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Introduction

The validity of Gaussian bounds for fundamental solutions of second-order parabolic equa-
tions in divergence form with non-smooth coefficients goes back to Aronson. In [Aro67],
Aronson studied the parabolic equation

∂tu = ∇ ·
(
a(t, x)∇u

)
(0.1)

with a uniformly parabolic measurable coefficient a : [0,∞)×Rn→ Rn×n, i.e., a is bounded
and there exists ε > 0 such that

∑n
j,k=1 ajk(t, x)ξjξk > ε|ξ|2 for all (t, x) ∈ [0,∞)×Rn and

all ξ ∈ Rn. He proved that there are constants C1, C2, c1, c2 > 0 such that the fundamental
solution g of (0.1) satisfies the two-sided Gaussian bounds

C1(t− s)−n/2e−c1
|x−y|2

t−s 6 g(t, x; s, y) 6 C2(t− s)−n/2e−c2
|x−y|2

t−s (0.2)

for all (t, x), (s, y) ∈ [0,∞) × Rn with t > s; see [Aro67; Rem. 5] for an explanation why
these estimates are global in time, i.e., why no restriction t− s 6 T is needed.

In [Aro68], Aronson studied a more general parabolic equation that includes lower
order terms with measurable coefficients, in particular, a multiplication term (potential)
was allowed that was supposed to satisfy a certain integrability property. Starting from
the publication of [Aro68] the topic has a rich history, and numerous extensions and
generalisations have been obtained. For results in the Euclidean space setting see, e.g.,
[EiPo84,FaSt86,Dav87a,Dav89,Str92,Sem99,LiSe00,Dan00]; further generalisations will
be discussed below.

For the case of Schrödinger operators −∆ +V , in [AiSi82] the Kato class of potentials
was shown to be the appropriate class for the L1-perturbation theory of the correspond-
ing C0-semigroups, and in [Sim82] it was shown that the fundamental solution of the
perturbed heat equation still satisfies upper and lower Gaussian estimates. It was much
later, however, that parabolic equations with more general time-dependent potentials were
studied and the non-autonomous Kato class as the proper extension of the Kato class was
introduced; cf. [Zha96,Zha97,ScVo99,Gul02,Gul04].

Essentially following [Zha96] we say that a potential V ∈ L1,loc([0,∞)× Rn) is in the
non-autonomous Kato class NK if

N+(V ) := lim
α→0

N+
α (V ) = 0 and N−(V ) := lim

α→0
N−
α (V ) = 0,

where

N±
α (V ) = sup

x,s

∫ α

0

∫
Rn

kt(x− y)|V (s± t, y)| dy dt (0 < α 6 ∞),

with the free heat kernel kt(x) = (4πt)−n/2e−
|x|2
4t , and V (τ, ·) := 0 for τ < 0. We say that

V is in the enlarged non-autonomous Kato class N̂K if N+(V ) < ∞ and N−(V ) < ∞.
(Observe that this differs from [ScVo99], where only N+(V ) < ∞ was required.) Note
that N+(V ) = N−(V ) in the case of time-independent V . In fact, NK just reduces to

the Kato class in this case, and N̂K to the extended Kato class (cf. [ScVo99]).
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In [Zha97], Zhang studied the fundamental solution of the parabolic equation

∂tu = ∇ ·
(
a(t, x)∇u

)
− V (t, x)u. (0.3)

He proved that if a is uniformly parabolic and Vλ := V (·/λ, ·) ∈ NK for a suitable
λ > 0, then the fundamental solution satisfies the two-sided Gaussian bounds (0.2) for
s < t 6 s + 1. (The framework of [Zha97] is actually the more general one of parabolic
equations with uniformly subelliptic principal part, see below.) Of course the above
bounds can be extended to all t > s by means of the reproducing kernel property. However,
this leads to an additional factor eωt in the upper bound, and e−ωt in the lower bound; in
general the bounds are not global in time.

As is observed in [ScVo99], for the well-posedness of the Cauchy problem for (0.3) in
L1(Rn) only the condition N+(Vλ) < λ/M is needed, where λ,M are such that the funda-
mental solution g0 corresponding to V = 0 satisfies g0(t, x; s, y) 6 Mkλ(t−s)(x − y). This
is derived by means of the non-autonomous Miyadera perturbation theorem [RRSV00;
Thm. 3.4]; in fact, V satisfies the required Miyadera smallness condition under the above
assumption. However, a condition controlling N+(Vλ) (a forward Kato condition) is not
sufficient for obtaining Gaussian bounds: Zhang’s result also requires a backward Kato
condition, i.e., a condition on N−(Vλ). The latter condition is responsible for the well-
posedness of the adjoint Cauchy problem

−∂tu = ∇ ·
(
a>(t, x)∇u

)
− V (t, x)u, u(T, ·) = f

in L1(Rn), where T > 0 (cf. Section 2.3).
It was noted in [Zha97] that the Gaussian bounds (0.2) for the fundamental solution

of (0.3) remain valid for s < t 6 s + 1 if Vλ ∈ N̂K and the quantities N±(Vλ) are
sufficiently small, for a suitable λ > 0. The results of this thesis imply that the upper
bound holds if the negative part V − of V satisfies N±(V −

λ ) < λ/M (with λ,M as in the
previous paragraph); cf. Theorem 3.10. It follows from the general approach of absorption
propagators that we use that no restrictions on the positive part V + of V are needed.
The lower bound in (0.2) holds under the assumption N±(V +

λ ) < ∞ and the condition
that the Cauchy problem for (0.3) is well-posed in L1(Rn); cf. Theorem 3.12. In order
to obtain global bounds (0.2), we require the same conditions as above but with N±

∞ in
place of N±. For the upper bound this essentially is proved in [Zha97]. The global lower
bound under these conditions is due to [LVV06; Rem. 3.13].

The aim of this thesis is to develop a perturbation method that enables one to derive
the above results in the general framework of positive propagators on Lp-spaces, thus
allowing for a much wider range of applications. A (linear) propagator, or evolution
family, describes the time evolution of a system with time-dependent driving force. The
perturbation by a time-dependent potential that we are going to study can be thought
of as an operator addition to the local infinitesimal generators of the propagator. Since
the latter do not exist, in general, the perturbed propagators are constructed by requiring
the validity of a Duhamel formula. We refer to the introduction of [RRSV00] for a more
extensive discussion.
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This approach using the Duhamel formula and the resulting Dyson-Phillips series
works rather directly in the case of bounded perturbations (not necessarily by potentials);
see [LVV06; Sec. 1.2]. (In [RäSc99; Sec. 2], bounded perturbations are studied by means of
evolution semigroups.) In Chapter 1 we show that the approach can also be implemented
in the more general case of Miyadera perturbations; thus we entirely avoid the use of
evolution semigroups.

For the special case of positive propagators on Lp-spaces and perturbation by poten-
tials, one can still go further by approximating a general potential by bounded potentials
and using monotonicity. This approach, known as the theory of absorption semigroups
and absorption propagators, is well-established for C0-semigroups (cf. [Voi86], [Voi88],
[ArBa93], [Man01]). In the non-autonomous case, perturbations by positive potentials
have been studied in [RäSc99], and only in [LVV06] the study of sign-changing potentials
was initiated.

In Chapter 2 we further develop the theory of absorption propagators. One of the new
aspects is that we enlarge the class of admissible perturbations, thus allowing perturbation
by highly oscillating potentials. Moreover, we study strongly measurable propagators (as
opposed to strongly continuous propagators). This makes the development of the theory
more natural since the class of strongly measurable propagators is closed under strong
convergence.

The main ingredient in our proof of stability of Gaussian bounds under perturbation
by potentials is an interpolation inequality for absorption propagators (see Section 2.5)
that is well-known in the case of Schrödinger semigroups, in which probabilistic tools
can be used for the proof. We provide a purely analytical argument that is based on
a Trotter product formula for strongly continuous propagators, provided in Section 1.4.
Then in Section 3.1 we show how the interpolation inequality can be used to prove both
upper and lower Gaussian type bounds, in the general context of positive ultracontractive
propagators.

Above we have only discussed parabolic equations on the whole space Rn. Suppose
now that Ω is a bounded connected open subset of Rn, let T ∈ (0,∞], and consider the
parabolic equation with homogeneous Dirichlet boundary condition

∂tu = ∇ ·
(
a(t, x)∇u

)
, u = 0 on (0, T )× ∂Ω, (0.4)

where a : [0, T )×Ω→ Rn×n is measurable and uniformly parabolic. It follows from general
domination principles that the fundamental solution of (0.4) satisfies the upper bound
in (0.2). The corresponding lower bound, however, does not hold, and the upper bound
does not reflect the boundary behaviour. Moreover, the long-time behaviour is different
since Ω is bounded. The latter is the reason why in the following we assume that T <∞
unless stated otherwise.

The autonomous case was studied in detail by Davies, based on intrinsic ultracontrac-
tivity estimates from [DaSi84]. Under the assumption that n > 3 and that a and ∂Ω are
sufficiently smooth, it follows from [Dav87b; Thm. 3 and Thm. 9] that there exist C, c > 0
such that the fundamental solution g of (0.4) satisfies the Gaussian type upper bound

g(t, x; s, y) 6 C(t− s)−n/2
(
d(x)d(y)

t− s
∧ 1

)
· exp

(
−c |x− y|2

t− s

)
(0.5)
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for all (t, x), (s, y) ∈ [0, T )×Ω with t > s, where d(x) denotes the distance from x to the
boundary of Ω. An analogous lower bound remained an open question; only in the simpler
situation of the long-time behaviour, precise upper and lower bounds were provided.

The missing lower bound was first proved in [Zha02] for the case of the heat equa-
tion and C1,1-boundary, again under the assumption n > 3. The latter assumption was
removed in [Son04a]. It was noted in [Zha02; Rem. 1.3] that the lower bound also holds
for space-dependent Hölder continuous coefficients. In [Son04b], global upper and lower
bounds of the type (0.5) are proved for the case of the heat equation, assuming that n > 3
and that Ω is the subgraph of a bounded C1,1-function Γ: Rn−1 → R.

The case of time-dependent coefficients was first investigated by Riahi in [Ria01] for the
half space and later in [Ria05] for bounded Ω with C1,1-boundary. The most general result
we know of is due to Cho. In [Cho06] he proves (0.5) and a matching lower bound under
the assumption that Ω has C1,α-boundary, for some α ∈ (0, 1), and that the coefficients are
Dini continuous with respect to the parabolic distance

∣∣(t, x)− (s, y)
∣∣ = |t−s|1/2 + |x−y|,

i.e., |ajk(X) − ajk(Y )| 6 ω(|X − Y |) for all X, Y ∈ [0, T ) × Ω and j, k = 1, . . . , n, for

some increasing function ω : [0,∞) → [0,∞) satisfying
∫ 1

0
ω(t)/t dt <∞. (Without some

regularity of a and ∂Ω, the kernel estimate (0.5) does not hold in general.)
We point out that already in [Dav87b], the parabolic equation contained a (time-

independent) potential V satisfying a suitable condition on infinitesimal form smallness.
In [Ria03] it is proved that (0.5) and also the corresponding lower bound are stable under
perturbation by potentials from NK. This does not cover, however, the boundary singu-
larities of the potentials considered in [Dav87b]. Only in [Ria07] a proper generalisation
was found: It follows from [Ria07; Cor. 5.7] that the kernel bound (0.5) and a matching
lower bound hold if the parabolic equation (0.4) is perturbed by a potential that is locally
in NK and that satisfies, for some α > 0 and some small enough c, ε > 0, the estimate

sup
x,s

∫ α

0

∫
Rn

d(y)

d(x)
γct (x, y)|V (s± t, y)| dy dt 6 ε,

where γct (x, y) = t−n/2
(
d(x)d(y)

t
∧ 1

)
exp

(
−c |x−y|

2

t−s

)
. We point out that Riahi’s result deals

with the more general case of perturbation by measures, and that an additional drift term
is included whose coefficient is a vector-valued measure.

Owing to the method of [Ria07], the constants c and ε in the above condition on V
are not sharp. In Section 3.2 we prove stability of kernel estimates of the type (0.5) in a
more general setting, under a condition on V that is sharp up to a factor of 2.

In Section 3.3, the concluding section of the thesis, we show that our methods can also
be applied to stability of kernel estimates on complete Riemannian manifolds with Ricci
curvature bounded below. The main breakthrough in this context was accomplished by Li
and Yau, who in [LiYa86] proved global upper and lower bounds for the heat kernel in the
case of non-negative Ricci curvature. It is shown in [Sal92] that these estimates remain
valid if one replaces the heat equation with a uniformly parabolic equation with time-
dependent measurable coefficients. For further developments see [DaPa89,Dav93, Stu95,
Gri99,Gri06]. In particular, in [Gri06; Sec. 10], Grigor’yan has obtained sharp estimates
for the long time behaviour in the time-independent symmetric case.
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Estimates analogous to the Li-Yau estimate also hold for uniformly subelliptic op-
erators of Hörmander type; see [Sán84], [JeSá86] for compact manifolds and [KuSt87],
[KuSt88] for the setting of Rn. In fact, it is the latter setting in which the stability results
of [Zha97] are proved, not only the uniformly parabolic setting described in the beginning.
In Section 3.3 we prove stability of kernel estimates in a more general framework that
includes the above applications, under a miminal assumption on the perturbation.

