ∈ L2(∂Ω); see Theorem 8.3 below. (A function u on Ω is called harmonic if it
is twice continuously differentiable and ∆u = 0.)
For the proof of the j-coercivity of a we need an auxiliary result, which is a version of

what sometimes comes under the heading “Ehrling’s lemma”. We state it for the general
case of Banach spaces; in our context it will only be needed for Hilbert spaces.

8.1 Lemma. Let X, Y, Z be Banach spaces, X reflexive, K ∈ L(X, Y ) compact and
S ∈ L(X,Z) injective. Then for all ε > 0 there exists cε ⩾ 0 such that

∥Kx∥Y ⩽ ε∥x∥X + cε∥Sx∥Z (x ∈ X).

Proof. For a contradiction, assume that there exists ε > 0 such that for each n ∈ N there
exists xn ∈ X with

∥Kxn∥Y > ε∥xn∥X + n∥Sxn∥Z
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and ∥xn∥X = 1. Passing to a subsequence we may assume that (xn) is weakly convergent to
some x ∈ X, by the reflexivity of X. Then Sxn → Sx weakly; see the hints in Exercise 6.6.
Moreover ∥Sxn∥Z < 1

n∥Kxn∥X → 0, which implies Sx = 0; so x = 0 because S is injective.
Since K is compact it follows that Kxn → 0 in norm; see Exercise 6.6(a). But ∥Kxn∥Y > ε
for all n ∈ N, a contradiction.

8.2 Proposition. With j = tr, the classical Dirichlet form a is j-coercive.

Proof. The bounded linear operator S : H1(Ω) → L2(Ω;Kn)⊕ L2(∂Ω) given by

Su := (∇u, tru)

is injective. Indeed, if Su = 0, then ∇u = 0 and u ∈ H1
0 (Ω) by Theorem 7.12, and thus

u = 0 by Poincaré’s inequality (Theorem 5.13).
As the embedding H1(Ω) ↪→ L2(Ω) is compact, by Theorem 7.9 (Rellich–Kondrachov),

the application of Lemma 8.1 yields a constant c ⩾ 0 such that for all u ∈ H1(Ω) one has∫
Ω

|u|2 dx ⩽
1

2
∥u∥2H1(Ω) + c∥Su∥2

=
1

2

∫
Ω

|u|2 dx+ 1

2

∫
Ω

|∇u|2 dx+ c

∫
Ω

|∇u|2 dx+ c

∫
∂Ω

|tru|2 dσ.

Adding 1
2

∫
Ω
|∇u|2 dx− 1

2

∫
Ω
|u|2 dx to this inequality we obtain

1

2
∥u∥2H1(Ω) ⩽ (c+1)a(u) + c∥tru∥2L2(∂Ω) (u ∈ H1(Ω)), (8.2)

and it follows that a is j-coercive.

We now come back to the Dirichlet-to-Neumann operator.

8.3 Theorem. Let j be the trace operator, and let a be the classical Dirichlet form (8.1).
Then the operator D0 in L2(∂Ω) associated with (a, j) is given by

D0 =
{
(g, h) ∈ L2(∂Ω)× L2(∂Ω); ∃u ∈ H1(Ω) : ∆u = 0, u|∂Ω = g, ∂νu = h

}
.

The operator D0 is self-adjoint and accretive and has compact resolvent. We call D0 the
Dirichlet-to-Neumann operator (with respect to ∆).

The attentive reader may have noticed a discrepancy between the description of the
Dirichlet-to-Neumann operater in the first paragraph of the present section, where it is
stated that the Dirichlet data of a harmonic function u are mapped to the Neumann data,
and the description of D0 given above, where u is merely required to satisfy ∆u = 0 in
the distributional sense. This discrepancy is resolved by Weyl’s lemma, for which we refer
to Appendix C.
The action of the operator D0 can be described as follows. Given g ∈ L2(∂Ω) one

seeks a solution ug ∈ H1(Ω) of the Dirichlet problem ∆u = 0, tru = g. As mentioned in
the Notes of Chapter 7, a solution ug exists for all g ∈ ran(tr). If this solution satisfies
∂νug ∈ L2(∂Ω), then g ∈ dom(D0) and D0g = ∂νug.
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Proof of Theorem 8.3. Let (g, h) ∈ D0. Since D0 ∼ (a, j), there exists u ∈ H1(Ω) such
that u|∂Ω = j(u) = g and∫

Ω

∇u · ∇v dx = a(u, v) = (h | j(v))L2(∂Ω) =

∫
∂Ω

hv dσ (8.3)

for all v ∈ H1(Ω). Employing this equality with v ∈ C∞
c (Ω) we obtain −∆u = 0. Thus,

adding
∫
(∆u)v dx = 0 in (8.3) we find that∫

Ω

(∆u)v dx+

∫
Ω

∇u · ∇v dx =

∫
∂Ω

hv dσ (v ∈ H1(Ω)).

Hence ∂νu = h by our definition of the weak normal derivative. This proves the inclusion ‘⊆’
in the asserted equality for D0.
In order to prove the reverse inclusion let u ∈ H1(Ω) satisfy ∆u = 0 and h := ∂νu ∈

L2(∂Ω), and put g := u|∂Ω. Then

a(u, v) =

∫
Ω

∇u · ∇v dx+
∫
Ω

(∆u)v dx =

∫
∂Ω

hv dσ = (h | j(v))L2(∂Ω) (v ∈ H1(Ω));

consequently (g, h) = (j(u), h) ∈ D0.
The symmetry and accretivity of a imply that D0 is self-adjoint and accretive. Finally,

it was shown in Theorem 7.11(c) that tr : H1(Ω) → L2(∂Ω) is compact; hence D0 has
compact resolvent, by Proposition 6.18.

Our next aim is to define Dirichlet-to-Neumann operators with respect to more gen-
eral Dirichlet problems. The following interlude contains preparatory material for this
treatment.

8.2 Interlude: the Fredholm alternative in Hilbert space

We need a detail from the spectral theory of compact operators which we formulate and
prove only for operators in Hilbert spaces. It will be used in the proof of Lemma 8.10.

8.4 Theorem (Fredholm alternative). Let H be a Hilbert space, K ∈ L(H) compact.
Then the operator I +K is injective if and only if it is surjective, and in this case I +K
is invertible in L(H).

Proof. (i) In this step we treat the case when dim ran(K) <∞. We define H1 := ker(K),
H2 := ker(K)⊥ and denote by P1, P2 the orthogonal projections onto H1, H2, respectively.
Observe that dimH2 < ∞. (Indeed, from K =

∑n
j=1( · | xj)yj one obtains ker(K) ⊇

{x1, . . . , xn}⊥, and therefore ker(K)⊥ ⊆ lin{x1, . . . , xn}.) On the orthogonal sum H1⊕H2

the operator I +K can be written as the operator matrix

I +K =

(
I1 P1K |H2

0 I2 + P2K |H2

)
,
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where I1, I2 are the identity operators in H1, H2, respectively. It follows from Exercise 8.3
that I + K is injective/surjective/invertible in L(H) if and only if the corresponding
property holds for I2 +P2K |H2

. Thus the assertions follow from (finite-dimensional) linear
algebra.
(ii) Now assume that dim ran(K) = ∞. Note that K(BH(0, 1)) is a relatively compact

set in a metric space, and as such is separable; therefore ran(K) is separable. Let (en)n∈N
be an orthonormal basis of ran(K), and for n ∈ N let Pn be the orthogonal projection
from ran(K) onto lin{e1, . . . , en}. Then Pnx → x (n → ∞) for all x ∈ ran(K). Hence
Pn → I uniformly on the compact set K(BH(0, 1)), by Exercise 3.2(b), and this implies
that PnK → K in the operator norm.
Therefore K can be written as a sum K = K1 +K2, where ∥K1∥ < 1 and ran(K2) is

finite-dimensional. Then I +K1 is invertible in L(H) (Neumann series), and thus one
can write (I +K1)

−1(I +K) = I + F , with the finite rank operator F = (I +K1)
−1K2.

Hence, I +K is injective/surjective/invertible in L(H) if and only if the corresponding
property holds for I + F . Thus the assertions follow from step (i).

The label ‘alternative’ in Theorem 8.4 may be explained as follows: the only alternative
to I +K being invertible is that I +K is neither injective nor surjective.

8.5 Remark. Let G, H be Hilbert spaces, and let B,K ∈ L(G,H), B invertible, K
compact. Then the operator B + K is injective if and only if it is surjective. This
follows from B +K = B(I +B−1K) and Theorem 8.4, applied to the compact operator
B−1K ∈ L(G). △

8.3 Quasi-m-accretive and self-adjoint operators via
essentially coercive forms

Let V, H be Hilbert spaces, and let a : V × V → K be a bounded form. Let j ∈ L(V,H)
have dense range. Throughout this section we assume that

u ∈ ker(j), a(u, v) = 0 for all v ∈ ker(j) implies u = 0. (8.4)

This condition is slightly weaker than (5.7), which was the standing assumption in
Section 5.3. The weaker assumption (8.4) still implies that the relation

A =
{
(x, y) ∈ H ×H ; ∃u ∈ V : j(u) = x, a(u, v) = (y | j(v)) (v ∈ V )

}
,

defined as in (5.6), is an operator; see Proposition 8.6.
As before we call A the operator associated with (a, j). Given ω ∈ K, we denote by aω

the shifted form defined by aω(u, v) := a(u, v) + ω(j(u) | j(v)).

8.6 Proposition. Assume that (8.4) is satisfied. Then the relation A given above is an
operator. For ω ∈ K the form aω satisfies (8.4), and A+ ω is the operator associated with
(aω, j). If (8.4) is also satisfied for a∗, and B is the operator associated with (a∗, j), then
B ⊆ A∗ and A ⊆ B∗. In particular, if a is symmetric and dom(A) is dense, then A is
symmetric.



105

The proof is delegated to Exercise 8.4. We will be working with the space

Vj(a) :=
{
u ∈ V ; a(u, v) = 0 (v ∈ ker(j))

}
=

⋂
v∈ker(j)

ker a(·, v). (8.5)

8.7 Remarks. (a) Condition (8.4) is equivalent to Vj(a) ∩ ker(j) = {0}.
(b) It is easy to see that Vj(aω) = Vj(a) for all ω ∈ K.
(c) Vj(a) is a closed subspace of V . One might think of Vj(a) as the ‘orthogonal

complement’ of ker(j) with respect to a. If a is symmetric and j-coercive, then aω is
an equivalent scalar product on V for large ω ∈ R, and Vj(a) = Vj(aω) is indeed the
orthogonal complement of ker(j) with respect to aω. For the case of more general forms
we refer to Proposition 8.16.

(d) If (x, y) ∈ A and u ∈ V are as in the definition of A, then u ∈ Vj(a): for all v ∈ ker(j)
one obtains a(u, v) = (y | j(v)) = 0.
(e) Assume that the Lax–Milgram operator A : V → V ∗ given by Au := a(u, ·) is

surjective. Then A is surjective. Indeed, for all y ∈ H one has (y | j(·)) ∈ V ∗, hence
(y | j(·)) = Au for some u ∈ V ; then y = Aj(u) ∈ ran(A). △
8.8 Example. We determine the space Vj(a) for the case of the Dirichlet-to-Neumann
operator in L2(∂Ω) associated with (a, j), where Ω ⊆ Rn is a bounded open set with
C1-boundary, a the classical Dirichlet form on V = H1(Ω), and j = tr: H1(Ω) → L2(∂Ω).
Then ker(j) = H1

0 (Ω), by Theorem 7.12, and an element u ∈ H1(Ω) satisfies

0 = a(u, v) =

∫
Ω

∇u · ∇v dx (v ∈ ker(j) = H1
0 (Ω))

if and only if ∆u = 0, by Lemma 4.20. Hence Vj(a) = {u ∈ H1(Ω) ; ∆u = 0}.
By Remark 8.7(c) and Proposition 8.2 we see that Vj(a) is the orthogonal complement

of H1
0 (Ω) with respect to aω, for suitable ω ∈ R. Thus every G ∈ H1(Ω) has a unique

decomposition G = u + w with u ∈ Vj(a) and w ∈ H1
0 (Ω). Then u satisfies ∆u = 0

and tru = trG, i.e., u is the solution of the Dirichlet problem mentioned in the Notes
of Chapter 7. In Exercise 8.8 the reader is asked to show that the decomposition
H1(Ω) = Vj(a)⊕H1

0 (Ω) is not orthogonal in the standard scalar product of H1(Ω). △
In the next lemma we draw an important conclusion from parts (d) and (e) of Re-

marks 8.7. Afterwards we will indicate a condition under which the assumptions of the
lemma are satisfied.

8.9 Lemma. In addition to (8.4) assume that the restriction of a to Vj(a) is coercive and
that A is surjective. Then A is strictly m-accretive. If K = C, then A is m-sectorial.

Proof. For x ∈ dom(A) and u ∈ V with j(u) = x as in the definition of A one has u ∈ Vj(a)
by Remark 8.7(d). Thus by the coercivity assumption one obtains

Re(Ax |x) = Re(Ax | j(u)) = Re a(u, u) ⩾ α∥u∥2V ⩾
α

c2
∥x∥2H ,

with c > 0 such that c ⩾ ∥j∥ and some α > 0 (not depending on x). This shows that A
is strictly accretive. (The previous argument is essentially the same as in the proof of
Theorem 5.6.) Now the surjectivity of A – see Remark 8.7(e) – implies that A is strictly
m-accretive.
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Now let K = C. As seen above one has

{(Ax |x) ; x ∈ dom(A)} ⊆ {a(u) ; u ∈ Vj(a)}.

Since ǎ := a|Vj(a)×Vj(a) is coercive, Theorem 5.8 shows that ǎ is sectorial, so the above
inclusion implies that A is sectorial. Then from the m-accretivity of A one concludes that
A is m-sectorial.

We call the form a essentially coercive if there exist a Hilbert space H̃ and a compact
operator ȷ̃ : V → H̃ such that a is ȷ̃-coercive, i.e.

Re a(u) + ω̃∥ȷ̃(u)∥2
H̃
⩾ α̃∥u∥2V (u ∈ V ), (8.6)

with some ω̃, α̃ > 0. Observe that the operator K ∈ L(V, V ∗), defined by

⟨Ku, v⟩ := (ȷ̃(u) | ȷ̃(v))H̃ (u, v ∈ V ), (8.7)

is compact. Indeed, the operator

k : H̃ → V ∗, x 7→ (x | ȷ̃(·))H̃

belongs to L(H̃, V ∗); hence K = k ◦ ȷ̃ is compact, by the ideal property of compact
operators.
The property ‘essentially coercive’ has been introduced in [AEKS14] under the name

‘compactly elliptic’. Our terminology is adapted from [ArCh20], where an equivalent prop-
erty is called ‘essentially positive-coercive’; see [ArCh20; Theorem 4.4]. (The background
for ‘positive’ is that in the latter paper more general versions of coercivity are under
consideration.) We refer to Exercise 8.5 for further equivalent properties.
Theorem 8.11 below states that for essentially coercive a the operator associated with

(a, j) is quasi-m-accretive. To prove this result we will use Lemma 8.9 and the following
two properties of essentially coercive forms.

8.10 Lemma. Assume that (8.4) is satisfied and that a is essentially coercive.
(a) Then there exist ω ⩾ 0, α > 0 such that

Re a(u) + ω∥j(u)∥2H ⩾ α∥u∥2V (u ∈ Vj(a)). (8.8)

(This means that the restriction of aω to Vj(a) is coercive.)
(b) With ω from (a), the Lax–Milgram operator Aω : V → V ∗ defined by Aωu := aω(u, ·)

is an isomorphism.

Proof. (a) By Remark 8.7(a), j is injective on Vj(a). Therefore Lemma 8.1 implies that

ω̃∥ȷ̃(u)∥2
H̃
⩽
α̃

2
∥u∥2V + ω∥j(u)∥2H (u ∈ Vj(a)),

with ω̃, α̃ > 0 and ȷ̃ , H̃ as in (8.6) and some ω ⩾ 0. From (8.6) we then obtain

Re a(u) + ω∥j(u)∥2H ⩾
α̃

2
∥u∥2V (u ∈ Vj(a)).
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(b) If Aωu = 0, then a(u, v) = ⟨Aωu, v⟩ − ω(j(u) | j(v)) = 0 for all v ∈ ker(j), i.e.
u ∈ Vj(a); hence α∥u∥2V ⩽ Re⟨Aωu, u⟩ = 0 by (8.8). Thus Aω is injective.
We define a bounded form bω : V × V → K by

bω(u, v) := aω(u, v) + ω̃(ȷ̃(u) | ȷ̃(v))H̃ ;

then bω is coercive by (8.6) since ω ⩾ 0. The Lax–Milgram lemma, Theorem 5.4, implies
that the operator Bω : V → V ∗, u 7→ bω(u, ·) is an isomorphism. Moreover Aω = Bω − ω̃K,
with the compact operator K ∈ L(V, V ∗) from (8.7). As Aω is injective, the ‘Fredholm
alternative’ (in the guise of Remark 8.5) shows that Aω is an isomorphism.

We now show that the operator associated with (a, j) is quasi-m-accretive.

8.11 Theorem. Let a : V × V → K be a bounded form, and let j ∈ L(V,H) have dense
range. Assume that (8.4) is satisfied and that a is essentially coercive. Let A be the
operator associated with (a, j).

(a) Then A is quasi-m-accretive.
(b) If K = C, then A is quasi-m-sectorial.
(c) If a is symmetric, then A is self-adjoint.
(d) If j is compact, then A has compact resolvent.

Proof. (a) By Lemma 8.10 there exists ω ⩾ 0 such that aω|Vj(a)×Vj(a) is coercive and Aω is
surjective. Recall from Proposition 8.6 that A+ ω is the operator associated with (aω, j).
Now Lemma 8.9 (combined with Remark 8.7(b)) shows that A+ ω is strictly m-accretive,
and hence A is quasi-m-accretive.
(b) In this case Lemma 8.9 implies that A+ω is m-sectorial, hence A is quasi-m-sectorial.
(c) If a is symmetric, then A is symmetric, by Proposition 8.6. Since A is quasi-m-

accretive, Theorem 6.1 implies that A is self-adjoint.
(d) We show that (A + ω)−1 = jA−1

ω k, with k : H → V ∗, y 7→ (y | j(·)); then A has
compact resolvent. By definition, (y, x) ∈ (A+ ω)−1 if and only if there exists u ∈ V such
that j(u) = x and Aωu = (y | j(·)) = k(y), and this is equivalent to x = jA−1

ω k(y). (The
previous argument is essentially the same as in the proof of Proposition 5.7; see also the
proof of Proposition 6.18.)

8.4 The Dirichlet-to-Neumann operator with respect to
∆ + m

Let Ω ⊆ Rn be a bounded open set with C1-boundary, and let m ∈ L∞(Ω) be real-valued.
We want to study the Dirichlet-to-Neumann operator Dm with respect to ‘(∆+m)-
harmonic’ functions. More precisely, we define Dm in L2(∂Ω) by requiring that for
g, h ∈ L2(∂Ω) one has g ∈ dom(Dm) and Dmg = h if there exists a solution u ∈ H1(Ω)
of ∆u +mu = 0, u|∂Ω = g such that ∂νu = h. We will show that Dm is a self-adjoint
operator if

0 /∈ σ(∆D +m), (8.9)
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which we will suppose throughout. Here ∆D +m is the Dirichlet Laplacian perturbed by
the bounded operator of multiplication by the function m. We observe that ∆D +m is
self-adjoint and has compact resolvent; see Exercise 8.6.
As in Section 8.1 we choose H = L2(∂Ω), V = H1(Ω) and as j : H1(Ω) → L2(∂Ω) the

trace operator. According to the intended setup we now define the form a : V × V → C by

a(u, v) :=

∫
Ω

∇u · ∇v dx−
∫
Ω

muv dx (u, v ∈ H1(Ω)).

8.12 Remark. In general, the form a is not j-coercive. For example, let λ > λ1, where
λ1 is the first Dirichlet eigenvalue (cf. Example 6.19), and put m := λ. Let u ∈ H1

0 (Ω) be
an eigenfunction of −∆D corresponding to λ1. Then

∫
Ω
|∇u|2 dx = λ1

∫
Ω
|u|2 dx, so

a(u) + ω∥j(u)∥2L2(∂Ω) =

∫
Ω

|∇u|2 dx− λ

∫
Ω

|u|2 dx = (λ1 − λ)

∫
Ω

|u|2 dx < 0

for all ω ∈ R. Thus the form is not j-coercive. (Note that (8.9) is satisfied if λ is not an
eigenvalue of ∆D.) △

Since the form a is not necessarily j-coercive, the theory developed in Chapter 5 is not
applicable. However, we can apply the results of the previous section.

8.13 Theorem. Suppose that (8.9) holds. Then

Dm :=
{
(g, h) ∈ L2(∂Ω)× L2(∂Ω); ∃u ∈ H1(Ω) : ∆u+mu = 0, u|∂Ω = g, ∂νu = h

}
is a quasi-accretive self-adjoint operator with compact resolvent.

Proof. Let a be the form defined above, and let j ∈ L(H1(Ω), L2(∂Ω)) be the trace
operator. We first show that condition (8.4) is satisfied. We recall from Theorem 7.12 that
ker(j) = H1

0 (Ω). Let u ∈ ker(j) be such that a(u, v) =
∫
Ω
∇u · ∇v dx−

∫
Ω
muv dx = 0 for

all v ∈ ker(j) = H1
0 (Ω). Then u ∈ dom(∆D +m) and ∆Du+mu = 0, by the definition

of ∆D. This implies u = 0 since 0 /∈ σ(∆D +m) by our assumption (8.9).
In order to show that a is essentially coercive, we choose H̃ := L2(Ω) and as ȷ̃ the

embedding H1(Ω) ↪→ L2(Ω). Then

a(u) + (∥m∥∞+ 1)∥ȷ̃(u)∥22 =
∫
Ω

|∇u|2 dx−
∫
Ω

m|u|2 dx+ (∥m∥∞+ 1)∥u∥22 ⩾ ∥u∥2H1

for all u ∈ H1(Ω), and from Theorem 7.9 we know that ȷ̃ is compact.
Let A be the operator associated with (a, j). By Theorem 8.11, parts (a) and (c), A is

self-adjoint and quasi-accretive. As j is compact by Theorem 7.11(c), Theorem 8.11(d)
implies that A has compact resolvent.
We show that A = Dm. If (g, h) ∈ A, then there exists u ∈ H1(Ω) such that u|∂Ω = g

and ∫
Ω

∇u · ∇v dx−
∫
Ω

muv dx =

∫
∂Ω

hv dσ (v ∈ H1(Ω)). (8.10)

Inserting test functions v ∈ C∞
c (Ω) we obtain −∆u − mu = 0. Plugging mu = −∆u

into (8.10) we deduce that ∂νu = h. Thus (g, h) ∈ Dm. Conversely, if (g, h) ∈ Dm, then
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there exists u ∈ H1(Ω) such that ∆u +mu = 0, u|∂Ω = g and ∂νu = h. Thus, by the
definition of the weak normal derivative,∫

∂Ω

hv dσ =

∫
Ω

∇u · ∇v dx+
∫
Ω

(∆u)v dx =

∫
Ω

∇u · ∇v dx−
∫
Ω

muv dx = a(u, v)

for all v ∈ H1(Ω), and hence (g, h) ∈ A.

8.5 Decomposition of the form domain

In this section we continue the analysis started in Section 8.3. Throughout the section
let V, H be Hilbert spaces, let j ∈ L(V,H) have dense range, and let a : V × V → K be a
bounded essentially coercive form satisfying (8.4).
Note that a coercive form is automatically essentially coercive (and satisfies (8.4)).

Thus the following results are also valid – and interesting! – for coercive forms. It will
become apparent that the properties treated in this section are invariant under shifting
the form, and therefore they hold for bounded j-coercive forms as well.
In the applications in this chapter the space Vj(a) is only a ‘small’ subspace of V

because j is not injective; see for instance Example 8.8. We now show that the associated
operator does not change if one restricts both a and j to Vj(a).

8.14 Proposition. Let Vj(a) be defined by (8.5). Then j|Vj(a) is injective and has dense
range, and the operator A associated with (a, j) is also associated with (a|Vj(a)×Vj(a), j|Vj(a)).

Proof. The injectivity of j|Vj(a) is is clear from Remark 8.7(a). Let ǎ := a|Vj(a)×Vj(a) and
ȷ̌ := j|Vj(a). From Remark 8.7(d) we obtain j(Vj(a)) ⊇ dom(A), and as A is densely
defined, we conclude that ȷ̌ has dense range. Lemma 8.10(a) shows that the form ǎ is
ȷ̌-coercive; hence the operator Ǎ associated with (ǎ, ȷ̌) is quasi-m-accretive, by the results
of Chapter 5.
Let (x, y) ∈ A. Then there exists u ∈ Vj(a) such that a(u, v) = (y | j(v)) for all v ∈ V ,

hence a fortiori for all v ∈ Vj(a), and it follows that (x, y) ∈ Ǎ. Thus we have shown
that A ⊆ Ǎ. As both operators A and Ǎ are quasi-m-accretive, we conclude equality
(by the well-known reasoning that a surjective mapping cannot have a proper injective
extension).

8.15 Remark. Proposition 8.14 says that the operator A associated with (a, j) can also
be obtained from an embedded form (with the embedding j|Vj(a)). In the next result we
show that there is even more structure. △

Let X be a normed space, and let X = X1 ⊕ X2 be the algebraic direct sum of two
subspaces X1, X2, i.e. X = X1+X2 and X1∩X2 = {0}. If the norm ∥·∥ on X is equivalent
to the norm ∥·∥s defined by

∥x1 + x2∥s := ∥x1∥+ ∥x2∥ (x1 ∈ X1, x2 ∈ X2), (8.11)

then X is called the topological direct sum of X1, X2. The equivalence of the norms is
equivalent to the property that both X1 and X2 are closed; see Exercise 8.7(b).
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We emphasise that in the following result the direct sum is not necessarily orthogonal.

8.16 Proposition. Assume that (8.4) is satisfied and that a is essentially coercive. Then
V = Vj(a)⊕ ker(j) is a topological direct sum.

Proof. Let V̂ := ker(j). Clearly the restriction â := a|V̂×V̂ of a is essentially coercive, and

ȷ̂ := j|V̂ : V̂ → Ĥ := {0} has dense range. Moreover V̂ȷ̂(â) = {0} since a and j satisfy (8.4).
Thus â and ȷ̂ satisfy (8.4) as well, and since (8.8) is trivially satisfied with ω = 0, we
conclude from Lemma 8.10(b) that ker(j) ∋ u 7→ â(u, ·) = a(u, ·)|ker(j) ∈ ker(j)∗ is an
isomorphism.
Now let w ∈ V . Then a(w, ·)|ker(j) ∈ ker(j)∗, and hence there exists u ∈ ker(j) such

that a(u, v) = a(w, v) for all v ∈ ker(j), or equivalently w − u ∈ Vj(a). Thus we have
shown that w ∈ Vj(a) + ker(j). This implies the assertion since Vj(a) ∩ ker(j) = {0} and
both Vj(a) and ker(j) are closed.

Notes

A large part of the material in this chapter is adapted from [AEKS14]. The main results
of Sections 8.3 and 8.5, Theorem 8.11 and Proposition 8.16, go beyond this paper and are
due to H. Vogt. A different proof of Theorem 8.11 can be given by means of results in
[Sau13].
In the investigation of the Dirichlet-to-Neumann operator Dm it is possible to avoid

assumption (8.9). However, if 0 ∈ σ(∆D+m), then Dm is no longer a self-adjoint operator
but rather a self-adjoint linear relation; we refer to Section 14.1 for this notion. In the
complex case, the resolvent (is−Dm)

−1 is a bounded operator on L2(∂Ω), and the mapping
L∞(Ω) ∋ m 7→ (is−Dm)

−1 ∈ L(L2(∂Ω)) is continuous; see [AEKS14; Theorem 7.3]. This
gives valuable information on the stability of the inverse problem which interests engineers
and medical doctors likewise.
In fact, one of the most famous inverse problems, the Calderón problem, can be

formulated in terms of the Dirichlet-to-Neumann operator with respect to ∆ − m. It
was Alberto Calderón (1920-1998) who encountered this problem when he worked as an
electrical engineer for Yacimientos Petroĺıferos Fiscales, the state oil company of Argentina.
Calderón worked on Electrical Impedance Tomography, a method that can be used to
detect oil, but also to find a tumor in the lungs. It consists in determining the electrical
conductivity of a medium by making voltage and current measurements at the boundary
of a medium. The mathematical problem Calderón formulates is the following.
Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary, and let γ : Ω → (0,∞) be

a bounded measurable function with strictly positive lower bound. One should think of Ω
as a body with ‘electrical conductivity’ γ. If one applies a ‘voltage’ function g : ∂Ω → R
at the boundary, then the induced ‘electric potential’ u : Ω → R satisfies the Dirichlet
problem

div(γ∇u) = 0 on Ω,

u = g on ∂Ω,
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and one measures the ‘current’ γ∂νu through the surface. The voltage-to-current map
g 7→ γ∂νu is the Dirichlet-to-Neumann operator Λγ,

Λγg = γ∂νu.

In other words, Λγ maps the ‘Dirichlet data’ u|∂Ω of the ‘div(γ∇)-harmonic’ function u to
the ‘Neumann data’ γ∂νu.
The inverse problem Calderón formulates is “to decide whether γ is uniquely determined

by Λγ and to calculate γ in terms of Λγ , if γ is indeed determined by Λγ”; see [Cal06] for
a reprint of his paper from 1980. (Calderón does not formulate the problem in terms of
the Dirichlet-to-Neumann operator, but rather in terms of a quadratic form; we refer to
[Uhl09; p. 2] for the equivalence of Calderón’s and the above formulation in terms of Λγ .)
We add a few comments on the notation used above. For the definition of the distri-

butional divergence of a vector field we refer to Exercise 4.5(b) and to the paragraph
preceding Remark 11.3. The weak normal derivative γ∂νu, or expressed differently, the
weak normal trace of the vector field γ∇u at ∂Ω, is defined similarly as in Section 7.3.

In the remaining discussion we will only deal with the first of the two issues Calderón
states, the uniqueness question. Assuming suitable regularity of γ, one can transform this
problem into a uniqueness problem for the Dirichlet-to-Neumann operator Dm treated in
Section 8.4, where m is related to the conductivity γ in a one-to-one way, as described in
[Uhl09; Section 5]. Let m1,m2 ∈ L∞(Ω) and consider the associated Dirichlet-to-Neumann
operators

Dmj
:=

{
(g, h) ∈ L2(∂Ω)× L2(∂Ω); ∃u ∈ H1(Ω) : ∆u+mju = 0, u|∂Ω = g, ∂νu = h

}
,

for j = 1, 2; see Theorem 8.13. Then, analogously to the above Calderón uniqueness
problem, one can ask: if Dm1 = Dm2 , does it follow that m1 = m2?
In this latter form, the problem has been solved in [KrUh14; Theorem 1.1], where

the uniqueness is proved in a very general context. The original uniqueness problem
of Calderón has been solved by Sylvester and Uhlmann [SyUh87; Theorem 0.1], for Ω
with smooth boundary and conductivities γ in C∞(Ω), and by Haberman and Tataru
[HaTa13; Theorem 1.1], for Ω with Lipschitz boundary and conductivities in C1(Ω). All
these results are for the case of dimension n ⩾ 3. For more information (also regarding
dimension n = 2) we refer to [Uhl09] from which this account is adapted and where
also further references can be found. We mention that in real-world applications, partial
measurements at the boundary are of course more realistic, and much research goes on in
this direction; see [KeSa14].

Exercises

8.1 Let a, b ∈ R, a < b.
(a) Compute the Dirichlet-to-Neumann operator D0 for Ω = (a, b), and compute the

C0-semigroup generated by −D0.
(b) For a = −1, b = 1 interpret the result in the light of Exercise 8.2.



112

8.2 Let Un := BRn(0, 1) be the open unit ball in Rn, Sn−1 := ∂Un the unit sphere. The
following facts can be used for the solution of this exercise: for each φ ∈ C(Sn−1) there
exists a unique solution u ∈ C(Un) of the Dirichlet problem

u harmonic on Un, u = φ on Sn−1 .

(We mention that the solution can be written down explicitly with the aid of the Poisson
kernel, but this will not be needed for solving the exercise.) The solution satisfies
u|Un

∈ C∞(Un) and ∥u∥∞ ⩽ ∥φ∥∞. Writing Gφ := u one obtains G ∈ L(C(Sn−1), C(Un)).
Define T (t) ∈ L(C(Sn−1)) by

T (t)φ(z) := u(e−tz) (z ∈ Sn−1, t ⩾ 0)

(with φ and u = Gφ as above).
(a) Show that T is a contractive C0-semigroup on C(Sn−1).
(b) Let A be the generator of T . Show that D :=

⋃
t>0 ran(T (t)) is a core for A, and

that Aφ = −∂ν(Gφ) for all φ ∈ D.
(c) Put Amin := A|D. Show that −Amin is a restriction of the Dirichlet-to-Neumann

operator D0 in L2(Sn−1), and that D0 = −Amin (where Amin is to be regarded as an
operator in L2(Sn−1)). Conclude that T extends to a contractive C0-semigroup T2 on
L2(Sn−1), and that −D0 is the generator of T2.
(We refer to [Lax02; Section 36.2] for this exercise.)

8.3 Let H1, H2 be Hilbert spaces, H := H1 ⊕H2.
(a) Let A1 ∈ L(H1), A2 ∈ L(H2) be invertible in L(H1), L(H2), respectively, and let

B ∈ L(H2, H1). Show that the operator matrix

(
A1 B

0 A2

)
is invertible in L(H), and

compute its inverse.

(b) Let A ∈ L(H2, H1), B ∈ L(H2). Show that

(
I1 A

0 B

)(
I1 −A
0 I2

)
=

(
I1 0

0 B

)
, where

I1, I2 are the identity operators in H1, H2, respectively. Conclude that

(
I1 A

0 B

)
is in-

jective/surjective/invertible in L(H) if and only if the corresponding property holds
for B.

8.4 Prove Proposition 8.6. (Hint: Inspect the proof of Proposition 5.5.)

8.5 Let a be a bounded form on a Hilbert space V . Show that the following properties
are equivalent:

(i) a is essentially coercive;

(ii) there exists α > 0 such that for all sequences (un) in V one has

∥un∥ = 1 (n ∈ N), un → 0 weakly =⇒ lim inf Re a(un) ⩾ α;

(iii) there exist α > 0 and a finite-dimensional subspace V1 ⊆ V such that

Re a(u) ⩾ α∥u∥2V (u ∈ V ⊥
1 ).
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Hint concerning ‘(ii)⇒ (iii)’: Assume that (iii) does not hold and construct an orthonor-
mal sequence (un) in V such that lim supRe a(un) ⩽ 0.
Hint concerning ‘(iii) ⇒ (i)’: For u ∈ V ⊥

1 , v ∈ V1 write a(u + v) = a(u) + a(u, v) +
a(v, u) + a(v) and use the Peter–Paul inequality to show that there exists ω > 0 (not
depending on u, v) such that Re a(u+ v) ⩾ α

2
∥u+ v∥2V −ω∥v∥2V . Then take the orthogonal

projection onto V1 as the compact operator ȷ̃ in the definition of ‘essentially coercive’.

8.6 (a) Let G, H be Hilbert spaces. Let A be a densely defined operator from G to H,
B ∈ L(G,H). Show that (A+B)∗ = A∗ +B∗.
(b) Let Ω ⊆ Rn be open, m ∈ L∞(Ω) real-valued. Show that −(∆D +m) is self-adjoint

and quasi-accretive. If Ω is bounded, then ∆D +m has compact resolvent.

8.7 Let X be a normed space, and suppose that X = X1 ⊕X2 is the algebraic direct
sum of two subspaces X1, X2.
(a) Show that X is the topological direct sum of X1, X2 if and only if the projection

from X onto X1 along X2 is a bounded operator.
(b) Show that if two of the properties

(i) X = X1 ⊕X2 is a topological direct sum,

(ii) X1 and X2 are closed,

(iii) X is a Banach space

hold, then also the third property holds. (Hint concerning ‘(ii), (iii) ⇒ (i)’: closed graph
theorem.)

8.8 Let ∅ ̸= Ω ⊆ Rn be a bounded open set with C1-boundary. Show that the decompo-
sition H1(Ω) = Vj(a)⊕H1

0 (Ω) from Example 8.8 is not an orthogonal sum. (Hint: Choose
0 ̸= u0 ∈ C2

c (Ω)+, and decompose the function u := 1 + u0.)





Chapter 9

Invariance of closed convex sets

In this chapter we investigate criteria for a closed convex set to be invariant under a
semigroup. To begin with, we present criteria involving properties of the generator.
Applying these criteria to the Dirichlet and Neumann Laplacians one realises that further
properies of H1-functions are needed; these will be provided in an interlude on lattice
properties of H1. In the last section we present criteria involving properties of forms
that have a wide range of applications. Examples include the Robin Laplacian and the
Dirichlet-to-Neumann operator, for which we refer to Exercises 9.4 and 9.5. In Chapter 11
we will apply the criteria to semigroups generated by elliptic operators.

9.1 Invariance for semigroups

Let T be a C0-semigroup on a Banach space X over K, with generator A. Our aim is to
characterise when a closed convex subset C of X is invariant under the semigroup T , i.e.
T (t)(C) ⊆ C for all t ⩾ 0. This means that, for an initial value in C, the solution of the
corresponding Cauchy problem remains in C for all t ⩾ 0. First we show that invariance
under T is equivalent to invariance under the resolvent.

9.1 Proposition. Let T be a C0-semigroup on a Banach space X, with generator A. Let
C ⊆ X be a closed convex set. Then the following properties are equivalent.

(i) C is invariant under T .

(ii) There exists ω ∈ R such that (ω,∞) ⊆ ρ(A) and λR(λ,A)(C) ⊆ C for all λ > ω.

Noting that λR(λ,A) = (I − 1
λ
A)−1 we see that condition (ii) can be expressed equiv-

alently by requiring that there exists r0 > 0 such that {1/r ; 0 < r < r0} ⊆ ρ(A) and
(I − rA)−1(C) ⊆ C for all 0 < r < r0. It is this version of condition (ii) that will mostly
be used below.

We insert a fact concerning integration that is needed in the proof of the implication
‘(i) ⇒ (ii)’ in Proposition 9.1. It should be understood as a statement on generalised
convex combinations.

9.2 Lemma. Let C be a closed convex subset of a Banach space X, a, b ∈ R, a < b. Let
u : [a, b] → C be continuous and φ ∈ C[a, b], φ ⩾ 0,

∫ b

a
φ(t) dt = 1.

Then
∫ b

a
φ(t)u(t) dt ∈ C.
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Proof. For simplicity of notation (and without loss of generality) we assume that [a, b] =
[0, 1]. For n ∈ N we put

un := u(0)1{0} +
n∑

k=1

u(k/n)1((k−1)/n,k/n] .

Then ∥φun − φu∥∞ → 0 as n→ ∞; hence
∫ 1

0
φun dt→

∫ 1

0
φu dt. Moreover

∫ 1

0
φun dt =∑n

k=1

∫ k/n

(k−1)/n
φ(t) dt u(k/n) ∈ C, as a convex combination of elements of C. Since C is

closed we obtain the assertion.

Proof of Proposition 9.1. (i) ⇒ (ii). Let ω ∈ R, M ⩾ 0 be such that ∥T (t)∥ ⩽ Meωt for
all t ⩾ 0, and let λ > ω. Then λR(λ,A) =

∫∞
0
λe−λtT (t) dt (strong improper integral).

Let x ∈ C. For τ > 0 we obtain (1− e−λτ )−1
∫ τ

0
λe−λtT (t)x dt ∈ C, by Lemma 9.2. Letting

τ → ∞ we conclude that λR(λ,A)x ∈ C.
(ii)⇒ (i). This follows from the exponential formula (Theorem 2.12):

T (t)x = lim
n→∞

(
I − t

n
A
)−n

x ∈ C (t ⩾ 0, x ∈ C).

In order to motivate why one is interested in the invariance of closed convex sets, we
indicate several examples.

9.3 Remarks. Let (Ω, µ) be a measure space, H := L2(µ;K).
(a) Let C ⊆ L2(µ) be the positive cone, C := L2(µ)+ := {u ∈ L2(µ) ; u ⩾ 0}. Clearly

C is a closed convex subset of L2(µ). An operator S ∈ L(H) leaves C invariant if and
only if S is positive, i.e. Su ⩾ 0 for all u ⩾ 0.
(b) Let K = C, and let C := L2(µ;R) be the closed convex subset of real-valued

functions. An operator S ∈ L(H) leaves C invariant if and only if S is real, i.e. Su is
real-valued for all real-valued u.
(c) Let C := {u ∈ L2(µ) ; ∥u∥∞ ⩽ 1}. Then C is convex and closed, and S ∈ L(H) leaves

C invariant if and only if S is L∞-contractive, i.e. ∥Su∥∞ ⩽ ∥u∥∞ for all u ∈ L2∩L∞(µ).
(d) Let C := {u ∈ L2(µ) ; u ⩽ 1}; then C is convex and closed. We show that S ∈ L(H)

leaves C invariant if and only if S is sub-Markovian, i.e. S is positive and L∞-contractive.
Indeed, assume that S(C) ⊆ C. If u ∈ L2(µ)+, then −αu ⩽ 1 and therefore −αSu ⩽ 1,

for all α ⩾ 0, and this implies that Su ⩾ 0. Hence S is a positive operator; in particular,
S is real. Now let u ∈ L2∩L∞(µ), ∥u∥∞ ⩽ 1. Then for all γ ∈ K with |γ| = 1 one obtains

Re(γSu) = Re
(
S(γu)

)
= S

(
Re(γu)

)
⩽ 1. (9.1)

(Note that in the complex case, for v ∈ L2(µ), one has ReSv = ReS(Re v + i Im v) =
Re

(
S(Re v) + iS(Im v)

)
= S(Re v), because S(Re v) and S(Im v) are real.) Using (9.1)

for γ from a countable dense subset of the unit circle, one concludes that ∥Su∥∞ ⩽ 1.
Conversely, if S is positive and L∞-contractive, then u ⩽ 1 implies Su = Su+ − Su− ⩽

Su+ ⩽ 1. Here, u+ := u ∨ 0 is the positive part of u, and the negative part of u is
defined by u− := (−u)+ = u+ − u. (Notice that the negative part is positive.) △
Concerning notation, the symbol ‘∨’ used above denotes ‘supremum’, i.e., for functions

u, v : Ω → R the supremum is given by (u ∨ v)(x) = max{u(x), v(x)} (x ∈ Ω). Similarly
we will use the symbol ‘∧’ to denote ‘infimum’, (u ∧ v)(x) = min{u(x), v(x)} (x ∈ Ω).
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9.4 Remark. Concerning the notion of ‘positive’ operators we mention that this property
is sometimes called ‘positivity preserving’. This is because in the literature ‘positive’ is
often used as a synonym for ‘accretive’, in the context of symmetric operators in Hilbert
spaces. △

We are looking for another characterisation of T -invariance of a closed convex set,
involving more directly the generator A instead of its resolvent. This is possible in Hilbert
spaces. Let H be a Hilbert space over K, and let ∅ ̸= C ⊆ H be convex and closed. We
denote by PC : H → C the minimising projection from H onto C, which maps x ∈ H
to its best approximation PCx in C, i.e., PCx is the unique element of C satisfying

∥x− PCx∥ = inf{∥x− y∥ ; y ∈ C}.

We will often use the fact that PCx is the unique element of C satisfying

Re(y − PCx |x− PCx) ⩽ 0 (y ∈ C); (9.2)

see Exercise 9.2(a) (or [Bre11; Section 5.1]). Geometrically, this means that the vectors
in the scalar product in (9.2) form an obtuse angle; if C has a tangent hyperplane at
PCx, then x− PCx is orthogonal to this hyperplane. The mapping PC is a contraction;
see Exercise 9.2(b). In particular, PC is continuous. Clearly the minimising projection
PC satisfies PC ◦ PC = PC ; so it deserves the name ‘projection’. We could not find a
commonly accepted name for this mapping in the literature. One should keep in mind
that, in general, PC is not a linear operator.

9.5 Remark. We illustrate the minimising projection for the closed convex subsets
of L2(µ) treated in Remarks 9.3. All the statements are immediate consequences of
Exercise 9.3.
For the positive cone C = L2(µ)+ the minimising projection is given by PCu = (Reu)+.
For K = C and C = L2(µ;R) one has PCu = Reu.
For the set C = {u ∈ L2(µ) ; ∥u∥∞ ⩽ 1} one finds that PCu = (sgnu)(|u| ∧ 1).
For C = {u ∈ L2(µ) ; u ⩽ 1} one obtains PCu = (Reu) ∧ 1.
In the description given above we have used the signum function sgn: K→ K, which

is defined as sgnα := α
|α| if 0 ̸= α ∈ K, and sgn 0 := 0. △

The following result has a geometric appeal. Its assumption (9.3) expresses that the
‘driving term’ Au(t) in the equation u′(t) = Au(t) always points ‘sufficiently’ from u(t)
towards C. (For ω ⩽ 0 this is quite intuitive. If ω > 0, one can interpret that it is more
and more true the closer u(t) is to C.)

9.6 Proposition. Let T be a C0-semigroup on a Hilbert space H, with generator A. Let
∅ ̸= C ⊆ H be a closed convex set, and denote by P := PC the minimising projection.
Assume that there exists ω ∈ R such that

Re(Ax |x− Px) ⩽ ω∥x− Px∥2 (x ∈ dom(A)). (9.3)

Then C is invariant under T .
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Proof. In view of Proposition 9.1 it suffices to show that (I − rA)−1(C) ⊆ C for small
r > 0. (Observe that (I − rA)−1 ∈ L(H) for small r > 0.) Without loss of generality we
assume that ω > 0. Let 0 < r < 1/ω, and let x ∈ dom(A) be such that (I − rA)x ∈ C.
We have to show that x ∈ C. Applying (9.2) with y = (I − rA)x ∈ C we obtain

Re
(
(I − rA)x− Px

∣∣x− Px
)
⩽ 0.

Thus
∥x− Px∥2 = Re

(
rAx+ (I − rA)x− Px

∣∣x− Px
)

⩽ rRe(Ax |x− Px) ⩽ rω∥x− Px∥2.

Using rω < 1 we conclude that ∥x− Px∥ = 0, x = Px ∈ C.

The converse of Proposition 9.6 holds for quasi-contractive semigroups. (The example
C = {0} shows that the assumption of quasi-contractivity cannot be omitted.)

9.7 Proposition. Let H, T,A have the same properties as before, and assume that T
is quasi-contractive, i.e., there exists ω ∈ R such that ∥T (t)∥ ⩽ eωt for all t ⩾ 0. Let
∅ ̸= C ⊆ H be a closed convex set, and assume that C is invariant under T .
Then (9.3) holds with the minimising projection P := PC.

Proof. Let x ∈ dom(A). Then (9.2) implies Re
(
T (t)Px − Px

∣∣x − Px
)
⩽ 0, and this

inequality can be rewritten as 0 ⩽ Re
(
−T (t)Px+ Px

∣∣x− Px
)
. One then obtains

Re
(
T (t)x− x

∣∣x− Px
)
⩽ Re

(
T (t)(x− Px)− (x− Px)

∣∣x− Px
)

⩽ (eωt − 1)∥x− Px∥2.

Dividing by t and taking the limit t→ 0+ one concludes that

Re(Ax |x− Px) ⩽ ω∥x− Px∥2.

For the case of contractive C0-semigroups we summarise the results of Propositions 9.6
and 9.7 as an equivalence.

9.8 Corollary. Let T be a contractive C0-semigroup on a Hilbert space H, with genera-
tor A, and let C ̸= ∅ be a closed convex subset of H. Then C is invariant under T if and
only if

Re(Ax |x− Px) ⩽ 0 (x ∈ dom(A)), (9.4)

where P := PC is the minimising projection.

We specify Corollary 9.8 for the case when H = L2(µ;R) and C = L2(µ)+ is the
positive cone; see Remark 9.3(a). Then Pu = u+ for all u ∈ H (see Remark 9.5), and
condition (9.4) becomes

(Au | −u−) = (Au |u− Pu) ⩽ 0 (u ∈ dom(A)). (9.5)

Replacing u by −u one transforms (9.5) into

(Au |u+) = −
(
A(−u)

∣∣ (−u)−) ⩽ 0 (u ∈ dom(A)). (9.6)
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An operator A in L2(µ;R) satisfying (9.6) is called dispersive, and A is m-dispersive if
additionally ran(I − A) = L2(µ;R). A semigroup T on L2(µ) is called positive if T (t) is
positive for all t ⩾ 0.

We now obtain the following ‘positive version’ of the Lumer–Phillips theorem.

9.9 Corollary. Let A be an operator in L2(µ;R). Then A is the generator of a positive
contractive C0-semigroup if and only if A is m-dispersive.

Proof. If A satisfies (9.6) – hence also (9.5) –, then (−Au |u) = −(Au |u+)−(Au | −u−) ⩾
0 for all u ∈ dom(A), i.e. −A is accretive. Now the assertion is an immediate consequence
of Corollary 9.8 and Theorem 3.16 (Lumer–Phillips).

9.2 Application to Laplacians

We recall that the Dirichlet Laplacian ∆D in L2(Ω) is associated with the classical Dirichlet
form on V = H1

0 (Ω). We also recall that the Neumann Laplacian ∆N in L2(Ω) is associated
with the classical Dirichlet form on V = H1(Ω). (See Example 5.14 and Theorem 7.13.)

9.10 Example. Let Ω ⊆ Rn be an open set. Then the C0-semigroup on L2(Ω) generated
by ∆D is sub-Markovian, i.e. et∆D is sub-Markovian for all t ⩾ 0. This will be shown
below. △

In the complex case, the semigroup being sub-Markovian means in particular that it
leaves L2(Ω;R) invariant. For the proof of this property one could employ Corollary 9.8.
However, it is also instructive to use another reasoning, on the basis of the following
proposition.

9.11 Proposition. Let X1 ↪→ X2 be Banach spaces. For j = 1, 2 let Tj be a C0-semigroup
on Xj with generator Aj, and assume that A1 ⊆ A2. Then T2(t)|X1

= T1(t) for all t ⩾ 0;
in particular X1 is invariant under T2.

Proof. Let x ∈ dom(A1). Then

d

dt
T1(t)x = A1T1(t)x = A2T1(t)x (t ⩾ 0)

shows that T1(t)x = T2(t)x for all t ⩾ 0, by Theorem 1.13(a). From the denseness of
dom(A1) in X1 and extension by continuity one obtains T2(t)|X1

= T1(t) for all t ⩾ 0.

Proof of the assertion in Example 9.10. (i) We recall that ∆D,K := ∆D is a generator in
L2(Ω;K). We regard L2(Ω;C) as a Banach space over R and use Proposition 9.11 with
X1 := L2(Ω;R), X2 := L2(Ω;C). Then ∆D,R ⊆ ∆D,C implies that et∆D,C|L2(Ω;R) = et∆D,R

for all t ⩾ 0. (This property was also the subject of Exercise 4.9.)

(ii) We show that the (closed convex) set C := {u ∈ L2(Ω;R) ; u ⩽ 1} is invariant under
(et∆D)t⩾0; then it follows from Remark 9.3(d) that et∆D is sub-Markovian for all t ⩾ 0.
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By step (i) we may assume without loss of generality that K = R. Then the minimising
projection onto C is given by Pu = u ∧ 1; see Remark 9.5. We want to show that

(∆Du |u− u ∧ 1) ⩽ 0

for all u ∈ dom(∆D).
We need to know that u ∧ 1 ∈ H1

0 (Ω) and ∇(u ∧ 1) = 1[u<1]∇u. These properties will
be proved in the next section (and the present example should serve as a motivation for
this treatment); see Theorem 9.16. Accepting these properties we obtain

(∆Du |u− u ∧ 1) = −(∇u |1[u⩾1]∇u) = −
∫
[u⩾1]

|∇u|2 dx ⩽ 0.

Now the application of Corollary 9.8 yields the invariance of C.

We note that the same arguments show that the Neumann Laplacian generates a
sub-Markovian C0-semigroup on L2(Ω). We refer to Exercise 9.4 for the discussion of
invariance properties for the Robin Laplacian.

9.3 Interlude: lattice properties of H1(Ω)

Throughout this section we will use K = R, i.e. all the functions will be real-valued. We
start with a warm-up.

9.12 Lemma. Let −∞ ⩽ a < b ⩽ ∞, and let u ∈ C1(a, b). Then ∂|u| = (sgnu)u′ in the
distributional sense; in particular, ∂|u| = 0 on [u = 0].

Proof. We use a sequence (Fk) of functions Fk ∈ C∞(R;R) with Fk(t) = |t|− 1
k
for |t| ⩾ 2

k
,

Fk(t) = 0 for |t| ⩽ 1
2k

and |F ′
k(t)| ⩽ 1 for all t ∈ R. (F1 can be obtained as a convolution

of t 7→ (|t| − 1)+ with a suitable C∞
c -function, and then Fk(t) :=

1
k
F1(kt) (t ∈ R).)

By the chain rule we have (Fk ◦ u)′ = (F ′
k ◦ u)u′. Observe that Fk ◦ u→ |u|, uniformly

on compact subsets of (a, b), and that (Fk ◦ u)′ → (sgnu)u′ pointwise on (a, b). Moreover
|(Fk ◦ u)′| ⩽ |u′| for all k ∈ N. Therefore (Fk ◦ u)′ → (sgnu)u′ in L1 on compact subsets
of (a, b). This implies ∂|u| = (sgnu)u′, by Lemma 4.11.
The last statement is a consequence of sgnu = 0 on [u = 0].

Our aim is to establish similar properties in more general situations. The first point is
that the chain rule also holds for distributional derivatives.
In the remainder of this section let Ω ⊆ Rn be an open set.

9.13 Proposition. Let F ∈ C1(R), ∥F ′∥∞ ⩽ 1, j ∈ {1, . . . , n}, u, ∂ju ∈ L1,loc(Ω). Then
F ◦ u ∈ L1,loc(Ω), ∂j(F ◦ u) = (F ′ ◦ u)∂ju.

Proof. Without loss of generality assume that F (0) = 0; then |F (t)| ⩽ |t| for all t ∈ R.
Being the distributional derivative of a function is a local property (see Exercise 4.3(c)),
and therefore (after suitable multiplication by a C∞

c -function) it is sufficient to treat the
case when Ω = Rn and u, ∂ju ∈ L1(Rn).
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Let (ρk)k∈N be a delta sequence in C∞
c (Rn). Then uk := ρk∗u→ u, ∂juk = ρk∗∂ju→ ∂ju

in L1(Rn), and for a suitable subsequence (ukm) these convergences also hold a.e. as well
as dominated, in the sense that there exists h ∈ L1(Rn) such that |ukm |, |∂jukm| ⩽ h for
all m ∈ N. As uk ∈ C∞(Rn), one has F ◦ ukm ∈ C1(Rn), and

F ◦ ukm → F ◦ u, ∂j(F ◦ ukm) = (F ′ ◦ ukm)∂jukm → (F ′ ◦ u)∂ju a.e.

since F and F ′ are continuous. Furthermore, |F ◦ ukm| ⩽ |ukm| ⩽ h, |∂j(F ◦ ukm)| ⩽
|∂jukm | ⩽ h, by the hypotheses on F and on the subsequence, and therefore F ◦ukm → F ◦u,
∂j(F ◦ ukm) → (F ′ ◦ u)∂ju in L1(Rn). This implies that ∂j(F ◦ u) = (F ′ ◦ u)∂ju, by
Lemma 4.11.

Next we extend the chain rule of Proposition 9.13 to more general composition func-
tions F .

9.14 Proposition. Let F ∈ C(R), and assume that there exist a function G : R → R
and a sequence (Fk) in C1(R) such that ∥F ′

k∥∞ ⩽ 1 for all k ∈ N, and Fk → F , F ′
k → G

pointwise as k → ∞. Let j ∈ {1, . . . , n}, u, ∂ju ∈ L1,loc(Ω).
Then F ◦ u ∈ L1,loc(Ω), ∂j(F ◦ u) = (G ◦ u)∂ju.

Proof. From Proposition 9.13 we know that Fk ◦ u ∈ L1,loc(Ω), ∂j(Fk ◦ u) = (F ′
k ◦ u)∂ju.

Without loss of generality we may assume that F (0) = 0 and that Fk(0) = 0 for all
k ∈ N, which implies that the functions |Fk ◦ u| are dominated by |u|. Then, applying
the dominated convergence theorem on compact subsets of Ω and using Lemma 4.11 one
obtains the assertions.

9.15 Corollary. Let j ∈ {1, . . . , n}, u, ∂ju ∈ L1,loc(Ω). Then u+, u ∧ 1 ∈ L1,loc(Ω),
∂j(u

+) = 1[u>0]∂ju, ∂j(u ∧ 1) = 1[u<1]∂ju.

Proof. Similarly to the construction of the sequence (Fk) in the proof of Lemma 9.12 one
can construct a sequence (Fk) in C

1(R) converging to the function F := [t 7→ t+] pointwise,
with ∥F ′

k∥∞ ⩽ 1 (k ∈ N) and such that F ′
k → 1(0,∞) pointwise. Then Proposition 9.14

implies the assertion for u+. The reasoning for u ∧ 1 is analogous.

A vector sublattice V of L2(Ω) is a subspace with the property that u, v ∈ V implies
that u ∨ v, u ∧ v ∈ V . A subspace V is a vector sublattice if and only if for all u ∈ V one
has u+ ∈ V or |u| ∈ V ; this equivalence follows from the relations

|u| = u+ − u−, u+ = 1
2
(u+ |u|) (u ∈ L2(Ω)),

u ∨ v = 1
2
(u+ v + |u− v|), u ∧ v = 1

2
(u+ v − |u− v|) (u, v ∈ L2(Ω)).

The vector sublattice V is called Stonean if u ∧ 1 ∈ V for all u ∈ V .
In this terminology, the following result says in particular that H1(Ω) and H1

0 (Ω) are
Stonean vector sublattices of L2(Ω).

9.16 Theorem. Let u ∈ H1(Ω;R). Then u+, u ∧ 1 ∈ H1(Ω), ∇u+ = 1[u>0]∇u and
∇(u ∧ 1) = 1[u<1]∇u.
If u ∈ H1

0 (Ω;R), then u+, u ∧ 1 ∈ H1
0 (Ω).
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Proof. It was shown in Corollary 9.15 that the indicated derivatives for u+ and u ∧ 1 are
the distributional derivatives. As they belong to L2(Ω;Rn), the first part of the theorem
is proved.
Now let u ∈ H1

0 (Ω). There exists a sequence (uk) in H
1
c (Ω) such that uk → u in H1(Ω).

Then (u+k ) is a bounded sequence in H1
c (Ω) ⊆ H1

0 (Ω), by the first part of the theorem,
and u+k → u+ in L2(Ω). Thus, Remark 9.17 below shows that u+ ∈ H1

0 (Ω). The argument
for u ∧ 1 is analogous.

9.17 Remark. Let V, H be Hilbert spaces, V ↪→ H. Let (vk) be a bounded sequence
in V that is weakly convergent in H to u ∈ H. Then u ∈ V , and vk → u weakly in V .
Indeed, there exist v ∈ V and a subsequence (vkm) such that vkm → v weakly in V .

Then vkm → v weakly in H as well; hence v = u. A standard sub-subsequence argument
shows that vk → u weakly in V ; see Exercise 9.7. △

9.4 Invariance described by forms

In this section we transform the invariance criterion obtained in Proposition 9.6 to
conditions on forms instead of operators. In the context of forms the associated C0-semi-
groups are quasi-contractive, and the condition (9.3) is equivalent to the invariance of C
under the semigroup, by Proposition 9.7.
We restrict our treatment to the case of embedded forms, i.e., we assume that V is

a Hilbert space that is densely embedded into H and that a : V × V → K is a bounded
quasi-coercive form. We recall that quasi-coercivity means that there exist ω ∈ R, α > 0
such that

Re a(u) + ω∥u∥2H ⩾ α∥u∥2V (u ∈ V ). (9.7)

Let A ∼ a. It follows from Corollary 5.11 that −A is the generator of a C0-semigroup T ;
note the change of the sign in the generator with respect to Section 9.1.
The notation used above will be fixed troughout this section. Coming back to invariance,

let ∅ ̸= C ⊆ H be a closed convex set, and let P := PC be the minimising projection.

9.18 Proposition. Let C be invariant under T . Then P (V ) ⊆ V .

9.19 Remark. At the first glance, this property might seem rather unexpected, because
the elements of V have some quality (or ‘regularity’), and it is surprising that this quality
is preserved under P . To make the point, the elements of the domain of the generator
will not be mapped to the domain of the generator, in general (see Exercise 9.4(c)). △

For the proof we single out a technical detail, which will be useful in several of the
subsequent proofs.

9.20 Lemma. Let (un), (vn) be sequences in V , un → u in H, (vn) bounded in V , and

Re a(un, vn − un) ⩾ 0 (n ∈ N).

Then u ∈ V , and un → u weakly in V .
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Proof. Without loss of generality we assume that ω ⩾ 0. Using (9.7) we estimate

α∥un∥2V ⩽ Re a(un, un) + ω∥un∥2H ⩽ Re a(un, vn) + ω∥un∥2H
⩽M∥un∥V ∥vn∥V + ωc∥un∥V ∥un∥H ,

whereM denotes the bound of a and c the norm of the embedding V ↪→ H. This inequality
implies that (un) is bounded in V , and by Remark 9.17 it follows that un → u weakly
in V .

Proof of Proposition 9.18. Let u ∈ V . By (9.2) we obtain

Re(Pu− y |u− y) = Re(Pu− y |u− Pu) + ∥Pu− y∥2 ⩾ 0 (y ∈ C). (9.8)

For r > 0 small enough (say, 0 < r < r0 < ∞) we define Rr := (I + rA)−1. Then
ARr =

1
r (I + rA− I)Rr =

1
r (I −Rr), so

a(Rrx, v) = (ARrx | v) =
1
r
(x−Rrx | v) (x ∈ H, v ∈ V ). (9.9)

Now RrPu ∈ C, by Proposition 9.1. Using (9.9) and applying (9.8) with y = RrPu, we
obtain

Re a(RrPu, u−RrPu) =
1
r
Re(Pu−RrPu |u−RrPu) ⩾ 0.

Since RrPu → Pu in H as r → 0 (by Remark 2.13(b)), Lemma 9.20 implies that
Pu ∈ V .

We insert an auxiliary result that will be used in the proof of the next theorem.

9.21 Lemma. (a) As in the proof of Proposition 9.18 we define Rr := (I + rA)−1 for
r ∈ (0, r0), with suitable r0 > 0. Then Rru→ u weakly in V as r → 0, for all u ∈ V .
(b) The set dom(A) is dense in V .
(c) Let (un) be a sequence converging weakly in V to u ∈ V . Then a(un, v) → a(u, v)

for all v ∈ V .

Proof. (a) Let u ∈ V . By (9.9) we obtain

a(Rru, u−Rru) =
1
r
(u−Rru |u−Rru) ⩾ 0.

Since Rru→ u in H as r → 0, Lemma 9.20 implies that Rru→ u weakly in V as r → 0.
(b) Part (a) shows that dom(A) is weakly dense in V . It follows that every bounded

linear functional vanishing on dom(A) is zero, and this implies the assertion. (For another
proof of (b) we refer to Exercise 5.3(a).)
(c) is clear since a(·, v) ∈ V ′.

We now come to the fundamental result characterising invariance by properties of the
form. The inequality (9.11) which appears below has already been commented upon in
the paragraph before Proposition 9.6. In order to give a geometrical interpretation to
(9.10) we note that, loosely speaking, the expression a(Pu, u− Pu) can be understood as
(A(Pu) |u− Pu) (except that Pu does not necessarily lie in dom(A)). So, the condition
gives information on the driving term −Au(t) in the equation u′ = −Au, whenever u(t) is
the image Pu of some u ∈ H \ C: in these points, the driving term ‘points towards C’.
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9.22 Theorem. Under the previous assumptions the following properties are equivalent.

(i) C is invariant under T .

(ii) P (V ) ⊆ V , and
Re a(Pu, u− Pu) ⩾ 0 (9.10)

for all u ∈ V .

(iii) There exists a dense subset D of V such that P (D) ⊆ V , and (9.10) holds for all
u ∈ D.

(iv) P (V ) ⊆ V , and

Re a(u, u− Pu) ⩾ −ω∥u− Pu∥2 (u ∈ V ) (9.11)

for some ω ∈ R.

Proof. (i) ⇒ (ii). P (V ) ⊆ V was established in Proposition 9.18. Let u ∈ V . Then for
0 < r < r0 we have

Re a(RrPu, u− Pu) =
1
r
Re(Pu−RrPu |u− Pu) ⩾ 0

by (9.9) and (9.2), and from Lemma 9.21 we obtain

Re a(Pu, u− Pu) ⩾ 0.

(ii)⇒ (iii) is trivial.
(iii) ⇒ (ii). Let u ∈ V . There exists a sequence (un) in D such that un → u in V as

n→ ∞. By hypothesis we have

Re a(Pun, un − Pun) ⩾ 0 (n ∈ N). (9.12)

From the continuity of P : H → H we obtain Pun → Pu in H, and therefore Lemma 9.20
implies that Pu ∈ V and that Pun → Pu weakly in V .
In order to prove (9.10) we first observe that an equivalent norm on V is given by

∥v∥a :=
(
Re a(v) + ω∥v∥2H

)1/2
(v ∈ V ),

with ω from (9.7). Hence, the weak convergence Pun → Pu in V implies that ∥Pu∥a ⩽
lim infn→∞ ∥Pun∥a. Using (9.12) we obtain

Re a(Pu) + ω∥Pu∥2H ⩽ lim inf
n→∞

(
Re a(Pun) + ω∥Pun∥2H

)
⩽ lim inf

n→∞
Re a(Pun, un) + ω∥Pu∥2H .

Since a(Pun, un) = a(Pun, un − u) + a(Pun, u) → 0 + a(Pu, u) as n → ∞ (recall
Lemma 9.21(c)), we conclude that Re a(Pu, u− Pu) = Re a(Pu, u)− Re a(Pu) ⩾ 0.
(ii)⇒ (iv) follows from the identity

a(u, u− Pu) = a(Pu, u− Pu) + a(u− Pu)

and the quasi-coercivity of a.
(iv)⇒ (i). Since a(u, u−Pu) = (Au |u−Pu) for all u ∈ dom(A), condition (9.11) implies

(9.3) for the generator −A of T . Then the assertion follows from Proposition 9.6.
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9.23 Example. We come back to Example 9.10. Let us again show step (ii) of its
proof, i.e., that the C0-semigroup on L2(Ω;R) generated by the Dirichlet or Neumann
Laplacian is sub-Markovian. We check property (ii) of Theorem 9.22 for the convex set
C = {u ∈ L2(Ω;R) ; u ⩽ 1} and the minimising projection Pu = u ∧ 1: Theorem 9.16
implies that P leaves V = H1

0 (Ω) (and also V = H1(Ω)) invariant, and

a(Pu, u− Pu) =

∫
∇(u ∧ 1) · (∇u−∇(u ∧ 1)) dx =

∫
1[u<1]∇u · 1[u⩾1]∇u dx = 0

shows that property (ii) is satisfied. Hence C is invariant by Theorem 9.22. △

Further applications of Theorem 9.22 will be given in Section 10.4.

9.24 Remark. We emphasise that in Theorem 9.22 the associated semigroup is not
assumed to be contractive. If the convex set C is a cone, i.e. C is invariant under
multiplication by positive scalars, then the quasi-contractive case can easily be reduced to
the contractive case by rescaling. This reduction is not possible if C is not a cone. An
example for an application of Theorem 9.22 to a non-contractive semigroup in which C is
not a cone can be found in Exercise 9.6. △

Notes

Clearly it is of fundamental interest to ask for criteria that describe when certain sets are
invariant under the time evolution of a system, and questions of this kind have a long
history, in particular in the finite-dimensional case, for linear and nonlinear problems.
In the seminal papers [BeDe58], [BeDe59], Beurling and Deny investigated such questions

in infinite-dimensional spaces. Phillips gave a characterisation of positive contraction
semigroups in [Phi62]. Invariance of closed convex sets was studied in [BrPa70; Section 2]
in the more general context of nonlinear contraction semigroups.
The focus of our presentation is the characterisation of invariance via the form associated

with the semigroup. An early (and little cited) result in this direction is a characterisation
of sub-Markovian semigroups due to Kunita [Kun70], whose treatment included non-
contractive semigroups. The form criteria for invariance of general closed convex sets
(under contractive semigroups) are due to Ouhabaz [Ouh96]; we also refer the reader to
Ouhabaz’ book [Ouh05]. The invariance criterion in Theorem 9.22 is taken from [MVV05;
Theorem 2.1]. A generalisation of Ouhabaz’ results to a nonlinear setting can be found in
[Bar96].
The lattice properties of the Sobolev spaces H1

0 (Ω) and H
1(Ω) were developed in the

70’s; see the paper of Marcus and Mizel [MaMi79a], which also includes earlier references.
Meanwhile, these properties can be found in several books on Sobolev spaces or partial
differential equations. We refer to [EdEv87; Section VI.2] for a more general chain rule
than presented in this chapter.
In Theorem 9.16 we treat chain rules for the composition of functions in H1(Ω;R) with

the functions F : R → R, F (t) := t+ and F (t) := t ∧ 1. The corresponding much more
general chain rule on W 1

p,0(Ω;R) (where 1 < p <∞) for the case of Lipschitz continuous
functions F : R→ R satisfying F (0) = 0 is due to Stampacchia [Sta64; Lemme 1.1]. (The
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notation W 1
p,0(Ω;R) is analogous to W 1

1,0(Ω); see Appendix D.) Stampacchia proved that,
for 1 < p <∞, the assignment TFu := F ◦ u provides a mapping satisfying

TF (W
1
p,0(Ω)) ⊆ W 1

p,0(Ω). (9.13)

For this result we also refer to [EdEv87; Theorem 2.1].
It was shown by Marcus and Mizel [MaMi79b; Sect. 3] that the inclusion (9.13) also

holds for p = 1 and that the mapping

TF : W
1
p,0(Ω) → W 1

p,0(Ω)

is continuous for all p ∈ [1,∞). We refer to the References in [MaMi79b] and [MaMi79a]
for more information on related topics.

Exercises

9.1 Let (Ω, µ) be a measure space, 1 ⩽ p ⩽ ∞, and let A ∈ L(Lp(µ)) be a positive
operator, i.e. Au ⩾ 0 for all u ∈ Lp(µ) with u ⩾ 0.
(a) Show that |Au| ⩽ A|u| for all u ∈ Lp(µ).
(b) Show that

∥A∥ = sup
{
∥Au∥p ; u ∈ Lp(µ), u ⩾ 0, ∥u∥p ⩽ 1

}
.

9.2 Let H be a Hilbert space, ∅ ≠ C ⊆ H a closed convex subset, and let PC be the
minimising projection onto C.
(a) Let x ∈ H, z ∈ C. Show that z = PCx if and only if

Re(y − z |x− z) ⩽ 0 (y ∈ C);

see (9.2). (Hints: For ‘⇒’ take y ∈ C and look at the derivative at 0 of the function [0, 1] ∋
t 7→ ∥x− (z+ t(y− z))∥2. For ‘⇐’ take y ∈ C and compare ∥x− y∥ = ∥(x− z) + (z− y)∥
with ∥x− z∥.)

(b) Use part (a) to show that PC is a contraction, i.e. ∥PCx− PCy∥ ⩽ ∥x− y∥ for all
x, y ∈ H.

9.3 Let (Ω, µ) be a measure space, Č ⊆ K a closed convex set, 0 ∈ Č, and let P̌ : K→ Č
be the minimising projection. Show that

C :=
{
u ∈ L2(µ) ; u(x) ∈ Č for µ-a.e. x

}
̸= ∅

is convex and closed.
Show that the minimising projection P : L2(µ) → C is given by (Pu)(x) = P̌ (u(x))

(x ∈ Ω).

9.4 Let ∆β be the Robin Laplacian from Section 7.5.
(a) Let β be real-valued. Show that the C0-semigroup generated by ∆β is positive.
(b) Let β ⩾ 0. Show that the C0-semigroup generated by ∆β is sub-Markovian.
(c) Give an example of a closed convex set C and a semigroup generator −A such

that dom(A) is not invariant under the minimising projection PC . (Hint: Exercises 5.7
and 5.5(c).)
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9.5 (a) Let V, H, a, j be as in Proposition 5.5, and assume that minus the operator
associated with (a, j) is a generator. Let ∅ ̸= C ⊆ H be convex and closed, P the
minimising projection onto C. Let P̂ : V → V be a mapping satisfying Pj = jP̂ , and
assume that

Re a(u, u− P̂ u) ⩾ 0 (u ∈ V ).

Show that C is invariant under the C0-semigroup associated with (a, j). (Hint: Use
Proposition 9.6.)
(b) Let V, H, a, j be as in Corollary 5.11, and let C, P be as in part (a). Show that

C is invariant under the C0-semigroup associated with (a, j) if and only if there exists a
mapping P̂ : V → V such that Pj = jP̂ and

Re a(P̂ u, u− P̂ u) ⩾ 0 (u ∈ V ).

Hint concerning ‘only if’: Apply Theorem 9.22, using Proposition 8.14 and the decom-
position of the form domain V given in Proposition 8.16; assume without loss of generality
that Vj(a) ⊆ H, j(u) = u for all u ∈ Vj(a), and define P̂ := Pj.
(c) Show that the C0-semigroup generated by the Dirichlet-to-Neumann operator from

Section 8.1 is sub-Markovian. (Hint: Show that the mapping u 7→ u ∧ 1 on H1(Ω) is
consistent with the trace operator.)

9.6 Let Ω ⊆ Rn be open, let b ∈ L∞(Ω;Rn), and define the operator A in L2(Ω) by

dom(A) :=
{
u ∈ H1

0 (Ω) ; −∆u ∈ L2(Ω)
}
,

Au := −∆u+ b ·∇u (u ∈ dom(A)).

(a) Show that A is associated with a bounded quasi-coercive form on V , with V :=
H1

0 (Ω) ↪→ H := L2(Ω) (and therefore −A generates a quasi-contractive C0-semigroup).
Show that the semigroup generated by −A is holomorphic of angle π/2 if K = C. (Hint:
Use Exercise 7.7.)
(b) Show that the C0-semigroup generated by −A is sub-Markovian.

9.7 Let Ω be a topological space, let x ∈ Ω, and let (xn) be a sequence in Ω. Assume that
each subsequence of (xn) contains a subsequence converging to x. Show that then xn → x
as n→ ∞. (This fact will be referred to as the (standard) sub-subsequence argument.)

9.8 As in Theorem 9.22 let V and H be Hilbert spaces, V
d
↪→ H, a : V × V → K a

bounded quasi-coercive form, but assume additionally that C = H1 is a (closed) subspace
of H. Let P ∈ L(H) be the orthogonal projection onto H1. Let A ∼ a, and let T be the
C0-semigroup generated by −A.
(a) Show that H1 is invariant under T if and only if P (V ) ⊆ V and a(u, v) = 0 for all

u ∈ P (V ), v ∈ (I − P )(V ). (Hint: For the necessity show first that Re a(u, v) = 0 for u, v
as specified by considering u± v.)
(b) Now assume thatH1 is invariant under T , and denote by T1 the restriction of T toH1;

then T1 is a C0-semigroup on H1. Let V1 := V ∩H1 = P (V ) and a1 := a|V1×V1
. (Note that

a1 is a bounded quasi-coercive form on V1.) With A1 ∼ a1, show that A1 = A∩ (H1 ×H1)
and that −A1 is the generator of T1. (Hint: Use Proposition 9.11.)





Chapter 10

Interpolation of holomorphic semigroups

In the first section of this chapter we will present an extremely powerful tool of functional
analysis, important in many areas: complex interpolation. It should be looked upon
as the surprising fact that (elementary) complex methods are a useful tool for deriving
inequalities. The main result is the Stein interpolation theorem; as a particular case one
also obtains the famous and important Riesz–Thorin interpolation theorem.
For us, the important consequence will be that a holomorphic semigroup on some Lp1

that is bounded on some Lp0 for real times can be ‘interpolated’ holomorphically to other
Lp-spaces. In the last section we demonstrate the interplay of invariance, interpolation
and duality in applications to C0-semigroups on L2.

10.1 Interlude: the Stein interpolation theorem

Throughout this section the scalar field will be K = C.

10.1.1 The three lines theorem

In this subsection we prove a version of the maximum principle for holomorphic functions
on an unbounded set. First we recall the maximum principle for bounded sets.
If Ω ⊆ C is a bounded open set, and h : Ω → C is continuous and holomorphic on Ω,

then ∥h∥Ω ⩽ ∥h∥∂Ω. This is an easy consequence of Cauchy’s integral formula. Here and
in what follows we denote by ∥·∥M the supremum norm taken over the set M .
In this and the next section the set S ⊆ C will be the open strip

S := {z ∈ C ; 0 < Re z < 1}. (10.1)

10.1 Proposition. Let h : S → C be continuous, bounded, and holomorphic on S. Then

∥h∥S ⩽ ∥h∥∂S .

Proof. Let n ∈ N. Then the function ψn(z) :=
n

z+n is continuous on S and holomorphic
on S. With Sk := {z ∈ S ; |Im z| < k}, for k ∈ N, we have limk→∞ ∥ψnh∥S\Sk

= 0 since h
is bounded. Using the maximum principle we conclude that

∥ψnh∥S ⩽ ∥ψnh∥S\Sk
→ ∥ψnh∥∂S (k → ∞);

hence ∥ψnh∥S ⩽ ∥ψnh∥∂S ⩽ ∥h∥∂S. Letting n→ ∞ we obtain the assertion.
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10.2 Remark. Taking more astute functions ψn one may weaken the assumption that h is
bounded; it suffices that |h(z)| ⩽ ece

α|Im z|
with c > 0 and 0 < α < π (see Exercise 10.1). △

The following result is a refinement of Proposition 10.1 in which one distiguishes between
the suprema of h at [Re = 0] and at [Re = 1].

10.3 Theorem (Three lines theorem). Let h be as in Proposition 10.1. Then

∥h∥[Re=τ ] ⩽ ∥h∥1−τ
[Re=0]∥h∥

τ
[Re=1]

for all 0 ⩽ τ ⩽ 1.

Proof. For j = 0, 1 let bj > ∥h∥[Re=j], and let τ ∈ [0, 1]. We apply Proposition 10.1 to the

function z 7→
(
b0
b1

)z
h(z) and obtain(

b0
b1

)τ

∥h∥[Re=τ ] ⩽

∥∥∥∥z 7→ (
b0
b1

)z

h(z)

∥∥∥∥
∂S

⩽ max

{
b0,

(
b0
b1

)1

b1

}
= b0 ;

hence ∥h∥[Re=τ ] ⩽ b1−τ
0 bτ1. Taking the infima over b1, b2 one obtains the assertion.

10.4 Remark. It follows that τ 7→ ∥h∥[Re=τ ] is a log-convex function, i.e. τ 7→ ln ∥h∥[Re=τ ]

is convex. △

10.1.2 The Stein interpolation theorem

Let (Ω,A, µ) be a measure space. Let Ac ⊆ {A ∈ A ; µ(A) <∞} be a ∩-stable collection
of subsets of Ω, with the property that the space of simple functions over Ac,

S(Ac) := lin{1A ; A ∈ Ac},

is dense in L1(µ). (The index ‘c’ should be remindful of ‘compact’: if Ω ⊆ Rn is an open
set and µ is the Lebesgue measure, then one can choose as Ac the collection of compact
subsets of Ω.)

10.5 Remarks. (a) The ∩-stability of Ac implies that the product uv of two elements
u, v ∈ S(Ac) belongs to S(Ac); hence S(Ac) is an algebra.
Let R be the ring of subsets generated by Ac; then S(Ac) = S(R). Indeed, clearly

S(Ac) ⊆ S(R). On the other hand one shows – see Exercise 10.2(a) – that 1A ∈ S(Ac)
for all A ∈ R; hence S(R) ⊆ S(Ac). In Exercise 10.2(b) the reader is asked to show that
every function u ∈ S(R) has a ‘disjoint representation’ u =

∑
A∈F cA1A, with a finite

collection F of pairwise disjoint elements of R and suitable cA ∈ C (A ∈ F). As an
important consequence one obtains φ ◦ u ∈ S(Ac) for any function φ : C → C and all
u ∈ S(Ac).
(b) A standard situation in measure theory would be to assume that Ac is a ∩-stable

generator of A consisting of sets of finite measure, with the property that each set A ∈ A
of finite measure can be covered by countably many elements of Ac. Then S(Ac) is dense
in L1(µ); see Exercise 10.3(d). △
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It will be important to know that S(Ac) is dense not only in L1(µ) but also in Lp(µ),
for all p ∈ (1,∞).

10.6 Lemma. With the notation introduced above, the set S(Ac) is dense in Lp(µ) for
all p ∈ [1,∞). More strongly, if p1, p2 ∈ [1,∞) and u ∈ Lp1∩Lp2(µ), then there exists a
sequence (un) in S(Ac) converging to u in Lp1(µ) as well as in Lp2(µ).

Proof. (i) Let p ∈ [1,∞), u ∈ Lp(µ). Then u1[1/n⩽|u|⩽n] → u in Lp(µ) as n → ∞, by
the dominated convergence theorem. Hence it is sufficient to show that each function
v ∈ L1∩L∞(µ) belongs to the closure of S(Ac) in Lp(µ).
(ii) Let v ∈ L1 ∩L∞(µ). Since S(Ac) is dense in L1(µ), there exist a sequence (ṽk)

in S(Ac) and a function ṽ ∈ L1(µ) such that ṽk → v µ-a.e. as k → ∞, and |ṽk| ⩽ ṽ for
all k ∈ N. For k ∈ N we put vk := ṽk1[|ṽk|⩽∥v∥∞+1]; then vk ∈ S(Ac), by Remark 10.5(a).
Moreover, |vk| ⩽ ṽ∧ (∥v∥∞+1) ∈ Lp(µ) for all k ∈ N and vk → v µ-a.e., so the dominated
convergence theorem implies that vk → v in Lp(µ) as k → ∞.
(iii) Concerning the second statement we note that for u ∈ Lp1∩Lp2(µ) the sequence

defined in step (i) converges to u in Lp1(µ) and in Lp2(µ). Similarly, for v ∈ L1∩L∞(µ),
the sequence (vn) constructed in step (ii) converges in Lp1(µ) and in Lp2(µ).

We will use the notation

L1,loc(Ac) :=
{
u : Ω → C ; u measurable, 1Au ∈ L1(µ) (A ∈ Ac), [u ̸= 0] σ-finite

}
,

where we understand the elements of L1,loc(Ac) as equivalence classes of a.e. equal functions.
With these conventions one has uv ∈ L1(µ) for all u ∈ S(Ac), v ∈ L1,loc(Ac). For
completeness we recall that a set A ∈ A is called σ-finite if there exists a sequence (An) inA
with µ(An) <∞ for all n ∈ N such that A ⊆

⋃
n∈NAn. We note that Lp(µ) ⊆ L1,loc(Ac)

for all p ∈ [1,∞).
Let the strip S ⊆ C be defined as in Subsection 10.1.1, and let p0, p1, q0, q1 ∈ [1,∞],

M0,M1 ⩾ 0. For τ ∈ (0, 1) we denote

1
pτ

:=
1− τ
p0

+
τ
p1
,

1
qτ

:=
1− τ
q0

+
τ
q1
, Mτ :=M1−τ

0 M τ
1 .

Finally, let L(S(Ac), L1,loc(Ac)) denote the set of linear operators B : S(Ac) → L1,loc(Ac)
(without continuity requirement), and let Φ: S → L(S(Ac), L1,loc(Ac)) be a mapping
satisfying the following two conditions.