The outline of the thesis is as follows. In Chapter 1 we investigate the general pertur-
bation theory for strongly measurable propagators. The notion of strongly measurable
propagators is introduced in Section 1.1, and some basic properties are proved. In Sec-
tion 1.2 we prove the Miyadera perturbation theorem for strongly measurable propaga-
tors and related results; the special case of closed Miyadera perturbations is studied in
Section 1.3 in more detail. In Section 1.4 we present a convergence result for bounded
perturbations and derive the Trotter product formula for strongly continuous propagators.

Chapter 2 is devoted to the theory of absorption propagators, i.e., to the particular
case of perturbation of positive propagators on Lp-spaces by real-valued potentials. The
general theory is developed in Section 2.1, and in Section 2.2 the relation to the Miyadera
perturbation theorem is established. In Section 2.3 we introduce a backward Miyadera
condition that is responsible for local L∞-boundedness of perturbed propagators. The
interpolation inequalities for absorption propagators that are mentioned above are studied
in Sections 2.5 and 2.6; the proofs are based on the notion of logarithmically convex
operator-valued functions that is presented in Section 2.4.

In Chapter 3 we apply the abstract theory of Chapter 2 to our main subject, the
stability of kernel estimates for strongly continuous propagators under perturbation by
potentials. Section 3.1 deals with general kernel estimates in the setting of ultracontrac-
tive propagators. In Section 3.2 we prove refined results for more special Gaussian type
estimates involving boundary terms. Finally, in Section 3.3 we show that our method can
also be adapted to cover the case of heat kernel estimates on Riemannian manifolds.

Acknowledgements. I would like to thank Jürgen Voigt for his encouragement
and for many stimulating discussions. Morover, I want to thank Vitali Liskevich, Markus
Haase, Michiel van den Berg and Alexander Grigor’yan for valuable discussions at different
occasions.
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Chapter 1

Perturbation theory for strongly measurable
propagators

Strongly continuous propagators are a standard device in the study of non-autonomous
evolution equations. Here, more generally, we investigate strongly measurable propagators
since they arise naturally as absorption propagators; cf. Section 2.1. Only at the end of
the chapter, strong continuity will play a crucial role. This will have the consequence that
in the kernel estimates in Chapter 3 we will have to start from an unperturbed propagator
that is strongly continuous.

In Section 1.1 we give a short introduction to strongly measurable and strongly con-
tinuous propagators. In Sections 1.2 and 1.3 we prove the Miyadera perturbation theorem
for strongly measurable propagators and related results concerning Duhamel formulas and
Dyson-Phillips series. Section 1.4 deals with the special case of bounded perturbations;
there we prove a Trotter product formula for strongly continuous propagators.

1.1 Strongly measurable propagators

Let J ⊆ R be an interval, and let DJ :=
{
(t, s) ∈ J × J ; t > s

}
. For t ∈ R we use the

notation J>t := {s ∈ J ; s > t}, and analogously J>t, J6t, J<t.
Let X be a (real or complex) Banach space. A propagator on X (with parameter

interval J) is a function U : DJ → L(X) satisfying

U(t, t) = I, U(t, r) = U(t, s)U(s, r) (t > s > r in J).

With a slight abuse of language, we say that U is a strongly measurable propagator if
additionally U is separately strongly measurable, i.e., U(·, s) is strongly measurable on
J>s, for all s ∈ J , and U(t, ·) is strongly measurable on J6t, for all t ∈ J . This definition
is explained by the fact that separate strong measurability of propagators implies joint
strong measurability, but not vice versa if X is not separable, as shown in the following
lemma and in Example 1.3 below.

1.1 Lemma. (a) Let U be a strongly measurable propagator on X. Then U is jointly
strongly measurable.

(b) Let U be a propagator on X, and assume that U is jointly strongly measurable.
Then U(t, ·) is strongly measurable on J6t, for all t ∈ J . If, in addition, X is separable

9



10 CHAPTER 1. PERTURBATION THEORY FOR PROPAGATORS

then U(·, s) is strongly measurable on J>s, for all s ∈ J , so U is a strongly measurable
propagator.

Proof. (a) Let τ ∈ J and Rτ := J>τ × J6τ . Then (t, s) 7→ U(t, s) = U(t, τ)U(τ, s) is
strongly measurable on Rτ , by Lemma 1.2 below. The assertion follows since

⋃
τ∈J∩QRτ

has full measure in DJ .
(b) Let t ∈ J and x ∈ X; we prove that U(t, ·)x is measurable on J6t. In the case

t = inf J there is nothing to show. If t > inf J then U(τ, ·)x is measurable on J6τ for
a.e. τ ∈ J<t, so U(t, ·)x = U(t, τ)U(τ, ·)x is measurable on J6τ for a.e. τ ∈ J<t and hence
measurable on J6t.

Assume now that X is separable, and let X0 be a countable dense subset of X. Then
there exists a null set N ⊆ J such that U(·, s)x is measurable on J>s for all s ∈ J \ N
and all x ∈ X0. It follows that U(·, s) is strongly measurable on J>s for all s ∈ J \ N ,
and with an argument analogous to the above we obtain the same for all s ∈ J , which
completes the proof.

1.2 Lemma. Let f : J → X be measurable, and let B : J →L(X) be strongly measurable.
Then t 7→ B(t)f(t) is strongly measurable. If, in addition, A : J → L(X) is strongly
measurable then t 7→ B(t)A(t) is strongly measurable.

Proof. Let fn : J → X be step functions such that fn → f a.e. as n → ∞. Then t 7→
B(t)fn(t) is measurable for each n ∈ N and B(·)fn(·) → B(·)f(·) a.e. as n → ∞, which
implies the first assertion. The second assertion is immediate from the first one.

The following example shows that one cannot dispense with the separability assump-
tion in Lemma 1.1(b).

1.3 Example. Let J := Ω := [0, 1], and let µ be the counting measure on Ω. We define
U : DJ → L(L1(µ)) by U(t, t) := I for all t ∈ J and

U(t, s)f := f(s)δt
(
0 6 s < t 6 1, f ∈ L1(µ)

)
,

where δt = 1{t} is the indicator function of {t}. One easily checks that U is a propagator
on L1(µ), and U is jointly strongly measurable since U(t, s)f = 0 for a.e. s ∈ J , for every
f ∈ L1(µ). However, the function t 7→ U(t, 0)δ0 = δt is not measurable, so U is not a
strongly measurable propagator.

Unlike strong measurability, strong continuity of propagators is defined in the obvious
way. A propagator U on X with parameter interval J is called a strongly continuous
propagator if U : DJ → L(X) is strongly continuous. Clearly, a strongly continuous prop-
agator is separately strongly continuous, but it follows from Example 1.5 below that the
converse is not true. The next lemma shows that the converse is true for locally bounded
propagators. (The remainder of the section is taken from [LVV06; Sec. 1].)

1.4 Lemma. ([Gul04; Thm. 2.2]) Let U be a propagator on X. Suppose that

(i) U is locally bounded;

(ii) for any s ∈ J the mapping J>s 3 t 7→ U(t, s) is strongly continuous;

(iii) for any t ∈ J the mapping J6t 3 s 7→ U(t, s) is strongly continuous at s = t.

Then U is strongly continuous.
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Proof. Fix (t0, s0) ∈ DJ , and let J0 := J<s0 (J0 := {s0} in case s0 = inf J). Due to (iii)
the set

⋃
r∈J0

U(s0, r)X is dense in X. Thus, due to (i), it suffices to show that the
mapping DJ 3 (t, s) 7→ U(t, s)x0 is continuous at (t0, s0), for x0 := U(s0, r)x with r ∈ J0

and x ∈ X. Let tn → t0, sn → s0, without loss of generality sn > r for all n ∈ N. Denote
xn := U(sn, r)x. Condition (ii) implies that xn → x0. Using (i) and (ii) again we conclude
that

U(tn, sn)x0 = U(tn, r)x+ U(tn, sn)(x0 − xn) → U(t0, r)x = U(t0, s0)x0.

The uniform boundedness theorem implies that strongly continuous propagators are
locally bounded. The following example shows that separate strong continuity of a propa-
gator is not sufficient to obtain local boundedness (as was claimed in [CuPr78; Def. 2.32]).
In particular it shows that condition (i) of Lemma 1.4 is needed for the conclusion.

1.5 Example. We indicate an example on the Hilbert space `2.
Let

(
(an, bn)

)
n∈N be a sequence of pairwise disjoint subintervals of [0, 1], and for each

n ∈ N let an < sn < tn < bn. For n ∈ N let ϕn : [0, 1] → [ 1
n , 1] be a continuous function,

ϕn = 1 on [0, an], ϕn(sn) = 1
n , ϕn(tn) = 1 and ϕn = 1

n on [bn, 1]. We define U : D[0,1] →
L(`2) by

U(t, s)
(
(xn)n

)
:=

(
ϕn(t)

ϕn(s)
xn

)
n

,

for 0 6 s 6 t 6 1 and (xn)n ∈ `2.
Then U is a propagator on `2 with parameter interval [0, 1]. For (t, s) ∈ D[0,1] and

n ∈ N observe that ϕn(t)
ϕn(s)

6 1 except when an < s < t < bn. From the pairwise disjointness

of the intervals (an, bn) it thus follows that [0, t] 3 s 7→ U(t, s) is strongly continuous for
all t ∈ [0, 1], and that [s, 1] 3 t 7→ U(t, s) is strongly continuous for all s ∈ [0, 1]. However,
||U(tn, sn)|| = n for all n ∈ N, so U is not bounded.

1.6 Remark. Note that, in the previous example, the unboundedness of U occurs close
to the diagonal. In fact, as in the proof of Lemma 1.1(a) one obtains that a separately
strongly continuous propagator U with parameter interval J is strongly continuous on
J>τ × J6τ , for all τ ∈ J , and hence strongly continuous on

{
(t, s) ∈ DJ ; t − s > δ

}
, for

all δ > 0.

1.2 Miyadera perturbations of strongly measurable propagators

In this and the next section we investigate Miyadera perturbations of strongly measurable
propagators. In [RRSV00] (see also [LVV06; Sec. 1.3]), the method of evolution semigroups
is used to prove the Miyadera perturbation theorem for strongly continuous propagators.
We do not assume strong continuity of the propagator, so the corresponding evolution
semigroup need not be strongly continuous either. That is why in the following it is not
suitable to make use of evolution semigroups.

Let X be a Banach space, and let U be a locally bounded strongly measurable propa-
gator on X with parameter interval J ⊆ R. A Miyadera perturbation of U (with constants
(α, γ)) is a family (B(t))t∈J of linear operators in X satisfying the following condition.
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(M) For all s ∈ J , the set

Xs :=
{
x ∈ X; B(·)U(·, s)x is a.e. defined and measurable on J>s

}
is a dense subspace of X, and there exist α ∈ (0,∞] and γ > 0 such that∫ t

s

||B(τ)U(τ, s)x|| dτ 6 γ||x||
(
(t, s) ∈ DJ , t− s 6 α, x ∈ Xs

)
.

We say that (B(t))t∈J is a small Miyadera perturbation of U if α, γ can be chosen such
that γ < 1. The case α = ∞ is included since it is important for the global behaviour of
perturbed propagators; see, e.g., Remark 3.11(c) and Remark 3.24(a).

1.7 Remarks. (a) We say that U is exponentially bounded if there exist M > 1 and ω ∈ R
such that

||U(t, s)|| 6 Meω(t−s) (
(t, s) ∈ DJ

)
,

or equivalently, if sup
{
||U(t, s)||; (t, s) ∈DJ , t−s6 1

}
<∞. If U is exponentially bounded

and B : J →L(X) is bounded and strongly measurable, then by Lemma 1.2 one easily sees
that (B(t))t∈J is an infinitesimally small Miyadera perturbation of U , i.e., the infimum
of all possible γ in condition (M) is zero.

(b) Let (B(t))t∈J be a Miyadera perturbation of U . Since U is a propagator, we obtain
from the definition of the spaces Xs that U(t, s)Xs ⊆ Xt for all (t, s) ∈ DJ . Further we
show that, for all (t, s) ∈ DJ , there exists γt,s > 0 such that∫ t

s

||B(τ)U(τ, s)x|| dτ 6 γt,s||x|| (x ∈ Xs). (1.1)

This is trivial in the case α = ∞, so assume that α < ∞. Choose n ∈ N such that
(n− 1)α 6 t− s < nα, and let tj := s+ jα for j = 0, . . . , n− 1 and tn := t. Then∫ t

s

||B(τ)U(τ, s)x|| dτ =
n−1∑
j=0

∫ tj+1

tj

||B(τ)U(τ, tj)U(tj, s)x|| dτ 6
n−1∑
j=0

γ||U(tj, s)x||

for all x ∈ Xs, so (1.1) holds with γt,s = γ
∑n−1

j=0 ||U(tj, s)||.
(c) Miyadera perturbations of propagators have first been studied in [RRSV00] (see

also [RRS96] for non-autonomous Miyadera perturbations of C0-semigroups). We point
out that in [RRSV00], strong continuity of U is assumed, and the authors work with a
slightly different condition that at the first sight seems more general than condition (M)
above. Namely, they assume the estimate in (M) only for x ∈ Ys, where (Ys)s∈J is a given
family of dense subspaces of X satisfying Ys ⊆ Xs and U(t, s)Ys ⊆ Yt for all (t, s) ∈ DJ

([RRSV00; p. 350], case p = 1). Obviously, this is an assumption on the parts B̃B(t) :=
B(t)|D(B(t))∩Yt of B(t) only.

We now show that in this situation (B̃B(t))t∈J satisfies condition (M) with the same
constants α, γ as in the above condition on (B(t))t∈J . First observe that for the spaces X̃Xs
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corresponding to (B̃B(t))t∈J we have Ys ⊆ X̃Xs, so that X̃Xs is dense in X. Now let (t, s) ∈ DJ

with t− s 6 α, and let x ∈ X̃Xs. Then U(σ, s)x ∈ Yσ for a.e. σ ∈ [s, t], by the definition of

X̃Xs. For every such σ we have∫ t

σ

||B̃B(τ)U(τ, σ)U(σ, s)x|| dτ 6 γ||U(σ, s)x||.

It follows that
∫ t

s
||B̃B(τ)U(τ, s)x|| dτ 6 γ lim supσ→s ||U(σ, s)|| · ||x||, so

At,sx := B̃B(·)U(·, s)x ∈ L1(s, t;X)

defines a bounded operator from X̃Xs to L1(s, t;X). Since Ys is dense inX, we conclude that
the estimate ||At,sx||1 =

∫ t

s
||B̃B(τ)U(τ, s)x|| dτ 6 γ||x||, which was assumed for all x ∈ Ys,

extends to all x ∈ X̃Xs. (Note that the last part of the argument is not needed if U is
strongly continuous, as assumed in [RRSV00].)

The following Miyadera perturbation theorem is the main result of this section. It
generalises [LVV06; Thm. 1.16(a)], where the result is proved in the case of strongly
continuous propagators. Also in that case, a slightly weaker version has already been
shown in [RRSV00; Thm. 3.4(a), Cor. 3.5]. In these papers, the approach of evolution
semigroups is used to derive the result from the Miyadera perturbation theorem for C0-
semigroups [Voi77; Thm.1]; see also [Miy66; Thm. 2] for the orginal version of the theorem.

1.8 Theorem. Let (B(t))t∈J be a small Miyadera perturbation of U. Then there exists
a unique locally bounded strongly measurable propagator UB on X satisfying the Duhamel
formula

UB(t, s)x = U(t, s)x+

∫ t

s

UB(t, τ)B(τ)U(τ, s)x dτ
(
(t, s) ∈ DJ , x ∈ Xs

)
, (1.2)

with Xs as defined in condition (M).
If U is strongly continuous then UB is strongly continuous, too.

For the proof we will use the following lemma, which brings a new perspective on
condition (M). For the convenience of a simplified notation, we extend U to a strongly
measurable function from J × J to L(X) by setting U(t, s) := 0 for t < s.

1.9 Lemma. Let (B(t))t∈J be a Miyadera perturbation of U, and assume that J is com-
pact. Then

A(s)x := B(·)U(·, s)x (x ∈ Xs) (1.3)

extends to a bounded operator A(s) from X to L1(J ;X), for each s ∈ J , and the function
A : J → L

(
X;L1(J ;X)

)
thus defined is bounded and strongly measurable.

Proof. Note that U is bounded since J is compact. We thus obtain from Remark 1.7(b)
that there exists c > 0 such that

||A(s)x||1 =

∫ sup J

s

||B(τ)U(τ, s)x|| dτ 6 c||x||
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for all s ∈ J and all x ∈ Xs. Therefore, (1.3) determines a bounded operator A(s) : X →
L1(J ;X), for each s ∈ J , and the resulting function A is bounded.

Let now (t, s) ∈ DJ . For x ∈ Xs and a.e. τ ∈ J>t we have

A(s)x(τ) = B(τ)U(τ, t)U(t, s)x = A(t)U(t, s)x(τ).

This implies that 1J>t
A(s)x = A(t)U(t, s)x for all x ∈ Xs and hence for all x ∈ X. Since

U(t, ·)x : J6t → X is measurable, it follows that

J6t 3 s 7−→ 1J>t
A(s)x ∈ L1(J ;X)

is measurable, for all x ∈ X and all t ∈ J . From this we deduce the strong measurability
of A, using that 1J>t

A(s)x→ A(s)x in L1(J ;X) as t ↓ s.

The following result will be used to establish strong continuity of perturbed propaga-
tors that satisfy both Duhamel formulas. For the proof of the strong continuity assertion
of Theorem 1.8 we will only need Lemma 1.11(a) below. In these two results, (B(t))t∈J
is a family of linear operators in X, and Ys is a dense subspace of X, for each s ∈ J .

1.10 Proposition. ([LVV06; Prop. 1.18]) Assume that U is strongly continuous, and
let W be a locally bounded propagator on X with parameter interval J . Assume that,
for all (t, s) ∈ DJ and all x ∈ Ys, the functions W (t, ·)B(·)U(·, s)x and B(·)W (·, s)x are
integrable on [s, t], and

W (t, s)x = U(t, s)x+

∫ t

s

W (t, τ)B(τ)U(τ, s)x dτ, (1.4)

W (t, s)x = U(t, s)x+

∫ t

s

U(t, τ)B(τ)W (τ, s)x dτ. (1.5)

Then W is strongly continuous.

Proof. This is an immediate consequence of Lemma 1.4 and the following lemma.

1.11 Lemma. ([LVV06; Lemma 1.19]) Assume that U is strongly continuous, and let W
be a locally bounded propagator on X with parameter interval J .

(a) Assume that, for all (t, s) ∈ DJ , x ∈ Ys, the function W (t, ·)B(·)U(·, s)x is inte-
grable on [s, t], and (1.4) holds. Then W (t, ·) is strongly continuous on J6t for all t ∈ J .

(b) Assume that, for all (t, s) ∈ DJ , x ∈ Ys, the function B(·)W (·, s)x is integrable on
[s, t], and (1.5) holds. Then W (·, s) is strongly continuous on J>s for all s ∈ J .

Proof. (a) Fix t ∈ J and s0 ∈ J6t. Let r ∈ J<s0 (r = s0 in case s0 = inf J), x ∈ Yr and
xs := U(s, r)x for s ∈ [r, t]. By (1.4) we have

xs = W (s, r)x−
∫ s

r

W (s, τ)B(τ)U(τ, r)x dτ.
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Applying W (t, s) to this equation and using (1.4) again, we obtain that

W (t, s)xs = W (t, r)x−
∫ s

r

W (t, τ)B(τ)U(τ, r)x dτ

= U(t, r)x+

∫ t

s

W (t, τ)B(τ)U(τ, r)x dτ.

(Note that we cannot obtain this by setting x = xs in (1.4) if U(s, r)Yr * Ys.) Thus, by
the dominated convergence theorem,

W (t, s)xs → U(t, r)x+

∫ t

s0

W (t, τ)B(τ)U(τ, r)x dτ = W (t, s0)xs0

as [r, t] 3 s→ s0. Since xs → U(s0, r)x = xs0 , we conclude that

W (t, s)xs0 = W (t, s)xs +W (t, s)(xs0 − xs) → W (t, s0)xs0

as [r, t] 3 s → s0. The set of elements xs0 under consideration is dense in X, so the
assertion follows.

(b) Let s ∈ J and x ∈ Ys. Since

W (t, s)x = U(t, s)x+

∫
J

1[s,t](τ)U(t, τ)B(τ)W (τ, s)x dτ (t ∈ J>s)

and U is strongly continuous (and hence locally bounded), W (·, s)x is continuous on J>s

by the dominated convergence theorem. This shows the assertion since Ys is dense in X
and W is locally bounded.

Proof of Theorem 1.8. We will first show: If UB is an element of the space

M :=
{
V : DJ → L(X); V is locally bounded,

V is separately and jointly strongly measurable
}

that satisfies the Duhamel formula (1.2), then UB is a propagator. Then we will show
that there exists a unique UB ∈M satisfying (1.2). The assertion about strong continuity
is proved in the last step.

Let α ∈ (0,∞), γ ∈ [0, 1) be as in condition (M), and let UB ∈ M satisfy (1.2).
(Note that the integral in (1.2) exists since B(·)U(·, s)x is integrable on (s, t) by (1.1)
and UB(t, ·) is strongly measurable and bounded on (s, t); see also Lemma 1.2.) Clearly,
UB(t, t) = I for all t ∈ J . Given (t, s) ∈ DJ we show that UB(t, s)UB(s, r) = UB(t, r) for
all r ∈ [s− α, s] ∩ J ; then it follows by induction that UB is a propagator.

Let r ∈ [s− α, s] ∩ J and x ∈ Xr. Then U(s, r)x ∈ Xs, so by (1.2) we obtain that

UB(t, s)U(s, r)x = U(t, r)x+

∫ t

s

UB(t, τ)B(τ)U(τ, r)x dτ. (1.6)

Moreover,

UB(s, r)x = U(s, r)x+

∫ s

r

UB(s, τ)B(τ)U(τ, r)x dτ.
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Applying UB(t, s) to both sides of the latter formula and using (1.6), we infer that

UB(t, s)UB(s, r)x = U(t, r)x+

∫ t

s

UB(t, τ)B(τ)U(τ, r)x dτ

+

∫ s

r

UB(t, s)UB(s, τ)B(τ)U(τ, r)x dτ.

We now subtract (1.2), used with r in place of s, from the preceding equation to obtain
that

UB(t, s)UB(s, r)x− UB(t, r)x =

∫ s

r

(
UB(t, s)UB(s, τ)− UB(t, τ)

)
B(τ)U(τ, r)x dτ.

For the operators Dτ := UB(t, s)UB(s, τ)− UB(t, τ) ∈ L(X) we thus have

||Drx|| 6 sup
τ∈[r,s]

||Dτ ||
∫ s

r

||B(τ)U(τ, r)x|| dτ
(
r ∈ [s, s− α] ∩ J, x ∈ Xr

)
.

By the Miyadera condition we conclude that ||Dr||6 γ supτ∈[r,s] ||Dτ || for all r ∈ [s, s−α]∩J .
Therefore, Dr = 0 for all r ∈ [s, s− α] ∩ J , and we have shown that UB is a propagator.

For the proof of existence and uniqueness we assume without loss of generality that J
is compact; then U is bounded. Below we will show that

ΦV (t, s)x :=

∫ t

s

V (t, τ)A(s)x(τ) dτ
(
V ∈M, (t, s) ∈ DJ , x ∈ X

)
(with A as in Lemma 1.9) defines an operator Φ: M → M, and that Φ is a strict
contraction on M if M is endowed with the Morgenstern norm

||V ||λ := sup
{
e−λ(t−s)||V (t, s)||; (t, s) ∈ DJ

}
,

for λ > 0 large enough. Since (M, || · ||λ) is a Banach space and U ∈M, it then follows that
there exists a unique UB ∈ M such that UB = U + ΦUB, and this identity is equivalent
to the validity of (1.2) since

ΦUB(t, s)x =

∫ t

s

UB(t, τ)B(τ)U(τ, s)x dτ
(
(t, s) ∈ DJ , x ∈ Xs

)
by the definition of A(s).

Let V ∈ M and t ∈ J . Since V (t, ·) is strongly measurable and bounded on J6t, we
can define a bounded operator CV (t) : L1(J ;X) → X by

CV (t)f :=

∫ t

inf J

V (t, τ)f(τ) dτ.

Then

ΦV (t, s)x =

∫ t

inf J

V (t, τ)A(s)x(τ) dτ = CV (t)A(s)x

for all s ∈ J6t and all x ∈ X, where we have used that A(s)x(τ) = 0 for τ ∈ J<s. From
the (joint) strong measurability of V it follows that CV : J → L

(
L1(J ;X), X

)
is strongly
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measurable. Since A : J → L
(
X;L1(J ;X)

)
is strongly measurable by Lemma 1.9, we

conclude that ΦV is separately and jointly strongly measurable (see Lemma 1.2).
In order to show that Φ is a strict contraction on (M, || · ||λ), we endow L1(J ;X) with

the norm given by ||f ||1,λ := ||t 7→ e−λtf(t)||1. Let M := sup
{
||U(t, s)||; (t, s) ∈ DJ

}
. Then

for s ∈ J and x ∈ Xs we obtain as in Remark 1.7(b), with tj = s+ αj, that

||A(s)x||1,λ =

∫ sup J

s

e−λτ ||B(τ)U(τ, s)x|| dτ 6
n−1∑
j=0

e−λtjγ||U(tj, s)x||

6 γ

(
1 +M

n−1∑
j=1

e−λαj
)
e−λs||x|| 6 γ̃λe

−λs||x||,
(1.7)

where γ̃λ := γ
(
1 + M

eλα−1

)
→ γ < 1 as λ → ∞, and n ∈ N is the smallest number such

that tn /∈ J . Moreover, for V ∈M, t ∈ J and f ∈ L1(J ;X) we can estimate

||CV (t)f || 6
∫ t

inf J

||V (t, τ)f(τ)|| dτ 6
∫ t

inf J

||V ||λeλ(t−τ)||f(τ)|| dτ 6 ||V ||λeλt||f ||1,λ.