(St1) ∥Φ(j + is)u∥qj ⩽Mj∥u∥pj for all u ∈ S(Ac), all s ∈ R and j = 0, 1. (The estimate
means, in particular, that Φ(j + is)u ∈ Lqj(µ) for all the indicated terms.)

(St2) For all A,B ∈ Ac the function S ∋ z 7→
∫
(Φ(z)1A)1B dµ is continuous and bounded,

and its restriction to S is holomorphic.

We can now state the Stein interpolation theorem, the main result of this section.

10.7 Theorem (Stein). In the context described above it follows that

∥Φ(τ + is)u∥qτ ⩽Mτ∥u∥pτ
for all u ∈ S(Ac), s ∈ R and τ ∈ (0, 1).
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Before proceeding to the proof we apply the theorem to the important special case of a
constant function Φ.

10.8 Corollary (Riesz–Thorin). Let the notation be as above, and let B : S(Ac) →
L1,loc(Ac) be a linear operator satisfying ∥Bu∥qj ⩽Mj∥u∥pj (u ∈ S(Ac), j = 0, 1).

Then for all u ∈ S(Ac) and τ ∈ (0, 1) one has ∥Bu∥qτ ⩽Mτ∥u∥pτ .
As an application we recall Example 9.10, where it was shown that the operators et∆D

are sub-Markovian. Since we know that et∆D is contractive in L2(Ω), we conclude from
Corollary 10.8 that et∆D is contractive in Lp(Ω) for all p ∈ [2,∞].
The following fact will be needed in the proof of Theorem 10.7.

10.9 Lemma. Let the notation S(Ac), L1,loc(Ac) be as above. Let p, p
′ ∈ [1,∞], 1

p +
1
p′ = 1,

u ∈ L1,loc(Ac), and assume that there exists c ⩾ 0 such that∣∣∣∣∫ uv dµ

∣∣∣∣ ⩽ c∥v∥p′ (v ∈ S(Ac)). (10.2)

Then u ∈ Lp(µ), ∥u∥p ⩽ c.

Proof. (i) In the first step we show that (10.2) also holds with |u| in place of u. Let
v ∈ S(Ac). Then sgnu1[v ̸=0] ∈ L1(µ), so there exists a sequence (wk) in S(Ac) such that
wk → sgnu1[v ̸=0] µ-a.e. Then vk := v sgnwk ∈ S(Ac) by Remark 10.5(a), |uvk| ⩽ |uv| ∈
L1(µ) for all k ∈ N, and uvk = uv sgnwk → |u|v µ-a.e., hence∣∣∣∣∫ |u|v dµ

∣∣∣∣ = lim
k→∞

∣∣∣∣∫ uvk dµ

∣∣∣∣ ⩽ c sup
k∈N

∥vk∥p′ ⩽ c∥v∥p′ .

(ii) In view of step (i) we now suppose, without loss of generality, that u ⩾ 0.
In the case p = 1 let A ∈ A be a set of finite measure. We choose a sequence (wk) in

S(Ac) such that wk → 1A µ-a.e. and put vk := 1[wk ̸=0]. Then (vk) is a sequence in S(Ac)+
with 1A ⩽ lim infk→∞ vk, and Fatou’s lemma implies∫

A

u dµ ⩽
∫
u lim inf

k→∞
vk dµ ⩽ lim inf

k→∞

∫
uvk dµ ⩽ c sup

k∈N
∥vk∥p′ ⩽ c.

As [u ̸= 0] is σ-finite, the case p = 1 is settled.
In the case p ∈ (1,∞] let v ∈ Lp′(µ)+. There exists a sequence (ṽk) in S(Ac) such that

ṽk → v in Lp′(µ) and µ-a.e. as k → ∞. Putting vk := (Re ṽk)
+ we obtain a sequence (vk)

in S(Ac)+, still converging to v in Lp′(µ) and µ-a.e. Hence Fatou’s lemma yields∫
uv dµ =

∫
u lim inf

k→∞
vk dµ ⩽ lim inf

k→∞

∫
uvk dµ ⩽ c lim

k→∞
∥vk∥p′ = c∥v∥p′ .

In step (iii) we show that this inequality implies the assertion for p ∈ (1,∞].
(iii) Let p ∈ (1,∞). Since [u ̸= 0] is σ-finite, u can be approximated pointwise by an

increasing sequence (uk) in Lp(µ)+. The inequality proved in step (ii) yields

∥uk∥pp ⩽
∫
uup−1

k dµ ⩽ c
∥∥up−1

k

∥∥
p′
= c∥uk∥p−1

p ;

hence ∥uk∥p ⩽ c for all k ∈ N, and consequently ∥u∥p ⩽ c.
In the case p = ∞ we obtain

∫
u1A dµ ⩽ c∥1A∥1 for all A ∈ A with µ(A) < ∞, and

hence
∫
A
(u− c) dµ ⩽ 0. It follows that u ⩽ c µ-a.e. because [u ̸= 0] is σ-finite.
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Proof of Theorem 10.7. In order to motivate the subsequent computations we first explain
why it is sufficient to prove the inequality∣∣∣∣∫ (Φ(τ)u)v dµ

∣∣∣∣ ⩽Mτ∥u∥pτ∥v∥q′τ
(
u, v ∈ S(Ac), τ ∈ (0, 1)

)
(10.3)

(where 1
qτ
+ 1

q′τ
= 1). In view of Lemma 10.9, this inequality implies the assertion for s = 0;

then the assertion for general s ∈ R follows by an application of the previous consideration
to the function z 7→ Φ(z + is).
For the proof of (10.3) let τ ∈ (0, 1) and u, v ∈ S(Ac), without loss of generality

∥u∥pτ = ∥v∥q′τ = 1. For z ∈ S put α(z) := 1−z
p0

+ z
p1
, β(z) := 1−z

q′0
+ z

q′1
,

F (z) :=

{
|u|α(z)pτ sgnu if pτ <∞,
u if pτ = ∞,

G(z) :=

{
|v|β(z)q′τ sgn v if q′τ <∞,
v if q′τ = ∞;

then F (τ) = u, G(τ) = v. Observe that F (z), G(z) ∈ S(Ac) for all z ∈ S; cf. Re-
mark 10.5(a).
Finally we define

h(z) :=

∫ (
Φ(z)F (z)

)
G(z) dµ (z ∈ S).

Then h is continuous, bounded, and holomorphic on S. In fact, since u and v have ‘disjoint
representations’ as in Remark 10.5(a), it suffices to prove these properties for the case
u = c1A, v = d1B, with c, d ∈ C, A,B ∈ Ac. If pτ , q

′
τ <∞, then

h(z) = |c|α(z)pτ (sgn c)|d|β(z)q′τ (sgn d)
∫
(Φ(z)1A)1B dµ (z ∈ S),

and this function has the required properties, by condition (St2); for the boundedness
of h note that Reα(z),Re β(z) ∈ [0, 1] for all z ∈ S. An analogous – easier – argument
applies if one or both of pτ and q′τ are equal to ∞.
The definition of F is such that ∥F (σ + is)∥pσ = 1 for all σ ∈ [0, 1], s ∈ R. Indeed, note

that Reα(σ + is) = 1
pσ
. If pσ <∞, then pτ <∞, and therefore

∥F (σ + is)∥pσpσ =

∫ ∣∣|u|α(σ+is)pτ
∣∣pσ dµ = ∥u∥pτpτ = 1.

If pσ = ∞, then Reα(σ + is) = 0, and therefore

∥F (σ + is)∥pσ =
∥∥|u|01[u̸=0]

∥∥
∞ = 1.

Analogously one shows that ∥G(σ + is)∥q′σ = 1. By condition (St1) it follows that

∥Φ(is)F (is)∥q0 ⩽M0∥F (is)∥p0 =M0 ,

|h(is)| =
∣∣∣∣∫ (

Φ(is)F (is)
)
G(is) dµ

∣∣∣∣ ⩽ ∥Φ(is)F (is)∥q0∥G(is)∥q′0 ⩽M0

for all s ∈ R. In the same way one obtains |h(1 + is)| ⩽M1 for all s ∈ R.
At this point we can apply Theorem 10.3 and conclude that

∣∣∫ (Φ(τ)u)v dµ∣∣ = |h(τ)| ⩽
Mτ , thus completing the proof of (10.3).
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10.2 Interpolation of semigroups

As in Section 10.1 the scalar field will be K = C.
Let (Ω,A, µ) be a measure space. Let p1 ∈ [1,∞), θ ∈ (0, π/2], let T be a bounded

holomorphic C0-semigroup of angle θ on Lp1(µ), and put M1 := supz∈Σθ
∥T (z)∥L(Lp1(µ))

.

Let p0 ∈ [1,∞], p0 ̸= p1, and assume that T |[0,∞) is Lp0-bounded; by this we mean that
there exists M0 ⩾ 0 such that

∥T (t)u∥p0 ⩽M0∥u∥p0 (u ∈ Lp1∩Lp0(µ), t ⩾ 0).

The following result on interpolation of holomorphic semigroups is our main application
of the Stein interpolation theorem.

10.10 Theorem. Let the hypotheses be as above, let τ ∈ (0, 1), and put θτ := τθ,
1
pτ

:= 1−τ
p0

+ τ
p1
, Mτ :=M1−τ

0 M τ
1 .

Then for all z ∈ Σθτ ,0 the operator T (z)|Lp1∩Lpτ (µ)
extends (uniquely) to an operator

Tτ (z) ∈ L(Lpτ(µ)), and Tτ thus defined is a bounded holomorphic C0-semigroup of angle θτ ,
∥Tτ (z)∥ ⩽Mτ for all z ∈ Σθτ ,0.

Proof. We use the notation S(Ac), L1,loc(Ac) from the beginning of Subsection 10.1.2,
with Ac := {A ∈ A ; µ(A) <∞}. Also let S be the strip defined in (10.1).
(i) The essential part of the proof is to establish the boundedness of T (z)|S(Ac) with

respect to the Lpτ-norm, as follows.
Let θ′ ∈ (0, θ). With the ‘semi-sector’ Σ′

θ′ := {reiα ; r > 0, 0 ⩽ α ⩽ θ′}, the function
ψ : S → Σ′

θ′ , z 7→ eiθ
′z is continuous, bijective, and holomorphic on S. For σ ∈ [0, 1], it

maps the line [Re = σ] onto the ray {reiθ′σ ; r > 0}. From these properties it follows that
the function Φ := T ◦ψ : S → L(S(Ac), L1,loc(Ac)) satisfies the hypotheses of Theorem 10.7
with q0 = p0, q1 = p1. We just comment on the hypothesis (St2): for A ∈ Ac the function
S ∋ z 7→ T (ψ(z))1A ∈ Lp1(µ) is continuous, bounded, and holomorphic on S; hence for

all B ∈ Ac the function S ∋ z 7→
∫ (
T (ψ(z))1A

)
1B dµ has the corresponding properties.

For every s ∈ R, Theorem 10.7 implies that T (ψ(τ + is))|S(Ac) is bounded with respect
to the Lpτ-norm, with norm ⩽Mτ . In other words, the Lpτ-norm of T (z)|S(Ac) is bounded

by Mτ , for all z in the ray {reiθ′τ ; r > 0}. Note that the union of these rays, for θ′ ∈ (0, θ),

is equal to the open semi-sector
◦
Σ′

θτ
.

For the complementary open semi-sector
{
z ; z ∈

◦
Σ′

θτ

}
the reasoning is analogous, and

for z ⩾ 0 the boundedness statement follows from Corollary 10.8.
(ii) Let z ∈ Σθτ . As S(Ac) is a dense subspace of Lpτ(µ) (note that pτ < ∞), the

operator T (z)|S(Ac) has a unique extension Tτ (z) ∈ L(Lpτ(µ)). The operators T (z) and

Tτ (z) coincide on Lp1∩Lpτ(µ) since for all u ∈ Lp1∩Lpτ(µ) there exists a sequence (un) in
S(Ac) such that un → u in Lp1(µ) as well as in Lpτ(µ), by Lemma 10.6.
In order to show that Σθτ ∋ z 7→ Tτ (z) is holomorphic we use the results of Section 3.1.

For u, v ∈ S(Ac) the function Σθτ ∋ z 7→
∫
(T (z)u)v dµ is holomorphic. As S(Ac) is dense

in Lpτ(µ) and in Lp′τ(µ) and Tτ : Σθτ → L(Lpτ(µ)) is bounded, Theorem 3.4 implies that
z 7→ Tτ (z) ∈ L(Lpτ(µ)) is holomorphic on Σθτ .
It remains to show that Tτ is strongly continuous at 0. We use Hölder’s inequality

∥v∥pτ ⩽ ∥v∥1−τ
p0

∥v∥τp1
(
v ∈ Lp0∩Lp1(µ)

)
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and obtain ∥T (t)u− u∥pτ → 0 as t→ 0 for all u ∈ S(Ac), because {∥T (t)u∥p0 ; t ⩾ 0} is
bounded and T (·)u is continuous at 0 in Lp1(µ). Then the combination of Lemma 1.5
and Proposition 3.9 implies that Tτ is strongly continuous at 0.

10.3 Adjoint semigroups

In this section we insert some information on adjoint semigroups. Let T be a C0-semigroup
on a (real or complex) Hilbert space H. Then clearly T ∗ := (T (t)∗)t⩾0 is a one-parameter
semigroup on H. It turns out that T ∗ is strongly continuous, but this is not obvious; we
will prove it by looking at the generator of T . However, for simplicity we will restrict our
treatment to the case of quasi-contractive semigroups.

10.11 Theorem. Let H be a Hilbert space, let T be a quasi-contractive C0-semigroup on H,
and let A be its generator. Then A∗ is the generator of a quasi-contractive C0-semigroup,
and the generated C0-semigroup is T ∗ as defined above.

Proof. By rescaling we can reduce the situation to the case in which T is contractive.
Then Theorem 2.7 implies that (0,∞) ⊆ ρ(A) and that ∥(λ− A)−1∥ ⩽ 1

λ
for all λ > 0.

As A is closed, A∗ is densely defined; see Theorem 6.3(b). Similarly as in the proof
of Theorem 6.3(b) one obtains (λ− A∗)−1 = ((λ− A)∗)−1 = ((λ− A)−1)∗ for all λ > 0,
and it follows that λ ∈ ρ(A∗) and ∥(λ− A∗)−1∥ ⩽ 1

λ
. Therefore the Hille–Yosida theorem,

Theorem 2.9, implies that A∗ generates a contractive C0-semigroup.

From the exponential formula, Theorem 2.12, we conclude that the C0-semigroup
generated by A∗ is the adjoint semigroup T ∗.

10.12 Remarks. (a) As a particular consequence of Theorem 10.11 we conclude: the
semigroup T is self-adjoint, i.e. T (t) is self-adjoint for all t ⩾ 0, if and only if its generator
A is self-adjoint. (See also Exercise 6.3(b).)

(b) If K = C and the semigroup T in Theorem 10.11 is holomorphic of some angle
θ ∈ (0, π/2], then T ∗ (defined as the adjoint of T |[0,∞)) has a holomorphic extension to
the sector Σθ. This extension is given by

T ∗(z) := T (z)∗ (z ∈ Σθ). (10.4)

Indeed, it is not difficult to show that T ∗, defined by (10.4), is holomorphic. Hence T ∗ is
a holomorphic C0-semigroup. △

10.13 Remarks. (a) Using the general Hille–Yosida generation theorem (see Exercise 2.5)
one also obtains Theorem 10.11 for general C0-semigroups on H.

(b) If X is a Banach space and T is a C0-semigroup on X, then it is not generally
true that T ′(t) := T (t)′ (t ⩾ 0) defines a C0-semigroup on X ′, where T (t)′ ∈ L(X ′) is the
dual operator. It is true, however, if X is reflexive. This follows from the fact that any
weakly continuous one-parameter semigroup is strongly continuous; see [EnNa00; Chap. I,
Theorem 5.8]. △
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10.4 Applications of invariance criteria and interpolation

Throughout this section let (Ω,A, µ) be a measure space.
We start our treatment with a criterion for a semigroup on a complex L2-space to be

real. A C0-semigroup T on L2(µ;C) is called real if T (t) is a real operator for all t ⩾ 0.

10.14 Proposition. Let V be a complex Hilbert space, V
d
↪→ H := L2(µ;C), and let

a : V × V → R be a bounded quasi-coercive form. Let A be the operator associated with a,
and let T be the C0-semigroup generated by −A.

(a) Then T is real if and only if Reu ∈ V for all u ∈ V and a(u, v) ∈ R for all real
u, v ∈ V .
(b) Assume that T is real, and let Hr := L2(µ;R), Vr := V ∩Hr and ar := a|Vr×Vr

. Then

Vr
d
↪→Hr, and ar is quasi-coercive; let Ar ∼ ar. Then Ar = A∩ (Hr ×Hr), and −Ar is the

generator of the restriction Tr of T to Hr.

Proof. (a) We recall that the minimising projection P onto the closed convex set L2(µ;R)
is given by Pu = Reu (u ∈ L2(µ;C)). From the equivalence ‘(i)⇔ (ii)’ in Theorem 9.22
we know that L2(µ;R) is invariant under T if and only if Reu ∈ V for all u ∈ V and for
all real u, v ∈ V one has

0 ⩽ Re a
(
P (u± iv), (I − P )(u± iv)

)
= Re a(u,±iv) = ± Im a(u, v),

i.e. a(u, v) ∈ R.
(b) Note that Vr = P (V ) is dense in Hr since V is dense in H and P ∈ L(H). Moreover,

P (V ) ⊆ V implies V = Vr + iVr. We now show that Ar ⊆ A. Indeed, if (u, f) ∈ Ar, then
u ∈ Vr ⊆ V , and for all v ∈ Vr we have a(u, v) = (f | v). From V = Vr + iVr we conclude
that a(u, v) = (f | v) for all v ∈ V , and thus (u, f) ∈ A. Regarding L2(µ;C) as a real
Banach space and invoking Proposition 9.11 we obtain the assertion. (Incidentally, this
argument also proves the sufficiency in part (a).)

An operator S ∈ L(L2(µ)) is called L1-contractive if ∥Su∥1 ⩽ ∥u∥1 for all u ∈
L2 ∩L1(µ), and S is called substochastic if S is positive and L1-contractive. The
same terminology will be used for semigroups if all the semigroup operators satisfy the
corresponding property.
For simplicity we state the criteria in the next result only for real L2-spaces. In the

complex case one typically uses Proposition 10.14 to show that the semigroup T is real,
and then one can apply Theorem 10.15 to the semigroup Tr.

10.15 Theorem (Beurling–Deny). Let V be a real Hilbert space, V
d
↪→H := L2(µ;R),

and let a : V × V → R be a bounded quasi-coercive form. Let A be the operator associated
with a, and let T be the C0-semigroup generated by −A. Then one has the following
properties.
(a) T is positive if and only if u+ ∈ V , a(u+, u−) ⩽ 0 for all u ∈ V .
(b) T is sub-Markovian if and only if u ∧ 1 ∈ V , a(u ∧ 1, (u− 1)+) ⩾ 0 for all u ∈ V .
(c) T is substochastic if and only if u ∧ 1 ∈ V , a((u− 1)+, u ∧ 1) ⩾ 0 for all u ∈ V .

For the proof of part (c) we need an auxiliary result.
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10.16 Lemma. Let S ∈ L(L2(µ)). Then S is L∞-contractive if and only if S∗ is L1-
contractive, and S is sub-Markovian if and only if S∗ is substochastic.

Proof. Assume that S is L∞-contractive. Let v ∈ L2∩L1(µ), ∥v∥1 ⩽ 1. Then∣∣∣∣∫ uS∗v dµ

∣∣∣∣ = ∣∣∣∣∫ (Su)v dµ

∣∣∣∣ ⩽ 1
(
u ∈ L2∩L∞(µ), ∥u∥∞ ⩽ 1

)
,

and from Lemma 10.9, applied with Ac := {A ∈ A ; µ(A) < ∞}, one concludes that
∥S∗v∥1 ⩽ 1. The converse statement is proved in the same way.
For the second statement it remains to observe that S is positive if and only if S∗ is

positive. This equivalence easily follows from the fact that f ∈ L2(µ) is positive if and
only if

∫
fg dµ ⩾ 0 for all g ∈ L2(µ)+, for which we refer to Exercise 10.5.

Proof of Theorem 10.15. In view of Remarks 9.3 and 9.5, the statements (a) and (b) are
easy consequences of ‘(i)⇔ (ii)’ in Theorem 9.22. For (a) we note that u− u+ = −u−,
and for (b) we note that u− u ∧ 1 = (u− 1)+.
For part (c) we recall that −A∗ is the generator of the C0-semigroup T ∗, by Theo-

rem 10.11, and that A∗ is associated with the form a∗, by Theorem 6.11. Lemma 10.16
implies that T is substochastic if and only if T ∗ is sub-Markovian, and the latter is
equivalent to u ∧ 1 ∈ V and a((u− 1)+, u ∧ 1) = a∗(u ∧ 1, (u− 1)+) ⩾ 0 for all u ∈ V , by
part (b).

10.17 Remarks. (a) The equivalences formulated in Theorem 10.15 are the Beurling–
Deny criteria. A form a satisfying the conditions in parts (b) and (c) of Theorem 10.15
is called a (non-symmetric) Dirichlet form.
(b) Theorem 10.15 remains true if one only requires the conditions for u from a dense

subset of V ; see property (iii) of Theorem 9.22. △

10.18 Theorem. Let T be a C0-semigroup on L2(µ).
(a) Assume that T is sub-Markovian and substochastic. Then for all p ∈ [1,∞) the

operators T (t)|L2∩Lp(µ) extend to operators Tp(t) ∈ L(Lp(µ)), and Tp thus defined is a
contractive C0-semigroup on Lp(µ). For p, q ∈ [1,∞) the semigroups Tp, Tq are con-
sistent, i.e. Tp(t)|Lp∩Lq(µ) = Tq(t)|Lp∩Lq(µ) for all t ⩾ 0.

(b) Assume that T is self-adjoint and sub-Markovian. Then the assertions of (a) hold.
If K = C, then for all p ∈ (1,∞) the semigroup Tp extends to a contractive holomorphic
C0-semigroup of angle

θp =

{(
1− 1

p

)
π if 1 < p < 2,

1
pπ if 2 ⩽ p <∞.

Proof. (a) Let 1 ⩽ p < ∞. For every t > 0, Exercise 10.6 (or Corollary 10.8, if K = C)
implies that T (t)|L1∩L∞(µ) extends to a contractive operator Tp(t) on Lp(µ). It is standard
to show that Tp is a one-parameter semigroup. The strong continuity of Tp at 0 is obtained
as follows. If f ∈ Lp ∩L2(µ) and (tn) is a null sequence in (0,∞), then T (tn)f → f
in L2(µ), so for a subsequence one has T (tnk

)f → f a.e. Now the contractivity of Tp
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in combination with Lemma 10.19, proved subsequently, implies that Tp(tnk
)f → f in

Lp(µ). Applying the standard sub-subsequence argument – see Exercise 9.7 – one obtains
Tp(tn)f → f in Lp(µ) as n→ ∞. Lemma 1.5 concludes the argument.

The consistency is shown as in step (ii) of the proof of Theorem 10.10.

(b) From T (t)∗ = T (t) for all t ⩾ 0 and Lemma 10.16 it follows that T is also sub-
stochastic. Thus part (a) is applicable.

Next, the generator A of T is self-adjoint by Remark 10.12(a), and as T is contractive,
−A is accretive. Now if K = C, then −A is m-sectorial of angle 0, by Theorem 6.1.
Hence A is the generator of a contractive holomorphic C0-semigroup of angle π/2; see
Theorem 3.20. In view of Theorem 10.10 this implies the remaining assertions.

10.19 Lemma. Let 1 ⩽ p <∞ and f ∈ Lp(µ). Let (fn) be a sequence in Lp(µ) such that
fn → f a.e. and lim supn→∞ ∥fn∥p ⩽ ∥f∥p. Then fn → f in Lp(µ).

Proof. For n ∈ N put f̃n := sgn fn (|f | ∧ |fn|). Then f̃n → f in Lp(µ) by the dominated

convergence theorem. Moreover |fn| = |f̃n|+ |fn − f̃n|; hence |fn|p ⩾ |f̃n|p + |fn − f̃n|p for

all n ∈ N. Therefore ∥fn − f̃n∥pp ⩽ ∥fn∥pp − ∥f̃n∥pp, which implies lim sup ∥fn − f̃n∥pp ⩽ 0,

and it follows that fn = (fn − f̃n) + f̃n → f in Lp(µ).

Notes

The three lines theorem is generally attributed to Hadamard. In fact, in [Had96] Hadamard
announced a variant, the ‘three circles theorem’; the well-established version of the three
lines theorem was first stated and proved by Doetsch [Doe20]. The Stein interpolation
theorem, essentially in the form presented here, is contained in [Ste56]. We refer to this
paper for some history of the Riesz–Thorin convexity theorem, finally proved by Thorin by
the complex variable method, which initiated a whole new branch of functional analysis.
In fact, the paper [Ste56] can be considered as the start of interpolation theory, for which
we refer to the seminal paper of Calderón [Cal64] as well as to the monographs [BeLö76],
[Lun18].

The application of invariance and interpolation as described in Section 10.4 is well-
established in the theory of semigroups for diffusion equations, Schrödinger semigroups
and related topics. The proof of Theorem 10.18(b) via interpolation appears natural and
elegant; however, it does not yield the optimal angle of holomorphy for the Lp-semigroup.
Indeed, Liskevich and Perelmuter showed in [LiPe95] that one obtains the larger angle
arccos |1− 2

p | if one exploits more directly that the semigroup is sub-Markovian. There
seems to be no way of obtaining the larger angle via interpolation; an example in [Voi96]
shows that the angle from [LiPe95] is optimal. It came as a big surprise when Kriegler
[Kri11] showed that extension to a contractive holomorphic C0-semigroup on Lp of angle
arccos |1− 2

p | is still valid if one merely assumes that T is self-adjoint and L∞-contractive
(and not necessarily positive). We refer to [HKV16] for an elementary proof of Kriegler’s
result.
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Exercises

10.1 For this exercise let S be the strip

S := {z ∈ C ; −1/2 < Re z < 1/2}

(of width 1). Let h : S → C be continuous and holomorphic on S. Assume that h is
bounded on ∂S and that there exist c > 0 and α ∈ (0, π) such that

|h(z)| ⩽ ece
α|Im z|

(z ∈ S).

Show that h is bounded by ∥h∥∂S. (Hint: Use ψn(z) := e−
1
n (eiβz+e−iβz), with α < β < π.)

10.2 Let Ω be a set, Ac a ∩-stable collection of subsets of Ω (i.e. A ∩ B ∈ Ac for all
A,B ∈ Ac), and let R be the ring of subsets generated by Ac (i.e. R is the smallest ring
containing Ac).
(a) Show that 1A ∈ S(Ac) for all A ∈ R.
Hint: Show first that the collection {A ⊆ Ω; 1A ∈ S(Ac)} is a ring. (Recall from the

first paragraph of Remark 10.5(a) that S(Ac) is an algebra.)
(b) Show that every function u ∈ S(R) has a ‘disjoint representation’ as described in

Remark 10.5(a).

10.3 Let (Ω,A, µ) be a measure space, Ac ⊆ A, 1 ⩽ p <∞. The issue of this exercise is
to determine conditions under which S(Ac) is a dense subspace of Lp(µ). Without loss of
generality the scalar field is assumed to be K = R.
A set X ⊆ Lp(µ) is called a vector sublattice if X is a subspace, and f ∨ g, f ∧ g ∈ X

for all f, g ∈ X, or equivalently, |f | ∈ X for all f ∈ X; see also Section 9.3.
(a) Let X be a vector sublattice of Lp(µ). Show that the closure of X in Lp(µ) is again

a vector sublattice. (Hint: Show that Lp(µ) ∋ f 7→ |f | ∈ Lp(µ) is Lipschitz continuous.)
(b) Assume that µ(Ω) <∞, and let X be a closed vector sublattice of Lp(µ) containing

the function 1. Show that {A ; 1A ∈ X} is a σ-algebra.
(c) Assume that µ(Ω) < ∞, and let Ac be a ∩-stable generator of A containing the

set Ω. Show that S(Ac) is dense in Lp(µ). (Hint: Exercise 10.2.)
(d) Let Ac ⊆ {A ∈ A ; µ(A) <∞} be a ∩-stable generator of A such that each set A ∈ A

of finite measure can be covered by countably many elements of Ac. Show that S(Ac) is
dense in Lp(µ). (Hint: Use part (c) to show that S(Ac ∩ A) is dense in Lp(A, µ|A∩A), for
each A ∈ Ac, where Ac ∩ A := {B ∩ A ; B ∈ Ac}, and A ∩ A is defined analogously.)

10.4 Let (Ω, µ) be a measure space. Show that(
∥1
2
(f + g)∥pp + ∥1

2
(f − g)∥pp

)1/p ⩽ 2−1/p
(
∥f∥pp + ∥g∥pp

)1/p
(10.5)

for all f, g ∈ Lp(µ), 2 ⩽ p ⩽ ∞.
Hint: Use the mapping

T : Lp(µ)× Lp(µ) → Lp(µ)× Lp(µ), (f, g) 7→
(
1
2
(f + g), 1

2
(f − g)

)
.
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Compute the norm of T for p = 2 and for p = ∞ and use the Riesz–Thorin interpolation
theorem. (The inequality (10.5) is one of Clarkson’s inequalities; see Adams [Ada75;
Theorem 2.28]. The other inequalities of Clarkson involve p and the conjugate exponent p′

and can also be obtained by interpolation, but this is more complicated. Clarkson’s
inequalities can be used to show that Lp-spaces, for 1 < p <∞, are uniformly convex –
see [Ada75; Corollary 2.29] –, which in turn implies that these spaces are reflexive.)

10.5 Let (Ω, µ) be a measure space, and let f ∈ L2(µ). Show that f ∈ L2(µ)+ if and
only if

∫
fg dµ ⩾ 0 for all g ∈ L2(µ)+. (Hint: In the case K = R consider g = f−, in the

case K = C first show that Im f = 0.)

10.6 (a) Let p ∈ (1,∞), r ∈ [0,∞). Show that

r = inf
α∈(0,∞)∩Q

(
1
pα

1−prp + (1− 1
p)α

)
.

(b) Let (Ω, µ) be a measure space, and let S ∈ L(L2(µ)) be sub-Markovian and
substochastic. Show that S is Lp-contractive for all p ∈ (1,∞). (The case K = C is
already covered by Corollary 10.8, but not the case K = R !)
Hint: Using (a) twice show first that S|u| ⩽

(
S|u|p

)
1/p for simple functions.

(c) Let (Ω, µ) be a measure space, let S ∈ L(L2(µ)) be sub-Markovian, and assume
that there exists c > 0 such that 1

cS is substochastic. Show that S “extrapolates” to an
operator Sp ∈ L(Lp(µ)) with ∥Sp∥ ⩽ c1/p, for all 1 < p <∞.

10.7 (Continuation of Exercise 9.6) Let the hypotheses be as in Exercise 9.6. Assume
additionally that b ∈ C1(Ω;Rn) and that ω := supx∈Ω div b(x) <∞.
(a) Show that ∥T (t)u∥1 ⩽ eωt∥u∥1 for all t ⩾ 0 and u ∈ L2∩L1(Ω), where T is the

C0-semigroup generated by the operator −A.
Hint: Use C1

c (Ω) as the dense subset of V = H1
0 (Ω) for the application of the invariance

criterion to the semigroup
(
e−ωtT (t)

)
t⩾0. Observe that on C1

c (Ω) one can transform the
term (b · ∇u | v) – using integration by parts – into an expression in which u appears
without a derivative.

(b) Compute estimates for ∥Tp(t)∥ in terms of ω for t ⩾ 0, 1 ⩽ p <∞, where Tp is the
interpolated semigroup on Lp(Ω), analogous to Theorem 10.18(b).

10.8 The aim of this exercise is to give an alternative method of proving interpolation of
holomorphy. (Unlike Theorem 10.10 this method provides no information about the angle
of holomorphy.)
Let (Ω, µ) be a measure space, p1 ∈ (1,∞), and let T be a contractive C0-semigroup on

Lp1(µ) that is also Lp0-contractive for some p0 ∈ [1,∞] \ {p1}. Assume that T is holomor-
phic; recall from the Notes of Chapter 3 that this is equivalent to lim supt→0+∥T (t)−I∥ < 2.
Use this equivalence (even though it is not proved in the book) and the Riesz–Thorin
theorem, Corollary 10.8, to prove that T extends to a holomorphic C0-semigroup on Lp(µ)
for all p strictly between p0 and p1.
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Elliptic operators

Elliptic operators with measurable coefficients are a classical topic in partial differential
equations. They have realisations under diverse boundary conditions that generate
semigroups, which results in well-posedness of parabolic initial boundary value problems.
Form methods are very efficient to treat these problems and to derive properties of the
solutions of the equations. It will be seen that many of the topics presented so far enter our
treatment; in particular the properties of the Sobolev space H1(Ω) and the Beurling–Deny
criteria will play a decisive role. The latter lead to positivity and to sub-Markovian and
substochastic behaviour of the generated semigroups.
In order to achieve these (and further) goals we will need additional lattice properties

of H1(Ω), treated in an interlude in Section 11.3.

11.1 Perturbation of bounded forms

Versions of the following perturbation result have already appeared in the proof of
Theorem 7.16 and in Exercise 7.7(a).

11.1 Lemma. Let V, H be Hilbert spaces, V
d
↪→ H. Let a : V × V → K be a bounded

quasi-coercive form. Let b : V × V → K be a bounded form, and assume that there exists
M ⩾ 0 such that

|b(u)| ⩽M∥u∥V ∥u∥H (u ∈ V ).

Then a+ b : V × V → K is quasi-coercive.

Proof. The quasi-coercivity of a means that there exist ω ∈ R and α > 0 such that

Re a(u) + ω∥u∥2H ⩾ α∥u∥2V
for all u ∈ V .
By the Peter–Paul inequality one has

Re a(u) + Re b(u) + ω∥u∥2H ⩾ α∥u∥2V −M∥u∥V ∥u∥H

⩾ α∥u∥2V − 1

2

(
α∥u∥2V +

1
α
M2∥u∥2H

)
.

This implies

Re
(
a(u) + b(u)

)
+
(
ω +

M2

2α

)
∥u∥2H ⩾

α

2
∥u∥2V (u ∈ V ).
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11.2 Elliptic operators

Let Ω ⊆ Rn be an open set. Let ajk ∈ L∞(Ω) (j, k = 1, . . . , n) be coefficient functions
satisfying the ellipticity condition

Re
n∑

j,k=1

ajk(x)ξkξj ⩾ α|ξ|2 (ξ ∈ Kn) (11.1)

for a.e. x ∈ Ω, with some α > 0, and let bj, cj ∈ L∞(Ω) (j = 1, . . . , n), d ∈ L∞(Ω). Our
aim is to define operators in L2(Ω) corresponding to the “elliptic operator in divergence
form”A written formally as

Au = −
n∑

j,k=1

∂j(ajk∂ku) +
n∑

j=1

(
bj∂ju− ∂j(cju)

)
+ du

= − div
(
(ajk)∇u

)
+ b ·∇u− div(cu) + du.

(11.2)

The first order terms b ·∇u and div(cu) in Au are sometimes called drift terms. We
consider the form

a : H1(Ω)×H1(Ω) → K
given by

a(u, v) :=

∫
Ω

( n∑
j,k=1

ajk∂ku∂jv +
n∑

j=1

(bj∂juv + cju∂jv) + duv
)
dx. (11.3)

11.2 Proposition. The form a is bounded and quasi-coercive.

Proof. Let the form a0 : H
1(Ω)×H1(Ω) → K be given by

a0(u, v) :=

∫
Ω

n∑
j,k=1

ajk∂ku∂jv dx.

Then the boundedness of the coefficients ajk implies that a0 is bounded. By the ellipticity
condition (11.1) one obtains Re a0(u) + α∥u∥22 ⩾ α∥∇u∥22 + α∥u∥22 = α∥u∥2H1 for all
u ∈ H1(Ω). Thus a0 is quasi-coercive.
Define a1 : H

1(Ω)×H1(Ω) → K by

a1(u, v) :=

∫
Ω

( n∑
j=1

(bj∂juv + cju∂jv) + duv
)
dx;

then a = a0 + a1. The boundedness of the coefficient functions bj, cj and d implies that a1
is bounded. It also implies that there exists M ⩾ 0 such that

|a1(u)| ⩽M

∫
Ω

|∇u||u| dx+ ∥d∥∞∥u∥22

⩽M∥∇u∥2∥u∥2 + ∥d∥∞∥u∥22
⩽ (M + ∥d∥∞)∥u∥H1∥u∥2

for all u ∈ H1(Ω). Now the assertion follows from Lemma 11.1.
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Coming back to (11.2), we want to give this formula a precise meaning, using the
distributional divergence of a vector field w ∈ L1,loc(Ω;Kn). We say that divw ∈ L1,loc(Ω)
if there exists g ∈ L1,loc(Ω) such that∫

Ω

w ·∇φ dx = −
∫
Ω

gφ dx

for all test functions φ ∈ C∞
c (Ω), and then we say that divw = g in the distributional

sense. (This definition was already mentioned in Exercise 4.5(b).) We now define the
maximal operator Amax in L2(Ω) by

Amaxu := − div
(
(ajk)∇u+ cu

)
+ b ·∇u+ du

for u ∈ H1(Ω) with div
(
(ajk)∇u + cu

)
∈ L2(Ω). In terms of the form a, the maximal

operator can be written as

Amax =
{
(u, f) ∈ H1(Ω)× L2(Ω) ; a(u, v) = (f | v)L2

(v ∈ C∞
c (Ω))

}
.

Next we define suitable restrictions of Amax. Let V be a closed subspace of H1(Ω)
containing H1

0 (Ω). Then the restriction of the form a to V × V is bounded and quasi-
coercive, by Proposition 11.2. Denote by AV the operator associated with a|V×V . Then
−AV generates a C0-semigroup TV on L2(Ω), and TV is holomorphic if K = C; see
Section 5.3. Note that the operator AV is a restriction of Amax because C∞

c (Ω) ⊆ H1
0 (Ω).

11.3 Remark. Let V ⊆ H1
0 (Ω) be as above. For (u, f) ∈ Amax to be in AV it is needed

that

(i) u ∈ V (and not merely u ∈ H1(Ω)),

(ii) a(u, v) = (f | v)L2
for all v ∈ V (and not merely for v ∈ C∞

c (Ω)).

These conditions can be interpreted as boundary conditions. △

11.4 Examples. (a) Let us first consider the case V = H1
0 (Ω). Then AH1

0
is just the

restriction of Amax to dom(Amax)∩H1
0 (Ω). We write AD := AH1

0
and call AD the realisation

of the elliptic operator A with Dirichlet boundary conditions. We define TD := TH1
0
.

(b) Next we consider V =H1(Ω). We define TN := TH1 and callAN := AH1 the realisation
of the elliptic operator A with (generalised) Neumann boundary conditions. However,
we will see that it is not the normal derivative of u that is 0 at the boundary, but rather
the conormal derivative

ν ·
(
(ajk)∇u+ cu

)
∂Ω ,

which is defined in terms of the coefficients of A.
Clearly, the vector field w := (ajk)∇u + cu ∈ L2(Ω;Kn) cannot simply be restricted

to ∂Ω, so we first have to explain what is meant by ν · w|∂Ω = 0. If Ω is bounded and has
C1-boundary, and w ∈ C1(Ω;Kn), then for all φ ∈ C1(Ω) we obtain∫

Ω

w ·∇φ dx+

∫
Ω

(divw)φ dx =

∫
Ω

div(wφ) dx =

∫
∂Ω

ν · wφ dσ,

by Gauss’ theorem; note that the right-hand side vanishes for all φ if and only if ν ·w|∂Ω = 0.
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Thus, for an arbitrary open set Ω ⊆ Rn and w ∈ L2(Ω;Kn) satisfying divw ∈ L2(Ω), we
will write ‘ν · w|∂Ω = 0’ if∫

Ω

w ·∇v dx+
∫
Ω

(divw)v dx = 0 (v ∈ H1(Ω)).

(With this notation, a function u ∈ H1(Ω) with ∆u ∈ L2(Ω) satisfies ‘ν · ∇u|∂Ω = 0’ if
and only if ‘∂νu = 0’; see (7.7).)
Now let (u, f) ∈ Amax, and recall that AN is a restriction of Amax. For (u, f) to be

in AN, only condition (ii) of Remark 11.3 plays a role. Thus, (u, f) ∈ AN if and only if∫
Ω

(
(ajk)∇u+ cu

)
· ∇v dx =

∫
Ω

(f − b ·∇u− du)v dx (v ∈ H1(Ω)),

and since f = Amaxu, the latter is equivalent to∫
Ω

(
(ajk)∇u+ cu

)
· ∇v dx = −

∫
Ω

div
(
(ajk)∇u+ cu

)
v dx (v ∈ H1(Ω)).

Therefore, in terms of the above definition, we obtain

AN =
{
(u, f) ∈ Amax ; ‘ν ·

(
(ajk)∇u+ cu

)
∂Ω = 0’

}
.

(c) There are other possible choices of V . For example, assume that Ω is bounded and
has C1-boundary, and let Γ ⊆ ∂Ω be a Borel set. Then we define

V =
{
u ∈ H1(Ω) ; tru = 0 a.e. on Γ

}
.

We call AV the realisation of the elliptic operator A with mixed boundary conditions
(with the interpretation ‘Dirichlet on Γ, Neumann on ∂Ω \ Γ’). △

11.5 Remarks. Assume that the coefficient matrix (ajk(x)) is self-adjoint, i.e. ajk(x) =

akj(x) (j, k = 1, . . . , n) for a.e. x ∈ Ω. Then the ellipticity condition (11.1) says that the
smallest eigenvalue of the matrix (ajk(x)) is ⩾α for a.e. x ∈ Ω. The properties asserted
in the following statements hold for any closed subspace V of H1(Ω) containing H1

0 (Ω).
(a) In the complex case, the semigroup TV generated by −AV is holomorphic of angle

π/2. This follows from Exercise 7.7(c), applied with the decomposition a = a0 + a1 from
Proposition 11.2; note that a0|V×V is symmetric by the assumption on (ajk).
(b) If bj = cj (j = 1, . . . , n) and d is real-valued, then a is symmetric, and the operator

AV is self-adjoint. △

We conclude this section with comments on the interplay between the real and complex
cases.

11.6 Remarks. Assume that all the coefficient functions ajk, bj, cj, d are real-valued.
Then the ellipticity condition (11.1) needs to be checked for ξ ∈ Rn only; see Exercise 11.1.
(a) Let K = C, and let V be a closed subspace of H1(Ω) containing H1

0 (Ω) with the
property that Reu ∈ V for all u ∈ V . Then Proposition 10.14 implies that TV is real.
Moreover, with Vr = V ∩ L2(Ω;R), the restriction of a to Vr × Vr is bounded and quasi-
coercive, and the operator associated with a|Vr×Vr

is minus the generator of the restriction
of TV to L2(Ω;R).
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(b) Conversely, if V is a closed subspace of H1(Ω;R) containing H1
0 (Ω;R), then Vc =

V + iV ⊆ H1(Ω;C) is a space as considered in (a). △

In order to study further properties of the semigroup on L2(Ω;R) generated by an elliptic
operator with real coefficients we need additional properties of the Sobolev space H1(Ω).

11.3 Interlude: Further lattice properties of H1(Ω)

Throughout this section the scalar field will be K = R, and Ω ⊆ Rn will be an open set.
In Section 9.3 we have seen that H1(Ω) is a vector sublattice of L2(Ω). More precisely, if
u ∈ H1(Ω), then Theorem 9.16 implies that u+, u− = (−u)+, |u| = u+ + u− ∈ H1(Ω) and
∂ju

+ = 1[u>0]∂ju, ∂ju
− = −1[u<0]∂ju, ∂j|u| = ∂ju

+ + ∂ju
− = (sgnu)∂ju. It follows that

∥|u|∥H1 = ∥u∥H1 (u ∈ H1(Ω)) (11.4)

since ∂ju = ∂ju
+ − ∂ju

− = 1[u̸=0]∂ju (j = 1, . . . , n). Incidentally, this last equality implies
that 1[u=0]∂ju = 0, i.e. ∂ju = 0 a.e. on [u = 0] (“Stampacchia’s Lemma”).
Next we show that the lattice operations are continuous.

11.7 Proposition. (a) The mapping H1(Ω) ∋ u 7→ |u| ∈ H1(Ω) is continuous.
(b) The mappings (u, v) 7→ u∧ v and (u, v) 7→ u∨ v are continuous from H1(Ω)×H1(Ω)

to H1(Ω). In particular, the mappings H1(Ω) ∋ u 7→ u+, u− ∈ H1(Ω) are continuous.

Proof. (a) Let (uk) be a sequence in H1(Ω), uk → u in H1(Ω). Then |uk| → |u| in L2(Ω),
and (11.4) implies that (|uk|) is bounded in H1(Ω). By Remark 9.17 it follows that
|uk| → |u| weakly in H1(Ω).
From (11.4) we also obtain

∥|uk|∥H1 = ∥uk∥H1 → ∥u∥H1 = ∥|u|∥H1 (k → ∞),

from which we conclude that |uk| → |u| in H1(Ω); see the subsequent Remark 11.8.
(b) follows from u∧ v = 1

2
(u+ v− |u− v|), u∨ v = 1

2
(u+ v + |u− v|) and part (a).

11.8 Remark. Let H be a Hilbert space, (uk) a sequence in H, uk → u weakly in H,
and ∥uk∥ → ∥u∥ as k → ∞. Then

∥uk − u∥2 = ∥uk∥2 + ∥u∥2 − 2Re(uk |u) → 0;

so uk → u in H as k → ∞. △

A vector sublattice V of H1(Ω) is a subspace with the property that u+ ∈ V for all
u ∈ V , analogously to the definition of vector sublattices of L2(Ω). We already know that
H1

0 (Ω) is a vector sublattice of H1(Ω); see Theorem 9.16.
We now show that H1

0 (Ω) is even an ideal in H1(Ω) (in the sense of vector lattices). An
order ideal (or ‘lattice ideal’) V in H1(Ω) is a subspace with the property that u ∈ V ,
v ∈ H1(Ω), |v| ⩽ |u| imply that v ∈ V . Note that then V is a vector sublattice (because
|u| ∈ V for all u ∈ V ). On the other hand, if V is a vector sublattice with the property
that for all u ∈ V , v ∈ H1(Ω) with 0 ⩽ v ⩽ u one has v ∈ V , then V is an order ideal.
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11.9 Proposition. The space H1
0 (Ω) is an order ideal in H1(Ω).

Proof. Let u ∈ H1
0 (Ω), v ∈ H1(Ω), 0 ⩽ v ⩽ u. There exists a sequence (uk) in H

1
c (Ω) such

that uk → u in H1(Ω). It follows from Proposition 11.7 that uk ∧ v → u∧ v = v in H1(Ω)
as k → ∞. Since uk ∧ v ∈ H1

c (Ω) we conclude that v ∈ H1
0 (Ω).

11.10 Proposition. Assume that Ω is bounded and has C1-boundary. Let Γ ⊆ ∂Ω be a
Borel set, and let V be as in Example 11.4(c). Then V is a closed order ideal in H1(Ω).

Proof. The linearity and continuity of the trace operator tr : H1(Ω) → L2(∂Ω) imply that
V is a closed subspace.
For the proof that V is a vector sublattice ofH1(Ω), the important additional observation

is that the trace operator is also a lattice homomorphism, i.e. tr(u∨ v) = tru∨ tr v for all
u, v ∈ H1(Ω). This property is clear for u, v ∈ H1(Ω) ∩ C(Ω) and carries over to H1(Ω)
by denseness and continuity; see Theorems 7.7 and 7.11 as well as Proposition 11.7(b).
Therefore, if u ∈ V , then tr(u+)|Γ = (tru)+|Γ = 0, i.e. u+ ∈ V .
Finally let u ∈ V , v ∈ H1(Ω), 0 ⩽ v ⩽ u. Then 0 ⩽ tr v|Γ ⩽ tru|Γ = 0. This shows

that v ∈ V .

We will also need the following denseness properties.

11.11 Lemma. The set C∞
c (Ω)+ := {φ ∈ C∞

c (Ω); φ ⩾ 0} is dense in H1
0 (Ω)+ := {u ∈

H1
0 (Ω) ; u ⩾ 0}.

Proof. (i) First we show that H1
c (Ω)+ := {u ∈ H1

c (Ω); u ⩾ 0} is dense in H1
0 (Ω)+. Let

u ∈ H1
0 (Ω)+. There exists a sequence (uk) in H1

c (Ω) such that uk → u. Then clearly
u+k ∈ H1

c (Ω)+ for all k ∈ N, and Proposition 11.7 implies that u+k → u+ = u.
(ii) Let u ∈ H1

c (Ω)+, and let ũ denote the extension of u to Rn by zero. Recall from
Exercise 4.7(a) that ũ ∈ H1(Rn). Let (ρk) be a delta sequence in C∞

c (Rn). Then as in the
proof of Corollary 4.5 one sees that (ρk ∗ ũ)|Ω ∈ C∞

c (Ω) for large k, and (ρk ∗ ũ)|Ω → u
in H1(Ω); for the latter convergence one uses Lemma 4.16(b). Clearly ρk ∗ ũ ⩾ 0 for all

k ∈ N, and it follows that u ∈ C∞
c (Ω)+

H1(Ω)
.

11.12 Proposition. Assume that Ω is bounded and has continuous boundary. Then
Č∞(Ω)+ := {u ∈ Č∞(Ω) ; u ⩾ 0} is dense in H1(Ω)+ := {u ∈ H1(Ω) ; u ⩾ 0}.

Proof. This property follows from the proof of Theorem 7.7, as explained in Remark 7.8(b).

11.4 Elliptic operators with real coefficients

Here we continue with the setting of Section 11.2, assuming in addition that K = R. In
particular, Ω ⊆ Rn is an open set, the coefficients ajk, bj, cj, d ∈ L∞(Ω) are all real-valued,
and we assume that the ellipticity condition (11.1) is satisfied. Furthermore we work with
the form a on H1(Ω) from (11.2), as well as the operator AV associated with a|V×V , for
a closed subspace V of H1(Ω) containing H1

0 (Ω), the operator AD = AH1
0
with Dirichlet

boundary conditions, the operator AN = AH1 with Neumann boundary conditions, and
the associated C0-semigroups TV , TD and TN.
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11.13 Proposition. Let V be a closed vector sublattice of H1(Ω) containing H1
0 (Ω). Then

the semigroup TV generated by −AV is positive. In particular, TD and TN are positive.

Proof. Let u ∈ V ; then u+ ∈ V . Corollary 9.15 implies that ∂ju
+ = 1[u>0]∂ju, ∂ju

− =
−1[u<0]∂ju, and therefore ∂ku

+∂ju
− = 0, ∂ju

+u− = 0, u+∂ju
− = 0, u+u− = 0, for

j, k = 1, . . . , n. Thus a(u+, u−) = 0. Now it follows from Theorem 10.15(a) that TV is
positive.
The assertion for TD and TN is a consequence of Theorem 9.16.

Proposition 11.13 also implies that the semigroup is positive for mixed boundary
conditions; see Proposition 11.10.
Next we provide conditions under which the associated semigroup is sub-Markovian or

substochastic. In Exercise 11.4 the reader is asked to prove that the required inequalities
are in fact necessary.

11.14 Theorem. (a) Assume that c = (c1, . . . , cn) satisfies div c ∈ L1,loc(Ω) and div c ⩽ d.
Then TD is sub-Markovian.

(b) Let b = (b1, . . . , bn) satisfy div b ∈ L1,loc(Ω) and div b ⩽ d. Then TD is substochastic.

Proof. (a) Let u ∈ H1
0 (Ω). Then u∧1 ∈ H1

0 (Ω) and ∂j(u∧1) = 1[u<1]∂ju, by Theorem 9.16.
Since u = u ∧ 1 + (u− 1)+, it follows that (u− 1)+ ∈ H1

0 (Ω) and ∂j(u− 1)+ = 1[u⩾1]∂ju.
Thus ∂k(u ∧ 1)∂j(u − 1)+ = 0 and ∂j(u ∧ 1)(u − 1)+ = 0, for j, k = 1, . . . , n. It follows
that

a(u ∧ 1, (u− 1)+) =

∫
Ω

( n∑
j=1

cj(u ∧ 1)∂j(u− 1)+ + d(u ∧ 1)(u− 1)+
)
dx

=

∫
Ω

( n∑
j=1

cj∂j(u− 1)+ + d(u− 1)+
)
dx

(where the last equality holds because u∧ 1 = 1 on [u ⩾ 1]). From the hypotheses on div c
we obtain ∫

Ω

( n∑
j=1

cj∂jφ+ dφ
)
dx =

∫
Ω

(− div c+ d)φ dx ⩾ 0

for all 0 ⩽ φ ∈ C∞
c (Ω). Since (u− 1)+ can be approximated by positive test functions, by

Lemma 11.11, it follows that a(u ∧ 1, (u− 1)+) ⩾ 0. Now Theorem 10.15(b) implies that
TD is sub-Markovian.
(b) The proof is analogous to (a) and uses Theorem 10.15(c).

We now prove a similar result for boundary conditions that are defined by more general
spaces V . Because of the boundary terms we need stronger regularity assumptions on Ω
and on the coefficients c and d than in Theorem 11.14.

11.15 Theorem. Assume that Ω is bounded and has C1-boundary, and let V be a Stonean
sublattice of H1(Ω) containing H1

0 (Ω).
(a) If c ∈ C1(Ω;Rn), div c ⩽ d on Ω and c · ν ⩾ 0 on ∂Ω, then TV is sub-Markovian.

(As before, ν(z) = (ν1(z), . . . , νn(z)) denotes the outer unit normal at z ∈ ∂Ω.)
(b) If b ∈ C1(Ω;Rn), div b ⩽ d on Ω and b · ν ⩾ 0 on ∂Ω, then TV is substochastic.
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Proof. (a) As in the proof of Theorem 11.14 one has

a(u ∧ 1, (u− 1)+) =

∫
Ω

( n∑
j=1

cj∂j(u− 1)+ + d(u− 1)+
)
dx (u ∈ V ).

For 0 ⩽ φ ∈ C1(Ω) we now use Gauss’ theorem (Theorem 7.3) to obtain∫
Ω

( n∑
j=1

cj∂jφ+ dφ
)
dx =

∫
Ω

(
−

n∑
j=1

∂jcj + d
)
φ dx+

∫
∂Ω

n∑
j=1

νjcjφ dσ ⩾ 0.

By approximation – applying Proposition 11.12 – we deduce that a(u ∧ 1, (u− 1)+) ⩾ 0.
The proof of (b) is analogous.

11.16 Remarks. Let Ω and V be as in Theorem 11.15, and assume that 1Ω ∈ V .
(a) If in Theorem 11.15(a) one has the equalities

div c = d on Ω, c · ν = 0 on ∂Ω,

then TV is not only sub-Markovian but Markovian, i.e. TV (t)1Ω = 1Ω for all t ⩾ 0.
Indeed, as in the proof of Theorem 11.15 one shows that a(1Ω, v) = 0 for all v ∈ C1(Ω),

and hence for all v ∈ H1(Ω), by Theorem 7.7. It follows that 1Ω ∈ dom(AV ) and AV 1Ω = 0,
and then Theorem 1.13(a) implies the assertion.
(b) Similarly, if in Theorem 11.15(b) one has the equalities

div b = d on Ω, b · ν = 0 on ∂Ω,

then TV is not only substochastic but stochastic, i.e. ∥TV (t)u∥1 = ∥u∥1 for all t ⩾ 0,
0 ⩽ u ∈ L2∩L1(Ω). See Exercise 11.5. △

11.17 Remarks. (a) In the situation of Theorem 11.14(a), the C0-semigroup TD gives
rise to a consistent family

(
TD,p

)
2⩽p<∞ of C0-semigroups TD,p on Lp(Ω). This is seen in

the same was as in the proof of Theorem 10.18(a). Similarly, in Theorem 11.14(b) one
obtains a consistent family of C0-semigroups

(
TD,p

)
1⩽p⩽2.

An analogous observation applies to Theorem 11.15.
(b) Deviating from the initial announcement of this section that only K = R is treated,

we include a comment on the complex case. It was mentioned in Section 11.2 that
the C0-semigroup TV , with a suitable H1

0 (Ω) ⊆ V ⊆ H1(Ω), is holomorphic. Therefore
Theorem 10.10 implies that the C0-semigroups discussed in part (a) extend to holomorphic
semigroups on Lp(Ω) if p ̸= 1. △

11.5 Domination

We use the assumptions and notation from Section 11.2, as recalled at the beginning of
Section 11.4, and throughout we assume that K = R.
We already know from Theorem 11.13 that the semigroups TD, TN and TV are positive

if V is a closed vector sublattice of H1(Ω) containing H1
0 (Ω). Here we investigate the

order relation between these semigroups.
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11.18 Theorem. Let V ⊆ W be closed vector sublattices of H1(Ω) containing H1
0 (Ω),

and suppose that V is an order ideal in W. Then 0 ⩽ TV (t) ⩽ TW (t) for all t ⩾ 0, i.e.
0 ⩽ TV (t)f ⩽ TW (t)f for all f ∈ L2(Ω)+.

Proof. In view of the exponential formula, Theorem 2.12, it suffices to prove the domination
property for the resolvents; i.e., for large λ ∈ R we have to show that

(λ+ AV )
−1f ⩽ (λ+ AW )−1f (0 ⩽ f ∈ L2(Ω)).

Adding λ to the coefficient d we may assume λ = 0 and also that the form a is coercive.
Let 0 ⩽ f ∈ L2(Ω) and put u1 = A−1

V f , u2 = A−1
W f . Then u1 ∈ V+ := V ∩ L2(Ω)+ and

u2 ∈ W+ := W ∩ L2(Ω)+ by the positivity of TV , TW and Proposition 9.1. Moreover

a(u1, v) = (f | v)L2
(v ∈ V ),

a(u2, v) = (f | v)L2
(v ∈ W ),

and thus a(u1 − u2, v) = 0 for all v ∈ V . We want to take v := (u1 − u2)
+, but at first

it is only clear that (u1 − u2)
+ ∈ W . Observing that 0 ⩽ (u1 − u2)

+ ⩽ u1 we obtain
v = (u1 − u2)

+ ∈ V by the ideal property of V . Hence we have a(u1 − u2, (u1 − u2)
+) = 0.

Now recall from the proof of Proposition 11.13 that a(w−, w+) = a((−w)+, (−w)−) = 0
for all w ∈ H1(Ω). It follows that a((u1 − u2)

+) = 0, which implies (u1 − u2)
+ = 0 by our

coercivity assumption, and consequently u1 ⩽ u2. We have shown that A−1
V ⩽ A−1

W .

The following conclusion is immediate from Theorem 11.18 and the ideal property of
H1

0 (Ω), Proposition 11.9.

11.19 Corollary. Let V be a closed vector sublattice of H1(Ω) containing H1
0 (Ω). Then

TD(t) ⩽ TV (t) for all t ⩾ 0. In particular, TD(t) ⩽ TN(t) for all t ⩾ 0.
If additionally V is an order ideal in H1(Ω), then TV (t) ⩽ TN(t) for all t ⩾ 0.

We mention that closed order ideals in H1(Ω) were characterised by Stollmann [Sto93].
If AV is the elliptic operator with mixed boundary conditions – see Example 11.4(c) –,
then V is a closed order ideal in H1(Ω), by Proposition 11.10, and so TV (t) ⩽ TN(t) for
all t ⩾ 0.
Finally we want to prove domain monotonicity for Dirichlet boundary conditions. We

consider the semigroup TD on L2(Ω), but we may also restrict the coefficients to an open
subset Ω1 ⊆ Ω and consider the corresponding semigroup T 1

D on L2(Ω1). We identify
L2(Ω1) with a subspace of L2(Ω) by extending functions in L2(Ω1) by zero on Ω \ Ω1.

11.20 Theorem. One has T 1
D(t)f ⩽ TD(t)f for all t ⩾ 0, 0 ⩽ f ∈ L2(Ω1).

Proof. By the exponential formula it suffices to show that (λ+ A1
D)

−1f ⩽ (λ+ AD)
−1f

on Ω1 for large enough λ ∈ R and 0 ⩽ f ∈ L2(Ω1). As in the proof of Theorem 11.18 we
may assume that the form a is coercive and that λ = 0.
Let 0 ⩽ f ∈ L2(Ω1) and put u1 := (A1

D)
−1f , u2 := (AD)

−1f . Then u1 ∈ H1
0 (Ω1)+,

u2 ∈ H1
0 (Ω)+ and

a(u1, v) = (f | v)L2(Ω1)
(v ∈ H1

0 (Ω1)),

a(u2, v) = (f | v)L2(Ω) (v ∈ H1
0 (Ω)).
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Observe that for v ∈ H1
0 (Ω1) the extension ṽ to Ω by zero belongs to H1

0 (Ω) and that

∂j ṽ = ∂̃jv for all j ∈ {1, . . . , n} (see Exercise 4.7(a)). In this sense we will consider H1
0 (Ω1)

as embedded into H1
0 (Ω) and omit the tilde. The above formulas imply a(u1−u2, v) = 0 for

all v ∈ H1
0 (Ω1). Clearly 0 ⩽ (u1−u2)+ ⩽ u1, and it follows from Proposition 11.9 that v :=

(u1−u2)+ ∈ H1
0 (Ω1). Hence a(u1−u2, (u1−u2)+) = 0. Since a((u1−u2)−, (u1−u2)+) = 0

it follows that a((u1 − u2)
+) = 0 and thus (u1 − u2)

+ = 0 by the coercivity assumption.
Therefore u1 ⩽ u2.

Notes

The application of the Beurling–Deny criteria to elliptic operators has a long history.
In the beginning, mostly symmetric operators were studied, in particular in connection
with the heat equation with potential (“Schrödinger semigroups”); see for instance
[ReSi78], [Dav89]. The application to non-symmetric operators seems to start with
[MaRo92], [Ouh92], [Ouh96]; see [Ouh05] for a more recent presentation. Domination
is also considered in these references. A domination criterion for positive semigroups is
given in Exercise 11.6; it is interesting to note that the conditions stated there are in
fact necessary; see [MVV05; Corollary 4.3]. We refer to [MVV05] and the literature cited
there for more general domination results and for a treatment in the context of invariance
criteria.

Perturbations as in Lemma 11.1 play an important role for evolution equations that
are second order in time, and for their associated cosine functions; see Chapter 7 and
Section 3.14 as well as the corresponding notes in [ABHN11].

We note that the treatment of second order elliptic operators by forms is particularly
effective for operators in divergence form, as written in (11.2). This terminology concerns
the second order part of the operator. Transforming an expression

∑n
j,k=1 ajk∂j∂ku into

divergence form would require differentiability properties of the coefficients ajk and produce
first order terms.

In the context of Section 11.4 it is a remarkable fact that, even if the assumptions of
Theorem 11.14 are not satisfied, the semigroup operators TD(t) always extend to bounded
operators TD,p(t) on Lp(Ω), and that TD,p thus defined is a C0-semigroup on Lp(Ω), for all
p ∈ [1,∞). The same is true for the semigroup TN if Ω is bounded and has C1-boundary
(or, less restrictively, satisfies an interior cone condition). This follows from the results of
[Dan00; Section 6], where it is shown that the semigroup operators have integral kernels
satisfying Gaussian estimates. If K = C, then it follows that the semigroups TD,p and
TN,p extend to holomorphic C0-semigroups on Lp(Ω), for all p ∈ [1,∞), with the same
angle of holomorphy as for p = 2 (see [Ouh95a; Theorem 2.4] for the case of self-adjoint
semigroups, and [Hie96; Theorem 2.3] for the general case). In particular, if the coefficient
matrices (ajk(x)) are self-adjoint, then all the semigroups are holomorphic of angle π/2;
cf. Remark 11.5(a). This is in contrast to Theorem 10.10, where the angle is obtained by
interpolation and depends on p.
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Exercises

11.1 Let (ajk) ∈ Rn×n, α > 0 be such that

n∑
j,k=1

ajkξkξj ⩾ α|ξ|2

for all ξ ∈ Rn. Show that

Re
n∑

j,k=1

ajkξkξj ⩾ α|ξ|2

for all ξ ∈ Cn.

11.2 Let Ω ⊆ R2 be open, (ajk) = ( 1 1
−1 1 ), b = c = 0, d = 0.

(a) Show that AD = −∆D (with AD as defined in Example 11.4(a)).
(b) Assume that Ω is bounded and has C1-boundary. Find the conormal derivative

corresponding to AN; cf. Example 11.4(b). Show that AN ̸= −∆N if Ω ̸= ∅. (Hint: Find
u, v ∈ H1(Ω;R) such that

∫
Ω
(ajk)∇u · ∇v dx ̸=

∫
Ω
∇u · ∇v dx and apply Exercise 5.3(d).)

11.3 Let ajk, bj, cj, d be as in Section 11.2.
(a) Assume additionally that b ∈ C1

b(Ω;Kn) (bounded derivatives!), c = −b, d = − div b.
Let the formal elliptic operators A1,A2, in the sense of (11.2), be defined by

A1u := −
n∑

j,k=1

∂j(ajk∂ku) + b ·∇u, A2u := −
n∑

j,k=1

∂j(ajk∂ku)− div(cu) + du.

Show that A1,D = A2,D.
(b) Assume additionally that b, c ∈ C1

b(Ω;Kn), c = b, and let A be defined by

Au := −
n∑

j,k=1

∂j(ajk∂ku) + b ·∇u− div(cu).

Show that AD is associated with a formal elliptic operator without drift terms.

11.4 Let K = R, and let Ω ⊆ Rn be open.
(a) Let u ∈ H1(Ω)+. Show that (u− 1

n)
+ → u in H1(Ω).

(b) In the situation of Theorem 11.14, show that div c ⩽ d is a necessary condition for
TD to be sub-Markovian if div c ∈ L1,loc(Ω). (Hint: Let φ ∈ C∞

c (Ω)+, put un := (φ− 1
n)

+

and show that
∫
(c · ∇un + dun) dx ⩾ 0, for all n ∈ N).

11.5 Prove Remark 11.16(b).

11.6 Let K = R, (Ω, µ) a measure space, H := L2(µ), V, W Hilbert spaces, V
d
↪→H,

W
d
↪→H, and let a : V ×V → R, b : W×W → R be bounded quasi-coercive forms. Denote

by A the operator associated with a and by B the operator associated with b. Assume that
the semigroups T generated by −A and S generated by −B are both positive. (Recall
that then V and W are sublattices of L2(µ), by Theorem 10.15(a).) Assume that

(i) V is an order ideal in W ;

(ii) a(u, v) ⩾ b(u, v) for all 0 ⩽ u, v ∈ V .

Show that T (t) ⩽ S(t) for all t ⩾ 0. (Hint: Proceed as in the proof of Theorem 11.18.)
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11.7 LetK = R, let Ω ⊆ Rn be a bounded open set with C1-boundary, β, β1, β2 ∈ L∞(∂Ω),
and let Tβ, Tβ1 , Tβ2 be the semigroups on L2(Ω) generated by the corresponding Robin
Laplacians, as in Section 7.5. Use Exercise 11.6 to show:
(a) Tβ1(t) ⩽ Tβ2(t) for all t ⩾ 0 if β1 ⩾ β2.
(b) TD(t) ⩽ Tβ(t) ⩽ TN(t) for all t ⩾ 0 if β ⩾ 0, where TD and TN are the semigroups

on L2(Ω) generated by the Dirichlet and Neumann Laplacians.

11.8 Let Ω ⊆ Rn be a bounded open set with C1-boundary, and let ajk, bj, cj, d be as in
Section 11.2. In addition let β ∈ L∞(∂Ω). Define a suitable form on V := H1(Ω) such
that the associated operator Aβ is the realisation of the elliptic operator A from (11.2)
with (generalised) Robin boundary conditions,

Aβ =
{
(u, f) ∈ Amax ; ν ·

(
(ajk)∇u+ cu

)
∂Ω + βu|∂Ω = 0

}
.

Hint: Recall the proof of Theorem 7.16. It is part of the task to define the weak normal
trace ν · w|∂Ω of a vector field w ∈ L2(Ω;Kn) with divw ∈ L2(Ω).



Chapter 12

Sectorial forms

In this chapter we study sectorial forms a : V × V → C in the general situation when V is
just a vector space (and not necessarily a Hilbert space). As in Chapter 5, j : V → H is a
linear mapping with dense range in a Hilbert space H. In Section 12.1 we describe how
to associate an m-sectorial operator in H with the form (a, j) in this general setting. If
the form is closed (see Section 12.1 for the definition), then the approach presented here
is equivalent to the approach via j-coercive forms. In Section 12.4 we give an alternative
description of the associated operator, in the non-closed case. Two examples are given
that illustrate the theory: the Robin Laplacian and the Dirichlet-to-Neumann operator
are revisited, but now on rough domains.

12.1 Operators associated with sectorial forms

As defined in Section 5.1, a form a is a sesquilinear mapping a : V × V → K, where V
is a K-vector space. In contrast to previous chapters we do not assume V to carry any
additional structure. For our purposes it will be convenient to simply call V the domain
of a and to put dom(a) := V . Evidently, this is a misuse of the symbol ‘dom’ since the
domain of a, in the usual sense, is the cartesian product V × V . However, this notation is
useful, has a long history, and should not lead to confusion.
Let K = C, and let a : dom(a)× dom(a) → C be a form. We recall that, by definition,

a is sectorial if there exists θ ∈ [0, π/2) such that a(u) ∈ Σθ for all u ∈ dom(a), and that
this holds if and only if a is accretive and there exists c ⩾ 0 such that

|Im a(u)| ⩽ cRe a(u) (12.1)

for all u ∈ dom(a). We further recall that a = Re a + i Im a with the symmetric forms
Re a, Im a : dom(a)× dom(a) → C, and that Re a(u) = (Re a)(u) and Im a(u) = (Im a)(u)
for all u ∈ dom(a). Using Proposition 5.2 we see that (12.1) implies the key inequality

|a(u, v)| ⩽ (1 + c)(Re a(u))1/2(Re a(v))1/2, (12.2)

which expresses a sort of intrinsic continuity of a. Observe that an accretive form a is
symmetric if and only if (12.1) or (12.2) holds with c = 0.
Let H be a complex Hilbert space. If a : dom(a) × dom(a) → C is a sectorial form

and j : dom(a) → H is linear, then for brevity we call the couple (a, j) a sectorial form
in H . In the special case when a is symmetric and accretive, we call (a, j) an accretive
symmetric form in H . We say that (a, j) is densely defined if j has dense range.
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12.1 Remark. In our applications in the last two sections of the present chapter we
will consider accretive symmetric forms in real Hilbert spaces. In this situation the
key inequality (12.2) holds with c = 0. A careful inspection of our treatment shows
that the results of the chapter depend on (12.2) rather than on (12.1) and that they
remain valid in real Hilbert spaces if one replaces ‘sectorial form’ by ‘accretive symmetric
form’, ‘sectorial operator’ by ‘accretive symmetric operator’ and ‘m-sectorial operator’ by
‘accretive self-adjoint operator’. △

12.2 Proposition. Let (a, j) be a densely defined sectorial form in H. Then

A0 :=
{
(x, y) ∈ H ×H ; ∃u ∈ dom(a) : j(u) = x, a(u, v) = (y | j(v))H (v ∈ dom(a))

}
(12.3)

defines a sectorial operator in H.

Proof. (i) Let (0, y) ∈ A0. We show that y = 0; then it follows that A0 is an operator.
By definition there exists u ∈ dom(a) such that j(u) = 0 and a(u, v) = (y | j(v))H for
all v ∈ dom(a). In particular, a(u) = 0. By (12.2) this implies that a(u, v) = 0 for all
v ∈ dom(a). Consequently (y | j(v))H = 0 for all v ∈ dom(a). Since j has dense range it
follows that y = 0.
(ii) Let x ∈ dom(A0). Then there exists u ∈ dom(a) such that j(u) = x and a(u, v) =

(A0x | j(v))H for all v ∈ dom(a). In particular, (A0x |x) = a(u). Thus A0 is sectorial.

In general, the operator A0 is not m-sectorial (see Exercise 12.2), but below we will
construct an m-sectorial extension. The idea is to use a completion procedure that enables
us to apply the generation theorems of Chapter 5. The resulting operator will be discussed
in Theorem 12.4.
Let (a, j) be a densely defined sectorial form in H. Then

(u | v)a,j := (Re a)(u, v) + (j(u) | j(v))H (12.4)

defines a semi-inner product, i.e. a symmetric, accretive sesquilinear form on dom(a).
Thus

∥u∥a,j :=
√
(u |u)a,j =

(
Re a(u) + ∥j(u)∥2H

)1/2
defines a semi-norm on dom(a). (We will suppress ‘j’ in the index if dom(a) ⊆ H and
j is the natural embedding.)

12.3 Remark (Completion of a semi-inner product space). Let E be a vector
space over K and ( · | ·) a semi-inner product on E (i.e. the form (· | ·) is symmetric
and accretive), with associated semi-norm ∥·∥.
(a) A completion of E is a pair (Ẽ, q) consisting of a Hilbert space Ẽ and a linear

mapping q : E → Ẽ that

(i) is isometric, i.e. (q(u) | q(v))Ẽ = (u | v) for all u, v ∈ E, and

(ii) has dense range.

For the existence of a completion, note that F := {u ∈ E ; ∥u∥ = 0} is a subspace
of E, and let q : E → E/F =: G denote the quotient map. Since |(u | v)| ⩽ ∥u∥∥v∥, by
Proposition 5.2, ∥u∥ = 0 implies (u | v) = 0 for all v ∈ E. As a consequence, putting
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(q(u) | q(v))G = (u | v) one obtains a well-defined scalar product onG that makes q isometric.
Then properties (i) and (ii) are satisfied with the completion Ẽ of the pre-Hilbert space G.
It follows from part (c) below that the completion (Ẽ, q) is unique up to unitary

equivalence. Sometimes we drop the letter q and speak of Ẽ as the completion of E.
(b) The mapping q is injective if and only if (· | ·) is positive definite, and q is surjective

if and only if (E, ∥·∥) is complete. If (E, ∥·∥) is complete, but (· | ·) is not positive definite,
then the completion (Ẽ, q) = (E/F, q) is different from E. (Recall that a semi-normed
space is called complete if every Cauchy sequence is convergent.)
(c) If H is a Hilbert space and j : E → H is a bounded linear operator, then there exists a

unique bounded linear operator ȷ̃ : Ẽ → H such that ȷ̃ ◦q = j. Indeed, there exists a unique
operator ȷ̃0 : E/F → H such that ȷ̃0 ◦ q = j, and this (bounded) operator has the asserted
extension ȷ̃ . Similarly, if a : E × E → K is a bounded form (i.e. |a(u, v)| ⩽M∥u∥∥v∥ for

all u, v ∈ E), then there exists a uniquely determined bounded form ã : Ẽ × Ẽ → K such
that ã(q(u), q(v)) = a(u, v) for all u, v ∈ E. △

We now construct the m-sectorial operator associated with a sectorial form. Let H be a
complex Hilbert space, and let (a, j) be a densely defined sectorial form in H. Then (12.2)
says that a is a bounded form on the semi-inner product space (dom(a), (· | ·)a,j). Let
(V, q) denote the completion of (dom(a), (· | ·)a,j), and let ȷ̃ : V → H and ã : V × V → C
be as explained in Remark 12.3(c). Observe that ã is sectorial and that

Re ã(q(u)) + ∥ȷ̃(q(u))∥2H = Re a(u) + ∥j(u)∥2H = ∥u∥2a,j = ∥q(u)∥2V

for all u ∈ dom(a). As ran(q) is dense in V , and ã as well as q are continuous, we conclude
that Re ã(v) + ∥ȷ̃(v)∥2H = ∥v∥2V for all v ∈ V . This equality shows that ã is ȷ̃-coercive.
Let A be the operator associated with (ã, ȷ̃), as described in Section 5.3. We call A the
operator associated with (a, j), and we write A ∼ (a, j). We recall that

A =
{
(x, y) ∈ H ×H ; ∃u ∈ V : ȷ̃(u) = x, ã(u, v) = (y | ȷ̃(v))H (v ∈ V )

}
; (12.5)

for another description of A we refer to Theorem 12.11.
We summarise the properties of the operator A in the next theorem. A sectorial

form (a, j) in a complex Hilbert space is called closed if the semi-inner product space
(dom(a), (· | ·)a,j) is complete.

12.4 Theorem. Let (a, j) be a densely defined sectorial form in a complex Hilbert space H.
Then the operator A ∼ (a, j) in (12.5) is an m-sectorial extension of the operator A0 defined
in (12.3). If the form a is symmetric, then A is self-adjoint. If (a, j) is closed, then
A = A0.

Proof. The operator A is m-sectorial by Corollary 5.11. If (x, y) ∈ A0, then there exists
u ∈ dom(a) such that j(u) = x and a(u, v) = (y | j(v)) for all v ∈ dom(a). It follows that
ȷ̃(q(u)) = x and

ã(q(u), ṽ) = (y | ȷ̃(ṽ)) (12.6)

for all ṽ ∈ ran(q). The denseness of ran(q) in V and the continuity of ã and ȷ̃ imply that
(12.6) carries over to all ṽ ∈ V , and this shows that (x, y) ∈ A.
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Again by denseness and continuity, the symmetry of a carries over to ã, and then the
self-adjointness of A follows from Theorem 6.11.
If (a, j) is closed, then q is surjective. Let (x, y) ∈ A, and let ũ ∈ V be such that

ȷ̃(ũ) = x and ã(ũ, ṽ) = (y | ȷ̃(ṽ)) for all ṽ ∈ V . There exists u ∈ dom(a) such that ũ = q(u).
Then

a(u, v) = ã(ũ, q(v)) =
(
y
∣∣ ȷ̃(q(v))) = (y | j(v))

for all v ∈ dom(a), and since j(u) = ȷ̃(q(u)) = x, it follows that (x, y) ∈ A0.

The assertions of Theorem 12.4 remain valid – with appropriate changes – if (a, j) is
merely a quasi-sectorial form in H, i.e., if instead of a being sectorial one assumes that
there exists ω ∈ R such that the shifted form

aω(u, v) := a(u, v) + ω(j(u) | j(v))H (u, v ∈ dom(a))

is sectorial. The number −ω is called a vertex of (a, j), and (a, j) is closed if (aω, j)
is closed. As before, the operator A associated with (a, j) is given by (12.5), where
now V is the completion of (dom(a), ( · | ·)aω,j); note that a is a bounded form on this
semi-inner product space. The ‘extension’ ã of a from Remark 12.3(c) is easily seen to
satisfy Re ã(v) + (ω + 1)∥ȷ̃(v)∥2H = ∥v∥2V for all v ∈ V , and hence ã is ȷ̃-coercive. This
implies that A is a quasi-m-sectorial operator. Observe that A does not depend on the
choice of the vertex −ω because different values of ω result in equivalent semi-norms
∥·∥aω,j on dom(a).

12.5 Remark. In the context described above, let Aω denote the (sectorial) operator
associated with the form (aω, j). One easily checks that ãω = ãω, so it follows from
Remark 5.10 that Aω = A+ ωI.
In view of Remark 12.1, the same observation applies in the real case if (a, j) is a

quasi-accretive symmetric form in H, i.e. if (aω, j) is an accretive symmetric form
in H for some ω ∈ R. In the literature, an embedded symmetric form is usually called
‘bounded from below’ if it is quasi-accretive. △

We introduce one more notion that will be used below. For a quasi-sectorial form
(a, j) with vertex −ω, a subspace D of dom(a) is called a core for (a, j) if D is dense in
(dom(a), ∥·∥aω,j). This notion also makes sense for quasi-accretive symmetric forms in
real Hilbert spaces.

12.6 Example. If (a, j) is a quasi-sectorial form and D is a core for a, then it is immediate
from the definitions that the operator associated with (a|D×D, j|D) is the same as the one
associated with (a, j).
For instance, if Ω is an open subset of Rn, then the operator associated with the

restriction of the classical Dirchlet form to C∞
c (Ω) is the negative Dirichlet Laplacian. △

12.7 Remark. In Theorems 5.6 and 5.8, Corollary 5.11 and Theorem 12.4 we have
formulated generation results for m-accretive operators under different hypotheses. Looking
more closely, one can see that Theorem 5.6 is the basic result, which is then applied in
different situations. In this context we also mention the generation result Theorem 8.11,
which is proved by similar arguments as Theorem 5.6, with the Fredholm alternative as
an additional argument. △



157

12.2 The Friedrichs extension

The main result of this section is that every densely defined sectorial operator has an
m-sectorial extension. This extension is associated with a suitably constructed closed
form, and an important “by-product” of the construction will be that every m-sectorial
operator is associated with a unique embedded closed sectorial form.
Let H be a complex Hilbert space. We consider the situation in which a is a sectorial

form whose domain is a subspace of H and j : dom(a) ↪→ H is the embedding. In this
case we drop the letter j in our notation and speak of a form a in H. As before we call a
an embedded form.
If dom(a) is dense and a is closed, then by Theorem 12.4 the associated m-sectorial

operator is given by

A =
{
(u, y) ∈ dom(a)×H ; a(u, v) = (y | v)H (v ∈ dom(a))

}
. (12.7)

Here, a being closed means that dom(a) is complete for the norm ∥·∥a given by

∥u∥2a = Re a(u) + ∥u∥2H .

12.8 Theorem (Friedrichs extension). Let B be a densely defined sectorial operator
in H. Then there exists a unique densely defined embedded closed sectorial form a in H
such that dom(B) ⊆ dom(a), dom(B) is a core for a, and

a(u, v) = (Bu | v)H
(
u ∈ dom(B), v ∈ dom(a)

)
.

Let A ∼ a. Then B ⊆ A.

The operator A is called the Friedrichs extension of B. The proof given below also
works for accretive symmetric operators in real Hilbert spaces. In that case one obtains
an accretive symmetric form a, and the Friedrichs extension A is an accretive self-adjoint
operator; cf. Remark 12.1.

Proof of Theorem 12.8. The uniqueness of a follows from the following general fact: if
a1 and a2 are two embedded closed sectorial forms in H with a common core D ⊆
dom(a1) ∩ dom(a2), then a1|D×D = a2|D×D implies a1 = a2.
For the existence define b : dom(B) × dom(B) → C by b(u, v) := (Bu | v)H . Then b

is densely defined and sectorial. We use the embedding j : dom(b) ↪→ H and the scalar
product (· | ·)b analogous to (12.4) on dom(b) = dom(B). Let (V, q) be the completion of
(dom(b), ( · | ·)b); then q is injective (cf. Remark 12.3(b)). We consider dom(b) as a subset
of V and suppress the letter q in our notation.
We now show that ȷ̃ ∈ L(V,H) – from Remark 12.3(c) – is injective. Let u ∈ V, ȷ̃(u) = 0.

There exists a sequence (un) in dom(b) such that un → u in V . Then un = ȷ̃(un)→ ȷ̃(u) = 0
in H. Using (12.2) one obtains

Re b(un) = Re b(un, un − uk) + Re b(un, uk)

⩽ (1 + c)∥un∥b∥un − uk∥b + |(Bun |uk)H | (k, n ∈ N).



158

Letting k → ∞ we deduce that Re b(un) ⩽ (1+ c)∥un∥V ∥un−u∥V for all n ∈ N. It follows
that ∥un∥2V = Re b(un) + ∥un∥2H → 0 as n→ ∞, ∥u∥V = limn→∞ ∥un∥V = 0.
Because ȷ̃ is injective we can consider V as a subspace of H and a := b̃ – from

Remark 12.3(c) – as an embedded form (with dom(a) = V ). Then a is a closed sectorial
form in H with the required properties, and it follows from (12.7) that the associated
operator A is an extension of B.

12.9 Corollary. Let A be an m-sectorial operator in H. Then there exists a unique
densely defined embedded closed sectorial form a in H such that A is associated with a.