It follows that ||ΦV (t, s)|| = ||CV (t)A(s)|| 6 γ̃λe
λ(t−s)||V ||λ for all (t, s) ∈ DJ , so that ΦV ∈

M and ||ΦV ||λ 6 γ̃λ||V ||λ. We conclude that Φ is a strict contraction on (M, || · ||λ) for λ
large enough, and the proof of the first assertion is complete.

Assume now that U is strongly continuous. Then UB(t, ·) is strongly continuous on
J6t for all t ∈ J , by Lemma 1.11(a). Moreover, it follows from the dominated convergence
theorem that Φ maps the closed subspace

M1 :=
{
V ∈M; V (·, s) is strongly continuous on J>s (s ∈ J)

}
of M to itself, so UB ∈M1. By Lemma 1.4 we conclude that UB is strongly continuous.

1.12 Remarks. (a) Let (B(t))t∈J be a small Miyadera perturbation of U , and let Φ: M→
M be as in the above proof. Observe that for the definition of Φ, the compactness of J
is actually not needed since for V ∈ M one only has to define ΦV on DK for compact
subintervals K of J . Since (I − Φ)UB = U , we obtain that the perturbed propagator UB
is given by the Dyson-Phillips series

∑∞
k=0 Uk, where Uk := Uk,B := ΦkU : DJ → L(X) is

recursively given by U0 = U and

Uk(t, s)x =

∫ t

s

Uk−1(t, τ)B(τ)U(τ, s)x dτ
(
(t, s) ∈ DJ , x ∈ Xs

)
for k ∈ N. It follows from the proof of Theorem 1.8 that UB(t, s) =

∑∞
k=0 Uk(t, s) converges

absolutely, uniformly for (t, s) in compact subsets of DJ .
(b) The idea of the estimation in (1.7) is not new. In [Voi77; p. 168], a similar estimate

is used in the proof of the Miyadera perturbation theorem for C0-semigroups, but the
purpose there is to determine the generator of the perturbed semigroup. Here the use
of the Morgenstern norm allows us to show immediately that the perturbed propagator
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satisfies the Duhamel formula for all (t, s) ∈ DJ , and to obtain absolute convergence of
the Dyson-Phillips series on all of DJ .

In the literature, the Duhamel formula is usually first shown for t− s 6 α only; then
for larger t−s an induction argument is used that is based on a variant of Proposition 1.13
below. The same applies to absolute convergence of the Dyson-Phillips series; see [Rha92;
Prop. 2.3] for a result in the context of C0-semigroups. Here we reverse arguments: We
use the absolute convergence of the Dyson-Phillips series on DJ for an easy proof of
Proposition 1.13.

(c) Clearly, Theorem 1.8 also holds if (B(t))t∈J is just locally Miyadera small, i.e., if
(B(t))t∈K is a small Miyadera perturbation of U |DK

for all compact subintervals K ⊆ J .
This holds, e.g., if B : J → L(X) is locally bounded and strongly measurable. In the
simple case that B(t) = cI for all t ∈ J , for some c ∈ K, one easily checks that the unique
propagator UB satisfying the Duhamel formula (1.2) is given by UB(t, s) = ec(t−s)U(t, s)
for all (t, s) ∈ DJ .

Note that the constituents Uk of the Dyson-Phillips series are also defined if (B(t))t∈J
is a Miyadera perturbation of U that is not necessarily small.

1.13 Proposition. Let (B(t))t∈J be a Miyadera perturbation of U, let Uk be the con-
stituents of the corresponding Dyson-Phillips series, and let r, s, t ∈ J satisfy r 6 s 6 t.
Then

Uk(t, r) =
k∑
j=0

Uj(t, s)Uk−j(s, r)

for all k ∈ N0.

Proof. There exists θ0 > 0 such that θB = (θB(t))t∈J is a small Miyadera perturbation of
U for all |θ| < θ0. Observe that Uk,θB = θkUk,B for all k ∈ N0 and all θ ∈ R. For |θ| < θ0

we thus obtain that

∞∑
k=0

θkUk,B(t, r) = UθB(t, r) = UθB(t, s)UθB(s, r)

=
∞∑
k=0

k∑
j=0

θjUj,B(t, s)θk−jUk−j,B(s, r),

which implies the assertion.

In the next result we show an estimate for the norm of UB(t, s), for (t, s) ∈ DJ . One
can use formula (1.7) from the proof of Theorem 1.8 to derive this estimate, but we prefer
to give a separate argument that relies solely on (1.2).

1.14 Proposition. Let (B(t))t∈J be a small Miyadera perturbation of U with constants
(α, γ), γ < 1, and assume that M := sup

{
||U(t, s)||; (t, s) ∈ DJ

}
<∞. Then

||UB(t, s)|| 6 M
1−γ e

ω(t−s) (
(t, s) ∈ DJ

)
,

where ω = 1
α

ln(1 + γ
1−γM).
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Proof. We are going to prove that

cj := sup
{
||UB(t, s)||; (t, s) ∈ DJ , t− s 6 jα

}
6 M

1−γ

(
1 + γ

1−γM
)j−1

for all j ∈ N; then the assertion follows by choosing j such that (j − 1)α 6 t − s 6 jα.
Assuming the above estimate for all j < n, for some n ∈ N, we show that it also holds for
j = n.

Let (t, s) ∈ DJ with t− s 6 nα, and let tj := s + j
n(t− s) for j = 0, . . . , n. Similarly

as in Remark 1.7(b) we obtain from

UB(t, s)x = U(t, s)x+
n∑
j=1

∫ tn−j+1

tn−j

UB(t, τ)B(τ)U(τ, tn−j)U(tn−j, s)x dτ (x ∈ Xs)

and the definition of the cj that

||UB(t, s)|| 6 M +
n−1∑
j=1

cjγM + cnγ.

By the definition of cn we infer that cn 6 M
(
1 + γ

∑n−1
j=1 cj

)
+ γcn. Since

γ
n−1∑
j=1

cj 6 γ
1−γM

n−2∑
j=0

(
1 + γ

1−γM
)j

=
(
1 + γ

1−γM
)n−1 − 1

by the induction hypothesis, we conclude that (1− γ)cn 6 M
(
1 + γ

1−γM
)n−1

.

1.15 Remark. For Miyadera perturbations of C0-semigroups, an analogous estimate is
proved in [Voi77; Thm. 1c)], but with ω = 1

α
ln M

1−γ . In the case M > 1, Proposition 1.14
yields a better estimate; in particular, the exponential growth factor ω given in the propo-
sition tends to 0 as γ → 0.

1.3 Closed Miyadera perturbations

Throughout this section, U is again a locally bounded strongly measurable propagator on
a Banach space X with parameter interval J ⊆ R. Given a small Miyadera perturbation
(B(t))t∈J of U , we now want to show the second Duhamel formula

UB(t, s)x = U(t, s)x+

∫ t

s

U(t, τ)B(τ)UB(τ, s)x dτ
(
(t, s) ∈ DJ , x ∈ X

)
(1.8)

for the perturbed propagator UB. In the autonomous case, if U comes from a C0-semi-
group and B is relatively bounded with respect to the generator, this easily follows from
the fundamental theorem of calculus. Here we can only show (1.8) in the case that
almost every operator B(t) is closed; see Theorem 1.20(a) below. We start with some
preparations.
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1.16 Lemma. Let (B(t))t∈J be a family of operators in X. Assume that almost every
B(t) is closed, that B(·)x is a.e. defined and measurable on J , for all x ∈X, and that there
exists c > 0 such that ||B(·)x||1 6 c||x|| for all x ∈ X. Let (Ω, µ) be a σ-finite measure space
and f ∈ L1(µ;X). Then the function (t, s) 7→ B(t)f(s) is a.e. defined and measurable on
J × Ω.

Proof. The assertion is clear if f is a simple function. For f ∈ L1(µ;X) there exists
a sequence (fn) of simple functions in L1(µ;X) such that fn → f a.e. and in L1. By
the assumption ||B(·)x||1 6 c||x|| we obtain that gn(t, s) := B(t)fn(s) defines a Cauchy
sequence (gn) in L1(J × Ω;X), so there exist g ∈ L1(J × Ω;X) and a subsequence (gnk

)
such that gnk

→ g a.e. Since a.e. B(t) is closed and fnk
→ f a.e., we conclude that

B(t)f(s) = g(t, s) for a.e. (t, s) ∈ J × Ω, which implies the assertion.

The next lemma says in particular that the spaces Xs in condition (M) (that also
occur in the Duhamel formula (1.2)) are equal to X if (B(t))t∈J is a closed Miyadera
perturbation of U , by which we mean that (B(t))t∈J is a Miyadera perturbation of U and
a.e. B(t) is closed.

1.17 Lemma. Let (B(t))t∈J be a closed Miyadera perturbation of U. Then Xs = X for
all s ∈ J . If J is compact then Af(t, s) := B(t)U(t, s)f(s) defines a bounded operator
A : L1(J ;X) → L1(DJ ;X), and for all f ∈ L1(J ;X) we have

CU(t)f =

∫ t

inf J

U(t, s)f(s) ds ∈ D(B(t)), B(t)CU(t)f =

∫ t

inf J

B(t)U(t, s)f(s) ds

for a.e. t ∈ J .

Proof. Without loss of generality we assume the compactness of J also for the proof
of the first assertion. Let s ∈ J , and let A(s) be the operator defined in Lemma 1.9.
Then A(s)|Xs is bounded and densely defined. Moreover, from the definition of Xs and
the closedness of a.e. B(t) we easily infer that A(s)|Xs is closed and hence everywhere
defined, i.e., Xs = X.

Let now f ∈ L1(J ;X). Given τ ∈ J , we apply Lemma 1.16 with B(t)U(t, τ) in place
of B(t) and U(τ, ·)f(·) in place of f to obtain that Af is a.e. defined and measurable on
J>τ × J6τ . It follows that Af is a.e. defined and measurable on DJ . Moreover,

||Af ||1 6
∫
J

∫ sup J

s

||B(t)U(t, s)f(s)|| dt ds 6
∫
J

||A(s)||||f(s)|| ds 6 sup
s∈J

||A(s)|| · ||f ||,

by Fubini’s theorem, so A is a bounded operator by Lemma 1.9.

Finally, the integrability of Af implies that B(t)U(t, ·)f(·) is integrable on J6t, for a.e.
t ∈ J , so the last assertion follows from the closedness of a.e. B(t), by Hille’s theorem.

The next result expresses, roughly speaking, that one can iterate Duhamel formulas.
An important feature is that the Miyadera perturbations are not assumed to be small.
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1.18 Proposition. Let V , W be locally bounded strongly measurable propagators on X
with parameter interval J . Let B = (B(t))t∈J be a Miyadera perturbation of U and B1 =
(B1(t))t∈J a closed Miyadera perturbation of V , and assume that

V (t, s)x = U(t, s)x+

∫ t

s

V (t, τ)B(τ)U(τ, s)x dτ (x ∈ Xs),

W (t, s)x = V (t, s)x+

∫ t

s

W (t, τ)B1(τ)V (τ, s)x dτ (x ∈ X)

for all (t, s) ∈ DJ , where the spaces Xs are from the Miyadera condition for U and B.
Then B +B1 is a Miyadera perturbation of U, and

W (t, s)x = U(t, s)x+

∫ t

s

W (t, τ)(B +B1)(τ)U(τ, s)x dτ (1.9)

for all (t, s) ∈ DJ and all x ∈ Xs. (Here B +B1 =
(
B(t) +B1(t)

)
t∈J , where B(t) +B1(t)

is the operator sum on D(B(t)) ∩D(B1(t)).)
In particular, if B is a closed Miyadera perturbation and B1 = −B, then W = U .

Proof. Let (t, s) ∈ DJ and x ∈ Xs; then f := B(·)U(·, s)x ∈ L1(s, t;X). By Lemma 1.17
we obtain that

(V − U)(τ, s)x =

∫ τ

s

V (τ, σ)f(σ) dσ ∈ D(B1(τ))

and

B1(τ)(V − U)(τ, s)x =

∫ τ

s

B1(τ)V (τ, σ)f(σ) dσ

for a.e. τ ∈ (s, t), and that (τ, σ) 7→ B1(τ)V (τ, σ)f(σ) is integrable on D(s,t). If (α, γ),
(α, γ1) are Miyadera constants of B, B1, respectively, and t − s 6 α, then by Fubini’s
theorem it follows that∫ t

s

||B1(τ)(V − U)(τ, s)x|| dτ 6
∫ t

s

∫ t

σ

||B1(τ)V (τ, σ)f(σ)|| dτ dσ 6
∫ t

s

γ1||f(σ)|| dσ

and hence
∫ t

s
||B1(τ)U(τ, s)x|| dτ 6 γ1γ||x||+γ1||x||, and we infer that B+B1 is a Miyadera

perturbation of U . Moreover,∫ t

s

W (t, τ)B1(τ)

∫ τ

s

V (τ, σ)f(σ) dσ dτ =

∫ t

s

∫ t

σ

W (t, τ)B1(τ)V (τ, σ)f(σ) dτ dσ. (1.10)

Since

W (t, s)x = U(t, s)x+

∫ t

s

V (t, τ)B(τ)U(τ, s)x dτ +

∫ t

s

W (t, τ)B1(τ)V (τ, s)x dτ,

we conclude from (1.10) that

−W (t, s)x+ U(t, s)x+

∫ t

s

W (t, τ)(B +B1)(τ)U(τ, s)x dτ

=

∫ t

s

(W − V )(t, σ)B(σ)U(σ, s)x dσ −
∫ t

s

W (t, τ)B1(τ)(V − U)(τ, s)x dτ = 0,

and the proof is complete.
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As an easy consequence of Proposition 1.18 we obtain the following uniqueness result
for perturbed propagators satisfying both Duhamel formulas.

1.19 Corollary. Let (B(t))t∈J be a closed Miyadera perturbation of U, and let V be a
locally bounded strongly measurable propagator on X with parameter interval J satisfying

V (t, s)x = U(t, s)x+

∫ t

s

V (t, τ)B(τ)U(τ, s)x dτ
(
(t, s) ∈ DJ , x ∈ X

)
, (1.11)

V (t, s)x = U(t, s)x+

∫ t

s

U(t, τ)B(τ)V (τ, s)x dτ
(
(t, s) ∈ DJ , x ∈ X

)
. (1.12)

Then V is the only locally bounded strongly measurable propagator satisfying (1.11), and
the only one satisfying (1.12).

Proof. Let ṼV be another locally bounded strongly measurable propagator satisfying (1.11),
with V replaced by ṼV . Then from (1.12), in the form

U(t, s)x = V (t, s)x+

∫ t

s

U(t, τ)(−B)(τ)V (τ, s)x dτ
(
(t, s) ∈ DJ , x ∈ X

)
,

it follows by Proposition 1.18 that ṼV = V . Uniqueness in (1.12) is proved in the same
way.

We now prove, for closed Miyadera perturbations, that the second Duhamel for-
mula (1.8) holds and that one can iterate Miyadera perturbations. In the case of strongly
continuous propagators, the validity of (1.8) is due to [RRSV00; Thm. 3.4(c)]; see also
[LVV06; Thm. 1.16(b)]. In the autonomous case of C0-semigroups, the first assertion of
part (b) of the following theorem is due to [OSSV96; Lemma 1.1]; there the closedness
assumption is not needed.

1.20 Theorem. Let B = (B(t))t∈J be a closed Miyadera perturbation of U with constants
(α, γ).

(a) Then the constituents Uk of the corresponding Dyson-Phillips series satisfy the
recursion formula

Uk(t, s)x =

∫ t

s

U(t, τ)B(τ)Uk−1(τ, s)x dτ
(
k ∈ N, (t, s) ∈ DJ , x ∈ X

)
. (1.13)

If γ < 1 then the perturbed propagator UB from Theorem 1.8 is the unique locally bounded
strongly measurable propagator satisfying the second Duhamel formula (1.8).

(b) Assume that γ < 1, and let B1 = (B1(t))t∈J be a closed Miyadera perturbation
of U with constants (α, γ1). Then B1 is a Miyadera perturbation of UB with constants
(α, γ1

1−γ ). If γ + γ1 < 1 (so that γ1
1−γ < 1) then B + B1 is a small Miyadera perturbation

of U, and UB+B1 = (UB)B1.
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1.21 Remarks. (a) Part (a) of the above theorem says in particular that the integrals
in (1.13) and (1.8) are defined for all (t, s) ∈ DJ and all x ∈ X. We will in fact show
more strongly that B(·)Uk(·, s)x and B(·)UB(·, s)x are integrable on (s, t). For the latter
function this also follows from part (b), which implies in particular that B is a Miyadera
perturbation of UB.

(b) We observe that the second assertion of part (a) of Theorem 1.20 can be derived
from part (b): By the latter, there exists n ∈ N such that 1

nB is a small Miyadera
perturbation of U k

nB
, and (U k

nB
)− 1

nB
= U k−1

n B, for k = 1, . . . , n. Applying Proposition 1.18

n−1 times, we thus obtain that

U(t, s)x = UB(t, s)x+

∫ t

s

U(t, τ)(−B(τ))UB(τ, s)x dτ

for all (t, s) ∈ DJ and all x ∈ X, which proves (1.8). Below we will give an independent
proof based on (1.13).

(c) In [Sch02; Thm. 4.4], in the context of strongly continuous propagators, a per-
turbation theorem is proved that comprises versions of both the Miyadera and Desch-
Schappacher theorems. From this result it follows, by [Sch02; Rem. 4.6(a)], that the
second Duhamel formula (1.8) also holds for non-closable B(t) if instead of the Miyadera
condition (M) one assumes more restrictively that there exist p > 1 and α, γ > 0 such
that ∫ t

s

||B(τ)U(τ, s)x||p dτ 6 γp||x||
(
(t, s) ∈ DJ , t− s 6 α, x ∈ Xs

)
.

In order to make this possible, the operators B(t) are suitably extended such that the
integral in (1.8) is defined.

Proof of Theorem 1.20. (a) Without loss of generality assume that J is compact; then

U is bounded. Let M̃M be the space of all functions W : DJ → L(X) for which x 7→
B(·)W (·, s)x defines a bounded operator from X to L1(J>s;X), for all s ∈ J . For W ∈ M̃M
and (t, s) ∈ DJ ,

ΨW (t, s)x :=

∫ t

s

U(t, σ)B(σ)W (σ, s)x dσ

defines an operator ΨW (t, s) ∈ L(X).

Let W ∈ M̃M; we show that ΨW ∈ M̃M. Let s ∈ J , x ∈ X and f := B(·)W (·, s)x. Then
f ∈ L1(J>s;X), so ΨW (τ, s)x =

∫ τ

s
U(τ, σ)f(σ) dσ ∈ D(B(τ)) and

B(τ)ΨW (τ, s)x =

∫ τ

s

B(τ)U(τ, σ)f(σ) dσ

for a.e. τ ∈ J>s, by Lemma 1.17. Moreover, (τ, σ) 7→ B(τ)U(τ, σ)f(σ) is integrable on
DJ>s

. Thus, with the weighted norm || · ||1,λ on L1(J>s;X) from the proof of Theorem 1.8
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we obtain by Fubini’s theorem and (1.7) that

||B(·)ΨW (·, s)x||1,λ 6
∫
J>s

e−λτ
∫ τ

s

||B(τ)U(τ, σ)f(σ)|| dσ dτ

=

∫
J>s

∫
J>σ

e−λτ ||B(τ)U(τ, σ)f(σ)|| dτ dσ =

∫
J>s

||A(σ)f(σ)||1,λ dσ

6
∫
J>s

γ̃λe
−λσ||f(σ)|| dσ = γ̃λ||B(·)W (·, s)x||1,λ, (1.14)

and it follows that ΨW ∈ M̃M.
Let Φ: M→M be as in the proof of Theorem 1.8. Let (t, s) ∈ DJ and x ∈ X. We

use Fubini’s theorem as above to obtain for V ∈M that∫ t

s

V (t, τ)B(τ)ΨW (τ, s)x dτ =

∫ t

s

∫ t

σ

V (t, τ)B(τ)U(τ, σ)B(σ)W (σ, s)x dτ dσ

=

∫ t

s

ΦV (t, σ)B(σ)W (σ, s)x dσ.

(1.15)

Observe that U ∈ M̃M since Xσ = X for all σ ∈ J . For k ∈ N it thus follows that

Uk(t, s)x = ΦkU(t, s)x =

∫ t

s

Φk−1U(t, σ)B(σ)U(σ, s)x dσ = . . .

=

∫ t

s

U(t, τ)B(τ)Ψk−1U(τ, s)x dτ = ΨkU(t, s)x,

(1.16)

which proves the first assertion.
Assume now that γ < 1, and choose λ > 0 such that γ̃λ < 1. From (1.14) and (1.16)

we infer that

||B(·)Uk(·, s)x||1,λ = ||B(·)ΨkU(·, s)x||1,λ 6 γ̃kλ||B(·)U(·, s)x||1,λ (1.17)

for all k ∈ N, so
∑∞

k=0B(·)Uk(·, s)x converges absolutely in L1(J>s;X) and hence a.e. on
J>s. Since

∑∞
k=0 Uk = UB and a.e. B(τ) is closed, we thus obtain that

UB(τ, s)x ∈ D(B(τ)) and B(τ)UB(τ, s)x =
∞∑
k=0

B(τ)Uk(τ, s)x

for a.e. τ ∈ J>s. We conclude that
∑∞

k=0 U(t, ·)B(·)Uk(·, s)x = U(t, ·)B(·)UB(·, s)x in
L1(s, t;X) and hence

UB(t, s)x =
∞∑
k=0

ΨkU(t, s)x = U(t, s)x+
∞∑
k=1

∫ t

s

U(t, τ)B(τ)Uk−1(τ, s)x dτ

= U(t, s)x+

∫ t

s

U(t, τ)B(τ)UB(τ, s)x dτ.

The uniqueness assertion follows from Corollary 1.19, so the proof of part (a) is complete.
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(b) Let (t, s) ∈ DJ with t − s 6 α, and let x ∈ X. By an argument analogous to the

one that leads to (1.14), we obtain for W ∈ M̃M that∫ t

s

||B1(τ)ΨW (τ, s)x|| dτ 6 γ1

∫ t

s

||B(τ)W (τ, s)x|| dτ. (1.18)

Applying (1.18) with B1 = B, we infer that∫ t

s

||B(τ)Ψk−1U(τ, s)x|| dτ 6 γk−1

∫ t

s

||B(τ)U(τ, s)x|| dτ 6 γk||x||

for all k ∈ N. With W = Uk−1 = Ψk−1U , (1.18) thus yields∫ t

s

||B1(τ)Uk(τ, s)x|| dτ 6 γ1

∫ t

s

||B(τ)Uk−1(τ, s)x|| dτ 6 γ1γ
k||x||.

The latter inequality (without the middle term) is clear for k = 0, so as in (a) we conclude
that B1(·)UB(·, s)x ∈ L1(s, t;X) and∫ t

s

||B1(τ)UB(τ, s)x|| dτ 6 γ1

∞∑
k=0

γk||x|| = γ1

1− γ
||x||,

which proves the first assertion.
Since both B and B1 satisfy condition (M) with Xs = X, we obtain that B + B1 is

a Miyadera perturbation of U with constants (α, γ + γ1). Now assume that γ + γ1 < 1,
so that (B1(t))t∈J is a small Miyadera perturbation of UB. Then by Proposition 1.18 we
obtain that

(UB)B1(t, s)x = U(t, s)x+

∫ t

s

(UB)B1(t, τ)(B +B1)(τ)U(τ, s)x dτ

for all (t, s) ∈ DJ and all x ∈ X, so the last assertion UB+B1 = (UB)B1 follows from
uniqueness in the first Duhamel formula.

1.4 The Trotter product formula

In this section let U be a bounded strongly measurable propagator on a Banach space
X with parameter interval J ⊆ R. We are going to study the special case of bounded
perturbations in more detail. In particular, in Theorem 1.26 below, we present a Trotter
product formula for perturbed propagators. Throughout the section we assume that
B : J → L(X) is bounded and strongly measurable.

1.22 Remark. Let c := ||B||∞, and choose M > 1 such that ||U(t, s)|| 6 M for all (t, s) ∈
DJ . Then from the recursion formula (1.13) we obtain by induction that

||Uk(t, s)|| 6 M(Mc)k
(t− s)k

k!
(k ∈ N0)

and hence ||UB(t, s)|| 6 MeMc(t−s) for all (t, s) ∈ DJ .
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The following convergence result for perturbed propagators is a generalisation of
[RäSc99; Prop. 2.3(b)] and [LVV06; Prop. 1.8]. For simplicity it is formulated for bounded
propagators and bounded perturbations, the generalisation to locally bounded propaga-
tors with locally bounded perturbations is straightforward (cf. Remark 1.12(c)).