Proof. The existence follows from Theorem 12.8 since m-sectorial operators do not have
proper m-sectorial extensions.
In order to prove the uniqueness, let a be a form with the asserted properties. Then

dom(A) ⊆ dom(a) and a(u, v) = (Au | v) for all u, v ∈ dom(A). Moreover dom(A) is dense
in (dom(a), ∥·∥a) by Lemma 9.21(b). Therefore the uniqueness follows from the uniqueness
in Theorem 12.8. (We also refer to Exercise 5.3(c) for the uniqueness assertion.)

Just like Theorem 12.8, Corollary 12.9 also holds for accretive symmetric operators in
real Hilbert spaces.

12.3 Sectorial versus coercive

We start by giving a short summary of the different types of forms that we have introduced
so far. In Section 5.3 we discussed bounded j-coercive forms on V and their associated
m-accretive operators in H (which are m-sectorial if K = C). Here, both V and H are
Hilbert spaces. In the special case when V ⊆ H and j : V ↪→ H is the embedding, the form
was called quasi-coercive. In Section 8.3 we investigated the related concept of essentially
coercive forms. We recall from Proposition 8.14 that it is always possible to perform a
reduction to the embedded case.
In Section 12.1 we have introduced the notion of a (quasi-)sectorial form (a, j) in H.

The new aspect of this notion is that the domain of a is not supposed to be a Hilbert
space; the corresponding semi-inner product (· | ·)a,j need not be positive definite, nor
does (dom(a), ∥·∥a,j) have to be complete. The construction of the associated operator
in H by completion is basically a reduction to the case of j-coercive forms. The point in
this approach is that the norm ∥·∥V , needed for the generation theorems of Section 5, is
defined intrinsically by the form itself and the mapping j. In the special case of closed
forms the associated operator is given by the same formula as for j-coercive forms, by the
last assertion of Theorem 12.4.
In the following remark we summarise the relations between the notions ‘(closed)

quasi-sectorial form’ and ‘bounded j-coercive form’, for K = C.

12.10 Remarks. (a) Let V be a Hilbert space and j ∈ L(V,H). Let a : V × V → C be a
bounded j-coercive form, say

|a(u, v)| ⩽M∥u∥V ∥v∥V , Re a(u) + ω∥j(u)∥2H ⩾ α∥u∥2V (u, v ∈ dom(a)).
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Then aω is sectorial (see Theorem 5.8) and the norm ∥·∥aω,j is equivalent to the given
norm ∥·∥V on V . It follows that (a, j) is a closed quasi-sectorial form in H.
(b) Conversely, let (a, j) be a closed quasi-sectorial form in H, with vertex −ω, and

assume that ( · | ·)aω,j is positive definite. Then V := dom(a) is a Hilbert space with scalar
product ( · | ·)aω,j, and a is a bounded j-coercive form on V .
(c) Let (a, j) be a quasi-sectorial form in H, with vertex −ω. Then the completion

(V, q) of (dom(a), (· | ·)aω,j) is a Hilbert space for the norm given by ∥u∥V := ∥u∥ãω ,ȷ̃ =
(Re ã(u) + (ω + 1)∥ȷ̃(u)∥2H)1/2. The form ã is bounded for this norm and ȷ̃-coercive.

If additionally the form (a, j) is closed, then the construction simplifies, because the
completion V of dom(a) is isomorphic to dom(a)/{u ∈ dom(a) ; ∥u∥aω,j = 0}, q : dom(a)→
V is the quotient map, and ã is given by

ã(q(u), q(v)) = a(u, v) (u, v ∈ dom(a)). △

12.4 More on the non-closed case

In Section 12.1 we have defined the operator associated with a densely defined sectorial
form that is not necessarily closed; see (12.5). In (12.8) we give a more direct description
of this operator that avoids the reference to completion; it will be applied to concrete
examples in Sections 12.5 and 12.6. It is surprising that, out of the purely algebraic
condition of sectoriality, by the approximation formula (12.8) we obtain the generator of
a holomorphic C0-semigroup.

12.11 Theorem (Approximation formula). Let H be a complex Hilbert space, and let
(a, j) be a densely defined sectorial form in H. Then for the operator A ∼ (a, j) one has

A =
{
(x, y) ∈ H ×H ; there exists (uk) in dom(a) such that

(i) j(uk) → x as k → ∞,

(ii) limk,ℓ→∞Re a(uk − uℓ) = 0,

(iii) a(uk, v) → (y | j(v))H (v ∈ dom(a))
}
.

(12.8)

In this description, property (ii) can be replaced by

(ii′) supk∈NRe a(uk) <∞.

Proof. We recall the notation used in the definition (12.5) of A: (V, q) is the completion of
(dom(a), ( · | ·)a,j), and ȷ̃ : V → H and ã : V × V → C are as explained in Remark 12.3(c).

Let (x, y) ∈ A. Then there exists w ∈ V such that ȷ̃(w) = x and ã(w, v) = (y | ȷ̃(v))H
for all v ∈ V . Since q has dense range there exists a sequence (uk) in dom(a) such that
q(uk) → w in V . By the continuity of ȷ̃ it follows that j(uk) = ȷ̃(q(uk)) → ȷ̃(w) = x.
Since q is isometric, we obtain

Re a(uk − uℓ) + ∥j(uk)− j(uℓ)∥2H = ∥uk − uℓ∥2a = ∥q(uk)− q(uℓ)∥2V → 0

as k, ℓ→ ∞. Finally, for v ∈ dom(a) we find that

a(uk, v) = ã(q(uk), q(v)) → ã(w, q(v)) = (y | ȷ̃(q(v)))H = (y | j(v))H .
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Thus we have found a sequence (uk) satisfying (i), (ii) and (iii) – and hence also the
weaker property (ii′).
Conversely, let (x, y) ∈ H × H be such that there exists a sequence (uk) in dom(a)

satisfying (i), (ii′) and (iii). It follows from (i) together with (ii′) that supk∈N ∥uk∥a,j <∞.
Thus, taking a subsequence if necessary, we can assume that (q(uk)) converges weakly
to some w ∈ V . Hence j(uk) = ȷ̃(q(uk)) → ȷ̃(w) weakly in H, and so ȷ̃(w) = x by (i).
Property (iii) implies

ã(w, q(v)) = lim
k→∞

ã(q(uk), q(v)) = lim
k→∞

a(uk, v) = (y | j(v))H =
(
y
∣∣ ȷ̃(q(v)))

H

for all v ∈ dom(a). Since q has dense range and ã, ȷ̃ are continuous, we conclude that
ã(w, ṽ) = (y | ȷ̃(ṽ))H for all ṽ ∈ V , and thus (x, y) ∈ A.

With the same proof one obtains the following real version of Theorem 12.11; for the
second assertion we refer to Remark 12.1 and Theorem 12.4.

12.12 Theorem. Let (a, j) be a densely defined accretive symmetric form in a real Hilbert
space H. Then the operator A ∼ (a, j) is given by (12.8) (where (ii) or (ii′) can be used),
and A is self-adjoint and accretive.

12.13 Remarks. Here we assume that a is an embedded densely defined sectorial form
in H. Let j : dom(a) ↪→ H denote the embedding.
(a) Let (ã, ȷ̃) be the ‘extension’ of (a, j) as described in Remark 12.3(c). We call the

form a closable if ȷ̃ is injective. Then we may identify dom(ã) with a subspace of H and
consider ã as an embedded form.
An example of a closable form is the form b from the proof of Theorem 12.8 which leads

to the Friedrichs extension.
(b) We have seen that we may associate an m-sectorial operator A with the form a, no

matter whether a is closable or not. This means that in our context we can simply forget
about the notion of closability.
From Corollary 12.9 we know that there exists a unique embedded closed sectorial

form a in H that is associated with A. We refer to part (c) for a (somewhat involved)
description of a in terms of a; we will not use this description in our subsequent results.
(c) Using the results of Section 8.3, we can describe a as follows; in particular it will

turn out that dom(a) is a core for a.
Let (V, q) be the completion of (dom(a), ( · | ·)a); then q is injective by Remark 12.3(b).

The application of Proposition 8.16 implies that V = Vȷ̃(ã)⊕ ker(ȷ̃) is a topological direct
sum, where

Vȷ̃(ã) =
{
u ∈ V ; ã(u, v) = 0 (v ∈ ker(ȷ̃))

}
.

If we put ˇ̃a := ã|Vȷ̃ (ã)×Vȷ̃ (ã) and
ˇ̃ȷ := ȷ̃ |Vȷ̃ (ã), then the operator A associated with (a, j) is

also associated with the form (ˇ̃a, ˇ̃ȷ), by Proposition 8.14, and ˇ̃ȷ is injective. Therefore the
‘transported’ form a,

a(ˇ̃ȷ(u), ˇ̃ȷ(v)) := ã(u, v) (u, v ∈ Vȷ̃(ã))

is the unique embedded closed sectorial form associated with A.
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Let P, Q denote the projections corresponding to the direct sum V = Vȷ̃(ã) ⊕ ker(ȷ̃).
For u ∈ dom(a) one has

u = j(u) = ȷ̃(q(u)) = ȷ̃((P +Q)q(u)) = ȷ̃(Pq(u)),

and this shows that dom(a) = ȷ̃(Pq(dom(a)) ⊆ ȷ̃(Vȷ̃(ã)) = dom(a) and that

a(u, v) = ã(Pq(u), P q(v)) (u, v ∈ dom(a)).

Moreover, the denseness of q(dom(a)) in V implies that Pq(dom(a)) is dense in Vȷ̃(ã), i.e.
Pq(dom(a)) is a core for ˇ̃a; hence dom(a) is a core for a.
If additionally the form a is symmetric, then it turns out that a|dom(a)×dom(a) is the

‘regular part’ of a described in [Sim78; Section 2].
(d) We add a comment on the terminology. The term ‘closed form’ (in the situation

of embedded forms) was forged by Kato – see e.g. [Kat80; Chap. VI, §1.3] – in a vague
analogy to ‘closed operator’. However, whereas closed operators are closed in the product
topology, for forms there is no visible closed set. Note that the definition of ‘closable’
– see [Kat80; Chap. VI, §1.4] – requires the associated closed form to be an embedded
form. △

12.5 The Robin Laplacian for rough domains

Throughout this section the scalar field will be K = R. Let Ω ⊆ Rn be a bounded open
set. On ∂Ω we consider the (n−1)-dimensional Hausdorff measure Hn−1; we refer to
Section D.3 for the definition of Hausdorff measures and some of their properties. Here we
mention that the n-dimensional Hausdorff measure on Rn coincides with the n-dimensional
Lebesgue measure. Moreover, if Ω has C1-boundary, then Hn−1 coincides with the surface
measure σ. For both of these properties we refer to Appendix E.
We denote by L2(∂Ω) the space of L2-functions with respect to the Hausdorff mea-

sure Hn−1; as explained in the previous paragraph, the notation L2(∂Ω) is consistent with
the notation from Chapter 7. In the present section we assume that Hn−1(∂Ω) <∞.
We define the trace tr as the closure of the operator u 7→ u|∂Ω : C(Ω)∩H1(Ω) → L2(∂Ω)

in H1(Ω) × L2(∂Ω). For u ∈ H1(Ω) we write tru := {φ ∈ L2(∂Ω); (u, φ) ∈ tr}, which
means that

tru =
{
φ ∈ L2(∂Ω); there exists (uk) in C(Ω) ∩H1(Ω) such that

uk → u in H1(Ω), uk|∂Ω → φ in L2(∂Ω)
}
.

In general, the set tru may consist of more than one element (and may also be empty);
see Exercise 12.7. But if Ω has Lipschitz boundary, then tru is a singleton for each
u ∈ H1(Ω); in fact tr is a bounded operator. For the case of C1-boundary this property
has already been proved in Theorem 7.11, for the case of Lipschitz boundary we refer to
[Alt16; Theorem A8.6].
Let u ∈ H1(Ω) be such that ∆u ∈ L2(Ω). We say that ∂νu ∈ L2(∂Ω) if there exists

h ∈ L2(∂Ω) such that∫
Ω

∇u · ∇v dx+
∫
Ω

(∆u)v dx =

∫
∂Ω

hv dHn−1 (12.9)
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for all v ∈ C(Ω) ∩H1(Ω); in this case we define the weak normal derivative ∂νu := h.
The uniqueness of ∂νu is obtained from the denseness of

{
v|∂Ω ; v ∈ C1(Ω)

}
in L2(∂Ω) as

in Section 7.3.

12.14 Remarks. (a) The definition of the weak normal derivative given above is an
extension of the definition in Section 7.3. Note that in the present situation there may
exist points of ∂Ω for which there is no outer normal ν.
(b) The reader should be warned that the definition of ∂νu given above is not consistent

with our definition of ‘∂νu = 0’ (in quotes!) in Section 7.3. In fact, ‘∂νu = 0’ means that
(12.9) holds with h = 0 for all v ∈ H1(Ω) (and not just for v ∈ C(Ω) ∩H1(Ω)); see (7.7).
Thus, ‘∂νu = 0’ implies ∂νu = 0. The converse is true if Ω is such that C(Ω) ∩H1(Ω) is
dense in H1(Ω). We refer to Exercise 12.5 for an example showing that in general ∂νu = 0
does not imply ‘∂νu = 0’. △

Let β ∈ L∞(∂Ω), inf β > 0. Under our present general hypotheses, the Robin Lapla-
cian is defined by

∆β :=
{
(u, f) ∈ H1(Ω)× L2(Ω) ; ∆u = f, ∃φ ∈ tru : ∂νu = −βφ

}
.

12.15 Theorem. The operator −∆β is an accretive self-adjoint operator in L2(Ω).

Proof. Put dom(a) := C(Ω) ∩H1(Ω) and

a(u, v) :=

∫
Ω

∇u · ∇v dx+
∫
∂Ω

βuv dHn−1 .

Then a is densely defined in L2(Ω), symmetric and accretive. Let A be the operator asso-
ciated with (a, j); see Section 12.1. Then A is self-adjoint and accretive by Theorem 12.12,
and we use (12.8) to show that A = −∆β.
‘A ⊆ −∆β’. Let (u, f) ∈ A. Then there exists a sequence (uk) in dom(a) such that
(i) uk → u in L2(Ω),
(ii) limk,ℓ→∞ a(uk − uℓ) = 0,
(iii) a(uk, v) =

∫
Ω
∇uk · ∇v dx+

∫
∂Ω
βukv dHn−1 →

∫
Ω
fv dx for all v ∈ dom(a).

One concludes from (i) and (ii) that u ∈ H1(Ω) and uk → u in H1(Ω) and – using the
hypothesis inf β > 0 – that φ := limk→∞ uk|∂Ω exists in L2(∂Ω). Then φ ∈ tru. Now (iii)
implies that ∫

Ω

∇u · ∇v dx+
∫
∂Ω

βφv dHn−1 =

∫
Ω

fv dx

for all v ∈ dom(a). Taking v ∈ C∞
c (Ω) we obtain −∆u = f . Thus∫

Ω

∇u · ∇v dx+
∫
Ω

(∆u)v dx = −
∫
∂Ω

βφv dHn−1

for all v ∈ dom(a). This means that ∂νu = −βφ, by our definition (12.9).
‘−∆β ⊆ A’. Let (u, f) ∈ −∆β. Then u ∈ H1(Ω), f = −∆u, and there exists φ ∈ tru

such that ∂νu = −βφ. By the definition of tru, there exists a sequence (uk) in dom(a)
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such that uk → u in H1(Ω) and uk|∂Ω → φ in L2(∂Ω) as k → ∞. Thus (i) and (ii) hold,
and

a(uk, v) =

∫
Ω

∇uk ·∇v dx+
∫
∂Ω

βukv dHn−1 →
∫
Ω

∇u ·∇v dx+
∫
∂Ω

βφv dHn−1 =

∫
Ω

fv dx

for all v ∈ dom(a) since −∆u = f and ∂νu = −βφ, i.e. (iii) holds as well. It follows that
(u, f) ∈ A, by Theorem 12.12.

Actually it is not necessary to call on Theorem 12.11 for the proof of Theorem 12.15.
We add a proof that merely relies on the generation results of Section 5.3.

Second proof of Theorem 12.15. Let V be the closure of
{
(u, u|∂Ω) ; u ∈ C(Ω) ∩H1(Ω)

}
in H1(Ω)⊕ L2(∂Ω). (This just means that V is the linear relation tr introduced above.)
Put

a
(
(u, φ), (v, ψ)

)
:=

∫
Ω

∇u · ∇v dx+
∫
∂Ω

βφψ dHn−1

(
(u, φ), (v, ψ) ∈ V

)
,

and define j : V → L2(Ω) by j(u, φ) := u. Then a is a bounded j-coercive form on V
because inf β > 0, and j has dense range. Since a is symmetric and accretive, the associated
operator A is self-adjoint and accretive by the results of Chapters 5 and 6.
Let (u, f) ∈ A. Then there exists φ ∈ L2(∂Ω) such that (u, φ) ∈ V (so φ ∈ tru) and∫

Ω

∇u · ∇v dx+
∫
∂Ω

βφψ dHn−1 =

∫
Ω

fv dx (12.10)

for all (v, ψ) ∈ V . Employing (12.10) for all (v, 0) with v ∈ C∞
c (Ω) we obtain ∆u = −f .

Then using (12.10) once more for all (v, v|∂Ω) with v ∈ C(Ω) ∩H1(Ω), we conclude that
∂νu = −βφ ∈ L2(∂Ω).
Conversely, let (u, f) ∈ −∆β, i.e., u ∈ H1(Ω), f = −∆u, and there exists φ ∈ tru

such that ∂νu = −βφ. Then (12.10) holds for all v ∈ C(Ω) ∩H1(Ω), with ψ = v|∂Ω. By
denseness, (12.10) carries over to all (v, ψ) ∈ V ; hence (u, f) ∈ A.

We point out that the form a from the second proof of Theorem 12.15 is what one
obtains by applying the completion procedure from Remark 12.3(c) to the form a from
the first proof of Theorem 12.15. Note that one starts from an embedded form, but may
lose the injectivity of j in the course of the completion.
The results of this and the next section also hold for K = C. Of course, in the forms

and scalar products used in the proofs one then needs to take the complex conjugates of
the second arguments.

12.6 The Dirichlet-to-Neumann operator for rough
domains

Let Ω ⊆ Rn be a bounded open set. We keep the definitions concerning Hn−1, tr and ∂ν
from Section 12.5. Again we use K = R and assume that Hn−1(∂Ω) <∞. We now define
the Dirichlet-to-Neumann operator D0.
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12.16 Theorem. The linear relation

D0 :=
{
(g, h) ∈ L2(∂Ω)× L2(∂Ω); ∃u ∈ H1(Ω) : ∆u = 0, g ∈ tru, h = ∂νu

}
is an accretive self-adjoint operator in L2(∂Ω).

It is part of the assertion of Theorem 12.16 that D0 is an operator and not just a
relation. This is remarkable because, given g ∈ L2(∂Ω), there may exist several functions
u ∈ H1(Ω) such that ∆u = 0 and g ∈ tru, due to roughness of the boundary of Ω (see the
Notes of this chapter). That D0 is an operator means that the weak normal derivatives
∂νu of these functions must coincide if they exist in L2(∂Ω). It turns out that, more
strongly, at most one of these functions has a weak normal derivative in L2(∂Ω); see
Exercise 12.8(b).
For the proof of Theorem 12.16 we need a striking inequality due to Maz’ya. There

exists a constant c > 0 such that

∥u∥2L2(Ω) ⩽ c
(∫

Ω

|∇u|2 dx+
∫
∂Ω

|u|2 dHn−1

)
(12.11)

for all u ∈ C(Ω) ∩H1(Ω). We refer to Corollary D.10 for the proof of this inequality and
to Remarks 12.18 and D.11(a) for further comments.

Proof of Theorem 12.16. Put dom(a) := C(Ω)∩H1(Ω) and a(u, v) :=
∫
Ω
∇u · ∇v dx. Let

j : dom(a) → L2(∂Ω) be given by j(u) := u|∂Ω. Then (a, j) is an accretive symmetric form
in L2(∂Ω), and (a, j) is densely defined because C1(Ω) ⊆ dom(a); recall Section 7.3 for
the denseness of

{
v|∂Ω ; v ∈ C1(Ω)

}
in L2(∂Ω). Let A be the operator associated with

(a, j); see Section 12.1. By Theorem 12.12, A is self-adjoint and accretive; we use (12.8)
to show that A = D0.
Let (g, h) ∈ A. Then there exists a sequence (uk) in C(Ω)∩H1(Ω) such that uk|∂Ω → g

in L2(∂Ω), limk,ℓ→∞
∫
Ω
|∇(uk − uℓ)|2 dx = 0 and limk→∞ a(uk, v) =

∫
∂Ω
hv dHn−1 for all

v ∈ C(Ω) ∩ H1(Ω). Now inequality (12.11) implies that (uk) is a Cauchy sequence in
H1(Ω); let u ∈ H1(Ω) be its limit. Then g ∈ tru and∫

Ω

∇u · ∇v dx =

∫
∂Ω

hv dHn−1 (v ∈ C(Ω) ∩H1(Ω)).

Taking test functions v ∈ C∞
c (Ω) one obtains ∆u = 0. Thus∫

Ω

∇u · ∇v dx+
∫
Ω

(∆u)v dx =

∫
∂Ω

hv dHn−1

for all v ∈ C(Ω) ∩H1(Ω). Hence ∂νu = h by the definition in Section 12.5, and we have
shown that A ⊆ D0.
Conversely, let (g, h) ∈ D0. Then there exists u ∈ H1(Ω) such that g ∈ tru, ∆u = 0,

∂νu = h. Hence, there exists a sequence (uk) in dom(a) such that uk|∂Ω → g in L2(∂Ω)
and uk → u in H1(Ω). Then limk,ℓ→∞ a(uk − uℓ) = 0 and

a(uk, v) =

∫
Ω

∇uk ·∇v dx→
∫
Ω

∇u ·∇v dx =

∫
Ω

∇u ·∇v dx+
∫
Ω

(∆u)v dx =

∫
∂Ω

hv dHn−1

for all v ∈ dom(a). This shows that (g, h) ∈ A.
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12.17 Remark. One can prove Theorem 12.16 without using the results of Sections 12.1
to 12.4, similarly as in our second proof of Theorem 12.15. Again one puts V := tr, and
one defines the form a on V by

a
(
(u, φ), (v, ψ)

)
:=

∫
Ω

∇u · ∇v dx
(
(u, φ), (v, ψ) ∈ V

)
and j : V → L2(∂Ω) by j

(
(u, φ)

)
:= φ. We point out that then Maz’ya’s inequality (12.11)

is responsible for the j-coercivity of the form a: for (u, φ) ∈ V one first obtains

1
c
∥u∥2L2(Ω) ⩽

∫
Ω

|∇u|2 dx+
∫
∂Ω

|φ|2 dHn−1 = a
(
(u, φ)

)
+ ∥j(u, φ)∥2L2(∂Ω) (12.12)

by denseness, and then a
(
(u, φ)

)
+ ∥j(u, φ)∥22 ⩾ 1

2c
∥u∥22 + 1

2
∥∇u∥22.

The reader is asked to carry out the details in Exercise 12.8. △

12.18 Remark. If Ω has C1-boundary, then we can easily prove a version of (12.11) at
this point. Indeed, in the proof of Proposition 8.2 we have shown that∫

Ω

|u|2 dx ⩽
1

2

∫
Ω

|u|2 dx+ 1

2

∫
Ω

|∇u|2 dx+ c

∫
Ω

|∇u|2 dx+ c

∫
∂Ω

|u|2 dσ,

and this implies

∥u∥2L2(Ω) ⩽ (2c+1)

∫
Ω

|∇u|2 dx+ 2c

∫
∂Ω

|u|2 dσ.

Note, however, that the case of C1-boundary has already been treated in Section 8.1; the
purpose of the present section is to treat open sets with rough boundary. (The attentive
reader will have noticed that above we have proved (12.11) with σ in place of Hn−1. In
Theorem E.3 we show that in fact σ and Hn−1 coincide on ∂Ω.)

Inequality (12.11) is a consequence of the following remarkable stronger inequality due
to Maz’ya. There exists a constant c(n), only depending on the dimension n, such that

∥u∥Lq(Ω) ⩽ c(n)
(∫

Ω

|∇u| dx+
∫
∂Ω

|u| dHn−1

)
(12.13)

for all u ∈ C(Ω)∩W 1
1 (Ω), where q =

n
n−1

; see [Maz11; Example 5.6.2/1 and Theorem 5.6.3].
We refer to Section D.1 for the definition of the Sobolev spaceW 1

1 (Ω) and to Remark D.11(a)
for comments on (12.13) and its proof. △

Notes

The treatment of sectorial forms in the setting of this chapter is adapted from [ArEl12b]. In
that paper, our description of the operator A in Theorem 12.11 is taken as the definition
of the operator associated with a non-closed sectorial form (a, j). The applications
treated in Sections 12.5 and 12.6 are also taken from [ArEl12b]. More information on the
Dirichlet-to-Neumann operator is contained in [ArEl11].
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For semi-bounded symmetric operators, the Friedrichs extension is contained in [Fri34];
see also Freudenthal [Fre36]. The Friedrichs extension for sectorial operators is due to
Kato [Kat80; Chap. VI, §2.3].
One may ask which operators are associated with forms. By Theorem 12.4 and

Corollary 12.9, an operator A in a complex Hilbert space H is associated with a densely
defined embedded closed sectorial form in H if and only if A is m-sectorial. (Recall
that the latter is equivalent to −A being the generator of a contractive holomorphic
C0-semigroup on H.) As was illustrated in Exercise 5.9, one obtains a larger class of
operators if one allows changes of the scalar product on H. In this regard, the following
result extends the above equivalence for an operator A in a complex Hilbert space H.
There exist an embedded closed quasi-sectorial form a and an equivalent scalar product
[·, ·] on H such that the operator A is associated with the form a in (H, [·, ·]) if and only
if −A generates a holomorphic C0-semigroup and A+ ω has bounded imaginary powers
for large ω ∈ R. For this equivalence we refer to [ABH01; Theorem 3.3] and [Haa06;
Corollary 7.3.10], where also the notion of bounded imaginary powers is explained.
We now give some further information concerning the trace, as it was defined in

Section 12.5. In the remainder of these Notes we always assume that Ω ⊆ Rn is a bounded
open set with Hn−1(∂Ω) < ∞. Recall that the linear relation tr in H1(Ω) × L2(∂Ω) is
defined as the closure of the operator u 7→ u|∂Ω : C(Ω)∩H1(Ω) → L2(∂Ω). For u ∈ H1(Ω),
the set tru is sometimes called the ‘approximative trace’ of u.
An intriguing question is whether tr 0 = {0} (or equivalently, whether tru is a singleton

for some/all u ∈ dom(tr)). In general, the answer is “no”, as one sees from Exercise 12.7(b);
for an example with a connected set Ω see [ArEl11; Example 4.4]. Recent positive results
are due to Sauter, who investigates this question systematically: if Ω has continuous
boundary, then tr 0 = {0} (see [Sau20; Theorem 4.11]). Surprisingly, in dimension n = 2
the same result holds if Ω is merely connected; see [Sau20; Corollary 5.4]. (In fact, Sauter
defines and investigates the approximative trace for general non-empty open subsets
of Rn.)
Another interesting question is whether the space H1

0 (Ω) can be characterised by means
of the approximative trace. This is true if Ω has continuous boundary: then it follows
from [Sau13; Corollary 7.48] in combination with the result mentioned in the previous
paragraph that H1

0 (Ω) = {u ∈ H1(Ω) ; tru = {0}}; this generalises Theorem 7.12.
In the general case, the inclusion H1

0 (Ω) ⊆ {u ∈ H1(Ω) ; 0 ∈ tru} is immediate from the
definition of the trace. Below we show that the reverse inclusion holds if and only if the
Dirichlet problem ∆u = 0, tru ∋ g has a unique solution u ∈ H1(Ω) for each g ∈ ran(tr);
see also [AES23; Theorem 5.2]. An example for non-uniqueness can be found in [AES23;
Example 5.3], with the set Ω = B(0, 2) \ (S×{0}) ⊆ R2, where S ⊆ R is the usual ‘middle
third Cantor set’.
We give a short proof of the equivalence mentioned in the previous paragraph. Let

H1
∆(Ω) := {u ∈ H1(Ω); ∆u = 0}. It follows from Exercise 7.9 that the mapping

J : H1
∆(Ω) → H1(Ω)/H1

0 (Ω), u 7→ u + H1
0 (Ω) is bijective. The equality of the spaces

H1
0 (Ω) and {u ∈ H1(Ω); 0 ∈ tru} can be rephrased as the property that the mapping

t̃r : H1(Ω)/H1
0 (Ω) → ran(tr), u+H1

0 (Ω) 7→ tru is bijective. Thus, equality of the spaces
holds if and only if tr : H1

∆(Ω) → ran(tr) is bijective, and the latter property signifies
uniqueness of solutions of the Dirichlet problem.
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Exercises

12.1 Let V be a C-vector space, H a complex Hilbert space, 0 ̸= j : V → H linear,
a : V × V → C a sesquilinear form. Let ω ∈ R, θ ∈ [0, π/2). Show that the following two
properties are equivalent:

(i) (a, j) is quasi-sectorial with vertex −ω and angle θ,

(ii) {a(u) ; u ∈ V, ∥j(u)∥H = 1} ⊆ −ω + Σθ.

Hint: First show that (ii) implies {a(u) ; u ∈ V, j(u) = 0} ⊆ Σθ.

12.2 Let Ω be a non-empty bounded open subset of Rn, and let a be the classical Dirichlet
form in L2(Ω) with dom(a) := C∞

c (Ω). Recall that the m-sectorial operator A associated
with a by (12.5) is the negative Dirichlet Laplacian; see Example 12.6.
(a) Show that the operator A0 from Proposition 12.2 is given by A0 = −∆, with

dom(A0) = C∞
c (Ω).

(b) Show that A0 is not m-sectorial. (This implies, in particular, that A0 ̸= A.)
(c) Show that the Friedrichs extension of the operator −A0 (with A0 from part (a)) is

the Dirichlet Laplacian.
Note. The Neumann Laplacian is another accretive self-adjoint extension of −A0.

12.3 Let H be a complex Hilbert space, a an embedded sectorial form in H. Prove the
following criteria for a being closed or closable:
(a) a is closed if and only if for any Cauchy sequence (un) in (dom(a), ∥·∥a) with un → u

in H one has ∥un − u∥a → 0.
(b) a is closable if and only if for any Cauchy sequence (un) in (dom(a), ∥·∥a) with un → 0

in H one has ∥un∥a → 0.

12.4 Let H := L2(−1, 1), and let the forms a1, a2 in H be defined by dom(aj) =
C∞

c (−1, 1),

a1(u, v) := u(0)v(0), a2(u, v) :=

∫ 1

−1

u′(x)v′(x) dx+ u(0)v(0)

for all u, v ∈ C∞
c (−1, 1).

For j = 1, 2 determine whether aj is closable. Find the completion of (dom(aj), ( · | ·)aj )
and the operator associated with aj.

12.5 This exercise illustrates Remark 12.14(b). Let u ∈ C2((−1, 1)), u′(−1) = u′(1) = 0,
u′(0) ̸= 0, and put Ω := (−1, 0) ∪ (0, 1).
(a) Show that for the weak normal derivative in the sense of Section 12.5 one has

∂νu = 0.
(b) Show that one does not have ‘∂νu = 0’ – observe the quotes! – in the sense of

Section 7.4. (Hint: Choose v ∈ H1(Ω) with v(0−) ̸= v(0+) as a ‘test function’.)

12.6 Put Ω := (−1, 0) ∪ (0, 1).
(a) Determine the relation tr of Section 12.5, and show that dom(tr) is not dense.
(b) Find ∂νu for those u ∈ H1(Ω) with ∆u ∈ L2(Ω) for which ∂νu ∈ L2(∂Ω).
(c) Determine the Robin Laplacian for β = 1.
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12.7 Put S := [0, 1]× {0} ⊆ R2, and let (xn) be a bounded sequence in R2 \ S having
the set S as its cluster points. Let (rn) be a sequence in (0,∞) such that

∑∞
n=1 rn <∞,

B[xn, rn] ∩ S = ∅ (n ∈ N) and B[xn, rn] ∩ B[xm, rm] = ∅ (m,n ∈ N, m ̸= n). Put
Ω :=

⋃
n∈NB(xn, rn).

(a) Determine ∂Ω and H1(∂Ω) (1-dimensional Hausdorff measure). (Note that S ⊆ ∂Ω.)
(b) Show that dom(tr) is dense in H1(Ω) and that tr 0 = L2(S) (where L2(S) is

considered as a subspace of L2(∂Ω) in the natural way).
(c) Let D0 be the Dirichlet-to-Neumann operator for Ω. Show that L2(S) ⊆ dom(D0)

and that D0|L2(S) = 0.
Note. In view of the reference [Sau20; Corollary 5.4] mentioned in the Notes, a bounded

open set Ω ⊆ R2 with the property tr 0 ̸= {0} cannot be connected; in fact, this reference
implies that such a set must consist of infinitely many connected components.

12.8 (a) Complete the proof of Theorem 12.16 as suggested in Remark 12.17.
(b) Let g ∈ L2(∂Ω). Show that there is at most one solution u ∈ H1(Ω) of the Dirichlet

problem ∆u = 0, tru ∋ g such that the weak normal derivative ∂νu exists. (Hint: Show
that for u ∈ H1(Ω), the properties ∆u = 0, 0 ∈ tru and ∂νu = 0 imply a

(
(u, 0)

)
= 0, with

the form a from Remark 12.17; then use (12.12).)



Chapter 13

Approximation of strongly continuous
semigroups

In this chapter we present two important classical results on the approximation of
semigroups, the Trotter approximation theorem and the Chernoff product formula. In
view of the applications in Chapters 14 and 15 we treat these topics in the more general
context of ‘degenerate strongly continuous semigroups’. This concept will be introduced
in Section 13.1. The chapter closes with an introduction to the spectral theorem for
self-adjoint operators.

13.1 Degenerate strongly continuous semigroups and
m-accretive linear relations

Let X be a Banach space, and let T be a one-parameter semigroup on X. Recall
from Remark 1.1(c) that then T (0) is a projection. We call T a degenerate strongly
continuous semigroup if

T (0) = s-limt→0+ T (t)

(not necessarily T (0) = I !). Note that a C0-semigroup is also a degenerate strongly
continuous semigroup. We would have preferred to omit ‘degenerate’ in the previous
definition; however, in the literature the notions ‘strongly continuous semigroup’ and
‘C0-semigroup’ are usually synonymous.

A degenerate strongly continuous semigroup T is the direct sum of a C0-semigroup and
a semigroup that is identically zero. Indeed, with P := T (0) one obtains T (t)P = PT (t)
for all t ⩾ 0, and hence Xa := ran(P ) is invariant under T . We denote by Ta the restriction
of T to Xa, i.e. Ta(t) := T (t)|Xa

for all t ⩾ 0. Then Ta is a C0-semigroup on Xa, whereas
T (t) = T (t)P vanishes on Xu := ker(P ) for all t ⩾ 0. In particular it follows that
[0,∞) ∋ t 7→ T (t) is strongly continuous. (We use the indices a and u to denote the
‘active’ subspace of X, where T acts as a C0-semigroup, and the ‘unactive’ subspace of X,
where T vanishes.)

There exist M ⩾ 1, ω ∈ R such that ∥T (t)∥ ⩽Meωt (t ⩾ 0). (This property is known
for the C0-semigroup Ta and carries over to T because T (t) = Ta(t)P for all t ⩾ 0.) Let
Aa denote the generator of Ta. Then it follows from Theorem 2.7 that

R(λ,Aa)P =

∫ ∞

0

e−λtTa(t) dt P =

∫ ∞

0

e−λtT (t) dt (strong integral)
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for all λ ∈ K with Reλ > ω. It is easy to see that the mapping ρ(Aa) ∋ λ 7→ R(λ,Aa)P ∈
L(X) is a pseudo-resolvent, i.e. R(·, Aa)P satisfies the resolvent equation (2.1) (see
also Exercise 13.1).
We define the generator of T as the linear relation

A :=
{
(x, y) ∈ X ×X ; (x, Py) ∈ Aa

}
. (13.1)

It follows from Exercise 13.2 that the pseudo-resolvent R(·, Aa)P introduced above is the
resolvent of the generator A, which is defined by

R(λ,A) := (λI − A)−1

for all λ ∈ ρ(A) := {λ ∈ K ; (λI − A)−1 ∈ L(X)} = ρ(Aa), where

λI − A :=
{
(x, λx− y) ; (x, y) ∈ A

}
; (13.2)

recall Subsection 1.3.1 concerning the inverse of a relation. According to the defini-
tion (13.1),

A = Aa ⊕ ({0} ×Xu) (direct sum in X ×X); (13.3)

in particular, {0} ×Xu is a subset of A. One easily sees that the generator A determines
the semigroup T uniquely.
We illustrate these notions by an example.

13.1 Example. Let X be a Banach space, P ∈ L(X) a projection, Xa := ran(P ). Then
T (t) := P (t ⩾ 0) defines a degenerate strongly continuous semigroup, the generator of T
is given by

A =
(
Xa × {0}

)
⊕
(
{0} × ker(P )

)
= Xa × ker(P ),

and the resolvent of A is given by R(λ,A) = λ−1P , for λ ∈ ρ(Aa) = ρ(0L(Xa)) (= K \ {0}
if P ̸= 0). △

A degenerate strongly continuous semigroup T is called contractive if ∥T (t)∥ ⩽ 1 for
all t ⩾ 0, and T is quasi-contractive if there exists ω ∈ R such that ∥T (t)∥ ⩽ eωt for all
t ⩾ 0. The concept of rescaling works as before: if λ ∈ K and A is the generator of T ,
then the generator of the rescaled degenerate strongly continuous semigroup t 7→ e−λtT (t)
is the relation A− λI.
In the remainder of this section we deal with the special case in which the underlying

space is a Hilbert space H. Similarly as in Section 3.4, a linear relation A in H is called
accretive if Re(y |x) ⩾ 0 for all (x, y) ∈ A, and A is called m-accretive if additionally
ran(I + A) = {x+ y ; (x, y) ∈ A} = H.
If T is a contractive degenerate strongly continuous semigroup on H, then P := T (0) is a

contractive projection onto the ‘active’ subspace Ha := ran(P ); hence P is the orthogonal
projection onto Ha. Let Aa be the generator of the C0-semigroup Ta. Then the generator
A of T is the relation A := Aa ⊕ ({0} ×Hu) (orthogonal direct sum in H ⊕H), where
Hu = H⊥

a . For (x, y) ∈ A one obtains

Re(y |x) = Re(Py |x) = Re(Aax |x) ⩽ 0
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(because −Aa is m-accretive), i.e. the linear relation −A = {(x,−y) ; (x, y) ∈ A} is
accretive. It is even m-accretive since

ran(I − A) = ran(Ia − Aa)⊕ ran({0} ×Hu) = Ha ⊕Hu = H,

where Ia is the identity operator in Ha.
Next we show that all m-accretive linear relations arise as an orthogonal direct sum of

an m-accretive operator and a ‘trivial’ m-accretive linear relation, as above.

13.2 Theorem. Let A be a linear relation in H.
(a) Let A be m-accretive. Put Ha := dom(A) and Hu := H⊥

a . Then Aa := A∩ (Ha×Ha)
is an m-accretive operator in Ha, Au := A ∩ (Hu × Hu) = {0} × Hu is an m-accretive
linear relation in Hu, and A = Aa ⊕ Au.

(b) The linear relation −A is the generator of a contractive degenerate strongly contin-
uous semigroup on H if and only if A is m-accretive.

For the proof we single out a technical detail.

13.3 Lemma. Let A be an accretive linear relation in H with dense domain. Then A is
an operator.

Proof. Let (0, z) ∈ A. Then for all (x, y) ∈ A, λ ∈ K, one obtains (x, y + λz) ∈ A,

0 ⩽ Re(y + λz |x) = Re(y |x) + Re(λ(z |x)).

It follows that z ⊥ dom(A), hence z = 0.

Proof of Theorem 13.2. (a) Obviously Aa and Au are accretive linear relations, and
dom(Au) = {0}. Let z ∈ Hu. By the m-accretivity of A there exists (x, y) ∈ A such that
x+ y = z. Then Re(y |x) ⩾ 0, and

0 = (z |x) = (x+ y |x) = ∥x∥2 + (y |x) ⩾ ∥x∥2

implies x = 0, hence (0, z) = (0, y) = (x, y) ∈ A. This shows that Au = {0} ×Hu.
Let (x, y) ∈ A. There exist ya ∈ Ha, yu ∈ Hu such that y = ya + yu. Then (0, yu) ∈

Au ⊆ A, hence (x, ya) ∈ A ∩ (Ha × Ha) = Aa. It follows that dom(Aa) = dom(A), and
since dom(A) is dense in Ha, Lemma 13.3 implies that Aa is an operator. It also follows
that A = Aa ⊕ Au; thus H = ran(I + A) = ran(Ia + Aa) ⊕ Hu, which yields the range
condition ran(Ia + Aa) = Ha.
Summing up, we have shown that A is the direct sum of the m-accretive operator Aa

and the m-accretive linear relation Au.
(b) If −A generates a contractive degenerate strongly continuous semigroup, then the

considerations before Theorem 13.2 show that A is m-accretive.
Conversely, if A is m-accretive, then the Lumer–Phillips theorem (Theorem 3.16) shows

that −Aa generates a contractive C0-semigroup Ta on Ha, where we use the notation from
part (a). Let P denote the orthogonal projection onto Ha. Then T (t) := Ta(t)P (t ⩾ 0)
defines a degenerate strongly continuous semigroup T on H with generator −A.

A statement analogous to Theorem 13.2 also holds for quasi-m-accretive linear
relations, i.e. for relations A such that A+ ωI is m-accretive for some ω ∈ R.
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13.2 A Trotter approximation theorem

In the first part of this section X will be a Banach space. For simplicity we restrict
our treatment to the case of contractive degenerate strongly continuous semigroups; the
following theorem is in fact also valid for sequences of semigroups that are uniformly
bounded on [0, 1].

13.4 Theorem (Trotter approximation theorem for degenerate strongly contin-
uous semigroups). Let T and Tn (n ∈ N) be contractive degenerate strongly continuous
semigroups on X, with generators A and An (n ∈ N), respectively. Assume that there
exists λ > 0 such that

R(λ,An)x→ R(λ,A)x (n→ ∞) (13.4)

for all x ∈ ran(T (0)). Then

Tn(t)x→ T (t)x (n→ ∞) (13.5)

uniformly on compact subsets of [0,∞), for all x ∈ ran(T (0)).

13.5 Remark. It is worth noticing that the converse of Theorem 13.4 is also true. Indeed,
if T and Tn (n ∈ N) are contractive degenerate strongly continuous semigroups, and

T (t)x = lim
n→∞

Tn(t)x (13.6)

for all x ∈ ran(T (0)), t ⩾ 0, then

R(λ,A)x =

∫ ∞

0

e−λtT (t)x dt = lim
n→∞

∫ ∞

0

e−λtTn(t)x dt = lim
n→∞

R(λ,An)x

for all x ∈ ran(T (0)), λ > 0, by the dominated convergence theorem.
We point out that, even though only pointwise convergence is required in (13.6),

Theorem 13.4 implies that the convergence in (13.6) is in fact uniform for t in compact
subsets of [0,∞). △

13.6 Example. The following example shows that the convergence (13.4) for all x ∈ X
does not imply the convergence (13.5) for all x ∈ X.
Let X := C, An := in, A := {0} × C. Then R(λ,An) = (λ− in)−1 → 0 = R(λ,A) for

all λ > 0, but Tn(t) = eint does not converge to T (t) = 0. △

In the proof of Theorem 13.4 we will need to express semigroup differences in terms of
resolvent differences.

13.7 Lemma. Let T and S be contractive degenerate strongly continuous semigroups,
with generators A and B, respectively. Then for all λ, t > 0 and x ∈ X we have

R(λ,B)
(
T (t)− S(t)

)
R(λ,A)x =

∫ t

0

S(t− s)
(
R(λ,A)−R(λ,B)

)
T (s)x ds. (13.7)
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Proof. We write PT := T (0), and we denote the generator of Ta by Aa. (Recall the notation
Ta and Aa from Section 13.1.) In the computation made below we will use the identi-
ties T (t) = PTT (t) = T (t)PT , T (t)R(λ,A) = R(λ,A)T (t) and R(λ,A) = PTR(λ,A) =
R(λ,Aa)PT . The corresponding notation and properties will be used for S.
For x ∈ X, the function s 7→ S(t − s)R(λ,B)T (s)R(λ,A)x is differentiable on [0, t],

with
d

ds
S(t− s)R(λ,B)T (s)R(λ,A)x

= S(t− s)
(
−BaR(λ,B)R(λ,A) +R(λ,B)AaR(λ,A)

)
T (s)x

= S(t− s)
(
PSR(λ,A)−R(λ,B)PT

)
T (s)x

= S(t− s)
(
R(λ,A)−R(λ,B)

)
T (s)x,

where in the middle equality we have used −BaR(λ,B) = (λ− Ba − λ)R(λ,B) = PS −
λR(λ,B), and similarly AaR(λ,A) = −PT + λR(λ,A). Integrating with respect to s for
0 ⩽ s ⩽ t we obtain (13.7).

Another ingredient in the proof of Theorem 13.4 is the following important fact.

13.8 Lemma. Let A be the generator of a C0-semigroup on X. Then dom(A2) is dense
in X.

Proof. If B ∈ L(X) has dense range, then obviously ran(B2) = B(ran(B)) is dense.
Applying this fact to a resolvent of A – and recalling that dom(A) is dense – one obtains
the assertion.

Proof of Theorem 13.4. As before we denote by Aa the generator of the C0-semigroup Ta
on the ‘active’ subspace Xa := ran(T (0)).
Let y ∈ Xa, t0 > 0. We estimate∥∥(T (t)− Tn(t)

)
R(λ,A)y

∥∥ ⩽
∥∥(R(λ,A)−R(λ,An)

)
T (t)y

∥∥
+
∥∥R(λ,An)

(
T (t)− Tn(t)

)
y
∥∥

+
∥∥Tn(t)(R(λ,An)−R(λ,A)

)
y
∥∥. (13.8)

The third term on the right-hand side of (13.8) converges to 0 uniformly for t in [0,∞). For
the first term we note that {T (t)y ; 0 ⩽ t ⩽ t0} is a compact subset of Xa – by the strong
continuity of T – and that strong convergence of a sequence of operators implies uniform
convergence on compact sets; see Exercise 3.2(b). So we conclude uniform convergence
to 0 for 0 ⩽ t ⩽ t0.
For the treatment of the second term on the right-hand side of (13.8) we confine our

attention to the case in which y is of the form y = R(λ,A)z, for some z ∈ Xa, and we
apply Lemma 13.7 to obtain∥∥R(λ,An)

(
T (t)− Tn(t)

)
R(λ,A)z

∥∥ =

∥∥∥∥∫ t

0

Tn(t− s)
(
R(λ,A)−R(λ,An)

)
T (s)z ds

∥∥∥∥
⩽

∫ t

0

∥∥(R(λ,A)−R(λ,An)
)
T (s)z

∥∥ ds.
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As above one concludes that the integrand converges to 0 uniformly for 0 ⩽ s ⩽ t0, and
therefore

∥∥R(λ,An)
(
T (t)− Tn(t)

)
y
∥∥ → 0 uniformly for 0 ⩽ t ⩽ t0.

So far we have shown that Tn(t)x → T (t)x as n → ∞, uniformly for t in compact
subsets of [0,∞), for all x of the form x = R(λ,A)2z with z ∈ Xa, i.e. for all x ∈ dom(A2

a).
As dom(A2

a) is dense in Xa – by Lemma 13.8 – and Tn (n ∈ N) as well as T are contractive,
one obtains the asserted convergence for all x ∈ Xa.

Example 13.6 illustrates that in the setting of Theorem 13.4 there is no information
on the convergence of the sequence of semigroups on the complement of ran(T (0)). The
objective of the remaining part of this section is to present a setting in which this deficiency
can be remedied; see Theorem 13.10.
We will need the following concept of operator convergence that is important in the

context of semigroup approximation. If A and An, for n ∈ N, are generators of contractive
degenerate strongly continuous semigroups, then we say that (An) converges to A in the
strong resolvent sense if R(λ,An) → R(λ,A) strongly as n → ∞, for all λ > 0. It
follows from the subsequent Lemma 13.9 that it suffices to require the convergence for one
λ > 0. Actually, we will also use this terminology for generators −An and −A, as well as
for the case when all operators are shifted by a common real multiple of the identity I.
We refer to [Kat80; Chap. VIII, §1.1], where convergence in the strong resolvent sense is
introduced under the name ‘convergence in the generalised sense’.
Note that a property similar to the above definition was already used in Theorem 13.4,

but there the strong convergence of the resolvents was only required on a subspace of the
Banach space.

13.9 Lemma. Let A and An (n ∈ N) be generators of contractive degenerate strongly
continuous semigroups on X. Assume that there exists λ > 0 such that

R(λ,An) → R(λ,A) (n→ ∞)
strongly. Then

R(µ,An)x→ R(µ,A)x (n→ ∞),

uniformly for µ in compact subsets of (0,∞), for all x ∈ X.

Proof. A standard computation with applications of the resolvent equation (2.1) yields

R(µ,A)−R(µ,An)

=
(
I + (λ− µ)R(µ,An)

)
R(µ,A)−R(µ,An)

(
I + (λ− µ)R(µ,A)

)
=

(
I + (λ− µ)R(µ,An)

)(
R(λ,A)−R(λ,An)

)(
I + (λ− µ)R(µ,A)

)
for all µ > 0. Let x ∈ X, and let 0 < µ0 < µ1. Then the set{(

I + (λ− µ)R(µ,A)
)
x ; µ0 ⩽ µ ⩽ µ1

}
is compact because R(·, A) is continuous, and

sup
µ0⩽µ⩽µ1, n∈N

∥I + (λ− µ)R(µ,An)∥ <∞.

(For the continuity of R(·, A) recall from Section 13.1 that R(·, A) = R(·, Aa)P ; see also
Exercise 13.1(a).) Since R(λ,An)y → R(λ,A)y as n → ∞, uniformly for y in compact
subsets of X – by Exercise 3.2(b) –, one obtains the assertion.
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In the following supplement to Theorem 13.4 we present a more special setting in which
one also obtains information on the convergence of the approximating semigroups on the
complement of ran(T (0)), as announced above.

13.10 Theorem. Let H be a Hilbert space, and let T and Tn (n ∈ N) be degenerate
strongly continuous semigroups of self-adjoint contractions on H, with corresponding
generators A and An (n ∈ N). Assume that (An) converges to A in the strong resolvent
sense. Then

Tn(t)x→ T (t)x (n→ ∞)

uniformly on compact subsets of [0,∞), for all x ∈ ran(T (0)), and

Tn(t)x→ 0 = T (t)x (n→ ∞)

uniformly for t ∈ [ε,∞), for all ε > 0 and all x ∈ ker(T (0)) = ran(T (0))⊥. (Note that
T (0) is a self-adjoint, therefore orthogonal, projection.)

Combining both assertions of Theorem 13.10 one sees that on compact subsets of
(0,∞) the uniform convergence Tn(·)x → T (·)x holds for all x ∈ X. We point out
that, even if all the semigroups Tn in Theorem 13.10 are C0-semigroups, it is possible
that the limiting semigroup T is degenerate, i.e. ran(T (0)) is a proper subspace of H.
In this case T (0)x = 0 ̸= x = Tn(0)x for all x ∈ ran(T (0))⊥ \ {0}. This explains why
on ran(T (0))⊥ the convergence cannot be expected to be uniform on neighbourhoods of 0.

13.11 Example. A simple example for the phenomenon just mentioned is given by
H := R, Tn(t) := e−nt (t ⩾ 0, n ∈ N), T (t) := 0 (t ⩾ 0). △

For the proof of Theorem 13.10 we need another auxiliary result, Lemma 13.13 below,
in which it will be convenient to use the following notation.

13.12 Remark. In Section 11.5 we have used the inequality sign between operators for
inequalities in the sense of order in function spaces. In the theory of operators in a Hilbert
space H it is also common to denote the accretivity of a symmetric operator A by writing
‘A ⩾ 0’. For self-adjoint operators A,B ∈ L(H) we will write ‘A ⩽ B’ if B−A is accretive,
i.e.

(Ax |x) ⩽ (Bx |x) (x ∈ H).

The reader will have to be aware of this double meaning of the inequality sign; usually it
will be clear from the context in which sense it should be interpreted. (In particular, in
the context of a Hilbert space that is not a priori an L2-space, the interpretation in the
sense of order in function spaces would be meaningless.) △

13.13 Lemma. Let H be a Hilbert space, and let T be a degenerate strongly continuous
semigroup of self-adjoint contractions on H, with generator A. Then

T (t) ⩽ (I − tA)−1 (t ⩾ 0).
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Proof. As explained in Section 13.1, P := T (0) is an orthogonal projection, and H
decomposes as Ha ⊕Hu, where Ha = ran(P ), Hu = ker(P ), Ha is invariant under T and
the restriction Ta of T to Ha is a C0-semigroup, whereas T (t)|Hu

= 0 (t ⩾ 0). Moreover
the generator Aa of Ta is self-adjoint, and −Aa is accretive.
Now we apply the spectral theorem for self-adjoint operators, Theorem 13.21, presented

in Section 13.4 below, which states that Aa is unitarily equivalent to a maximal multiplica-
tion operator Mα in L2(µ) for some semi-finite measure space (Ω,A, µ), with a measurable
function α : Ω → R. Moreover α ⩽ 0 a.e. since −Aa is accretive; see Remark 13.22,
property (b).
Let t ⩾ 0. Then Exercise 13.4(b) shows that Ta(t) corresponds to the operator of

multiplication by etα, and it is easy to see that (I − tAa)
−1 corresponds to multiplication

by (1 − tα)−1. From es ⩾ 1 + s (s ⩾ 0) it follows that etα ⩽ (1 − tα)−1 a.e., and
this inequality implies Ta(t) ⩽ (I − tAa)

−1, by property (d) of Remark 13.22. From
T (t) = PTa(t)P and (I − tA)−1 = P (I − tAa)

−1P we then obtain the assertion of the
lemma.

Proof of Theorem 13.10. The first assertion is immediate from Theorem 13.4.
For the second convergence we apply Lemma 13.13 to Tn and An and obtain

∥Tn(t)x∥2 = (Tn(2t)x |x) ⩽
(
(I − 2tAn)

−1x
∣∣x) = 1

2t

(
( 1
2t
− An)

−1x
∣∣x) (13.9)

for all x ∈ H, t > 0. Now let ε > 0 and x ∈ ker(T (0)). It follows from Lemma 13.9 that

(λ− An)
−1x→ (λ− A)−1x = (λ− A)−1T (0)x = 0

as n → ∞, for all λ > 0. Therefore (13.9) implies that ∥Tn(ε)x∥2 → 0, and by the
contractivity of the semigroups Tn we conclude that supt⩾ε ∥Tn(t)x∥2 → 0.

13.3 The Chernoff product formula

In the first part of this section X will be a Banach space.

13.14 Theorem (Chernoff product formula for degenerate strongly continuous
semigroups). Let T be a contractive degenerate strongly continuous semigroup on X,
with generator A. Let F : [0,∞) → L(X) satisfy F (0)T (0) = T (0) and ∥F (t)∥ ⩽ 1 for all
t ⩾ 0. Define

A(s) :=
1
s

(
F (s)− I

)
(s > 0),

and assume that there exists λ > 0 such that

R
(
λ,A(s)

)
x→ R(λ,A)x (s→ 0)

for all x ∈ ran(T (0)). Then
F (t/n)nx→ T (t)x, (13.10)

uniformly for t in compact subsets of [0,∞), for all x ∈ ran(T (0)).
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13.15 Remarks. (a) The hypothesis ‘F (0)T (0) = T (0)’ in Theorem 13.14 is a short way
of expressing that F (0)x = x for all x ∈ ran(T (0)). Note that as in Theorem 13.4 there is
no information on convergence on the complement of ran(T (0)); see also Theorem 13.18.
(b) We mention that the hypotheses of Theorem 13.14 imply that∥∥etA(s)

∥∥ =
∥∥e(t/s)F (s)e−t/s

∥∥ ⩽ e(t/s)∥F (s)∥e−t/s ⩽ 1

for all t ⩾ 0, s > 0; see Exercise 1.1(a). This explains why λ > 0 belongs to ρ(A(s)) and
shows that A(s) generates a contractive C0-semigroup, for all s > 0. △

The following technical lemma contains a crucial estimate that will be used in the proof
of Theorem 13.14.

13.16 Lemma. Let S ∈ L(X) satisfy ∥Sm∥ ⩽M for some M ⩾ 1 and all m ∈ N. Then∥∥en(S−I)x− Snx
∥∥ ⩽

√
nM∥Sx− x∥

for all n ∈ N, x ∈ X.

Proof. We will prove the asserted estimate in the form∥∥enSx− enSnx
∥∥ ⩽ en

√
nM∥Sx− x∥.

First we show that ∥∥Skx− Smx
∥∥ ⩽ |k −m|M∥Sx− x∥

for all k,m ∈ N0, x ∈ X. Without loss of generality k > m. Then

∥∥(Sk − Sm
)
x
∥∥ =

∥∥∥∥k−1∑
j=m

(
Sj+1 − Sj

)
x

∥∥∥∥ ⩽
k−1∑
j=m

∥∥Sj
∥∥∥Sx− x∥ ⩽ |k −m|M∥Sx− x∥.

We now estimate∥∥enSx− enSnx
∥∥ =

∥∥∥∥ ∞∑
k=0

nk

k!

(
Sk − Sn

)
x

∥∥∥∥
⩽

( ∞∑
k=0

(
nk

k!

)1/2(
nk

k!

)1/2

|k − n|
)
M∥Sx− x∥

⩽

( ∞∑
k=0

nk

k!

)1/2( ∞∑
k=0

nk

k!
(k − n)2

)1/2

M∥Sx− x∥.

Expanding (k − n)2 one computes
∞∑
k=0

nk

k!
(k − n)2 = nen; hence

∥∥enSx− enSnx
∥∥ ⩽ (en)1/2 (nen)1/2M∥Sx− x∥ = en

√
nM∥Sx− x∥.

Proof of Theorem 13.14. As before we write Xa := ran(T (0)) and denote by Aa the
generator of the C0-semigroup Ta.
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Let t0 > 0, x ∈ Xa. The convergence (13.10) for t = 0 is trivial, so it remains to prove
the uniform convergence (13.10) for t ∈ (0, t0]. In view of Remark 13.15(b) we can apply
Theorem 13.4 to obtain etA(s)x→ T (t)x as s→ 0, uniformly for t in compact subsets of
[0,∞). From this convergence one easily infers that

etA(t/n)x→ T (t)x (n→ ∞), (13.11)

uniformly for t ∈ (0, t0].
Now let x ∈ dom(Aa). For s > 0 we put

x(s) :=
(
λ− A(s)

)−1
(λ− Aa)x.

Then x(s) → x and A(s)x(s) = λx(s)− (λ−A(s))x(s) → λx− (λ−Aa)x = Aax as s→ 0.
Applying Lemma 13.16 with S = F (t/n) and M = 1 we obtain∥∥(etA(t/n) − F (t/n)n

)
x(t/n)

∥∥ =
∥∥(en(F (t/n)−I) − F (t/n)n

)
x(t/n)

∥∥
⩽

√
n
∥∥(F (t/n)− I

)
x(t/n)

∥∥
=

t√
n
∥A(t/n)x(t/n)∥ → 0 (n→ ∞),

uniformly for t ∈ (0, t0]. Now observe that
∥∥etA(t/n) − F (t/n)n

∥∥ ⩽ 2 for all t > 0, by
Remark 13.15(b). We thus conclude that∥∥(etA(t/n) − F (t/n)n

)
x
∥∥

⩽ 2∥x− x(t/n)∥+
∥∥(etA(t/n) − F (t/n)n

)
x(t/n)

∥∥ → 0 (n→ ∞),
(13.12)

uniformly for t ∈ (0, t0], and the denseness of dom(Aa) in Xa implies that the last property
carries over to all x ∈ Xa.
The convergences (13.11) and (13.12) together imply the assertion.

The following examples serve to illustrate Theorems 13.4 and 13.14. In Exercise 13.3
the reader is asked to carry out the details.

13.17 Examples. Let T be a contractive C0-semigroup on X, with generator A.
(a) Put F (s) := T (s) and A(s) := 1

s(T (s)− I), for s > 0. Then R
(
λ,A(s)

)
→ R(λ,A)

strongly as s→ 0, for all λ > 0. Hence Theorem 13.4 implies that

T (t) = s-lims→0 e
tA(s) (t ⩾ 0),

and Theorem 13.14 yields the trivial ‘convergence’ T (t) = s-limn→∞ T ( t
n)

n.
(b) Put F (s) := (I − sA)−1 and A(s) := 1

s(F (s)− I) = A(I − sA)−1, for s > 0. Again
one shows that R

(
λ,A(s)

)
→ R(λ,A) strongly as s→ 0, for all λ > 0. Then Theorem 13.4

implies
T (t) = s-lims→0 e

tA(I−sA)−1

(t ⩾ 0). (13.13)

(We point out that An := A( 1n) are the Yosida approximations of A and that (13.13) is
the formula used in the proof of Theorem 2.9 for the definition of the semigroup T .)
Remarkably, Theorem 13.14 yields the exponential formula of Theorem 2.12. △
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For self-adjoint semigroups on Hilbert spaces one obtains the following stronger version
of the Chernoff product formula, which will be important in the proof of the Trotter
product formula for forms, the main result of Chapter 15.

13.18 Theorem (Chernoff product formula for self-adjoint degenerate strongly
continuous semigroups). Let T be a degenerate strongly continuous semigroup of self-
adjoint contractions on a Hilbert space H, with generator A. Let F : [0,∞) → L(H) be
a function taking its values in the accretive self-adjoint contractions, F (0)T (0) = T (0).
Define

A(s) :=
1
s

(
F (s)− I

)
(s > 0),

and assume that (A(s))s>0 converges to A in the strong resolvent sense as s→ 0.
Then

F (t/n)nx→ T (t)x (n→ ∞)

uniformly for t in compact subsets of [0,∞), for all x ∈ ran(T (0)), and

F (t/n)nx→ 0 = T (t)x (n→ ∞)

uniformly for t in compact subsets of (0,∞), for all x ∈ ker(T (0)) = ran(T (0))⊥. (Recall
that T (0) is a self-adjoint, therefore orthogonal, projection.)

13.19 Remark. Combining the two assertions of Theorem 13.18 one sees that the uniform
convergence F (t/n)nx→ T (t)x for t in compact subsets of (0,∞) is valid for all x ∈ H. △

Proof of Theorem 13.18. The first statement is immediate from Theorem 13.14.
In the proof of the second assertion we use the spectral theorem for self-adjoint operators,

Theorem 13.21, presented in the subsequent interlude. It implies that, for fixed t > 0,
the self-adjoint operator tA(t) = F (t) − I is unitarily equivalent to an operator Mα of
multiplication by a measurable function α; by Remark 13.22, properties (a) and (b), we
may assume that α takes its values in [−1, 0]. Observe that (1− s)−n ⩾ (1 + s)n ⩾ 1 + ns
(0 ⩽ s < 1) and thus 0 ⩽ (1 + α)n ⩽ (1− nα)−1, for all n ∈ N. Applying Remark 13.22,
property (d), we obtain

0 ⩽ F (t)n =
(
I + tA(t)

)n
⩽

(
I − ntA(t)

)−1
.

Now let x ∈ ker(T (0)). Then∥∥F ( t
n)

nx
∥∥2

=
(
F ( t

n)
2nx

∣∣x) ⩽ ((
I − 2tA( t

n)
)−1

x
∣∣∣x) = 1

2t

((
1
2t
− A( t

n)
)−1

x
∣∣∣x)

for all t > 0. Similarly as in the proof of Theorem 13.10, Lemma 13.9 implies that
(λ − A(s))−1x → 0 as s → 0, uniformly for λ in compact subsets of (0,∞). From this
convergence one easily concludes that 1

2t

(
1
2t
− A( t

n)
)−1x → 0 and thus ∥F ( t

n)
nx∥2 → 0,

uniformly for t in compact subsets of (0,∞).

13.20 Remark. For later use (in Chapter 15) we note that in Theorems 13.14 and 13.18
the assertions remain true if the powers F ( t

n)
n are replaced by F ( t

n+1
)n.
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This is a consequence of the following elementary observation. Let J = [0,∞) or
J = (0,∞), let f : J → X, let (fn) be a sequence of continuous functions fn : J → X,
fn → f locally uniformly, and let (rn) be a sequence in (0,∞), rn → 1. Then fn(rn·) → f
locally uniformly. △

13.4 Interlude: the spectral theorem for self-adjoint
operators

Multiplication operators, as described in Exercise 1.6, are particularly nice and simple
operators. The spectral theorem for self-adjoint operators – in the version we present
below – states that a self-adjoint operator is always unitarily equivalent to a maximal
multiplication operator, as follows.

13.21 Theorem (Spectral theorem for self-adjoint operators). Let H be a Hilbert
space, and let A be a self-adjoint operator in H. Then there exist a semi-finite measure space
(Ω,A, µ), a measurable function α : Ω → R and a unitary operator J : H → L2(Ω,A, µ)
such that

A = J−1MαJ. (13.14)

Concerning terminology, a measure space (Ω,A, µ) is called semi-finite if every set
A ∈ A with µ(A) = ∞ contains a set B ∈ A with 0 < µ(B) < ∞. In the statement of
Theorem 13.21, Mα is the maximal multiplication operator described in Exercise 1.6(a),
and (13.14) means in particular that J(dom(A)) = dom(Mα). We refer to Appendix F
for the proof of this version of the spectral theorem.
The representation of A as a multiplication operator is far from unique. In contrast to

this non-uniqueness, the subspaces

H[a,b] := J−1
({
φ ∈ L2(µ) ; φ = 1[a⩽α⩽b]φ

})
(a, b ∈ R, a ⩽ b) (13.15)

of H do not depend on the measure space and the unitary operator J in Theorem 13.21;
see Exercise F.7.
For the next definition recall that measurability of a mapping f : Ω → Ω′ between two

measurable spaces (Ω,A) and (Ω′,A′) means that for all A′ ∈ A′ the preimage f−1(A′)
belongs to A. If Ω, Ω′ are topological spaces and A, A′ are the respective Borel σ-algebras,
then f is called Borel measurable. The mapping f is Borel measurable if and only if
the preimage of each open set is a Borel set; cf. [Bau01; Theorem 7.2].
The spectral theorem can be used to define functions of self-adjoint operators: for any

Borel measurable function f : R→ R one puts

f(A) := J−1Mf◦αJ. (13.16)

Observe that then 1(A) = I, idR(A) = A. The uniqueness of the spaces H[a,b] in (13.15)
implies that f(A) does not depend on the measure space and the unitary operator J . The
proof of this property is delegated to Exercise F.8.
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13.22 Remark. In Exercise 13.5 the reader is asked to show that the semi-finiteness of
the measure space (Ω,A, µ) in Theorem 13.21 implies the following properties.
(a) A is bounded if and only if α ∈ L∞(µ); in this case ∥A∥ = ∥α∥∞.
(b) A is accretive if and only if α ⩾ 0 a.e.
(c) λ ∈ R is an eigenvalue of A if and only if µ([α = λ]) > 0.
(d) If f, g : R → R are Borel measurable functions and f ◦ α, g ◦ α ∈ L∞(µ), then

f(A) ⩽ g(A) if and only if f ◦ α ⩽ g ◦ α µ-a.e. (where the former ‘⩽’ is meant as in
Remark 13.12). △

If A is an accretive self-adjoint operator, represented as in Theorem 13.21, then – as
explained in Remark 13.22, property (b) – we may assume that α ⩾ 0, and therefore there
exists a unique accretive self-adjoint square root A1/2 := J−1Mα1/2J ; cf. Exercise 13.6.
In part (a) of the next proposition we present an important relation between accretive

symmetric forms and square roots of accretive self-adjoint operators, Kato’s ‘second
representation theorem’; see [Kat80; Chap. VI, Theorem 2.23]. Part (b) contains a
description of the form domain of an accretive self-adjoint operator that will be needed in
the proof of the Trotter product formula in Chapter 15; see Lemma 15.8. We deal with
an embedded form a in H, which means that dom(a) is a subset of H; see Section 12.2.

13.23 Proposition. Let a be a closed accretive symmetric form in H with dense domain,
and let A be the associated self-adjoint operator.

(a) Then dom(a) = dom(A1/2) and

a(u, v) =
(
A1/2u

∣∣A1/2v
)

(u, v ∈ dom(a)).

(b) Let T denote the C0-semigroup generated by −A. Then the function

(0,∞) ∋ s 7→ 1
s

((
I − T (s)

)
x
∣∣∣x) ∈ [0,∞)

is decreasing for all x ∈ H,

dom(a) =
{
x ∈ H ; sup

s>0

1
s

((
I − T (s)

)
x
∣∣∣x) <∞

}
,

A1/2x = lim
s→0+

(
1
s

(
I − T (s)

))1/2
x

(
x ∈ dom(a) = dom(A1/2)

)
,

and

a(x, y) = lim
s→0+

1
s

((
I − T (s)

)
x
∣∣∣ y) (x, y ∈ dom(a)).

Proof. In view of Theorem 13.21 and Remark 13.22 we may assume, without loss of
generality, that H = L2(µ) and A =Mα, with α ⩾ 0.
(a) It is easy to see that A is associated with the form b given by

b(f, g) =

∫
αfg dµ =

(
A1/2f

∣∣A1/2g
)

on dom(b) =
{
f ∈ L2(µ) ; α

1/2f ∈ L2(µ)
}
= dom(A1/2); cf. Example 5.9. The uniqueness

stated in Corollary 12.9 shows that a = b.
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(b) It follows from Exercise 1.6(b) that T (s) acts as multiplication by e−sα; hence

1
s

((
I − T (s)

)
f
∣∣∣ f) =

1
s

∫
Ω

(
1− e−sα(ξ)

)
|f(ξ)|2 dµ(ξ) (f ∈ L2(µ), s > 0).

For all ξ ∈ Ω, the function (0,∞) ∋ s 7→ 1
s

(
1− e−sα(ξ)

)
∈ [0,∞) is decreasing – this yields

the first assertion –, and lims→0+
1
s

(
1− e−sα(ξ)

)
= α(ξ). Therefore the monotone conver-

gence theorem implies that sups>0
1
s

(
(I − T (s))f

∣∣ f) < ∞ if and only if α|f |2 ∈ L1(µ),
and the latter is equivalent to f ∈ dom(a).
Using the properties of the function s 7→ 1

s

(
1− e−sα(ξ)

)
once more, one concludes for

f ∈ dom(A1/2) that(
1
s

(
I − T (s)

))1/2
f =

(
1
s

(
1− e−sα

))1/2
f → α1/2f = A1/2f (s→ 0+),

by the dominated convergence theorem. The indicated formula for a(x, y) is then immediate
because ((

I − T (s)
)
x
∣∣∣ y) =

((
I − T (s)

)1/2
x
∣∣∣ (I − T (s)

)1/2
y
)
.

Notes

Degenerate strongly continuous semigroups have been introduced and studied in [ArBa93]
and [Are01] under the name ‘continuous degenerate semigroups’. We were tempted
to simply call them ‘strongly continuous semigroups’ – because they are semigroups
(according to our definition in Section 1.2) that are strongly continuous. However, this
terminology would collide with the use in the literature.
There are other types of one-parameter semigroups, most notably holomorphic semi-

groups that are not strongly continuous at zero. This type is used in the theory of
parabolic equations in non-reflexive spaces such as L∞ and spaces of continuous functions;
see [Lun95; Chapter 2 and Section 3.1.2], [ABHN11; Section 3.7 and Theorem 6.1.9].
(See also Exercise 13.7(c) for an example in a simple context.) For further types of
semigroups that have linear relations (rather than operators) as generators we refer to
[Haa06; Appendix A.8] and [FaYa98].
The Trotter approximation theorem, Theorem 13.4, appeared in [Tro58], and the

Chernoff product formula, Theorem 13.14, was published in [Che68]; see also [Che74]. We
have presented versions of these results for sequences of degenerate strongly continuous
semigroups. This case was treated in [Are01] by Laplace transform methods; see [Are01;
Theorem 4.2] for a variant of Theorem 13.4. The additional convergence in Theorem 13.10
for the self-adjoint case is generalised to sequences of holomorphic semigroups in [Are01;
Theorem 5.2] (where the convergence of Tn(t)x is uniform on compact subsets of (0,∞)).
The idea for the proof of Theorem 13.18 is due to Kato [Kat78; Section 3].

The spectral theorem for self-adjoint operators comes in different versions. A common
formulation involves a spectral resolution R ∋ λ 7→ E(λ), an increasing function of
orthogonal projections, which are in fact the orthogonal projections onto the spaces
H(−∞,λ] :=

⋃
a<λH[a,λ] (see (13.15) for the definition of H[a,λ]). The version presented in

Section 13.4 is also well-established and very useful. For more information we refer to the
Notes of Appendix F.
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Exercises

13.1 Let X be a Banach space.
(a) Let ρ ⊆ K, and let R : ρ→ L(X) be a pseudo-resolvent, i.e.

R(λ)−R(µ) = (µ− λ)R(µ)R(λ) (λ, µ ∈ ρ).

Show that R is continuous. Show further that there exists a linear relation A ⊆ X ×X
such that R(λ) = (λI − A)−1 for all λ ∈ ρ.
Hint for the first assertion: Neumann series, proof of Theorem 2.2(c). Hints for the

second assertion: (1) Let R1, R2 ∈ L(X), κ ∈ K. Show that

R1 −R2 = κR1R2 ⇐⇒ R−1
2 ⊆ R−1

1 + κI. (13.17)

(2) Apply (1) with λ, µ ∈ ρ, R1 := R(λ), R2 := R(µ), κ := µ − λ. (3) Define A :=
−R(λ)−1 + λI (λ ∈ ρ).
(b) Let A ⊆ X×X be a linear relation, and define ρ(A) := {λ ∈ K ; (λ−A)−1 ∈ L(X)}.

Show that ρ(A) ∋ λ 7→ R(λ,A) := (λ− A)−1 ∈ L(X) is a pseudo-resolvent. Show further
that ρ(A) is open.
Hint for the first assertion: Use (13.17). Hint for the second assertion: See the proof of

Theorem 2.2(c); for λ ∈ ρ(A) and µ ∈ K close to λ, apply part (a) with ρ := {λ, µ}.

13.2 Let X be a Banach space and X1 ⊆ X a complemented closed subspace, i.e., there
exists a bounded projection P from X onto X1. Let A1 be a closed operator in X1, and
define

A :=
{
(x, y) ∈ X ×X ; (x, Py) ∈ A1

}
.

Show that A1 is invertible in L(X1) if and only if A is invertible in L(X), and that then
A−1 = A−1

1 P ∈ L(X).

13.3 Prove the assertions stated in Examples 13.17.

13.4 (a) Let X1, X2 be Banach spaces, and let J ∈ L(X1, X2) be an isomorphism. For
j = 1, 2 let Aj be the generator of a C0-semigroup Tj on Xj. In addition suppose that
A2 = JA1J

−1. Show that T2(t) = JT1(t)J
−1 for all t ⩾ 0. (Hint: Determine the generator

of the C0-semigroup
(
JT1(t)J

−1
)
t⩾0 on X2 and recall Theorem 1.13(b).)

(b) Let A be an accretive self-adjoint operator in a Hilbert space H, and let (Ω,A, µ),
α, J be as in Theorem 13.21. Show that the C0-semigroup on H generated by −A
corresponds to the C0-semigroup (Me−tα)t⩾0 on L2(µ). (Hint: Recall Exercise 1.6(b), and
use part (a) above.)

13.5 Prove the properties stated in Remark 13.22. First treat the special case in which
A =Mα for some semi-finite measure space (Ω,A, µ) and a measurable function α : Ω → R.
Then convince yourself that the general case follows from this special case.

13.6 Let A and B be accretive self-adjoint operators in H, B2 = A. Show that B = A1/2.
(Hint: Start with a representation of B as a multiplication operator.)
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13.7 Define the operator A in the Banach space ℓ∞ by A(xn) := (−nxn), for x =
(xn) ∈ dom(A) := {x ∈ ℓ∞ ; (nxn) ∈ ℓ∞}. For t ∈ K, Re t ⩾ 0 define T (t) ∈ L(ℓ∞) by
T (t)(xn) := (e−tnxn). Prove the following properties.
(a) [Re > 0] ⊆ ρ(A), and ∥(λ− A)−1∥ ⩽ 1

|λ| for all Reλ > 0.

(b) (T (t))t⩾0 is a contractive one-parameter semigroup on ℓ∞, strongly continuous on
(0,∞), T (t)(ℓ∞) ⊆ c0 (t > 0), and {x ∈ ℓ∞ ; x = limt→0+ T (t)x} = c0 (the space of null
sequences). In particular, the restriction T0 of T to c0 is a C0-semigroup on c0.
(c) In the complex case, T is a contractive holomorphic semigroup of angle π/2. The

restriction of T to c0 is a holomorphic C0-semigroup.
(d) dom(A) = c0, and A0 := A ∩ (c0 × c0) is the generator of T0.
(e) A does not generate a degenerate strongly continuous semigroup on ℓ∞.
Note. The operator A in this exercise is a special type of Hille–Yosida operator; see

Exercise 13.8.

13.8 An operator A in a Banach space X is called a Hille–Yosida operator if there
exist ω ∈ R, M ⩾ 1 such that (ω,∞) ⊆ ρ(A) and∥∥(λ− A)−n

∥∥ ⩽
M

(λ− ω)n
(λ > ω, n ∈ N).

For such operators, the part A0 := A ∩ (X0 × X0) of A in X0 := dom(A) generates a
C0-semigroup T0 on X0; see [EnNa00; Chap. II, Corollary 3.21]. The operator A in
Exercise 13.7 is a Hille–Yosida operator (with ω = 0, M = 1). In that exercise there exists
an extension of T0 to a one-parameter semigroup T on all of X, satisfying

(i) T (t)|X0
= T0(t) (t ⩾ 0),

(ii) T (t)(λ− A)−1x = (λ− A)−1T (t)x (x ∈ X, t ⩾ 0).

The present exercise shows that this does not hold for Hille–Yosida operators in general.
On X := C[0, 1] we define the operator A by dom(A) := {f ∈ C1[0, 1] ; f(0) = 0},

Af := −f ′ (f ∈ dom(A)). Prove the following properties.
(a) (0,∞) ⊆ ρ(A), ∥(λ− A)−1∥ ⩽ 1

λ
(λ > 0) (i.e. A is a Hille–Yosida operator).

(b) X0 := dom(A) = {f ∈ C[0, 1] ; f(0) = 0} ∼= C0(0, 1]. Note that, by Exercise 1.5(c),
the C0-semigroup T0 on X0 generated by the operator A0 defined above is the semigroup
of right translations.
(c) There exists no one-parameter semigroup T on X with the above properties (i), (ii).

(Hint: These properties imply that dom(A) is invariant under T0.)
(d) There exists a bounded projection P : C[0, 1] → C0(0, 1], Pf := f − f(0)1 (f ∈

C[0, 1])). Then T̃ (t) := T0(t)P (t ⩾ 0) defines a degenerate strongly continuous semigroup
on C[0, 1]; determine its generator.
Note. Combining Exercises 2.7 and 2.5 one concludes that a Hille–Yosida operator in a

reflexive Banach space X is always the generator of a C0-semigroup on X; examples as in
Exercise 13.7 and in the present exercise are only possible in non-reflexive Banach spaces.



Chapter 14

Form convergence theorems

The objective of this chapter is to show that convergence of a sequence of forms – suitably
defined – implies strong resolvent convergence of the sequence of the associated operators.
This supplements the central result of the previous chapter, the Trotter approximation
theorem (Theorem 13.4), where strong resolvent convergence of a sequence of semigroup
generators was shown to imply the convergence of the corresponding semigroups. These
results are of considerable interest for differential operators, but they will also play
an important role in the proof of the Trotter product formula for forms, presented in
Chapter 15. We start by investigating non-densely defined forms and their relation to
degenerate strongly continuous semigroups.

14.1 Non-densely defined forms, m-sectorial and
self-adjoint linear relations

In Chapter 13 we discussed degenerate strongly continuous semigroups and their generators.
In the present section we describe how such generators can be obtained as linear relations
associated with forms, starting from the setting of Section 5.3.
Let V, H be Hilbert spaces over K, j ∈ L(V,H), and let a : V × V → K be a bounded

j-coercive form. Clearly, j : V → Ha := ran(j) has dense range. Let Aa denote the
quasi-m-accretive operator in Ha associated with (a, j); see Corollary 5.11. Then −Aa

generates a quasi-contractive C0-semigroup Ta on Ha. Let P be the orthogonal projection
in H onto Ha. Then

T (t) := Ta(t)P (t ⩾ 0)

defines a quasi-contractive degenerate strongly continuous semigroup on H (with ‘active’
subspace Ha); we say that T is associated with (a, j). If K = C, then Aa is quasi-m-
sectorial, and one obtains a holomorphic extension of T by putting T (z) := Ta(z)P for
z ∈ Σθ,0, with suitable θ ∈ (0, π/2].
Let −A be the generator of T ; then A = Aa⊕

(
{0}×H⊥

a

)
by (13.3). (Notice the change

of the sign in the generator with respect to Section 13.1.) In Exercise 14.1(a) the reader
is asked to show that A is quasi-m-accretive and that

A =
{
(x, y) ∈ H ×H ; ∃u ∈ V : j(u) = x, a(u, v) = (y | j(v))H (v ∈ V )

}
. (14.1)

We call A the linear relation associated with (a, j). (The formula for the associated
linear relation A in H is the same as in the case of densely defined forms; see (5.6).)
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If dom(a) is a subset of H and j : dom(a) ↪→ H is the embedding, then a is an embedded
form, and we will suppress j in the notation, as before.
We illustrate these notions by a simple example.

14.1 Example. Let Ha be a closed subspace of H, and define the (embedded) form a by
a(u, v) := 0 for all u, v ∈ dom(a) := Ha. Then one obtains

A =
{
(u, v) ∈ Ha ×H ; 0 = (y | v)H (v ∈ Ha)

}
= Ha ×H⊥

a ,

and the associated degenerate strongly continuous semigroup is given by T (t) = P (t ⩾ 0),
where P is the orthogonal projection onto Ha. △

Now we turn to the setting of Section 12.1. Let H be a complex Hilbert space, and
let (a, j) be a (not necessarily densely defined) quasi-sectorial form in H. Then (a, j) is
a densely defined quasi-sectorial form in Ha := ran(j), and hence it is associated with
a quasi-m-sectorial operator in Ha, which we denote by Aa. We recall the construction
from Section 12.1: let (V, q) denote the completion of (dom(a), (· | ·)aω,j), where ω ∈ R is
chosen such that the shifted form

aω(u, v) = a(u, v) + ω(j(u) | j(v)) (u, v ∈ dom(a))

is sectorial. Let ȷ̃ , ã be the ‘extensions’ of j, a as in Remark 12.3(c). Then ã is a bounded
ȷ̃-coercive form, we are back in the previous setting, and the formula (14.1) for the
associated linear relation reads

A =
{
(x, y) ∈ H ×H ; ∃u ∈ V : ȷ̃(u) = x, ã(u, v) = (y | ȷ̃(v))H (v ∈ V )

}
; (14.2)

as before we call A the linear relation associated with (a, j).