1.23 Proposition. For each n ∈ N let Un be a bounded strongly measurable propagator on
X with parameter interval J , and let Bn : J → L(X) be bounded and strongly measurable.
Assume that

M := sup
{
||Un(t, s)||; n ∈ N, (t, s) ∈ DJ

}
<∞

and c := supn∈N ||Bn||∞ <∞, that Un(t, s)→ U(t, s) strongly as n→∞, for all (t, s) ∈DJ ,
and that Bn(·)x→ B(·)x in L1,loc(J ;X) as n→∞, for all x ∈ X. Then

Un
k,Bn

(t, s) → Uk,B(t, s) and Un
Bn

(t, s) → UB(t, s) (1.19)

strongly for all k ∈ N0 and all (t, s) ∈ DJ .
If, in addition, U is strongly continuous and the strong convergence Un(t, s) → U(t, s)

is uniform for (t, s) in compact subsets of DJ , then the strong convergences in (1.19) are
also uniform for (t, s) in compact subsets of DJ .

Proof. Without loss of generality assume that J is compact. As an initial step we define
operators B,Bn ∈ L(L1(J ;X)) by Bf(t) := B(t)f(t) and Bnf(t) := Bn(t)f(t), for all
n ∈ N. The assumption on convergence of the Bn implies that Bnf → Bf in L1(J ;X) for
all simple functions f : J → X. Since (Bn) is a bounded sequence in L(L1(J ;X)) and the
simple functions are dense in L1(J ;X), it follows that Bn → B strongly as n→∞.

We now prove the first convergence assertion in (1.19) by induction on k. For k = 0
there is nothing to show. Assume that the assertion holds for some k ∈ N0. Let (t, s) ∈DJ

and x ∈ X. Using the initial observation, the induction hypothesis and the estimate

||Un
k,Bn

(t, τ)|| 6 M(Mc)k
(t− s)k

k!

(
n ∈ N, τ ∈ [s, t]

)
(1.20)

from Remark 1.22, we obtain that

fnk (t, s) := Un
k,Bn

(t, ·)Bn(·)Un(·, s)x→ Uk,B(t, ·)B(·)U(·, s)x =: fk(t, s)

in L1(s, t;X) as n→∞. Therefore,

Un
k+1,Bn

(t, s)x =

∫ t

s

fnk (t, s)(τ) dτ →
∫ t

s

fk(t, s)(τ) dτ = Uk+1,B(t, s)x (1.21)

as n → ∞, and the first part of (1.19) is proved. From this we infer, taking into ac-
count (1.20) with τ = s, that

Un
Bn

(t, s)x =
∞∑
k=0

Un
k,Bn

(t, s)x→
∞∑
k=0

Uk,B(t, s)x = UB(t, s)x (1.22)

as n→∞.



1.4. THE TROTTER PRODUCT FORMULA 27

For the second part of the proof assume that U is strongly continuous and that
Un(t, s) → U(t, s) strongly as n → ∞, uniformly for (t, s) ∈ DJ . We prove by induc-
tion on k that the strong convergence Un

k,Bn
(t, s) → Uk,B(t, s) is uniform for (t, s) ∈ DJ .

Again, for k = 0 there is nothing to show. Assuming uniform strong convergence for some
k ∈ N0, we proceed with the notation from the first part of the proof. We are going to
show that the convergence fnk (t, s) → fk(t, s) is uniform for (t, s) ∈ DJ ; then it follows
that the convergences in (1.21) and (1.22) are uniform for (t, s) ∈ DJ , too. Here and in
the following, we tacitly extend functions defined on subintervals of J by zero to functions
on J .

The uniform strong convergence Un → U implies that

gn(s) := Un(·, s)x→ U(·, s)x =: g(s)

in L1(J ;X) as n → ∞, uniformly for s ∈ J . Moreover, the function g : J → L1(J ;X)
thus defined is continuous since U is strongly continuous. By the initial observation, the
induction hypothesis and estimate (1.20) we obtain as in the first part of the proof, for
all f ∈ L1(J ;X), that

Tn(t)f := Un
k,Bn

(t, ·)Bn(·)f → Uk,B(t, ·)B(·)f =: T (t)f

in L1(J ;X), uniformly for t ∈ J . By Lemma 1.24(b) below, applied with K = L = J and
X = Y = L1(J ;X), we conclude that

fnk (t, s) = Tn(t)gn(s) → T (t)g(s) = fk(t, s)

as n→∞, uniformly for (t, s) ∈ DJ , and the proof is complete.

1.24 Lemma. Let K be a compact topological space, and let X, Y be Banach spaces. Let
(gn) be a sequence in `∞(K;X) such that gn → g ∈ C(K;X) uniformly.

(a) Let (Tn) be a sequence in L(X, Y ) such that Tn→ T ∈ L(X, Y ) strongly as n→∞.
Then Tn ◦ gn → T ◦ g uniformly as n→∞.

(b) Let L be a non-empty set, let T, Tn : L → L(X, Y ) be bounded functions, for all
n ∈ N, and assume that Tn(t) → T (t) strongly as n → ∞, uniformly for t ∈ L. Then
Tn(t)gn(s) → T (t)g(s) as n→∞, uniformly for t ∈ L and s ∈ K.

Proof. (a) The sequence (Tn) is bounded by the uniform boundedness theorem. Since
g(K) is compact, we obtain that the convergence Tnx→ Tx is uniform for x ∈ g(K). It
follows that

Tngn(t)− Tg(t) = Tn
(
gn(t)− g(t)

)
+ (Tn − T )g(t) → 0

as n→∞, uniformly for t ∈ K.
(b) follows from (a), applied with Y := `∞(L;Y ) and T , Tn : X → Y ,

Tnx := [t 7→ Tn(t)x] → [t 7→ T (t)x] =: T x

in Y as n→∞, for all x ∈ X.

For the remainder of the section we assume that U is strongly continuous.
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1.25 Remarks. (a) An important application of the above convergence result is the
approximation of strongly continuous propagators by “discrete” propagators: For n ∈ N
let Pn be a discrete subset of J with inf Pn = inf J and supPn = sup J , and define
ϕn : J → J by ϕn(s) := min{t ∈ Pn; t > s}. Assume that ϕn → idJ uniformly as n→∞.
Then for n ∈ N we define a propagator Un on X with parameter interval J by

Un(t, s) := U
(
ϕn(t), ϕn(s)

)
.

It follows from the strong continuity of U that Un(t, s) → U(t, s) strongly as n → ∞,
uniformly for (t, s) in compact subsets of DJ .

For n ∈ N we now define Bn : J → L(X) as follows. If K is one of the connected
components of J \ Pn and t ∈ K ∪ {supK}, then we set

Bn(t) :=
1

|K|

∫
K

B(τ) dτ (strong integral),

where |K| denotes the length of K, and Bn(inf J) := 0 if inf J ∈ J . Then Bn(·)x→ B(·)x
in L1,loc(J ;X) as n→∞, for all x ∈ X, so we can apply Proposition 1.23 to obtain (1.19)
with uniform strong convergence for (t, s) in compact subsets of DJ .

(b) We keep the notation from part (a). Let s0 < t0 be two consecutive points in Pn.
Then Un(t, τ) = I and Bn(τ) = Bn(t0) for all (t, τ) ∈ D(s0,t0]. For the constituents of the
Dyson-Phillips series for Un

Bn
we thus obtain by the recursion formula (1.13) that

Un
k+1,Bn

(t, s0)x =

∫ t

s0

Un(t, τ)Bn(τ)U
n
k,Bn

(τ, s0)x dτ = Bn(t0)

∫ t

s0

Un
k,Bn

(τ, s0)x dτ

for all k ∈ N0, t ∈ (s0, t0] and all x ∈ X. By induction we infer that

Un
k,Bn

(t, s0) =
(t− s0)

k

k!
Bn(t0)

kU(t0, s0) =
(t− s0)

k

k!
Bn(t)

kU(t, s0) (k ∈ N0)

and hence Un
Bn

(t, s0) = e(t−s0)Bn(t)U(t, s0) for all t ∈ (s0, t0]. Therefore, if t0 < t1 < . . . < tm
are m+1 consecutive points in Pn, then we obtain by the propagator property that

Un
Bn

(tm, t0) = e(tm−tm−1)Bn(tm)U(tm, tm−1) · · · e(t1−t0)Bn(t1)U(t1, t0).

From the above application of Proposition 1.23 we immediately obtain the following
Trotter product formula for perturbed propagators.

1.26 Theorem. Assume that U is strongly continuous, and let s, t ∈ J with s < t.
For n ∈ N let tn0 , . . . , t

n
n ∈ [s, t] satisfy s = tn0 < tn1 < · · · < tnn = t, and assume that

sup
{
tnk − tnk−1; k = 1, . . . , n

}
→ 0 as n→∞. For n ∈ N and k = 1, . . . , n let

Bn
k :=

∫ tnk

tnk−1

B(τ) dτ (strong integral).

Then

eB
n
nU(tnn, t

n
n−1)e

Bn
n−1U(tnn−1, t

n
n−2) · · · eB

n
1U(tn1 , t

n
0 ) → UB(t, s)

strongly as n→∞.



Chapter 2

Absorption propagators

In this chapter we further develop the theory of absorption propagators that was initiated
in [RäSc99] and pushed forward in [LVV06]. The basic ideas of the approach are the same
as in the theory of absorption semigroups; see [Voi86] and [Voi88].

Throughout the section let (Ω,A, µ) be a measure space. We do not require the
measure µ to be σ-finite, which raises a few technical issues. In particular, L∞(µ) will
denote the space of all locally measurable functions from Ω to K that are bounded outside
a local null set, and functions are identified if they coincide locally a.e.

We are going to study perturbation of positive propagators on Lp(µ) by locally mea-
surable potentials V : J×Ω→ R. Here, J×Ω is endowed with the σ-algebra generated by
Bfin⊗Afin, where Bfin denotes the system of all Lebesgue measurable subsets of J of finite
measure, and Afin ⊆ A is the subsystem of all µ-measurable sets of finite measure. On
this σ-algebra, the product measure of Lebesgue measure and the measure µ is uniquely
defined. If A ∈ Afin then V is measurable on J × A, so V (t, ·) is measurable on A for all
t ∈ J . It follows that V (t, ·) is locally measurable for all t ∈ J .

The chapter is organised as follows. In Section 2.1 we develop the abstract theory of
absorption propagators, and we present a new version of the notions of admissible and
regular potentials. Several of the results are straightforward generalisations of the corre-
sponding results for C0-semigroups, but some of the proofs are substantially simplified.
We point out the following two new aspects: We study perturbation of strongly mea-
surable propagators (as opposed to strongly continuous propagators), and we introduce a
larger class of perturbations that includes highly oscillating potentials (see Example 2.14).
Section 2.2 deals with the connection between admissibility and the Miyadera perturba-
tion theorem. In Section 2.3 we present the backward Miyadera condition that can be
used to obtain local L∞-boundedness of perturbed propagators.

In Section 2.4 we introduce the notion of logarithmically convex operator-valued func-
tions, and we prove an interpolation inequality that is similar to the Stein interpolation
theorem. The concept of logarithmic convexity is used in Section 2.5 to prove interpo-
lation inequalities for absorption propagators and for the corresponding Dyson-Phillips
series; the latter lead to a deeper understanding of the relation between the Miyadera
condition and admissibility. The Trotter product formula is a crucial ingredient in the
proofs, so from this point on we will only consider perturbations of strongly continuous
propagators. In Section 2.6 we apply the results of Section 2.5 to the interpolation of
admissibility in different weighted Lp-spaces.

29
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2.1 Abstract theory of absorption propagators

Let 1 6 p <∞, and let U be a positive locally bounded strongly measurable propagator
on Lp(µ) with parameter interval J ⊆ R. (A positive operator-valued function is, by
definition, a function taking its values in the positive operators on Lp(µ).) We are going
to apply the perturbation results of Section 1.2 to bounded potentials and to extend the
definition of a perturbed propagator to suitable unbounded real-valued potentials.

Let V : J ×Ω → R be locally measurable and bounded. As explained in the introduc-
tion to the chapter, V (t) := V (t, ·) is locally measurable (and bounded) and can hence
be considered as a bounded multiplication operator on Lp(µ), for all t ∈ J . We define a
strongly measurable function B : J → L(Lp(µ)) by

B(t) := −V (t) (t ∈ J). (2.1)

With this B we define

UV := UB,

in the sense of Section 1.2. We choose the negative sign in order to stay compatible
with the notation usually chosen for Schrödinger operators; positive V corresponds to
absorption, negative V to excitation.

2.1 Remarks. (a) It is important to notice that for V ∈ L∞(J × Ω), the perturbed
propagator UV is defined independently of the chosen representative of V . Indeed, let
V, ṼV : J ×Ω → R be locally measurable and bounded, and assume that V = ṼV locally a.e.
Then V (·)U(·, s)f = ṼV (·)U(·, s)f a.e. on J>s, for all s ∈ J and all f ∈ Lp(µ) (cf. part (b)
below), so by uniqueness in the first Duhamel formula (1.2) we obtain that UV = UeV .

Nevertheless it can happen that V (t) 6= ṼV (t) (as elements of L∞(µ)) for all t ∈ J :
As in Example 1.3 let J := Ω := [0, 1], and let µ be the counting measure on Ω. We

define V : J ×Ω → R as the indicator function of the diagonal
{
(t, t) ∈ J ×Ω; 0 6 t 6 1

}
.

Then V is locally measurable and V = 0 locally a.e., but V (t) = 1{t} 6= 0 for all t ∈ J .
(b) If h : J → Lp(µ) is measurable then there exists a σ-finite set Ωh ⊆ Ω such that

h(t) = 1Ωh
h(t) a.e. for a.e. t ∈ J . Indeed, let hn : J → Lp(µ) be simple functions such

that hn → h a.e. as n→∞. Then Ωh :=
⋃{

[hn(t) 6= 0]; n ∈ N, t ∈ J
}

is σ-finite, and for
all t ∈ J such that hn(t) → h(t) in Lp(µ) we obtain that h(t) = 1Ωh

h(t) a.e. Here, for a
function f : Ω → K, we denote [f 6= 0] :=

{
x ∈ Ω; f(x) 6= 0

}
.

2.2 Remark. Recall from Theorem 1.20(b) that (UV1)V2 = UV1+V2 for V1, V2 ∈ L∞(J×Ω).
Moreover, if V = c for some c ∈ R then UV (t, s) = e−c(t−s)U(t, s) for all (t, s) ∈ DJ , by
Remark 1.12(c). As a consequence we obtain that

UV (t, s) = e−c(t−s)UV−c(t, s)
(
(t, s) ∈ DJ

)
for all c ∈ R and all V ∈ L∞(J × Ω).

The next proposition, which is a complete analogue of the corresponding statement for
C0-semigroups [Voi88; Prop. 1.3], is the corner stone to the whole approach. For strongly
continuous propagators, part (a) has already been proved in [RäSc99; Prop. 2.3(c)],
part (b) in [LVV06; Prop. 2.1(b)].



2.1. ABSTRACT THEORY OF ABSORPTION PROPAGATORS 31

2.3 Proposition. Let U1 and U2 be positive locally bounded strongly measurable propa-
gators on Lp(µ) with parameter interval J , and let V, V1, V2 ∈ L∞(J × Ω).

(a) If V1 6 V2 then UV1 > UV2 > 0.

(b) If U1 6 U2 then (U1)V 6 (U2)V . If additionally V > 0 then (U2)V −(U1)V 6 U2−U1.

Proof. (a) By Remark 2.2 we can assume without loss of generality that V1 6 V2 6 0.
Then for the constituents of the Dyson-Phillips series for UV1 and UV2 (see Remark 1.12(a))
we obtain by induction that Uk,−V1 > Uk,−V2 > 0 for all k ∈ N0. Summation over k yields
the assertion.

(b) The first assertion follows as in (a) from Remark 2.2 and the Dyson-Phillips series
expansions of (U1)V and (U2)V . The second, in the form U1 − (U1)V 6 U2 − (U2)V , then
follows from the Duhamel formula (1.2).

We are now going to define UV for locally measurable V : J ×Ω → R that are possibly
unbounded. Our approach differs from the classical theory of absorption semigroups
([Voi86], [Voi88]) and from the approach in [LVV06; Sec. 2.1], where V is approximated
by means of cut-offs V (n) := (V ∧n)∨ (−n). We use this approximation only for the cases
V > 0 and V 6 0. For the link with the classical theory see Remark 2.22(c) below.

2.4 Definition. (a) If V > 0 then UV ∧n(t, s) > UV ∧(n+1)(t, s) > 0 for all n ∈ N and all
(t, s) ∈ DJ , by Proposition 2.3(a), so the dominated convergence theorem implies that

UV (t, s) := s-lim
n→∞

UV ∧n(t, s) (2.2)

exists for all (t, s) ∈ DJ . Clearly, this defines a locally bounded strongly measurable
propagator UV .

(b) If V 6 0 then
(
UV ∨(−n)(t, s)

)
is an increasing sequence of positive operators, for

all (t, s) ∈ DJ , and we say that V is weakly U-admissible if

UV (t, s) := s-lim
n→∞

UV ∨(−n)(t, s) (2.3)

exists for all (t, s) ∈ DJ and defines a locally bounded function UV : DJ → L(X). Again,
UV is a strongly measurable propagator in this case.

(c) In the general case let V + and V − denote the positive and negative parts of V ,
respectively, i.e., V + = V ∨ 0 and V − = (−V )+. We say that V is weakly U-admissible if
−V − is weakly UV +-admissible. (In particular, any V > 0 is weakly U -admissible.) Then
we set

UV := (UV +)−V − . (2.4)

By Remark 2.2, this is consistent with the definition of UV in the case of bounded V .
(d) If U is strongly continuous then we say that V is U-admissible if UV is strongly

continuous. In [LVV06; Def. 2.2], parallel to [Voi88; Def. 2.5], it was required more restric-
tively for U -admissibility of V that V + and −V − are U -admissible (cf. Remark 2.18(b)
below).
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2.5 Remarks. (a) Observe that from (2.3) and (2.4) it follows that (2.3) holds for any
weakly U -admissible potential V , not only for negative V .

(b) Let V be weakly U -admissible, and let ṼV = V locally a.e. Then it follows from
Remark 2.1(a) that ṼV is weakly U -admissible, and UeV = UV .

We now show that the inequalities stated in Proposition 2.3 for bounded potentials
carry over to weakly admissible potentials.

2.6 Proposition. Let U1 and U2 be positive locally bounded strongly measurable propaga-
tors on Lp(µ) with parameter interval J , and let V, V1, V2 be locally measurable potentials.

(a) If V1 is weakly U-admissible and V1 6 V2, then V2 is weakly U-admissible and
UV1 > UV2 > 0.

(b) If V is weakly U2-admissible and U1 6 U2, then V is weakly U1-admissible and
(U1)V 6 (U2)V . If additionally V > 0 then (U2)V − (U1)V 6 U2 − U1.

Proof. The assertions are clear from (2.2), (2.3) and Proposition 2.3 if the potentials are
of one sign. As a consequence we obtain the first assertion of (b) in the general case:
From (U1)V + 6 (U2)V + and the weak (U2)V +-admissibility of −V − it follows that −V − is
weakly (U1)V +-admissible and

(U1)V =
(
(U1)V +

)
−V − 6

(
(U2)V +

)
−V − = (U2)V .

Using part (b) we also obtain (a) in the general case: For all n ∈ N, the inequalities
UV +

1
> UV +

2
and V −

1 ∧ n > V −
2 ∧ n imply that

UV1 > (UV +
1

)−V −1 ∧n > (UV +
2

)−V −1 ∧n > (UV +
2

)−V −2 ∧n > 0,

and the assertions of (a) follow.

In the next chapter we will study propagators that consist of integral operators. The
next result implies that then the corresponding absorption propagators consist of integral
operators, too.

2.7 Proposition. Let V be weakly U-admissible. Let t, s ∈ J satisfy t > s, and assume
that U(t, s) is an integral operator. Then UV (t, s) is an integral operator.

Proof. For n ∈ N let Vn := V ∨ (−n). Then 0 6 UVn(t, s) 6 en(t−s)U(t, s) by Proposi-
tion 2.6(a) and Remark 2.2, so UVn(t, s) is an integral operator by a theorem of Bukhvalov
and Schep, [AbAl02; Thm. 5.9]. By the monotone convergence theorem, this implies the
assertion since UVn(t, s) ↑ UV (t, s) by Remark 2.5(a).

The major issues for the remainder of the section will be to investigate the following two
questions. Firstly, to what extent does the definition of UV depend on the decomposition
of V into a difference of positive potentials (see Theorem 2.17 and Remark 2.18(a) below),
and secondly, when does convergence a.e. of a sequence of weakly U -admissible potentials
imply convergence of the corresponding perturbed propagators (Theorem 2.21 below)?
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For this we first show, for perturbations of one sign, that one can use different approx-
imations than in (2.2) and (2.3), and that one can iterate perturbations. In the context
of C0-semigroups, the former problem has already been addressed in [Voi86; Props. A.1
and A.2], the latter in [Man01; Prop. 4.1.35]. For a sequence (Un) of propagators on Lp(µ)
we write Un → U strongly or U = s-lim

n→∞
Un if Un(t, s)→ U(t, s) strongly for all (t, s) ∈ DJ .

2.8 Proposition. (a) Let V, Vn : J×Ω→ R be locally measurable with V 6 Vn 6 0 for all
n ∈ N, and assume that Vn → V locally a.e. as n→∞. Then the following are equivalent:

(i) V is weakly U-admissible;

(ii) the Vn are weakly U-admissible, and s-lim
n→∞

UVn exists and is locally bounded.

If V is weakly U-admissible then UVn → UV strongly.
(b) Let V1, V2 : J×Ω→ (−∞, 0] be locally measurable, and assume that V1 is weakly U-

admissible. Then V1+V2 is weakly U-admissible if and only if V2 is weakly UV1-admissible,
and UV1+V2 = (UV1)V2 in this case.

Proof. (a) First observe that by Remark 2.5(b) we can assume without loss of generality
that Vn → V pointwise: Just replace each of the Vn with V on the local null set on which
the convergence does not hold.

Assume that (ii) holds, and let m ∈ N. For n ∈ N let V m
n := Vn ∨ (−m), and let

V m := V ∨ (−m). Then V m
n (t, ·) → V m(t, ·) strongly as n → ∞, for all t ∈ J , where we

consider V m
n (t, ·) and V m(t, ·) as multiplication operators in L(Lp(µ)). By Proposition 1.23

we thus obtain that

UVm = s-lim
n→∞

UVm
n

6 s-lim
n→∞

UVn . (2.5)

Since the right-hand side is locally bounded, it follows that V is weakly U -admissible.
Now assume that (i) holds; then the Vn are weakly U -admissible by Proposition 2.6(a).

To complete the proof of (a), we show that UVn → UV strongly. Let (t, s) ∈ DJ and
f ∈ Lp(µ). Let ε > 0. Then there exists m ∈ N such that

||UV (t, s)f − UVm(t, s)f ||p 6 ε. (2.6)

Moreover, by (2.5) we obtain N ∈ N such that

||UVm(t, s)f − UVm
n

(t, s)f ||p 6 ε (n > N). (2.7)

From UV (t, s)f > UVn(t, s)f > UVm
n

(t, s)f we conclude that

||UV (t, s)f − UVn(t, s)f ||p 6 ||UV (t, s)f − UVm
n

(t, s)f ||p 6 2ε

for all n > N . Therefore, UVn(t, s)f → UV (t, s)f as n→∞.
(b) First assume that V2 is bounded. Then we only have to show the identity

UV1+V2 = (UV1)V2 . By Remark 2.2 we have UV1∨(−n)+V2 = (UV1∨(−n))V2 for all n ∈ N.
Moreover, by part (a) we obtain that UV1∨(−n)+V2 → UV1+V2 strongly as n→∞, and from
Proposition 1.23 it follows that (UV1∨(−n))V2 → (UV1)V2 strongly as n→∞. This implies
the desired identity.
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If V2 is unbounded then by the above we have UV1+V2∨(−n) = (UV1)V2∨(−n) for all n ∈ N.
Moreover, s-lim

n→∞
(UV1)V2∨(−n) exists (and equals (UV1)V2) if and only if V2 is weakly UV1-

admissible, and by part (a), s-lim
n→∞

UV1+V2∨(−n) exists (and equals UV1+V2) if and only if

V1 + V2 is weakly U -admissible. This completes the proof of (b).

2.9 Remark. In the situation of Proposition 2.8(a) assume that U is strongly continuous
and that V is U -admissible, i.e., UV is strongly continuous. We show that then the strong
convergence UVn → UV is uniform on compact subsets of DJ . Assume without loss of
generality that J is compact. Observe that the left-hand side of (2.6) is monotone in m if
f > 0, and that it is a continuous function of (t, s) ∈ DJ since UVm is strongly continuous
by Theorem 1.8. From Dini’s theorem we thus infer that m can be chosen independently
of (t, s) ∈DJ in (2.6). By Proposition 1.23 we obtain the same for the choice of N in (2.7),
and the asserted uniform strong convergence follows.

For positive perturbations we obtain an analogous result; only the weak admissibility
is not an issue in this case, which makes the formulation simpler. The proof is also
analogous (but simpler) and therefore omitted. As in Remark 2.9 one sees that the
convergence in part (a) is uniform on compact subsets of DJ if U is strongly continuous
and V is U -admissible.

2.10 Proposition. (a) (cf. [RäSc99; Lemma 3.1(c)]) Let V, Vn : J × Ω → R be locally
measurable with 0 6 Vn 6 V for all n ∈ N, and assume that Vn→ V locally a.e. as n→∞.
Then UVn → UV strongly.