14.2 Remark. Let (a, j) be a quasi-sectorial form with vertex −ω ∈ R, and let A be the
linear relation defined in (14.2). Then as in Remark 12.5 it follows that the linear relation

A+ ωI = {(x, y + ωx) ; (x, y) ∈ A}

is associated with the shifted form (aω, j). Recall that −(A+ ωI) generates the rescaled
semigroup t 7→ e−ωtT (t). △

A linear relation A in H is called sectorial if there exists θ ∈ [0, π/2) such that
(y |x) ∈ Σθ for all (x, y) ∈ A, and A is m-sectorial if additionally ran(I + A) = H. A
linear relation A is called quasi-sectorial (quasi-m-sectorial) if there exists ω ∈ R such
that A+ ωI is sectorial (m-sectorial). If, as above, (a, j) is a (quasi-)sectorial form in H,
then the linear relation A in H associated with (a, j) by (14.2) is (quasi-)m-sectorial; see
Exercise 14.1(b).
We now return to the general case of a Hilbert space H over K and consider the special

case of an accretive symmetric form (a, j) in H. For symmetric forms the above definitions
of the associated degenerate strongly continuous semigroup T and of the associated linear
relation A also apply in real Hilbert spaces. Since (a, j) is symmetric, the associated
operator Aa in Ha = ran(j) is self-adjoint, by Theorem 12.4, and as a consequence the
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generator −A of the associated degenerate strongly continuous semigroup will also be
self-adjoint, in the sense treated subsequently (see Proposition 14.4(a) below).
If A is a linear relation in H, then the adjoint A∗ of A is defined in the same way as in

Section 6.1 as
A∗ :=

(
(−A)⊥

)−1
,

and A is called self-adjoint if A∗ = A. (Recall that −A = {(x,−y) ; (x, y) ∈ A};
see (13.2).) We emphasise that the results on adjoints and on self-adjoint operators
presented in Section 6.1 carry over appropriately to linear relations; cf. Exercises 14.8
and 14.9(c). It is clear from the definition that a linear relation A is self-adjoint if and
only if its inverse A−1 is self-adjoint.

14.3 Remarks. (a) An “extreme” example of a self-adjoint linear relation is A := {0}×H;
this is the only self-adjoint linear relation with dom(A) = {0}.
(b) Let H0 and H1 be Hilbert spaces, and for j = 0, 1 let Aj be a linear relation in Hj.

Then the linear relation

A0 ⊕ A1 :=
{(

(x0, x1), (y0, y1)
)
; (xj, yj) ∈ Aj (j = 0, 1)

}
in H0 ⊕H1 is self-adjoint if and only if A0 and A1 are self-adjoint. △

Note that a self-adjoint relation A is accretive if and only if (x | y) ⩾ 0 for all (x, y) ∈ A.
Clearly, A is accretive if and only if A−1 is accretive. We have the following correspondence
between accretive symmetric forms and accretive self-adjoint linear relations.

14.4 Proposition. Let H be a Hilbert space.
(a) Let (a, j) be an accretive symmetric form in H. Then the linear relation A associated

with (a, j), given by (14.2), is accretive and self-adjoint.
(b) Conversely, if A is an accretive self-adjoint linear relation in H, then there exists a

unique embedded closed accretive symmetric form a in H such that A is associated with a.

Proof. (a) follows from the formula A = Aa ⊕
(
{0} ×H⊥

a

)
and Remark 14.3.

(b) The linear relation A is m-accretive by Exercise 14.8(c) and hence decomposes
as A = Aa ⊕ Au as in Theorem 13.2(a). Moreover Aa is self-adjoint by Remark 14.3(b).
Then Aa is associated with a densely defined embedded closed accretive symmetric form
a in Ha, and interpreting a as a form in H one obtains A as the associated operator.
Concerning uniqueness, if A is associated with a form a, then dom(a) = dom(Aa), where

Aa is as above, and then the uniqueness of a follows from Corollary 12.9.

14.2 Form convergence for increasing sequences

Throughout this section we consider embedded closed accretive symmetric forms, which
means that we are in the context of Proposition 14.4(b). The main result, Theorem 14.10,
deals with convergence of an increasing sequence of symmetric forms. (We refer to the
Notes for generalisations to non-symmetric forms.) In order to explain what ‘increasing’
means, we first define an order relation on the set of accretive symmetric forms, and we
characterise it via the inverses of the associated linear relations.
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Let H be a Hilbert space. Given two (embedded) accretive symmetric forms a and b
in H, we say that a ⩽ b if dom(a) ⊇ dom(b) and a(x) ⩽ b(x) for all x ∈ dom(b). For the
definition of inequalities between bounded self-adjoint operators we refer to Remark 13.12.
We recall that a linear relation A in H is self-adjoint if and only if A−1 is self-adjoint.

14.5 Proposition. Let a, b be closed accretive symmetric forms in H. Let A, B be the
associated self-adjoint linear relations, and assume that the inverses of A and B are
operators belonging to L(H). Then a ⩽ b if and only if B−1 ⩽ A−1.

Our proof of this equivalence is quite different from earlier proofs that can be found in
the literature; see e.g. [Kun05; Proposition 2.7], [HSSW06; Lemmas 3.2 and 3.4]. The key
observation for our treatment is Proposition 14.7 below, whose proof uses the following
elementary lemma.

14.6 Lemma. Let X be a normed space, H a Hilbert space and P ∈ L(X,H). Let η ∈ X ′,
c ⩾ 0 be such that

|η(x)| ⩽ c∥Px∥ (x ∈ X). (14.3)

Then there exists z ∈ H such that ∥z∥ ⩽ c and η(x) = (Px | z) for all x ∈ X.

Proof. Define η̃ : ran(P ) → K by η̃(Px) := η(x) for all x ∈ X; observe that by (14.3), η̃ is
well-defined and continuous on ran(P ), ∥η̃∥ ⩽ c. The Fréchet–Riesz representation theorem
implies that there exists z ∈ ran(P ) such that ∥z∥ ⩽ c and η(x) = η̃(Px) = (Px | z) for
all x ∈ X.

Assuming thatG andH are Hilbert spaces and that C andD are linear relations inG×H,
we will say thatD dominates C if for all (x, y) ∈ D there exists z ∈ H such that (x, z) ∈ C
and ∥z∥ ⩽ ∥y∥. If C and D are operators, this simply means that dom(D) ⊆ dom(C) and
∥Cx∥ ⩽ ∥Dx∥ for all x ∈ dom(D). The following fundamental property concerning this
notion is a more elaborate version of [Kat80; Chap. VI, Lemma 2.30].

14.7 Proposition. Let G, H be Hilbert spaces, and let C, D be closed linear relations in
G×H. Then D dominates C if and only if C⊥ dominates D⊥.

Proof. It clearly suffices to prove ‘⇒’. Let (x, y) ∈ C⊥.

Let (f, g) ∈ D. By hypothesis there exists h ∈ H such that (f, h) ∈ C and ∥h∥ ⩽ ∥g∥.
Then (f, h) ⊥ (x, y), hence

|(−f |x)| = |(h | y)| ⩽ ∥h∥∥y∥ ⩽ ∥g∥∥y∥;

note that h has dropped out of this inequality. With P : D → H, (f, g) 7→ g and
η : D → K, (f, g) 7→ (−f |x) it follows that

∣∣η((f, g))∣∣ ⩽ ∥y∥∥P (f, g)∥. We can now apply
Lemma 14.6 to obtain z ∈ H such that ∥z∥ ⩽ ∥y∥ and (−f |x) = (P (f, g) | z) = (g | z) for
all (f, g) ∈ D, i.e., (x, z) ∈ D⊥ and ∥z∥ ⩽ ∥y∥.
To summarise, we have shown that C⊥ dominates D⊥.



189

Proof of Proposition 14.5. Let Aa be the accretive self-adjoint operator in dom(a) asso-
ciated with a, and denote by Pa the orthogonal projection onto dom(a). Note that A−1

a

is the restriction of A−1 to dom(a). The (accretive self-adjoint) square root of A−1 will
be denoted by A−1/2; see Section 13.4 for the definition of the square root of accretive
self-adjoint operators. We point out that A

−1/2
a , the square root of A−1

a , is the restriction
of A−1/2 to dom(a), and we define

A1/2 := (A−1/2)−1 =
{
(x, y) ∈ H ×H ; (x, Pay) ∈ A1/2

a

}
.

The corresponding notation and properties will also be used for b.
By Proposition 13.23(a), a ⩽ b if and only if B

1/2
a dominates A

1/2
a . The latter, in turn,

holds if and only if B1/2 dominates A1/2. (Clearly A
1/2
a dominates A1/2, and the converse

is true as well: if (x, y) ∈ A1/2, then (x, Pay) ∈ A
1/2
a and ∥Pay∥ ⩽ ∥y∥. By the same token,

B
1/2
a and B1/2 dominate each other. As it is easily seen that domination is transitive, one

concludes the last assertion above.)
On the other hand, A−1 ⩾ B−1 if and only if A−1/2 dominates B−1/2.
Finally we observe that

(A−1/2)⊥ =
(
(−A−1/2)∗

)−1
= −(A−1/2)−1 = −A1/2

by the self-adjointness of A−1/2, and similarly (B−1/2)⊥ = −B1/2. Now, applying Proposi-
tion 14.7 we conclude that B1/2 dominates A1/2 if and only if A−1/2 dominates B−1/2.
This proves the asserted equivalence.

For the proof of the form convergence theorem announced above we also need the next
proposition on decreasing sequences of bounded accretive self-adjoint operators. We refer
to Corollary 14.21 for a form version – incomparably more general – of this result.

14.8 Proposition. Let (Bn) be a decreasing sequence of accretive self-adjoint operators
in L(H). Then B := s-limn→∞Bn exists, and B is an accretive self-adjoint operator.

Proof. For x ∈ H, the sequence
(
(Bnx |x)

)
n is decreasing and bounded below by 0, hence

convergent. The polarisation identity – see Remark 5.1 – implies that
(
(Bnx | y)

)
n is

convergent for all x, y ∈ H. It follows from Exercise 5.1 that there exists B ∈ L(H)
such that (Bx | y) = limn→∞(Bnx | y) for all x, y ∈ H. Then it is straightforward that
B is self-adjoint and accretive. Finally, by the subsequent Lemma 14.9 we obtain
∥(Bn −B)x∥2 ⩽ ∥B1 −B∥

(
(Bn −B)x

∣∣x) → 0 as n→ ∞, for all x ∈ H.

14.9 Lemma. Let A,B ∈ L(H) be self-adjoint and accretive, A ⩽ B. Then ∥Ax∥2 ⩽
∥B∥(Ax |x) for all x ∈ H.

Proof. Let x ∈ H. Then by Lemma 5.2 (Cauchy–Schwarz) we obtain

|(Ax | y)|2 ⩽ (Ax |x)(Ay | y) ⩽ (Ax |x)(By | y) ⩽ (Ax |x)∥B∥∥y∥2 (y ∈ H),

which for y = Ax implies the assertion.

We now state the main result of this section.
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14.10 Theorem. Let (an)n∈N be an increasing sequence of closed accretive symmetric
forms in H. Then

dom(a) :=
{
x ∈

⋂
n∈N

dom(an) ; sup
n∈N

an(x) <∞
}

is a vector space,
a(x, y) := lim

n→∞
an(x, y) (14.4)

exists for all x, y ∈ dom(a), and a thus defined is a closed accretive symmetric form in H.
Let A be the self-adjoint linear relation associated with a, and let An be the self-adjoint

linear relation associated with an, for n ∈ N. Then (An) converges to A in the strong
resolvent sense, i.e. (λ+ An)

−1 → (λ+ A)−1 strongly as n→ ∞, for all λ > 0.

14.11 Remarks. (a) The assertion in Theorem 14.10 is precisely the hypothesis for the
linear relations −An and −A in Theorem 13.10. This has the important consequence
that the degenerate strongly continuous semigroups generated by −An converge to the
semigroup generated by −A, in the sense formulated in Theorem 13.10.
(b) In Theorem 14.10, the closedness hypothesis for the forms an is essential. We refer

to [BaEl14; Example 3.6] for a counterexample.
(c) In the context of Theorem 14.10 it is rather natural to work with forms that are not

necessarily densely defined: even if all the an are densely defined, the limiting form a need
not be densely defined. A simple example is given by H := R, an(x, y) := nxy (n ∈ N,
x, y ∈ R), which leads to a having trivial domain dom(a) = {0}. △

Proof of Theorem 14.10. If x, y ∈ dom(a), then the Cauchy–Schwarz inequality, Proposi-
tion 5.2, implies that

(
an(x+ y)

)
n∈N is bounded, hence x+ y ∈ dom(a). As it is obvious

that λx ∈ dom(a) for all x ∈ dom(a), λ ∈ K, it follows that dom(a) is a vector space.
The polarisation identity (see Remark 5.1) implies that the limit (14.4) exists for all
x, y ∈ dom(a).
Clearly a is an accretive symmetric form. We show that it is closed. Let (xn)n∈N be

a ∥·∥a-Cauchy sequence. Then x := limxn exists in H. Also, (xn) is a ∥·∥am-Cauchy
sequence for all m ∈ N, and therefore xn → x in

(
dom(am), ∥·∥am

)
since am is closed. Let

n ∈ N. Then

sup
m∈N

am(x− xn) = sup
m∈N

lim
k→∞

am(xk − xn) ⩽ sup
m∈N, k⩾n

am(xk − xn) = sup
k⩾n

a(xk − xn) <∞.

This inequality implies that x ∈ dom(a), and

a(x− xn) ⩽ sup
k⩾n

a(xk − xn) → 0 (n→ ∞)

shows that xn → x in the ∥·∥a-norm. It follows that a is closed.
In view of Lemma 13.9 it is sufficient to prove the asserted strong convergence for

λ = 1. Recall from Remark 14.2 that the linear relation I + An is associated with the
shifted form e + an, for n ∈ N, where e is the ‘unit form’, e(x, y) := (x | y) (x, y ∈ H).
Similarly, I +A is associated with e+ a. Now Proposition 14.5 implies that

(
(I +An)

−1
)
n

is decreasing and that (I + An)
−1 ⩾ (I + A)−1 for all n ∈ N. From Proposition 14.8 we
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infer that R := s-limn→∞(I +An)
−1 exists and is an accretive self-adjoint operator; clearly

(I + An)
−1 ⩾ R ⩾ (I + A)−1 for all n ∈ N. Then B := R−1 is an accretive self-adjoint

linear relation; let b denote the corresponding closed accretive symmetric form as in
Proposition 14.4(b). Using Proposition 14.5 we infer that e+ an ⩽ b ⩽ e+ a for all n ∈ N.
Thus from the definition of a we obtain b = e+a. Since B is associated with b and I+A is
associated with e+ a we conclude that (I +A)−1 = B−1 = R = s-limn→∞(I +An)

−1.

14.12 Example. Let C ⊆ Rn be a closed set, and let (Ωk) be a decreasing sequence of
open subsets of Rn such that C =

⋂∞
k=1 Ωk.

For k ∈ N let ak be the classical Dirichlet form with domain dom(ak) = H1
0 (Ωk),

ak(u, v) =

∫
∇u · ∇v dx (u, v ∈ dom(ak)).

We consider all the forms ak as forms in L2(Rn). Then (ak) is an increasing sequence of
closed accretive symmetric forms, hence convergent in the sense of Theorem 14.10. It is
not difficult to see that the limiting form a is given by

dom(a) = H1
0 (C) :=

{
u ∈ H1(Rn) ; u|Rn\C = 0

}
=

⋂
k∈N

H1
0 (Ωk),

a(u, v) =

∫
∇u · ∇v dx (u, v ∈ dom(a)).

For the degenerate strongly continuous semigroups Tk and T on L2(Rn) associated with
the forms ak and a, respectively, Remark 14.11(a) implies that Tk(t) → T (t) strongly for
all t > 0. Moreover, by Theorem 11.20 the sequence ((Tk)(t))k is monotone decreasing (in
the sense of the order on L2(Rn)).
Suppose, more specifically, that C = Ω for some bounded open set Ω ⊆ Rn. Then

clearly H1
0 (Ω) ⊆ H1

0 (Ω). If in addition ∂Ω is a Lebesgue null set, we conclude that

H1
0 (Ω) ⊆ H1

0 (Ω) ⊆ L2(Ω)
(
=

{
u ∈ L2(Rn) ; u|Rn\Ω = 0

})
.

It follows that a is a densely defined form in L2(Ω). In [ArDa08b], the associated
self-adjoint operator in L2(Ω) is called the “pseudo-Dirichlet Laplacian”.
It is natural to ask for conditions implying that H1

0 (Ω) = H1
0 (Ω) (in which case

the pseudo-Dirichlet Laplacian is just the Dirichlet Laplacian). This equality holds
if Ω has continuous boundary: then Ω and Ω only differ by a Lebesgue null set (see
Exercise 14.4), and hence the equality follows from Proposition 7.10. The example n = 1,
Ω := (−1, 0) ∪ (0, 1) shows that the equality does not hold for all Ω, even if ∂Ω is a null
set. We refer to the Notes for more information. △

14.3 Form convergence ‘from above’

A counterpart to increasing sequences of accretive symmetric forms are decreasing se-
quences. This topic will be treated in Corollary 14.21, which is a special case of our main
result on non-monotone sequences of forms that converge ‘from above’ to a limit form, in
a suitable sense; see Theorem 14.17.
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As a warm-up we begin with the following important approximation result from
numerical analysis.

14.13 Lemma (Céa’s lemma). Let V be a Hilbert space, and let a be a bounded coercive
form on V ,

|a(u, v)| ⩽M∥u∥V ∥v∥V , Re a(u) ⩾ α∥u∥2V (u, v ∈ V )

for some M ⩾ 0, α > 0. Let qV be a closed subspace of V .
Let η ∈ V ∗, and let u ∈ V , ǔ ∈ qV be the unique elements such that

a(u, v) = ⟨η, v⟩V ∗,V (v ∈ V ), a(ǔ, v) = ⟨η, v⟩V ∗,V (v ∈ qV ).

Then ∥u− ǔ∥V ⩽ M
α dist(u, qV ).

Proof. The existence of u and ǔ is a consequence of Theorem 5.4, the Lax–Milgram lemma,
where for ǔ the Lax–Milgram lemma is applied to the restriction of a to qV .

For v ∈ qV we compute

a(u− ǔ, v) = ⟨η, v⟩V ∗,V − a(ǔ, v) = 0. (14.5)

Hence, for any v̌ ∈ qV we obtain

α∥u− ǔ∥2V ⩽ Re a(u− ǔ, (u− v̌) + (v̌ − ǔ)) = Re a(u− ǔ, u− v̌)

⩽M∥u− ǔ∥V ∥u− v̌∥V
for all v̌ ∈ qV .

14.14 Remarks. (a) Let the hypotheses be as in Lemma 14.13, let (Vn) be a sequence of
closed subspaces of V such that dist(u, Vn) → 0, and let un ∈ Vn (n ∈ N) be the unique
elements such that

a(un, v) = ⟨η, v⟩V ∗,V (v ∈ Vn).

Then Lemma 14.13 implies that un → u in V .
(b) The application of Lemma 14.13 sketched in part (a) is an essential ingredient for

the Galerkin method in numerical analysis. An important feature in this application is
the circumstance that the sequence of subspaces need not be increasing. The estimate
∥u−un∥V ⩽ M

α dist(u, Vn) from Céa’s lemma states that, up to the factor M
α , the “Galerkin

approximation” un ∈ Vn is as close to the solution u as the best approximation to u in Vn.
In this context, equation (14.5) is called “Galerkin orthogonality”. △

Next we present a generalisation of Céa’s lemma that provides the key estimate needed
in the proof of our main result.

14.15 Proposition. Let V be a complex Hilbert space, and let a be a bounded coercive
form on V ,

|a(u, v)| ⩽M∥u∥V ∥v∥V , Re a(u) ⩾ α∥u∥2V (u, v ∈ V )

for some M ⩾ 0, α > 0.
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Let qV be a complex Hilbert space, ǎ a bounded coercive form on qV , J ∈ L(qV, V ), and
assume that there exists θ ∈ [0, π

2
) such that

ǎ(v)− a(Jv) ∈ Σθ (v ∈ qV ).

Let η ∈ V ∗, and let u ∈ V , ǔ ∈ qV be the unique elements such that

a(u, v) = ⟨η, v⟩V ∗,V (v ∈ V ), ǎ(ǔ, v) = ⟨η, Jv⟩V ∗,V (v ∈ qV ).

Then

∥u− Jǔ∥2V ⩽ inf
v∈qV

(M2

α2
∥u− Jv∥2V +

c2

2α

∣∣ǎ(v)− a(Jv)
∣∣), (14.6)

where c := 1 + tan θ.

Proof. We define a form b on qV by

b(w, v) := ǎ(w, v)− a(Jw, Jv).

The assumptions imply that

|b(w, v)| ⩽ c(Re b(w))1/2(Re b(v))1/2 (w, v ∈ qV ); (14.7)

see (12.2). For v ∈ qV we compute

a(u− Jǔ, Jv) = ⟨η, Jv⟩V ∗,V − a(Jǔ, Jv) = ǎ(ǔ, v)− a(Jǔ, Jv) = b(ǔ, v).

Hence, for v ∈ qV we obtain

α∥u− Jǔ∥2V ⩽ Re a
(
u− Jǔ, (u− Jv) + J(v − ǔ)

)
= Re a(u− Jǔ, u− Jv) + Re b(ǔ, v − ǔ).

We now use (14.7), the boundedness of a and the Peter–Paul inequality (twice) to estimate

α∥u− Jǔ∥2V ⩽M∥u− Jǔ∥V ∥u− Jv∥V + c(Re b(ǔ))1/2(Re b(v))1/2 − Re b(ǔ)

⩽
α

2
∥u− Jǔ∥2V +

M2

2α
∥u− Jv∥2V +

c2

4
Re b(v).

Reshuffling terms we conclude that

∥u− Jǔ∥2V ⩽
M2

α2
∥u− Jv∥2V +

c2

2α
Re

(
ǎ(v)− a(Jv)

)
. (14.8)

14.16 Remarks. (a) If the space qV is a subspace of V, J : qV ↪→ V is the embedding and
ǎ = a|

qV×qV , then Proposition 14.15 reduces to Céa’s lemma.
(b) The following considerations serve to transform (14.6) into an inequality that will

be used in the proof of the subsequent theorem. In the setting of Proposition 14.15, let
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A ∈ L(V, V ∗) and Ǎ ∈ L(qV, qV
∗
) be the Lax–Milgram operators associated with a and ǎ,

respectively. We define the dual operator J ′ ∈ L(V ∗, qV
∗
) by

J ′η̌ := η̌J (η̌ ∈ V ∗).

Then, for η ∈ V ∗ as specified in Proposition 14.15, the elements u ∈ V , ǔ ∈ qV are given
by

u = A−1η, ǔ = Ǎ−1J ′η.

With this notation, (14.6) reads

∥∥A−1η − JǍ−1J ′η
∥∥2

V
⩽ inf

v∈qV

(M2

α2

∥∥A−1η − Jv
∥∥2

V
+
c2

2α

∣∣ǎ(v)− a(Jv)
∣∣). (14.9)

△

We now come to our main result on form convergence ‘from above’, which is formulated
in a rather general setting. As before, the forms are not assumed to be densely defined.
In contrast to Theorem 14.10, they need not be embedded, symmetric nor closed.

14.17 Theorem. Let H be a complex Hilbert space, and let (a, j) be a quasi-sectorial form
in H. For n ∈ N let an be a form with dom(an) ⊆ dom(a). Let θ ∈ [0, π

2
), and assume

that
an(u)− a(u) ∈ Σθ

(
u ∈ dom(an), n ∈ N

)
. (14.10)

(This implies that the forms an are quasi-sectorial with the same vertex as a and with
a common angle.) Let D be a core for a, and suppose that for all u ∈ D there exists a
sequence (un) in dom(a), un ∈ dom(an) for all n ∈ N, such that un → u in dom(a) and
an(un) → a(u) as n→ ∞.
Let A be the quasi-m-sectorial linear relation associated with (a, j) (see (14.2)), and let

An be the quasi-m-sectorial linear relation associated with (an, j|dom(an)), for n ∈ N. Then
(An) converges to A in the strong resolvent sense, i.e. (λ+ An)

−1 → (λ+ A)−1 (n→ ∞)
strongly for all λ > ω, where −ω is a vertex of (a, j).

14.18 Remarks. (a) In the situation of Theorem 14.17 it follows from Theorem 13.4,
together with a rescaling argument, that the degenerate strongly continuous semigroups
Tn generated by the linear relations −An converge to the semigroup T generated by −A.
In fact, because ker(T (0)) = ran(j)⊥ ⊆ ran(j|dom(an))

⊥ = ker(Tn(0)) for all n ∈ N, it even
follows that Tn(t)x → T (t)x (n → ∞) uniformly on compact subsets of [0,∞), for all
x ∈ H (and not just for x ∈ ran(T (0))).
(b) In the hypotheses of Theorem 14.17, the condition un → u in dom(a) implies

that a(un) → a(u). Therefore ‘an(un) → a(u) as n → ∞’ is equivalent to requiring
‘an(un)− a(un) → 0 as n→ ∞’.

(c) In the proof of Theorem 14.17 it is shown that the convergence property required
for all u ∈ D is in fact satisfied for all u ∈ dom(a); see the argument connected with the
reformulation (14.11) of this property.
(d) The hypotheses of the theorem express a kind of convergence an → a. In previous

results on form convergence ‘from above’ (see e.g. [Kat80; Chap. VIII, Theorem 3.6] and
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[ArEl12b; Theorem 3.7]) a more restrictive assumption is used, namely that the set

D :=

{
u ∈

⋃
k∈N

⋂
n⩾k

dom(an) ; an(u) → a(u) (n→ ∞)

}
is a core for a. Then, in particular, the elements of D belong to almost every dom(an).
This property of D is not required in Theorem 14.17. △
Proof of Theorem 14.17. Without loss of generality we assume that −ω = 1 is a vertex of
(a, j); cf. Remark 14.2. Then Re a is a semi-inner product on dom(a) that is equivalent to
the semi-inner product (· | ·)a,j defined in (12.4). Moreover (a, j) is sectorial, and (14.10)
implies that (an, j) is sectorial for all n ∈ N.
Let (V, q) denote the completion of (dom(a),Re a). Then there exist a unique ȷ̃ ∈ L(V,H)

and a unique bounded form ã : V × V → C such that ȷ̃ ◦ q = j and ã(q(u), q(v)) =
a(u, v) for all u, v ∈ dom(a) (see Remark 12.3(c)); recall from (14.2) that A is the linear
relation associated with (ã, ȷ̃). Analogously we define Vn, qn, ȷ̃n and ãn corresponding
to an, for n ∈ N; then An is the linear relation associated with
(ãn, ȷ̃n).It follows from (14.10) that the embedding dom(an) ↪→ dom(a) V

H

dom(an) Vn

q
ȷ̃

qn

id

ȷ̃n

Jn
dom(a) is continuous for all n ∈ N, and by Remark 12.3(c)
there exists Jn ∈ L(Vn, V ) such that Jn ◦ qn = q|dom(an). Then
ȷ̃n ◦ qn = j|dom(an) = ȷ̃ ◦ q|dom(an) = ȷ̃ ◦Jn ◦ qn; hence ȷ̃n = ȷ̃ ◦Jn
on ran(qn), and by denseness on all of Vn.
Observe that the forms ã and ãn are coercive because 1 is a vertex for (a, j). Let

Ã ∈ L(V, V ∗) and Ãn ∈ L(Vn, V ∗
n ) (n ∈ N) be the Lax–Milgram operators associated

with ã and ãn (n ∈ N), respectively. By Proposition 14.19 proved subsequently we
have A−1 = ȷ̃Ã−1k̃ and A−1

n = ȷ̃nÃ−1
n k̃n for all n ∈ N, where k̃(y) = (y | ȷ̃(·))H and

k̃n(y) = (y | ȷ̃n(·))H for all y ∈ H. We will show that JnA−1
n J ′

n → A−1 strongly in L(V ∗, V )
as n→ ∞. Then, using ȷ̃n = ȷ̃ ◦ Jn and k̃n = J ′

n ◦ k̃ for all n ∈ N, we can infer that

A−1
n = ȷ̃(JnA−1

n J ′
n)k̃ → ȷ̃A−1k̃ = A−1 (n→ ∞)

strongly in L(H), and applying Lemma 13.9 we may conclude that s-limn→∞(λ+An)
−1 =

(λ+ A)−1 for all λ > ω = −1.
Let n ∈ N. Then for all u ∈ dom(an) we have

ãn(qn(u))− ã(Jnqn(u)) = an(u)− a(u) ∈ Σθ .

Since ran(qn) is dense in Vn, it follows that ãn(v)− ã(Jnv) ∈ Σθ for all v ∈ Vn. Thus we
can apply Proposition 14.15 to the forms ã and ãn.
For the proof of the strong convergence A−1 = s-limn→∞ JnA−1

n J ′
n we now evaluate the

right-hand side of the inequality (14.9). By the convergence hypothesis of the theorem
and Remark 14.18(b) we have

inf
v∈dom(an)

(
∥u− v∥2a +

∣∣an(v)− a(v)
∣∣) → 0 (n→ ∞), (14.11)

for all u ∈ D. As D is a core for a, the convergence (14.11) carries over to all u ∈ dom(a).
In view of the properties of the mappings q, qn and Jn this implies that

inf
v∈ran(qn)

(
∥u− Jnv∥2V +

∣∣ãn(v)− ã(Jnv)
∣∣) → 0 (n→ ∞),
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for all u ∈ ran(q). Then, using the inclusions ran(qn) ⊆ Vn as well as the denseness of
ran(q) in V , we also obtain

inf
v∈Vn

(
∥u− Jnv∥2V +

∣∣ãn(v)− ã(Jnv)
∣∣) → 0 (n→ ∞),

for all u ∈ V . Combining this convergence with the inequality (14.9) we conclude that
JnA−1

n J ′
n → A−1 strongly in L(V ∗, V ) as n→ ∞.

In the above proof we have used the following extension of Proposition 5.7 to non-densely
defined coercive forms.

14.19 Proposition. Let V and H be Hilbert spaces, j ∈ L(V,H), a : V × V → K a
bounded coercive form, and let A be the strictly m-accretive linear relation associated with
(a, j). Let A : V → V ∗ be the Lax–Milgram operator associated with a, and let k : H → V ∗,
y 7→ (y | j(·)) be as in Proposition 5.7. Then

A−1 = jA−1k.

(Recall from Theorem 5.4 that A is invertible with inverse in L(V ∗, V ).)

Proof. For x, y ∈ H one has (x, y) ∈ A if and only if there exists u ∈ V such that j(u) = x
and a(u, v) = (y | j(v)) for all v ∈ V . The latter property is equivalent to Au = k(y), i.e.
u = A−1k(y). Therefore (x, y) ∈ A if and only if x = j(u) = (jA−1k)y.

14.20 Remark. Theorem 14.17, with the same proof, also holds for real Hilbert spaces if
all the forms a, an are symmetric and accretive, and where (14.10) should be interpreted
as an(u)− a(u) ⩾ 0. This is why we do not have to suppose a complex Hilbert space in
the subsequent Corollary 14.21. △

In the following result we treat the special case of decreasing sequences of embedded
symmetric forms; an interesting feature is that then one does not need to specify the
limiting form a in advance. In this context it is natural to work without the assumption
of closedness or closability (see Remark 14.23 below).

14.21 Corollary. Let H be a Hilbert space, and let (an) be a decreasing sequence of
(embedded) accretive symmetric forms in H. Define dom(a) :=

⋃
n∈N dom(an).

Then
a(x, y) := lim

n→∞
an(x, y)

exists for all x, y ∈ dom(a), and a is an accretive symmetric form in H. Let A be the
accretive self-adjoint linear relation associated with a, and similarly, let An be associated
with an, for n ∈ N. Then An → A in the strong resolvent sense, i.e. (λ+An)

−1 → (λ+A)−1

strongly as n→ ∞, for all λ > 0.

Proof. The existence of limn→∞ an(x, y) is obtained as in the proof of Proposition 14.8,
and the asserted properties of a are then obvious. We can now apply Theorem 14.17 to
obtain the remaining assertions. (Choose un = u for large n in the assumptions of the
theorem.)



197

14.22 Example. Let Ω be an open subset of Rn, and let (Ωk) be an increasing sequence
of open subsets of Ω satisfying Ω =

⋃
k∈N Ωk. For all k ∈ N let ak be the classical Dirichlet

form on C∞
c (Ωk), and let a be the classical Dirichlet form on C∞

c (Ω) (cf. Example 12.6).
Then, for all k ∈ N, the self-adjoint linear relation in L2(Ω) associated with ak is the

negative Dirichlet Laplacian in L2(Ωk), supplemented by {0}×L2(Ω\Ωk). Corollary 14.21
implies that (Ak) converges in the strong resolvent sense to the negative Dirichlet Laplacian
on L2(Ω). As in Example 14.12, if Tk and T are the degenerate strongly continuous
semigroups on L2(Ω) associated with the forms ak and a, respectively, then Tk(t) → T (t)
strongly for all t > 0, and the sequence ((Tk)(t))k is monotone increasing (in the sense of
the order on L2(Ω)).
We refer to Exercise 14.3 for a more sophisticated version of this example. △

14.23 Remark. In contrast to Theorem 14.10, where increasing sequences of forms are
treated, in Corollary 14.21 it is not supposed that the forms an are closed. Even if the
forms an are closed, the limiting form a in Corollary 14.21 need not be closable, as is
demonstrated by the example in Exercise 14.5. The example also shows how to avoid
this problem if one can guess a closed limiting form: then one can apply Theorem 14.17
instead of Corollary 14.21. △

Notes

For an outline of the early history of convergence theorems for sequences of forms –
mainly in the 70’s – we refer to Reed–Simon [ReSi80; Supplementary Material, Notes to
Supplement VIII.7].
The use of non-densely defined forms was advocated in [Sim78; Section 4], for symmetric

forms, and further developed, for sectorial forms, in [ArBa93; Section 7], [Kun05], [MVV05],
[BaEl14], [VoVo20a]. We refer to [AEKS14] for an application of non-densely defined
forms in the context of essential coercivity (or ‘compact ellipticity’ in the terminology of
[AEKS14]).
The form convergence theorem for increasing sequences of forms, Theorem 14.10, is

contained in [Sim78; Theorem 4.1]; the full proof can be found in [VoVo20a]. See also
Simon [Sim78; Theorem 3.1], Kato [Kat80; Chap. VIII, Theorem 3.13a] for the special
case in which the limiting form is densely defined. The proof of Proposition 14.5 is taken
from [VoVo20a].
As there is no natural notion of order between sectorial forms, a generalisation of

Theorem 14.10 to sequences of sectorial forms is not straightforward. We mention
[Ouh95b; Theorem 6], [BaEl14; Theorem 1.2] and [VoVo20a] for results concerning this
topic. In the latter two references the input is a sequence (an) of sectorial forms for which
an+1 − an, for all n ∈ N, is sectorial of a fixed angle θ ∈ [0, π

2
).

In Example 14.12 the question was raised under what conditions the equality

H1
0 (Ω) = H1

0 (Ω) =
{
u|Ω ; u ∈ H1(Rn), u|Rn\Ω = 0

}
holds for a bounded open set Ω ⊆ Rn. It turns out that this property is equivalent to an
approximation property for harmonic functions. (Recall that u : Ω → K is called harmonic
if u ∈ C2(Ω) and ∆u = 0.)



198

The following result is Theorem 11.8 in the survey of Hedberg [Hed93], where methods
of abstract potential theory are used for the proof. Versions of the result go back to
Keldysh [Kel41], with more direct proofs.

Theorem (Hedberg-Keldysh) Let n ⩾ 2, and let Ω ⊆ Rn be a bounded open set with
◦
Ω = Ω. Then the following properties are equivalent.

(i) H1
0 (Ω) = H1

0 (Ω).

(ii) For each function u ∈ C(Ω), u|Ω harmonic, there exist functions uk that are defined
and harmonic on an open neighbourhood Ωk of Ω such that uk(x) → u(x) as k → ∞,
uniformly for x ∈ Ω.

We point out that in property (ii) the function u need not belong to H1(Ω), even if Ω is
a very ‘nice’ set such as the unit disc BR2(0, 1); see the discussion of Hadamard’s example
in the Notes of Chapter 7. Moreover, property (ii) is not related to the solvability of the
Dirichlet problem: there is no implication between (ii) and the Dirichlet regularity of Ω.
In particular, the set of traces u|∂Ω of the functions u occurring in property (ii) may be a
proper subset of C(∂Ω).
Theorem 14.17 is contained in [VoVo24]; it generalises [Kat80; Chap.VIII, Theorem 3.6],

[ArEl12b; Theorem 3.7] and [ChEl18; Theorem 3.7]. The noteworthy new features of our
result are that we allow more general domains of the forms an – which may in fact have
pairwise trivial intersection – and that the limiting form a need not be densely defined.
An essential ingredient of the proof is Proposition 14.15, which is an extended version
of Céa’s lemma, Lemma 14.13. The origin of explicit estimates of the type stated in
Lemma 14.13 seems to be [Cea64; Proposition 3.1 on p. 365], where a stronger estimate is
stated for the case of symmetric forms. The lemma in the general non-symmetric case is
not stated explicitly in [Cea64].
It was mentioned in Remarks 14.14 that Céa’s lemma is fundamental for the Galerkin

method, which in turn is the basis of the finite-element method for the solution of partial
differential equations. We will not expand on this topic here, but we mention the recent
paper [ACE22] for the disussion and analysis of various aspects concerning the Galerkin
approximation.
Corollary 14.21 generalises [Sim78; Theorems 3.2 and 4.1], where it is assumed that

the forms an are closed. (It follows from Remark 12.13(c) that the linear relation A in
Corollary 14.21 is associated with the form ar, where ar is Simon’s ‘regular part’ of a.)

Exercises

14.1 (a) Let V , H, j and a as well as the remaining notation be as in the second
paragraph of Section 14.1, and let A be the linear relation associated with (a, j); see (14.1).
Show that A is quasi-m-accretive and that −A is the generator of T .
(b) Now let H be a complex Hilbert space, and let (a, j) be a quasi-sectorial form in H.

Show that the linear relation A associated with (a, j) is quasi-m-sectorial. Moreover show
that A is m-sectorial if (a, j) is sectorial.

14.2 Verify the assertions stated in Remarks 14.3.
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14.3 (a) Let Ω ⊆ Rn be an open set, and let (Ωk)k∈N be a sequence of open subsets of Ω
with the property that for each compact set K ⊆ Ω there exists kK ∈ N such that K ⊆ Ωk

for all k ⩾ kK . (This property is equivalent to
⋃

n∈N
⋂

k⩾nΩk = Ω.)

Let a be the classical Dirichlet form on C∞
c (Ω),

a(f, g) =

∫
∇f · ∇g dx (f, g ∈ C∞

c (Ω)),

let ak be the restriction of a to dom(ak) := C∞
c (Ωk), and let A and Ak (k ∈ N) be the

self-adjoint linear relation associated with a and ak (k ∈ N), respectively. (In other words,
the operator A is the negative Dirichlet Laplacian in L2(Ω), whereas for k ∈ N, Ak is the
negative Dirichlet Laplacian in L2(Ωk) supplemented by {0}×L2(Ω \Ωk) to a self-adjoint
linear relation in L2(Ω).)

Show that Ak → A in the strong resolvent sense.

(b) Show that the sets Ω := Rn, Ωk := B(0, k) ∪ (Rn \B[0, k + 1]) (k ∈ N) satisfy the
conditions posed in (a) above. Show that k, l ∈ N, Ωk ⊆ Ωl implies that k = l.

This example shows that, in general, in the context of part (a) one cannot expect to
find a decreasing subsequence (akj)j of (ak)k.

14.4 Let Ω ⊆ Rn be a bounded open set with continuous boundary. Show that ∂Ω has

Lebesgue measure 0 and that
◦
Ω = Ω.

14.5 (From [Kat80; Chap. VIII, Example 3.10]) Let H := L2(0, 1;R), and for n ∈ N
define the form an in H by dom(an) := H1(0, 1),

an(u, v) :=
1
n

∫ 1

0

u′(ξ)v′(ξ) dξ + u(0)v(0) + u(1)v(1).

(a) Show that (an) is a decreasing sequence of (embedded) closed accretive symmetric
forms. Determine the form a given by Corollary 14.21 and show that a is not closable.

(b) Choose a0 := 0 with domain dom(a0) := H, and use Theorem 14.17 with D :=
H1

0 (0, 1) to show that the sequence (An) converges to A = 0 in the strong resolvent sense,
where An is associated with an.

(c) Conclude from (b) that the operator A = 0 is associated with the form a from
part (a).

14.6 Let H be a Hilbert space, and let A be an accretive linear relation in H. Prove the
following properties:

(a) A is accretive.

(b) A is closed if and only if ran(I + A) is closed.

(c) If z ∈ ran(I + A)⊥, then

Az := A+ lin{(z, z)} = {(x+ λz, y + λz) ; (x, y) ∈ A}

is accretive, and z ∈ ran(I + Az).
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14.7 Let H be a Hilbert space, and let A be an accretive linear relation in H.
(a) Show that A has a maximal accretive extension, i.e., there exists an accretive

linear relation B ⊇ A such that B has no proper accretive extension. (Hint: Zorn’s
lemma.)
(b) Assume that A is maximal accretive. Show that A is m-accretive. (Hint: Use

Exercise 14.6.)
(c) Assume that A is a densely defined operator. Conclude from part (b) and Lemma 13.3

that A is m-accretive if and only if A is a maximal accretive operator (i.e. no proper
accretive extension of A is an operator).

14.8 Let H be a Hilbert space, and let A be a linear relation in H. Prove the following
properties.
(a) ker(A∗) = ran(A)⊥ and ran(A∗) = ker(A)⊥.
(b) If A is accretive, then ker(A) ⊆ ker(A∗). (Hint: Proceed similarly as in the proof of

Lemma 13.3; then use part (a).)
(c) If A is self-adjoint and accretive, then A is m-accretive. (Hint: Mimic the proof of

Theorem 6.1.)

14.9 Let H be a complex Hilbert space, and let A be a linear relation in H. Prove the
following properties.
(a) A ⊆ A∗ if and only if (x | y) ∈ R for all (x, y) ∈ A. (Hint concerning ‘⇐’: Assume that

(x | y) ∈ R for all (x, y) ∈ A. Then, given (x, y), (f, g) ∈ A, show that (x |λg)+(λf | y) ∈ R
for all λ ∈ C, and conclude that (x | g) = (y | f).)
(b) A is self-adjoint if and only if ±iA are both m-accretive. (Hint: If A is self-adjoint,

then proceed as in the proof of Theorem 6.1 to show that ran(I + iA) = H.)
(c) A is self-adjoint and accretive if and only if A is m-sectorial of angle 0.



Chapter 15

The Trotter product formula for forms

The central result of this chapter is the Trotter product formula for sectorial forms, which
is the content of Section 15.3. The proof relies on the material presented in Chapters 13
and 14. In addition we will need Vitali’s convergence theorem for sequences of holomorphic
functions and holomorphic dependence of forms and operators; see Sections 15.1 and 15.2.
In Section 15.4 we discuss applications of the Trotter product formula.

15.1 Interlude: The Vitali convergence theorem

Convergence of a sequence of holomorphic functions on a domain Ω ⊆ C propagates from
very small subsets to the entire domain. This surprising phenomenon has been discovered
by Vitali. In the functional analytic setting used in our proof we obtain Vitali’s theorem
as a consequence of the unique extension theorem.

15.1 Theorem (Vitali). Let X be a complex Banach space. Let Ω ⊆ C be a connected
open set, and let (fn) be a sequence of holomorphic functions fn : Ω → X. Assume that
(fn) is locally uniformly bounded and that the set

Ω0 :=
{
z ∈ Ω; (fn(z))n∈N convergent

}
has a cluster point in Ω.

Then there exists a holomorphic function f : Ω → X such that fn → f locally uniformly.

Proof. Denote by ℓ∞(N;X) the space of bounded sequences in X, provided with the
supremum norm, and by c(N;X) the closed subspace of convergent sequences.
We define the function g : Ω → ℓ∞(N;X) by g(z) := (fn(z))n∈N (z ∈ Ω). Then g

is holomorphic, by the equivalence of (i) and (iv) in Theorem 3.2; take
{
ℓ∞(N;X) ∋

(xn) 7→ x′(xk) ; x
′ ∈ X ′, k ∈ N

}
as a norming subset of the dual of ℓ∞(N;X). (See also

Exercise 15.1.) On the set Ω0, the function g takes its values in c(N;X). Applying the
identity theorem for holomorphic functions together with the Hahn–Banach theorem we
conclude that g(z) ∈ c(N;X) for all z ∈ Ω, i.e. (fn) converges pointwise.
Now the assertion is a consequence of Theorem 3.5.

15.2 Holomorphic families of operators defined by forms

The following result shows that the holomorphic dependence – on a complex variable –
of a family of sectorial forms implies holomorphic dependence of the associated sectorial



202

operators. A rather striking application, due to B. Simon, will be given in Corollary 15.9.

15.2 Theorem. Let H be a complex Hilbert space, V ⊆ H a subspace, and let Ω ⊆ C be
open. For each z ∈ Ω let az be a closed sectorial form in H with domain dom(az) = V , and
let Az denote the m-sectorial linear relation associated with az (as defined in Section 14.1).
Assume that for all x, y ∈ V the mapping Ω ∋ z 7→ az(x, y) is holomorphic.

Then the function Ω ∋ z 7→ (I + Az)
−1 ∈ L(H) is holomorphic.

Note that the subspace V is not assumed to be dense in H, so that the semigroups
generated by −Az may be degenerate. However, the corresponding ‘active’ subspaces are
all equal to the closure of V in H, in particular they do not depend on z. In Exercise 15.5(a)
it is explained why it would be useless to try finding a version of Theorem 15.2 with
z-dependent domains dom(az).

15.3 Lemma. Let X, Y be complex Banach spaces. Let r > 0, and let A : BC(0, r) →
L(X, Y ) be holomorphic. Assume that A(0) is invertible with A(0)−1 ∈ L(Y,X).
Then there exists δ ∈ (0, r) such that A(z) has an inverse in L(Y,X) for all z ∈ B(0, δ),

and the function B(0, δ) ∋ z 7→ A(z)−1 ∈ L(Y,X) is holomorphic.

Proof. Replacing A(z) by A(0)−1A(z) ∈ L(X) (z ∈ B(0, r)) we see that without loss of
generality we may assume that Y = X.
It is an easy consequence of Remark 2.3(a) (Neumann series) that

I(X) :=
{
A ∈ L(X) ; A invertible in L(X)

}
is open in L(X) and that the mapping I(X) ∋ A 7→ A−1 ∈ I(X) is continuous. This
implies that there exists δ ∈ (0, r) such that A(z) ∈ I(X) for all z ∈ B(0, δ) and
sup|z|<δ ∥A(z)−1∥ <∞. Dividing the equality

A(w)−1 − A(z)−1 = A(w)−1
(
A(z)− A(w)

)
A(z)−1 (w, z ∈ B(0, δ))

by w − z and taking the limit w → z, we conclude that z 7→ A(z)−1 is holomorphic and
that

d

dz
A(z)−1 = −A(z)−1A′(z)A(z)−1.

Proof of Theorem 15.2. The closedness of az means that the space (V, ∥·∥az), with the
norm

∥u∥az =
(
Re az(u) + ∥u∥2H

)1/2
(u ∈ V ),

is complete. Using the continuity of the embeddings (V, ∥·∥az) ↪→ (H, ∥·∥H) and applying
the closed graph theorem we conclude that the norms ∥·∥az are pairwise equivalent.
For notational convenience we can therefore make V a Hilbert space with a norm ∥·∥V
equivalent to all the norms ∥·∥az . We define the form e : V × V → C by e(u, v) := (u | v)H .
Then for z ∈ Ω, az + e is a bounded coercive form on V , by the equivalence of the norms
∥·∥az and ∥·∥V .
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Recall that the linear relation I+Az is associated with the form az + e; see Remark 14.2.
Now we use the description of the inverse of I + Az given in Proposition 14.19: if we
define Bz ∈ L(V, V ∗) by

⟨Bzu, v⟩ := az(u, v) + (u | v)H (u, v ∈ V ), (15.1)

then B−1
z ∈ L(V ∗, V ) and

(I + Az)
−1 = jB−1

z k ∈ L(H), (15.2)

where j : V ↪→ H is the embedding, and k : H ↪→ V ∗ is as in Proposition 14.19.
The definition (15.1) together with the hypotheses and Theorem 3.2 yield the holomorphy

of the function Ω ∋ z 7→ B(z) ∈ L(V, V ∗). Then Lemma 15.3 shows that Ω ∋ z 7→ B−1
z ∈

L(V ∗, V ) is holomorphic. By (15.2) this implies the holomorphy of Ω ∋ z 7→ (I +Az)
−1 ∈

L(H).

Next we show that the holomorphic depencence on z of a family of generators implies that
the corresponding degenerate strongly continuous semigroups also depend holomorphically
on z. By Cb([0,∞);X) we denote the space of bounded continuous functions from [0,∞)
to X.

15.4 Theorem. Let X be a complex Banach space. Let Ω ⊆ C be open, (Az)z∈Ω a
family of generators of degenerate strongly continuous semigroups Tz on X. Assume
that M := sup

{
∥Tz(t)∥ ; t ⩾ 0, z ∈ Ω

}
< ∞ and that Ω ∋ z 7→ (I − Az)

−1 ∈ L(X) is
holomorphic. Then

(a) the function Ω ∋ z 7→ Tz(t) ∈ L(X) is holomorphic for all t ⩾ 0,
(b) the function Ω ∋ z 7→ Tz(·)x ∈ Cb([0,∞);X) is holomorphic for all x ∈ X.

Proof. (a) It follows from the boundedness hypothesis that∥∥(λ− Az)
−n

∥∥ ⩽
M

λn
(n ∈ N, λ > 0); (15.3)

see Theorem 2.7. We show that the holomorphy hypothesis implies that Ω ∋ z 7→ (λ−Az)
−1

is holomorphic for all λ > 0. Put

U :=
{
λ > 0; Ω ∋ z 7→ (λ− Az)

−1 holomorphic
}
.

It follows from (15.3) and Theorem 3.5 that U is a closed subset of (0,∞). Also, U ̸= ∅
because 1 ∈ U . If µ ∈ U , then, using the resolvent equation, one concludes that

(λ− Az)
−1 = (µ− Az)

−1
(
I − (λ− µ)(µ− Az)

−1
)−1

(15.4)

for all z ∈ Ω and all λ > 0 such that |λ− µ|Mµ < 1, and by Lemma 15.3 one sees that the
right-hand side of (15.4) is holomorphic in z. This shows that U is open, and as (0,∞) is
connected one concludes that U = (0,∞).
For z ∈ Ω let Pz := Tz(0) denote the projection onto the ‘active’ subspace of Tz. Let

t > 0. Then it follows from the exponential formula, Theorem 2.12, that

Tz(t)x = Tz(t)Pzx = lim
n→∞

(
I − t

nAz

)−n
Pzx = lim

n→∞

(
I − t

nAz

)−n
x (z ∈ Ω, x ∈ X).
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Inequality (15.3) implies that
∥∥(I − t

nAz)
−n

∥∥ ⩽M for all z ∈ Ω. Now Corollary 3.6 yields
the holomorphy of z 7→ Tz(t) for t > 0. Another application of Corollary 3.6 shows that
z 7→ Tz(0) = s-limt→0 Tz(t) is holomorphic as well.
(b) Let x ∈ X and define F : Ω → Cb([0,∞);X) by F (z) := [t 7→ Tz(t)x]. Then by

part (a), the mapping Ω ∋ z 7→ F (z)(t) ∈ X is holomorphic for all t ⩾ 0. Since F is
bounded (by M), it follows that F is holomorphic; see Exercise 15.1.

15.3 The Trotter product formula for forms

We now come to the main result of this chapter. Not only the results of the present
chapter treated so far, but also the topics presented in the previous two chapters will play
a decisive role in the proof of this result. We first treat the case of symmetric forms; the
more general case of sectorial forms will then be obtained as a corollary. For simplicity
we only treat the case in which the associated semigroups are contractive; by a rescaling
argument one easily sees that the results remain true in the quasi-contractive case.
Throughout this section H will be a Hilbert space, and the forms will be embedded

forms in H.

15.5 Theorem (Trotter product formula for symmetric forms). Let a, b be closed
accretive symmetric forms in H, let c := a+ b, with domain dom(c) := dom(a) ∩ dom(b),
and let Ta, Tb, Tc be the degenerate strongly continuous semigroups associated with a, b, c,
respectively. Then (

Ta(
t
n)Tb(

t
n)
)n
x→ Tc(t)x (n→ ∞),

uniformly for t in compact subsets of [0,∞), for all x ∈ dom(c), and(
Ta(

t
n)Tb(

t
n)
)n
x→ 0 = Tc(t)x (n→ ∞),

uniformly for t in compact subsets of (0,∞), for all x ∈ dom(c)⊥.

In the proof of the above theorem we need some auxiliary results; the first lemma is of
a general nature. We recall from Section 13.4 that every accretive self-adjoint operator A
has a unique accretive self-adjoint square root A1/2.

15.6 Lemma. (a) Let A,B ∈ L(H), A self-adjoint and accretive, (Ax |x) ⩽ Re(Bx |x)
for all x ∈ H. Then ∥(I +B)−1A1/2∥ ⩽ 1.
(b) Let A,B ∈ L(H) be self-adjoint and accretive. Then |(ABx |x)| ⩽ 1

2
∥A∥(Ax |x) +

1
2
∥B∥(Bx |x) for all x ∈ H.

Proof. (a) The hypotheses imply that B and B∗ are accretive. We have ∥(I+B)−1A1/2∥ =∥∥(A1/2)∗
(
(I +B)−1

)∗∥∥ = ∥A1/2(I +B∗)−1∥, and for the last norm we estimate∥∥A1/2(I +B∗)−1x
∥∥2

=
(
A(I +B∗)−1x

∣∣ (I +B∗)−1x
)

⩽ Re
(
(I +B)(I +B∗)−1x

∣∣ (I +B∗)−1x
)

⩽
∣∣((I +B∗)−1x

∣∣x)∣∣ ⩽ ∥x∥2

for all x ∈ H. This proves the asserted inequality.
(b) Recall from Lemma 14.9 that ∥Ax∥2 ⩽ ∥A∥(Ax |x), and analogously for B. This

implies the assertion since |(ABx |x)| = |(Ax |Bx)| ⩽ 1
2
∥Ax∥2 + 1

2
∥Bx∥2.
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For the proof of Theorem 15.5 as well as for two further auxiliary lemmas we fix the
following additional notation. Let A be the accretive self-adjoint linear relation associated
with a; then −A is the generator of the degenerate strongly continuous semigroup Ta.
We denote the orthogonal projection onto the ‘active’ subspace of Ta by Pa := Ta(0),
and by A0 we denote the accretive self-adjoint operator associated with a as a form in
dom(a) = ran(Pa). (In Section 14.1, the operator A0 had been denoted by Aa, as the
restriction of A to the ‘active’ subspace Ha of H. In the present context we avoid this
notation because simultaneously using indices a and a might lead to confusion.) For
the forms b and c we will use the corresponding notation; in particular, the accretive
self-adjoint linear relations associated with b, c will be denoted by B, C, respectively.
For t ⩾ 0, s > 0 we define

F (t) := Ta(t)Tb(t), R(s) := 1
s

(
I − F (s)

)
and

A(s) := 1
s

(
I − Ta(s)

)
, B(s) := 1

s

(
I − Tb(s)

)
, C(s) := A(s) +B(s).

It is easy to check that with these definitions one gets

R(s) = C(s)− sA(s)B(s). (15.5)

The overall plan for the proof of Theorem 15.5 is to show that

s-lims→0

(
I +R(s)

)−1
= s-lims→0

(
I + C(s)

)−1
= (I + C)−1,

and then to apply the Chernoff product formula, Theorems 13.14 and 13.18. For the
application of the latter theorem we will also need a symmetrisation procedure (in step (ii)
of the proof of Theorem 15.5).

15.7 Lemma. For all s > 0 one has

Re
(
R(s)x

∣∣x) ⩾ 1
2

(
C(s)x

∣∣x) ⩾ 1
2

(
A(s)x

∣∣x) ⩾ 0 (x ∈ H);

in particular, R(s) is accretive.

Proof. Note that 0 ⩽ A(s) = 1
s(I − Ta(s)) ⩽ 1

sI because 0 ⩽ Ta(s) ⩽ I, and similarly for
B(s). Thus, for x ∈ H it follows from Lemma 15.6(b) that∣∣(sA(s)B(s)x

∣∣x)∣∣ ⩽ s
2
∥A(s)∥

(
A(s)x

∣∣x)+ s
2
∥B(s)∥

(
B(s)x

∣∣x)
⩽ 1

2

(
A(s)x

∣∣x)+ 1
2

(
B(s)x

∣∣x) = 1
2

(
C(s)x

∣∣x).
This implies

Re
(
R(s)x

∣∣x) = (
C(s)x

∣∣x)− Re
(
sA(s)B(s)x

∣∣x) ⩾ 1
2

(
C(s)x

∣∣x).
Since C(s) = A(s) +B(s) ⩾ A(s) ⩾ 0, we obtain the assertion.

15.8 Lemma. One has

(a) s-lims→0

(
I + C(s)

)−1 = (I + C)−1,

(b) s-lims→0 s
1/2B(s)

(
I + C(s)

)−1 = 0.
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Proof. (a) Let s > 0. As Ta(s) is self-adjoint and ∥Ta(s)∥ ⩽ 1, the form H ×H ∋ (x, y) 7→
1
s

(
(I − Ta(s))x

∣∣ y) is bounded, symmetric and accretive, and similarly for Tb. The form
associated with the bounded operator C(s) is given by the sum of these two forms,

cs(x, y) := (C(s)x | y) = 1
s

(
(I − Ta(s))x

∣∣ y)+ 1
s

(
(I − Tb(s))x

∣∣ y).
We observe that (0,∞) ∋ s 7→ cs(x) ∈ [0,∞) is decreasing for all x ∈ H. Indeed, if
x ∈ dom(a), then Proposition 13.23(b) implies that s 7→ 1

s

(
(I − Ta(s))x

∣∣x) is decreasing,
and therefore

s 7→ 1
s

(
(I − Ta(s))(x+ y)

∣∣x+ y
)
=

1
s

(
(I − Ta(s))x

∣∣x)+ 1
s
∥y∥2

is decreasing for all x ∈ dom(a), y ∈ dom(a)⊥. The analogous property holds for b.
If 0 ̸= x ∈ dom(a)⊥, then Ta(s)x = 0, therefore cs(x)→∞ as s→ 0, and similarly for 0 ̸=

x ∈ dom(b)⊥. For x ∈ dom(a)∩dom(b), Proposition 13.23(b) shows that sups>0 cs(x) <∞
if and only if x ∈ dom(a) ∩ dom(b), and that

lim
s→0

cs(x, y) = lim
s→0

1
s

(
(I − Ta(s))x

∣∣ y)+ lim
s→0

1
s

(
(I − Tb(s))x

∣∣ y)
= a(x, y) + b(x, y)

for all x, y ∈ dom(a) ∩ dom(b). Using Theorem 14.10 we conclude that
(
I + C(s)

)−1 →
(I + C)−1 strongly as s→ 0.

(b) The main part of the proof consists in showing that

s-lims→0A(s)
1/2

(
I + C(s)

)−1
= A

1/2
0 (I + C)−1,

s-lims→0B(s)1/2
(
I + C(s)

)−1
= B

1/2
0 (I + C)−1.

(15.6)

We fix x ∈ H and put

y(s) :=
(
I + C(s)

)−1
x, ya(s) := A(s)1/2y(s), yb(s) := B(s)1/2y(s).

From part (a) we know that y := lims→0 y(s) = (I + C)−1x.

We show that Paya(s) → A
1/2
0 y and Pbyb(s) → B

1/2
0 y weakly as s → 0. We have

∥y(s)∥ ⩽ ∥x∥, because C(s) is accretive. It follows that

∥y(s)∥2 + ∥ya(s)∥2 + ∥yb(s)∥2 =
(
y(s) + A(s)y(s) +B(s)y(s)

∣∣ y(s))
= (x | y(s)) ⩽ ∥x∥ ∥y(s)∥ ⩽ ∥x∥2.

(15.7)

This inequality implies that the set {ya(s) ; s > 0} is bounded. Let z ∈ dom(a) =

dom(A
1/2
0 ). Then Proposition 13.23(b) shows that A(s)1/2z → A

1/2
0 z, and we obtain

(Paya(s) | z) =
(
PaA(s)

1/2y(s)
∣∣ z) = (

y(s)
∣∣A(s)1/2z)

→
(
y
∣∣A1/2

0 z
)
=

(
A

1/2
0 y

∣∣ z) (s→ 0).
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Taking into account ran(Pa) = dom(a) and A
1/2
0 y ∈ ran(Pa) as well as the boundedness

shown above, we obtain the weak convergence Paya(s) → A
1/2
0 y asserted above. The cor-

responding weak convergence Pbyb(s) → B
1/2
0 y follows by the symmetry of the hypotheses

with respect to a and b.
For the last part of the proof of (15.6) we note that the equation y = (I + C)−1x

(∈ dom(C0) ⊆ dom(c)) can be reformulated as (I + C0)y = Pcx. From (15.7) we infer,
recalling y(s) → y = Pcy, that

∥ya(s)∥2 + ∥yb(s)∥2 = (x | y(s))− ∥y(s)∥2

→ (x | y)− ∥y∥2 = (Pcx− y | y) = (C0y | y) = a(y) + b(y) =
∥∥A1/2

0 y
∥∥2

+
∥∥B1/2

0 y
∥∥2

as s→ 0. Since Paya(s) → A
1/2
0 y and Pbyb(s) → B

1/2
0 y weakly, we conclude that∥∥ya(s)− A

1/2
0 y

∥∥2
+
∥∥yb(s)−B

1/2
0 y

∥∥2
= ∥ya(s)∥2 − 2Re

(
ya(s)

∣∣PaA
1/2
0 y

)
+
∥∥A1/2

0 y
∥∥2

+ ∥yb(s)∥2 − 2Re
(
yb(s)

∣∣PbB
1/2
0 y

)
+
∥∥B1/2

0 y
∥∥2

converges to 0 as s→ 0. This completes the proof of (15.6).
Now for the asserted convergence we note – with the notation from above – that∥∥s1/2B(s)

(
I + C(s)

)−1
x
∥∥2

=
∥∥s1/2B(s)1/2yb(s)

∥∥2
=

(
sB(s)yb(s)

∣∣ yb(s)),
and the latter converges to

(
(I−Pb)B

1/2
0 y

∣∣B1/2
0 y

)
as s→ 0, which in fact equals 0 because

ran(B
1/2
0 ) ⊆ dom(b) = ran(Pb).

Proof of Theorem 15.5. (i) In the first step we show that
(
I+R(s)

)−1−
(
I+C(s)

)−1 → 0

strongly as s→ 0. In view of Lemma 15.8(a) it will follow that s-lims→0

(
I +R(s)

)−1 =
(I + C)−1, and applying Theorem 13.14 we then obtain the first assertion of the theorem.
(Note that F (0)x = PaPbx = x for all x ∈ ran(Tc(0)) = ran(Pc).)

Using (15.5) we see that(
I +R(s)

)−1 −
(
I + C(s)

)−1
=

(
I +R(s)

)−1
sA(s)B(s)

(
I + C(s)

)−1

=
((
I +R(s)

)−1
A(s)1/2

)(
sA(s)

)1/2(
s1/2B(s)

(
I + C(s)

)−1
)
.

For the first factor on the right-hand side, the application of Lemmas 15.6 and 15.7 yields∥∥(I +R(s)
)−1

A(s)1/2
∥∥ ⩽

√
2 (s > 0),

and
∥∥(sA(s))1/2∥∥ ⩽ 1 since sA(s) ⩽ I. Therefore Lemma 15.8(b) implies the asserted

strong convergence
(
I +R(s)

)−1 −
(
I + C(s)

)−1 → 0.
(ii) In order to obtain the second assertion of the theorem we symmetrise the operators

F (t) and R(s). For t ⩾ 0, s > 0 we define

G(t) := Ta(
t
2
)Tb(t)Ta(

t
2
), S(s) := 1

s

(
I −G(s)

)
;

note that G(t) is an accretive self-adjoint contraction. Moreover

sI = s
(
I + S(s)

)(
I + S(s)

)−1
=

(
(1 + s)I −G(s)

)(
I + S(s)

)−1
,
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so we obtain

(1 + s)
(
I + S(s)

)−1
= sI + Ta(

s
2
)Tb(s)Ta(

s
2
)
(
I + S(s)

)−1

= sI + Ta(
s
2
)Tb(s)

(
I +R(s)

)−1
Ta(

s
2
),

where the second equality is a consequence of(
I +R(s)

)
Ta(

s
2
) = Ta(

s
2
)
(
I + S(s)

)
.

It follows that

s-lims→0

(
I + S(s)

)−1
= s-lims→0

1
1+s

(
sI + Ta(

s
2
)Tb(s)

(
I +R(s)

)−1
Ta(

s
2
)
)

= 0 + PaPb(I + C)−1Pa = (I + C)−1,

where in the last equality we have used the identities (I + C)−1 = Pc(I + C)−1Pc and
Pa(PbPc) = Pc = PcPa (the latter being true because ran(Pc) ⊆ ran(Pa) ∩ ran(Pb)).
Now Theorem 13.18 implies that G( t

n)
nx→ Tc(t)x as n→∞, uniformly for t in compact

subsets of (0,∞), for all x ∈ H; recall also Remark 13.19. Remark 13.20 shows that the
same holds for the convergence G( t

n)
n−1x→ Tc(t)x, and we conclude that

F ( t
n)

nx = Ta(
t
2n
)G( t

n)
n−1Ta(

t
2n
)Tb(

t
n)x→ PaTc(t)PaPbx = Tc(t)x (n→ ∞),

uniformly for t in compact subsets of (0,∞), for all x ∈ H.

We now come to the striking application of Theorem 15.2 announced above.

15.9 Corollary (Trotter product formula for sectorial forms). Let a and b be
closed sectorial forms in a complex Hilbert space H, put c := a+ b, and let Ta, Tb, Tc be
the associated degenerate strongly continuous semigroups on H.

Then one obtains the same conclusions as in Theorem 15.5.

Proof. There exists a constant C > 0 such that |Im a(u)| ⩽ C Re a(u) for all u ∈ dom(a)
and |Im b(u)| ⩽ C Re b(u) for all u ∈ dom(b); see the last paragraph of Section 5.1. Then
for z ∈ Ω :=

{
z ∈ C ; |Re z| < 1

C

}
the forms

az := Re a+ z Im a, bz := Re b+ z Im b, cz := Re c+ z Im c

are closed sectorial forms in H. Indeed, for z ∈ Ω and u ∈ dom(a) we have

Re az(u) = Re a(u) + (Re z) Im a(u) ⩾ (1− |Re z|C) Re a(u) ⩾ 0,

|Im az(u)| = |Im z||Im a(u)| ⩽ |Im z|C Re a(u) ⩽
|Im z|C

1− |Re z|C
Re az(u)

and similarly for b and c. Clearly, the mappings z 7→ az, z 7→ bz, z 7→ cz are holomorphic
in the sense formulated in Theorem 15.2.
Applying first Theorem 15.2 and then Theorem 15.4 we obtain the holomorphic depen-

dence Ω ∋ z 7→ Taz(t) ∈ L(H) for all t ⩾ 0, and the same for Tbz and Tcz . (Note that the
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boundedness condition of Theorem 15.4 is satisfied since ∥Taz(t)∥ ⩽ 1 for all t ⩾ 0, and
similarly for bz and cz.)
Fix t0 > 0, x ∈ dom(c), and let n ∈ N. We define the function Fn : Ω → C([0, t0];H) by

Fn(z) :=
[
t 7→

(
Taz(

t
n)Tbz(

t
n)
)n
x
]
;

then ∥Fn(z)∥ ⩽ ∥x∥ for all z ∈ Ω. Furthermore, the function Ω ∋ z 7→ Fn(z)(t) is
holomorphic for all 0 ⩽ t ⩽ t0. This implies that Fn is holomorphic; see Exercise 15.1.
Finally, for z ∈ Ω ∩ R we already know from Theorem 15.5 that

Fn(z) → Tcz(·)x|[0,t0] (n→ ∞).

Now Vitali’s theorem, Theorem 15.1, shows that Fn(z) → Tcz(·)x|[0,t0] in C([0, t0];H) as
n → ∞, for all z ∈ Ω. Observing that a = ai, b = bi and c = ci, we obtain the first
convergence asserted in Theorem 15.5.
The second assertion is proved analogously.

15.4 Applications of the Trotter product formula

The following applications of the Trotter product formula, Theorem 15.5, illustrate
the interaction between diffusion semigroups and domain restrictions or multiplication
operators.

15.10 Example (Dirichlet boundary conditions via absorption). Let

a(u, v) :=

∫
Rn

∇u(x) · ∇v(x) dx

be the classical Dirichlet form, defined on dom(a) := H1(Rn). Let Ω ⊆ Rn be an open set,
and define the form b by dom(b) := L2(Ω) = {f ∈ L2(Rn) ; f = 0 a.e. on Rn \ Ω},

b(u, v) := 0 (u, v ∈ dom(b)).

Then dom(a) is dense in L2(Rn), and the C0-semigroup Ta associated with a is governed by
the heat equation. The degenerate strongly continuous semigroup Tb associated with b is
given by Tb(t) = PΩ (t ⩾ 0), where PΩ is the orthogonal projection onto L2(Ω), PΩf = 1Ωf
for all f ∈ L2(Rn).
The form c = a+ b is then given by

dom(c) = H1(Rn) ∩ L2(Ω), c(u, v) = a(u, v) (u, v ∈ dom(c)),

and Theorem 15.5 implies that Tc is given by the interesting formula

Tc(t)f = lim
k→∞

(
Ta(

t
k
)PΩ

)k
f,

where the convergence is uniform for t in compact subsets of [0,∞) if f ∈ L2(Ω), and
uniform for t in compact subsets of (0,∞) if f ∈ L2(Rn).
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Assuming additionally that Ω is bounded and has continuous boundary, one obtains
a particularly interesting result. In this case the restricted semigroup

(
Tc(t)|L2(Ω)

)
t⩾0 is

the C0-semigroup generated by the Dirichlet Laplacian in L2(Ω). Indeed, it was shown in
Proposition 7.10 that under these hypotheses one has dom(c) = H1(Rn)∩L2(Ω) = H1

0 (Ω).
We warn the reader that the previous statement does not hold without the hypothesis

of continuous boundary, as the example n = 1, Ω = (−1, 0) ∪ (0, 1) shows. Indeed, in this
situation one has dom(c) = H1

0 (−1, 1), but H1
0 (−1, 1) is not a subset of H1

0 (Ω). Clearly
one can construct similar examples in any dimension.
We will see in Example 15.11(b) that there is another way of approximating the

semigroup Tc. Placing ourselves into the context of Example 15.11 and defining q : R→
[0,∞] by q := ∞1Rn\Ω, we find that the semigroup Tc described above is the same as the
one obtained in Example 15.11. △

15.11 Example. Let Ω ⊆ Rn be an open set, and let

a(u, v) :=

∫
Ω

∇u(x) · ∇v(x) dx

be the classical Dirichlet form, defined on dom(a) = H1
0 (Ω) (corresponding to the Dirichlet

Laplacian) or on dom(a) = H1(Ω) (corresponding to the Neumann Laplacian).
Let q : Ω → [0,∞] be measurable, and define

b(u, v) :=

∫
Ω

q(x)u(x) v(x) dx

for u, v ∈ dom(b) := {u ∈ L2(Ω) ; q|u|2 ∈ L1(Ω)}.
Then c := a+ b is a closed accretive symmetric form.
(a) One way of approximating Tc is by applying Theorem 15.5. Observe that the

degenerate strongly continuous semigroup Tb associated with the form b is given by
Tb(t)f = e−tqf (with e−t∞ := 0); cf. Exercise 1.6(b). The application of Theorem 15.5
yields (

Ta(
t
k
)e−

t
k
q
)k
f → Tc(t)f, (15.8)

with the specifications concerning the sets of convergence according to the assertion in
Theorem 15.5. It follows from (15.8) that all the operators Tc(t), for t > 0, are sub-
Markovian on L2(Ω). We now show that there exists a measurable set Ω0 ⊆ Ω such
that

H0 := dom(c) = L2(Ω0) = {f ∈ L2(Ω) ; f = 0 a.e. on Ω \ Ω0}; (15.9)

then the restriction of the degenerate strongly continuous semigroup Tc associated with c
to H0 is a sub-Markovian C0-semigroup.
Indeed, the strong continuity of Tc implies that Tc(0) = s-limt→0+ Tc(t) is also sub-

Markovian; it is in fact a sub-Markovian projection. More strongly, the convergence (15.8)
implies that 0 ⩽ Tc(t) ⩽ Ta(t) for all t > 0. (Here and in what follows, the inequality
A ⩽ B between two operators A,B ∈ L(L2(µ)) denotes inequality in the order sense, i.e.
Af ⩽ Bf for all f ∈ L2(Ω)+.) Therefore

Tc(0) = s-limt→0 Tc(t) ⩽ s-limt→0 Ta(t) = Ta(0) = I,
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and consequently Tc(0) is a projection satisfying 0 ⩽ Tc(0) ⩽ I. By Proposition 15.12
below it follows that

H0 := dom(c) = ran(Tc(0))

is a closed order ideal in L2(Ω), i.e., H0 is a closed subspace, and f ∈ H0, g ∈ L2(µ),
|g| ⩽ |f | implies g ∈ H0; therefore Exercise 15.2(c) shows that there exists a measurable
subset Ω0 ⊆ Ω such that (15.9) holds.
(b) Another way of approximating the degenerate strongly continuous semigroup Tc is

by using the forms bk, defined by dom(bk) := L2(Ω),

bk(u, v) :=

∫
Ω

(q ∧ k)uv dx.

Then (bk) is an increasing sequence of closed accretive symmetric forms, and (a + bk)k
converges to c = a + b in the sense of Theorem 14.10. Let Tk be the C0-semigroup
associated with a + bk. Then, using Theorem 14.10 together with Theorem 13.10 one
concludes that Tk(t)f → Tc(t)f for all f ∈ L2(Ω0), uniformly for t in compact subsets of
[0,∞), and that Tk(t)f → 0 for all f ∈ L2(Ω \ Ω0), uniformly for t in compact subsets of
(0,∞). △

15.12 Proposition. Let (Ω, µ) be a measure space. Let P ∈ L(L2(µ)) be a projection
satisfying 0 ⩽ P ⩽ I (in the order sense). Then ran(P ) is a closed order ideal in L2(µ).

Proof. The closedness of ran(P ) = ker(I−P ) is clear. Let f ∈ ran(P ), g ∈ L2(µ), |g| ⩽ |f |.
Then |f | = |Pf | ⩽ P |f | since P ⩾ 0; see Exercise 9.1(a). Note that I − P ⩾ 0 as well,
so it follows that |(I − P )g| ⩽ (I − P )|g| ⩽ (I − P )|f | ⩽ 0. Therefore (I − P )g = 0,
g = Pg ∈ ran(P ).

Notes

The elegant proof of Vitali’s theorem, Theorem 15.1, is due to Arendt and Nikolski; see
[ArNi00; Theorem 2.1]. Note that even for the case of a sequence of C-valued functions
the proof uses the concept of Banach space valued holomorphic functions.
Theorem 15.2 is due to Kato [Kat80; Chap. VII, Theorem 4.2]. Our proof is taken

from [VoVo18]; the new feature in this proof is the use of the Lax–Milgram lemma in the
form of Proposition 14.19. Theorem 15.4 is taken from [VoVo18] as well. The Trotter
product formula has first been proved by Trotter [Tro59] for the case of contractive
semigroups, with suitable hypotheses on the domains of the generators. The Trotter
product formula for forms, Theorem 15.5, is due to Kato. Our proof follows [Kat78] but
is somewhat simpler because we do not prove the theorem in the full generality stated
there. Corollary 15.9, due to Simon, is contained in the Addendum in [Kat78].
There has been considerable interest in investigating variants of the Trotter product

formula. One natural question is: when do the Trotter products converge in the operator
norm or even stronger norms? This question is discussed in [CaZa99], [Tam00], [CaZa01a],
[CaZa01b], [NSZ18], [Zag19; Chapter 5]. Results on numerical methods in connection
with Trotter products can be found in [JaLu00], [Tha08].
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Another issue is the “Lapidus problem”, which arises in the context of Theorem 15.5. If
K = C, then the semigroups Ta, Tb, Tc are bounded holomorphic semigroups of angle π/2,
and as such they have strongly continuous extensions to the closed right half-plane
(cf. Exercise 3.7(a)). In Exercise 15.3 the reader is asked to show that the Trotter
approximation also holds on the open right half-plane. The Lapidus problem is the
question of whether the Trotter approximation, for x ∈ dom(c), holds on the imaginary
axis as well. (It follows from [MaSh03; Subsection 3.1] that one cannot expect convergence
for x /∈ dom(c).) We refer to [JoLa00; Problem 11.3.9 and Section 11.7], [Cac05], [ENZ11]
for more information and partial results concerning this (open!) problem.

An interesting special case of the Trotter product formula is when one of the semigroups
is given by [0,∞) ∋ t 7→ P (as in Example 14.1), with an orthogonal projection P ; see
Exercise 15.6(a). This kind of Trotter product has been studied by Matolcsi in the
context of C0-semigroups on a complex Hilbert space H. For a C0-semigroup T on H
with generator A it is shown in [Mat03; Theorem 3] that s-limt→∞(T ( t

n)P )
n exists for all

t ⩾ 0 and all orthogonal projections P in H if and only if −A is associated with a densely
defined closed quasi-sectorial form in H. Moreover, s-limt→∞(T ( t

n)P )
n exists for all t ⩾ 0

and all bounded projections P in H if and only if A is bounded. (In both equivalences the
sufficiency of the condition follows from Corollary 15.9; see Exercises 15.6 and 15.7.)

Now suppose that A is the unbounded generator of a C0-semigroup on H. Then, by
Matolcsi’s result described above, there exists a bounded projection P in H such that
s-limt→∞(T ( t

n)P )
n does not exist. One easily finds an equivalent scalar product [·, ·]

on H such that P is an orthogonal projection in (H, [·, ·]). As a consequence, −A is
not associated with a closed quasi-sectorial form in (H, [·, ·]) (cf. Exercise 15.6(a)). To
summarise, for an unbounded generator A of a C0-semigroup on H there always exists
an equivalent scalar product [·, ·] on H such that −A is not associated with a closed
quasi-sectorial form a in (H, [·, ·]). For a concrete example of this phenomenon we refer to
Exercise 5.9(b).

In a different context, if T is a positive C0-semigroup on Lp(Ω, µ), where (Ω, µ) is
a σ-finite measure space and p ∈ [1,∞), it is shown in [ArBa93; Theorem 5.3] that
S(t) := s-limn→∞(PT ( t

n))
n = s-limn→∞(T ( t

n)P )
n exists for all t ⩾ 0, for all projections P

in Lp(Ω, µ) of the form Pf = 1ωf with measurable ω ⊆ Ω, and S thus defined is a
degenerate strongly continuous semigroup. (A very simple case of this result is treated in
Example 15.10.) In [MaSh03; Section 3.2] a counterexample is given showing that the
above property does not hold for arbitrary positive contractive projections P .

Exercises

15.1 Let M be a topological space, X a complex Banach space, and define Cb(M ;X)
as the Banach space of bounded continuous functions f : M → X, provided with the
supremum norm. Let Ω ⊆ C be an open set, F : Ω → Cb(M ;X) a bounded function,
and assume that there exists a dense subset D ⊆M such that Ω ∋ z 7→ F (z)(t) ∈ X is
holomorphic for all t ∈ D.

Show that F : Ω → Cb(M ;X) is holomorphic.
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Hint: Show that E := {Cb(M ;X) ∋ f 7→ ⟨f(t), x′⟩ ; t ∈ D, x′ ∈ X ′} ⊆ Cb(M ;X)′ is a
norming subset and apply Theorem 3.2.

15.2 Let (Ω, µ) be a measure space, and let H0 ⊆ L2(µ) be a closed order ideal in L2(µ);
see Example 15.11 for the definition. Let P denote the orthogonal projection onto H0.
(a) Let g ∈ L2(µ). Show that g ⊥ H0 if and only if |g| ∧ |f | = 0 for all f ∈ H0. Show

that |Pf | ∧ |(I − P )f | = 0 for all f ∈ L2(µ). Hint for ‘⇒’ in the first part: For f ∈ H0

one has f · sgn f · sgn g ∈ H0.
(b) Assume additionally that µ(Ω) < ∞. Show that there exists a measurable set

Ω0 ⊆ Ω such that P1Ω = 1Ω0 , and that Pf = 1Ω0f for all f ∈ L2(Ω). (Hint: For the proof
of the latter property first consider 0 ⩽ f ⩽ 1Ω.)
(c) Assume that µ is σ-finite. Show that there exists a measurable set Ω0 ⊆ Ω such

that Pf = 1Ω0f for all f ∈ L2(Ω).

15.3 Let H be a complex Hilbert space, let a, b be closed accretive symmetric forms in H,
and put c := a + b. Let Ta, Tb, Tc be the holomorphic degenerate strongly continuous
semigroups of angle π/2 associated with a, b, c, respectively. (If A0 denotes the self-
adjoint operator associated with the form a in dom(a) and Pa the orthogonal projection
onto dom(a), then Ta(z) = e−zA0Pa for all z ∈ C with Re z ⩾ 0, and analogously for
Tb, Tc.)
(a) Show that

(
Ta(

z
n)Tb(

z
n)
)n
x→ Tc(z)x as n→ ∞, uniformly for z in compact subset

of the open right half-plane [Re > 0] ⊆ C, for all x ∈ H. (Hint: Use Vitali’s theorem,
Theorem 15.1.)

(b) Let θ ∈ (−π/2, π/2). Show that
(
Ta(

z
n)Tb(

z
n)
)n
x→ Tc(z)x as n→ ∞, uniformly for

z in compact subsets of the ray eiθ[0,∞), for all x ∈ dom(c). (Hint: Use Corollary 15.9.)
(c) Let R > 0, θ ∈ (0, π/2), and put D :=

{
reiα ; 0 ⩽ r ⩽ R, |α| ⩽ θ

}
. Show that(

Ta(
z
n)Tb(

z
n)
)n
x → Tc(z)x as n → ∞, uniformly for z ∈ D, for all x ∈ dom(c). (Hint:

Combine (a) and (b), and apply Exercise 15.4.)

15.4 Prove the maximum principle for vector-valued holomorphic functions: if Ω ⊆ C is
a bounded open set, X is a complex Banach space, f : Ω → X is continuous, and f |Ω is
holomorphic, then ∥f(ζ)∥ ⩽ supz∈∂Ω ∥f(z)∥ for all ζ ∈ Ω. (Hint: Use the fact that X ′ is
norming for X.)

15.5 (a) Let Ω ⊆ C be open and connected, and let H be a complex Hilbert space.
Let P : Ω → L(H) be a holomorphic function taking its values in the set of bounded
self-adjoint operators. Show that P is constant. (Note that this exercise applies, in
particular, to holomorphic functions taking their values in the orthogonal projections.)
(b) Find a holomorphic function P : C → L(C2) taking its values in the projections

that is not constant, where C2 is provided with the Euclidean norm.
(c) Find a holomorphic function P : B(0, 1) → L(C2) taking its values in the contractive

projections that is not constant, where C2 is provided with the norm given by ∥(x, y)∥1 =
|x|+ |y|. (Hint: Look for a function satisfying ranP (z) = C× {0} for all z ∈ B(0, 1).)

15.6 (a) (Trotter product formula for projections) Let H be a Hilbert space, and
let P ∈ L(H) be an orthogonal projection. Let a be a closed quasi-accretive symmetric
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form in H if K = R, or a closed quasi-sectorial form in H if K = C. Show that

S(t) := s-limn→∞(Ta(
t
n)P )

n = s-limn→∞(PTa(
t
n))

n

exists for all t ⩾ 0, and that (S(t))t⩾0 thus defined is a degenerate strongly continuous
semigroup. (Hint: Apply Theorem 15.5 or Corollary 15.9, respectively, using a rescaling
argument.)
(b) Let H be a Hilbert space, and let P1, P2 ∈ L(H) be orthogonal projections. Show

that Q := s-limn→∞(P1P2)
n exists and is the orthogonal projection onto ran(P1)∩ ran(P2).

15.7 Let H be a Hilbert space, and let P ∈ L(H) be a projection.
(a) Show that there exists an equivalent scalar product [·, ·] on H such that P is an

orthogonal projection in (H, [·, ·]).
(b) Assume that K = C, and let T be a C0-semigroup on H, with generator A ∈ L(H).

Show that
S(t) := s-limn→∞(T ( t

n)P )
n = s-limn→∞(PT ( t

n))
n

exists for all t ⩾ 0, and that (S(t))t⩾0 thus defined is a degenerate strongly continuous
semigroup. (Hint: Show that every bounded operator A is associated with a closed
quasi-sectorial form in (H, [·, ·]) and apply Exercise 15.6(a).)
Note. Using a complexification procedure one can show that the assertion is also true

for real Hilbert spaces.



Chapter 16

The Stokes operator

The Stokes operator arises in the context of the (nonlinear!) Navier–Stokes equation and
acts in a subspace of a Kn-valued L2-space. In our context we define it using a variant
of the classical Dirichlet form. One of the features appearing in the description of the
Stokes operator is the use of a Sobolev space of negative order, which is introduced at the
beginning. Another important feature is the appearance of divergence free vector fields.
This extra condition of vanishing divergence has interesting implications for the theory of
the related Sobolev spaces, and a large part of the chapter is devoted to the investigation
of these properties.

16.1 Interlude: the Sobolev space H−1(Ω)

Let Ω ⊆ Rn be open. The space H1
0 (Ω) is a Hilbert space, and by the Fréchet–Riesz

theorem, each continuous antilinear functional on H1
0 (Ω) is represented by an element of

H1
0 (Ω). For some purposes, however, it is more convenient to use a different representation

of the antidual space of H1
0 (Ω) that contains L2(Ω) als a dense subspace.

The basic observation is that each element f ∈ L2(Ω) acts in a natural way as a
continuous antilinear functional on H1

0 (Ω), by

H1
0 (Ω) ∋ u 7→ (f |u)L2(Ω) =: ⟨f, u⟩H−1,H1

0
.

The operator L2(Ω) ∋ f 7→ ⟨f, ·⟩H−1,H1
0
∈ H1

0 (Ω)
∗ is injective, and it has dense range

because u ∈ H1
0 (Ω), ⟨f, u⟩H−1,H1

0
= 0 for all f ∈ L2(Ω) implies u = 0; see Exercise 17.1.

In this context the antidual H1
0 (Ω)

∗ is denoted by H−1(Ω).

16.1 Remark. We note that in the situation described above one has

H1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω) = H1

0 (Ω)
∗,

with dense embeddings, and the embeddings are dual to each other. In such a situation one
calls

(
H1

0 (Ω), L2(Ω), H
−1(Ω)

)
a Gelfand triple; this concept will be treated in greater

generality in Section 17.1. △

If f ∈ L2(Ω) and j ∈ {1, . . . , n}, then the mapping

H1
0 (Ω) ∋ u 7→ ⟨∂jf, u⟩H−1,H1

0
:= −(f | ∂ju)L2(Ω)



216

belongs to H1
0 (Ω)

∗. This definition of ∂jf is consistent with the definition of the distri-
butional derivative in Section 4.1 because C∞

c (Ω) is dense in H1
0 (Ω), and the mapping

∂j : L2(Ω) → H−1(Ω) is linear and bounded. As a consequence, the differential operator
∆ =

∑n
j=1 ∂j∂j acts as a bounded operator ∆: H1

0 (Ω) → H−1(Ω). With this interpretation
of the Laplace operator we obtain

⟨∆u, φ⟩H−1,H1
0
= (u |∆φ)L2(Ω)

for all u ∈ H1
0 (Ω), φ ∈ C∞

c (Ω).

It turns out that the mapping I −∆: H1
0 (Ω) → H−1(Ω) is an isometric isomorphism.

If Ω is bounded and one provides H1
0 (Ω) with the scalar product (u, v) 7→

∫
∇u · ∇v dx,

then −∆ : H1
0 (Ω) → H−1(Ω) is an isometric isomorphism. See Exercise 16.1 for these

properties. (Strictly speaking, the notation ‘I −∆’ is not quite correct: the identity I is
meant to be the embedding H1

0 (Ω) ↪→ H−1(Ω).)

16.2 The Stokes operator

Let Ω ⊆ Rn be open. The Stokes operator is an operator in a subspace H of L2(Ω;Kn).
We will define it as the operator associated with a variant of the classical Dirichlet form
on

V := H1
0,σ(Ω;Kn) :=

{
u ∈ H1

0 (Ω;Kn) = H1
0 (Ω)

n ; div u = 0
}
.

The index ‘σ’ should be remindful of ‘solenoidal’, which is the classical term for divergence
free vectors fields. Note that V is a closed subspace of H1

0 (Ω;Kn). The Hilbert space H
is defined as the closure of V in L2(Ω;Kn),

H := L2,σ,0(Ω;Kn) := V
L2(Ω;Kn)

.

16.2 Remarks. (a) The space L2,σ(Ω;Kn) := {f ∈ L2(Ω;Kn) ; div f = 0} is a closed
subspace of L2(Ω;Kn); this is because div : L2(Ω;Kn) → H−1(Ω) is continuous. Therefore
H is a (closed) subspace of L2,σ(Ω;Kn).

We point out that C∞
c (Ω;Kn) ∩H need not be dense in H, so that the notation L2,σ,0

is not entirely consistent with previous notation. (There is no such reservation for sets Ω
that are bounded and have Lipschitz boundary; cf. Theorem 16.14.)

(b) One could consider the form a defined below as a non-densely defined form in the
Hilbert space L2(Ω,Kn); cf. Chapter 14. In the present chapter we are not interested
in this point of view, instead we work with the Hilbert space H adapted to the form
domain V . △

We define the form a : V × V → R by

a(u, v) :=
n∑

j=1

∫
Ω

∇uj · ∇vj dx.
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In each component of H1
0 (Ω)

n, the form a is the classical Dirichlet form. Therefore we
conclude from Section 5.4 that a is symmetric, accretive and quasi-coercive; for bounded Ω
it is coercive. It follows that the operator

A :=
{
(u, f) ∈ V ×H ;

n∑
j=1

∫
Ω

∇uj · ∇vj dx = (f | v)H (v ∈ V )
}

(16.1)

associated with a is self-adjoint and accretive. In view of Section 16.1, the equality
appearing in the description of A can be rewritten as

0 = −
n∑

j=1

∫
Ω

∇uj · ∇vj dx+ (f | v)H =
n∑

j=1

⟨∆uj + fj, vj⟩H−1,H1
0

(v ∈ V ),

where fj is considered as an element of H−1(Ω) via the injection L2(Ω) ↪→ H−1(Ω), and
∆ is the operator ∆: H1

0 (Ω) → H−1(Ω) from Section 16.1.
Note that the antidual of H1

0 (Ω)
n is given by H−1(Ω)n, with the dual pairing

⟨η, u⟩H−1,H1
0
:=

n∑
j=1

⟨ηj, uj⟩H−1,H1
0

(
η ∈ H−1(Ω)n, u ∈ H1

0 (Ω)
n
)
.

Then the condition in (16.1) becomes

⟨∆u+ f, v⟩H−1,H1
0
= 0 (v ∈ V ),

with the abbreviating notation ∆u = (∆u1, . . . ,∆un). Defining the polar of V ⊆ H1
0 (Ω)

n,

V ◦ :=
{
η ∈ H−1(Ω)n ; ⟨η, v⟩H−1,H1

0
= 0 (v ∈ V )

}
,

as the ‘orthogonal complement’ of V in H−1(Ω)n we can write the condition in (16.1) in
the concise form

η := ∆u+ f ∈ V ◦.

Summarising, we obtain the following description of the Stokes operator; as mentioned
above, it is self-adjoint and accretive.

16.3 Theorem. The operator A in H associated with the form a is given by

A =
{
(u, f) ∈ V ×H ; ∃η ∈ V ◦ : −∆u+ η = f

}
(where the equality ‘−∆u+ η = f ’ is an equality in H−1(Ω)n, with f ∈ H ↪→ H−1(Ω)n).
Written differently,

dom(A) =
{
u ∈ V ; ∃η ∈ V ◦ : −∆u+ η ∈ H

}
,

Au = −∆u+ η (with η as in dom(A)).
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Note that for f ∈ L2(Ω) one has ⟨∇f, v⟩H−1,H1
0
= (f | div v)H = 0 for all v ∈ V , so the

gradient ∇f ∈ H−1(Ω)n belongs to V ◦. For the physical interpretation of the Stokes
operator one requires that all elements η ∈ V ◦ appearing in the description of A can be
expressed in this way:

for all η ∈ V ◦ there exists p ∈ L2(Ω) with η = ∇p. (H0)

(The index 0 in the label (H0) refers to the index 0 in V = H1
0,σ(Ω;Kn).)

We will comment on hypothesis (H0) in Remark 16.6. In Section 16.4 we show that it
holds if Ω is bounded and has Lipschitz boundary. With this hypothesis we get another
description of the Stokes operator A.

16.4 Theorem. Assume that Ω satisfies hypothesis (H0). Then

A =
{
(u, f) ∈ V ×H ; ∃p ∈ L2(Ω) : −∆u+∇p = f

}
is the operator associated with the form a. Expressed differently,

dom(A) =
{
u ∈ V ; ∃p ∈ L2(Ω) : −∆u+∇p ∈ H

}
,

Au = −∆u+∇p (with p as in dom(A)).

In fluid dynamics one interprets p in the statement of Theorem 16.4 as a pressure,
which is the reason for the notation. However, we will not endeavour to enter the physical
interpretation of the Stokes operator.
In the following remarks we describe some conditions and properties related to (H0) in

the ‘classical’ context.

16.5 Remarks. Let Ω ⊆ Rn be open, and let u : Ω → Kn be a continuous vector field.
(a) Assume that u satisfies the condition∫

u · φ dx = 0 for all φ ∈ C∞
c (Ω;Kn) with divφ = 0. (16.2)

(This condition should be considered as a weakened version of the hypothesis ‘η ∈ V ◦’
in (H0); note that {φ ∈ C∞

c (Ω;Kn) ; divφ = 0} need not be dense in V .) Then one can
show that there exists a potential p ∈ C1(Ω) for u, i.e. ∇p = u. Clearly it is sufficient to
treat the case when Ω is connected. Then, fixing an ‘initial point’ x0 ∈ Ω, one defines
p(x) :=

∫ 1

0
u(γ(t)) · γ′(t) dt, where γ : [0, 1] → Ω is a piecewise continuously differentiable

path connecting x0 with x. Using (16.2) one can show that p is well-defined – this is the
main issue – and that u = ∇p. Conversely, the existence of a potential for the vector field
implies the validity of (16.2).
The proof of these statements is delegated to Exercise 16.2(a).
(b) If u is continuously differentiable and satisfies (16.2), then it satisfies the ‘compat-

ibility condition’ ∂juk = ∂kuj for all j, k ∈ {1, . . . , n}. Indeed, let ψ ∈ C∞
c (Ω), and put

φj := ∂kψ, φk := −∂jψ, φℓ := 0 for all other components (where without loss of generality
j ̸= k). Then divφ = 0, and therefore∫

(∂juk − ∂kuj)ψ dx =

∫
(uj∂kψ − uk∂jψ) dx =

∫
u · φ dx = 0.
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If one requires from u merely the compatibility condition (and not the validity of (16.2)),
then one can show that every point of Ω possesses a neighbourhood in which a potential
exists, given by the explicit formula (16.4) in Section 16.3 below. An example of a vector
field u without a global potential can be found in Exercise 16.2(b). However, if one adds
the hypothesis that Ω is simply connected, then one can show that a global potential for
u exists. This is a version of the ‘Poincaré lemma’.
We will not prove these statements, because in this generality they will not be of

importance in our context. However, it is noteworthy that the smoothed version (16.5) of
the explicit formula mentioned above will be basic for the further development.
(c) We mention that both of the phenomena described in parts (a) and (b) can also

be treated in the more general context of distributions. If u is a vector of distributions
on Ω satisfying a condition analogous to (16.2), then one can show that there exists
a distribution p such that ∇p = u. (This is a special case of ‘de Rham’s theorem’.)
Likewise, if Ω is simply connected, and a vector u = (u1, . . . , un) of distributions satisfies
the compatibility condition ∂juk = ∂kuj for all j, k ∈ {1, . . . , n}, then one can find a
distribution p on Ω with ∇p = u. (This is a generalised version of Poincaré’s lemma.) For
a recent treatment of these topics we refer to [Voi23a],[Voi23b]. △

The topics described in the preceding remark do not explicitly enter our further
treatment, but serve to motivate the investigation of corresponding properties in the
context of Sobolev spaces, as sketched in the following remark.

16.6 Remark. Let Ω ⊆ Rn be a bounded open set, and let f ∈ L2(Ω). Then clearly
η := ∇f ∈ H−1(Ω)n has the following property corresponding to (16.2):

⟨η, φ⟩ = 0 for all φ ∈ C∞
c (Ω)n satisfying divφ = 0. (16.3)

In view of Remarks 16.5(a) and (c) it is natural to ask whether for any η ∈ H−1(Ω)n

satisfying (16.3) there exists f ∈ L2(Ω) such that ∇f = η. (Note that the condition on
η in (16.3) is weaker than ‘η ∈ V ◦’; so the requirement that η satisfying (16.3) can be
represented as η = ∇f – later this will be defined as property (Hc) – is stronger than (H0).)
A positive answer will be given in Theorem 16.14 for the case when Ω has Lipschitz
boundary.
The remaining sections of the present chapter are mainly motivated by this topic. △

16.3 Interlude: the Bogovskĭı formula

This section could also run under the heading “some functions are divergences”. For
u ∈ C∞

c (Rn;Kn) one has
∫
div u dx = 0, and in fact the converse holds as well: for each

φ ∈ C∞
c (Rn) with

∫
φ dx = 0 there exists u ∈ C∞

c (Rn;Kn) with div u = φ. Here we show
that for suitable bounded open Ω ⊆ Rn one has a Sobolev space version of this statement:
for any f ∈ L2(Ω) with

∫
f dx = 0 there exists u ∈ H1

0 (Ω)
n such that div u = f ; see

Theorem 16.11.
Let u ∈ C∞(Rn;Kn) be a vector field satisfying the compatibility condition ∂juk = ∂kuj

for all j, k ∈ {1, . . . , n}. Then it is well-known and easy to show that, for any y ∈ Rn, a
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potential for u is given by

p(x) :=

∫ 1

0

u(y + t(x− y)) · (x− y) dt, (16.4)

i.e. u = ∇p. We smooth this formula out with the help of a function ρ ∈ C∞
c (Rn)+

satisfying
∫
ρ(x) dx = 1: we define

Au(x) :=

∫
ρ(y)

∫ 1

0

u(sy + (1− s)x) · (x− y) ds dy (16.5)

and obtain Au ∈ C∞(Rn), ∇(Au) = u. In order to write A as an integral operator, we
substitute z = sy + (1− s)x and r = 1

s to obtain

Au(x) =

∫ 1

0

∫
ρ
(
1
s(z − (1− s)x)

)
u(z) · x− z

s
s−n dz ds

=

∫ ∞

1

∫
ρ(x+ r(z − x))u(z) · (x− z) dz rn−1 dr.

This means that one can write Au(x) =
∫
k(x, y) · u(y) dy, with

k(x, y) =

∫ ∞

1

ρ(x+ r(y − x))rn−1 dr (x− y).

Let ℓ be the negative transposed kernel of k, i.e.

ℓ(x, y) := −k(y, x) = (x− y)

∫ ∞

1

ρ(y + r(x− y))rn−1 dr (x, y ∈ Rn).

It will be shown in the next theorem that the definition

Bf(x) :=

∫
ℓ(x, y)f(y) dy

=

∫
f(y)(x− y)

∫ ∞

1

ρ(y + r(x− y))rn−1 dr dy,

(16.6)

for x ∈ Rn and f ∈ C∞
c (Rn), yields a mapping B : C∞

c (Rn) → C∞
c (Rn;Kn). This definition

is such that for all u ∈ C∞
c (Rn;Kn), f ∈ C∞

c (Rn) one has
∫
(Au)f dx = −

∫
u ·Bf dx.

16.7 Theorem. For all f ∈ C∞
c (Rn) one has Bf ∈ C∞

c (Rn;Kn),

spt(Bf) ⊆
{
λz1 + (1− λ)z2 ; z1 ∈ spt f, z2 ∈ spt ρ, 0 ⩽ λ ⩽ 1

}
=: E. (16.7)

If
∫
f(x) dx = 0, then divBf = f .

Proof. Let f ∈ C∞
c (Rn).

(i) First we show that Bf = 0 on Rn \E. Note that E is a compact set (since spt f , spt ρ
and [0, 1] are compact). Let x ∈ Rn \ E. If y ∈ spt f and r ⩾ 1 then y + r(x− y) /∈ spt ρ
(because z = y + r(x− y) ∈ spt ρ would lead to x = 1

rz + (1− 1
r )y ∈ E – a contradiction),

and therefore ρ(y + r(x− y)) = 0. Hence (16.6) implies Bf(x) = 0.
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(ii) By the variable transformation z = x− y and then r = 1 + s
|z| in the inner integral

we can write Bf in the form

Bf(x) =

∫
f(x− z)

z

|z|n
∫ ∞

0

ρ
(
x+ s

z

|z|

)
(s+ |z|)n−1 ds dz.

In this form one can differentiate under the integral to obtain Bf ∈ C∞(Rn;Kn). (If
R > 0 is such that ρ, f have their supports in B(0, R), then we know from step (i)
that Bf = 0 on Rn \ B(0, R), and for x ∈ B(0, R) we can use a multiple of (s, z) 7→
1(0,2R)(s)1B(0,2R)(z)|z|1−n as a dominating function.)

(iii) Let f, φ ∈ C∞
c (Rn),

∫
f dx = 0. Note that ∇φ satisfies the compatibility condition,

therefore ∇A∇φ = ∇φ, ∇(A∇φ − φ) = 0, i.e. A∇φ − φ is constant. It follows that∫
f(A∇φ− φ) dx = 0, and we obtain∫

(divBf)φ dx = −
∫
Bf · ∇φ dx =

∫
fA∇φ dx =

∫
fφ dx.

As this holds for all φ ∈ C∞
c (Rn) we conclude that divBf = f .

16.8 Remarks. (a) The formula (16.6) is the Bogovskĭı formula. The linear mapping
B in (16.6) as well as its extension obtained in Theorem 16.10 below is the Bogovskĭı
operator. (The reader should keep in mind the fact that the Bogovskĭı operator depends
on the function ρ; so the use of the definite article ‘the’ might be somewhat misleading.)
(b) If n ⩾ 2, then there exist vector fields 0 ̸= u ∈ C∞

c (Rn;Kn) satisfying div u = 0.
Therefore the solution of div u = f obtained by the Bogovskĭı formula is not unique. For
the Bogovskĭı formula in dimension n = 1 we refer to Exercise 16.3.
(c) Let Ω ⊆ Rn be an open set containing a ball B(x0, r) with the property that Ω

is star-shaped with respect to each point of B(x0, r). Let ρ ∈ C∞
c (Rn)+ satisfy spt ρ ⊆

B(x0, r) and
∫
ρ(x) dx = 1. Then (16.7) implies that B(C∞

c (Ω)) ⊆ C∞
c (Ω;Kn), with the

identification C∞
c (Ω) = {φ ∈ C∞

c (Rn) ; sptφ ⊆ Ω}. In this sense, B is a linear mapping
from C∞

c (Ω) to C∞
c (Ω;Kn). Thus, an important consequence of Theorem 16.7 is that for

each φ ∈ C∞
c (Ω) with

∫
φ(x) dx = 0 there exists a vector field Φ (= Bφ) ∈ C∞

c (Ω;Kn)
such that div Φ = φ. △

We now show that the last property mentioned in Remark 16.8(c) carries over to more
general open sets.

16.9 Proposition. Let Ω ⊆ Rn be a connected open set, and let φ ∈ C∞
c (Ω) satisfy∫

φ(x) dx = 0. Then there exists a vector field Φ ∈ C∞
c (Ω;Kn) such that div Φ = φ.

Proof. (i) In the first step we prove the assertion for functions of the special form
φ = φ̂− φ̌, with φ̌, φ̂ ∈ C∞

c (Ω),
∫
φ̌(x) dx =

∫
φ̂(x) dx, and spt φ̌ ⊆ B̌, spt φ̂ ⊆ B̂ for open

balls B̌, B̂ ⊆ Ω.
There exist open balls B̌ = B0, B1, . . . , Bm = B̂ ⊆ Ω such that Bj−1 ∩ Bj ≠ ∅ for

j = 1, . . . ,m. Choose φ1, . . . , φm ∈ C∞
c (Ω) such that

∫
φj(x) dx =

∫
φ̌(x) dx and sptφj ⊆

Bj−1 ∩Bj for j = 1, . . . ,m, and put φ0 := φ̌, φm+1 := φ̂. By Remark 16.8(c) there exist
Φ0, . . . ,Φm ∈ C∞

c (Ω;Kn) satisfying sptΦj ⊆ Bj and div Φj = φj+1 − φj for j = 0, . . . ,m.
Then the vector field Φ :=

∑m
j=0Φj is as asserted.
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(ii) For the general case we find a covering (Bj)j=1,...,m of sptφ by open balls Bj ⊆ Ω.
There exists a subordinate partition of unity (χj)j=1,...,m in C∞

c (Ω)+ on sptφ, i.e. a
family of functions with sptχj ⊆ Bj for all j ∈ {1, . . . ,m} and

∑m
j=1 χj(x) = 1 for all

x ∈ sptφ; see Exercise 4.3(b). Let B0 ⊆ Ω be an open ball, and choose φ0 ∈ C∞
c (Ω) with

sptφ0 ⊆ B0 and
∫
φ0(x) dx = 1. For j = 1, . . . ,m we put φj := χjφ and apply step (i) with

φ̌ := (
∫
φj)φ0 and φ̂ := φj to obtain Φj ∈ C∞

c (Ω;Kn) satisfying div Φj = φj − (
∫
φj)φ0.

Then Φ :=
∑m

j=1Φj satisfies div Φ =
(∑m

j=1 χj

)
φ− (

∫
φ)φ0 = φ.

The next issue is extending the Bogovskĭı operator to a bounded linear operator
B : L2(Ω) → H1

0 (Ω;Kn), for suitable bounded open Ω. Then the equality divBf = f
carries over to all f ∈ L0

2(Ω) :=
{
f ∈ L2(Ω) ;

∫
f(x) dx = 0

}
because C∞

c ∩L0
2(Ω) is dense

in L0
2(Ω); see Exercise 16.4(a). We confine ourselves to a special form of the ‘smoothing

function’ ρ.

16.10 Theorem. Let Ω ⊆ Rn be a bounded open set containing a ball B(x0, r0) with the
property that Ω is star-shaped with respect to every point of B(x0, r0). Let ρ0, ρ̃ ∈ C∞

c (Rn)
be such that spt ρ0 ⊆ B(0, r0/2), spt ρ̃ ⊆ B(x0, r0/2),

∫
ρ0(x) dx =

∫
ρ̃(x) dx = 1, and let

ρ := ρ0 ∗ ρ̃. (Note that ρ ∈ C∞
c (Rn), spt ρ ⊆ B(x0, r0) and

∫
ρ(x) dx = 1.)

Then B : C∞
c (Ω) → C∞

c (Ω;Kn), defined in Remark 16.8(c), has a continuous (linear)
extension B : L2(Ω) → H1

0 (Ω;Kn). For all f ∈ L0
2(Ω) one has divBf = f .

The proof of Theorem 16.10 is delegated to Appendix H. Showing that there exists
c > 0 such that ∥Bf∥2 ⩽ c∥f∥2 is not the problem; see Exercise 16.5. The hard part is
the corresponding estimate for the derivatives of Bf . In order to stay with our philosophy
to provide complete information on the treated topics we present the proof of the ‘hard
part’ mentioned above in Appendix H, Section H.3.
Traditionally, for proving Theorem 16.10 one uses the Calderón–Zygmund theory of

singular integral operators; see Section H.4 and the Notes of Appendix H. Our hypothesis
of the special form of ρ = ρ0 ∗ ρ̃ helps avoiding harder parts of the Calderón–Zygmund
theory and thereby facilitates a much easier access. The restriction to this special form of
the Bogovskĭı operator has no restricting effect on the remaining results because we really
need only one operator B : C∞

c (Ω) → C∞
c (Ω;Kn) with the continuity property and the

property that divBf = f for all f ∈ C∞
c (Ω) with

∫
f(x) dx = 0.

An important consequence of Theorem 16.10 is the surjectivity of the mapping
div : H1

0 (Ω) → L0
2(Ω). (Note that div(C∞

c (Ω;Kn)) ⊆ L0
2(Ω) and thus div(H1

0 (Ω)) ⊆ L0
2(Ω)

for any bounded open Ω ⊆ Rn.) We now show that Theorem 16.10 implies the surjectivity
of div : H1

0 (Ω) → L0
2(Ω) for more general Ω.

16.11 Theorem. Let Ω ⊆ Rn be a connected bounded open set with Lipschitz boundary.
Let f ∈ L0

2(Ω). Then there exists u ∈ H1
0 (Ω;Kn) such that div u = f .

Proof. (i) It is not difficult to see that for all x ∈ Ω there exists an open neighbourhood Ux

such that Ux∩Ω is star-shaped with respect to the points of a ball in Ux∩Ω. This is obvious
for x ∈ Ω, and for x ∈ ∂Ω it results from the Lipschitz property of ∂Ω. Compactness
of Ω implies that there exists a finite open covering (Ωj)j=1,...,m of Ω by sets to which
Thereom 16.10 can be applied.
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(ii) It is not too difficult to show that there exist functions f1, . . . , fm ∈ L0
2(Ω) such that

[fj ̸= 0] ⊆ Ωj for all j ∈ {1, . . . ,m} and f =
∑m

j=1 fj. (We explain the idea for m = 2:
in that case Ω1 ∩ Ω2 is non-empty, so we can choose g ∈ L2(Ω) with [g ̸= 0] ⊆ Ω1 ∩ Ω2,∫
g dx =

∫
1Ω1f dx, and put f1 := 1Ω1f − g, f2 := 1Ω2\Ω1f + g. The general case is

delegated to Exercise 16.4(b).) Then for all j ∈ {1, . . . ,m} there exists uj ∈ H1
0 (Ωj;Kn)

with div uj = fj, and u :=
∑m

j=1 u
j has the required properties.

16.4 The hypothesis (H0)

In this section we show that the hypothesis (H0) is satisfied for bounded open sets Ω ⊆ Rn

with Lipschitz boundary.

16.12 Theorem. Let Ω be as stated above. Then for any η ∈ H1
0,σ(Ω;Kn)◦, i.e. η ∈

H−1(Ω)n with ⟨η, u⟩H−1,H1
0
= 0 for all u ∈ H1

0,σ(Ω;Kn), there exists p ∈ L2(Ω) such that

η = ∇p. In other words, Ω satisfies hypothesis (H0).

For the proof we need the following special case of the ‘closed range theorem’.

16.13 Proposition. Let G, H be Hilbert spaces, and let A ∈ L(G,H) have closed range.
Then ran(A∗) is closed, ran(A∗) = ker(A)⊥.

Proof. The bounded inverse theorem implies that the operator A1 := A|ker(A)⊥ : ker(A)
⊥ →

ran(A) is boundedly invertible. It follows that A∗
1 : ran(A) → ker(A)⊥ is boundedly

invertible (with (A∗
1)

−1 = (A−1
1 )∗).

Let J : ker(A)⊥ ↪→ G be the embedding, and let P be the orthogonal projection
from H onto ran(A) = ker(A∗)⊥. Then J∗ is the orthogonal projection from G onto
ker(A)⊥ = ran(A∗), and P ∗ : ker(A∗)⊥ ↪→ H is the embedding; see Exercise 16.6. Since
A∗

1 = (PAJ)∗ = J∗A∗P ∗, we conclude that ran(A∗) = ran(A∗
1) = ker(A)⊥, and the latter

set is closed.

Proof of Theorem 16.12. Without loss of generality we assume that Ω is connected.

The fundamental observation for the proof is that the bounded linear operators
div : H1

0 (Ω;Kn) → L2(Ω) and ∇ : L2(Ω) → H−1(Ω)n are negative adjoints of each other.
Indeed, for f ∈ L2(Ω), u ∈ H1

0 (Ω;Kn) one has

(f | div u) =
n∑

j=1

∫
f ∂juj dx = −

n∑
j=1

⟨∂jf, uj⟩H−1,H1
0
= −⟨∇f, u⟩H−1,H1

0
.

We know from Lemma 6.8 that ran(∇)◦ = ker(div), and this implies ran(∇) = ker(div)◦.
(Note that for this argument no special properties of Ω are required.) It is shown in
Theorem 16.11 that ran(div) = L0

2(Ω), which is a closed subspace of L2(Ω). Therefore
Proposition 16.13 yields ran(∇) = ker(div)◦. As ker(div) = H1

0,σ(Ω;Kn) by definition, we
obtain the assertion of the theorem.
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16.5 Supplement: the space H1
σ,0(Ω;Kn) and the

hypothesis (Hc)

The final issue of the chapter will be to investigate a slightly stronger version of hypothe-

sis (H0). Using the space H1
σ,0(Ω;Kn) := C∞

c,σ(Ω;Kn)
H1

0 , where

C∞
c,σ(Ω;Kn) := {u ∈ C∞

c (Ω;Kn) ; div u = 0} = C∞
c (Ω;Kn) ∩H1

0,σ(Ω;Kn),

we can formulate it as follows:

for all η ∈ H1
σ,0(Ω;Kn)◦ there exists p ∈ L2(Ω) with η = ∇p. (Hc)

The space H1
σ,0(Ω;Kn) is a closed subspace of H1

0,σ(Ω;Kn), and (Hc) can be rephrased as
the property that H1

σ,0(Ω;Kn)◦ = ran(∇), where ∇ : L2(Ω) → H−1(Ω)n, f 7→ ∇f .
We insert the important observation that for any open set Ω ⊆ Rn one has the inclusions

ran(∇) ⊆ H1
0,σ(Ω;Kn)◦ ⊆ H1

σ,0(Ω;Kn)◦ (= C∞
c,σ(Ω;Kn)◦). Recall that (H0) is equivalent to

H1
0,σ(Ω;Kn)◦ = ran(∇). To summarise, property (Hc) is equivalent to (H0) together with

the equality H1
σ,0(Ω;Kn) = H1

0,σ(Ω;Kn), and this equality holds if and only if C∞
c,σ(Ω;Kn)

is dense in H1
0,σ(Ω;Kn).

The following theorem strengthens Theorem 16.12.

16.14 Theorem. Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary. Then (Hc)
is satisfied, and H1

σ,0(Ω;Kn) = H1
0,σ(Ω;Kn), i.e. C∞

c,σ(Ω;Kn) is dense in H1
0,σ(Ω;Kn).

Proof. (i) Assume additionally that Ω is star-shaped with respect to some ball B(x0, r) ⊆ Ω.
Without loss of generality assume that x0 = 0. Then one can easily see that λΩ ⊆ Ω for all
λ ∈ (0, 1). Let u ∈ H1

0,σ(Ω;Kn). Extend u to Rn by zero; then it follows from Exercise 4.7
that div u = 0 for the extended function as well. For λ ∈ (0, 1) put uλ := u(λ−1·); then
sptuλ ⊆ λΩ is a compact subset of Ω. If (ρk)k∈N is a delta sequence in C∞

c (Rn), then
one concludes that div(ρk ∗ uλ) = 0 for all k ∈ N, ρk ∗ uλ ∈ C∞

c (Ω;Kn) for large k, and
ρk ∗uλ → uλ in H1

0 (Ω;Kn) as k → ∞. As a consequence, uλ ∈ H1
σ,0(Ω;Kn) for all λ ∈ (0, 1).

Now uλ → u in H1
0 (Ω;Kn) as λ→ 1; hence u ∈ H1

σ,0(Ω;Kn).
So we have shown that H1

σ,0(Ω;Kn) = H1
0,σ(Ω;Kn). This implies (Hc) since (H0) is

satisfied by Theorem 16.12.
(ii) Without loss of generality we assume that Ω is connected. From the proof of

Theorem 16.11 we recall that there exists an open covering (Ωj)j=1,...,m of Ω for which
each Ωj is star-shaped with respect to a ball.
Let η ∈ H1

σ,0(Ω;Kn)◦. Then clearly ηj := η|H1
0 (Ωj ;Kn) ∈ H1

σ,0(Ωj;Kn)◦ for j = 1, . . . ,m,
and from step (i) we conclude that there exists fj ∈ L2(Ωj) (unique up to a constant)
such that ∇fj = ηj. We will show that one can choose versions of the fj such that the
family (fj)j=1,...,m is consistent, in the sense that fj = fk on Ωj ∩ Ωk for j, k = 1, . . . ,m.
For all j ∈ {1, . . . ,m} we choose a function φj ∈ C∞

c (Ωj)+ with
∫
Ωj
φj(x) dx = 1. For

each j ∈ {1, . . . ,m} we use Proposition 16.9 to obtain a vector field Φj ∈ C∞
c (Ω;Kn) such

that div Φj = φ1−φj , and we choose the version of fj that satisfies (fj |φj) = ⟨η,Φj⟩. Given
j, k ∈ {1, . . . ,m} we now show that fj = fk on Ωj∩Ωk. Let φ ∈ C∞

c (Ωj∩Ωk),
∫
φ(x) dx = 1;
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then by Proposition 16.9 we can find Φφ,j ∈ C∞
c (Ωj ;Kn) such that div Φφ,j = φ− φj , and

similarly Φφ,k ∈ C∞
c (Ωk;Kn) with div Φφ,k = φ− φk. Then

(fj |φ) = (fj | div Φφ,j) + (fj |φj) = −⟨∇fj,Φφ,j⟩+ ⟨η,Φj⟩ = ⟨η,Φj − Φφ,j⟩.

Note that η belonging to H1
σ,0(Ω;Kn)◦ means that ⟨η,Φ⟩ depends only on the divergence

of Φ ∈ C∞
c (Ω;Kn). Since div(Φj −Φφ,j) = (φ1−φj)− (φ−φj) = φ1−φ = div(Φk −Φφ,k)

we thus obtain (fj |φ) = (fk |φ). It follows that (fj |φ) = (fk |φ) for all φ ∈ C∞
c (Ωj ∩Ωk),

the consistency of the family (fj)j=1,...,n is established, and the function f , f |Ωj
:= fj for

j = 1, . . . ,m, is a well-defined function in L2(Ω) satisfying ∇f = η.

The fundamental problem in the proof of Theorem 16.14 is that one cannot simply
approximate elements of H1

0,σ(Ω;Kn) by convolution with a delta sequence. We refer to
[ACM15; proof of Theorem 4.1] for another approach to dealing with this problem.

16.15 Remarks. In these remarks we sketch how Theorems 16.12 and 16.14 are obtained
in [Tem77; Chap. I, §1].
(a) The basis is Nečas’ inequality, stating that there exists c > 0 such that

∥f∥L2
⩽ c

( n∑
j=1

∥∂jf∥H−1 + ∥f∥H−1

)
(f ∈ L2(Ω)),

if Ω has Lipschitz boundary, asserted in [Neč12; Lemma 7.1, p. 186]. Using the compactness
of the embedding H1

0 (Ω) ↪→ L2(Ω) one can show that this inequality implies

∥f∥2 ⩽ c
n∑

j=1

∥∂jf∥H−1

(
f ∈ L2(Ω) with

∫
Ω

f(x) dx = 0
)

(16.8)

if Ω is bounded and has Lipschitz boundary. From (16.8) one concludes that ran(∇)
is closed (where ∇ : L2(Ω) → H−1(Ω)n); see Exercise 16.7. As ran(∇) is also dense in
H1

0,σ(Ω;Kn)◦, Theorem 16.12 is proved.
(b) Theorem 16.14 is also derived in [Tem77; Chap. I, Remark 1.4]. The argument there

is based on a stronger version of (16.8), in which f is not a priori in L2(Ω). The source
[Neč66] for this version, cited in [Tem77], was not available to us. △

Notes

Our introduction and presentation of the Stokes operator follows [Mon06] and [ArEl12a].
As in several of the previous chapters, properties of Sobolev spaces play an important role
– for the Stokes operator we need Sobolev spaces of divergence free vector fields. These
spaces are also of importance for the treatment of the Navier–Stokes equation.
The treatment given for the space H1

0,σ(Ω;Kn) in Section 16.3 can be found to a large
part in [Gal11; Section III.3]. The derivation of the Bogovskĭı formula presented at
the beginning of Section 16.3 was found by the authors, and the same holds for the
proof of Theorem 16.14. We mention that the Bogovskĭı operator is also treated in the
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Lp-context in [Gal11] and in Sobolev spaces of negative order in [GHH06]. The treatment
in Section 16.4 uses ideas contained in [Tem77; Chap. I, §1].
In [ACM15; Theorem 4.1] one can find an account of various important relations between

spaces arising in connection with the Stokes operator and the Navier–Stokes equation.

Exercises

16.1 Let Ω ⊆ Rn be open.
(a) Show that the mapping I −∆: H1

0 (Ω) → H−1(Ω) is an isometric isomorphism.
(b) Assume additionally that Ω is bounded, and provide H1

0 (Ω) with the scalar product
(u, v) 7→

∫
∇u · ∇v dx. Show that −∆: H1

0 (Ω) → H−1(Ω) is an isometric isomorphism.

16.2 (a) Let Ω ⊆ Rn be an open set, and let u : Ω → Kn be a continuous vector field.
Show that the following properties are equivalent:

(i) u is a gradient field, u = ∇p for some p ∈ C1(Ω);

(ii) u satisfies (16.2), i.e.,
∫
u · φ dx = 0 for all φ ∈ C1

c (Ω;Kn) with divφ = 0;

(iii) u is conservative, i.e.,
∫
γ
u =

∫ 1

0
u(γ(t)) · γ′(t) dt = 0 for all piecewise continuously

differentiable closed paths γ : [0, 1] → Ω.

Hint concerning ‘(ii) ⇒ (iii)’: Let (ρk) be a delta sequence in C∞
c (Rn). Show that

φk(y) :=
∫ 1

0
ρk(γ(t)− y)γ′(t) dt defines a divergence free element of C∞

c (Ω;Kn), for k large
enough, and that

∫
u · φk dx→

∫
γ
u for all u ∈ C(Ω;Kn).

Hint concerning ‘(iii) ⇒ (i)’: Define p as in Remark 16.5(a).
Supplemental comment: The sequence (φk) converges in a suitable sense to a divergence

free distributional vector field supported on im γ = {γ(t) ; 0 ⩽ t ⩽ 1}. The limiting

distributional vector field is given by C∞
c (Ω;Kn) ∋ ψ 7→

∫ 1

0
ψ(γ(t)) · γ′(t) dt ∈ K.

(b) Show that the vector field u : R2 × {0} → R2, u(x1, x2) :=

(
−x2

x21 + x22
,

x1
x21 + x22

)
,

satisfies the compatibility condition ∂1u2 = ∂2u1. Show that u has a potential on (0,∞)×R,
given by p(x1, x2) := arctan x2

x1
. Extend this potential to R2 \ (−∞, 0] × {0}, and show

that it cannot be extended to R2 \ {0}.

16.3 Find a simple form of the Bogovskĭı formula in space dimension n = 1. In this form
it should be immediately visible that Bf does not depend on ρ for f with

∫
f(x) dx = 0,

whereas Bf depends on ρ if
∫
f(x) dx ̸= 0. (Hint: Use the expression for the Bogovskĭı

operator indicated in the proof of Theorem 16.7, step (ii).)

16.4 Let Ω ⊆ Rn be a bounded open set.
(a) Show that L0

2(Ω) is a closed subspace of L2(Ω) and that C∞
c ∩ L0

2(Ω) is dense in
L0
2(Ω). (Hint: For the denseness show first that L0

2,c(Ω) := {f ∈ L0
2(Ω) ; spt f compact} is

dense in L0
2(Ω).)

(b) Assume additionally that Ω is connected. Let (Ωj)j=1,...,m be a finite open covering
of Ω. Let f ∈ L0

2(Ω). Show that there exist functions f1, . . . , fm ∈ L0
2(Ω), [fj ̸= 0] ⊆ Ωj

for j = 1, . . . ,m, such that f =
∑m

j=1 fj.
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Hint: Proceed by induction on m, replacing two members of the covering with non-
empty intersection by their union in the induction step. Use the following fact established
in step (ii) of the proof of Theorem 16.11: if Ω1,Ω2 ⊆ Rn are open, Ω1 ∩ Ω2 ̸= ∅ and
f ∈ L0

2(Ω1 ∪ Ω2), then there exist fj ∈ L0
2(Ωj) (j = 1, 2) such that f = f1 + f2.

16.5 Let Ω be as in Theorem 16.10. Let ρ ∈ C∞
c (Rn) be such that spt ρ ⊆ B(x0, r0),∫

ρ(x) dx = 1, and let the Bogovskĭı operator B be as in (16.6). Show that there exists
c > 0 such that ∥Bf∥2 ⩽ c∥f∥2 for all f ∈ C∞

c ∩ L0
2(Ω).

Hint: Recall the dominating function indicated in the proof of Theorem 16.7. Then
either use Proposition 4.3(b), or else prove an L1-L1 bound and an L∞-L∞ bound for B,
and then use Riesz–Thorin.

16.6 Let H be a Hilbert space. Let H0 ⊆ H be a closed subspace, J : H0 ↪→ H the
embedding. Show that J∗ is the orthogonal projection from H onto H0.

16.7 Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary. Show that the
inequality (16.8) implies that ran(∇) is closed, for the mapping ∇ : L2(Ω) → H−1(Ω)n.





Chapter 17

Non-autonomous equations

So far we have considered forms that do not depend on time. The aim of this chapter is
to establish well-posedness of the non-autonomous problem

u′(t) +A(t)u(t) = f(t), u(0) = u0 , (17.1)

where each operator A(t) is associated with a form a(t, ·, ·), defined on a t-independent

Hilbert space V
d
↪→H. In contrast to previous results, the existence of solutions will be

investigated in the antidual V ∗, which will be considered as a superspace of H. In fact,
the situation is slightly more delicate and interesting: the solution will take its values
in V , but the equation will be solved only in V ∗.
We begin this chapter by describing the setup for V ∗. Sections 17.2 and 17.3 are

devoted to the Bochner integral for Hilbert space valued functions and to Hilbert space
valued Sobolev spaces. Of special interest are the ‘maximal regularity spaces’, certain
mixed Sobolev spaces, and their properties. In Section 17.4 we present the important
representation theorem of J.-L. Lions, which extends the Lax–Milgram lemma. Lions’
representation theorem is the key for the elegant treatment of (17.1), in the last section.

17.1 Gelfand triples

Let V, H be Hilbert spaces, V
d
↪→ H. We have frequently encountered this situation

in previous chapters; typical examples are H1
0 (Ω) ↪→ L2(Ω) or H

1(Ω) ↪→ L2(Ω), where
Ω ⊆ Rn is open. In Section 16.1 we have introduced the Gelfand triple corresponding to
the embedding H1

0 (Ω) ↪→ L2(Ω); here we treat the general setup.
For x ∈ H we define ⟨x, ·⟩ ∈ V ∗ by

⟨x, u⟩ = ⟨x, u⟩V ∗,V := (x |u)H (u ∈ V ).

It is not difficult to see that the mapping H ∋ x 7→ ⟨x, ·⟩ ∈ V ∗ belongs to L(H, V ∗) and
is injective. It also has dense range because u ∈ V , ⟨x, u⟩ = 0 for all x ∈ H implies
u = 0; see Exercise 17.1. Incidentally, the mapping x 7→ ⟨x, ·⟩ coincides with the mapping
k ∈ L(H,V ∗) used in Proposition 5.7. We will identify ⟨x, ·⟩ and x and thereby consider
H as a subspace of V ∗. Thus we now have a triple of injected spaces

V
d
↪→H

d
↪→ V ∗,

called a Gelfand triple. We illustrate this situation in the following remark.
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17.1 Remarks. (a) Let (Ω, µ) be a measure space, m : Ω → [δ,∞) a measurable function,

where δ > 0, and let H := L2(Ω, µ), V := L2(Ω,mµ). Then V
d
↪→H; for the denseness of

the embedding we refer to Example 5.9. We can identify V ∗ with L2(Ω,
1
mµ), where the

duality is given by

⟨f, u⟩ =
∫
Ω

fu dµ
(
f ∈ L2(Ω,

1
mµ), u ∈ V

)
.

One can easily see this by using the fact that Φu := mu defines an isometric isomorphism
Φ: L2(Ω;mµ) → L2(Ω;

1
mµ).

(b) In fact, the situation described in part (a) is generic. This is a consequence of the
spectral theorem for self-adjoint operators, Theorem 13.21; we refer to Exercise 17.2(a)
for more information. △
Now let a : V × V → K be a bounded form. Recall from (5.3) the corresponding Lax–

Milgram operator A ∈ L(V, V ∗), given by ⟨Au, v⟩ = a(u, v). Let A be the operator in H
associated with the form a; see Proposition 5.5. From the definition it is immediate that
A is the part of A in H, i.e.

A = A ∩ (V ×H),

with V ⊆ H ⊆ V ∗ considered as subspaces. If a is quasi-coercive, then we know that −A
generates a holomorphic C0-semigroup on H. One can show that −A, considered as an
operator in V ∗, generates a holomorphic C0-semigroup on V ∗. We will not pursue this
issue, but we recall from Remark 3.11(b) that as a consequence one can solve the initial
value problem

u′ +Au = 0, u(0) = u0 ∈ V ∗

in V ∗. Our aim in the present chapter is to study the inhomogeneous Cauchy problem

u′ +Au = f, u(0) = u0 ,

where A depends on time; see Section 17.5.

17.2 Interlude: The Bochner integral for Hilbert space
valued functions

There is a general theory extending the Lebesgue integral to Banach space valued functions
(the Bochner integral, see [ABHN11; Section 1.1]). On separable Hilbert spaces one may
use a more elementary approach, which we will present here (cf. [ArUr23; Section 8.5]).
Let H be a separable Hilbert space, and let −∞ ⩽ a < b ⩽ ∞. A function f : (a, b) → H

is called measurable if (f(·) |x) is measurable for all x ∈ H. If (xn) is a dense sequence in
the unit ball BH(0, 1), then ∥f(t)∥ = supn∈N |(f(t) |xn)| for all t ∈ (a, b), and this implies
that ∥f(·)∥ : (a, b) → R is measurable. We define

L1(a, b;H) :=
{
f : (a, b) → H ; f measurable,

∫ b

a

∥f(t)∥ dt <∞
}
,

where the elements of L1(a, b;H) are to be understood as equivalence classes of a.e. equal
functions.
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17.2 Lemma. Let f ∈ L1(a, b;H). Then there exists a unique x ∈ H such that∫ b

a

(f(t) | y)H dt = (x | y)H (y ∈ H),

and we define
∫ b

a
f(t) dt := x. The mapping L1(a, b;H) ∋ f 7→

∫ b

a
f(t) dt ∈ H is a bounded

linear operator,
∥∥∫ b

a
f(t) dt

∥∥ ⩽
∫ b

a
∥f(t)∥ dt for all f ∈ L1(a, b;H).

Lemma 17.2 is an easy consequence of the theorem of Fréchet–Riesz; the proof is
delegated to Exercise 17.3(a). The above definition of the integral is consistent with the
definition given in Subsection 1.3.2, by Theorem 1.8(a). As in that theorem, bounded
linear operators commute with integration; see Exercise 17.3(b).
We also introduce the space

L2(a, b;H) :=
{
f : (a, b) → H ; f measurable,

∫ b

a

∥f(t)∥2 dt <∞
}
,

again identifying a.e. equal functions. Note that L2(a, b;H) ⊆ L1(a, b;H) if (a, b) is a
bounded interval.

17.3 Proposition. The space L2(a, b;H) is a Hilbert space for the scalar product

(f | g)L2(a,b;H) :=

∫ b

a

(f(t) | g(t))H dt.

In order to see that the function t 7→ (f(t) | g(t))H in Proposition 17.3 is measurable,
we first prove the following denseness property.

17.4 Lemma. For each f ∈ L2(a, b;H) there exists a sequence (fn) in

L2(a, b)⊗H := lin
{
φ(·)x ; φ ∈ L2(a, b), x ∈ H

}
such that ∥fn(·)∥ ⩽ ∥f(·)∥ for all n ∈ N and fn → f a.e.

In particular, L2(a, b)⊗H is dense in L2(a, b;H), and L2(a, b;H) is separable.

Proof. The assertions are obvious if dimH < ∞, so we assume that H is infinite-
dimensional. Let f ∈ L2(a, b;H). Let (ek)k∈N be an orthonormal basis of H. Then,
with fn :=

∑n
k=1(f(·) | ek)ek, the sequence (fn) has the required properties. The domi-

nated convergence theorem implies that fn → f in L2(a, b;H).

Proof of Proposition 17.3. We first show that t 7→ (f(t) | g(t))H is measurable. If h ∈
L2(a, b)⊗H, h =

∑n
j=1 φj(·)xj , then (h(·) | g(·))H =

∑n
j=1 φj(·)(xj | g(·))H is measurable.

Every f ∈ L2(a, b;H) can be approximated pointwise a.e. by a sequence in L2(a, b)⊗H,
by Lemma 17.4, and the measurability of (f(·) | g(·))H follows.
The completeness is proved in the same way as the completeness of the scalar-valued

L2(a, b). (Show that every absolutely convergent series is convergent.)

A nice and important application of Lemma 17.4 is the following fact which will be
needed in the next section.
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17.5 Lemma. Let u ∈ L2(R;H). Then the function R ∋ τ 7→ u(· − τ) ∈ L2(R;H) is
continuous.

Proof. The assertion is obvious if u ∈ Cc(R)⊗H = lin
{
φ(·)x ; φ ∈ Cc(R), x ∈ H

}
. By

Lemma 17.4 and the denseness of Cc(R) in L2(R) there exists a sequence (uk) in Cc(R)⊗H
such that uk → u in L2(R;H) as k → ∞. Then uk(· − τ) → u(· − τ) in L2(R;H) as
k → ∞, uniformly for τ ∈ R. This implies the assertion.

17.3 Vector-valued Sobolev spaces

We now define Hilbert space valued Sobolev spaces. As before, let H be a separable
Hilbert space.
Let −∞ ⩽ a < b ⩽ ∞. As in the scalar case, given u ∈ L2(a, b;H), a function

u′ ∈ L2(a, b;H) is called a weak derivative of u if

−
∫ b

a

u(t)φ′(t) dt =

∫ b

a

u′(t)φ(t) dt (φ ∈ C∞
c (a, b)).

Such a weak derivative is unique whenever it exists; see Exercise 17.4(a). We define the
Sobolev space

H1(a, b;H) :=
{
u ∈ L2(a, b;H) ; u has a weak derivative u′ in L2(a, b;H)

}
.

It is easy to see that H1(a, b;H) is a separable Hilbert space for the scalar product

(u | v)H1 =

∫ b

a

(
(u(t) | v(t))H + (u′(t) | v′(t))H

)
dt

(cf. Theorem 4.10 and Proposition 17.3).
For the remainder of this section we will assume throughout that −∞ < a < b < ∞.

We state the following basic result concerning H1(a, b;H) without proof. Parts (a) and (b)
can be proved essentially as Proposition 4.8, and part (c) is analogous to Theorem 4.12.

17.6 Proposition. (a) Let v ∈ L2(a, b;H), u0 ∈ H, and put u(t) := u0 +
∫ t

a
v(s) ds

(t ∈ (a, b)). Then u ∈ H1(a, b;H) and u′ = v.
(b) Conversely, let u ∈ H1(a, b;H). Then there exists u0 ∈ H such that

u(t) = u0 +

∫ t

a

u′(s) ds (a.e. t ∈ (a, b)).

In particular, each function u ∈ H1(a, b;H) has a representative in C([a, b];H), and with

this representative one has
∫ b

a
u′(s) ds = u(b)− u(a).

(c) The embedding H1(a, b;H) ↪→ C([a, b];H) thus defined is continuous.

We will always use the continuous representative for functions u ∈ H1(a, b;H).
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17.7 Remark. We note the following product rule for differentiation: if u ∈ H1(a, b;H)
and φ ∈ C∞[a, b], then φu ∈ H1(a, b;H), and (φu)′ = φ′u+ φu′.
Indeed, for ψ ∈ C∞

c (a, b) one has∫ b

a

(φu)ψ′ dt =

∫ b

a

(φψ)′u dt−
∫ b

a

φ′ψu dt

= −
∫ b

a

φψu′ dt−
∫ b

a

φ′uψ dt = −
∫ b

a

(φu′ + φ′u)ψ dt. △

Next we suppose that V is a separable Hilbert space, V
d
↪→H, and we identify H with

a dense subspace of V ∗ as in Section 17.1. The mixed Sobolev space

MR(a, b;V, V ∗) := L2(a, b;V ) ∩H1(a, b;V ∗),

with −∞ < a < b <∞ as before, plays an important role for evolutionary problems. Here
the symbol “MR” stands for “maximal regularity”. It is easy to see that MR(a, b;V, V ∗)
is a separable Hilbert space for the norm

∥u∥MR(a,b;V,V ∗) :=
(
∥u∥2L2(a,b;V ) + ∥u′∥2L2(a,b;V ∗)

)1/2
.

By Proposition 17.6(b) each u ∈ MR(a, b;V, V ∗) has a representative u ∈ C([a, b];V ∗).
We will see in Theorem 17.9 below that the representative is even continuous with values
in the smaller space H. In the statement of this result we will use the scalar Sobolev
space

W 1
1 (a, b) :=

{
u ∈ L1(a, b) ; u

′ = ∂u ∈ L1(a, b)
}
,

with norm
∥u∥W 1

1 (a,b)
:= ∥u∥L1(a,b)

+ ∥u′∥L1(a,b)
(u ∈ W 1

1 (a, b)).

17.8 Proposition. Every u ∈W 1
1 (a, b) has a representative in C[a, b], and the embedding

W 1
1 (a, b) ↪→ C[a, b] thus defined is continuous; explicitly,

∥u∥C[a,b] ⩽
1

b− a
∥u∥L1(a,b)

+ ∥u′∥L1(a,b)
.

The proof is the same as for Theorem 4.12; the inequality is on the first line of (4.3).
Proposition 4.8 implies that, choosing the continuous representative of u ∈ W 1

1 (a, b), one
has the formula

u(t) = u(a) +

∫ t

a

u′(s) ds (t ∈ [a, b]). (17.2)

For the following theorem, concerning the regularity of elements in MR(a, b;V, V ∗),
recall the embeddings V ↪→ H ↪→ V ∗ and the dual pairing ⟨·, ·⟩ from Section 17.1.

17.9 Theorem. (a) If u ∈ MR(a, b;V, V ∗), then the function ∥u(·)∥2H belongs to W 1
1 (a, b),

and (
∥u(·)∥2H

)′
= 2Re⟨u′(·), u(·)⟩. (17.3)

(b) One has MR(a, b;V, V ∗) ↪→ C([a, b];H).
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Observe that the function t 7→ f(t) := ⟨u′(t), u(t)⟩ in part (a) is measurable, by the
same reasoning as in the proof of Proposition 17.3. Since |f(t)| ⩽ ∥u′(t)∥V ∗∥u(t)∥V for all
t ∈ (a, b), the Cauchy–Schwarz inequality then implies that f ∈ L1(a, b).

For the proof of Theorem 17.9 we need the following denseness property. The result is
analogous to Theorem 7.7.

17.10 Proposition. The space C∞([a, b];V ) is dense in MR(a, b;V, V ∗).

Proof. (i) Let α ∈ C∞(R) be such that α = 1 in a neighbourhood of (−∞, a], α = 0 in
a neighbourhood of [b,∞). For τ > 0 put uτ := (αu)(· + τ) +

(
(1 − α)u

)
(· − τ). Then

uτ → u in MR(a, b;V, V ∗) as τ → 0, by Lemma 17.5. (For the derivative of uτ , we note
that (uτ )

′ = (αu)′(·+ τ)+
(
(1−α)u

)′
(·− τ), by the choice of α.) For fixed τ > 0 we choose

ψ ∈ C∞
c (R) with sptψ ⊆ (a − τ, b + τ) and ψ = 1 on (a, b); then ψuτ ∈ MR(R;V, V ∗).

(For convenience we use the notation MR(R;V, V ∗) := L2(R;V ) ∩H1(R;V ∗), although
MR was only defined for bounded intervals (a, b).)

(ii) Now it suffices to approximate v ∈ MR(R;V, V ∗) by a sequence in C∞(R;V ) ∩
MR(R;V, V ∗). Clearly MR(R;V, V ∗) is invariant under translations, and Lemma 17.5
implies that R ∋ t 7→ v(· − t) ∈ MR(R;V, V ∗) is continuous. Let ρk be a delta sequence
in C∞

c (R). For k ∈ N we define vk :=
∫
R ρk(s)v(· − s) ds ∈ MR(R;V, V ∗). Then

∥vk − v∥MR(R;V,V ∗) ⩽
∫
R
ρk(s)∥v(· − s)− v∥MR(R;V,V ∗) ds

⩽ sup
{
∥v(· − s)− v∥MR(R;V,V ∗) ; |s| ⩽ 1/k

}
→ 0 (k → ∞).

For t ∈ R, Proposition 17.6(c) implies that point evaluationMR(R;V, V ∗) ∋ u 7→ u(t) ∈ V ∗

is a bounded linear operator. Hence, using Exercise 17.3(b), we obtain

vk(t) =

∫
R
ρk(s)v(t− s) ds =: ρk ∗ v(t),

where the integral is taken in V ∗. Applying Exercise 17.3(b) again (with the embedding
V ↪→ V ∗ as the operator A ∈ L(V, V ∗)) we see that the integral can also be taken in V ;
then with a proof as for Lemma 4.1 one shows that ρk ∗ v ∈ C∞(R;V ).

Proof of Theorem 17.9. (a) If u ∈ C1([a, b];V ), then it is immediate that d
dt
∥u(t)∥2H =

(u′(t) |u(t))H + (u(t) |u′(t))H = 2Re⟨u′(t), u(t)⟩. Now let u ∈ MR(a, b;V, V ∗). By Propo-
sition 17.10 there exists a sequence (un) in C

1([a, b];V ) converging to u in MR(a, b;V, V ∗).
Then (

∥un(·)∥2H
)′
= 2Re⟨u′n(·), un(·)⟩ → 2Re⟨u′(·), u(·)⟩

in L1(a, b). Moreover un → u in L2(a, b;H) since V ↪→ H, and therefore ∥un(·)∥2H →
∥u(·)∥2H in L1(a, b). Hence, 2Re⟨u′(·), u(·)⟩ is the distributional derivative of ∥u(·)∥2H , by
Lemma 4.11.
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(b) For u ∈ C1([a, b];V ), applying Proposition 17.8 to the function t 7→ ∥u(t)∥2H we
obtain

∥u∥2C([a,b];H) ⩽
1

b− a

∫ b

a

∥u(t)∥2H dt+

∫ b

a

∣∣∣∣ ddt∥u(t)∥2H
∣∣∣∣ dt

⩽
1

b− a

∫ b

a

∥u(t)∥2H dt+

∫ b

a

2∥u′(t)∥V ∗∥u(t)∥V dt

⩽
c2

b− a
∥u∥2L2(a,b;V ) + 2∥u′∥L2(a,b;V ∗)∥u∥L2(a,b;V ) ,

with the embedding constant c > 0 of V ↪→ H. As C1([a, b];V ) is dense in MR(a, b;V, V ∗),
by Proposition 17.10, this inequality shows that MR(a, b;V, V ∗) ↪→ C([a, b];H).

17.4 Lions’ representation theorem

Of great importance in the theory of Hilbert spaces is the representation theorem of
Fréchet–Riesz, which often gives us weak solutions of partial differential equations. One
of the consequences of this theorem is the reflexivity of Hilbert spaces. Reflexivity is a
key ingredient in the proof of the following much more general representation theorem.

17.11 Theorem (Lions’ representation theorem). Let V be a Hilbert space, W a
normed space, W ↪→ V. Let E : V ×W → K be sesquilinear, and assume that

(i) E(·, w) ∈ V ′ for all w ∈ W,

(ii) |E(w,w)| ⩾ ε∥w∥2W for all w ∈ W, with some ε > 0.

Let L ∈ W∗. Then there exists u ∈ V such that L(w) = E(u,w) for all w ∈ W and
∥u∥V ⩽ c

ε∥L∥W∗, where c > 0 is an embedding constant of the embedding W ↪→ V.

The fact that W is not supposed to be complete makes Lions’ theorem more widely
applicable than the Lax–Milgram lemma. The larger the norm on W , the less restrictive
is the assumption on L to be continuous with respect to the norm of W. On the other
hand, the ‘coercivity hypothesis’ (ii) becomes more restrictive if we take larger norms.
Even if we choose as norm on W the norm of V, it is an advantage that E need not be
defined on all of V in the second variable; note that there is no continuity requirement on
E with respect to the second variable.
In Exercise 17.7(a) we present a slightly more general version of Theorem 17.11.

Proof of Theorem 17.11. We define an antilinear operator T : W → V ′ by Tw := E(·, w)
for all w ∈ W . It follows from property (ii) that

ε∥w∥2W ⩽ |E(w,w)| ⩽ ∥E(·, w)∥V ′∥w∥V ⩽ c∥Tw∥V ′∥w∥W ;

thus ε
c∥w∥W ⩽ ∥Tw∥V ′ for all w ∈ W. This implies that T is injective and that

T−1 : T (W) → W is antilinear and bounded, where T (W) is provided with the norm of V ′.
Since L ∈ W∗, the functional L ◦ T−1 extends to a bounded linear functional ℓ ∈ (V ′)′,
with ∥ℓ∥ ⩽ c

ε∥L∥W∗. By the reflexivity of V there exists u ∈ V such that ℓ(v′) = v′(u)
for all v′ ∈ V ′, and ∥u∥ = ∥ℓ∥. In particular, for w ∈ W one has L(w) = L(T−1Tw) =
ℓ(Tw) = Tw(u) = E(u,w).
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17.12 Remark (Uniqueness in Theorem 17.11). The vector u ∈ V is unique if and
only if

v ∈ V , E(v, w) = 0 for all w ∈ W implies v = 0.

This is the same as saying that T (W) is dense in V ′, with the operator T from the
proof. △

17.5 The non-autonomous equation

We now come to the main result of this chapter. We study the non-autonomous inhomo-
geneous evolution equation

u′(t) +A(t)u(t) = f(t), u(0) = u0 . (17.4)

Our assumptions are as follows. Let V, H be separable Hilbert spaces, V
d
↪→H. With

these spaces we form the Gelfand triple V
d
↪→H

d
↪→ V ∗ and use the notation introduced in

Section 17.1.
Let τ ∈ (0,∞), and let a be a non-autonomous form on V , i.e., a : [0, τ ]×V ×V → K

is a mapping such that

(Li1) a(t, ·, ·) : V × V → K is sesquilinear for all t ∈ [0, τ ];

(Li2) a(·, x, y) is measurable for all x, y ∈ V .

We also suppose that there exist M ⩾ α > 0 such that

(Li3) |a(t, x, y)| ⩽M∥x∥V ∥y∥V for all t ∈ [0, τ ], x, y ∈ V (boundedness);

(Li4) Re a(t, x, x) ⩾ α∥x∥2V for all t ∈ [0, τ ], x ∈ V (coercivity).

We point out that α and M are independent of t. It follows from Lemma 17.4 and the
conditions (Li2) and (Li3) that t 7→ a(t, u(t), v(t)) is integrable for all u, v ∈ L2(0, τ ;V ).
This property will be used below without further notice.

For each t ∈ [0, τ ] we denote by A(t) ∈ L(V, V ∗) the operator given by

⟨A(t)x, y⟩ = a(t, x, y) (x, y ∈ V ).

First we want to interpret A as a ‘multiplication operator’ in the following way.

17.13 Proposition. Defining

(Au)(t) := A(t)u(t) (t ∈ (0, τ))

for u ∈ L2(0, τ ;V ), one obtains a bounded linear operator A : L2(0, τ ;V ) → L2(0, τ ;V
∗).

Proof. Let u ∈ L2(0, τ ;V ). Recalling that the function t 7→ ⟨Au(t), y⟩ = a(t, u(t), y) is
measurable for all y ∈ V , one deduces that Au is measurable. The estimate

∥A(t)u(t)∥V ∗ ⩽M∥u(t)∥V (t ∈ (0, τ)) (17.5)

shows that Au = A(·)u(·) ∈ L2(0, τ ;V
∗). Obviously the operator A is linear, and by (17.5)

it is bounded.
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In the proof of Theorem 17.15 below we will apply Theorem 17.11 with a suitable
sesquilinear mapping E; the definition of E is motivated by the following proposition. We
will use the notation C∞

c [0, τ) := {φ ∈ C∞[0, τ) ; sptφ compact}.

17.14 Proposition. Let u0 ∈ H, f ∈ L2(0, τ ;V
∗), u ∈ L2(0, τ ;V ). Then the following

properties are equivalent.

(i) u ∈ MR(0, τ ;V, V ∗) and u′ +Au = f , u(0) = u0.

(ii) For all φ ∈ C∞
c [0, τ), x ∈ V one has

−
∫ τ

0

(u(t) |φ′(t)x)H dt+

∫ τ

0

a(t, u(t), φ(t)x) dt =

∫ τ

0

⟨f(t), φ(t)x⟩ dt+ (u0 |φ(0)x)H .

Proof. Note that property (ii) is equivalent to

−
∫ τ

0

φ′(t)u(t) dt+

∫ τ

0

φ(t)(Au)(t) dt =
∫ τ

0

φ(t)f(t) dt+ φ(0)u0 (17.6)

for all φ ∈ C∞
c [0, τ). This is an equation in V ∗; recall that Au = A(·)u(·) ∈ L2(0, τ ;V

∗).
(i)⇒ (ii). Let φ ∈ C∞

c [0, τ). Using Au = f − u′ and Remark 17.7 we obtain

−
∫ τ

0

φ′(t)u(t) dt+

∫ τ

0

φ(t)(Au)(t) dt = −
∫ τ

0

(φu)′(t) dt+

∫ τ

0

φ(t)f(t) dt.

Since φ(τ) = 0 and u(0) = u0, it follows from Proposition 17.6(b) that (17.6) holds.
(ii)⇒ (i). Using (17.6) with φ ∈ C∞

c (0, τ) we obtain

−
∫ τ

0

φ′(t)u(t) dt =

∫ τ

0

φ(t)
(
f(t)− (Au)(t)

)
dt.

This implies that u ∈ H1(0, τ ;V ∗) and u′ = f −Au.
From (i) ⇒ (ii) it follows that (17.6) also holds with u(0) in place of u0. Choosing

φ ∈ C∞
c [0, τ) with φ(0) = 1 we conclude that u(0) = u0.

We can now formulate and prove the main result of this chapter.

17.15 Theorem (Lions). Let u0 ∈ H, f ∈ L2(0, τ ;V
∗). Then there exists a unique

u ∈ MR(0, τ ;V, V ∗) such that

u′ +Au = f, u(0) = u0 . (17.7)

For the solution u one has the estimate

∥u∥L2(0,τ ;V ) ⩽
1
α∥f∥L2(0,τ ;V ∗) +

√
2
α∥u0∥H . (17.8)

Note that both terms u′, Au belong to the same space L2(0, τ ;V
∗) as f . For this reason

we say that the problem has maximal regularity in V ∗. Note also that, in view of
Theorem 17.9(b), a solution u ∈ MR(0, τ ;V, V ∗) of (17.7) can only exist if the initial value
u0 belongs to H. In Exercise 17.7(b) we indicate how to obtain a slightly sharper estimate
than (17.8) for the solution u.
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17.16 Remark. Theorem 17.15 implies that the linear operator

H × L2(0, τ ;V
∗) ∋ (u0, f) 7→ u ∈ MR(0, τ ;V, V ∗)

(mapping the data u0, f to the solution u) is bounded. Concerning the norm of u in
L2(0, τ ;V ) we refer to (17.8). For the derivative of u we apply (17.5) to estimate

∥u′∥L2(0,τ ;V ∗) = ∥f −Au∥L2(0,τ ;V ∗) ⩽ ∥f∥L2(0,τ ;V ∗) +M∥u∥L2(0,τ ;V )

and then use (17.8) once more. △
Proof of Theorem 17.15. To prove the existence we apply Lions’ representation theorem,
Theorem 17.11, with V := L2(0, τ ;V ) and the pre-Hilbert space

W := C∞
c [0, τ)⊗ V = lin

{
φ(·)x ; φ ∈ C∞

c [0, τ), x ∈ V
}

with norm ∥w∥W :=
(
α∥w∥2V + 1

2
∥w(0)∥2H

)
1/2. We define E : V ×W → K by

E(v, w) = −
∫ τ

0

(v(t) |w′(t))H dt+

∫ τ

0

a(t, v(t), w(t)) dt.

For w ∈ W one has

|E(v, w)| ⩽ ∥v∥V∥w
′∥L2(0,τ ;V ∗) +M∥v∥V∥w∥V (v ∈ V).

Thus condition (i) of Theorem 17.11 is satisfied.
In order to verify (ii) let w ∈ W. Then ∥w(·)∥2H ∈ C∞

c [0, τ) and d
dt
∥w(t)∥2H =

2Re(w′(t) |w(t))H ; thus

−
∫ τ

0

Re(w′(t) |w(t))H dt =
1

2
∥w(0)∥2H .

By the coercivity condition (Li4) it follows that

ReE(w,w) ⩾
1

2
∥w(0)∥2H + α∥w∥2V = ∥w∥2W ; (17.9)

thus condition (ii) of Theorem 17.11 is satisfied.
Define L ∈ W∗ by

L(w) :=

∫ τ

0

⟨f(t), w(t)⟩ dt+ (u0 |w(0))H (w ∈ W).

By Lions’ representation theorem, there exists u ∈ V such that E(u,w) = L(w) for all
w ∈ W, which means that u satisfies property (ii) of Proposition 17.14. It follows that
u ∈ MR(0, τ ;V, V ∗) and that u is a solution of (17.7).
In order to prove the uniqueness, let u ∈ MR(0, τ ;V, V ∗) be such that u′ +Au = 0 and

u(0) = 0. Then by Theorem 17.9(a) we obtain(
∥u(·)∥2H

)′
(t) = 2Re⟨u′(t), u(t)⟩ = −2Re⟨(Au)(t), u(t)⟩ = −2Re a(t, u(t), u(t)) ⩽ 0

for a.e. t ∈ [0, τ ]. Using formula (17.2) we conclude that ∥u(·)∥H is decreasing, so u(t) = 0
for all t ∈ [0, τ ].
Obviously ∥w∥V ⩽ 1√

α
∥w∥W for all w ∈ W , and by the Cauchy–Schwarz inequality one

obtains ∥L∥W∗ ⩽
(
1
α∥f∥2L2(0,τ ;V ∗) + 2∥u0∥2H

)
1/2 ⩽ 1√

α
∥f∥L2(0,τ ;V ∗) +

√
2∥u0∥H . In view of

these inequalities and (17.9), the estimate in Theorem 17.11 implies (17.8).
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17.17 Remark. The notion of solution we use here is rather weak. This is because
our space of test functions W is small and consists of very regular functions. Of course,
if we have a weak notion of solution, the existence of solutions might become easy to
prove (an extreme version would be to call every function a solution). But the uniqueness
may become hard to prove. Here for existence we need the key equality (17.3) only for
functions in W, for which it is in fact trivial. With the help of Lions’ representation
theorem the proof of existence is rather elegant and easy. In contrast, uniqueness is more
technical since (17.3) is needed for a rather general class of functions. △

Notes

The results of Sections 17.4 and 17.5 go back to J.-L. Lions and his school in the 1950s
and 1960s. Lions’ representation theorem, Theorem 17.11, was first proved in [Lio57].
The existence and uniqueness result Theorem 17.15 is contained in Lions’ book ([Lio61;
Chap. IV, Théorème 1.1]), with a slightly different formulation. Lions cites [Vis56] and
[Lio59] for the first proofs of existence. Uniqueness is shown in [Lio59]; this had been
an open problem for a while. It is also possible to prove Theorem 17.15 by the Galerkin
method; see [DaLi92]. This is of interest for the numerical treatment but less elegant than
via the representation theorem. For more recent results on these and related topics we
refer to [ACE23], [ACE24].

Exercises

17.1 Let V be a Hilbert space and M ⊆ V ∗ a subset with the property that

u ∈ V, ⟨η, u⟩ = 0 for all η ∈M implies u = 0.

Show that M is a dense subset of V ∗.
Hint: Let V ∗ ∋ η 7→ η̂ ∈ V be the inverse of the Fréchet–Riesz isomorphism, i.e.

(η̂ | ·)V = η for all η ∈ V ∗. Show that M̂ = {η̂ ; η ∈ M} is dense in V . (Note that, in
view of the reflexivity of V , the assertion can also be obtained from the Hahn–Banach
theorem.)

17.2 Let V, H be Hilbert spaces, V
d
↪→H.

(a) Show that there exist a measure space (Ω, µ), a unitary operator J : H → L2(Ω, µ)
and a measurable function m : Ω → [δ,∞) (with δ > 0) such that J |V is a unitary operator
from V onto L2(Ω,mµ); see Remarks 17.1. (Hint: Show that a(u, v) := (u | v)V (u, v ∈ V )
defines a symmetric bounded coercive form, and let A be the associated strictly accretive
self-adjoint operator. Use the spectral theorem for self-adjoint operators, Theorem 13.21.)
(b) In the context of part (a), let the form a : V × V → K be given by

a(u, v) =

∫
Ω

muv dµ.
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Show that the operator A in V ∗, described in Section 17.1, is given by

Au = mu (u ∈ dom(A) = V ).

(c) Let K = C. Show that the operator −A from part (b) generates a holomorphic
C0-semigroup T on V ∗. Show that T (t)(V ∗) ⊆ V for all t > 0, and that (0,∞) ∋ t 7→
T (t)f ∈ V is infinitely differentiable, for all f ∈ V ∗.

17.3 (a) Prove Lemma 17.2.

(b) Let G be a Hilbert space, A ∈ L(H,G). Show that A
∫ b

a
f(t) dt =

∫ b

a
Af(t) dt for all

f ∈ L1(a, b;H).

17.4 Let −∞ < a < b <∞.
(a) Let H be a separable Hilbert space, u ∈ L1(a, b;H). Assume that∫ b

a

φ(t)u(t) dt = 0

for all φ ∈ C∞
c (a, b). Show that u = 0 a.e.

Deduce the uniqueness of the weak derivative defined in Section 17.3.
(b) Find a (non-separable) Hilbert space H and a function u : (a, b) → H with the

properties that ∥u(t)∥ = 1 for all t ∈ (a, b) and (u(·) | v) = 0 a.e. for all v ∈ H. (Note that

then
∫ b

a
φ(t)u(t) dt = 0 for all φ ∈ C∞

c (a, b), if the integral were defined as in Lemma 17.2.)

17.5 Let V
d
↪→H be Hilbert spaces, let a be a bounded coercive form on V , with associated

operator A, and let S be the C0-semigroup generated by −A. Let τ > 0, and regard a as
a non-autonomous form (not depending on t).
Let u0 ∈ H. Show that u := S(·)u0 is the solution of

u′ +Au = 0, u(0) = u0

obtained from Theorem 17.15. (Hint: First treat the case u0 ∈ dom(A). For the general
case use (17.8).)

17.6 Prove the existence and uniqueness parts of Theorem 17.15 when the form a is not
necessarily coercive but quasi-coercive, i.e.,

Re a(t, x, x) + ω∥x∥2H ⩾ α∥x∥2V (t ∈ [0, τ ], x ∈ V )

holds for some ω ⩾ 0, α > 0. Show that the solution satisfies the estimate

∥u∥L2(0,τ ;V ) ⩽ eωτ
(
1
α∥f∥L2(0,τ ;V ∗) +

√
2
α∥u0∥H

)
.

Hint: Solve v′ + (A+ ω)v = e−ω ·f .

17.7 (a) Prove a generalised version of Lions’ representation theorem, Theorem 17.11, in
which hypothesis (ii) is replaced by the weaker condition

(ii′) |E(w,w)| ⩾ ε∥w∥W∥w∥V for all w ∈ W , with some ε > 0.
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Show that then one obtains the estimate ∥u∥V ⩽ 1
ε∥L∥W∗ for the solution u. (Hint: Inspect

the proof of Theorem 17.11.)
(b) Using part (a), give a proof of Theorem 17.15, with the improved estimate

∥u∥L2(0,τ ;V ) ⩽
1
α∥f∥L2(0,τ ;V ∗) +

1√
2α
∥u0∥H

for the solution u.
Hint: V and W as before, but ∥w∥W := max

{
∥w∥V ,

√
2
α ∥w(0)∥H

}
; then

∥w∥W∥w∥V ⩽ ∥w∥2V + 1
2α
∥w(0)∥2H ⩽ 1

α ReE(w,w) (w ∈ W)

(with the aid of Peter–Paul in the first inequality), and ∥L∥W∗ ⩽ ∥f∥L2(0,τ ;V ∗)+
√

α
2
∥u0∥H .

(c) Consider V = H = R and A = α in order to show that the coefficient 1√
2α

at ∥u0∥H ,
in the estimate in (b), is optimal (if one wants a τ -independent estimate).

17.8 (a) Let x, a, b ∈ [0,∞) satisfy the ‘quadratic inequality’ x2 ⩽ ax + b. Show that
this implies x ⩽ a+

√
b.

(b) Under the hypotheses of Theorem 17.15, let u ∈ MR(0, τ ;V, V ∗) be a solution
of (17.7).
Insert u′ = −Au + f into (17.3), integrate the resulting equation, and apply the

coercivity of a, to obtain

α∥u∥2L2(0,τ ;V ) ⩽ ∥f∥L2(0,τ ;V ∗)∥u∥L2(0,τ ;V ) +
1
2
∥u0∥2H .

Apply part (a) to reproduce the estimate from Exercise 17.7(b).
Conclude the uniqueness for solutions of (17.7).





Chapter 18

Maximal regularity for non-autonomous
equations

The last chapter was devoted to the non-autonomous Cauchy problem

u′(t) +A(t)u(t) = f(t), u(0) = u0 ,

where A is associated with a non-autonomous form on V . The problem was treated in

the setup of a Gelfand triple V
d
↪→H

d
↪→ V ∗, and in Theorem 17.15, well-posedness was

obtained in V ∗. In the present chapter we will establish well-posedness and maximal
regularity in H. The price to pay is that the non-autonomous form has to be Lipschitz
continuous in time. The importance of maximal regularity in H will be demonstrated
in Chapter 19, by applications to nonlinear problems. We refer to the Notes for more
information on what is true and not true concerning maximal regularity in H.

18.1 Well-posedness in H

As in Chapter 17 let V, H be separable Hilbert spaces, V
d
↪→H, giving rise to the Gelfand

triple V
d
↪→H

d
↪→ V ∗. Let τ ∈ (0,∞), and assume that a is a bounded non-autonomous

form on V , i.e., a mapping a : [0, τ ] × V × V → K satisfying the properties (Li1), (Li2)
and (Li3) stated in Section 17.5. For t ∈ [0, τ ] we recall the definition of A(t) ∈ L(V, V ∗),

⟨A(t)x, y⟩ = a(t, x, y) (x, y ∈ V ),

and we define the operator A(t) as the part of A(t) in H, A(t) = A(t) ∩ (V ×H); see the
discussion following Remarks 17.1. In analogy to the notation MR(a, b;V, V ∗), introduced
in Section 17.3, we define

MR(0, τ ;V,H) := L2(0, τ ;V ) ∩H1(0, τ ;H),

with norm

∥u∥MR(0,τ ;V,H) :=
(
∥u∥2L2(0,τ ;V ) + ∥u′∥2L2(0,τ ;H)

)1/2
(u ∈ MR(0, τ ;V,H)).

We say that the form a satisfies maximal regularity in H if, given u0 ∈ V and
f ∈ L2(0, τ ;H), there exists a unique function u ∈ MR(0, τ ;V,H) such that

u′ +Au = f, u(0) = u0 . (18.1)
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(Concerning the notation Au we refer to Proposition 17.13.) If u satisfies the above
properties, then

u(t) ∈ dom(A(t)) and u′(t) + A(t)u(t) = f(t) for a.e. t.

Thus both functions u′, A(·)u(·) belong to the same space L2(0, τ ;H) as f , which is the
reason for the term “maximal regularity in H”. Maximal regularity in H is not always
valid for bounded non-autonomous forms; additional assumptions are needed. Here we
will make the following assumptions.

We suppose that the form a : [0, τ ]× V × V → K can be written as a = a1 + b, where a1
and b are bounded non-autonomous forms on V , with the following additional requirements.
The form a1 is symmetric, i.e.

a1(t, x, y) = a1(t, y, x) (t ∈ [0, τ ], x, y ∈ V ),

coercive, i.e., there exists α > 0 such that

a1(t, x, x) ⩾ α∥x∥2V (t ∈ [0, τ ], x ∈ V ),

and Lipschitz continuous, i.e., there exists a constant M ′
1 ⩾ 0 such that

|a1(t, x, y)− a1(s, x, y)| ⩽M ′
1|t− s|∥x∥V ∥y∥V (s, t ∈ [0, τ ], x, y ∈ V ).

In this context we will call M ′
1 a Lipschitz bound of a1.

For the form b we do not require any regularity in time (besides measurability) but
impose a stronger boundedness property, namely

|b(t, x, y)| ⩽Mb∥x∥V ∥y∥H (t ∈ [0, τ ], x, y ∈ V ), (18.2)

for some Mb ⩾ 0.

18.1 Remarks. (a) The above hypotheses imply that the form a is quasi-coercive, i.e.

Re a(t, x, x) + ω∥x∥2H ⩾ α∥x∥2V (t ∈ [0, τ ], x ∈ V ),

for some α > 0, ω ∈ R.
Indeed, using the Peter–Paul inequality we see that

|b(t, x, x)| ⩽Mb∥x∥V ∥x∥H ⩽
α

2
∥x∥2V +

M2
b

2α
∥x∥2H ,

and hence by the coercivity of a1 we obtain

Re a(t, x, x) = a1(t, x, x) + Re b(t, x, x) ⩾
α

2
∥x∥2V − M2

b

2α
∥x∥2H ,

for all t ∈ [0, τ ], x ∈ V .
(b) Let a be a Lipschitz continuous symmetric bounded non-autonomous form on V

which is quasi-coercive. Then a satisfies the above requirements, with

a1(t, x, y) := a(t, x, y) + ω(x | y)H , b(t, x, y) := −ω(x | y)H .
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(c) Let a = a1+b be a non-autonomous form satisfying the hypotheses formulated above.
Then, as shown in (a), the form a is quasi-coercive. Let u0 ∈ V , f ∈ L2(0, τ ;H). Then,
by Theorem 17.15 and Exercise 17.6, there exists a unique solution u ∈ MR(0, τ ;V, V ∗)
of (18.1). On the other hand, a solution u ∈ MR(0, τ ;V,H) of (18.1) will belong to
MR(0, τ ;V, V ∗); hence, the uniqueness statement in Theorem 18.2 below is a consequence
of the uniqueness recalled above. △

Now we formulate the main result of this chapter. We assume that a = a1 + b is
a non-autonomous form satisfying the hypotheses formulated above. The operators
A(t) ∈ L(V, V ∗) are given by ⟨A(t)x, y⟩ = a(t, x, y), as before.

18.2 Theorem. Let u0 ∈ V , f ∈ L2(0, τ ;H). Then there exists a unique solution
u ∈ MR(0, τ ;V,H) of

u′ +Au = f, u(0) = u0 .

In short, the form a satisfies maximal regularity in H.
For the solution u one has the estimate

∥u∥MR(0,τ ;V,H) ⩽ 2eγτ
(
∥f∥L2(0,τ ;H) +M

1/2
1,0 ∥u0∥V

)
, (18.3)

where γ :=
1+M ′

1+M2
b

α
, and M1,0 is a bound for the form a1(0, ·, ·).

The proof of this theorem will be given in Section 18.5. First we will need to study
Lipschitz continuous functions and product rules; see Sections 18.3 and 18.4.
The solution u in Theorem 18.2 depends continuously on the part b of the form; this is

the topic of Exercise 18.1.

18.3 Remarks. (a) With the form b(t, ·, ·) we associate the Lax–Milgram operator
B(t) ∈ L(V, V ∗), for all t ∈ [0, τ ]. Because of the H-norm at the element y in the estimate
(18.2), the element B(t)x ∈ V ∗ belongs to H, for all x ∈ V , t ∈ [0, τ ]. This means that in
fact the range of B(t) is contained in H, and that B(t) also acts as a bounded operator
from V to H, with norm ⩽Mb.
The properties of B imply that Bu ∈ L2(0, τ ;H) and ∥Bu∥L2(0,τ ;H) ⩽Mb∥u∥L2(0,τ ;V ) for

all u ∈ L2(0, τ ;V ). (The measurability of Bu is proved in the same way as in the proof of
Proposition 17.13.)
(b) With the notation from part (a) and with A1(t) denoting the Lax–Milgram operator

associated with a1(t, ·, ·), the equation in Theorem 18.2 can be written as

u′ +A1u+ Bu = f, u(0) = u0 .

The solution u ∈ MR(0, τ ;V,H) also has maximal regularity in H in the sense that
both terms A1u and Bu are in L2(0, τ ;H). Indeed, Au ∈ L2(0, τ ;H) together with
Bu ∈ L2(0, τ ;H) implies that A1u = Au− Bu ∈ L2(0, τ ;H). From Theorem 19.7 in the
next chapter one can conclude a further regularity property: the solution u even belongs
to C([0, τ ];V ).
(c) Assume that, in Theorem 18.2, the form a1 does not depend on t, and let A1 be the

self-adjoint operator in H associated with a1. Then the solution u of u′ +Au = f has
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the stronger regularity property u ∈ MR(0, τ ; domA1 , H), where domA1 denotes dom(A1),
provided with the ‘graph norm’ ∥·∥A1

,

∥x∥A1
=

(
∥x∥2H + ∥A1x∥2H

)1/2
(x ∈ dom(A1)).

Indeed, A1 is the part of A1 in H, and A−1
1 = A−1

1 |H maps H continuously to domA1 .
This shows that u = A−1

1 (A1u) ∈ L2(0, τ ; domA1). △

18.2 Examples for non-autonomous problems

In this section we give examples illustrating the existence theorems for non-autonomous
problems presented so far. The first issue is an application of Theorem 17.15.

18.4 Example. Let Ω ⊆ Rn be a bounded open set. Let τ ∈ (0,∞), and for j, k = 1, . . . , n
let ajk : [0, τ ] → L∞(Ω) be bounded and measurable as an L2(Ω)-valued function. Assume
that there exists α > 0 such that

Re
n∑

j,k=1

ajk(t, x)ξkξj ⩾ α|ξ|2

for all t ∈ [0, τ ], x ∈ Ω, ξ ∈ Kn.
Let V := H1

0 (Ω) and H := L2(Ω); then V ∗ = H−1(Ω) (cf. Section 16.1). Define
a : [0, τ ]× V × V → K by

a(t, u, v) :=

∫
Ω

n∑
j,k=1

ajk(t, x)∂ku(x)∂jv(x) dx.

Obviously a satisfies the properties (Li1), (Li2) and (Li4) in Section 17.5. In order to see
the measurability property (Li3), note that, by hypothesis,

t 7→
∫
Ω

ajk(t, x)f(x) dx

is measurable for all f ∈ L2(Ω), and hence, by approximation, for f = ∂ku · ∂jv ∈ L1(Ω)
as well.
Let u0 ∈ L2(Ω), f ∈ L2(0, τ ;H

−1(Ω)). Then Theorem 17.15 implies that there exists a
unique solution u ∈ MR(0, τ ;H1

0 (Ω), H
−1(Ω)) of the initial value problem

u′ +Au = f, u(0) = u0

(where A is defined as in Section 17.5). △

Our second example illustrates the application of Theorem 18.2.

18.5 Example. Let the hypotheses be as in Example 18.4, but rename the non-autono-
mous form a to a1. Additionally to these hypotheses assume that, for j, k = 1, . . . , n, the
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functions ajk : [0, τ ] → L∞(Ω) are Lipschitz continuous, and that ajk(t) = akj(t) for all
t ∈ [0, τ ], j, k ∈ {1, . . . , n}.
In addition, for j = 1, . . . , n let bj : [0, τ ] → L∞(Ω) be bounded and measurable as an

L2(Ω)-valued function, and define b : [0, τ ]× V × V → K by

b(t, u, v) :=

∫
Ω

( n∑
j=1

bj(t, x)∂ju(x)
)
v(x) dx.

One easily sees that a1 and b satisfy the requirements stated in Section 18.1. Define A as
in Section 18.1.
Let u0 ∈ H1

0 (Ω), f ∈ L2(0, τ ;L2(Ω)). Then by Theorem 18.2 there exists a unique
u ∈ MR(0, τ ;H1

0 (Ω), L2(Ω)) such that

u′ +Au = f, u(0) = u0 .

Formulated in detail, the equation u′ +Au = f reads

∂tu(t, x) =
n∑

j,k=1

∂j(ajk(t, x)∂ku)(t, x)−
n∑

j=1

bj(t, x)∂ju(t, x) + f(t, x);

this is a non-autonomous diffusion equation with a drift term. △

18.3 Interlude: Lipschitz continuous functions, scalar
product rule

Let −∞ ⩽ a < b ⩽ ∞. It follows from Proposition 4.8 that each function u ∈ C(a, b)
with distributional derivative u′ ∈ L∞(a, b) is Lipschitz continuous. This property has a
converse, as follows.

18.6 Proposition. Let u : (a, b) → K be Lipschitz continuous, i.e.

|u(t)− u(s)| ⩽ L|t− s| (s, t ∈ (a, b)),

for some L ⩾ 0. Then u′ = ∂u ∈ L∞(a, b), with ∥u′∥∞ ⩽ L.

Proof. It is easy to see that one can extend u to a Lipschitz continuous function u : R→ K
with the same Lipschitz constant L. Therefore, without loss of generality, we may assume
that (a, b) = R.
Let (ρk)k be a delta sequence in C∞

c (R). Then ρk ∗ u ∈ C1(R) for all k ∈ N, by
Lemma 4.1. For k ∈ N, s, t ∈ R we estimate

|ρk ∗ u(t)− ρk ∗ u(s)| ⩽
∫
R
ρk(r)

∣∣u(t− r)− u(s− r)
∣∣ dr ⩽ L|t− s|.

It follows that ∥(ρk ∗ u)′∥∞ ⩽ L, for all k ∈ N.
Let R > 0. Then

(
(ρk ∗ u)′|(−R,R)

)
k is a bounded sequence in L2(−R,R) and therefore

contains a weakly convergent subsequence
(
(ρkj ∗ u)′|(−R,R)

)
j, with weak limit vR ∈
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L2(−R,R). Proposition 4.3(a) shows that ρk ∗ u→ u uniformly on (−R,R). Arguing as
in the proof of Lemma 4.11, one concludes from these convergences that ∂

(
u|(−R,R)

)
= vR.

Moreover, for all w ∈ L2(−R,R) one obtains∣∣∣∣∫ R

−R

vR(t)w(t) dt

∣∣∣∣ = lim
j→∞

∣∣∣∣∫ R

−R

(ρkj ∗ u)′(t)w(t) dt
∣∣∣∣ ⩽ L∥w∥1 ,

and this implies that ∥vR∥∞ ⩽ L.

Using a standard diagonal procedure one can choose the subsequence
(
(ρkj ∗ u)′

)
j such

that
(
(ρkj ∗ u)′|(−R,R)

)
j is weakly convergent simultaneously for all R > 0. Then the

definition v|(−R,R) := vR, for all R > 0, yields the distributional derivative v of u, with
∥v∥∞ ⩽ L.

The second topic of this section is the following product rule for scalar functions with
distributional derivatives in L1,loc; it serves as a warm-up for the next interlude.

18.7 Proposition. Let −∞ ⩽ a < b ⩽ ∞, and let u, v ∈ C(a, b) be such that u′, v′ ∈
L1,loc(a, b). Then (uv)′ = u′v + uv′ ∈ L1,loc(a, b).

Proof. We only need to prove the formula on (c, b), for c ∈ (a, b). For c ⩽ t < b we
compute, applying Fubini’s theorem in the last step,

u(t)v(t)− u(c)v(c) =

∫ t

c

u′(s) ds v(t) + u(c)

∫ t

c

v′(r) dr

=

∫ t

c

u′(s)

(
v(s) +

∫ t

s

v′(r) dr

)
ds+

∫ t

c

(
u(r)−

∫ r

c

u′(s) ds
)
v′(r) dr

=

∫ t

c

(
u′(s)v(s) + u(s)v′(s)

)
ds+ 0.

This establishes the asserted equality, by Proposition 4.8.

18.4 Interlude: the product rule – vector-valued

In this section let G and H be separable Hilbert spaces of infinite dimension, and let
τ ∈ (0,∞) be fixed. In the arguments below we will need the space

L∞(0, τ ;H) :=
{
u : (0, τ) → H ; u measurable, ∥u(·)∥H essentially bounded

}
,

where a.e. equal functions are identified, and with norm

∥u∥∞ :=
∥∥∥u(·)∥H∥∥L∞(0,τ)

.

18.8 Proposition. Let T ∈ L(G,L∞(0, τ ;H)). Then there exists a bounded function
k : (0, τ) → L(G,H), ∥k(t)∥ ⩽ ∥T∥ for all t ∈ (0, τ), such that Tx = k(·)x for all x ∈ G.
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Proof. We choose an orthonormal basis (ej)j∈N of G and define G0 := linQK{ej ; j ∈ N} as
the set of rational linear combinations of {ej ; j ∈ N}, where QR := Q and QC := Q+ iQ.
For each x ∈ G0 we choose a representative kx : (0, τ) → H of Tx. Then there exists a
null set N ⊆ (0, τ) such that for all t ∈ (0, τ) \N , x, y ∈ G0, λ ∈ QK one has

∥kx(t)∥H ⩽ ∥T∥∥x∥G , (18.4)

kλx+y(t) = λkx(t) + ky(t).

(This is because of the linearity of T and the countability of QK and G0.)
For t ∈ (0, τ) \ N , the continuous QK-linear mapping G0 ∋ x 7→ kx(t) ∈ H has a

continuous K-linear extension to G, denoted by k(t). Putting k(t) := 0 (t ∈ N), we
thus obtain a function k : (0, τ) → L(G,H), and (18.4) implies ∥k(t)∥L(G,H) ⩽ ∥T∥ for all
t ∈ (0, τ).
It remains to show that k(·)x = kx(·), which by definition holds for all x ∈ G0, carries

over to all x ∈ G. From the measurability of k(·)x for all x ∈ G0 we deduce by (18.4)
that k(·)x is measurable for all x ∈ G. We define the operator T0 ∈ L(G,L∞(0, τ ;H)) by
T0x := k(·)x (x ∈ G). Since T and T0 coincide on G0, the denseness of G0 implies that
T = T0, i.e. Tx = k(·)x for all x ∈ G.

18.9 Remark. The following fact concerning weak derivatives will be useful. If u, v ∈
L2(0, τ ;H), then u ∈ H1(0, τ ;H) and u′ = v if and only if (u(·) | y)′ = (v(·) | y) in the
distributional sense, for all y ∈ H.
This equivalence is an easy consequence of the definitions. △

18.10 Proposition. (a) Let f : [0, τ ] → H be Lipschitz continuous, with Lipschitz constant
L. Then f ∈ H1(0, τ ;H), ∥f ′(t)∥ ⩽ L for a.e. t ∈ (0, τ).
(b) Let D : [0, τ ] → L(G,H) be Lipschitz continuous, with Lipschitz constant L. Then

there exists a bounded function D′ : (0, τ) → L(G,H), ∥D′(t)∥L(G,H) ⩽ L for all t ∈ (0, τ),
such that (D(·)x)′ = D′(·)x for all x ∈ G.

Proof. (a) Using Proposition 18.6 we can define T ∈ L(H,L∞(0, τ)) by Tx := (x | f(·))′
(x ∈ H); then ∥T∥ ⩽ L. We now apply Proposition 18.8 and use the Fréchet–Riesz
representation theorem to identify H with L(H;K) by the anti-isomorphism y 7→ ( · | y).
Thus we obtain a bounded function k : (0, τ) → H, ∥k(t)∥H ⩽ L for all t ∈ (0, τ), such
that

(x | f(·))′ = Tx = (x | k(·)) (x ∈ H).

This property yields the measurability of k, and Remark 18.9 implies that f ∈ H1(0, τ ;H),
f ′ = k.
(b) For each x ∈ G, part (a) above shows that Tx := (D(·)x)′ ∈ L∞(0, τ ;H), ∥Tx∥∞ ⩽

L∥x∥. Applying Proposition 18.8 to the operator T ∈ L(G,L∞(0, τ ;H)) we obtain a
function D′ : (0, τ) → L(G,H) as asserted.

For the proof of the following ‘product rule’ we refer to Exercise 18.2.

18.11 Lemma. Let u, v ∈ H1(0, τ ;H). Then (u(·) | v(·)) ∈ H1(0, τ),

(u(·) | v(·))′ = (u′(·) | v(·)) + (u(·) | v′(·)).



250

18.12 Proposition. Let D : [0, τ ] → L(G,H) be Lipschitz continuous, and let D′ be as
in Proposition 18.10(b). Let u ∈ H1(0, τ ;G). Then Du ∈ H1(0, τ ;H),

(Du)′ = D′u+Du′.

(Here we have used the notation Dv := D(·)v(·), for v ∈ L2(0, τ ;G), and similarly for D′.)
The mapping u 7→ Du belongs to L(H1(0, τ ;G), H1(0, τ ;H)).

Proof. Let y ∈ H; then the function D∗(·)y : [0, τ ] → G is Lipschitz continuous. For all
x ∈ G we get – observing Remark 18.9 –

(x | D(·)∗y)′G = (D(·)x | y)′H = (D′(·)x | y)H = (x | D′(·)∗y)G .

Applying Remark 18.9 again we conclude that (D(·)∗y)′ = D′(·)∗y. Thus, by Lemma 18.11
we obtain(

D(·)u(·)
∣∣ y)′

H
=

(
u(·)

∣∣D∗(·)y
)′
G
=

(
u′(·)

∣∣D∗(·)y
)
G
+
(
u(·)

∣∣ (D∗(·)y)′
)
G

=
(
D(·)u′(·) +D′(·)u(·)

∣∣ y)
H
.

As this equality holds for all y ∈ H, we can use Remark 18.9 once more to conclude that
Du ∈ H1(0, τ ;H) and (Du)′ = D′u+Du′.
In view of the formula for (Du)′, the continuity of the mapping H1(0, τ ;G) ∋ u 7→ Du ∈

H1(0, τ ;H) is obvious.

We employ Proposition 18.12 for the proof of a product rule for non-autonomous
forms, as follows. Note that in this result there is no coercivity requirement on the
non-autonomous form a.

18.13 Corollary. Let V be a separable Hilbert space. Let a : [0, τ ] × V × V → K be
a Lipschitz continuous bounded non-autonomous form with Lipschitz bound M ′. Then
a(·, u(·), v(·)) ∈ H1(0, τ) for all u, v ∈ H1(0, τ ;V ). There exists a bounded non-autono-
mous form a′ : (0, τ)× V × V → K, |a′(t, x, y)| ⩽M ′∥x∥V ∥y∥V for all x, y ∈ V , t ∈ (0, τ),
such that

a(·, u(·), v(·))′ = a′(·, u(·), v(·)) + a(·, u′(·), v(·)) + a(·, u(·), v′(·)),

for all u, v ∈ H1(0, τ ;V ).

Proof. We start by recalling that with the form a we can associate the Lax–Milgram
operaters A(t) ∈ L(V, V ∗), defined by

A(t)x = a(t, x, ·) (x ∈ V, t ∈ (0, τ)).

It is easy to see that the Lipschitz continuity of the form a is equivalent to the Lipschitz
continuity of A : [0, τ ] → L(V, V ∗) with Lipschitz bound M ′. Now Proposition 18.12 and
Lemma 18.11 imply that a(·, u(·), v(·)) ∈ H1(0, τ),

a(·, u(·), v(·))′ = ⟨Au, v⟩′V ∗,V = ⟨A′u, v⟩+ ⟨Au′, v⟩+ ⟨Au, v′⟩
= ⟨A′u, v⟩+ a(·, u′(·), v(·)) + a(·, u(·), v′(·)),

(18.5)
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where we have used the dual pairing ⟨·, ·⟩V ∗,V instead of the scalar product in V . It
remains to find the form a′ as in the assertion. From Proposition 18.10(b) we know that
A′ : (0, τ) → L(V, V ∗) is a bounded function, ∥A′(t)∥ ⩽M ′ (t ∈ (0, τ)). Putting

a′(t, x, y) := ⟨A′(t)x, y⟩ (x, y ∈ V, t ∈ (0, τ))

we obtain a bounded non-autonomous form a′ : (0, τ) × V × V → K with bound M ′.
(The measurability property (Li2) from Section 17.5 follows from the measurability of
A′(·)x = (A(·)x)′ (x ∈ V ), in Proposition 18.10(b).)

18.5 Proof of maximal regularity in H

Throughout this section we assume that a = a1 + b is a non-autonomous form as in
Section 18.1.
Given u0 ∈ V ⊆ H and f ∈ L2(0, τ ;H) ⊆ L2(0, τ ;V

∗), we already know the existence
of a solution u ∈ MR(0, τ ;V, V ∗) of (18.1), from Theorem 17.15 and Exercise 17.6. Our
method of proof will not be to show that this solution, in the present case, has better
qualities than stated in Theorem 17.15, but we give a new existence proof. The idea
of the new proof is to again use Lions’ representation theorem, but with a different
sesquilinear form E that results from a characterisation of solutions which is different
from Proposition 17.14 – see the third and fourth paragraphs of the proof given below.

Proof of Theorem 18.2. As observed in Remark 18.1(c), the uniqueness of the solution
follows from Theorem 17.15 and Exercise 17.6.
To prove the existence, let

V :=
{
u ∈ MR(0, τ ;V,H) ; u(0) ∈ V

}
.

(Recall that MR(0, τ ;H, V ) ↪→ H1(0, τ ;H) ↪→ C([0, τ ];H); hence the requirement that
u(0) should belong to V makes sense.) Then V is a Hilbert space for the norm ∥·∥V ,

∥u∥2V :=

∫ τ

0

∥u′(t)∥2H dt+

∫ τ

0

∥u(t)∥2V dt+ a1(0, u(0), u(0)).

Let W := H1(0, τ ;V ) with the same norm; note that W is not complete.
If u ∈ V is a solution of (18.1) (with the given initial value u0 ∈ V and the given

inhomogeneity f), then one easily sees that E(u,w) = L(w) for all w ∈ W, where the
sesquilinear form E : V ×W → K and L ∈ W∗ are defined by

E(v, w) :=

∫ τ

0

(v′(t) |w′(t))H e−γt dt+

∫ τ

0

a(t, v(t), w′(t))e−γt dt+ a1(0, v(0), w(0)),

L(w) :=

∫ τ

0

(f(t) |w′(t))H e−γt dt+ a1(0, u0, w(0)) (v ∈ V , w ∈ W);

here, the constant γ ∈ R is arbitrary – for the moment – and will be fixed later.
Conversely, assume that u ∈ V is such that

E(u,w) = L(w) (w ∈ W). (18.6)
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We show that then u is a solution of (18.1). Let ψ ∈ C∞
c (0, τ) and x ∈ V . Then

w(t) :=
∫ t

0
ψ(s) ds x defines an element w ∈ W ; hence by (18.6) we obtain∫ τ

0

(u′(t) |x)Hψ(t)e−γt dt+

∫ τ

0

a(t, u(t), x)ψ(t)e−γt dt =

∫ τ

0

(f(t) |x)Hψ(t)e−γt dt.

Since ψ ∈ C∞
c (0, τ) is arbitrary, it follows that

(u′(t) |x)H + a(t, u(t), x) = (f(t) |x)H

for a.e. t ∈ (0, τ). This being valid for all x ∈ V implies that u′(t)+A(t)u(t) = f(t) for a.e.
t ∈ (0, τ), i.e. u solves the differential equation. Applying (18.6) with the constant function
w(t) = x we obtain a1(0, u(0), x) = a1(0, u0, x) for all x ∈ V , which implies u(0) = u0.
Thus, u solves (18.1).

Clearly E(·, w) ∈ V ′ for all w ∈ W , i.e., E satisfies condition (i) of Lions’ representation
theorem, Theorem 17.11. We show that condition (ii) is satisfied as well if γ is chosen
appropriately. This will achieve the proof of existence: then by Theorem 17.11 there exists
u ∈ V satisfying (18.6), which means that u is a solution of (18.1), as shown above.
Let w ∈ W = H1(0, τ ;V ). By Corollary 18.13 there exists a non-autonomous form

a′1 : (0, τ) × V × V → K which is bounded by M ′
1 such that a1(·, w(·), w(·)) ∈ H1(0, τ)

and
a1(·, w(·), w(·))′ = a′1(·, w(·), w(·)) + 2Re a1(·, w(·), w′(·)); (18.7)

for the expression on the right-hand side we have applied the symmetry of a1. We multiply
by e−γ·; then by the product rule and the accretivity of a1 it follows that(

a1(·, w(·), w(·))e−γ·)′
= −γa1(·, w(·), w(·))e−γ· + a′1(·, w(·), w(·))e−γ· + 2Re a1(·, w(·), w′(·))e−γ·

⩽ −γα∥w(·)∥2V e
−γ· +M ′

1∥w(·)∥
2
V e

−γ· + 2Re a1(·, w(·), w′(·))e−γ·,

which we rewrite as

Re a1(·, w(·), w′(·))e−γ· ⩾
1

2

(
a1(·, w(·), w(·))e−γ·)′ + 1

2
(γα−M ′

1)∥w(·)∥
2
V e

−γ·.

By the Peter–Paul inequality we have

|b(t, w(t), w′(t))| ⩽Mb∥w(t)∥V ∥w
′(t)∥H ⩽

1

2
∥w′(t)∥2H +

M2
b

2
∥w(t)∥2V

for all t ∈ [0, τ ]. Altogether, recalling a = a1 + b, we can now estimate

ReE(w,w) =

∫ τ

0

∥w′(t)∥2H e−γt dt+Re

∫ τ

0

a(t, w(t), w′(t))e−γt dt+ a1(0, w(0), w(0))

⩾
1

2

∫ τ

0

∥w′(t)∥2H e−γt dt+
1

2

∫ τ

0

(
a1(·, w(·), w(·))e−γ·)′(t) dt

+
γα−M ′

1 −M2
b

2

∫ τ

0

∥w(t)∥2V e
−γt dt+ a1(0, w(0), w(0)).
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Choosing γ > 0 such that γα−M ′
1 −M2

b = 1 and applying the fundamental theorem of
calculus in W 1

1 (see (17.2)), we conclude that

ReE(w,w) ⩾
1

2

∫ τ

0

∥w′(t)∥2H e−γt dt+
1

2
a1(τ, w(τ), w(τ))e

−γτ − 1

2
a1(0, w(0), w(0))

+
1

2

∫ τ

0

∥w(t)∥2V e
−γt dt+ a1(0, w(0), w(0)) (18.8)

⩾
1

2
e−γτ∥w∥2V .

Thus E satisfies condition (ii) of Theorem 17.11.
In order to obtain the estimate (18.3) we first note that the embedding constant of

W ↪→ V is c = 1. Since γ > 0, the norm of L can be estimated by

∥L∥W∗ ⩽
(
∥f∥2L2(0,τ ;H) + a1(0, u0, u0)

)1/2 ⩽ ∥f∥L2(0,τ ;H) +M
1/2
1,0 ∥u0∥V ,

and (18.8) together with the estimate in Theorem 17.11 yields (18.3). (Note that the
V-norm of u on the left-hand side of the resulting inequality dominates the MR(0, τ ;H, V )-
norm of u.)

Notes

Let us consider a non-autonomous form as described in Section 18.1. In the main result
of this chapter, Theorem 18.2, it is proved that the form satisfies maximal regularity in H
if it is symmetric and Lipschitz continuous (up to some perturbation). This result was
proved in [ADLO14; Theorem 4.2] in greater generality and with a different approach.
The special case in which the form a is symmetric and C1 (instead of Lipschitz continuous)
is due to J.-L. Lions [Lio61; Chap. IV, Théorème 6.1]. Lions [Lio61; p. 68] asked whether
maximal regularity in H still holds if the form is merely continuous (in time) or even
measurable. Today this question is settled and we want to tell first what is known if we
restrict ourselves to the initial value u0 = 0.
We say that the problem

u′ +Au = f, u(0) = 0 (18.9)

satisfies maximal regularity in H if for all f ∈ L2(0, τ ;H) there exists a unique solution
u ∈ MR(0, τ ;V,H) of (18.9). It was proved by Ouhabaz and Spina [OuSp10] that (18.9)
has maximal regularity in H if a is Hölder continuous with exponent β > 1/2, i.e.

|a(t, u, v)− a(s, u, v)| ⩽M |t− s|β∥u∥V ∥v∥V

for all s, t ∈ [0, τ ], u, v ∈ V . Fackler [Fac17] showed that the exponent β > 1/2 is optimal
even in the symmetric case. More precisely, he constructed a symmetric non-autonomous
form a satisfying

|a(t, u, v)− a(s, u, v)| ⩽M |t− s|1/2∥u∥V ∥v∥V
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for all s, t ∈ [0, τ ], u, v ∈ V such that (18.9) does not have maximal regularity in H.
We refer to [ADF17] for more information. It remained an open question whether one
has maximal regularity in H for Hölder exponents β ⩽ 1/2 in the special case of a
non-autonomous form associated with a family of differential operators as in Example 18.4.
In the case of complex coefficients a negative answer was given by Bechtel, Mooney and
Veraar [BMV24] in dimension n ⩾ 2. The problem remains open for real coefficients and
in dimension n = 1.
Another question is for which initial values the solution has maximal regularity in H.

This is even a problem in the autonomous case. Let V
d
↪→H, and let a : V × V → K be a

bounded coercive form. Denote by A the operator in H associated with a and by S the
C0-semigroup generated by −A. Let u0 ∈ H. Then u := S(·)u0 is the unique solution
u ∈ MR(0, τ ;V, V ∗) of u′(t)+Au(t) = 0, u(0) = u0 (where A is given by ⟨Au, v⟩ = a(u, v));
see Exercise 17.5. It is known from semigroup theory that u ∈ H1(0, τ ;H) if and only
if u0 ∈ dom(A1/2), the domain of the square root of A (which we do not want to define
here). If a is symmetric, then dom(A1/2) = V (see Proposition 13.23), but in general it
is not easy to determine dom(A1/2). McIntosh gave an example of a form a for which
dom(A1/2) ̸= V (see [Are04; Section 5.5] for references and more details). The following
was a big problem, open for many years.

Kato’s square root problem. Let Ω ⊆ Rn be open, and let a : H1(Ω)×H1(Ω) → K be
the form defined in (11.3). Does it then follow that dom(A1/2) = H1(Ω)?

The problem was finally solved by Auscher et al. [AHL&02], who showed that the answer
is positive for Ω = Rn (see [EHT16] for bounded Lipschitz domains Ω).

Exercises

18.1 The aim of this exercise is to establish continuous dependence of the solution u on
the non-autonomous form b, in Theorem 18.2.
For a bounded non-autonomous form b : [0, τ ] × V × H → K, as in Section 18.1, we

denote by B(t) ∈ L(V,H) the ‘refined’ Lax–Milgram operator defined by

(B(t)x | y)H = b(t, x, y) (x ∈ V, y ∈ H),

for t ∈ [0, τ ]. Note that b is bounded with bound Mb if and only if sup0⩽t⩽τ ∥B(t)∥L(V,H) ⩽
Mb.
(a) Let (Bn) be a sequence of operator functions as above, associated with a sequence of

forms (bn) satisfying supnMbn <∞. For n ∈ N and f ∈ L2(0, τ ;H) let vn be the solution
of

v′n +A1vn +Bnvn = f, vn(0) = 0.

Show that there exists a constant c ⩾ 0, not depending on n and f , such that

∥vn∥MR(0,τ ;V,H) ⩽ c∥f∥L2(0,τ ;H) .

(Hint: Evaluate the constant in (18.3).)
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(b) Let (Bn) be a sequence as in (a), Bn(t) → B(t) strongly in L(V,H) for a.e. t ∈ [0, τ ],
with B as above. Let u0 ∈ V , f ∈ L2(0, τ ;H), and let un, u ∈ MR(0, τ ;V,H) be the
unique solutions of

u′n +A1un +Bnun = f, un(0) = u0 ,

u′ +A1u+Bu = f, u(0) = u0 ,

respectively. Show that un → u in MR(0, τ ;V,H).
Hints: For vn := un − u one obtains, subtracting the two equations,

v′n +A1vn +Bnvn = (B −Bn)u, vn(0) = 0.

Show that (B−Bn)u→ 0 in L2(0, τ ;H), using the dominated convergence theorem. Then
apply part (a).

18.2 Prove Lemma 18.11. (Hint: Imitate the proof of Proposition 18.7.)

18.3 Let H := L2(0, π), and let a : V × V → K be the classical Dirichlet form,

a(u, v) :=

∫ π

0

u′v′ dx

on V as indicated below. Denote by A ∈ L(V, V ∗) the associated Lax–Milgram operator

in the Gelfand triple V
d
↪→H

d
↪→ V ∗. Let u := sin.

(a) Show that Au = u if V = H1
0 (0, π).

(b) Show that Au = u− δ0− δπ if V = H1(0, π), where δ0, δπ denote the Dirac measures
at 0, π. Conclude that u does not belong to the domain of the operator associated with a
on H1(0, π).

18.4 Let Ω ⊆ Rn be a bounded open set. In parts (a) and (b) let a(u, v) =
∫
Ω
∇u ·∇v dx

be the classical Dirichlet form on the indicated space V . Also, denote by A ∈ L(V, V ∗)

the associated Lax–Milgram operator in the Gelfand triple V
d
↪→ L2(Ω)

d
↪→ V ∗.

(a) Let V := H1
0 (Ω), u ∈ H1

0 (Ω). Show that Au ∈ L2(Ω) if and only if ∆u ∈ L2(Ω) (in
the distributional sense), and that then

⟨Au, v⟩ = −
∫

∆uv dx (v ∈ H1
0 (Ω)).

(b) Assume that Ω has C1-boundary, and let V := H1(Ω), u ∈ C2(Ω). Show that

⟨Au, v⟩ = −
∫
Ω

∆uv dx+

∫
∂Ω

v∇u · ν dσ (v ∈ H1(Ω)).

Determine those u ∈ C2(Ω) for which Au ∈ L2(Ω). (Hint: Prove the formula first for
v ∈ C1(Ω); then use Theorem 7.11.)
(c) As in (b), assume that Ω has C1-boundary, and let V := H1(Ω). Let β ∈ L∞(∂Ω),

and define a : V × V → K by

a(u, v) :=

∫
Ω

∇u · ∇v dx+
∫
∂Ω

βuv dσ (u, v ∈ V ).
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(Recall from Section 7.5 that a is bounded and quasi-coercive.)
Let u ∈ C2(Ω). Show that

⟨Au, v⟩ = −
∫
Ω

∆uv dx+

∫
∂Ω

v(βu+∇u · ν) dσ (v ∈ H1(Ω)).

Determine those u ∈ C2(Ω) for which Au ∈ L2(Ω).

18.5 Under the hypotheses of Theorem 18.2, show that there exists a constant c > 0,
not depending on τ , such that

∥u∥MR(0,τ ;V,H) ⩽ ceγ̃τ
(
∥f∥L2(0,τ ;H) + ∥u0∥V

)
for all solutions u ∈ MR(0, τ ;V,H) of (18.1), where γ̃ :=

M2
b

2α
. (The aim of this exercise

is improving the constant γ in (18.3). In particular, if b = 0, then the estimate does not
depend on τ .)
Hints: Let u ∈ MR(0, τ ;V,H) be a solution of (18.1).
1. Using Exercise 17.6 and Remark 18.1(a), show that

∥u∥L2(0,τ ;V ) ⩽ c0e
γ̃τ
(
2
α∥f∥L2(0,τ ;H) +

2√
α
∥u0∥V

)
,

where c0 is an embedding constant of V ↪→ H.
2. Using

∥u′∥2L2(0,τ ;H) = (f − Bu |u′)− (A1u |u′) = (f − Bu |u′)− a1(·, u(·), u′(·))

and (18.7), show that

∥u′∥2L2(0,τ ;H) ⩽ ∥f − Bu∥L2(0,τ ;H)∥u
′∥L2(0,τ ;H) +

1
2

(
M ′

1∥u∥
2
L2(0,τ ;V ) + a1(0, u0, u0)

)
.

From Exercise 17.8(a) conclude that

∥u′∥L2(0,τ ;H) ⩽ ∥f∥L2(0,τ ;H) +
(
Mb +

√
M ′

1

2

)∥∥u∥∥
L2(0,τ ;V )

+

√
M1,0

2

∥∥u0∥∥V
.



Chapter 19

Nonlinear non-autonomous equations

The aim of this chapter is to treat nonlinear non-autonomous Cauchy problems of the
form

u′(t) +A(t)u(t) = Fu(t), u(0) = u0 , (19.1)

where F is a suitable nonlinear mapping between certain function spaces. A sketch of the
method for obtaining a solution is as follows. Given w in the function space on which F
is defined, find a solution u of the linear problem

u′(t) +A(t)u(t) = Fw(t), u(0) = u0 , (19.2)

thus obtaining a (nonlinear) mapping T : w 7→ u. Then a fixed point of T will be a solution
of (19.1).
The linear problem (19.2) has been treated in the previous two chapters, and it will

become clear that the regularity of solutions obtained in Chapter 18 is essential for the
method sketched above. Another essential issue is the existence of a fixed point of the
mapping T . The corresponding fixed point theorems are the subject of Section 19.1; a
compactness property that is needed for their application will be treated in Section 19.2.

19.1 Schauder’s and Schaefer’s fixed point theorems

Fixed point theorems belong to the principal tools for treating nonlinear problems. In the
well-known Banach fixed point theorem the mapping is assumed to be a strict contraction;
then there exists a unique fixed point. In contrast, in Schauder’s fixed point theorem –
which is what we want to apply – the essential hypothesis is compactness, and the fixed
point cannot be expected to be unique.

19.1 Theorem (Schauder). Let X be a Banach space, C ⊆ X a closed convex subset,
and let T be a continuous self-map of C, with the property that T (C) is relatively compact
in X. Then T has a fixed point, i.e. there exists x ∈ C such that Tx = x.

We refer to Appendix I for the proof; see Theorem I.8.
As a first application, we show how one can apply Schauder’s fixed point theorem to a

nonlinear elliptic problem.

19.2 Example (A semilinear elliptic equation). Let Ω ⊆ Rn be a bounded open set,
and let f : K→ K be bounded and continuous. Then there exists u ∈ H1

0 (Ω) such that

−∆u = f ◦ u.
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Proof. Note that for all u ∈ L2(Ω), f ◦ u belongs to L∞(Ω) ⊆ L2(Ω). We show that the
mapping F : L2(Ω) → L2(Ω), given by F (u) := f ◦ u, is continuous. Indeed, let (uk) be a
sequence in L2(Ω), uk → u in L2(Ω). There exists a subsequence (ukm) converging to u
almost everywhere. The dominated convergence theorem implies that f ◦ ukm → f ◦ u in
L2(Ω). Now the standard sub-subsequence argument shows that f ◦ uk → f ◦ u as k → ∞.
Let R := (−∆D)

−1 ∈ L(L2(Ω)) be the inverse of the negative Dirichlet Laplacian; see
Example 6.19. Then T := R ◦ F : L2(Ω) → L2(Ω) is continuous. From Example 6.19 we
know that R is a compact operator. The range of F is a bounded subset of L2(Ω), and
therefore the range of R ◦ F is relatively compact in L2(Ω). Now Schauder’s fixed point
theorem, Theorem 19.1, implies the existence of a fixed point u = Tu = RF (u); then
u ∈ dom(∆D) ⊆ H1

0 (Ω) and −∆u = f ◦ u.

In the previous example, the function f in the nonlinearity is assumed to be bounded,
which is a rather strong hypothesis. The following fixed point theorem, due to Schaefer, will
enable us to treat more general nonlinearities. In this theorem, the relative compactness
of the range of the mapping is no longer required; instead, an a priori estimate is needed,
which is in fact a very natural assumption for problems in partial differential equations.

A (nonlinear) mapping T : X → Y , where X, Y are Banach spaces, is called compact
if T (BX(0, r)) is relatively compact for all r > 0.

19.3 Theorem (Schaefer). Let X be a Banach space, and let T : X → X be continuous
and compact. Assume that the Schaefer set

S :=
{
x ∈ X ; ∃λ ∈ (0, 1) : λTx = x

}
is bounded. Then T has a fixed point.

Proof. Let r > 0 be such that S ⊆ B(0, r), and let P : X → B[0, r] be the projection given
by Px := r x

∥x∥ if ∥x∥ > r, P |B[0,r] = idB[0,r]. Then T ◦ P is continuous and has relatively
compact range; therefore Schauder’s fixed point theorem, Theorem 19.1, implies that
T ◦ P has a fixed point x ∈ X, TPx = x.
We show that x ∈ B[0, r]; then it follows that x = Px is a fixed point of T . If ∥x∥ were

greater than r one would obtain Px = λx = λTPx, with λ = r
∥x∥ ∈ (0, 1). This would

imply that Px ∈ S, contradicting the assumption on r, because ∥Px∥ = r.

As an application of Schaefer’s fixed point theorem we show how the nonlinearity in
Example 19.2 can be generalised.

19.4 Example (A semilinear elliptic equation, revisited). Let Ω ⊆ Rn be a
bounded open set. Denote by λ1 = minσ(−∆D) > 0 the first Dirichlet eigenvalue, and let
0 ⩽ α < λ1, β ⩾ 0. Let f : K→ K be continuous, satisfying

|f(z)| ⩽ α|z|+ β (z ∈ K).

Let g ∈ L2(Ω). Then there exists u ∈ H1
0 (Ω) such that

−∆u = f ◦ u+ g.
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Proof. We show that the mapping F : L2(Ω) → L2(Ω), defined by F (u) := f ◦ u+ g, is
continuous. Let (uk) be a sequence in L2(Ω), uk → u in L2(Ω). There exist a subsequence
(ukm) and a function h ∈ L2(Ω) such that ukm → u a.e. and |ukm | ⩽ h a.e. for all m ∈ N.
Then |f ◦ ukm| ⩽ αh + β a.e. for all m ∈ N, and the dominated convergence theorem
implies that F (ukm) → F (u) in L2(Ω). Now the standard sub-subsequence argument
(Exercise 9.7) yields the asserted convergence F (uk) → F (u) as k → ∞.

As in Example 19.2 we define R := (−∆D)
−1 ∈ L(L2(Ω)) and recall that R is a

compact operator. Then T := R ◦ F : L2(Ω) → L2(Ω) is continuous. In order to show
that T is compact, let r > 0, u ∈ BL2(Ω)(0, r). Since |f ◦ u| ⩽ α|u| + β, it follows that
∥F (u)∥L2(Ω) ⩽ αr + β∥1Ω∥L2(Ω) + ∥g∥L2(Ω). Hence, F (B(0, r)) is bounded in L2(Ω), and

T (B(0, r)) = R
(
F (B(0, r))

)
is relatively compact in L2(Ω).

We have shown that T is a compact continuous mapping. In order to apply Schaefer’s
fixed point theorem, Theorem 19.3, we need to prove that the Schaefer set

S :=
{
v ∈ L2(Ω) ; ∃λ ∈ (0, 1) : λTv = v

}
is bounded. If this is achieved, the theorem implies that there exists u ∈ L2(Ω) with
Tu = u; then u ∈ H1

0 (Ω) and −∆u = f ◦ u+ g.
Let v ∈ S, i.e., v ∈ H1

0 (Ω) and there exists λ ∈ (0, 1) such that

−∆v = λ(f ◦ v + g).

Then ∫
Ω

|∇v|2 dx = λ

∫
Ω

(f ◦ v + g)v dx ⩽
∫
Ω

α|v|2 dx+
∫
Ω

β|v| dx+
∫
Ω

|g||v| dx.

Using the Peter–Paul inequality we obtain∫
Ω

|∇v|2 dx ⩽ α

∫
Ω

|v|2 dx+ ε

∫
Ω

|v|2 dx+ 1

4ε

∫
Ω

(β + |g|)2 dx,

for all ε > 0. By Poincaré’s inequality (see Example 6.19) one has λ1
∫
Ω
|v|2 ⩽

∫
Ω
|∇v|2;

hence it follows that

(λ1 − α− ε)

∫
Ω

|v|2 dx ⩽
1

4ε

∫
Ω

(β + |g|)2 dx.

Choosing 0 < ε < λ1 − α, we conclude that the Schaefer set is bounded, and the proof is
complete.

19.5 Remark. The assertion of Example 19.4 no longer holds for α = λ1. Indeed, choose
f(z) := λ1z and g := φ1, where φ1 ∈ H1

0 (Ω), −∆φ1 = λ1φ1, ∥φ1∥L2(Ω) = 1. Suppose that

u ∈ H1
0 (Ω) satisfies −∆u = λ1u+φ1. Then

∫
∇u ·∇v = λ1

∫
uv+

∫
φ1v for all v ∈ H1

0 (Ω).
In particular, for v = φ1 one obtains

λ1

∫
uφ1 dx =

∫
∇u · ∇φ1 dx = λ1

∫
uφ1 dx+

∫
|φ1|2 dx,

which is absurd. △
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19.2 Interlude: Compact embeddings of mixed spaces

Let τ ∈ (0,∞). We have seen that the embedding H1(0, τ) ↪→ L2(0, τ) is compact;
see Theorem 7.9. Now, if H is an infinite dimensional separable Hilbert space, then
the embedding H1(0, τ ;H) ↪→ L2(0, τ ;H) is no longer compact. (Indeed, let (en) be
an orthonormal sequence in H, and consider the functions un(t) := en (0 ⩽ t ⩽ τ)
in H1(0, τ ;H). The sequence (un)n∈N has no convergent subsequence in L2(0, τ ;H).)
However, things change if we consider the vector-valued spaces taking values in two
different Hilbert spaces.

19.6 Theorem (Aubin–Lions). Let V, H be separable Hilbert spaces, with compact
embedding V ↪→ H. Then the embedding

MR(0, τ ;V,H) ↪→ L2(0, τ ;H)

is compact.

Proof. As MR(0, τ ;V,H) is a Hilbert space, hence reflexive, it is sufficient to show that
every weakly convergent sequence (un) in MR(0, τ ;V,H) is convergent in L2(0, τ ;H); see
Exercise 6.6(b). Without loss of generality un → 0 weakly in MR(0, τ ;V,H), i.e., un → 0
weakly in L2(0, τ ;V ) and u′n → 0 weakly in L2(0, τ ;H), and also without loss of generality
∥u′n∥L2(0,τ ;H) ⩽ 1 for all n ∈ N. We have to prove that un → 0 in L2(0, τ ;H).
First we fix t ∈ (0, τ) and show that un(t) → 0 in H. Let ε > 0. For the following

computations recall Proposition 17.6(b) (as well as Remark 17.7, for the product rule).
For 0 < s0 < τ − t we have

un(t) =
1
s0

∫ s0

0

d

ds

(
(s− s0)un(t+ s)

)
ds

=
1
s0

∫ s0

0

un(t+ s) ds+
1
s0

∫ s0

0

(s− s0)u
′
n(t+ s) ds,

where the integrals should be taken in H. Applying the Cauchy–Schwarz inequality we
find that the H-norm of the second term in the last expression is ⩽

√
s0 ; we choose s0 ⩽ ε2

to make this norm ⩽ ε. Note that the integral in the first term can also be considered
as an integral in V , by Exercise 17.3(b) (applied with the embedding V ↪→ H as the
operator A ∈ L(V,H)). Moreover the mapping L2(0, τ ;V ) ∋ u 7→ 1

s0

∫ s0
0
u(t+ s) ds ∈ V

is linear and continuous, hence continuous with respect to the weak topologies. It follows
that the sequence

(
1
s0

∫ s0
0
un(t + s) ds

)
n converges weakly to 0 in V , hence in norm

to 0 in H, by the compactness of the embedding V ↪→ H. Thus we have shown that
lim supn→∞ ∥un(t)∥H ⩽ ε.
From Proposition 17.6(c) we recall that H1(0, τ ;H) is continuously embedded into

C([0, τ ];H); hence there exists a constant c ⩾ 0 such that ∥un(t)∥H ⩽ c for all t ∈ (0, τ),
n ∈ N. Now the dominated convergence theorem implies that un → 0 in L2(0, τ ;H)
as n→ ∞.

The compactness property in Theorem 19.6 can be reinforced to compactness of the
embedding MR(0, τ ;V,H) ↪→ C([0, τ ];H); see Exercise 19.3.
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19.3 More on maximal regularity

In this section we return to the non-autonomous problem (18.1) and prove a further
regularity property of the solutions obtained in Theorem 18.2. As in Section 18.1, let V, H

be separable Hilbert spaces, V
d
↪→H. Let τ ∈ (0,∞). We assume that a : [0, τ ]×V×V → K

is a Lipschitz continuous symmetric bounded coercive non-autonomous form. The bound
of a will be denoted by M , the Lipschitz bound by M ′ and the coercivity constant by α.
(The present hypotheses on the form a correspond to the hypotheses on a1 in Section 18.1;
the form b from that section will not be used here.)
For the discussion below as well as for later use we define the space

MRa(0, τ ;V,H) := {u ∈ MR(0, τ ;V,H) ; Au ∈ L2(0, τ ;H)},
with norm

∥u∥MRa(0,τ ;V,H) :=
(
∥u∥2MR(0,τ ;V,H) + ∥Au∥2L2(0,τ ;H)

)1/2
.

We point out that a solution u ∈ MR(0, τ ;V,H) of (18.1) automatically lies in
MRa(0, τ ;V,H); using Au = f − u′ and the estimate (18.3) one obtains

∥u∥MRa(0,τ ;V,H) ⩽ ∥u∥MR(0,τ ;V,H) + ∥Au∥L2(0,τ ;H) ⩽ 2∥u∥MR(0,τ ;V,H) + ∥f∥L2(0,τ ;H)

⩽ 5eγτ
(
∥f∥L2(0,τ ;H) +M

1/2
0 ∥u0∥V

)
,

(19.3)

where γ = 1+M ′

α
, and M0 is a bound for the form a(0, ·, ·).

19.7 Theorem. With the previous notation one has

MRa(0, τ ;V,H) ↪→ C([0, τ ];V ).

More explicitly, for each u ∈ MRa(0, τ ;V,H) one has u ∈ C([0, τ ];V ) and

∥u∥C([0,τ ];V ) ⩽ c0∥u∥MRa(0,τ ;V,H) , (19.4)

with a constant c0 ⩾ 0 depending only on τ, α,M,M ′. One also has

∥u∥C([0,τ ];V ) ⩽ c1
(
∥u∥MRa(0,τ ;V,H) + ∥u(0)∥V

)
, (19.5)

with a constant c1 ⩾ 0 depending only on α,M,M ′, but not on τ .

The proof requires a few preliminary results. The first of these deals with forms without
t-dependence.

19.8 Proposition. Let a be a bounded coercive form on V , Re a(u) ⩾ α∥u∥2V for all
u ∈ V , where α > 0. Let A be the associated Lax–Milgram operator, considered as an
operator in V ∗ with domain dom(A) = V .

(a) Then ∥(I +A)−1∥L(V ∗,H) ⩽ 1/(2
√
α) and ∥(I +A)−1∥L(H,V ) ⩽ 1/(2

√
α).

(b) Assume additionally that a is symmetric, and let M ⩾ 0 be a bound of a (i.e.
a(u) ⩽M∥u∥2V for all u ∈ V). Then ∥(I +A)−1∥L(V ) ⩽

√
M/α.
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Proof. (a) For u ∈ V we estimate

2∥u∥H
√
α∥u∥V ⩽ ∥u∥2H + α∥u∥2V ⩽ Re⟨(I +A)u, u⟩ ⩽ ∥(I +A)u∥V ∗∥u∥V .

This implies ∥(I +A)−1η∥H ⩽ 1/(2
√
α)∥η∥V ∗ for all η ∈ V ∗.

Similarly, for u ∈ dom(A) one has

2
√
α∥u∥V ∥u∥H ⩽ ∥u∥2H + α∥u∥2V ⩽ Re((I +A)u |u)H ⩽ ∥(I +A)u∥H∥u∥H ,

and it follows that ∥(I +A)−1x∥V ⩽ 1/(2
√
α)∥x∥H for all x ∈ H.

(b) As a is symmetric, the associated operator A in H is an accretive self-adjoint
operator. Let u ∈ V , and put v := (I + A)−1u. Then Av = u− v ∈ V ,

a(u) = a(v + Av) = a(v) + 2a(v,Av) + a(Av)

= a(v) + 2∥Av∥2H + a(Av) ⩾ a(v) = a((I + A)−1u),

hence
α∥(I + A)−1u∥2V ⩽ a((I + A)−1u) ⩽ a(u) ⩽M∥u∥2V .

Since (I +A)−1|V = (I + A)−1|V we obtain the assertion.

The following proposition deals with approximation of the identity on MRa(0, τ ;V,H)
and of the embedding MRa(0, τ ;V,H) ↪→ L2(0, τ ;V ); it is the final technical tool for the
proof of Theorem 19.7, and we will use it to prove the compactness property stated in
Proposition 19.10 below.

19.9 Proposition. Under the hypotheses as in Theorem 19.7, for n ∈ N we define

Dn(t) := (I + 1
nA(t))−1 ∈ L(V ∗, V ) (t ∈ [0, τ ]),

Dnu(t) := Dn(t)u(t) (t ∈ (0, τ), H1(0, τ ;V ∗))

(where we consider A(t) as an unbounded operator in V ∗, with dom(A(t)) = V). Then
(a) Dn ∈ L(H1(0, τ ;V ∗), H1(0, τ ;V )), and Dn ∈ L(MRa(0, τ ;V,H));
(b) Dn → I (n→ ∞) strongly in L(MRa(0, τ ;V,H));
(c) Dn → j in L(MRa(0, τ ;V,H), L2(0, τ ;V )) as n→ ∞, where j denotes the embedding

MRa(0, τ ;V,H) ↪→ L2(0, τ ;V ).

Proof. (a) Note that I + 1
nA(t) is the Lax–Milgram operator associated with the coercive

form 1
na(t, u, v) + (u | v)H on V . Thus the Lax–Milgram lemma, Theorem 5.4, implies

that ∥Dn(t)∥L(V ∗,V ) ⩽ n/α (t ∈ [0, τ ]). For all s, t ∈ [0, τ ] we have

Dn(t)−Dn(s) =
1
nDn(t)(A(s)−A(t))Dn(s), (19.6)

which shows that Dn : [0, τ ] → L(V ∗, V ) is Lipschitz continuous with Lipschitz con-
stant n

α2M
′ (where M ′ is the Lipschitz constant of a). By Proposition 18.12 it follows

that Dn ∈ L(H1(0, τ ;V ∗), H1(0, τ ;V )).
Using the continuous embeddings MR(0, τ ;V,H) ↪→ H1(0, τ ;V ∗) and H1(0, τ ;V ) ↪→

MR(0, τ ;V,H) we conclude that Dn ∈ L(MR(0, τ ;V,H)). Now the accretivity of 1
na(t)

implies that
∥Dn(t)∥L(H) ⩽ 1 (t ∈ [0, τ ], n ∈ N). (19.7)
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Since ADn = A(I + 1
nA)−1 = (I + 1

nA)−1A = DnA in L(V, V ∗), we obtain

∥ADnu∥L2(0,τ ;H) = ∥DnAu∥L2(0,τ ;H) ⩽ ∥Au∥L2(0,τ ;H)

for all u ∈ MRa(0, τ ;V,H). Combining this estimate with the property obtained before
we conclude that Dn ∈ L(MRa(0, τ ;V,H)).

(b) Let u ∈ MRa(0, τ ;V,H), and put un := Dnu (n ∈ N). The fundamental observation
for the asserted convergence is that Dn(t) → I (n→ ∞) strongly in L(H) for all t ∈ [0, τ ],
by Lemma 2.10. Using (19.7) and the dominated convergence theorem, we conclude that
un → u and Aun = ADnu = DnAu→ Au in L2(0, τ ;H) as n→ ∞.
The convergence Aun → Au in L2(0, τ ;H) implies Aun → Au in L2(0, τ ;V

∗). Because
of the accretivity of a we have ∥A(t)−1∥L(V ∗,V ) ⩽ 1/α for all t ∈ [0, τ ]; hence un =
A−1Aun → A−1Au = u in L2(0, τ ;V ).
It remains to prove the convergence of the derivatives ′un = (Dnu)

′ to u′ in L2(0, τ ;H).
The Lipschitz continuity of Dn : [0, τ ] → L(V ∗, V ), shown in part (a), implies that Dn

is Lipschitz continuous considered as a function from [0, τ ] to L(H). Hence by Proposi-
tions 18.10(b) and 18.12, ′Dn(·) exists in L(H) and ′un = ′Dnu+Dnu

′. As we know from
the previous considerations that Dnu

′ → u′ (n→ ∞) in L2(0, τ ;H), we still have to show
that ′Dnu→ 0 (n→ ∞) in L2(0, τ ;H).
First, Proposition 19.8(a) implies that

∥Dn(t)∥L(V ∗,H) ⩽
√
n/(4α), ∥Dn(t)∥L(H,V ) ⩽

√
n/(4α) (t ∈ [0, τ ], n ∈ N). (19.8)

From these inequalities and (19.6) we conclude that the functions Dn : [0, τ ] → L(H) are
Lipschitz continuous, with a Lipschitz constant M ′/(4α) independent of n ∈ N. Thus by
Proposition 18.10(b) the derivatives of Dn : [0, τ ] → L(H) can in fact be chosen such that

∥ ′Dn(t)∥L(H) ⩽M ′/(4α) (t ∈ (0, τ), n ∈ N).

Interpreting ′Dn as the ‘multiplication operator’ ′Dn : L2(0, τ ;H) → L2(0, τ ;H), v 7→
′Dn(·)v(·) we conclude that ( ′Dn) is a bounded sequence in L(L2(0, τ ;H)).
From Proposition 19.8(b) we obtain the estimate ∥Dn(t)∥L(V ) ⩽

√
M/α for all t ∈ [0, τ ],

n ∈ N. Combining this estimate with (19.6) and (19.8) we conclude that, for x ∈ V , the
function Dn(·)x : (0, τ) → H is Lipschitz continuous with Lipschitz constant c∥x∥V /

√
n,

where c :=
√
MM ′/(2α). Hence, Proposition 18.10(a) implies that

∥(Dn(·)x)′∥L∞(0,τ ;H) ⩽ c∥x∥V /
√
n→ 0 (n→ ∞).

It follows that ′Dn(f(·)x) = f(Dn(·)x)′ → 0 in L2(0, τ ;H) for all x ∈ V , f ∈ L2(0, τ). Since
lin{f(·)x ; x ∈ V, f ∈ L2(0, τ)} is dense in L2(0, τ ;H) and the sequence ( ′Dn) is bounded
in L(L2(0, τ ;H)), we conclude that ′Dn → 0 strongly in L(L2(0, τ ;H)); in particular,

′Dnu→ 0 in L2(0, τ ;H).
(c) It is easy to see that j −Dn = 1

nDnA. Thus from ∥A∥L(MRa(0,τ ;V,H),L2(0,τ ;H)) ⩽ 1 and
the second estimate in (19.8) we obtain

∥j −Dn∥L(MRa(0,τ ;V,H),L2(0,τ ;V )) ⩽
1
n∥Dn∥L(L2(0,τ ;H),L2(0,τ ;V )) ⩽

1
2
√
nα

→ 0 (n→ ∞).
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Proof of Theorem 19.7. Let u ∈ MRa(0, τ ;V,H).
(i) For the proof of the asserted inequalities we first assume in addition that u ∈

H1(0, τ ;V ); then u ∈ C([0, τ ];V ) by Proposition 17.6(b). By Corollary 18.13 and the
symmetry of a we obtain a(·, u(·), u(·)) ∈ H1(0, τ) ⊆ W 1

1 (0, τ) and

a(·, u(·), u(·))′ = a′(·, u(·), u(·)) + 2Re(Au(·) |u′(·))H .

Applying Proposition 17.8 we obtain

α∥u∥2C([0,τ ];V ) ⩽ ∥a(·, u(·), u(·))∥C[0,τ ] (19.9)

⩽
1
τ
∥a(·, u(·), u(·))∥L1(0,τ)

+ ∥a(·, u(·), u(·))′∥L1(0,τ)

⩽
1
τ

∫ τ

0

M∥u(t)∥2V dt+

∫ τ

0

(
|a′(t, u(t), u(t))|+ 2∥Au(t)∥H∥u

′(t)∥H
)
dt

⩽
(
M
τ

+M ′
)
∥u∥2L2(0,τ ;V ) + ∥Au∥2L2(0,τ ;H) + ∥u′∥2L2(0,τ ;H) .

In view of the ‘fundamental theorem of calculus formula’ (17.2), the estimate (19.9) can
also be continued as

α∥u∥2C([0,τ ];V ) ⩽ a(0, u(0), u(0)) +

∫ τ

0

∣∣a(·, u(·), u(·))′(t)∣∣ dt
⩽M∥u(0)∥2V +M ′∥u∥2L2(0,τ ;V ) + ∥Au∥2L2(0,τ ;H) + ∥u′∥2L2(0,τ ;H) .

The above two estimates for ∥u∥C([0,τ ];V ) establish (19.4) and (19.5) under the additional
assumption u ∈ H1(0, τ ;H). The constants in the estimates have the dependencies stated
in the theorem.
(ii) For general u we use the mappings Dn defined in Proposition 19.9 and put un := Dnu

(n ∈ N). Then Proposition 19.9(a) shows that (un) is a sequence in MRa(0, τ ;V,H) ∩
H1(0, τ ;V ), and un → u in MRa(0, τ ;V,H) by Proposition 19.9(b). The inequality (19.4)
implies that (un) is a Cauchy sequence in C([0, τ ];V ), and since un → u in L2(0, τ ;V ), it
follows that u has a representative in C([0, τ ];V ) satisfying (19.4). Once the convergence
un → u in C([0, τ ];V ) is established, it is clear that (19.5) also carries over from un
to u.

The following compactness property will be needed below in an application of Schaefer’s
fixed point theorem.

19.10 Proposition. Suppose that the embedding V ↪→ H is compact. Then the space
MRa(0, τ ;V,H) is compactly embedded into L2(0, τ ;V ).

Proof. Let n ∈ N, and let Dn be defined as in Proposition 19.9. We show that
Dn : MRa(0, τ ;V,H) → L2(0, τ ;V ) is compact. The Aubin–Lions lemma, Theorem 19.6,
says that the embedding MR(0, τ ;V,H) ↪→ L2(0, τ ;H) is compact, and the second esti-
mate in (19.8) implies that Dn : L2(0, τ ;H) → L2(0, τ ;V ) is bounded. This shows, more
strongly, that Dn : MR(0, τ ;V,H) → L2(0, τ ;V ) is compact.
Then Proposition 19.9(c) implies that the embedding MRa(0, τ ;H,V ) ↪→ L2(0, τ ;V ) is

approximated in norm by compact mappings, hence is compact.
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19.4 An abstract semilinear problem

Let V and H be Hilbert spaces, with compact embedding V
d
↪→H. Let τ ∈ (0,∞), and

let a : [0, τ ]× V × V → K be a Lipschitz continuous symmetric bounded non-autonomous
form which is quasi-coercive, i.e., there exist ω ∈ R, α > 0 such that

a(t, u, u) + ω∥u∥2H ⩾ α∥u∥2V (t ∈ [0, τ ], u ∈ V ).

Denote by A(t) : V → V ∗ the Lax–Milgram operator associated with a(t, ·, ·).
Next we introduce the nonlinear term. Let F : L2(0, τ ;V ) → L2(0, τ ;H) be continuous,

and suppose that there exists a constant cF ⩾ 0 such that

∥Fw∥L2(0,t;H) ⩽ cF (1 + ∥w∥L2(0,t;V )) (t ∈ (0, τ ], w ∈ L2(0, τ ;V )). (19.10)

The inequality in (19.10) expresses that the values of Fw on the interval (0, t) should not
depend too much on the ‘future’ values of w (on the interval (t, τ)). In Section 19.6 we
will describe concrete examples of mappings F with these properties.

Given these hypotheses, we formulate the main result of the present chapter, concerning
the existence of solutions of non-autonomous semilinear parabolic equations.

19.11 Theorem. Let u0 ∈ V . Then there exists u ∈ MR(0, τ ;V,H) such that u(0) = u0
and

u′(t) +A(t)u(t) = Fu(t) (19.11)

for a.e. t ∈ [0, τ ].

Note that there is no statement concerning uniqueness; we refer to Exercise 19.5 for an
example with non-uniqueness.

Proof of Theorem 19.11. By the quasi-coercivity of a there exists ω ⩾ 0 such that the
form aω defined by

aω(t, x, y) := a(t, x, y) + ω(x | y)H (x, y ∈ V, t ∈ [0, τ ])

is coercive. Note that a function u ∈ MR(0, τ ;V,H) satisfies the properties stated in
Theorem 19.11 if and only if u is a solution of

u′(t) + (A(t) + ω)u(t) = Fωu(t), u(0) = u0 ,

where
Fωw := Fw + ωw (w ∈ L2(0, τ ;V )).

This reduces the proof to the case in which a is coercive.
Applying Theorem 18.2, we obtain for each w ∈ L2(0, τ ;V ) a unique solution u =: Tw ∈

MR(0, τ ;V,H) of
u′ +Au = Fw, u(0) = u0 .

We will show that T : L2(0, τ ;V ) → L2(0, τ ;V ) satisfies the assumptions of Schaefer’s
fixed point theorem.
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Since F is continuous, Theorem 18.2 implies that T is continuous from L2(0, τ ;V ) to
MR(0, τ ;V,H) and hence to L2(0, τ ;V ). Combining (19.3) and (19.10) we estimate

∥Tw∥MRa(0,t;V,H) ⩽ 5eγt
(
∥Fw∥L2(0,t;H) +M

1/2
0 ∥u0∥V

)
⩽ 5eγτ

(
cF (∥w∥L2(0,t;V ) + 1) +M

1/2
0 ∥u0∥V

) (19.12)

for all w ∈ L2(0, τ ;V ), 0 < t ⩽ τ . It follows that T maps bounded sets in L2(0, τ ;V ) to
bounded sets in MRa(0, τ ;V,H). Since the embedding MRa(0, τ ;V,H) ↪→ L2(0, τ ;V ) is
compact, by Proposition 19.10, we conclude that T : L2(0, τ ;V ) → L2(0, τ ;V ) is compact.
We want to show that the Schaefer set

S = {w ∈ L2(0, τ ;V ) ; ∃λ ∈ (0, 1) : λTw = w}

is bounded in L2(0, τ ;V ). Let w ∈ S, so w = λTw with λ ∈ (0, 1). Then (19.5) yields

∥w∥C([0,t];V ) = λ∥Tw∥C([0,t];V ) ⩽ c1
(
∥Tw∥MRa(0,t;V,H) + ∥Tw(0)∥V

)
for all t ∈ (0, τ ]. Since Tw(0) = u0, inequality (19.12) implies that there exists a constant
c > 0 (not depending on w) such that

∥w∥C([0,t];V ) ⩽ c∥w∥L2(0,t;V ) + c

and hence

∥w(t)∥2V ⩽ 2c2∥w∥2L2(0,t;V ) + 2c2,

for all t ∈ (0, τ ]. Then Gronwall’s inequality, proved below, shows that ∥w(t)∥2V ⩽ 2c2e2c
2t

for all t ∈ [0, τ ], and the boundedness of S in L2(0, τ ;V ) follows.
Now we can apply Schaefer’s fixed point theorem, Theorem 19.3, and find u ∈ L2(0, τ ;V )

such that Tu = u. By the definition of T , any function u with this property is a solution
as asserted in the theorem.

In the proof above we have used Gronwall’s inequality in its simplest form, as follows.

19.12 Lemma (Gronwall’s inequality). Let f : [0, τ ] → [0,∞) be continuous, and
assume that

f(t) ⩽ α + β

∫ t

0

f(s) ds (0 < t < τ),

with α, β ⩾ 0. Then f(t) ⩽ αeβt for all t ∈ [0, τ ].

Proof. Let g(t) := α + β
∫ t

0
f(s) ds for all t ∈ [0, τ ]. Then g(0) = α and

d

dt

(
e−βtg(t)

)
= e−βt(g′(t)− βg(t)) = βe−βt(f(t)− g(t)) ⩽ 0

for all t ∈ (0, τ). This shows that e−βtg(t) ⩽ α for all t ∈ [0, τ ], and the assertion
follows.
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19.13 Remark. Recall that in the general context introduced in Section 18.1, the
operator A consisted of two terms, the second coming from a non-autonomous form b
that satisfies (18.2). Here we explain how such a term can be included in Theorem 19.11
as well.
Indeed, let b be as in Section 18.1. Then, defining B(t) ∈ L(V,H) (0 < t < τ) as in

Remark 18.3(a), one obtains a mapping B ∈ L(L2(0, τ ;V ), L2(0, τ ;H)) satisfying (19.10)
with cB =Mb. The equation

u′(t) +
(
A(t) + B(t)

)
u(t) = Fu(t),

where A and F are as in Theorem 19.11, can be rewritten as

u′(t) +A(t)u(t) = Fu(t)− B(t)u(t),

and the new nonlinear term, given by Fw − Bw (w ∈ L2(0, τ ;V )), satisfies (19.10) with
constant cF +Mb. △

19.5 Interlude: L2((0, τ ) × Ω) = L2(0, τ ;L2(Ω))

With the following proposition we prepare the application of Theorem 19.11 to situations
in which H = L2(Ω) and F is a Nemytskii type operator.

19.14 Proposition. Let τ > 0, and let Ω ⊆ Rn be open. Then for each w ∈ L2((0, τ)×Ω)
there exists a unique w̃ ∈ L2(0, τ ;L2(Ω)) such that w(t, ·) = w̃(t) in L2(Ω) for a.e. t ∈ (0, τ).
The mapping w 7→ w̃ thus defined is an isometric isomorphism.

The property that w(t, ·) = w̃(t) for a.e. t ∈ (0, τ) should be read with the understanding
that it holds for all representatives of the elements w and w̃.

Proof of Proposition 19.14. We will work with the version of L2-spaces in which all repre-
sentatives of the elements are Borel measurable. We consider w as a representative of the
given element in L2((0, τ)× Ω); then by Fubini’s theorem

∥w∥2L2((0,τ)×Ω) =

∫ τ

0

∫
Ω

|w(t, x)|2 dx dt.

Thus, the set N :=
{
t ∈ (0, τ) ;

∫
Ω
|w(t, x)|2 dx = ∞

}
is a Borel null set. Put

w1(t, ·) :=
{
w(t, ·) if t ∈ (0, τ) \N,
0 if t ∈ N.

Then w1 = w a.e. on (0, τ) × Ω, and w1(t, ·) ∈ L2(Ω) for all t ∈ (0, τ). The function
(0, τ) ∋ t 7→ w1(t, ·) ∈ L2(Ω) is measurable since for g ∈ L2(Ω), the function (0, τ)× Ω ∋
(t, x) 7→ w1(t, x)g(x) is integrable (as product of the L2-functions w1 and (t, x) 7→ g(x)),
and thus

t 7→
∫
Ω

w1(t, x)g(x) dx = (w1(t, ·) | g)
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is measurable. Hence, w̃ := [t 7→ w1(t, ·)] ∈ L2(0, τ ;L2(Ω)), and ∥w̃∥L2(0,τ ;L2(Ω)) =
∥w1∥L2((0,τ)×Ω). For the uniqueness of w̃ it suffices to note that, if w2 is another rep-
resentative of w, then ∫ τ

0

∫
Ω

|w2(t, x)− w(t, x)|2 dx dt = 0,

hence w2(t, ·) = w(t, ·) = w1(t, ·) for a.e. t ∈ (0, τ).
The above considerations show that

J : L2((0, τ)× Ω) → L2(0, τ ;L2(Ω)), w 7→ w̃

is an isometric linear mapping. It remains to show that J has dense range. For φ ∈
L2(0, τ) and g ∈ L2(Ω) one easily sees that w := [(t, x) 7→ φ(t)g(x)] ∈ L2((0, τ)× Ω) and
Jw = φ(·)g. Thus, ran(J) contains the set L2(0, τ) ⊗ L2(Ω), which by Lemma 17.4 is
dense in L2(0, τ ;L2(Ω)).

19.6 Non-autonomous semilinear parabolic equations

Let Ω ⊆ Rn be a bounded open set, let H := L2(Ω), and let V be a closed subspace of
H1(Ω) containing H1

0 (Ω). We suppose that the embedding V ↪→ H is compact. This
is the case if V = H1

0 (Ω), by Theorem 6.21, but it also holds under the previous more
general hypothesis if Ω has continuous boundary, by Theorem 7.9. Let τ ∈ (0,∞), and let
the non-autonomous form a and the notation be as in Section 19.4. In particular, we ask
the reader to think of a non-autononous form a as in Example 18.4; this will justify the
heading of the present section.
Let f : (0, τ)×Ω×K×Kn → K be a Borel measurable function with the property that

f(t, x, ·, ·) : K×Kn → K is continuous for all t ∈ (0, τ), x ∈ Ω. Assume that there exist
L ⩾ 0 and 0 ⩽ g ∈ L2(0, τ ;L2(Ω)) such that

|f(t, x, q, p)| ⩽ g(t)(x) + L(|q|+ |p|) (t ∈ (0, τ), x ∈ Ω, q ∈ K, p ∈ Kn). (19.13)

Given these hypotheses, we can formulate the following consequence of Theorem 19.11;
the proof will consist in showing that the right-hand side of (19.14) corresponds to a
mapping F as in Theorem 19.11.

19.15 Theorem. Let u0 ∈ V . Then there exists u ∈ MR(0, τ ;V,H) such that u(0) = u0
and

u′(t) +A(t)u(t) = f(t, ·, u(t, ·),∇u(t, ·)) (19.14)

for a.e. t ∈ [0, τ ].

Note that, as in Theorem 19.11, there is no statement concerning uniqueness; the
example of Exercise 19.5 applies also for the kind of equation treated here. The right-hand
side of (19.14) is quite general; in particular it can include nonlinear first order terms.
Before we prove Theorem 19.15, we present an application, which is a generalisation of
Example 18.5, with nonlinear drift terms.



269

19.16 Example. Let b : [0, τ ]× Ω×K→ Kn be a bounded Borel measurable function,
b(t, x, ·) continuous for all t ∈ [0, τ ], x ∈ Ω. Then b(t, ·, v(·)) ∈ L∞(Ω;Kn) for all v ∈ L2(Ω),
t ∈ [0, τ ].
Let g ∈ L2(0, τ ;L2(Ω)) and u0 ∈ V . Applying Theorem 19.15 with f(t, x, q, p) :=

g(t)(x)− b(t, x, q) · p we obtain: there exists u ∈ MR(0, τ ;V, L2(Ω)) such that u(0) = u0
and

u′(t) +A(t)u(t) + b(t, ·, u(t, ·)) · ∇u(t, ·) = g(t) (19.15)

for a.e. t ∈ [0, τ ].
We mention that for this kind of nonlinearity the solution can already be obtained from

Schauder’s fixed point theorem (whereas in the proof of Theorem 19.11 we have applied
Schaefer’s fixed point theorem). The method is to map each function w ∈ L2(0, τ ;L2(Ω))
to the solution u =: Tw ∈ MR(0, τ ;V, L2(Ω)) of

u′(t) +A(t)u(t) + b(t, ·, w(t, ·)) · ∇u(t, ·) = g(t), u(0) = u0 ,

which exists by Theorem 18.2. Then Exercise 18.1 can be used to show that
T : L2(0, τ ;L2(Ω)) → MR(0, τ ;V, L2(Ω)) is continuous. (In fact, as L2(0, τ ;L2(Ω)) is
a metric space, it is sufficient to prove sequential continuity.) Moreover, it follows
from the estimate (18.3) that the range of T is a bounded subset of MR(0, τ ;V, L2(Ω));
hence by the Aubin–Lions lemma, Theorem 19.6, the range of T is relatively compact
in L2(0, τ ;H). Applying Schauder’s fixed point theorem, Theorem 19.3, one obtains
u ∈ MR(0, τ ;V, L2(Ω)) ⊆ L2(0, τ ;L2(Ω)) satisfying Tu = u, i.e. u solves (19.15). In
Exercise 19.2 the reader is asked to provide the details of these arguments. △

The next lemma is needed for the application of Theorem 19.11 in the proof of Theo-
rem 19.15.

19.17 Lemma. The mapping F : L2(0, τ ;V ) → L2(0, τ ;H) given by

Fw(t) := f(t, ·, w(t, ·),∇w(t, ·))
(
w ∈ L2(0, τ ;V ), t ∈ (0, τ)

)
(19.16)

is defined and continuous, and satisfies (19.10) with cF := 2L+ ∥g∥L2(0,τ ;H).

Proof. Using Proposition 19.14 and the Borel measurability of f one easily shows that
Fw ∈ L2(0, τ ;H) for all w ∈ L2(0, τ ;V ). Moreover the assumed estimate (19.13) implies

∥Fw∥L2(0,t;H) ⩽ ∥g∥L2(0,τ ;H) + 2L∥w∥L2(0,t;V ) (t ∈ (0, τ), w ∈ L2(0, τ ;V )). (19.17)

This proves the last assertion of the lemma.
Let wk → w in L2(0, τ ;V ). Then wk → w and ∂jwk → ∂jw (j = 1, . . . , n) in L2(0, τ ;H).

Using Proposition 19.14 again, we find a subsequence (wkm) and a function h ∈ L2((0, τ)×
Ω) such that wkm → w, ∇wkm → ∇w a.e. on (0, τ)×Ω and |wkm| ⩽ h, |∇wkm| ⩽ h a.e. for
all m ∈ N. Then vm(t, x) := f(t, x, wkm(t, x),∇wkm(t, x)) → f(t, x, w(t, x),∇w(t, x)) for
a.e. (t, x) ∈ (0, τ)× Ω, and |vm| ⩽ g + 2Lh a.e. Now the dominated convergence theorem
together with Proposition 19.14 and the standard sub-subsequence argument yields the
asserted continuity of F .
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Proof of Theorem 19.15. From Lemma 19.17 we know that the mapping F defined in
(19.16) satisfies the assumption needed in Theorem 19.11, and with this choice of F ,
equation (19.14) becomes a particular version of (19.11).
Hence Theorem 19.15 follows immediately from Theorem 19.11.

Finally we give an example of a mapping F exhibiting actions that are ‘non-local’ in
time.

19.18 Example. Let 0 < t0 < τ , and define

Fw(t) := (|w| ∧ 1)(t+ t0) + |∇w|(t− t0) (0 < t < τ, w ∈ L2(0, τ ;V )), (19.18)

where we suppose w to be extended to R by zero on R \ (0, τ).
In Exercise 19.4 the reader is asked to show that F is continuous and satisfies (19.10).

The first term in this example takes values of w ‘from the future’ – appropriately damped
– whereas the second is a delay term. △

Notes

Mathematicians working in partial differential equations believe in the following principle:
if there is an a priori estimate for solutions, then a solution should exist. Schaefer’s fixed
point theorem gives us at hand a precise framework in which this statement is correct.
This fixed point theorem is part of the Leray–Schauder theory (which started by a paper
of Leray and Schauder [LeSc34] and is presented in many textbooks, e.g., in [Sch69],
[Ber77], [Dei85]). It was Schaefer [Sch55] who found the short proof we present here and
which works even in the framework of locally convex spaces. See also [Eva10; Sect. 9.2.2,
Theorem 4] for Schaefer’s fixed point theorem.

The idea of using maximal regularity in order to gain compactness via the Aubin–Lions
lemma, as we present it in Section 19.4, stems from [ArCh10]. (In that paper, the locally
convex version of Schaefer’s fixed point theorem allows the authors to treat unbounded
domains.) What is new in our approach is that the linear part is chosen non-autonomous
throughout. Moreover, we first treat the problem in a more abstract context with a rather
general class of nonlinear terms, which includes delay terms. An important tool in our
proof is the embedding result Theorem 19.7, which is based on the approximation obtained
in Proposition 19.9. For related results in a more general context we refer to [ADLO14;
Sections 3 and 4].

Exercises

19.1 Show that under the hypotheses of Theorem 19.3 the operator λT has a fixed point,
for all λ ∈ (0, 1); in particular, the Schaefer set of T is non-empty. (Hint: Look at the
Schaefer set of λT .)
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19.2 Carry out the following details of the procedure sketched in Example 19.16.
(a) Show that for all w ∈ L2(0, τ ;L2(Ω)) an operator function Bw : (0, τ) → L(V, L2(Ω))

is defined by
Bwv(t) := b(t, ·, w(t, ·)) · ∇v(·) (v ∈ V, t ∈ [0, τ ]).

(b) Let (wj) be a sequence in L2(0, τ ;L2(Ω)), wj → w in L2(0, τ ;L2(Ω)). Show that
there exists a subsequence (wjk) such that Bwjk

(t) → Bw(t) strongly in L(V, L2(Ω)) for a.e.
t ∈ [0, τ ], and that then Twjk → Tw in MR(0, τ ;V, L2(Ω)). Apply the sub-subsequence
argument to show that Twj → Tw in MR(0, τ ;V, L2(Ω)).
(c) Show that T

(
L2(0, τ ;L2(Ω))

)
is bounded in MR(0, τ ;V, L2(Ω)).

19.3 Let τ > 0, and let H be a Hilbert space.
(a) Show that the unit ball of H1(0, τ ;H) is a uniformly equicontinuous subset of

C([0, τ ];H). (Hint: Recall Proposition 17.6.)
(b) Additionally let V be a Hilbert space, with compact embedding V ↪→ H. Show

that the embedding MR(0, τ ;V,H) ↪→ C([0, τ ];H) is compact. (Hint: Use the proof
of Theorem 19.6 and part (a) above to show that every weakly convergent sequence in
MR(0, τ ;V,H) is convergent in C([0, τ ];H).)

19.4 Show that the mapping F defined in Example 19.18 is continuous and satisfies
(19.10).

19.5 (a) Find infinitely many solutions of the initial value problem for the ordinary
differential equation y′ =

√
|y|, y(0) = 0 on [0, 1].

(b) As in Section 19.6 let Ω ⊆ Rn be a bounded open set and H := L2(Ω). Let
V := H1(Ω), τ := 1, and define the form a by a(u, v) :=

∫
∇u · ∇v dx (u, v ∈ V ). Define

f : (0, 1)× Ω× R× Rn → R by

f(t, x, q, p) :=
√

|q| .

Show that f satisfies (19.13), and find infinitely many solutions u ∈ MR(0, 1;V,H) of the
initial value problem

u′(t) +Au(t) = f(t, ·, u(t, ·),∇u(t, ·)), u(0) = 0.
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Appendix A

The divergence theorem

In this appendix we provide a proof of Gauss’ theorem, also known as the divergence
theorem. In the first section we will sketch, without proofs, basic facts concerning
embedded manifolds in Rn and integration on manifolds. On the basis of these facts we
will give a complete proof of the divergence theorem in the second section.

A.1 Integration on submanifolds of Rn

In this section we sketch the definition of the integral for functions on submanifolds
of Rn. We start with some facts concerning submanifolds, by which we always mean
C1-submanifolds.
Let k, n ∈ N0, k < n. A set M ⊆ Rn is a k-dimensional submanifold if for all z ∈M

there exist an open neighbourhood U of z in Rn, an open set V ⊆ Rn and a diffeomorphism
h : U → V such that h(M ∩U) =

(
Rk ×{0n−k}

)
∩V (where 0n−k denotes the zero element

in Rn−k). There are several other equivalent descriptions of submanifolds. The following
is the one we will need below.
A setM ⊆ Rn is a k-dimensional submanifold if and only ifM has local parametrisations,

i.e., for all z ∈M there exist an open neighbourhood W ⊆M , an open set T ⊆ Rk (the
parameter domain) and a regular mapping Φ: T → Rn (the local parametrisation) such
that Φ(T ) = W . Here, ‘regular’ means: Φ is continuously differentiable, Φ′(t) has full
rank k for all t ∈ T , Φ is injective, and Φ−1 : W → T is continuous.
In particular, it follows that the boundary ∂Ω of a bounded open set Ω with C1-boundary

is an (n−1)-dimensional manifold: looking at the definition of a C1-graph W one easily
finds a local parametrisation Φ: T → ∂Ω with Φ(T ) = W .
The definition of the integral on submanifolds is based on the local parametrisations

and includes a weight factor that involves the quantity γ(A) :=
√
det(A⊤A), for matrices

A ∈ Rn×k. (Note that A⊤A ∈ Rk×k is positive definite, hence det(A⊤A) ⩾ 0. As a
motivation for this weight factor we mention that the k-dimensional volume of A([0, 1]k) –
the image of the cube [0, 1]k ⊆ Rk under A – is given by γ(A).)

A.1 Remarks (The surface measure σ on M). Let M ⊆ Rn be a k-dimensional
submanifold.
(a) Let Φ: T → M be a local parametrisation, W := Φ(T ). Then Φ: T → W is a

homeomorphism, and we define the surface measure σW on the Borel sets A ⊆ W by

σW (A) :=

∫
T

1A(Φ(t))γ(Φ
′(t)) dt ∈ [0,∞].
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Note that the integral exists because the function 1A ◦ Φ is Borel measurable by Exer-
cise A.1(b). Moreover 1A ◦ Φ is the indicator function on T of the Borel set Φ−1(A), and
thus σW is the image on W of the weighted Lebesgue-Borel measure on T , with weight
γ(Φ′(·)). This definition has the consequence that a Borel measurable function f : W → K
is integrable with respect to σW if and only if f(Φ(·))γ(Φ′(·)) is integrable on T , and then∫

W

f(z) dσW (z) =

∫
T

f(Φ(t))γ(Φ′(t)) dt. (A.1)

(b) Now let Φj : Tj → M be local parametrisations, Wj := Φj(Tj) for j = 1, 2. It
is a major step in the theory to show that the measures σW1 and σW2 are consistent,
i.e. they coincide on the Borel subsets of W1 ∩W2. For the proof one establishes that∫
W1
f(z) dσW1(z) =

∫
W2
f(z) dσW2(z) for all functions f ∈ Cc(M) with spt f ⊆ W1 ∩W2,

using the theorem of local invertibility and the change of variable formula for k-dimensional
integrals.
(c) In order to define the surface measure σ on the Borel subsets of M we assume for

simplicity that M is compact. (This is sufficient for our purposes because our aim is to
define σ on ∂Ω for bounded open sets Ω with C1-boundary.)
The compactness of M implies that there exists a finite set of local parametrisations

Φj : Tj → M , j = 1, . . . ,m, such that M =
⋃m

j=1Wj, with Wj := Φj(Tj). By part (b)
above, the Borel measures σWj

on the Borel subsets of Wj are mutually consistent. It
follows that there exists a unique Borel measure σ on M such that the restriction of σ to
the Borel subsets of Wj equals σWj

for all j ∈ {1, . . . ,m}; see Exercise A.2.
As a consequence one obtains: if f ∈ L1(M,σ) is written as a sum f =

∑m
j=1 fj, where

fj ∈ L1(M,σ) and fj = 0 on M \Wj for all j ∈ {1, . . . ,m}, then∫
M

f(z) dσ(z) =
m∑
j=1

∫
Wj

fj(z) dσWj
(z) =

m∑
j=1

∫
Tj

fj(Φj(t))γ(Φ
′
j(t)) dt.

(d) An important property of the surface measure σ is ‘orthogonal invariance’. More
precisely, if B ∈ Rn×n is an orthogonal matrix, then∫

B(M)

f(z) dσ(z) =

∫
M

f(Bz) dσ(z) (A.2)

for all f ∈ L1(B(M), σ); in particular, inserting f = 1B(A) for a Borel set A ⊆ M one
obtains σ(B(A)) = σ(A). Here we suppose as in part (c) that M is compact; then one
easily sees that B(M) is a compact k-dimensional submanifold of Rn as well. We point
out that on the left-hand side of (A.2) σ denotes the surface measure on B(M), and
on the right-hand side the surface measure on M . The basic observation for the proof
of (A.2) is the identity

γ(BA) = det
(
(BA)⊤BA

)
= det

(
A⊤B⊤BA

)
= γ(A) (A ∈ Rn×k).

If Φ: T → W ⊆M is a local parametrisation of M , then obviously B ◦ Φ: T → B(W ) ⊆
B(M) is a local parametrisation of B(M), and the above identity implies γ

(
(B ◦Φ)′(t)

)
=

γ(Φ′(t)). Then it is straightforward to derive (A.2). △
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In the proof of Gauss’ theorem we will apply the formula (A.1) to the special case
when k = n− 1 and W ⊆ M is a standard C1-graph. With the notation introduced in

Section 7.1, a parametrisation is given by Φ: W ′ → W, y 7→
(

y
g(y)

)
, where W ′ ⊆ Rn−1

is an open set and g ∈ C1(W ′). In order to evaluate (A.1) we have to determine γ(Φ′(y)).

Now Φ′(y) =

(
En−1

g′(y)

)
, hence

Φ′(y)⊤Φ′(y) =
(
En−1 ∇g(y)

)(
En−1

g′(y)

)
= En−1 +∇g(y)g′(y),

and the subsequent Lemma A.2 implies that γ(Φ′(y))2 = 1 + |∇g(y)|2. Thus from (A.1)
one obtains ∫

W

f(z) dσ(z) =

∫
W ′
f(Φ(y))

√
1 + |∇g(y)|2 dy. (A.3)

A.2 Lemma. Let k ∈ N, v ∈ Rk, and let Ek ∈ Rk×k denote the unit matrix. Then
det(Ek + vv⊤) = 1 + |v|2.

Proof. Without loss of generality v ̸= 0. Then v is an eigenvector of the matrix Ek + vv⊤

with eigenvalue 1 + |v|2, whereas the (k−1)-dimensional orthogonal complement v⊥ is the
eigenspace of Ek + vv⊤ associated with the eigenvalue 1. This implies the assertion.

A.2 Proof of the divergence theorem

Throughout this section let Ω ⊆ Rn be a bounded open set with C1-boundary. We will
prove Gauss’ theorem, Theorem 7.3, in the equivalent form of the divergence theorem.
(Concerning the equivalence we observe that the choice u(x) = v(x)ej in (A.4) yields (7.1)
for the scalar function v; conversely, applying (7.1) to the components of the vector field
one obtains (A.4).)

A.3 Theorem (Divergence theorem). Let u ∈ C1(Ω;Kn). Then∫
Ω

div u(x) dx =

∫
∂Ω

u(z) · ν(z) dσ(z), (A.4)

where ν(z) is the outer unit normal at z ∈ ∂Ω.

The following local part of the divergence theorem contains the main technical difficulty
of the proof.

A.4 Proposition. Let W ⊆ ∂Ω be a C1-graph. Then there exists an open set U ⊆ Rn with
the following properties: W = U ∩ ∂Ω, and if u ∈ C1(Ω;Kn) is such that sptu (formed
in Ω) is a compact subset of U , then∫

Ω

div u(x) dx =

∫
∂Ω

u(z) · ν(z) dσ(z), (A.5)

where ν(z) is the outer unit normal at z ∈ ∂Ω.
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Proof. (i) In this step we suppose that W is a standard C1-graph. Let W ′ ⊆ Rn−1, (a, b)
and g : W ′ → (a, b) be as in Section 7.1. Put U := W ′ × (a, b), and let u ∈ C1(Ω;Kn),
sptu ⊆ U .

Recall from Remark 7.2 that the outer unit normal is given by

ν(z) =
1√

|∇g(y)|2 + 1

(
−∇g(y)

1

)
for z = (y, g(y)) ∈ W , with y ∈ W ′. Thus, applying (A.3) we can rewrite the right-hand
side of (A.5) as∫

∂Ω

u(z) · ν(z) dσ(z) =
∫
W ′
u(y, g(y)) · 1√

|∇g(y)|2 + 1

(
−∇g(y)

1

)√
1 + |∇g(y)|2 dy

=

∫
W ′
u(y, g(y)) ·

(
−∇g(y)

1

)
dy.

In order to transform the left-hand side of (A.5) into the latter expression we extend u
by 0 ∈ Kn to a function on Rn and define v : W ′ × (−∞, 0] → Kn,

v(y, t) := u(y, t+ g(y)).

From u(y, t) = v(y, t− g(y)) we then obtain

div u(y, t) =
n−1∑
j=1

∂jvj(y, t− g(y)) + ∂nv(y, t− g(y)) ·
(
−∇g(y)

1

)
.

Therefore∫
Ω

div u(x) dx =

∫
W ′

∫ g(y)

−∞
div u(y, t) dt dy

=

∫
W ′

∫ 0

−∞
div u(y, t+ g(y)) dt dy (A.6)

=
n−1∑
j=1

∫ 0

−∞

∫
W ′
∂jvj(y, t) dy dt+

∫
W ′

∫ 0

−∞
∂nv(y, t) ·

(
−∇g(y)

1

)
dt dy.

Since
∫
W ′ ∂jφ(y) dy = 0 for all φ ∈ C1

c (W
′) (see (4.1)), we conclude that the left-hand

term in the last expression vanishes. In the right-hand term we apply the fundamental
theorem of calculus; then we can continue (A.6) by∫

Ω

div u(x) dx =

∫
W ′
v(y, 0) ·

(
−∇g(y)

1

)
dy =

∫
W ′
u(y, g(y)) ·

(
−∇g(y)

1

)
dy.

(ii) Now we treat the case of a general C1-graph W . By definition, there exists an
orthogonal matrix B ∈ Rn×n such that W̃ := B(W ) is a standard C1-graph with respect
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to Ω̃ := B(Ω). By step (i) there exists an open set Ũ ⊆ Rn with the following properties:

W̃ = Ũ ∩ ∂Ω̃, and ∫
Ω̃

div ũ(x) dx =

∫
∂Ω̃

ũ(z) · ν̃(z) dσ(z) (A.7)

for all ũ ∈ C1
(
Ω̃;Kn

)
with sptu ⊆ Ũ , where ν̃ denotes the outer unit normal for the set Ω̃.

Put U := B−1(Ũ) and note thatW = U∩∂Ω. Let u ∈ C1(Ω;Kn) be such that sptu ⊆ U ,

and put ũ := B ◦ u ◦B−1. Then ũ ∈ C1
(
Ω̃;Kn

)
and sptu ⊆ Ũ , so ũ satisfies (A.7). From

Exercise A.3 and the invariance of the Lebesgue measure under orthogonal transformations
we obtain ∫

Ω̃

div ũ(x) dx =

∫
Ω̃

div u(B−1x) dx =

∫
Ω

div u(x) dx.

On the other hand ν̃(Bz) = Bν(z) for all z ∈ W , and the invariance of the measure σ
under orthogonal transformations (see Remark A.1(d)) implies that∫

∂Ω̃

ũ(z) · ν̃(z) dσ(z) =
∫
∂Ω

ũ(Bz) · ν̃(Bz) dσ(z) =
∫
∂Ω

Bu(z) ·Bν(z) dσ(z)

=

∫
∂Ω

u(z) · ν(z) dσ(z).

Plugging the above equalities into (A.7) we obtain (A.5).

Proof of Theorem A.3. Let y ∈ ∂Ω. Since Ω has C1-boundary we can find a C1-graph
Wy ⊆ ∂Ω containing y. We choose an open set Uy ⊆ Rn corresponding to Wy with the
properties described in Proposition A.4.
For the open covering {Uy ; y ∈ ∂Ω} of the compact set ∂Ω there exists a finite

subcovering {Uy ; y ∈ F}. Supplementing this covering by the set Ω, we obtain a finite
open covering of Ω and can choose a subordinate partition of unity on Ω, i.e., functions
0 ⩽ φ ∈ C∞

c (Rn) with sptφ ⊆ Ω, 0 ⩽ φy ∈ C∞
c (Rn) with sptφy ⊆ Uy for y ∈ F , and such

that φ+
∑

y∈F φy = 1 on Ω; see Exercise 4.3(b).

Now let u ∈ C1(Ω;Kn). Then
∫
Ω
div(φu)(x) dx = 0 by (4.1), and∫

Ω

div u(x) dx =

∫
Ω

div
((
φ+

∑
y∈F

φy

)
u
)
(x) dx

=

∫
Ω

div(φu)(x) dx+
∑
y∈F

∫
Ω

div(φyu)(x) dx

=
∑
y∈F

∫
∂Ω

φy(z)u(z) · ν(z) dσ(z),

where in the last step we have applied Proposition A.4. This establishes (A.4) since∑
y∈F φy = 1 on ∂Ω, and the proof of the divergence theorem is complete.

A.5 Remark. In Appendix E, Section E.2, it is shown that in fact the surface measure
σ coincides with the (n−1)-dimensional Hausdorff measure on ∂Ω. We avoided using
this property because we wanted to stick to the more elementary definition of the surface
measure by parametrisations. △
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Notes

The divergence theorem plays an important role for applications of the theory of forms.
In this book we rely on the theorem whenever traces and weak normal derivatives are
involved; see Chapters 7, 8, 11 and 12. More generally, it is central for the theory of
partial differential equations.
We apply the divergence theorem only in the elementary form of Theorem A.3, for

bounded open sets with C1-boundary. It was hard to find an accessible source for this
version in the English literature. So, according to our principle to provide complete
information for topics going beyond a certain level, we decided to include a complete
proof.
We mention that in German textbooks on analysis one can find proofs; see [For83; §15],

[Kab99; Theorem 20.3]. The main inspiration for our proof was the proof presented in
[Tre75; Lemma 10.1]. A different access can be found in [ArUr23; Chapter 7]. For a more
general version of the divergence theorem in the context of geometric measure theory we
refer to [EvGa92; Sect. 5.8, Theorem 1].

Exercises

A.1 Let (X, τ) and (Y, ρ) be topological spaces, Φ: X → Y a homeomorphism. Let Bτ

and Bρ denote the Borel σ-algebras of X and Y , respectively.
(a) Show that Bρ = {Φ(A) ; A ∈ Bτ}.
(b) Let f : Y → K. Show that f is Borel measurable on Y if and only if f ◦ Φ is Borel

measurable on X.

A.2 Let Ω be a set, A a σ-algebra on Ω. Let Ω1, . . . ,Ωm ∈ A be such that
⋃m

j=1 Ωj = Ω.
For each j ∈ {1, . . . ,m} let µj be a measure on Aj := {A ∈ A ; A ⊆ Ωj} with µj(Ωj) <∞.
Suppose that the measures µj are mutually consistent, i.e. for all j, k ∈ {1, . . . ,m},
A ∈ Aj ∩ Ak one has µj(A) = µk(A).
Show that there exists a unique measure µ on A such that µ(A) = µj(A) for all

j ∈ {1, . . . ,m}, A ∈ Aj.
Hint: Choose a family (Bj)j=1,...,m in A such that Bj ∈ Aj for all j ∈ {1, . . . ,m},⋃m
j=1Bj = Ω and Bj ∩Bk = ∅ if j ̸= k. Define µ(A) :=

∑m
j=1 µj(A ∩Bj).

A.3 Let Ω ⊆ Rn be open, u ∈ C1(Ω;Kn), and let B ∈ Rn×n be an invertible matrix,
Ω̃ := B(Ω). Put ũ := B ◦ u ◦B−1 ∈ C1(Ω̃;Kn), spelled out

ũ(y) := Bu(B−1y) (y ∈ Ω̃).

Show that div ũ = (div u) ◦ B−1. (This fact is used in the proof of Proposition A.4 for
orthogonal matrices B.)
Hints: 1. For u ∈ C1(Ω;Kn) the divergence can be written as div u(x) = tru′(x), where

the latter expression denotes the trace of the derivative (Jacobi matrix) of u′(x). 2. For
matrices A ∈ Km×n, B ∈ Kn×m one has tr(AB) = tr(BA).



Appendix B

The Stone–Weierstrass theorem

The aim of this appendix is to prove the Stone–Weierstrass theorem, Theorem B.2. The
proof is based on Stone’s theorem, Theorem B.1, which is interesting and important in its
own right. In a supplementary remark we mention that our treatment also provides a
proof of the Weierstrass approximation theorem.
Throughout this appendix let K be a compact topological space. For real-valued

functions f, g ∈ C(K) we define f ∨ g, f ∧ g ∈ C(K) by

f ∨ g(x) := max{f(x), g(x)}, f ∧ g(x) := min{f(x), g(x)} (x ∈ K).

(With these operations, the space C(K;R) becomes a vector lattice.) If F ⊆ C(K;R) is
a finite subset, then

∨
F ∈ C(K) is defined by

(∨
F
)
(x) := max{f(x) ; f ∈ F} (x ∈ K),

and similarly for ‘
∧
’.

A sublattice of C(K;R) is a subset L with the property that f ∨ g, f ∧ g ∈ L for all
f, g ∈ L. A vector sublattice of C(K;R) is a subspace that is also a sublattice.
If L is a subset of C(K), then we say that L separates the points of K if for all

x ̸= y in K there exists a function f ∈ L such that f(x) ̸= f(y).

B.1 Theorem (Stone). Let L be a vector sublattice of C(K;R) such that

(i) L separates the points of K,

(ii) L contains the constant function 1.

Then L is dense in C(K;R).

Proof. First we note that, given points x ̸= y in K and scalars α, β ∈ R, there exists
f ∈ L such that f(x) = α, f(y) = β. Indeed, there exists g ∈ L such that g(x) ̸= g(y),
and then f can be obtained as a linear combination of g and 1.
Let f ∈ C(K;R), and let ε > 0. We need to show that there exists h ∈ L with

∥f − h∥∞ ⩽ ε. First, fix x ∈ K. For all y ∈ K there exists gy ∈ L such that gy(x) = f(x),
gy(y) = f(y). Then Uy := [gy > f − ε] is an open neighbourhood of y, and from the open
covering {Uy ; y ∈ K} of K we can choose a finite subcovering {Uy ; y ∈ F}. Putting
hx :=

∨
y∈F gy we have found a function hx ∈ L satisfying hx(x) = f(x), hx ⩾ f − ε.

For all x ∈ K, the set Vx := [hx < f + ε] is an open neighbourhood of x. The open
covering {Vx ; x ∈ K} of K contains a finite subcovering {Vx ; x ∈ G}, and then the
function h :=

∧
x∈G hx ∈ L satisfies f − ε ⩽ h ⩽ f + ε, i.e. ∥f − h∥∞ ⩽ ε.

B.2 Theorem (Stone–Weierstrass). Let L be a subalgebra of C(K;K) such that

(i) L separates the points of K,

(ii) L contains the constant function 1.
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If K = C, we suppose additionally that

(iii) for all f ∈ L one has f ∈ L.

Then L is dense in C(K;K).

Proof. Without loss of generality we can assume that L is closed. Indeed, it is easy to see
that the closure of L is again a subalgebra of C(K;K) satisfying the conditions (i), (ii)
(and (iii)).

First we treat the case K = R. We show that L is a sublattice of C(K;R); then
Theorem B.1 implies the assertion. Let f ∈ L. By the Weierstrass approximation theorem
there exists a sequence (pn) of real polynomials such that sup|t|⩽∥f∥∞

∣∣|t| − pn(t)
∣∣ → 0 as

n→ ∞. Then
∥∥|f |− pn ◦ f

∥∥
∞ → 0 as n→ ∞. Since pn ◦ f ∈ L for all n ∈ N, we conclude

that |f | ∈ L. This has the consequence that for all f, g ∈ L one has

f ∨ g = 1
2
(f + g + |f − g|) ∈ L, f ∧ g = 1

2
(f + g − |f − g|) ∈ L,

i.e. L is a sublattice of C(K;R).
In the complex case one immediately deduces that Lr := L ∩ C(K;R) is a subalgebra

of C(K;R) satisfying conditions (i) and (ii); hence the case treated above implies that Lr

is dense in C(K;R). Thus L = Lr + iLr is dense in C(K;C).

B.3 Remarks. (a) In the proof of Theorem B.2 we quoted the Weierstrass approximation
theorem, but in fact we did not need the full extent of the theorem since we only had to
approximate the absolute value function on bounded intervals. Here we show how this
can be done.
From basic analysis we recall that the power series

(1 + s)1/2 =
∞∑
n=0

(
1/2

n

)
sn

is uniformly absolutely convergent on [−1, 1]. Therefore the expression

|t| =
(
1 + (t2 − 1)

)1/2
=

∞∑
n=0

(
1/2

n

)
(t2 − 1)n

yields a series of polynomials converging to |t|, uniformly for −1 ⩽ t ⩽ 1. Clearly this
implies that |t| can be approximated uniformly on arbitrary bounded intervals.
(b) The Weierstrass approximation theorem can be obtained as a special case of

Theorem B.2 if in the proof one uses the argument from part (a) to approximate the
absolute value function. △

Notes

The foundations for the use of order and lattice properties in the approximation of
continuous functions as in Theorems B.1 and B.2 go back to Stone [Sto37]; see in
particular the discussion on the Weierstrass approximation theorem in [Sto37; p. 467]. For
Theorem B.1 we also refer to Kakutani [Kak41; Theorem 4], and [Sto48] contains further
discussion of the topic.



Appendix C

Weyl’s lemma

Let Ω ⊆ Rn be an open set, and let u ∈ L1,loc(Ω) satisfy ∆u = 0 in the distributional sense.
The issue of this appendix is to show that then u is a.e. equal to a harmonic function ũ,
i.e. ũ ∈ C2(Ω), ∆ũ = 0.

C.1 Proposition. Let Ω ⊆ Rn be an open set, and let u ∈ C2(Ω), ∆u = 0. Then u has
the mean value property: if x ∈ Ω, r > 0 are such that B[x, r] ⊆ Ω, then

u(x) =
1

rn−1σn−1

∫
∂B(x,r)

u(y) dσ(y) =
1

σn−1

∫
Sn−1

u(x+ rξ) dσ(ξ), (C.1)

where σn−1 is the (n−1)-dimensional volume of the unit sphere Sn−1 ⊆ Rn.

Proof. For x ∈ Rn, r > 0 such that B[x, r] ⊆ Ω we compute

d

dr

∫
Sn−1

u(x+ rξ) dσ(ξ) =

∫
Sn−1

∇u(x+ rξ) · ξ dσ(ξ)

=
1

rn−1

∫
∂B(x,r)

∇u(y) · ν(y) dσ(y) (C.2)

=
1

rn−1

∫
B(x,r)

∆u(y) dy = 0,

where in the last step we have applied the divergence theorem, Theorem A.3. It follows
that the expression on the right-hand side of (C.1) does not depend on r. This expression
tends to u(x) as r → 0, which implies the assertion.

C.2 Theorem (Weyl’s lemma). Let Ω ⊆ Rn be an open set, u ∈ L1,loc(Ω), ∆u = 0
(in the distributional sense). Then there exists an infinitely differentiable harmonic
representative ũ of u.

Proof. Below we show that for every x ∈ Ω there exist an open neighbourhood Ux ⊆ Ω
and a representative ux ∈ C∞(Ux) of u|Ux

. Applying Exercise C.1 one then obtains an
infinitely differentiable representative ũ of u, and Remark 4.7 implies that ũ is harmonic.
Let x ∈ Ω, and let r > 0 be such that B[x, 3r] ⊆ Ω. We will establish the property

asserted above for Ux := B(x, r). Let v denote the extension of u1B(x,3r) by zero to a
function in L1(Rn), and let (ρk)k∈N be a delta sequence in C∞

c (Rn). Then vk := ρk ∗ v → v
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in L1(Rn) by Proposition 4.3(b). Moreover, Lemma 4.1 shows that vk ∈ C∞
c (Rn) and, for

z ∈ B(x, 2r), k > 1
r , that

∆vk(z) =

∫
Ω

∆ρk(z − y)u(y) dy =

∫
Ω

ρk(z − y)∆u(y) dy = 0,

where the middle equality holds because ρk(z−·) ∈ C∞
c (Ω). Hence Proposition C.1 implies

that vk|B(x,2r) satisfies the mean value property, for all k > 1
r .

Let ρ ∈ C∞
c (Rn)+ with spt ρ ⊆ B(0, r),

∫
ρ(x) dx = 1, be a radial function, i.e. ρ(y) =

ρ(|y|e1) for all y ∈ B(0, r), where e1 is the first unit vector in Rn. Then, for z ∈ B(x, r),
one uses the mean value property of vk|B(z,r) to see that

ρ ∗ vk(z) =
∫
B(0,r)

ρ(y)vk(z − y) dy =

∫ r

s=0

ρ(se1)

∫
∂B(0,s)

vk(z − y) dσ(y) ds

=
(
σn−1

∫ r

0

ρ(se1)s
n−1 ds

)
vk(z) =

(∫
B(0,r)

ρ(y) dy
)
vk(z) = vk(z).

Now the convergence vk → v in L1(Rn) implies that vk = ρ∗vk → ρ∗v uniformly on B(x, r)
as k → ∞; hence the C∞-function (ρ∗ v)|B(x,r) is a representative of v|B(x,r) = u|B(x,r).

Notes

Theorem C.2 goes back to Hermann Weyl [Wey40; Lemma 2]. In modern language of
partial differential operators one could state it by saying that the Laplace operator is a
hypoelliptic differential operator. We refer to [Rud91; Corollary of Theorem 8.12], where
Weyl’s lemma is obtained as a consequence of an important result concerning the regularity
of distributional solutions of general elliptic equations. In contrast, the proof we provide is
rather elementary, being based only on the mean value property of harmonic functions and
properties of convolutions. The mean value property of harmonic functions is a standard
fact in potential theory and can be found in the standard literature on partial differential
equations; see, for instance, [Eva10; Section 2.2.2].

We mention that Weyl’s lemma also holds for the case when u is a distribution instead
of a locally integrable function; with vitually the same proof as given for Theorem C.2.

Exercises

C.1 Let Ω ⊆ Rn be an open set, and let u ∈ L1,loc(Ω). Suppose that for all x ∈ Ω there
exist an open neighbourhood Ux ⊆ Ω and a function ux ∈ C(Ux) such that ux = u a.e.
on Ux. Show that there exists a function ũ ∈ C(Ω) such that ũ|Ux

= ux for all x ∈ Ω.
Apply Exercise 4.1 to show that ũ is a representative of u.

Conclude that ũ is infinitely differentiable if every ux is infinitely differentiable.
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C.2 Let Ω ⊆ Rn be an open set, and let u ∈ C(Ω) be a function having the mean value
property (C.1). Show that u is an infinitely differentiable harmonic function. (Hint: For
the property that u ∈ C∞(Ω) look at the proof of Theorem C.2; for ‘harmonic’ use (C.2)
and argue by contradiction.)

C.3 Let Ω ⊆ Rn be a bounded open set.
(a) Let u ∈ C(Ω) ∩ C2(Ω) be harmonic on Ω. Prove the maximum principle

max
x∈Ω

|u(x)| = max
x∈∂Ω

|u(x)|.

(Hint: Use the mean value property (C.1).)
(b) Show that

C∆(Ω) :=
{
u ∈ C(Ω) ; u|Ω harmonic

}
is a closed subspace of C(Ω), and conclude that

{
u|∂Ω ; u ∈ C∆(Ω)

}
is a closed subspace

of C(∂Ω). (Hint concerning the last statement: Part (a) shows that the trace mapping
T : C∆(Ω) → C(∂Ω), u 7→ u|∂Ω is a linear isometry.)
Note. With the trace mapping T from above, the image T (C∆(Ω)) is the set of

‘admissible boundary values for the classical Dirichlet problem’. For g ∈ T (C∆(Ω)) the
Dirichlet problem ∆u = 0, u|∂Ω = g has the unique solution u = T−1g, and the mapping
T−1 is an isometry, in particular continuous.





Appendix D

Hausdorff measure and an inequality
due to Maz’ya

D.1 The Sobolev space W 1
1 (Ω)

We will need the Sobolev space W 1
1 (Ω) and some of its properties. Let Ω ⊆ Rn be an

open set. We define

W 1
1 (Ω) :=

{
u ∈ L1(Ω) ; ∂ju ∈ L1(Ω) (j = 1, . . . , n)

}
,

with norm

∥u∥W 1
1
:= ∥u∥1 +

n∑
j=1

∥∂ju∥1 .

Then the space W 1
1 (Ω) is a separable Banach space. This is proved in the same way as

the corresponding property for H1(Ω); see Theorem 4.10 and its proof.

Analogously to H1
c and H1

0 we define

W 1
1,c(Ω) :=

{
u ∈ W 1

1 (Ω) ; sptu compact in Ω
}
,

W 1
1,0(Ω) := W 1

1,c(Ω)
W 1

1 (Ω)
.

The property W 1
1,0(Ω) = C∞

c (Ω)
W 1

1 (Ω)
is proved in the same way as the corresponding

property for H1; see Theorem 4.15 and its proof.

We will need some lattice properties of W 1
1 -functions. These are consequences of the

properties treated in Section 9.3.

D.1 Lemma. Let Ω ⊆ Rn be open, and let u, v ∈ L1,loc(Ω;R), ∇u,∇v ∈ L1,loc(Ω;Rn).
Then ∇(u ∧ v) ∈ L1,loc(Ω;Rn), |∇(u ∧ v)| ⩽ |∇u|+ |∇v|.

Proof. Let j ∈ {1, . . . , n}. From Corollary 9.15 we recall ∂ju
+ = 1[u>0]∂ju. This implies

∂ju
− = ∂j(u

+ − u) = (1[u>0] − 1)∂ju = −1[u⩽0]∂ju;

hence

∂j|u| = ∂ju
+ − ∂ju

− =
(
1[u>0] − 1[u⩽0]

)
∂ju.
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Applying this equality to u ∧ v = 1
2
(u+ v − |u− v|) we obtain

∂j(u ∧ v) =
1

2

(
∂ju+ ∂jv − (1[u>v] − 1[u⩽v])(∂ju− ∂jv)

)
= 1[u⩽v]∂ju+ 1[u>v]∂jv.

We conclude that
∇(u ∧ v) = 1[u⩽v]∇u+ 1[u>v]∇v,

which implies the assertion.

Lemma D.1 will be applied in the proof of Theorem D.9 in the following more specific
situation.

D.2 Lemma. Let Ω,Ω1 ⊆ Rn be open sets, Ω1 bounded, let u ∈ C(Ω) ∩W 1
1 (Ω), v ∈

C(Ω1)∩W 1
1 (Ω1), u, v ⩾ 0, and assume that u(x) < v(x) for all x ∈ ∂Ω1 ∩Ω. Put v := ∞

on Rn \ Ω1, and define w := u ∧ v on Ω. Then w ∈ C(Ω) ∩W 1
1 (Ω),∫

Ω

|∇w(x)| dx ⩽
∫
Ω

|∇u(x)| dx+
∫
Ω1

|∇v(x)| dx. (D.1)

Proof. The continuity of w follows from the continuity of w on Ω ∩ Ω1 and the continuity
of w = u on Ω \ Ω1. (Note that {Ω ∩ Ω1,Ω \ Ω1} is a finite covering of Ω by closed sets.)
Lemma D.1 shows that w|Ω∩Ω1

∈ W 1
1 (Ω ∩ Ω1),∫

Ω∩Ω1

|∇w(x)| dx ⩽
∫
Ω∩Ω1

|∇u(x)| dx+
∫
Ω1

|∇v(x)| dx. (D.2)

The hypotheses imply that there exists an open set U ⊆ Ω with ∂Ω1 ∩ Ω ⊆ U such that
u(x) < v(x) for all x ∈ U ∩ Ω1. Then w = u on (Ω \ Ω1) ∪ U , and therefore w ∈ W 1

1 (Ω),∫
Ω

|∇w(x)| dx =

∫
Ω\Ω1

|∇u(x)| dx+
∫
Ω∩Ω1

|∇w(x)| dx. (D.3)

Combining (D.2) and (D.3) one obtains (D.1).

D.3 Proposition. Let Ω ⊆ Rn be a bounded open set, u ∈ W 1
1 (Ω) ∩ C0(Ω). Then

u ∈ W 1
1,0(Ω).

Proof. It is sufficient to treat the case when u is real-valued. Splitting u = u+ − u− we
reduce the problem to the case u ⩾ 0.
For s > 0 one has u − s ∈ W 1

1 (Ω), and Corollary 9.15 implies that ∇(u − s)+ =
1[u>s]∇(u− s) = 1[u>s]∇u. Note that u ⩽ s on a neighbourhood of ∂Ω because u ∈ C0(Ω),
and therefore spt(u− s)+ is compact, which shows that (u− s)+ ∈ W 1

1,c(Ω). For s→ 0
one has (u− s)+ → u, ∇(u− s)+ → 1[u>0]∇u pointwise and dominated, hence in L1(Ω),
L1(Ω;Rn), respectively. Because 1[u>0]∇u = ∇u+ = ∇u, these two convergences mean
that (u− s)+ → u in W 1

1 (Ω), hence u ∈ W 1
1,0(Ω).

D.4 Remark. Proposition D.3 remains valid with W 1
1 replaced by H1. This version is

remindful of the inclusion ‘⊇’ in Proposition 7.10, but note the differences in the regularity
of ∂Ω and in the assumptions on u at the boundary. △
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So far we have treated lattice properties concerning differentiation only for real-valued
functions. In order to include complex-valued functions in our treatment, we need the
following formula concerning the differentiation of absolute values.

D.5 Proposition. Let Ω ⊆ Rn be open. Let u ∈ L1,loc(Ω), j ∈ {1, . . . , n}, ∂ju ∈ L1,loc(Ω).
Then

∂j|u| = Re(sgnu ∂ju) ∈ L1,loc(Ω).

Proof. Given δ > 0, the equality

∂j(|u|2 + δ)1/2 = ∂j(uu+ δ)1/2 = (|u|2 + δ)−1/2Re(u ∂ju)

is straightforward if u is continuously differentiable. Using the same arguments as in the
proof of Proposition 9.13 one can easily show that this equality remains valid under the
present hypotheses.
Letting δ → 0 and applying Lemma 4.11 we conclude that

∂j|u| = Re
(
u
|u|1[u̸=0] ∂ju

)
= Re(sgnu ∂ju).

The last issue in this section is Poincaré’s inequality for the L1-context. Here we say
that a set Ω ⊆ Rn is contained in a slab if there exist β > 0 such that after a suitable
translation and rotation applied to Ω, one has Ω ⊆ (−β, β)×Rn−1; in Section 5.4 we used
a more restricted version of this notion. We note that Theorem 5.13 is also valid with the
present more general version, and that the proof given below is analogous to the proof of
Theorem 5.13.

D.6 Theorem (Poincaré’s inequality). Assume that Ω is contained in a slab. Then∫
Ω

|u(x)| dx ⩽ cP

∫
Ω

|∇u(x)| dx (u ∈ W 1
1,0(Ω)),

where cP is the width of the slab.

Proof. It was mentioned above that W 1
1,0(Ω) is the closure of C∞

c (Ω) in W 1
1 (Ω); therefore

it suffices to prove the inequality for all u ∈ C∞
c (Ω). Under translations and orthogonal

transformations of the independent variable, the gradient of a function is transformed
along with the function. (This is obvious for translations. Concerning orthogonal
transformations for a function u ∈ C1(Ω) and a matrix B ∈ Rn×n, the chain rule implies
that ∇(u ◦B) =

(
(u ◦B)′

)⊤ =
(
(u′ ◦B)B

)⊤ = B⊤(∇u ◦B).) As a consequence we may
assume that Ω ⊆ (−β, β)×Rn−1, where 2β > 0 is the width of the slab. Let h ∈ C1[−β, β],
h(−β) = 0. Then we estimate∫ β

−β

|h(x)| dx =

∫ β

−β

∣∣∣∣∫ x

−β

h′(y) dy

∣∣∣∣ dx ⩽
∫ β

−β

∫ β

−β

|h′(y)| dy dx = 2β

∫ β

−β

|h′(y)| dy.

Let u ∈ C∞
c (Ω). Applying the above estimate with h(r) = u(r, x2, . . . , xn) we obtain∫

Ω

|u(x)| dx ⩽ 2β

∫
R
· · ·

∫
R

∫ β

−β

|∂1u(x1, . . . , xn)| dx1 · · · dxn ⩽ 2β

∫
Ω

|∇u(x)| dx.
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D.2 On the Hausdorff measure Hd

In this section we present an auxiliary result concerning the approximation of the Hausdorff
measure of dimension d ∈ [0,∞) on a metric space M . We start by introducing some
notation and giving a short introduction to Hausdorff measures.

For a set C ⊆ M we define rd(C) := 1
2
diam(C), and for a countable collection C of

subsets of M we define rd(C) := supC∈C rd(C) and

Sd(C) := ωd

∑
C∈C

rd(C)d,

where

ωd :=
πd/2

Γ(d
2
+ 1)

,

which is the volume of the unit ball in Rd if d ∈ N0. (Even though the notation ‘rd’ should
be remindful of ‘radius’, the reader should be aware that a set C will not necessarily be
contained in a ball with radius rd(C).)

Let B ⊆M . For δ > 0 we put

Hd,δ(B) := inf
{
Sd(C) ; C countable covering of B, rd(C) ⩽ δ

}
.

Then

H∗
d(B) := lim

δ→0
Hd,δ(B) = sup

δ>0
Hd,δ(B)

is the outer d-dimensional Hausdorff measure of B; note that the limit exists and is
equal to the supremum because Hd,δ(B) is decreasing in δ. Carathéodory’s construction
of measurable sets yields a measure Hd, the d-dimensional Hausdorff measure, and it
turns out that Borel sets are measurable. For all of these properties (and more) we refer
to [EvGa92; Chapter 2] and [Fed69; Section 2.10.2]. If d ∈ N, and E = Rd × {0} ⊆ Rn,
then Hd is the Lebesgue measure on Rd ∼= E; see Appendix E. We mention that for d = 0
the Hausdorff measure Hd is the counting measure. This follows from the fact that ω0 = 1
and rd(C)0 = 1 for all C ⊆M .

Observe that, in the definition of Hd,δ(B), one can also take the infimum over all
countable open coverings of B and still obtain the same resulting value for H∗

d(B). Indeed,
for ε > 0 there exists a countable covering C with rd(C) ⩽ δ/2 and Sd(C) ⩽ H∗

d(B) + ε/2.
Choose (εC)C∈C ∈ (0,∞)C such that

∑
C∈C εC ⩽ ε/2. Then for all C ∈ C there exists an

open set UC ⊇ C such that

rd(UC) ⩽ δ and ωd rd(UC)
d ⩽ ωd rd(C)

d + εC .

Then U := {UC ; C ∈ C} is a countable open covering of B with rd(U) ⩽ δ and Sd(U) ⩽
H∗

d(B) + ε.

D.7 Proposition. Let M be a metric space, d ∈ [0,∞), and assume that Hd(M) <∞.
Let ε > 0.
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Then for all δ > 0 there exists a countable partition A of M with rd(A) ⩽ δ, consisting
of Borel subsets of M and such that∑

C∈A

∣∣Hd(C)− ωd rd(C)
d
∣∣ ⩽ ε. (D.4)

If M is compact, then the partition A can be chosen finite.

Proof. (i) The definition of Hd implies that there exists δε > 0 such that for all countable
coverings C of M with rd(C) ⩽ δε one has

Hd(M)− ε ⩽ Sd(C). (D.5)

(ii) Next we show that for all δ > 0 there exists a countable partition A of M with
rd(A) ⩽ δ, consisting of Borel subsets of M and such that

Sd(A) ⩽ Hd(M) + ε;

if M is compact, then the partition A can be chosen finite.
As pointed out above, there exists a countable open covering U of M with rd(U) ⩽ δ

and Sd(U) ⩽ Hd(M) + ε. If M is compact, then there exists a finite subcovering of U . A
standard procedure to produce a pairwise disjoint covering yields the desired partition A.
(iii) Let 0 < δ ⩽ δε (from step (i)), and let A be a partition of M as in step (ii). Let

A1 ⊆ A; then A1 is a partition of M1 :=
⋃

A1. We show that

Hd(M1)− ε ⩽ Sd(A1) ⩽ Hd(M1) + 2ε. (D.6)

Let C2 be a countable covering of M2 := M \M1 with rd(C2) ⩽ δε. Then the covering
A1 ∪ C2 of M satisfies rd(A1 ∪ C2) ⩽ δε, so from (D.5) we obtain

Hd(M1) +Hd(M2)− ε = Hd(M)− ε ⩽ Sd(A1 ∪ C2) ⩽ Sd(A1) + Sd(C2).

Since one can approximate Hd(M2) arbitrarily well by Sd(C2), choosing C2 suitably, this
inequality implies

Hd(M1)− ε ⩽ Sd(A1),

the left-hand inequality of (D.6).
The application of the result obtained so far to the partition A2 := A \A1 of M2 yields

Hd(M2) − ε ⩽ Sd(A2). Putting this inequality together with the inequality stated in
step (ii) we obtain

Sd(A1) = Sd(A)− Sd(A2) ⩽ Hd(M) + ε− (Hd(M2)− ε) = Hd(M1) + 2ε,

the right-hand inequality of (D.6).
We now choose A1 :=

{
C ∈ A ; ωd rd(C)d ⩽ Hd(C)

}
and apply (D.6) with A1, M1 and

with A2, M2 (as defined above):∑
C∈A

∣∣Hd(C)− ωd rd(C)
d
∣∣

=
∑
C∈A1

(
Hd(C)− ωd rd(C)

d
)
+

∑
C∈A2

(
ωd rd(C)

d −Hd(C)
)

=
(
Hd(M1)− Sd(A1)

)
+
(
Sd(A2)−Hd(M2)

)
⩽ 3ε.
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D.8 Remark. The crucial point of the inequality in Proposition D.7 is that not only
is the sum Sd(A) close to Hd(M), but the individual terms ωd rd(C)

d of the sum also
approximate the corresponding terms Hd(C), with a small total error. △

D.3 Maz’ya’s inequality

The following theorem contains the central result of this appendix. The inequality we prove
is not quite Maz’ya’s inequality (12.13), but it is strong enough to allow the derivation of
the inequality (12.11) in Section 12.6.

D.9 Theorem. Let Ω ⊆ Rn be a bounded open set with Hn−1(∂Ω) < ∞. Then there
exists a constant c(n,Ω) (depending only on n and the width of Ω) such that

∥u∥L1(Ω) ⩽ c(n,Ω)
(∫

Ω

|∇u(x)| dx+
∫
∂Ω

|u| dHn−1

)
(D.7)

for all u ∈ C(Ω) ∩W 1
1 (Ω).

Proof. Let u ∈ C(Ω) ∩W 1
1 (Ω). It follows from Proposition D.5 that |u| ∈ C(Ω) ∩W 1

1 (Ω)
and that

∣∣∇|u|
∣∣ ⩽ |∇u|. This shows that it is sufficient to treat the case u ⩾ 0.

Let u ∈ C(Ω) ∩W 1
1 (Ω), u ⩾ 0, and let ε > 0. Then, by the (uniform) continuity of

u, there exists δ ∈ (0, ε] such that |u(x)− u(y)| < ε whenever x, y ∈ Ω, |x− y| < δ. By
Proposition D.7 there exists a finite partition A of ∂Ω with rd(A) ⩽ δ/4, consisting of
Borel sets and such that (D.4) holds. We choose a family (xC)C∈A with xC ∈ C for all
C ∈ A. (Recall that, by definition, the sets in a partition are supposed to be non-empty.)
Clearly {BRn [xC , diam(C)] ; C ∈ A} is a covering of ∂Ω, where we use the notation

B[x, r] for the closed ball with centre x and radius r. For each C ∈ A, s ∈ (0, δ/2) we
define a function

ψC,s(x) :=

{
(u(xC) + ε) 1

s dist
(
x,B(xC , diam(C))

)
if x ∈ B[xC , diam(C) + s],

∞ otherwise.

Note that ψC,s ∈ W 1
1 (B(xC , diam(C) + s)). Note also that diam(C) + s ⩽ δ, and hence

ψC,s(x) = u(xC)+ ε > u(x) for all x ∈ ∂B(xC , diam(C)+ s)∩Ω, C ∈ A. These properties
and Lemma D.2 – applied repeatedly – imply that

uε,s := u ∧ inf
C∈A

ψC,s on Ω

belongs to C(Ω)∩W 1
1 (Ω). Since δ ⩽ ε, the function uε,s coincides with u on Ωε := {x ∈ Ω;

B(x, ε) ⊆ Ω}, and as uε,s vanishes on ∂Ω, Proposition D.3 shows that uε,s ∈ W 1
1,0(Ω).

The following computations prepare the application of Poincaré’s inequality to uε,s.
Lemma D.2 implies∫

Ω

|∇uε,s(x)| dx ⩽
∫
Ω

|∇u(x)| dx+
∑
C∈A

∫
B(xC ,diam(C)+s)

|∇ψC,s(x)| dx. (D.8)
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Observing that ψC,s = 0 on B(xC , diam(C)) and |∇ψC,s| = (u(xC) + ε)/s on the spherical
shell B(xC , diam(C) + s) \B(xC , diam(C)), we obtain∫

B(xC ,diam(C)+s)

|∇ψC,s(x)| dx = (u(xC) + ε)
1
s
ωn

(
(diam(C) + s)n − diam(C)n

)
. (D.9)

We note that, for s→ 0, the latter expression tends to

(u(xC) + ε)nωn diam(C)n−1 = 2n−1 nωn

ωn−1

(u(xC) + ε)ωn−1 rd(C)
n−1.

Recalling that u|Ωε
= uε,s|Ωε

, we conclude from Theorem D.6 that

∥u∥L1(Ωε)
⩽ ∥uε,s∥L1(Ω) ⩽ cP

∫
Ω

|∇uε,s(x)| dx. (D.10)

Inserting (D.8) and (D.9) into (D.10) and taking the limit s→ 0 we obtain

∥u∥L1(Ωε)
⩽ cP

(∫
Ω

|∇u(x)| dx+ 2n−1 nωn

ωn−1

∑
C∈A

(u(xC) + ε)ωn−1 rd(C)
n−1

)
. (D.11)

Exploiting (D.4) we can estimate the sum on the right-hand side of (D.11) by∑
C∈A

(u(xC) + ε)
(∣∣ωn−1 rd(C)

n−1 −Hn−1(C)
∣∣+Hn−1(C)

)
⩽ (∥u∥∞ + ε)ε+

∑
C∈A

∫
C

(u(xC) + ε) dHn−1

⩽ (∥u∥∞ + ε)ε+

∫
∂Ω

(u+ 2ε) dHn−1 .

Because of this inequality, the estimate (D.11) implies

∥u∥L1(Ωε)
⩽ cP

(∫
Ω

|∇u(x)| dx

+ 2n−1 nωn

ωn−1

(∫
∂Ω

u dHn−1 + ε(2Hn−1(∂Ω) + ∥u∥∞ + ε)
))

.

Letting ε→ 0 we finally obtain

∥u∥L1(Ω) ⩽ cP

(∫
Ω

|∇u(x)| dx+ 2n−1 nωn

ωn−1

∫
∂Ω

|u| dHn−1

)
. (D.12)

From Theorem D.9 we now derive the inequality (12.11) presented in Section 12.6.

D.10 Corollary. Let Ω ⊆ Rn be a bounded open set with Hn−1(∂Ω) <∞. Then

∥u∥2L2(Ω) ⩽ 4c(n,Ω)2
∫
Ω

|∇u(x)|2 dx+ 2c(n,Ω)

∫
∂Ω

|u|2 dHn−1

for all u ∈ C(Ω) ∩H1(Ω), with c(n,Ω) from Theorem D.9.
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Proof. Let u ∈ H1(Ω), j ∈ {1, . . . , n}. Then ∂j|u| = Re(sgnu ∂ju) ∈ L2(Ω) by Proposi-
tion D.5. Using Corollary 9.15 we conclude that ∂j(|u| ∧ k) = 1[|u|<k] ∂j|u| ∈ L2(Ω) for
all k ∈ N, and ∂j(|u| ∧ k) → ∂j|u| in L2(Ω) as k → ∞. Then (|u| ∧ k)2 → |u|2 in L1(Ω),
and applying Corollary 9.13 we obtain ∂j(|u| ∧ k)2 = 2(|u| ∧ k) ∂j(|u| ∧ k) → 2|u| ∂j|u| in
L1(Ω) as k → ∞. This shows that |u|2 ∈ W 1

1 (Ω), ∇|u|2 = 2|u| ∇|u|.
Assume additionally that u ∈ C(Ω). We apply Theorem D.9 to |u| and obtain

∥u∥22 ⩽ c(n,Ω)
(
2

∫
Ω

|u(x)|
∣∣∇|u|(x)

∣∣ dx+ ∫
∂Ω

|u|2 dHn−1

)
. (D.13)

Applying the Cauchy–Schwarz inequality, Proposition D.5 and the Peter–Paul inequality
we get∫

Ω

|u(x)|
∣∣∇|u|(x)

∣∣ dx ⩽ ∥u∥2
(∫

Ω

|∇u(x)|2 dx
)1/2

⩽ γ∥u∥22 +
1

4γ

∫
Ω

|∇u(x)|2 dx

for all γ > 0. Inserting this inequality into (D.13), with γ := 1
4c(n,Ω)

, and reshuffling terms
we finally get

∥u∥22 ⩽ 2c(n,Ω)
(
2c(n,Ω)

∫
Ω

|∇u(x)|2 dx+
∫
∂Ω

|u|2 dHn−1

)
.

D.11 Remarks. (a) In the last step of the proof of Theorem D.9, in the estimate (D.10),
we have applied the Poincaré inequality. There is another important inequality, estimating
the Lq-norm, for q = n

n−1
, in terms of the L1-norm of the gradient, namely the Sobolev

inequality

∥u∥Lq(Rn) ⩽ c(n)

∫
Rn

|∇u(x)| dx, (D.14)

valid for all u ∈ W 1
1 (Rn), with c(n) only dependent on the dimension n. We refer to

[Bre11; Theorem 9.9] or [Ada75; Remark 5.11] for this inequality. Applying (D.14) instead
of the Poincaré inequality in the proof of Theorem D.9, one obtains as a result the ‘better’
inequality (12.13) (with a different value of c(n)). We put quotes around ‘better’ because
clearly one can derive (D.7) from an inequality of the type (12.13), but then the constant
in (D.7) will necessarily depend on the volume of Ω. In our derivation, however, that
constant depends only on the dimension and on the width of Ω.
(b) Here we comment on the close relationship between (12.13), (D.14) and the isoperi-

metric inequality
voln(A)

(n−1)/n ⩽ c(n)Hn−1(∂A) (D.15)

for any measurable set A ⊆ Rn of finite n-dimensional volume, where

c(n) :=
1

nω
1/n
n

=
Γ(n/2 + 1)1/n

n
√
π

is the isoperimetric constant. For a proof of (D.15) we refer to [Fed69; Theorem 3.2.43
and Remark 3.2.44] or [Maz11; Theorem 9.1.5 and Remark 9.2.2]. In fact, the isoperimetric
constant c(n) is also the optimal constant in (12.13) and (D.14).
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We point out that (12.13) implies (D.15) for bounded open sets A = Ω (put u = 1Ω).
Moreover, (12.13) implies (D.14) for functions u ∈W 1

1,c(Rn). On the other hand, assuming
that one knows (D.15) for ‘nice’ sets, one can prove (D.14) for C∞

c -functions, using the
coarea formula of integration theory. Finally, one can extend (D.14) to L1-functions ‘of
bounded variation’, i.e. with distributional derivatives that are finite measures, and from
this inequality one can derive (12.13). (This last step is rather non-trivial, and in a way
contains the technical refinements one always encounters if one wants to prove (D.15) or
(12.13) for the general case.)

In view of the above comments one says that in some sense the inequalities (D.15),
(12.13) and (D.14) are equivalent. △

Notes

Inequalities like (12.13), due to Maz’ya, or the general isoperimetric inequality are notorious
for their challenging technical level. The inequalities become easier if one does not insist
on the optimal constant. For the isoperimetric inequality, at one point one has to estimate
the ‘perimeter’ of an open set Ω by Hn−1(∂Ω); see for instance [AFP00; Theorem 3.62].
The proof of that theorem inspired us to approximate integrals with respect to a Hausdorff
measure by integrals of suitable ‘simple functions’ on partitions arising in connection with
the definition of the Hausdorff measure (see Proposition D.7) and to express the integral
over the resulting simple functions by integrals over the gradient of suitable auxiliary
functions (see the proof of Theorem D.9).
We refer to [VoVo20b] for this treatment of Maz’ya’s inequality as well as for further

comments on the relation between Mazya’s inequality, the isoperimetric inequality and
the Sobolev inequality.





Appendix E

The n- and (n−1)-dimensional
Hausdorff measures on Rn

E.1 Hn on Rn

In this section we show that the n-dimensional Hausdorff measure on Rn is the Lebesgue
measure λn. For the definition of the Hausdorff measure and the notation used below we
refer to Section D.3.

E.1 Theorem. For all n ∈ N0 one has Hn = λn.

The assertion includes the statement that the measurable subsets coincide. This will be
established by showing that the outer measures H∗

n and λn,∗ (on arbitrary subsets of Rn)
are identical.

We recall that the outer n-dimensional Lebesgue measure is defined – for instance – by

λn,∗(A) := inf
{∑
R∈R

λn(R) ; R countable collection of

closed n-dimensional rectangles, A ⊆
⋃

R
}
,

for A ⊆ Rn; see [Str94; Section 2.1]. The properties we will need below are that λn,∗ is
countably subadditive and that

λn,∗(A) = inf{λn(U) ; U ⊆ Rn open, A ⊆ U} (A ⊆ Rn);

see [Str94; Lemmas 2.1.2 and 2.1.4].

The most important tool for the aim formulated above is the isodiametric inequality

λn,∗(A) ⩽ ωn rd(A)
n, (E.1)

valid for all bounded subsets A ⊆ R, where rd(A) := 1
2
diam(A). This inequality will be

proved in Section E.3.

We will also need the following nice property concerning the Lebesgue measure.

E.2 Lemma. Let U ⊆ Rn be an open set, and let δ > 0. Then there exists a pairwise
disjoint countable collection B of open balls B ⊆ U with rd(B) ⩽ δ and λn(U \

⋃
B) = 0.
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Proof. We take it for granted from measure theory that there exists a pairwise dis-
joint countable collection Q of open cubes Q ⊆ U of side lengths ⩽ 2δ and such that
λn(U \

⋃
Q) = 0.

In view of this property it clearly suffices to prove the assertion for the case when U is
an open cube U0 with side length s ⩽ 2δ. Put B0 := {B[c, s/2]}, where c is the centre of
the cube U0; then U1 := U0 \

⋃
B0 = U0 \B[c, s/2] is an open set, with

q := λn(U1)/λ
n(U0) = 1− 2−nωn < 1.

The open set U1 can be covered, up to a null set, by a pairwise disjoint countable collection
U1 of open cubes Q ⊆ U1. Applying the previous procedure to each of these cubes one
obtains a countable collection B1 of closed balls and a new open set U2 = U1 \

⋃
B1 with

λn(U2)/λ
n(U1) = q. Repeating the procedure we obtain a decreasing sequence (Uk) of

open sets with

λn(Uk) ⩽ qλn(Uk−1) ⩽ · · · ⩽ qkλn(U0) → 0 (k → ∞),

and then

λn
(
U0 \

⋃
k∈N0

⋃
Bk

)
= 0,

where Bk is the countable collection of balls corresponding to Uk. Replacing each of the
(closed) balls in

⋃
k∈N Bk by its interior we obtain the desired countable collection B of

open balls with the property λn(U0 \
⋃

B) = 0.

Proof of Theorem E.1. Let A ⊆ Rn.

(i) First we show that H∗
n(A) ⩽ λn,∗(A). There is nothing to prove if λn,∗(A) = ∞;

so assume that λn,∗(A) < ∞. Let δ > 0, ε > 0. There exists an open set U ⊇ A with
λn(U) ⩽ λn,∗(A)+ ε. By Lemma E.2 there exists a pairwise disjoint countable collection B
of open balls contained in U , with rd(B) ⩽ δ and∑

B∈B

λn(B) = λn(U) ⩽ λn,∗(A) + ε.

As U \
⋃

B is a Lebesgue null set, there exists a countable covering Q of U \
⋃

B with
rd(Q) ⩽ δ, consisting of cubes, and such that

∑
Q∈Q λ

n(Q) ⩽ 1
ωn

(
2√
n

)n
ε. Then B ∪Q is a

countable covering of A, rd(B ∪ Q) ⩽ δ, and

Sn(B ∪ Q) = ωn

∑
B∈B

rd(B)n + ωn

∑
Q∈Q

rd(Q)n

= λn(U) + ωn

(√n
2

)n ∑
Q∈Q

λn(Q) ⩽ λn,∗(A) + 2ε,

which shows that Hn,δ(A) ⩽ λn,∗(A) + 2ε. Letting first ε→ 0 and then δ → 0 we obtain
the assertion of the first step.
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(ii) We now prove that λn,∗(A) ⩽ H∗
n(A). Let C be a countable covering of A with

rd(C) ⩽ 1. Then the isodiametric inequality (E.1) shows that

λn,∗(A) ⩽
∑
C∈C

λn,∗(C) ⩽ ωn

∑
C∈C

rd(C)n,

by the countable subadditivity of λn,∗. Taking the infimum on the right-hand side we
obtain

λn,∗(A) ⩽ Hn,1(A) ⩽ H∗
n(A).

E.2 Hn−1 on Rn

In this section we show that that the (n−1)-dimensional Hausdorff measure on ∂Ω is the
surface measure σ described in Section 7.1.

E.3 Theorem. Let Ω ⊆ Rn be a bounded open set with C1-boundary. Then σ(A) =
Hn−1(A) for all Borel sets A ⊆ ∂Ω.

The following lemma will be needed in the proof of Theorem E.3.

E.4 Lemma. Let (M1, ρ1) and (M2, ρ2) be metric spaces, φ : M1 →M2 Lipschitz contin-
uous, with Lipschitz constant L ⩾ 0, and let d ∈ [0,∞). Then

H∗
d(φ(A)) ⩽ LdH∗

d(A) (E.2)

for all A ⊆M1.

Proof. Let δ > 0, and let C a covering of A ⊆M1 with rd(C) ⩽ δ. Then

φ(C) := {φ(C) ; C ∈ C}

is a covering of φ(A), with rd(φ(C)) ⩽ Lδ. We estimate

Hd,Lδ(φ(A)) ⩽ Sd(φ(C)) = ωd

∑
C∈C

rd(φ(C))d ⩽ ωdL
d
∑
C∈C

rd(C)d = LdSd(C).

Taking the infimum on the right-hand side we obtain Hd,Lδ(φ(A)) ⩽ LdHd,δ(A), which
for δ → 0 yields (E.2).

Proof of Theorem E.3. In the case n = 1 both measures σ and Hn−1 are the counting
measure, so we only need to treat the case n ⩾ 2.
(i) Let z ∈ ∂Ω, and let ν(z) be the outer unit normal at z. In the first step we

construct a special local parametrisation of ∂Ω around z. There exists an orthogonal
matrix B such that Bν(z) = en, the n-th unit vector. Applying B to ∂Ω one can see
that there exists an open neighbourhood W of z in ∂Ω such that B(W ) is a standard
C1-graph, i.e., there exist an open set W ′ ⊆ Rn−1 and a C1-function g : W ′ → R such
that B(W ) = {(y, g(y)) ; y ∈ W ′}. There exists z′ ∈ W ′ such that Bz = (z′, g(z′)). Then
∇g(z′) = 0 because Bν(z) = en; one could say that B(W ) is flat at Bz.
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Next, let α > 1. Reduce W ′ to a smaller convex open neighbourhood of z′ by requiring√
1 + |∇g(y′)|2 ⩽ α for all y′ ∈ W ′, and reduce the set W accordingly. It is easy to see

that then the mapping φ : W ′ → B(W ), y′ 7→ (y′, g(y′)) is Lipschitz continuous with
Lipschitz constant α. Let A ⊆ W be a Borel set, A′ := φ−1(B(A)). Then

σ(A) = σ(B(A)) =

∫
A′

√
1 + |∇g(y′)|2 dy′,

and by estimating the integrand below and above we obtain

λn−1(A′) ⩽ σ(A) ⩽ αλn−1(A′). (E.3)

Let prn−1 : Rn → Rn−1 denote the canonical projection, prn−1(x1, . . . , xn) := (x1, . . . , xn−1),
and note that A′ = prn−1(B(A)). From Lemma E.4 we conclude that

Hn−1(A
′) = Hn−1

(
prn−1(B(A))

)
⩽ Hn−1(B(A)) = Hn−1(φ(A

′)) ⩽ αn−1Hn−1(A
′),

which in view of Theorem E.1 and the obvious equality Hn−1(B(A)) = Hn−1(A) can be
rewritten as

λn−1(A′) ⩽ Hn−1(A) ⩽ αn−1λn−1(A′). (E.4)

Combining the estimates (E.3) and (E.4) we obtain∣∣σ(A)−Hn−1(A)
∣∣ ⩽ (αn − 1)λn−1(A′) ⩽ (αn − 1)σ(A).

(ii) In order to continue we rephrase the result of step (i) as follows. Let α > 1. Then
for every z ∈ ∂Ω there exists an open neighbourhood Wz in ∂Ω such that for every Borel
set Az ⊆ Wz one has

∣∣σ(Az) − Hn−1(Az)
∣∣ ⩽ (αn − 1)σ(Az). From the open covering

{Wz ; z ∈ ∂Ω} of ∂Ω we choose a finite subcovering {Wz ; z ∈ F}.
Let A ⊆ ∂Ω be a Borel set. Then there exists a partition {Az ; z ∈ F} of A, with a

Borel set Az ⊆ Wz for all z ∈ F , and we obtain

|σ(A)−Hn−1(A)| ⩽
∑
z∈F

∣∣σ(Az)−Hn−1(Az)
∣∣ ⩽ ∑

z∈F

(αn − 1)σ(Az) ⩽ (αn − 1)σ(∂Ω).

As the inequality between the outer terms of this chain of inequalities holds for all α > 1,
we conclude that σ(A) = Hn−1(A).

E.5 Remarks. (a) The proof of Theorem E.3 can be modified to show that more generally
one has equality of the d-dimensional Hausdorff measure and the “usual” d-dimensional
surface measure on embedded d-dimensional manifolds, for d = 1, . . . , n− 1.
(b) Much more generally, it is shown in the literature that the image of an injec-

tive Lipschitz continuous map φ : U → Rn, where U ⊆ Rd (with d ∈ {1, . . . , n − 1})
is a bounded open set, has d-dimensional Hausdorff measure given by Hd(φ(U)) =∫
U

√
det(φ′(y)⊤φ′(y)) dy. This fact and the formula carry the name of “area formula” in

geometric measure theory. (It deserves to be mentioned that, by Rademacher’s theorem,
the derivative occurring in the formula exists almost everywhere.) We refer to [EvGa92;
Sect. 3.3, Theorem 1], [AFP00; Theorem 2.71], for the full formulation and the proof of
the area formula. △
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E.3 The isodiametric inequality

The issue of this section is to give a proof of the isodiametric inequality (E.1).

E.6 Theorem. Let A ⊆ Rn be a bounded set. Then

λn,∗(A) ⩽ ωn rd(A)
n. (E.5)

E.7 Remarks. (a) Note that a set A ⊆ Rn need not be contained in a ball of radius
rd(A); an example in R2 is the isolateral triangle.
(b) If A is symmetric with respect to the origin, i.e. A = −A, then 2|x| = |x− (−x)| ⩽

diam(A) for all x ∈ A, hence A ⊆ B[0, rd(A)], and (E.5) holds. △

The idea of the proof of Theorem E.6 is the reduction to the case of Remark E.7(b), by
successive symmetrisation of A. The one-dimensional symmetrisation of a bounded set
B ⊆ R is the open interval

S(B) :=
(
−1

2
λ1,∗(B), 1

2
λ1,∗(B)

)
(which is empty if B is a null set). Now let A ⊆ Rn be bounded, and let (e1, . . . , en)
denote the standard orthonormal basis of Rn. We define the Steiner symmetrisation
Sn(A) of A with respect to the coordinate hyperplane e⊥n by

Sn(A) :=
⋃

x̌∈Rn−1

{x̌} × S(Ax̌),

where, for x̌ ∈ Rn−1, we use the notation

Ax̌ := {xn ∈ R ; (x̌, xn) ∈ A}.

(Usually, the Steiner symmetrisation is defined with closed intervals; we found it more
convenient to work with open intervals.) The Steiner symmetrisation consists in subdivid-
ing Rn into one-dimensional fibers and then applying the one-dimensional symmetrisation
in each fiber. Clearly Sn(A) is symmetric with respect to e⊥n .
The symmetrisations Sk(A) of A with respect to the coordinate hyperplanes e⊥k , for

k = 1, . . . , n− 1, are defined analogously.

E.8 Lemma. Let A ⊆ Rn be a bounded set.
(a) Then diam(Sn(A)) ⩽ diam(A).
(b) If k ∈ {1, . . . , n−1}, and A is symmetric with respect to e⊥k , then Sn(A) is symmetric

with respect to e⊥k as well.
(c) If A is a Borel set, then Sn(A) is a Borel set, and λn(Sn(A)) = λn(A).

Proof. (a) Let x = (x̌, xn), y = (y̌, yn) ∈ Sn(A), and put r1 := inf Ax̌, r2 := supAx̌ and
s1 := inf Ay̌, s2 := supAy̌ . Then

|xn − yn| ⩽ |xn|+ |yn| < 1
2
λ1,∗(Ax̌) +

1
2
λ1,∗(Ay̌)

⩽ 1
2
(r2 − r1) +

1
2
(s2 − s1) =

1
2
(r2 − s1) +

1
2
(s2 − r1)

⩽ max{r2 − s1, s2 − r1}.
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Therefore
|x− y|2 = |x̌− y̌|2 + (xn − yn)

2

< |x̌− y̌|2 +max
{
(r2 − s1)

2, (s1 − r2)
2
}

= max
{
|(x̌, r2)− (y̌, s1)|2, |(y̌, s2)− (x̌, r1)|2

}
⩽ diam(A)2,

where the last inequality holds because the points (x̌, r1), (x̌, r2), (y̌, s1), (y̌, s2) belong to
the closure of A. This proves the assertion.
(b) The symmetry of A with respect to e⊥k implies that ARkx̌ = Ax̌ for all x̌ ∈ Rn−1, where

Rk denotes the reflection of Rn−1 in the (n−2)-dimensional coordinate hyperplane e⊥k .
Then it follows from the definition of Sn(A) that Sn(A) is symmetric, too.

(c) From Fubini’s theorem we know that the function

f : Rn−1 → R, x̌ 7→
∫
R
1A(x̌, xn) dxn = λ1(Ax̌)

is Borel measurable. It follows that the function g : Rn → R, g(x̌, xn) := 1
2
f(x̌) − |xn|

(x̌ ∈ Rn−1, xn ∈ R), is Borel measurable, and therefore Sn(A) = [g > 0] is a Borel set.
Using Fubini’s theorem again we conclude that

λn(A) =

∫
Rn

1A(x) dx =

∫
x̌∈Rn−1

λ1(Ax̌) dx̌ = λn(Sn(A)).

Proof of Theorem E.6. Without loss of generality we suppose that A is closed (and hence
a Borel set). Put A0 := S1(. . . Sn−1(Sn(A)) . . . ); then Lemma E.8(c) implies λn(A) =
λn(A0). Moreover, by Lemma E.8(b), A0 is symmetric whith respect to all the coordinate
hyperplanes e⊥1 , . . . , e

⊥
n , hence with respect to the origin, and therefore λn(A0) ⩽ ωn rd(A0)

n

by Remark E.7(b). Finally, Lemma E.8(a) shows that rd(A0) ⩽ rd(A), and this concludes
the proof.

Notes

The contents of this appendix are standard subjects of geometric measure theory and can
be found, for instance, in [Fed69], [EvGa92], [AFP00]. In Section E.2 we treat the equality
of the surface measure and the (n−1)-dimensional Hausdorff measure in less generality
than in the indicated references, thereby allowing an easier access. For comments on
the general case we refer to Remark E.5(b). Our proof of the isodiametric inequality in
Section E.3 is a reformulation of the proof given in [EvGa92; Section 2.2].

Exercises

E.1 Let (M1, ρ1), (M2, ρ2) be metric spaces, d ∈ [0,∞), φ : M1 →M2 Hölder continuous
with exponent α ∈ (0,∞), Hölder constant H ⩾ 0, i.e. ρ2(φ(x), φ(y)) ⩽ Hρ1(x, y)

α for
all x, y ∈M1. Show that H∗

d/α(φ(A)) ⩽ Hd/αH∗
d(A), for all A ⊆M1. (See Lemma E.4 for

a special case of this assertion.)



Appendix F

The spectral theorem for self-adjoint
operators

In this appendix we prove the spectral theorem, which we have already stated in Chapter 13.

F.1 Theorem. Let H be a Hilbert space, and let A be a self-adjoint operator in H. Then
there exist a semi-finite measure space (Ω,A, µ), a measurable function α : Ω → R and a
unitary operator J : H → L2(Ω,A, µ) such that

A = J−1MαJ. (F.1)

The identity (F.1) means that

dom(A) = {x ∈ H ; αJx ∈ L2(µ)}, Ax = J−1(αJx).

Clearly, the spectral theorem is only of interest in non-trivial Hilbert spaces. For this
reason we exclude the Hilbert space H = {0} in the present appendix.

F.1 The spectral theorem for bounded self-adjoint
operators

Throughout this section let H be a (real or complex) Hilbert space and A ∈ L(H) a
self-adjoint operator. It will be important to remember that σ(A) ⊆ R; in the complex
case this holds because the operators ±iA are m-accretive, by Remark 3.18. (See also
Exercise 6.2.)

The proof of the spectral theorem relies on some basic properties of the functional
calculus for self-adjoint operators. The function spaces needed below will consist of real-
or complex-valued functions, according to whether H is a real or complex Hilbert space.

We start by associating with each polynomial p = a0 + a1t+ · · ·+ ant
n the operator

p(A) := a0I + a1A + · · · + anA
n. Let P denote the set of all polynomials. Then it is

straightforward that the mapping P ∋ p 7→ p(A) ∈ L(H) is an algebra homomorphism.
The following theorem states further properties and extends this homomorphism to the
continuous functions on the spectrum of A. A polynomial p can be considered as a
function on K; we denote its restriction to σ(A) by p|σ(A).



304

F.2 Theorem. There exists an algebra homomorphism Φ: C(σ(A)) → L(H) satisfying

Φ(p|σ(A)) = p(A) for all polynomials p, in particular Φ(1σ(A)) = I, Φ(idσ(A)) = A,

∥Φ(f)∥ ⩽ ∥f∥∞ for all f ∈ C(σ(A)),

Φ(f) = Φ(f)∗ for all f ∈ C(σ(A)),

Φ(f) ⩾ 0 for all f ∈ C(σ(A)), f ⩾ 0.

Moreover, Φ is uniquely determined by the first two properties.

Proof. We first assume that p is a real polynomial, i.e. all the coefficients of p are
real. Then p(A) is self-adjoint. Let λ ∈ R and suppose that p(t) ̸= λ for all t ∈ σ(A).
We will show that λ /∈ σ(p(A)); then it follows that σ(p(A)) ⊆ ran(p|σ(A)), and hence
∥p(A)∥ ⩽ ∥p|σ(A)∥∞ by Proposition 6.15.
Replacing the polynomial p by p − λ we see that we may assume without loss of

generality that λ = 0. Then we can decompose p as

p(t) = c
∏
j∈J

(t− αj)
∏
k∈K

(
(t− βk)

2 + γ2k
)
,

with finite sets J, K and c ∈ R\{0}, αj ∈ R\σ(A) (j ∈ J), βk, γk ∈ R, γk ̸= 0 (k ∈K). The
latter, quadratic factors correspond to non-real zeros of p – occurring in pairs of complex
conjugate zeros βk±iγk. It follows that p(A) is invertible in L(H), i.e. 0 /∈ σ(p(A)), because
all the factors A− αj (j ∈ J) and (A− βk)

2 + γ2k (k ∈ K) are invertible. (Concerning the
latter factors, note that (A− βk)

2 is m-accretive.)
For general p ∈ P one readily sees that p(A)∗ = p(A), where p is the polynomial obtained

from p by replacing the coefficients of p by their complex conjugates. Then, using the
assertion for real polynomials shown above, one estimates

∥p(A)x∥2 =
(
p(A)∗p(A)x

∣∣x) = (
(pp)(A)x

∣∣x) ⩽ ∥∥(pp)|σ(A)

∥∥
∞∥x∥2

for all x ∈ H, and this implies that ∥p(A)∥ ⩽ ∥p|σ(A)∥∞. As a consequence, if p, q ∈ P
are such that p|σ(A) = q|σ(A), then p(A) = q(A). Therefore, putting

Φ(p|σ(A)) := p(A) (p ∈ P)

one obtains a well-defined mapping Φ: Pσ(A) → L(H), where Pσ(A) :=
{
p|σ(A) ; p ∈ P

}
.

Moreover, Φ thus defined is an algebra homomorphism.
We have proved the asserted properties (except the final one) for Φ, defined on Pσ(A).

The set Pσ(A) is dense in C(σ(A)) by the Stone–Weierstrass theorem, Theorem B.2 (or
by the Weierstrass approximation theorem, together with Exercise F.1). Since Φ is a
bounded operator, it has a unique continuous extension to C(σ(A)), and the properties
shown so far carry over. Finally Φ(f) = Φ(f 1/2)∗Φ(f 1/2) ⩾ 0 for all 0 ⩽ f ∈ C(σ(A)).

We will use the notation f(A) := Φ(f) for all f ∈ C(σ(A)). For x ∈ H \ {0} we define

Hx := lin{Anx ; n ∈ N0} = {p(A)x ; p ∈ P} = {f(A)x ; f ∈ C(σ(A))},

the cyclic subspace generated by x. Obviously Hx is invariant under A, and therefore
under f(A) for all f ∈ C(σ(A)). If Hx = H, then x is called a cyclic vector (for A); the
following theorem contains the spectral theorem in this special case.
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F.3 Theorem. Let x ∈ H \ {0}. Then there exist a unique Borel measure µ on σ(A)
such that

(f(A)x |x) =
∫
σ(A)

f dµ
(
f ∈ C(σ(A))

)
(F.2)

and a unitary operator J : Hx → L2(σ(A), µ) such that f(A)|Hx
= J−1MfJ for all f ∈

C(σ(A)).

The measure µ from Theorem F.3 is the spectral measure associated with x. It is a
finite measure, in fact

µ(σ(A)) =

∫
σ(A)

1 dµ = ∥x∥2 (F.3)

by (F.2).

Proof of Theorem F.3. We start with the crucial observation that

C(σ(A)) ∋ f 7→ (f(A)x |x) ∈ K

defines a positive linear functional on C(σ(A)), by Theorem F.2. Thus from the Riesz–
Markov theorem – see Appendix G – we obtain a unique Borel measure µ on σ(A)
satisfying (F.2). For f, g ∈ C(σ(A)) one has g(A)∗f(A) = (fg)(A) by Theorem F.2, and
it follows that (

f(A)x
∣∣ g(A)x) = (

(fg)(A)x
∣∣x) = ∫

σ(A)

fg dµ. (F.4)

Now we consider C(σ(A)) as a subspace of L2(σ(A), µ), with µ-a.e. equal functions
identified. With this understanding, equality (F.4) shows that the mapping(

C(σ(A)), ∥·∥L2(σ(A),µ)

)
∋ f 7→ f(A)x ∈ H0 :=

{
f(A)x ; f ∈ C(σ(A))

}
is isometric, with isometric inverse

J0 : H0 → L2(σ(A), µ), J0(f(A)x) := f
(
f ∈ C(σ(A))

)
.

As H0 is dense in Hx and C(σ(A)) is dense in L2(σ(A), µ), by Theorem G.9, the continuous
extension J of J0 is a unitary operator J : Hx → L2(σ(A), µ).
Now let f ∈ C(σ(A)). If g, h ∈ C(σ(A)), y := g(A)x, z := h(A)x (∈ H0), then

(f(A)y | z) =
(
f(A)g(A)x

∣∣h(A)x) = ∫
σ(A)

fgh dµ = (fJy | Jz)L2(σ(A),µ) .

This extends to
(f(A)y | z) = (fJy | Jz)L2(σ(A),µ) = (J∗MfJy | z)

for all y, z ∈ Hx, which shows that f(A)|Hx
= J−1MfJ .

If x, y ∈ H and y is orthogonal to Hx, then(
f(A)y

∣∣ g(A)x) = (
y
∣∣ (fg)(A)x) = 0

for all f, g ∈ C(σ(A)), and this implies that Hy ⊥ Hx.
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F.4 Proposition. There exists a set X ⊆ H \ {0} such that Hx ⊥ Hy for all x, y ∈ X
with x ̸= y and such that H =

⊕
x∈X Hx.

We note that the (possibly uncountably infinite) orthogonal direct sum
⊕

x∈X Hx is
the closed linear hull of

⋃
x∈X Hx and consists of all elements y ∈ H that can be written

as y =
∑

x∈X yx with suitable yx ∈ Hx, where the set {x ∈ X ; yx ̸= 0} is countable; see
Exercises F.3(c) and F.4(b). For simplicity we will also write the element y as a family
(yx)x∈X .

Proof of Proposition F.4. The set

X :=
{
X ⊆ H \ {0} ; Hx ⊥ Hy for all x, y ∈ X with x ̸= y

}
is ordered by inclusion, and any chain C in X is dominated, by

⋃
X∈C X. Zorn’s lemma

implies that the X has a maximal element X. For this set X one has H =
⊕

x∈X Hx,

because otherwise there would exist 0 ̸= y ∈
(⊕

x∈X Hx

)⊥, and then X ∪ {y} ∈ X , in
contradiction to the maximality of X.

F.5 Remark. It is not hard to see that the set X in Proposition F.4 is countable if and
only if H is separable. If H is separable one does not need Zorn’s lemma for the proof,
because one can construct the set X, starting with a countable dense subset of H. △

Proof of Theorem F.1 for the case of bounded self-adjoint operators.
Let X ⊆ H \ {0} be a set with the properties stated in Proposition F.4. For each x ∈ X
let µx be the spectral measure associated with x, and let Ax be the restriction of A to Hx.
Let Mid,x denote the operator of multiplication by id on L2(σ(A), µx). Then there exists
a unitary operator Jx : Hx → L2(σ(A), µx) such that Ax = J−1

x Mid,xJx; see Theorem F.3
and the comments after its proof. We compose the family (Jx)x∈X to a unitary operator

J̌ :=
⊕
x∈X

Jx :
⊕
x∈X

Hx (= H) →
⊕
x∈X

L2(σ(A), µx)

in the canonical way, i.e. J̌(yx)x∈X = (Jxyx)x∈X . Similarly we compose the family
(Mid,x)x∈X to a bounded operator M on the Hilbert space

⊕
x∈X L2(σ(A), µx), putting

M(fx)x∈X = (Mid,xfx)x∈X . Then A = J̌−1MJ̌ .
In order to transform M into a multiplication operator we define Ω := σ(A)×X. For

B ⊆ Ω and x ∈ X we put Bx := {λ ∈ σ(A) ; (λ, x) ∈ B}; then B =
⋃

x∈X(Bx × {x}). We
further define

A :=
{
B ⊆ Ω; Bx measurable (x ∈ X)

}
,

µ(B) :=
∑
x∈X

µx(Bx) (B ∈ A).

Then (Ω,A, µ) is a measure space and

Ĵ :
⊕
x∈X

L2(σ(A), µx) → L2(Ω, µ), Ĵ(fx)x∈X := [(λ, x) 7→ fx(λ)]
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is a unitary operator; see Exercise F.5. Moreover, defining α : Ω → R by α(λ, x) := λ one
easily sees that α is measurable and that Ĵ−1MαĴ =M . We conclude that

A =
(
Ĵ J̌

)−1
MαĴ J̌.

Finally we show that the measure space (Ω,A, µ) constructed above is semi-finite. We
first mention that for every x ∈ H the spectral measure µx is a finite measure; see (F.3).
Now, if B ∈ A is such that µ(B) = ∞, then by the definition of µ there exists x ∈ X
such that µx(Bx) > 0. As we already know that µx(Bx) <∞ we have found the required
subset Bx × {x} of B for the property of semi-finiteness of µ.

F.6 Remarks. (a) If H is separable, then the set X can be chosen such that µ is finite.
Indeed, as µ(Ω) =

∑
x∈X µx(σ(A)) =

∑
x∈X ∥x∥2 (recall (F.3)), one only has to choose X

such that
∑

x∈X ∥x∥2 <∞, and this can be arranged if X is countable.
(b) In Exercise F.9 the reader is asked to show that any measure µ can be modified to

a semi-finite measure without changing the space L2(µ). △

F.2 The spectral theorem for self-adjoint operators; the
general case

In this section we use the spectral theorem for bounded self-adjoint operators to give a
proof for the general case. As before, let H be a (real or complex) Hilbert space.
We begin with some preliminary material. The main tool is the following result of von

Neumann.

F.7 Theorem. Let G be a Hilbert space, and let A be a closed operator from H to G,
dom(A) dense. Then A∗A is an accretive self-adjoint operator in H.

Proof. Let z ∈ H. From the equality A⊥ = −(A∗)−1 in H ⊕ G (see Section 6.1) we
conclude that (z, 0) ∈ H ⊕G can be written as (z, 0) = (x,Ax) + (−A∗y, y), with suitable
x ∈ dom(A), y ∈ dom(A∗). It follows that z = x − A∗y = x + A∗Ax, so we have shown
that ran(I + A∗A) = H. Clearly

(A∗Ax | y) = (Ax |Ay) = (x |A∗Ay)
(
x, y ∈ dom(A∗A) ⊆ dom(A)

)
.

In particular (A∗Ax |x) ⩾ 0 for all x ∈ dom(A∗A), i.e. A∗A is accretive, and then Proposi-
tion 6.9 implies that I + A∗A is self-adjoint.

F.8 Remark. Note that the assertion of Theorem F.7 also contains the information that
dom(A∗A) is dense in H – a property that is not a priori obvious. △

Given an accretive self-adjoint operator C, we will use the notation (I + C)−1/2 as a
shorthand for the (accretive) square root of the bounded accretive self-adjoint operator
(I + C)−1. This square root exists by Theorem F.2.

F.9 Lemma. Let A be a self-adjoint operator in H. Then A2 is an accretive self-adjoint
operator, B := A(I + A2)−1/2 belongs to L(H) and is a self-adjoint contraction, and −1
and 1 are not eigenvalues of B.
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Proof. From A∗ = A and Theorem F.7 we conclude that A2 is an accretive self-adjoint
operator; hence (I + A2)−1 is an accretive self-adjoint operator.
Let x ∈ dom(A), y := (I + A2)−1x. Then y ∈ dom(A3),

A(I + A2)−1x = Ay = (I + A2)−1A(I + A2)y = (I + A2)−1Ax,

and therefore Ap
(
(I+A2)−1

)
x = p

(
(I+A2)−1

)
Ax for all polynomials p. Since (I+A2)−1/2

can be approximated in L(H) by polynomials in (I + A2)−1 (see Theorem F.2) and since
A is closed, it follows that (I + A2)−1/2x ∈ dom(A) and

A(I + A2)−1/2x = (I + A2)−1/2Ax. (F.5)

This implies that∥∥A(I + A2)−1/2x
∥∥2

=
(
(I + A2)−1Ax

∣∣Ax) = (
A2(I + A2)−1x

∣∣x)
⩽

(
(I + A2)(I + A2)−1x

∣∣x) = ∥x∥2.

As dom(A) is dense in H and A is closed, we conclude that ran
(
(I + A2)−1/2

)
⊆ dom(A)

and B ∈ L(H), ∥B∥ ⩽ 1.
For all x, y ∈ dom(A) one has(

A(I + A2)−1/2x
∣∣ y) = (

(I + A2)−1/2Ax
∣∣ y) = (

x
∣∣A(I + A2)−1/2y

)
,

which, again by the denseness of dom(A), shows that B is symmetric, hence self-adjoint.
Using (F.5) we obtain

I −B2 = I − A2(I + A2)−1 = (I + A2)−1. (F.6)

Hence, if x ∈ H satisfies Bx = ±x, then 0 = x−B2x = (I + A2)−1x and thus x = 0.

Proof of Theorem F.1, general case.

By Lemma F.9, the operator B := A(I +A2)−1/2 is self-adjoint and contractive. Moreover
(F.6) implies that

B = A(I + A2)−1/2 = A(I −B2)1/2.

We know from Theorem F.1 for the case of a bounded self-adjoint operator – see Section F.1
for its proof – that B is unitarily equivalent to a multiplication operator Mβ on L2(µ)
for some semi-finite measure space (Ω,A, µ), with measurable β : Ω → (−1, 1). (For the
property that β takes its values in (−1, 1) we apply properties (a) and (c) of Remark 13.22,
taking into account the contractivity of B and the injectivity of ±I −B.)
In order to simplify notation we now assume – without loss of generality – thatH = L2(µ)

and B =Mβ. Then we have Mβ = B = A(I −B2)1/2 = AM(1−β2)1/2 , and composing on
the right with M(1−β2)−1/2 we obtain

MβM(1−β2)−1/2 = A|ran(I−B2)1/2 ⊆ A.

One easily sees that MβM(1−β2)−1/2 = Mα, where α := β(1 − β2)−1/2; indeed, this is an
immediate consequence of dom(Mα) = dom(M(1−β2)−1/2), which in turn follows from the
equality α2 + 1 = 1/(1− β2).
The conclusion is that Mα ⊆ A, and since both Mα and A are self-adjoint one ob-

tains Mα = A.
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F.10 Remark. The idea of the proof of Theorem F.1 for the general case is to find an
injective function f : σ(A) → R such that f(A) becomes a bounded self-adjoint operator
(to which the result for the bounded case can be applied). The sophisticated choice
f(t) = t(1 + t2)−1/2 above is needed when σ(A) = R. If there exists a point λ ∈ R \ σ(A),
then one can use f(t) := (λ− t)−1 and argue as above, thereby reducing the proof to the
bounded self-adjoint operator (λ− A)−1. △

Notes

The version of the spectral theorem we have presented in Theorem 13.21 is well-known
and well-established. Nevertheless we have been at a loss finding a complete and simple
proof in the literature, without the restriction to separable or complex Hilbert spaces.
This is why we decided to include a complete proof.

The proof we have given draws on various sources. The proof of the functional calculus
for bounded operators, Theorem F.2, is inspired by Riesz–Sz.-Nagy [RiNa68; Kap.VII,
Nr. 106], with a shortcut made possible by our Proposition 6.15. The procedure for finding
the spectral measure for elements in the Hilbert space (Theorem F.3), the decomposition
of the Hilbert space into cyclic subspaces (Proposition F.4) and the construction of the
measure space for the representation of the operator as a multiplication operator in
Section F.1 are rather standard and have no special sources. The proof of Theorem F.7
is taken from Kato [Kat80; Chap. V, Theorem 3.24]. To our knowledge, the method for
deriving the spectral theorem for unbounded operators from the case of bounded operators
using the operator A(I + A2)−1/2, as presented in Section F.2, appeared for the first time
in Schmüdgen’s book [Sch12].

Exercises

F.1 Let K ⊆ R be a compact set, and let a, b ∈ R, a < b, K ⊆ [a, b]. Show that for any
f ∈ C(K) there exists a function f̃ ∈ C[a, b] such that f̃ |K = f ,

∥∥f̃∥∥∞ = ∥f∥∞. Conclude
that every function f ∈ C(K) can be approximated by polynomials, uniformly on K.
(Hint: There exists a pairwise disjoint family (Uj)j∈N , with N countable, of open intervals
such that K = R \

⋃
j∈N Uj.)

Note. The existence of f̃ stated above is a special case of the Tietze extension theorem;
see for instance [Haa14; Theorem 15.15].

F.2 Let H be a Hilbert space, A ∈ L(H) self-adjoint.
(a) Show that the mapping Φ: C(σ(A)) → L(H), f 7→ f(A) from Theorem F.2 is

injective.
Hint: Assume that there exists f ∈ C(σ(A)), f ̸= 0 such that f(A) = 0. Choose

λ ∈ σ(A) such that f(λ) ̸= 0. Show that (λ− A)2 = ((λ− id)2 + |f |2)(A) is invertible in
L(H), and conclude that λ ∈ ρ(A).
(b) Let x ∈ H be a cyclic vector for A. Show that the mapping C(σ(A)) ∋ f 7→ f(A)x ∈

H is injective.
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F.3 Let Y be a Banach space, X an index set and F := {F ⊆ X ; F finite}. Let (yx)x∈X
be a summable family of vectors yx ∈ Y . Here, the family is called summable, with sum
y =:

∑
x∈X yx ∈ Y , if

∀ε > 0 ∃E ∈ F ∀F ∈ F , F ⊇ E :

∥∥∥∥∑
x∈F

yx − y

∥∥∥∥ ⩽ ε. (F.7)

(a) Show that y is uniquely determined by (F.7).
(b) Show that, with the above notation,

∥∥∑
x∈F\E yx

∥∥ ⩽ 2ε, and conclude that ∥yx∥ ⩽ 2ε

for all x ∈ X \ E.
(c) Show that X0 := {x ∈ X ; yx ̸= 0} is countable.
(d) Assume that the set X0 from part (c) is infinite. Show that

∑
x∈X yx =

∑∞
n=1 yxn

for every enumeration (xn) of the (countably infinite) set X0.
(e) Assume that Y = R and that yx ⩾ 0 for all x ∈ X. Show that

∑
x∈X yx =

sup
{∑

x∈F yx ; F ∈ F
}
.

F.4 Let H be a Hilbert space, X an index set and (Hx)x∈X a family of closed subspaces
Hx ⊆ H such that Hx ⊥ Hy for all x, y ∈ X with x ̸= y. For x ∈ X let Px denote the
orthogonal projection onto Hx.
(a) Let F ⊆ X be finite. Show that

∑
x∈F Px is the orthogonal projection onto

⊕
x∈F Hx.

(b) Assume that lin
(⋃

x∈X Hx

)
is dense in H. Show that every element y ∈ H can be

written as y =
∑

x∈X Pxy.

F.5 Let X be an index set, K ⊆ R a Borel set and Ω := K ×X. For each x ∈ X let
µx be a Borel measure on K. For B ⊆ Ω and x ∈ X denote Bx := {λ ∈ K ; (λ, x) ∈ B};
then B =

⋃
x∈X(Bx × {x}). Define

A = {B ⊆ Ω; Bx measurable (x ∈ X)}, µ(B) :=
∑
x∈X

µx(Bx) (B ∈ A).

(a) Show that (Ω,A, µ) thus defined is a measure space. (If one takes K = σ(A), then
(Ω,A, µ) is the measure space constructed in the proof of Theorem F.1.)

(b) Let f ∈ L1(Ω,A, µ). Show that f(·, x) ∈ L1(K,µx) for all x ∈ X and∫
Ω

f dµ =
∑
x∈X

∫
K

f(λ, x) dµx(λ).

Hint: Why can one assume without loss of generality that f ⩾ 0 ? It may be regarded
as obvious that

∫
Ω
f dµ =

∫
K
f(λ, x) dµx(λ) if there exists x ∈ X such that f(·, y) = 0 for

all y ∈ X \ {x}. Then consider the function fF := 1K×Ff ∈ L1(Ω,A, µ) for finite sets
F ⊆ X and use the property 0 ⩽ fF ⩽ f to conclude that

∫
K
f(λ, x) dµx(λ) = 0 for all

but countably many x ∈ X. Finally use the monotone convergence theorem.
(c) Use part (b) to show that

Ĵ :
⊕
x∈X

L2(K,µx) → L2(Ω, µ), (fx)x∈X 7→
(
(λ, x) 7→ fx(λ)

)
is a unitary operator. (It is part of the exercise to show that the function (λ, x) 7→ fx(λ)
is measurable.)
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F.6 Prove the statements in Remark F.5.

F.7 Let (Ω,A, µ) be a measure space, H := L2(µ). Let α : Ω → R be measurable,
A :=Mα, and define dom∞(A) :=

⋂
n∈N dom(An).

For a ⩽ b define
H[a,b] :=

{
f ∈ L2(µ) ; f = 1[a⩽α⩽b]f

}
.

Put λ := a+b
2
, r := b−a

2
, and show that

H[a,b] =
{
f ∈ dom∞(A) ; ∥(A− λ)nf∥ ⩽ rn∥f∥ (n ∈ N)

}
. (F.8)

Convince yourself that this implies that the spaces H[a,b] in (13.15) do not depend on
the representation of A as a multiplication operator in Theorem 13.21; note that in the
description (F.8) the function α does not appear.

F.8 Let A be a self-adjoint operator in a Hilbert space H. Let (Ωj,Aj, µj), αj, Jj be as
in Theorem 13.21, for j = 1, 2. Show that

J−1
1 Mf◦α1J1 = J−1

2 Mf◦α2J2 (F.9)

for all Borel measurable functions f : R→ R, by implementing the following steps.

(i) It is sufficient to prove the assertion for all bounded Borel measurable functions.

(ii) Let F denote the set of all bounded Borel measurable functions f : R→ R for which
(F.9) holds. Show that F is an algebra (under pointwise addition and multiplication
of functions), that F contains the indicator functions of compact intervals (use the
independence of the spaces H[a,b], Exercise F.7) and the function 1, and that for all
bounded, pointwise convergent sequences in F the limit belongs to F (a consequence of
the dominated convergence theorem).

(iii) Use (ii) to show that the set B := {B ⊆ R ; 1B ∈ F} is the Borel σ-algebra of R.
Conclude that F is the set of all bounded Borel measurable functions (by using the fact
that every bounded Borel measurable function can be obtained as the pointwise limit of a
bounded sequence in S(B) = lin{1B ; B ∈ B}).
Note. Stripping hypotheses to a minimum, we include the following two observations.

Let Ω be a set, S an algebra of functions f : Ω → R. Then B := {B ⊆ Ω; 1B ∈ S} is a
ring of subsets of Ω (see the hint to Exercise 10.5(a)). If additionally 1 ∈ S, then Ω ∈ B,
and B is an algebra of subsets (see step (iii) above).

F.9 Let (Ω,A, µ) be a measure space. We define

Afin := {A ∈ A ; µ(A) <∞},
and for A ∈ A we put

µsf(A) := sup{µ(B) ; B ∈ Afin, B ⊆ A}.

Prove the following properties.
(a) µsf is a semi-finite measure, and µsf(A) = µ(A) for all A ∈ Afin. Every µ-null set is

a µsf-null set.
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(b) Every µ-integrable function f : Ω → [0,∞) is µsf-integrable, and
∫
f dµsf =

∫
f dµ.

If f : Ω → [0,∞) is µsf-integrable, then there exists a set A ∈ A with µsf(Ω \ A) = 0 such
that 1Af is µ-integrable.
(c) If f ∈ L2(µ), then every µ-representative of f belongs to L2(µsf), and the mapping

L2(µ) → L2(µsf) thus defined is an isometric isomorphism. (Hint: Given f ∈ L2(µsf), use
part (b) to find a µ-square-integrable representative of f .)



Appendix G

The Riesz–Markov representation
theorem

The aim of this appendix is to prove the Riesz–Markov theorem in the special context
of compact metric spaces. We denote by C(K) the space of continuous functions on a
compact space K. A linear functional η : C(K) → K is called positive if η(f) ⩾ 0 for all
0 ⩽ f ∈ C(K).

G.1 Theorem (Riesz–Markov). Let K be a compact metric space, and let η : C(K)→ K
be a positive linear functional. Then there exists a unique Borel measure µ on K such that

η(f) =

∫
f dµ

for all f ∈ C(K).

We only need to prove the theorem for K = R. Indeed, in the case K = C observe that
η0 := η|C(K;R) : C(K;R) → R is a positive linear functional. Thus Theorem G.1 yields a
measure µ representing η0 as above, and then

η(f) = η0(Re f) + iη0(Im f) =

∫
Re f dµ+ i

∫
Im f dµ =

∫
f dµ,

for all f ∈ C(K;C).
From now on the scalar field will be K = R. Throughout this appendix let K be a

compact topological space, and let η be a positive linear functional on C(K). Only at the
very end we will assume additionally that K is a metric space.

G.1 Elementary properties of positive linear functionals
on C(K)

We will work with the lattice operations f ∨ g and f ∧ g for f, g ∈ C(K) = C(K;R) (and
in fact for any functions f, g : K → R),

f ∨ g(x) := max{f(x), g(x)}, f ∧ g(x) := min{f(x), g(x)} (x ∈ K).

We denote the positive cone of C(K) by C(K)+ := {f ∈ C(K) ; f ⩾ 0}.
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It is important that positive functionals automatically have the following ‘continuity
property’.

G.2 Proposition. The functional η is σ-continuous, i.e., whenever (fn) is a decreasing
sequence in C(K)+ with limn→∞ fn(x) = 0 for all x ∈ K, then limn→∞ η(fn) = 0.

The essential step in the proof is Dini’s lemma, as follows.

G.3 Lemma. Let (fn) be a decreasing sequence in C(K)+ with limn→∞ fn(x) = 0 for all
x ∈ K. Then limn→∞ ∥fn∥∞ = 0.

Proof. Let ε > 0. For all x ∈ K there exists nx ∈ N such that fnx(x) < ε, and therefore
Ux := [fnx < ε] is an open neighbourhood of x. From the open covering (Ux)x∈K of K
we can choose a finite subcovering (Ux)x∈F . Put m := maxx∈F nx. Since fm ⩽ fnx for all
x ∈ F , we obtain 0 ⩽ fm ⩽ ε and thus ∥fn∥∞ ⩽ ε for all n ⩾ m.

Proof of Proposition G.2. From Lemma G.3 and the positivity of η we conclude that
0 ⩽ η(fn) ⩽ ∥fn∥∞η(1K) → 0 as n→ ∞.

G.2 The upper integral and L1(K, η)

Recall that η is supposed to be a positive linear functional on C(K). Given a function
f : K → [0,∞), we call a sequence (φn) a hull sequence for f if (φn) is a monotone
increasing sequence in C(K)+ and limn→∞ φn(x) ⩾ f(x) for all x ∈ K. We define the
upper integral of f by

η∗(f) := inf
{
lim
n→∞

η(φn) ; (φn) a hull sequence for f
}
∈ [0,∞].

We mention that in these definitions the limits of the increasing sequences (η(φn))n and
(φn(x))n (x ∈ K) are allowed to be ∞.

G.4 Proposition. (a) If f, g : K → [0,∞) satisfy f ⩽ g, then

η∗(f) ⩽ η∗(g).

(b) For all f : K → [0,∞), λ ⩾ 0 one has

η∗(λf) = λη∗(f).

(c) For all f, g : K → [0,∞) one has

η∗(f + g) ⩽ η∗(f) + η∗(g).

Proof. (a) follows directly from the definition.
(b) is obvious for λ = 0. In the case λ > 0, (φn) is a hull sequence for f if and only if

(λφn) is a hull sequence for λf . Taking the infimum over all hull sequences for f on both
sides of the equality limn→∞ η(λφn) = λ limn→∞ η(φn) one obtains the assertion.
(c) Let (φn) and (ψn) be hull sequences for f and g, respectively. Then (φn + ψn) is a

hull sequence for f + g, and hence

η∗(f + g) ⩽ lim
n→∞

η(φn + ψn) = lim
n→∞

η(φn) + lim
n→∞

η(ψn).

Using the definition of η∗(f) and η∗(g) one obtains the asserted inequality.
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Next we show that the subadditivity of η∗ from Proposition G.4(c) can be reinforced to
the following version of countable subadditivity.

G.5 Proposition. Let (fn) be a sequence of functions fn : K → [0,∞) that satisfies∑∞
n=1 fn(x) <∞ for all x ∈ K. Then

η∗
( ∞∑

n=1

fn

)
⩽

∞∑
n=1

η∗(fn).

Proof. The inequality is trivial if the right-hand side is ∞. Assume that the right-hand
side is less than ∞, and let ε > 0. Then for all n ∈ N there exists a hull sequence (φnk)k
for fn such that limk→∞ η(φnk) ⩽ η∗(fn) + 2−nε. We put

ψk :=
k∑

n=1

φnk (k ∈ N).

One easily checks that (ψk) is a hull sequence for
∑N

n=1 fn for each N ∈ N, and hence for∑∞
n=1 fn. Moreover

η(ψk) =
k∑

n=1

η(φnk) ⩽
k∑

n=1

(
η∗(fn) + 2−nε

)
⩽

∞∑
n=1

η∗(fn) + ε

for all k ∈ N. Thus

η∗
( ∞∑

n=1

fn

)
⩽ lim

k→∞
η(ψk) ⩽

∞∑
n=1

η∗(fn) + ε.

G.6 Proposition. For all φ ∈ C(K)+ one has η∗(φ) = η(φ).

Proof. The constant sequence (φ)n∈N is a hull sequence for φ, and this implies the inequality
η∗(φ) ⩽ η(φ).
If (φn) is a hull sequence for φ, then (φn ∧φ) is a hull sequence for φ as well. Moreover

(φ − φn ∧ φ)n∈N is decreasing, with φ − φn ∧ φ → 0 pointwise as n → ∞; hence by
Proposition G.2 we obtain

η(φ) = lim
n→∞

η(φn ∧ φ) ⩽ lim
n→∞

η(φn).

This shows that η(φ) ⩽ η∗(φ).

We now define q : RK → [0,∞] by

q(f) := η∗(|f |) (f ∈ RK),

where RK is the vector space of all function f : K → R. Then Proposition G.4 implies
that L :=

{
f ∈ RK ; q(f) < ∞

}
is a subspace of RK and that the restriction of q

to L is a semi-norm. We define the space of η-integrable functions L1(K, η) as the
closure of C(K) in the semi-normed space (L , q). It follows from Proposition G.6 that
|η(f)| = |η(f+)− η(f−)| ⩽ η(|f |) = η∗(|f |) = q(f) for all f ∈ C(K). Therefore η has a
unique continuous extension to L1(K, η), which we will still denote by η.
In the following theorem we collect properties that will be needed in order to define the

measure µ on a suitable σ-algebra. In particular, the version of the monotone convergence
theorem stated in part (c) will be responsible for the σ-additivity of the measure.
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G.7 Theorem. (a) The functional η : L1(K, η) → R is positive, and η(f) = η∗(f) for
all f ∈ L1(K, η)+.

If f, g ∈ L1(K, η), then |f |, f ∨ g, f ∧ g ∈ L1(K, η).
(b) Let (fn) be a monotone increasing sequence in L1(K, η)+ and f : K → [0,∞) such

that fn → f pointwise, supn∈N η(fn) <∞. Then f ∈ L1(K, η) and η(f) = limn→∞ η(fn).

Proof. (a) Let f ∈ L1(K, η). There exists a sequence (φn) in C(K) converging to f in
L1(K, η). Then by Proposition G.4(a) one sees that

q(|f | − |φn|) = η∗
(∣∣|f | − |φn|

∣∣) ⩽ η∗(|f − φn|) = q(f − φn) → 0,

which shows that |f | ∈ L1(K, η) and |φn| → |f | in L1(K, η) as n→ ∞. Proposition G.6
implies that η(|φn|) = q(φn) for all n ∈ N, and letting n→ ∞ one obtains η(|f |) = q(f),
by the continuity of η and q. In particular, if f ⩾ 0, then η(f) = q(f) = η∗(f) ⩾ 0.
The last two assertions of part (a) then follow from f ∨ g = 1

2
(f + g + |f − g|) and

f ∧ g = 1
2
(f + g − |f − g|).

(b) We supplement the sequence (fn) by f0 := 0. Then by part (a) we obtain

N∑
j=0

η∗(fj+1 − fj) =
N∑
j=0

η(fj+1 − fj) = η(fN+1) ⩽ sup
n∈N

η(fn) <∞ (N ∈ N),

which implies that the series
∑∞

j=0 η
∗(fj+1 − fj) is convergent. Hence by the countable

subadditivity of η∗, see Proposition G.5, we infer that

η∗(f − fn) = η∗
( ∞∑

j=n

(fj+1 − fj)

)
⩽

∞∑
j=n

η∗(fj+1 − fj) → 0 (n→ ∞).

This establishes that f ∈ L1(K, η) and η(fn) → η(f) (n→ ∞), as asserted.

G.3 The measure µ and the proof of the Riesz–Markov
theorem

We define the collection A of η -measurable sets,

A := {A ⊆ K ; 1A ∈ L1(K, η)},

and for A ∈ A we define µ(A) := η(1A).

G.8 Proposition. The collection A is a σ-algebra, and µ is a measure on A.

Proof. From 1∅ = 0 ∈ L1(K, η) we obtain ∅ ∈ A and µ(∅) = η(0) = 0. If A ∈ A, then
1K\A = 1K − 1A ∈ L1(K, η), hence K \ A ∈ A.

If A,B ∈ A, then 1A∪B = 1A∨1B ∈ L1(K, η) by Theorem G.7(a), and hence A∪B ∈ A.
If additionally A ∩B = ∅, then µ(A ∪B) = η(1A∪B) = η(1A + 1B) = µ(A) + µ(B).
Finally, if (An) is an increasing sequence in A, A :=

⋃
nAn, then 1An → 1A pointwise

and supn η(1An) ⩽ η(1K) <∞. Therefore, Theorem G.7(b) implies that 1A ∈ L1(K, η)
and µ(A) = η(1A) = limn→∞ η(1An) = limn→∞ µ(An).
These properties show that A is a σ-algebra and that µ is a measure on A.
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It turns out that every f ∈ C(K) is A-measurable and that η(f) =
∫
f dµ for all

f ∈ C(K); in fact this equality is even true for all f ∈ L1(K, η), and L1(K, η) = L1(µ);
see Exercise G.1(a). But these properties do not imply the Riesz–Markov theorem since µ
is not a Borel measure in general.

Proof of Theorem G.1. For the existence part let A and µ be as defined above, and let B
be the Borel σ-algebra of K. We first prove that B ⊆ A. (Only here we need K to be
a metric space.) Since A is a σ-algebra, if suffices to show that U ∈ A for all open sets
U ⊊ K. Putting

f(x) := dist(x,K \ U) (x ∈ K),

the distance of x to K \ U , we have a function f ∈ C(K) satisfying U = [f > 0]. Then
fn := (nf) ∧ 1 defines a monotone increasing sequence (fn) in C(K)+ converging to 1U

pointwise. Since supn η(fn) ⩽ η(1K) <∞, Theorem G.7(b) implies that 1U ∈ L1(K, η),
U ∈ A.
Clearly µ0 := µ|B is a Borel measure, and for B ∈ B ⊆ A we have

η(1B) = µ0(B) =

∫
1B dµ0 .

By linearity of η and the integral, the equality η(f) =
∫
f dµ0 extends to all functions

f ∈ S(B) := lin{1B ; B ∈ B} (the simple functions over B). Now let f ∈ C(K). We
put fn(x) := 1

n⌊nf(x)⌋ for all n ∈ N, x ∈ K, where ⌊t⌋ denotes the integer part of
t ∈ R. Then fn ∈ S(B) since fn is a composition of Borel measurable functions and
the range of fn is finite, for each n ∈ N. Moreover ∥fn − f∥∞ → 0 as n → ∞. Using
Theorem G.7(a) we conclude that |η(f) − η(fn)| ⩽ ∥f − fn∥∞η(1K) → 0 as n → ∞,
and also |

∫
f dµ0 −

∫
fn dµ0| ⩽ ∥f − fn∥∞µ0(K) → 0 as n→ ∞. Thus, taking the limit

n→ ∞ in η(fn) =
∫
fn dµ0 we obtain η(f) =

∫
f dµ0.

For the uniqueness part let µ and ν be two Borel measures representing η, i.e.
η(f) =

∫
f dµ =

∫
f dν for all f ∈ C(K). Then µ + ν is a Borel measure. Let B ∈ B;

we need to show that µ(B) = ν(B). Note that 1B ∈ L1(µ + ν) since µ + ν is a finite
measure. By Theorem G.9 below there exists a sequence (fn) in C(K) converging to 1B

in L1(µ + ν). Then also ∥fn − 1B∥L1(µ)
⩽ ∥fn − 1B∥L1(µ+ν) → 0, and in the same way

∥fn − 1B∥L1(ν)
→ 0 as n→ ∞. Thus

µ(B) =

∫
1B dµ = lim

n→∞

∫
fn dµ = lim

n→∞

∫
fn dν =

∫
1B dν = ν(B).

G.9 Theorem. Let K be a compact metric space, and let µ be a Borel measure on K.
Let 1 ⩽ p <∞. Then C(K) is dense in Lp(µ).

Proof. Exercise 10.3(a) implies that the closure X of C(K) in Lp(µ) is a vector sublattice
of Lp(µ). Thus, by Exercise 10.3(b), A := {A ; 1A ∈ X} is a σ-algebra. If U ⊊ K is
an open set, then as in the above proof of Theorem G.1 we find a monotone increasing
sequence (fn) in C(K)+ converging to 1U pointwise, and hence in Lp(µ) by the dominated
convergence theorem, which implies 1U ∈ X, U ∈ A. It follows that A contains the Borel
σ-algebra B, i.e. 1B ∈ X for all B ∈ B. Since S(B) = lin{1B ; B ∈ B} is dense in Lp(µ),
we conclude that X = Lp(µ).
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G.10 Remarks. (a) A more standard proof of the uniqueness in Theorem G.1 is as
follows. One easily sees that µ(U) = ν(U) for all open sets U , using the approximation
of 1U by the sequence (fn) from the first paragraph of the proof of Theorem G.1. Since
the open sets form a ∩-stable generator of the Borel σ-algebra and µ, ν are finite, the
uniqueness theorem from measure theory, see e.g. [Bau01; Theorem 5.4], implies that
µ = ν. Our argument above avoids the use of the uniqueness theorem.
(b) If K is just a compact topological space (and not a metric space), then the assertions

of Theorems G.1 and G.9 remain valid, with one modification: one has to replace the Borel
σ-algebra by the smaller Baire σ-algebra B0, the σ-algebra generated by the collection{

[f > 0] ; f ∈ C(K)
}
.

Then in Theorem G.1 one obtains a unique Baire measure on K, i.e. a measure on B0

satisfying µ(K) <∞, and in Theorem G.9 one has to assume that µ is a Baire measure.
We note that B0 is always contained in A, and that B0 = B if K is a metric space. The

reader is asked to carry out the details in Exercises G.1(b) and G.2. △

Notes

The Riesz–Markov representation theorem, often simply called the ‘Riesz representation
theorem’, is a classical result going back to F. Riesz [Rie09], Banach 1937 (see footnote 1
in [Sak38]), Saks [Sak38], Markov [Mar38] and Kakutani [Kak41; Theorem 9] in versions
of increasing generality. For the case of compact metric spaces we refer to [Sak38] for
a particularly nice and simple proof based on Carathéodory’s extension theorem. We
have been at a loss finding a concise proof just containing the bare facts. This is why we
decided to include a proof for the mininal version we need in the proof of the spectral
theorem; see Appendix F. Our proof is a reduced version of the Daniell integral: we first
extend the given positive linear functional η to a larger class of functions, but then develop
only part of the integration theory along this line.
We point out that our proof – when applied to the case of general compact topological

spaces – only yields a Baire measure, which for compact metric spaces is automatically a
Borel measure. If one modifies the extension of the functional η by admitting arbitrary
directed sets as ‘increasing hull nets’ instead of increasing sequences in the space of
continuous functions, then one obtains a Borel measure with the desired properties for the
case of non-metric Hausdorff spaces as well. This is the procedure presented by Bourbaki
[Bou65; Chap. IV, §1], for Hausdorff locally compact spaces. A discussion comparing
the methods and the respective results can be found in [Flo81; Anhang]. A discussion
concerning the set of different Borel measures leading to the desired representation for
continuous functions can be found in [Bau01; §§28 and 29].

Exercises

G.1 Let K be a compact topological space, let η : C(K) → K be a positive linear
functional, and let A and µ be defined as in Section G.3.
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(a) Show that L1(K, η) = L1(µ) (in particular each f ∈ C(K) is A-measurable) and
that η(f) =

∫
f dµ for all f ∈ L1(K, η).

Hint: Note that from the definition of A it follows that A = {A ⊆ K ; 1A ∈ L1(K, η)} =
{A ⊆ K ; 1A ∈ L1(µ)}. Show that both L1(K, η) and L1(µ) are vector lattices with
the property that each positive function can be approximated pointwise by a monotone
increasing sequence in S(A) = lin{1A ; A ∈ A}; use an approximation procedure similar
to the one in the proof of Theorem G.1.
(b) Let B0 be the Baire σ-algebra of K. Show that B0 ⊆ A and that µ|B0

is the unique
Baire measure on K representing η. Moreover, show that B0 equals the Borel σ-algebra
of K if K is a metric space.
Hint: In order to show that [f > 0] ∈ A for all f ∈ C(K), consider the sequence (fn)

defined by fn :=
(
nf ∧ 1

)
∨ 0 and proceed similarly as in the proof of Theorem G.1.

G.2 Let K be a compact topological space, let µ be a Baire measure on K, and let
1 ⩽ p <∞. Show that C(K) is dense in Lp(µ). (Hint: Mimic the proof of Theorem G.9,
using the sequence (fn) given in the hint to Exercise G.1(b).)

G.3 Let Ω be a locally compact metric space, let µ be a Borel measure on Ω, and let
1 ⩽ p < ∞. Assume that each Borel set B ⊆ Ω of finite measure can be covered by
countably many compact sets. Show that Cc(Ω) is dense in Lp(µ). (Hint: Exercise 10.3(d)
and Theorem G.9.)
Note. The above hypothesis holds for any open subset Ω of Rn; see Exercise 4.1(a).





Appendix H

Singular integrals and the Bogovskĭı
operator

The issue of this appendix is the proof of Theorem 16.10. The most important tool and
key result is Theorem H.6, concerning convolution operators with singular kernels.

H.1 The Fourier transformation

For f ∈ L1(Rn) we define the Fourier transform of f ,

Ff(ξ) = f̂(ξ) :=
1

(2π)n/2

∫
Rn

e−iξ·xf(x) dx (ξ ∈ Rn).

Then f̂ : Rn → C is continuous (by the dominated convergence theorem) and bounded,∥∥f̂∥∥∞ ⩽ 1
(2π)n/2∥f∥1, and the Fourier transformation F : L1(Rn) → Cb(Rn) is a bounded

linear operator. More strongly, the range of F is a subset of C0(Rn).
We will need the following important facts concerning the Fourier transformation; see

[Duo01; Chapter 1] or [Yos68; Chapter VI], for instance.

H.1 Remarks. (a) For f ∈ L1∩L2(Rn) one has f̂ ∈ L2(Rn),
∥∥f̂∥∥

2
= ∥f∥2, and F extends

from L1∩L2(Rn) to a unitary operator F2 : L2(Rn) → L2(Rn).
(b) If f, g ∈ L1(Rn), then F (f ∗ g) = (2π)n/2f̂ ĝ, and the same same formula holds if

f ∈ L1(Rn), g ∈ L2(Rn). (For the convolution f ∗ g we refer to Proposition H.2 below.)
(c) For all f ∈ C∞

c (Rn), α ∈ Nn
0 one has

∂̂αf(ξ) = (−iξ)αf̂(ξ) (ξ ∈ Rn).

(This property makes the Fourier transformation a fundamental tool in the theory of
partial differential equations.)
(d) If f ∈ L2(Rn), j ∈ {1, ..., n}, and the function ξ 7→ ξj f̂(ξ) belongs to L2(Rn), then

f has a distributional derivative ∂jf belonging to L2(Rn), and ∥∂jf∥2 =
∥∥ξ 7→ ξj f̂(ξ)

∥∥
2
.

Indeed, for all φ ∈ C∞
c (Rn) one has

(f | ∂jφ) =
(
f̂
∣∣ ∂̂jφ) = (

f̂
∣∣ ξ 7→ (−iξjφ̂(ξ)

)
=

(
ξ 7→ iξj f̂(ξ)

∣∣ φ̂)
=

(
F−1
2 (ξ 7→ iξj f̂(ξ))

∣∣φ).
This shows that −F−1

2 (ξ 7→ iξj f̂(ξ)) ∈ L2(Rn) is the distributional derivative ∂jf . △
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H.2 Proposition. Let ρ ∈ L1(Rn), and let 1 ⩽ p ⩽ ∞, f ∈ Lp(Rn). Then

ρ ∗ f(x) :=
∫
Rn

ρ(x− y)f(y) dy =

∫
Rn

ρ(y)f(x− y) dy

exists for a.e. x ∈ Rn, and

∥ρ ∗ f∥p ⩽ ∥ρ∥1∥f∥p .

Proof. The function R2n ∋ (x, y) 7→ ρ(x − y)u(y) is measurable because the mapping
(x, y) 7→ (x − y, y) is a diffeomorphism. Let 1 ⩽ q ⩽ ∞, 1

p +
1
q = 1. For g ∈ Lq(Rn) we

estimate, using Fubini–Tonelli and Hölder,∫∫
|ρ(y)f(x− y)| dy |g(x)| dx =

∫
|ρ(y)|

∫
|f(x− y)||g(x)| dx dy

⩽
∫

|ρ(y)|∥f(· − y)∥p∥g∥q dy = ∥ρ∥1∥f∥p∥g∥q .

This inequality implies the assertions since Lq(Rn) is norming for Lp(Rn).

H.2 Singular integrals of convolution type

In this section we discuss convolution operators mapping L2(Ω) to H
1(Ω), for suitable

open sets Ω ⊆ Rn. We will be working with the following version of the convolution of
functions.

H.3 Remark. Let Ω ⊆ Rn be a bounded open set, and put R := diam(Ω). Considering
L2(Ω) in the canonical way as a subspace of L2(Rn), we define the convolution k ∗ f of
k ∈ L1,loc(Rn) and f ∈ L2(Ω) by

k ∗ f(x) :=
∫
Ω

k(x− y)f(y) dy =

∫
(1B(0,R)k)(x− y)f(y) dy (x ∈ Ω).

In other words, k ∗ f = (1B(0,R)k) ∗ f |Ω. Proposition H.2 implies that k ∗ f is defined a.e.
on Ω and that ∥k ∗ f∥L2(Ω) ⩽ ∥k∥L1(B(0,R))∥f∥L2(Ω). △

A function k : Rn \ {0} → K is positively homogeneous of degree α ∈ R if k(λx) =
λαk(x) for all x ∈ Rn \ {0}, λ > 0. Equivalently, one could formulate that, with k0 :=
k|Sn−1

: Sn−1 → K, one has k(x) = |x|αk0
(

x
|x|

)
for all x ∈ Rn \ {0}.

Our first result, Theorem H.5 below, is concerned with a non-singular case that can be
treated by using classical convolution inequalities. For the proof we will need the following
observation.

H.4 Remark. Let k ∈ C1(Rn \ {0}) be positively homogeneous of degree α > 1 − n.
Then for all R > 0 the function k belongs to W 1

1 (B(0, R)). The proof of this statement
is delegated to Exercise H.3. For the definition of the Sobolev space W 1

1 (Ω) we refer to
Section D.1. △
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H.5 Theorem. Let k ∈ C1(Rn \ {0}) be positively homogeneous of degree α > 1− n. Let
Ω ⊆ Rn be a bounded open set. Then the convolution f 7→ k ∗ f defines a bounded linear
operator T : L2(Ω) → H1(Ω), and there exists a constant cα,R > 0, only depending on α
and R := diam(Ω) (and the dimension n), such that

∥T∥ ⩽ cα,R max
{∥∥k|Sn−1

∥∥
∞,

∥∥(∇k)|Sn−1

∥∥
∞

}
. (H.1)

Proof. Recall Remark H.3 for the definition of the convolution k ∗ f and the estimate
∥k ∗ f∥L2(Ω) ⩽ ∥k∥L1(B(0,R))∥f∥L2(Ω), for f ∈ L2(Ω).
Now let f ∈ C∞

c (Ω). The gradient ∇(k ∗ f) on Ω is given by

∇(k ∗ f)(x) = k ∗ ∇f(x) =
∫
Ω

k(x− y)∇f(y) dy =

∫
(1B(0,R)∇k)(x− y)f(y) dy,

where in the last step we have used Remark H.4. From∣∣∣∣∫ 1B(0,R)∇k(x− y)f(y) dy

∣∣∣∣ ⩽ ∫ (
1B(0,R)|∇k|

)
(x− y)|f(y)| dy

it follows that

∥∇k ∗ f∥L2(Ω;Kn) ⩽
∥∥(1B(0,R)|∇k|

)
∗ |f |

∥∥
L2(Ω)

⩽
∥∥|∇k|∥∥

L1(B(0,R))
∥f∥L2(Ω).

Now, ∥k∥L1(B(0,R)) can be estimated by

∥k∥L1(B(0,R)) ⩽
∫
B(0,R)

|x|α dx ∥k|Sn−1
∥∞ = σn−1

∫ R

0

rn+α−1 dr ∥k|Sn−1
∥∞

= σn−1
1

n+ α
Rn+α∥k|Sn−1

∥∞ ,

where σn−1 denotes the (n−1)-dimensional volume of Sn−1. From Exercise H.2 we know
that ∇k is positively homogeneous of degree α− 1; hence as above we obtain∥∥|∇k|∥∥

L1(B(0,R))
⩽ σn−1

1

n+ α− 1
Rn+α−1

∥∥(∇k)|Sn−1

∥∥
∞ .

Combining the above estimates we conclude that

∥k ∗ f∥H1(Ω) ⩽ cα,R max
{∥∥k|Sn−1

∥∥
∞,

∥∥(∇k)|Sn−1

∥∥
∞

}
∥f∥L2(Ω) ,

with

cα,R := σn−1

( 1

n+ α
Rn+α +

1

n+ α− 1
Rn+α−1

)
.

As C∞
c (Ω) is dense in L2(Ω) we obtain the asserted properties; see Exercise H.4.

The following main result of the present section is the version of Theorem H.5 for
α = 1− n. The touchy issue in this result is that the derivatives of the function k have a
non-integrable singularity at the point 0. As a consequence, the convolution with ∂jk is
not easily interpreted as a mapping on L2.
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H.6 Theorem. Let k ∈ C1(Rn \ {0}) be positively homogeneous of degree 1−n, and let
R > 0.
Then kR := k1B(0,R) ∈ L1(Rn), kR ∗ f ∈ H1(Rn) for all f ∈ L2(Rn), and there exists

MR ⩾ 0 such that

∥kR ∗ f∥H1(Rn) ⩽MR∥f∥L2(Rn) (f ∈ L2(Rn)). (H.2)

More explicitly, there exist constants b and b′, only depending on n, such that the
estimate holds with

MR := (σn−1R + b)∥k|Sn−1
∥∞ + b′∥(∇k)|Sn−1

∥∞ .

If Ω ⊆ Rn is a bounded open set, R := diam(Ω), then

∥k ∗ f∥H1(Ω) ⩽MR∥f∥L2(Ω) (f ∈ L2(Ω)). (H.3)

In the proof we will need the inequality∣∣∣∣∫ b

a

e−ir

r
dr

∣∣∣∣ ⩽ ln
1
a
+ 2 (0 < a < 1, b > a). (H.4)

Indeed, if b ⩽ 1 then
∣∣∫ b

a
e−ir

r dr
∣∣ ⩽ ∫ 1

a
1
r dr = ln 1

a . If b > 1, then we split the integral,

estimate
∣∣∫ 1

a
e−ir

r dr
∣∣ ⩽ ln 1

a and use integration by parts to obtain∣∣∣∣∫ b

1

e−ir

r
dr

∣∣∣∣ ⩽ ∣∣∣∣ ie−ir

r

∣∣∣b
1
−
∫ b

1

−ie−ir

r2
dr

∣∣∣∣ ⩽ 1

b
+ 1 + 1− 1

b
= 2.

Proof of Theorem H.6. (i) By the hypotheses there exists c ⩾ 0 such that |k(x)| ⩽ c|x|1−n

for all x ∈ Rn \ {0}. This implies that kR ∈ L1(Rn), ∥kR∥1 ⩽ σn−1R∥k|Sn−1
∥∞ (see

the proof of Theorem H.5), and from Proposition H.2 it follows that kR ∗ f ∈ L2(Rn),
∥kR ∗ f∥2 ⩽ σn−1R∥k|Sn−1

∥∞∥f∥2 for all f ∈ L2(Rn).
(ii) In order to estimate the derivatives of kR ∗ f , we show that there exist constants

b, b′ > 0, depending only on n, such that

(2π)n/2|ξ k̂R(ξ)| ⩽ b∥k|Sn−1
∥∞ + b′∥(∇k)|Sn−1

∥∞ (ξ ∈ Rn). (H.5)

Observe that the estimate (H.5) is invariant under orthogonal transformations of Rn.

(Note that f̂(A·) = f̂(A·) for all f ∈ L1(Rn) and all orthogonal matrices.) Thus, it suffices
to prove (H.5) for ξ = te1, with t > 0 and the first unit vector e1.
By the positive (1−n)-homogeneity of k we obtain

(2π)n/2 tk̂R(te1) =

∫
B(0,R)

te−ite1·xk(x) dx =

∫
B(0,tR)

e−ix1k(x) dx = lim
ε→0

h(ε, tR), (H.6)

where

h(ε, s) :=

∫
Ωε,s

e−ix1k(x) dx, Ωε,s := B(0, s) \B[0, ε] (0 < ε < s).



325

Let α ∈ {0, 1} and 0 < ε < s. Applying Gauss’ theorem, Theorem 7.3, we compute

−ih(ε, s) =

∫
Ωε,s

∂1(e
−ix1 − α)k(x) dx

=

∫
∂Ωε,s

ν1(x)(e
−ix1 − α)k(x) dσ(x)−

∫
Ωε,s

(e−ix1 − α)∂1k(x) dx.

(H.7)

Since ν(x) = ±x/|x| and ρ is positively (1−n)-homogeneous, the first integral on
the right-hand side equals

∫
Sn−1

y1
(
(e−isy1 − α) − (e−iεy1 − α)

)
k(y) dσ(y). Using gen-

eralised polar coordinates in Rn we see that the second integral equals
∫
Sn−1

∫ s

ε
(e−iry1 −

α)∂1k(ry)r
n−1 dr dσ(y). Observing that ∂1k is positively homogeneous of degree −n (see

Exercise H.2(a)), we conclude that

−ih(ε, s) =

∫
Sn−1

y1(e
−isy1 − e−iεy1)k(y) dσ(y)−

∫
Sn−1

∫ s

ε

e−iry1 − α
r

dr ∂1k(y) dσ(y),

and therefore

|h(ε, s)| ⩽
∫
Sn−1

2|y1| dσ(y) ∥k|Sn−1
∥∞ +

∫
Sn−1

∣∣∣∣∫ s

ε

e−iry1 − α
r

dr

∣∣∣∣ dσ(y) ∥(∇k)|Sn−1
∥∞ .

In the case s ⩽ 1 we choose α = 1 and use the estimate
∣∣ e−iry1−1

r

∣∣ ⩽ |y1| to obtain

|h(ε, s)| ⩽
∫
Sn−1

2|y1| dσ(y) ∥k|Sn−1
∥∞ +

∫
Sn−1

|y1| dσ(y) ∥(∇k)|Sn−1
∥∞ . (H.8)

In the case 0 < ε < 1 < s we use the decomposition h(ε, s) = h(ε, 1) + h(1, s). The first
term h(ε, 1) is estimated as above, whereas for the second term h(1, s) we choose α = 0
and compute∣∣∣∣∫ s

1

e−iry1

r
dr

∣∣∣∣ = ∣∣∣∣∫ s

1

e−ir|y1|

r
dr

∣∣∣∣ =
∣∣∣∣∣
∫ s|y1|

|y1|

e−ir

r
dr

∣∣∣∣∣ ⩽ ln
1

|y1|
+ 2,

where in the last estimate we have used (H.4). Therefore

|h(1, s)| ⩽
∫
Sn−1

2|y1| dσ(y) ∥k|Sn−1
∥∞ +

∫
Sn−1

(
ln

1

|y1|
+ 2

)
dσ(y) ∥(∇k)|Sn−1

∥∞ .

(We refer to Exercise H.6 for the finiteness
∫
Sn−1

ln 1
|y1| dσ(y) < ∞.) Combining this

estimate with (H.8) for s = 1 or using (H.8) by itself we conclude that

|h(ε, s)| ⩽ b∥k|Sn−1
∥∞ + b′∥(∇k)|Sn−1

∥∞

for ε < min{s, 1}, with b :=
∫
Sn−1

4|y1| dσ(y) and b′ :=
∫
Sn−1

(
|y1|+ ln 1

|y1| + 2
)
dσ(y). Now

applying (H.6) we obtain (H.5).
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(iii) We now prove the estimate on the derivatives of kR ∗ f . Using Remarks H.1(d),
(b), (a) and inequality (H.5) we obtain

∥∇(kR ∗ f)∥2 =
∥∥ξ 7→ ξk̂R ∗ f(ξ)

∥∥
2
=

∥∥ξ 7→ ξ(2π)n/2k̂R(ξ)f̂(ξ)
∥∥
2

⩽
∥∥ξ 7→ (2π)n/2ξk̂R(ξ)

∥∥
∞

∥∥f̂∥∥
2

⩽
(
b∥k|Sn−1

∥∞ + b′∥(∇k)|Sn−1
∥∞

)
∥f∥2

for all f ∈ L2(Rn).
Combining this estimate with the estimate for ∥kR ∗ f∥2 presented in step (i) of the

proof we obtain (H.2).
(iv) For the last statement of the theorem we recall from Remark H.3 that k ∗f = kR ∗f

on Ω, so (H.3) is immediate from (H.2).

H.7 Remark. In Exercise H.2(b) the reader is asked to show that in the situation of
Theorem H.6 one has

∫
Sn−1

∂jk(y) dσ(y) = 0 for all j ∈ {1, . . . , n}. Thus it turns out that
in formula (H.7) of the proof of Theorem H.6 there is no need to introduce the parameter α.
Proving (H.7) without α is sufficient, because in the last term of the formulas one can
always add it, and this is what is needed in a later part of the proof. △

H.3 Proof of Sobolev estimates for the Bogovskĭı
operator

For easy reference we recall the definition of the Bogovskĭı operator,

Bf(x) :=

∫
f(y)(x− y)

∫ ∞

1

ρ(y + r(x− y))rn−1 dr dy

=

∫
z

∫ ∞

0

ρ(x+ tz)(t+ 1)n−1 dt f(x− z) dz,

for x ∈ Rn, f ∈ C∞
c (Rn). We also recall from the hypotheses of Theorem 16.10 that

Ω ⊆ Rn is a bounded open set, star-shaped with respect to a ball B(x0, r0) ⊆ Ω, and that
ρ = ρ0 ∗ ρ̃, where spt ρ0 ⊆ B(0, r0/2), spt ρ̃ ⊆ B(x0, r0/2),

∫
ρ0(x) dx =

∫
ρ̃(x) dx = 1.

Proof of Theorem 16.10. Recall that the operator B maps C∞
c (Ω) to C∞

c (Ω;Kn). In order
to prove the theorem it is sufficient to find a constant M ⩾ 0 such that ∥Bf∥H1(Ω;Kn) ⩽
M∥f∥L2(Ω) for all f ∈ C∞

c (Ω). We now fix f ∈ C∞
c (Ω) and proceed in three steps to

establish this inequality.
(i) Using the definition of ρ we rewrite Bf , for x ∈ Rn, as

Bf(x) =

∫
z

z

∫ ∞

0

∫
y

ρ0(y)ρ̃(x+ tz − y) dy (t+ 1)n−1 dt f(x− z) dz

=

∫
w

ρ0(x− w)

∫
z

z

∫ ∞

0

ρ̃(w + tz)(t+ 1)n−1 dt f(x− z) dz dw

=

∫
w

ρ0(x− w)kw ∗ f(x) dw,
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where ρ0, ρ̃ and f are considered as functions on Rn with value zero outside their supports,
and where

kw(z) := z

∫ ∞

0

ρ̃(w + tz)(t+ 1)n−1 dt;

recall Remark H.3 for the definition of kw ∗ f . In fact, we are only interested in the values
of Bf on Ω. Observing that ρ0(x − w) = 0 for all x ∈ Ω, w /∈ Ω0 := Ω + B(0, r0/2) we
obtain

Bf(x) =

∫
Ω0

ρ0(x− w)kw ∗ f(x) dw (x ∈ Ω). (H.9)

(ii) In this step we prove an estimate for the H1-norm of Bf in terms of the H1-norms
of the functions kw ∗ f in the integral in (H.9).
Put R := diam(Ω). Defining

kw,R := 1B(0,R)kw (w ∈ Rn),

we obtain

kw ∗ f(x) =
∫
Ω

kw(x− y)f(y) dy = kw,R ∗ f(x) (w ∈ Rn, x ∈ Ω). (H.10)

As in step (ii) of the proof of Theorem 16.7 we rewrite kw as

kw(z) =
z

|z|n
∫ ∞

0

ρ̃
(
w + s

z

|z|

)
(s+ |z|)n−1 ds (H.11)

to see that there exists c ⩾ 0 such that

|kw,R(z)| ⩽
c

|z|n−1
(z ∈ Rn, w ∈ Ω0);

hence kw,R ∈ L1(Rn;Kn). It is easy to see that, for |z| ≠ 0, the function Ω0 ∋ w 7→ kw,R(z)
is continuous. (Observe that the domain of the s-integration in (H.11) is contained in the
bounded interval [0, R] because spt ρ̃(w + ·) = spt ρ̃ − w ⊆ B(x0 − w, r0/2) ⊆ B(0, R).)
By the dominated convergence theorem it follows that the mapping Ω0 ∋ w 7→ kw,R ∈
L1(Rn;Kn) is bounded and continuous.
From Lemma 4.1 we know that kw,R ∗ f is continuously differentiable and ∂j(kw,R ∗ f) =

kw,R∗∂jf . Proposition H.2 implies that the linear operator ∗f : L1(Rn)→ Cb(Rn), h 7→ h∗f
is bounded, and ∥∗f∥L(L1,Cb)

⩽ ∥f∥∞. Combining these facts we infer that the function
Ω0 ∋ w 7→ kw,R ∗ f ∈ C1

b(Rn;Kn) is bounded and continuous. Taking into account that
the function Ω0 ∋ w 7→ ρ0(· − w) ∈ C1

b(Rn) is bounded and continuous, we conclude that
the function

Ω0 ∋ w 7→ ρ0(· − w)(kw,R ∗ f) ∈ C1
b(Rn;Kn)

is bounded and continuous as well; see Exercise H.7(b).
In order to obtain the estimate we are aiming for, we define the function F : Ω0 →

H1(Ω;Kn),
F (w) := ρ0(· − w)kw ∗ f |Ω (w ∈ Ω0).
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Then (H.10) implies that F (w) = ρ0(· − w)kw,R ∗ f |Ω, and in view of the properties
mentioned above we can apply Exercise H.8 to conclude that

∥Bf∥H1(Ω;Kn) =
∥∥∥x 7→

∫
Ω0

F (w)(x) dw
∥∥∥
H1(Ω;Kn)

⩽ voln(Ω0) sup
w∈Ω0

∥F (w)∥H1(Ω;Kn)

= voln(Ω0) sup
w∈Ω0

∥ρ0(· − w)kw ∗ f∥H1(Ω;Kn) .

By Exercise H.7(a) we can estimate

∥ρ0(· − w)kw ∗ f∥H1(Ω;Kn) ⩽
√
2
(
∥ρ0∥2∞ +

n∑
j=1

∥∂jρ0∥2∞
)1/2

∥kw ∗ f∥H1(Ω;Kn) .

As a result we obtain

∥Bf∥H1(Ω;Kn) ⩽ CR sup
w∈Ω0

∥kw ∗ f∥H1(Ω;Kn) , (H.12)

where CR := voln(Ω0)
√
2
(
∥ρ0∥2∞ +

∑n
j=1 ∥∂jρ0∥2∞

)
1/2.

Establishing a suitable estimate for the supremum in (H.12) will be the issue of the
following step (iii) of the proof.
(iii) In order to establish the connection to Section H.2 on singular integrals we write

kw =
∑n−1

m=0 k
m
w , where

kmw (z) :=

(
n− 1

m

)
z

∫ ∞

0

ρ̃(w + tz)tm dt.

It is easy to see that kmw is positively homogeneous of degree m, for all m ∈ {0, . . . , n− 1}.
We will use the elementary inequality

∥kmw ∗ f∥H1(Ω;Kn) ⩽
√
n sup

l=1,...,n
∥(kmw )l ∗ f∥H1(Ω) , (H.13)

where (kmw )l are the components of the vector-valued kernels kmw . In order to apply
Theorems H.5 and H.6 to the right-hand side of (H.13), we need estimates for the
components (kmw )l on Sn−1.
Let l ∈ {1, . . . , n}. For m ∈ {0, . . . , n− 1}, w ∈ Ω0 we have∥∥(kmw )l|Sn−1

∥∥
∞ ⩽ cm :=

(
n−1
m

)
∥ρ̃∥∞ 1

m+1
Rm+1

and∥∥∇(kmw )l|Sn−1

∥∥
∞ =

(
n−1
m

)
sup

z∈Sn−1

∣∣∣∣∫ ∞

0

ρ̃(w + tz)tm dt el + zl

∫ ∞

0

∇ρ̃(w + tz)tm+1 dt

∣∣∣∣
⩽ c′m :=

(
n−1
m

)(
∥ρ̃∥∞ 1

m+1
Rm+1 + ∥∇ρ̃∥∞ 1

m+2
Rm+2

)
.

For m = 0, . . . , n− 2 we can now apply Theorem H.5 to obtain

∥(kmw )l ∗ f∥H1(Ω;Kn) ⩽ cm,R max{cm, c′m}∥f∥L2(Ω) (w ∈ Ω0).

For m = n− 1 we apply (H.3) of Theorem H.6 and obtain∥∥(kn−1
w )l ∗ f

∥∥
H1(Ω;Kn)

⩽
(
(σn−1 + b)cn−1 + b′c′n−1

)
∥f∥L2(Ω) (w ∈ Ω0).
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Summing up over m = 0, ..., n− 1, using (H.13), and applying (H.12) we conclude that

∥Bf∥H1(Ω;Kn) ⩽ CR

√
n

( n−2∑
m=0

cm,R max{cm, c′m}+ (σn−1 + b)cn−1 + b′c′n−1

)
∥f∥L2(Ω) ,

and this completes the proof of the theorem.

H.4 Comparison with the ‘traditional’ proof

The ‘traditional’ way of proving the continuity of the Bogovskĭı operator – see Theo-
rem 16.10 – is to invoke the theory developed in [CaZy56]; this approach goes back already
to Bogovskĭı’s original paper [Bog79]. In our attempt to provide complete information
on the topics treated in the present book we realised that we could avoid part of the
treatment of singular integrals by considering only the case of the Bogovskĭı operator in
which the function ρ in (16.6) is of the form ρ = ρ0 ∗ ρ̃ described in Theorem 16.10. In
order explain the difference between the traditional way and our proof we briefly sketch
part of the theory of convolutions with singular kernels.
Let k : Rn \ {0} → K be measurable and positively homogeneous of degree −n, and

assume that k|Sn−1
∈ L1(Sn−1). Then

Kφ(x) := k ∗ φ(x) := lim
ε→0+

∫
|y|>ε

k(y)φ(x− y) dy

can exist for all x ∈ Rn, φ ∈ C∞
c (Rn) only if∫

Sn−1

k(ξ) dσ(ξ) = 0; (H.14)

see [Duo01; Proposition 4.1]. If k is an odd function (which implies that (H.14) holds),
then K acts as a bounded operator on Lp(Rn), for all p ∈ (1,∞); see [Duo01; Corollary 4.8].
If k satisfies (H.14), the odd part of k|Sn−1

belongs to L1(Sn−1) and the even part of k|Sn−1

belongs to Lq(Sn−1) for some q > 1, then K is bounded on Lp(Rn) for all p ∈ (1,∞); see
[Duo01; Theorem 4.12]. (We note that the proof of our Theorem H.6 is closely related to
methods of the proof of the results mentioned above. Our restriction to the case p = 2
facilitates the use of the Fourier transformation.)
For the application to the Bogovskĭı operator one needs the more general concept of

‘extended convolution operators’. In this case one has a measurable function k : Rn ×
(Rn \ {0}) → K, k(x, ·) positively homogeneous of degree −n for all x ∈ Rn, and one
wants to define

Kφ(x) := lim
ε→0+

∫
|y|>ε

k(x, y)φ(x− y) dy

for x ∈ Rn, φ ∈ C∞
c (Rn). Assume additionally that

sup
x∈Rn

|k(x, ·)|Sn−1
| ∈ L1(Sn−1)
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and that k(x, ·) is an odd function for all x ∈ Rn. Then K as defined above is bounded
on Lp(Rn) for all p ∈ (1,∞); see [Duo01; Theorem 4.16]. Alternatively, assume that there
exists q > 1 such that

sup
x∈Rn

∥k(x, ·)∥q <∞

and that k(x, ·) satisfies (H.14) for all x ∈ Rn. Then K is bounded on Lp(Rn) for all
p ∈ [q/(q − 1),∞); see [CaZy56; Theorem 2].
In the proof of the continuity of the Bogovskĭı operator (in the case when ρ is not

necessarily of the form ρ = ρ0 ∗ ρ̃) one uses a decomposition as in step (iii) of our proof in
Section H.3. Then the critical terms are of the form

k(x, y) =
∂

∂yj

(
yl

∫ ∞

0

ρ(x+ ty)tn−1 dt

)
= δjl

∫ ∞

0

ρ(x+ ty)tn−1 dt+ yl

∫ ∞

0

∂jρ(x+ ty)tn dt (j, l = 1, . . . , n),

responsible for the L2(Ω)-boundedness of the operator mapping a function f to the
∂j-derivative of the l-th component of Bf . In this kernel, the function k(x, ·) is positively
homogeneous of degree −n, and k(x, ·) satisfies (H.14) for all x ∈ Rn, by Exercise H.2(b).
But k(x, ·) is not odd, so one has to apply [CaZy56; Theorem 2]. In our more special case
in which ρ in the Bogovskĭı operator is of the form ρ = ρ0 ∗ ρ̃ we avoid the application of
[CaZy56; Theorem 2] and only have to use the version of [Duo01; Theorem 4.12] presented
in Theorem H.6.

Notes

The information regarding the Fourier transformation is standard; we only include it for
easy reference. The Bogovskĭı operator appeared first in [Bog79], in connection with the
treatment of the Stokes operator, and Bogovskĭı refers to [CaZy56] for the property that
B maps L0

p(Ω) to W
1
p,0(Ω;K). A more detailed description of this application of [CaZy56]

can be found in [Gal11; Section III.3]. For more comments on singular integrals and the
difference between the treatments of the general and our more special Bogovskĭı operator
we refer to Section H.4.

Exercises

H.1 Let f ∈ L2(Rn), j ∈ {1, . . . , n}, ∂jf ∈ L2(Rn). Show that [ξ 7→ ξj f̂(ξ)] ∈ L2(Rn).
Note. Combined with Remark H.1(d) this shows that ∂jf ∈ L2(Rn) if and only if

[ξ 7→ ξj f̂(ξ)] ∈ L2(Rn).

H.2 Let α ∈ R, and let the function k ∈ C1(Rn \ {0}) be positively homogeneous of
degree α. Let j ∈ {1, . . . , n}.
(a) Show that ∂jk is positively homogeneous of degree α− 1.
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(b) If α = 1− n, show that
∫
Sn−1

∂jk(y) dσ(y) = 0. Hint: Choose ζ ∈ C∞
c (0,∞)+, and

show that
∫∞
0
ζ(r)r−1 dr

∫
Sn−1

∂jk(y) dσ(y) =
∫∞
0
ζ(r)

∫
Sn−1

∂jk(ry)r
n−1 dσ(y) dr = · · · =

−
∫∞
0
ζ ′(r) dr

∫
Sn−1

yjk(y) dσ(y) = 0.

H.3 Give a proof of Remark H.4. Hint: Choose ψ ∈ C∞
c (Rn), ψ = 1 in a neighboourhood

of 0. Show that km := (1 − ψ(m·))k ∈ W 1
1 (B(0, R)) (m ∈ N), km → k in W 1

1 (B(0, R))
(m→ ∞). (Observe Exercise H.2.)

H.4 Let X, Y, Z be Banach spaces, Y ↪→ Z, T ∈ L(X,Z), and suppose that there exist
a dense subspace D ⊆ X and a constant c ⩾ 0 such that ∥Tx∥Y ⩽ c∥x∥X for all x ∈ D.
Show that ran(T ) ⊆ Y , T ∈ L(X, Y ), ∥T∥L(X,Y ) ⩽ c.

H.5 Let k ∈ W 1
1 (Rn). Show that k ∗ f ∈ H1(Rn) for all f ∈ L2(Rn), and Tf := k ∗ f

(f ∈ L2(Rn)) defines a bounded operator T : L2(Rn) → H1(Rn), with ∥T∥ ⩽
(
∥k∥21 +∑n

j=1 ∥∂jk∥21
)
1/2∥f∥2. (Hint: Use the denseness of C∞

c (Rn) in W 1
1 (Rn) to show that

∂j(k ∗ f) = (∂jk) ∗ f .)
Note. This property is similar to Theorem H.5.

H.6 (a) Let g : (0, 1] → [0,∞) be a decreasing function,
∫ 1

0
g(r) dr < ∞. Show that∫

Sn−1
g(|y1|) dσ(y) <∞.

Hint: Estimate
∫
Sn−1

g(|y1|) dσ(y) ⩽ n
∫ 1

0
rn−1

∫
Sn−1

g(|ry1|) dσ(y) dr, use generalised

polar coordinates, and estimate the resulting integral over B(0, 1) by the integral over
[−1, 1]n.
(b) Show that

∫
Sn−1

ln 1
|y1| dσ(y) <∞.

H.7 Let m,n ∈ N, and let Ω ⊆ Rn be an open set.
(a) Show that C1

b(Ω) × H1(Ω;Km) ∋ (φ, g) 7→ φg ∈ H1(Ω;Km) defines a continuous
bilinear mapping,

∥φg∥H1(Ω;Kn) ⩽
√
2
(
∥φ∥2∞ +

n∑
j=1

∥∂jφ∥2∞
)1/2

∥g∥H1(Ω;Kn) .

(b) Show that C1
b(Ω) × C1

b(Ω;Km) ∋ (φ, g) 7→ φg ∈ C1
b(Ω;Km) defines a continuous

bilinear mapping.

H.8 Let Ω ⊆ Rn, Ω′ ⊆ Rm be bounded open sets. Let F : Ω′ → C1
b(Ω) be bounded and

continuous.
(a) Show that f(x) :=

∫
Ω′ F (w)(x) dw defines a function f ∈ C1

b(Ω), with ∂jf(x) =∫
Ω′ ∂j(F (w))(x) dw for all x ∈ Ω, j = 1, . . . , n.
(b) Show that

∥f∥H1(Ω) ⩽
∫
Ω′
∥F (w)∥H1(Ω) dw.

Hint: Exploit the equality ∥f∥H1(Ω) = sup
{
|(f | g)H1(Ω)| ; g ∈ H1(Ω), ∥g∥H1(Ω) ⩽ 1

}
.

Note. If we had the Bochner integral for the general context at our disposal, the
inequality would be elementary.
(c) Convince yourself that the corresponding property holds if C1

b(Ω) is replaced by
C1

b(Ω;Kn), and the norm in H1(Ω) by the norm in H1(Ω;Kn).





Appendix I

The fixed point theorems of Brouwer
and Schauder

The fixed point theorems proved in this appendix are important for the existence of
solutions for nonlinear problems. In contrast to the Banach fixed point theorem, which
also provides uniqueness of solutions, the fixed point theorems treated here only provide
existence. The Schauder fixed point theorem is used in Chapter 19. The Brouwer fixed
point theorem, interesting and important in its own right, is needed for the proof of
Schauder’s theorem.

I.1 Brouwer’s fixed point theorem

Throughout this section we fix n ∈ N, and we denote the closed unit ball BRn [0, 1] in Rn

by B. As a consequence,
◦
B will be the open unit ball, the interior of B. Slightly abusing

the usual terminology, we will call a function continuously differentiable on B if it belongs
to C1(B(0, 1)).

I.1 Theorem (Brouwer). Let f be a continuous mapping from B to itself. Then f has
a fixed point, i.e., there exists x ∈ B such that f(x) = x.

In a first step we will show that it is sufficient to prove the theorem under the stronger
hypothesis that f is continuously differentiable on B. As the whole procedure of the proof
is based on contradiction, we will formulate the following proposition ‘negatively’, i.e., by
starting with an assumption which – in the end – we want to disprove.

I.2 Proposition. Assume that f is a continuous self-map of B without a fixed point.
Then there exists a continuously differentiable mapping f̃ : B →

◦
B without a fixed point.

Proof. The compactness of B implies that ε := inf{|f(x)− x| ; x ∈ B} > 0. Clearly one
can find r ∈ (0, 1) such that |rf(x) − f(x)| ⩽ ε/3 for all x ∈ B. It follows from the
Stone–Weierstrass theorem (Theorem B.2) that rf can be approximated by a mapping f̃
that is a polynomial in each component,

∣∣f̃(x)− rf(x)
∣∣ ⩽ min{ε/3, (1− r)/2}. (The set of

polynomials on B is an algebra that separates the points of B and contains the function 1;
hence, the polynomials are dense in C(B).) As a consequence,

∣∣f̃(x)∣∣ ⩽ 1− (1− r)/2 and∣∣f̃(x)− x
∣∣ ⩾ ε/3 for all x ∈ B, and f̃ is as asserted.
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We will see below that the existence of a mapping f̃ as in Proposition I.2 would entail
the existence of a continuously differentiable retraction of g of B to ∂B, i.e. a continuously
differentiable mapping g from B to Rn with g(B) ⊆ ∂B and g|∂B = id∂B. The following
result shows that such a retraction does not exist. In fact, this result is the key point in
the proof of Brouwer’s fixed point theorem and contains the main technical difficulty.

I.3 Proposition. There is no continuously differentiable retraction of B to ∂B.

Proof. The proof proceeds via contradiction. We assume that there exists a continuously
differentiable retraction g of B to ∂B. We define a homotopy g : [0, 1]×B → B between
idB and g by

gt := (1− t) idB + tg (t ∈ [0, 1]).

Then g0 = idB, g1 = g and gt|∂B = id∂B for all t ∈ [0, 1].
We will prove the properties

(i) t→ p(t) :=
∫

◦
B
det g′t(x) dx is a polynomial,

(ii) p(0) = ωn > 0, and there exists ε ∈ (0, 1] such that p|[0,ε] is constant,
(iii) p(1) = 0.

Obviously these properties cannot hold simultaneously, which means that the contradiction
will be established.
(i) The entries of the matrix g′t(x) are given by (1− t)δjk + t∂kgj(x) (j, k = 1, . . . , n);

hence det g′t(x) is a polynomial in t,

an(x)t
n + an−1(x)t

n−1 + · · ·+ a0(x),

with continuous coefficients aj : B → R (j = 0, . . . , n). Integration over
◦
B yields the

assertion.
(ii) Put c := ∥g′∥∞ (= sup|x|⩽1 |g′(x)|, where |g′(x)| denotes the Euclidean matrix norm).

Then for all t ∈ [0, 1] and x, y ∈ B one obtains

|gt(x)− gt(y)| ⩾ (1− t)|x− y| − tc|x− y| = (1− t(c+1))|x− y|;

hence gt is injective for 0 ⩽ t < 1/(c +1). For all x ∈
◦
B one has det g′0(x) = 1, hence

the uniform continuity of (t, x) 7→ det g′t(x) on [0, 1] × B implies that there exists ε ∈(
0, 1/(c+1)

)
such that det g′t(x) > 0 for all t ∈ [0, ε], x ∈

◦
B. This shows that, for t ∈ [0, ε],

the mapping gt| ◦
B is a diffeomorphism from

◦
B to the open subset gt(

◦
B) of

◦
B. From

∂
(
gt(

◦
B)

)
= gt

( ◦
B
)
\ gt

( ◦
B
)
⊆ gt(B) \ gt

( ◦
B
)
= gt

(
∂

◦
B
)
= ∂

◦
B

we conclude that in fact gt
( ◦
B
)
=

◦
B.

We now apply the transformation formula: for all t ∈ [0, ε] we have

p(t) =

∫
◦
B

det g′t(x) dx =

∫
gt(

◦
B)

1 dx = λn
(
gt(

◦
B)

)
= λn(

◦
B).

(iii) g(
◦
B) ⊆ ∂B and the theorem of local invertibility imply that det g′(x) = 0 for all

x ∈
◦
B; hence p(1) = 0.
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In order to construct a retraction as in Proposition I.3 from a (hypothetical) self-map
of B without a fixed point, we need the following lemma.

I.4 Lemma. For y ∈
◦
B and z ∈ Rn \ {0}, the half-ray y + (0,∞)z meets the unit sphere

Sn−1 = ∂B in precisely one point φ(y, z) ∈ Sn−1. The function φ :
◦
B × (Rn \ {0}) → ∂B

thus defined is continuously differentiable.

Proof. For y ∈
◦
B, z ∈ Rn \ {0}, the function s 7→ |y + sz|2 = |y|2 + 2(y | z)s + |z|2s2 is

quadratic, equals |y|2 < 1 for s = 0, and tends to ∞ as s→ ∞; hence there is a unique
s > 0 such that |y + sz|2 = 1. This solution is given by

s(y, z) = |z|−2
(
−(y | z) +

√
(y | z)2 + (1− |y|2)|z|2

)
,

which depends continuously differentiably on (y, z). We conclude that φ(y, z) = y+s(y, z)z
satisfies the assertion.

Proof of Theorem I.1. Assume that there exists a continuous self-map f of B without
a fixed point. By Proposition I.2 we may assume without loss of generality that f is
a continuously differentiable mapping from B to

◦
B. We define g : B → ∂B by g(x) :=

φ(f(x), x − f(x)), with φ from Lemma I.4. Then g is a continuously differentiable
retraction of B to ∂B. This is a contradiction to Proposition I.3.
Hence, an f as assumed above cannot exist.

I.5 Corollary. (a) Let K ⊆ Rn be homeomorphic to B. Then every continuous self-map
of K has a fixed point.

(b) Let K ̸= ∅ be a compact convex subset of Rn. Then every continuous self-map of
K has a fixed point.

Proof. (a) Let h : B → K be a homeomorphism, and let f be a continuous self-map of K.
Then h−1 ◦ f ◦h is a continuous self-map of B, and a fixed point x of h−1 ◦ f ◦h is mapped
to a fixed point h(x) of f .
(b) Provided with the Euclidean scalar product, Rn is a Hilbert space. Let P : Rn → K

be the minimising projection onto K. Let R > 0 be such that K ⊆ B[0, R], and let f be
a continuous self-map of K. Then f ◦ P is a continuous self-map of B[0, R], and a fixed
point x ∈ B[0, R] of f ◦ P will automatically belong to f(K) ⊆ K, hence be a fixed point
of f .

I.6 Remark. Having Theorem I.1 at our disposal we can reinforce Propoposition I.3
to the statement that there is no continuous retraction of B to ∂B. Indeed, if g were a
continuous retraction of B to ∂B, then −g would be a continuous self-map of B without
a fixed point. △

I.2 Schauder’s fixed point theorem

I.7 Theorem (Schauder). Let X be a Banach space, let K ̸= ∅ be a compact convex
subset of X, and let f be a continuous self-map of K. Then f has a fixed point.
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Proof. We may assume that the scalar field is R. Assume, for a contradiction, that f has
no fixed point. Then

ε := inf{∥f(x)− x∥ ; x ∈ K} > 0. (I.1)

For convenience, and without loss of generality, we assume that ε = 1. (This can be
achieved by replacing the norm ∥·∥ on X by 1

ε∥·∥.) Put

α(x) := (1− ∥x∥)+ (x ∈ X).

There exist x1, . . . , xn ∈ K such that {B(xj, 1) ; j = 1, . . . , n} is a covering of K. For
x ∈ K, j ∈ {1, . . . , n} put αj(x) := α(x− xj),

βj(x) :=
αj(x)

α1(x) + · · ·+ αn(x)
(⩾ 0).

Note that the denominator in the expression defining βj is strictly positive, and observe
that

∑n
j=1 βj(x) = 1 (x ∈ K).

Let C be the convex hull of {x1, . . . , xn} and observe that C ⊆ K is a compact convex
subset of the finite-dimensional space lin{x1, . . . , xn}. Then

g : K → C, x 7→
n∑

j=1

βj(x)xj

is continuous. Note that βj(x) = 0 if ∥x− xj∥ ⩾ 1, hence

∥x− g(x)∥ =

∥∥∥∥ n∑
j=1

βj(x)(x− xj)

∥∥∥∥ < 1 (x ∈ K). (I.2)

Brouwer’s fixed point theorem, in the form of Corollary I.5(b), implies that the continuous
self-map g ◦ f |C of C has a fixed point xf ∈ C. Using (I.2) we obtain

∥f(xf )− xf∥ = ∥f(xf )− g(f(xf ))∥ < 1,

a contradiction to (I.1).

Instead of supposing compactness of the set on which the mapping f is defined, one
can also suppose that the mapping has relatively compact range, as follows.

I.8 Theorem (Schauder). Let X be a Banach space, C ⊆ X a closed convex subset, and
let f be a continuous self-map of C, with the property that f(C) is relatively compact in
X. Then f has a fixed point.

Proof. The closed convex hull of a relatively compact set in a Banach space is compact;
see Exercise I.1. Thus, the closed convex hull K := co(f(C)) is compact, and it is also
a subset of C. Hence, the restriction of f to K is a continuous self-map of K, and
Theorem I.7 implies that f has a fixed point.
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Notes

The Brouwer fixed point theorem originally appeared in [Bro11; Satz 4]. A combinatorial
proof, on the basis of “Sperner’s lemma”, [Spe28], was given in [KKM29]. Meanwhile
multitudinous proofs can be found in the literature. Most of them belong to the area of
homology theory and use the degree of mappings in Rn. Our proof, which only relies on
‘elementary analysis’, is along the lines of the proof in [DuSc58; Section V.12]; see also
[Heu98; Kap. XXVII, 228]. Another interesting proof is given in [Mil78], where also other
sources are indicated.
The Schauder fixed point theorem appeared in [Sch30]. Our proof follows [Rud91;

Theorem 5.28], where in fact Tikhonov’s fixed point theorem [Tyc35] is proved, the
generalisation of Schauder’s fixed point theorem to locally convex topological vector
spaces.

Exercises

I.1 Let X be a Banach space, C ⊆ X a compact subset. Show that the closed convex
hull of C is compact. (Hint: First prove the claim for finite sets C. Then use the
precompactness of C to show that co(C) is precompact as well.)
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2011.

[ArCh10] W. Arendt and R. Chill: Global existence for quasilinear diffusion equations
in isotropic nondivergence form. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
IX, 523–539 (2010).

[ArDa08a] W. Arendt and D. Daners: The Dirichlet problem by variational methods.
Bull. London Math. Soc. 40, 51–56 (2008).

[ArDa08b] W. Arendt and D. Daners: Varying domains: stability of the Dirichlet and
the Poisson problem. Discrete Contin. Dyn. Syst. 21, 21–39 (2008).

[ADF17] W. Arendt, D. Dier, and S. Fackler: J. L. Lions’ problem on maximal
regularity. Arch. Math. (Basel) 109, 59–72 (2017).

[ADLO14] W. Arendt, D. Dier, H. Laasri, and E.M. Ouhabaz: Maximal regularity for
evolution equations governed by non-autonomous forms. Adv. Diff. Equ. 19,
1043–1066 (2014).

[AEH97] W. Arendt, O. El Mennaoui, and M. Hieber: Boundary values of holomorphic
semigroups. Proc. Amer. Math. Soc. 125, no. 3, 635–647 (1997).

[ArEl11] W. Arendt and A. F.M. ter Elst: The Dirichlet-to-Neumann operator on
rough domains. J. Differential Equations 251, no. 8, 2100–2124 (2011).

[ArEl12a] W. Arendt and A. F.M. ter Elst: From forms to semigroups. Spectral theory,
mathematical system theory, evolution equations, differential and difference
equations. Oper. Theory: Adv. Appl. 221. Birkhäuser/Springer, Basel, 2012,
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N the set of natural numbers {1, 2, 3, . . . }

N0 N ∪ {0}

R the field of real numbers

C the field of complex numbers

K R or C

A⊤ transpose of a matrix A ∈ Km×n

linB linear span of a subset B of a vector space

B(x, r) open ball with centre x, radius r, page 16

B[x, r] closed ball with centre x, radius r, page 16

Σθ open sector of (semi-)angle θ ∈ (0, π/2], page 30

Σθ,0 Σθ ∪ {0}, page 30

Σ0 (0,∞), page 36

V ′ dual space of a Hilbert space V , page 57

V ∗ antidual space of a Hilbert space V , page 57

L2(µ)+ cone of functions 0 ⩽ u ∈ L2(µ), page 116

diam(C) diameter of a set C in a metric space

rd(C) 1
2
diam(C) for a set C in a metric space, should be remindful of ‘radius’,

page 290

rd(C) supC∈C rd(C), for a countable collection C of subsets of a metric space,
page 290

L(X, Y ) space of bounded linear operators from X to Y , with Banach spaces
X, Y , page 3

s-lim limit in the strong operator topology, page 3

dom(A) domain of A, page 5
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ran(A) range of A, page 5

ker(A) kernel of A, page 5

num(A) numerical range of A, page 36

etA the C0-semigroup generated by a generator A, page 10

A∗ adjoint of the operator A, page 71

A∗ adjoint of the linear relation A, page 187

A ∼ (a, j) operator A associated with (a, j), page 155

tr trace operator, assigning boundary values to functions, page 92

∆D Dirichlet Laplacian, page 51

∆N Neumann Laplacian, page 94

∆β Robin Laplacian, page 95

∆β Robin Laplacian for rough domains, page 162

C(G) space of continuous functions with values in K, for a locally compact
set G ⊆ Rn, page 12

Cb(G) space of bounded continuous functions, page 12

Cc(G) space of continuous functions with compact support, page 12

C0(G) closure of Cc(G) in Cb(G), page 12

Ck(Ω) space of k times continuously differentiable functions on an open set
Ω ⊆ Rn, for k ∈ N0

C∞(Ω) space of infinitely differentiable functions

Ck(Ω) space of functions u ∈ C(Ω) ∩ Ck(Ω), with derivatives up to order k
continuously extendable to Ω, for bounded open Ω ⊆ Rn, page 87

L1,loc(Ω) space of locally integrable functions, page 41

H1(Ω) Sobolev space of L2-functions with distributional first order derivatives
in L2, page 46

H1
c (Ω) functions in H1(Ω) with compact support, page 48

H1
0 (Ω) closure of H1

c (Ω) in H
1(Ω), page 48

H−1(Ω) antidual ofH1
0 (Ω) in the Gelfand triple

(
H1

0 (Ω), L2(Ω), H
−1(Ω)

)
, page 215
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W 1
1 (Ω) Sobolev space of L1-functions, with distributional first order derivatives

in L1, page 287

W 1
1,c(Ω), W

1
1,0(Ω) analogous to H1

c (Ω), H
1
0 (Ω), page 287

H1(a, b;H) vector-valued Sobolev space, page 232

1A indicator function of a subset A of a set Ω, 1A(x) :=

{
1 if x ∈ A,

0 if x ∈ Ω \ A.

[f ⩽ g] {x ∈ Ω; f(x) ⩽ g(x)}, for a set Ω and functions f, g : Ω → R. Similarly
for [f < g], [f = g] etc.

f ∨ g, f ∧ g f ∨ g(x) := max{f(x), g(x)}, f ∧ g(x) := min{f(x), g(x)} (x ∈ Ω), for
a set Ω and functions f, g : Ω → R

f+, f− positive and negative part of a real-valued function f , f+ := f ∨ 0,
f− := (−f)+

sgn signum function, page 117

ρ ∗ u convolution of ρ and f , page 41

spt f support of a continuous function, page 12

spt f support of an L1,loc-function, page 47

|α|
∑n

j=1 αj, order of the multiindex α ∈ Nn
0

∂ju partial derivative with respect to the j’th variable, for a differentiable
function u of n variables

∂αu ∂α1
1 · · · ∂αn

n u, for a multiindex α ∈ Nn
0

∂αf distributional derivative of f ∈ L1,loc(Ω), page 44

∇u gradient of a function u ∈ C1(Ω) or u ∈ H1(Ω), ∇u := (∂1u, . . . , ∂nu)
⊤,

page 64

∂νu normal derivative, page 88

∂νu weak normal derivative, page 93

∂νu weak normal derivative, page 162
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C0-semigroup, 2

Beurling–Deny criteria, 137
Bochner integral, 230
Bogovskĭı formula, 221
Bogovskĭı operator, 221
Borel measure, 87
Borel set, 87

conormal derivative, 143
contained in a slab, 64, 289
continuous boundary, 86
continuous graph, 86

delta sequence, 42
Dirichlet form (non-symmetric), 137
Dirichlet Laplacian, 51
Dirichlet problem, 97
Dirichlet’s principle, 97
Dirichlet-to-Neumann operator, 102, 163
distributional sense, 44
divergence theorem, 96
domain monotonicity of eigenvalues, 82
drift term, 142

elliptic operator
Dirichlet boundary conditions, 143
mixed boundary conditions, 144
Neumann boundary conditions, 143

ellipticity condition, 142
embedding constant, 47
equivalent scalar product, 58

form
(a, j) densely defined, 153
j-coercive, 62
accretive, 55
accretive symmetric form in H, 153

bounded, 58
classical Dirichlet, 64
closable, 160
closed, 155
coercive, 58
core, 156
domain, 153
embedded, 63, 157
essentially coercive, 106
imaginary part, 57
quasi-accretive symmetric, 156
quasi-coercive, 63
quasi-sectorial, 156
real part, 57
sectorial, 57
sectorial form in H, 153
sesquilinear, 55
symmetric, 55
vertex, 156

Fréchet–Riesz isomorphism, 57
Friedrichs extension, 157
function

analytic, 16, 27
Borel measurable, 180
convolution, 41
distributional derivative, 44
gradient, 64
harmonic, 101
holomorphic, 27
indicator, 4
locally integrable, 41
negative part, 116
positive part, 116
signum, 117
simple, 130
step, 6
support, 12
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support of L1,loc-, 47
weakly holomorphic, 27

Gelfand triple, 215, 229
group

C0-, 2
boundary, 39
one-parameter, 2

Hille–Yosida operator, 184

linear operator, see ‘operator’, 5
linear relation, 5

accretive, 170
adjoint, 187
associated with a non-densely defined

form, 185, 186
closed, 5
convergence in the strong resolvent

sense, 174
domain, 5
extension, 5
inverse, 5
kernel, 5
m-accretive, 170
m-sectorial, 186
quasi-m-accretive, 171
quasi-m-sectorial, 186
quasi-sectorial, 186
range, 5
sectorial, 186
self-adjoint, 187

Lipschitz boundary, 86
Lipschitz graph, 86

maximal regularity, 237, 243
maximum principle for harmonic

functions, 285
mean value property, 283
measurable (for Hilbert space valued

functions), 230
min-max principle, 82
minimising projection, 117

Neumann Laplacian, 94
Neumann series, 16

non-autonomous form, 236
bounded, 236
coercive, 236
Lipschitz continuous, 244
symmetric, 244

normal derivative, 88
weak, 93, 162

operator, 5
L1-contractive, 136
L∞-contractive, 116
accretive, 34
adjoint, 71
associated with (a, j), 155
associated with a form, 59
closable, 5
closed, 5
closure, 5
compact, 75
compact resolvent, 77
convergence in the strong resolvent

sense, 174
core, 5
diagonal, 73
dispersive, 119
dissipative, 36
essentially self-adjoint, 73
Lax–Milgram, 58
m-accretive, 35
m-dispersive, 119
m-sectorial, 36
maximal multiplication, 13
numerical range, 36
positive, 116
quasi-accretive, 62
quasi-m-accretive, 62
quasi-m-sectorial, 62
quasi-sectorial, 62
real, 116
resolvent, 15
resolvent set, 15
restriction, 5
sectorial, 36
self-adjoint, 73
spectrum, 15
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strictly accretive, 58
strictly m-accretive, 58
substochastic, 136
sub-Markovian, 116
sum, 5
symmetric, 73
trace, 92
trace (of functions on the boundary),

161
order ideal, 145, 211
outer unit normal, 86

parallelogram identity, 56
Peter–Paul inequality, 95
polarisation identity, 56
positive cone, 116
positive linear functional, 313
pseudo-resolvent, 170

resolvent equation, 16
Robin Laplacian, 95, 162

Schaefer set, 258
semi-inner product, 154
semigroup

C0-, 2
L1-contractive, 136
boundary, 39
bounded holomorphic C0-, 33
consistent (on Lp/Lq), 137
contractive, 19
contractive degenerate strongly

continuous, 170
degenerate strongly continuous, 169
generator, 7
generator (of degenerate strongly

continuous semigroup), 170
holomorphic, 30
holomorphic C0-, 31
Markovian, 148
one-parameter, 1
positive, 119
quasi-contractive, 19
quasi-contractive degenerate strongly

continuous, 170
quasi-contractive holomorphic, 62

rescaled, 18
self-adjoint, 135
stochastic, 148
substochastic, 136
sub-Markovian, 119

set
almost norming, 28
norming, 28
separating, 28

Sobolev space, 46, 232, 233, 287
standard exhaustion, 53
Stokes operator, 217
strong integral, 18
strong operator topology, 17
strongly continuous, 17
strongly convergent, 3
sub-subsequence argument, 127
support (of a function), 12, 47
surface measure, 86, 275

theorem
Brouwer fixed point theorem, 333
Chernoff product formula, 176, 179
exponential formula, 22
Fredholm alternative, 103
Friedrichs extension, 157
Gauss, 87
generation theorem, 59, 60
Hilbert, spectral theorem for compact

self-adjoint operators, 75
Hille–Yosida, 20
Lax–Milgram lemma, 58
Lions’ representation, 235
Lumer–Phillips, 35
Poincaré’s inequality, 64
Rellich–Kondrachov, 79, 91
Schaefer fixed point theorem, 258
Schauder fixed point theorem, 257,

335
spectral theorem for self-adjoint

operators, 180
Stein, 131
three lines theorem, 130
Trotter approximation, 172
Trotter product formula, 204, 208
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Vitali convergence, 201
topological direct sum, 109

vector sublattice, 121, 145, 281

weak derivative, for H-valued functions,
232

Yosida approximation, 20
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