(b) Let V1, V2 : J × Ω → [0,∞) be locally measurable. Then UV1+V2 = (UV1)V2.

The next lemma says in particular that one can interchange the order of perturbations
in (2.4) if −V − is weakly U -admissible.

2.11 Lemma. (cf. [LVV06; Prop. 2.3(b)]) Let V± > 0, and assume that −V− is weakly
U-admissible. Then −V− is weakly UV +-admissible, and (UV+)−V− = (U−V−)V+.

Proof. Let n ∈ N. By Proposition 2.3(b) we have

0 6 (U−V−)V+∧m − (U−V−∧n)V+∧m 6 U−V− − U−V−∧n (2.8)

for all m ∈ N. Moreover, (U−V−∧n)V+∧m = (UV+∧m)−V−∧n → (UV+)−V ∧n strongly as m →
∞, by Remark 2.2 and Proposition 1.23. Thus, letting m→∞ in (2.8) yields

0 6 (U−V−)V+ − (UV+)−V−∧n 6 U−V− − U−V−∧n. (2.9)

This implies the assertion since U−V−∧n → U−V− strongly as n→∞.

2.12 Remark. Let V be weakly U -admissible; we show that then −V is weakly UV -
admissible and

(UV )−V = (UV +)−V + = s-lim
n→∞

UV +−V +∧n 6 U.
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If V > 0 then for n ∈ N we obtain by Proposition 2.10(b) that UV = (UV−V ∧n)V ∧n, so
from Remark 2.2 it follows that (UV )−V ∧n = UV−V ∧n 6 U . This implies the claim in the
case V > 0. In the general case, −V − is weakly UV +-admissible, so

(UV )(−V )+ =
(
(UV +)−V −

)
V −

= UV +

by Proposition 2.13 below. It follows that−(−V )− =−V + is weakly (UV )(−V )+-admissible
(i.e., −V is weakly UV -admissible) and (UV )−V = (UV +)−V + .

The above observation leads to the notion of regularity that is crucial for the subse-
quent results. We say that V is U -regular if V is weakly U -admissible and (UV )−V = U .
This is in analogy with [Voi88; Sec. 3], where regularity is defined for positive potentials
in the context of C0-semigroups. Observe that, by Remark 2.12, V is U -regular if and
only if V is weakly U -admissible and V + is U -regular. We point out that in [Voi88], for
V being U -regular it was also required that V is U -admissible. We do not know if, in the
case of strongly continuous propagators, U -regularity of V implies U -admissibility.

2.13 Proposition. (cf. [Voi88; Prop. 3.3(b)]) Let V > 0 be such that −V is weakly
U-admissible. Then (UV )−V = (U−V )V = U , i.e., V and −V are U-regular.

Proof. The first identity is a special case Lemma 2.11. For the second identity we use (2.8)
with n = m: Since (U−V ∧n)V ∧n = U by Remark 2.2, it follows from (2.8) that (U−V )V ∧n→
U strongly as n→∞, i.e., (U−V )V = U .

2.14 Example. Let n > 2, and let U be the heat propagator on L1(Rn) with parameter
interval R, i.e., U(t, s) = e(t−s)∆ for all (t, s) ∈ DR. For the oscillating potential V defined
by

V (t, x) := e1/|x| sin e1/|x|

it follows from [Stu92a; Cor. 5.5] that cV is U -admissible for all c ∈ R and hence also U -
regular, by Proposition 2.13. We point out that in this example V is admissible although
−V − is far from being (weakly) admissible.

Next we compare regularity with respect to different propagators. The corresponding
results for C0-semigroups are shown in [LiMa97; Cor. 1.15] and [Voi88; Prop. 3.4].

2.15 Lemma. (a) Let ŨU be a strongly measurable propagator on Lp(µ) with parameter

interval J , and assume that 0 6 ŨU 6 U . Then any U-regular potential V is also ŨU-regular.
(b) Let V± > 0 be such that −V− is weakly U-admissible. Then V+ is U-regular if and

only if V+ is U−V−-regular.

Proof. (a) By Proposition 2.6(b), V is weakly ŨU -admissible, so we only have to show that
V + is ŨU -regular. In other words, we can assume without loss of generality that V > 0.
Then by Proposition 2.6 we have

0 6 ŨU − ŨUV−V ∧n 6 U − UV−V ∧n,

and from Remark 2.12 it follows that 0 6 ŨU − (ŨUV )−V 6 U − (UV )−V = 0.
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(b) Assume that V+ is U -regular. Then by Lemma 2.11 and Proposition 2.8(b) we
obtain that (

(U−V−)V+

)
−V+

=
(
(UV+)−V−

)
−V+

=
(
(UV+)−V+

)
−V−

= U−V− ,

so V+ is U−V−-regular. The other implication follows from part (a).

2.16 Corollary. (cf. [Voi88; Prop. 3.3(a)]) The set
{
V > 0; V is U-regular

}
is a solid

convex cone.

Proof. Let V1, V2 > 0 be U -regular. Then V2 is UV1-regular by Lemma 2.15(a), so from
Propositions 2.8(b) and 2.10(b) we deduce that (UV1+V2)−V1−V2 = (UV1)−V1 = U .

Let now V1 > 0 be U -regular, and let 0 6 V2 6 V1. Then V2 − V2 ∧ n 6 V1 − V1 ∧ n
and hence UV1−V1∧n 6 UV2−V2∧n 6 U for all n ∈ N, so it follows from Remark 2.12 that V2

is U -regular.

We can now characterise which decompositions V = V+ − V− lead to UV = (UV+)−V− .

2.17 Theorem. Let V± > 0 and V := V+ − V−.
(a) If V is weakly U-admissible then −V− is weakly UV+-admissible.
(b) The following are equivalent:

(i) V is weakly U-admissible and UV = (UV+)−V−;

(ii) −V− is weakly UV+-admissible and V+ ∧ V− is UV +-regular.

Proof. Let W := V+ ∧ V−; then V+ = V + +W and V− = V − +W .
(a) By Proposition 2.10(b) and Lemma 2.11 we obtain that

(UV+)−V − =
(
(UV +)W

)
−V − =

(
(UV +)−V −

)
W

= (UV )W .

In particular, −W is weakly (UV+)−V −-admissible. From Proposition 2.8(b) we conclude
that −V− is weakly UV+-admissible and (UV+)−V− =

(
(UV+)−V −

)
−W =

(
(UV )W

)
−W .

(b) Assume that (i) holds. Then by the above, −V− is weakly UV+-admissible and
UV =

(
(UV )W

)
−W . Therefore, W is UV -regular and hence UV +-regular by Lemma 2.15(a).

Conversely, if (ii) holds then by Proposition 2.10(b) we obtain that

UV + =
(
(UV +)W

)
−W = (UV+)−W .

Since −V− = −V − − W is weakly UV+-admissible, we infer by Proposition 2.8(b) that
−V − is weakly (UV+)−W -admissible and

(UV+)−V− =
(
(UV+)−W

)
−V − = (UV +)−V − = UV .

2.18 Remarks. (a) Let V± > 0 be such that −V− is weakly UV+-admissible, and let
V = V+ − V−. Then by Proposition 2.13, Corollary 2.16 and Lemma 2.15(a) we obtain
that

−V− is weakly U -admissible =⇒ V− is U -regular

=⇒ V+ ∧ V− is U -regular =⇒ V+ ∧ V− is UV +-regular,

and by Theorem 2.17, each of these properties implies that V is weakly U -admissible
and UV = (UV+)−V− . If −V− is weakly U -admissible then by Lemma 2.11 we also have
UV = (U−V−)V+ .
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(b) Assume that U is strongly continuous and that V+ and−V− are U -admissible. Then
by (2.9) and Remark 2.9 one obtains that (UV+)−V−∧n → (U−V−)V+ strongly, uniformly
on compact subsets of DJ . Thus, (U−V−)V+ = UV is strongly continuous, i.e., V is U -
admissible.

Next we show that the two notions of U -regularity that were introduced in [Voi86;
Def. 2.12] and [Voi88; Def. 3.1] are equivalent.

2.19 Proposition. (cf. [Man01; Satz 4.1.54]) Let V > 0. Then UεV → (UV )−V strongly
as ε→ 0. In particular, V is U-regular if and only if UεV → U strongly as ε→ 0.

Proof. Let ε ∈ (0, 1). Then −εV is weakly UεV -admissible by Remark 2.12. From Proposi-
tion 2.13 and Corollary 2.16 it follows that (1−ε)V is UεV -regular. By Propositions 2.10(b)
and 2.8(a) we conclude that

UεV =
(
(UεV )(1−ε)V

)
−(1−ε)V = (UV )−(1−ε)V → (UV )−V

strongly as ε→ 0.

For later use we note the following auxiliary result.

2.20 Lemma. Let V be U-regular. Then V + and V − are U-regular.

Proof. Remark 2.12 yields the U -regularity of V +. Since −V − is weakly UV +-admissible,
V − is UV +-regular by Proposition 2.13. By Lemma 2.15(b) it follows that V − is (UV +)−V +-
regular and hence U -regular.

We conclude the section with an analogue of the non-monotone convergence result for
semigroups [Voi88; Thm. 3.5].

2.21 Theorem. Let (Vn) be a sequence of potentials satisfying Vn → V locally a.e. as
n→∞ and −V− 6 Vn 6 V +V+ for all n ∈ N, where V± > 0, −V− is weakly U-admissible
and V+ is UV -regular. Then UVn → UV strongly as n→∞.

(Note that V and the Vn are weakly U-admissible since Vn > −V− for all n ∈ N and
hence V > −V−.)

2.22 Remarks. (a) In [Voi88; Thm. 3.5], in the context of C0-semigroups, it was assumed
more restrictively that V+ is U -regular. This implies UV -regularity of V+ by Lemma 2.15.
If V is not U -regular then V+ = cV +, with c > 0, is an example of a UV -regular potential
that is not U -regular.

(b) The assumption −V− 6 Vn 6 V + V+ can be replaced with the seemingly weaker
assumption −V− 6 Vn 6 V + +V+. Indeed, as in Remark 2.18(a) we obtain from the weak
U -admissibility of −V− that V − is UV -regular. Thus ṼV+ := V+ + V − is UV -regular by
Corollary 2.16, and V + ṼV+ = V + + V+.

(c) If −V − is weakly U -admissible and Vn = V (n) := (V ∧n)∨ (−n), then the assump-
tions of Theorem 2.21 are satisfied with V− = V − and V+ = 0. It follows that in this
case, our definition of the absorption propagator coincides with the classical definition
UV = s-lim

n→∞
UV (n) .
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(d) Assume that U is strongly continuous, that −V− and V are U -admissible and that
V+ is UV -admissible. Then a close inspection of the proof below shows that the strong
convergence UVn → UV is uniform on compact subsets of DJ ; cf. Remark 2.9.

Proof of Theorem 2.21. In a first step we prove the assertion for the case V = V− = 0.
Then Vn > 0 and 0 6 Wn := V+− Vn 6 V+ for all n ∈ N. Moreover, the Wn are U -regular
by Corollary 2.16, and Wn → V+ locally a.e. as n → ∞. Therefore, by Remark 2.18(a)
and Proposition 2.8(a) we obtain that

UVn = (UV+)−Wn → (UV+)−V+ = U (n→∞).

In a second step we prove the assertion for the case V− = 0. Then V, Vn > 0 for all
n ∈ N. For n ∈ N and Wn := Vn − Vn ∧ V it follows from Propositions 2.10(b) and 2.6(b)
that

0 6 UVn − (UV )Wn = (UVn∧V )Wn − (UV )Wn 6 UVn∧V − UV . (2.10)

Observe that UVn∧V → UV strongly as n→∞ by Proposition 2.10(a). Moreover, Wn → 0
locally a.e. as n → ∞, 0 6 Wn 6 V+ for all n ∈ N and V+ is UV -regular, so by the first
step we obtain that (UV )Wn → UV strongly as n → ∞. From (2.10) we thus infer that
UVn → UV strongly as n→∞.

To conclude the proof, we show that the general case can be reduced to the case
V− = 0. Let ṼV := V + V− and ṼVn := Vn + V− for all n ∈ N. Then ṼVn → ṼV locally
a.e. as n → ∞ and 0 6 ṼVn 6 ṼV + V+ for all n ∈ N. Moreover, (U−V−)eVn

= UVn for all
n ∈ N and (U−V−)eV = UV by Remark 2.18(a); in particular, V+ is (U−V−)eV -regular. Thus,
(U−V−)eVn

→ (U−V−)eV strongly as n→∞ by the second step, and the proof is complete.

2.2 Miyadera class for potentials

Let (Ω, µ) be a measure space, let 1 6 p < ∞, and let U be a locally bounded positive
strongly measurable propagator on Lp(µ) with parameter interval J ⊆ R. Let V : J×Ω→
R be locally measurable. Then V (t) = V (t, ·) is locally measurable for all t ∈ J and
hence defines a (closed) multiplication operator in Lp(µ). Thus, V is a (closed) Miyadera
perturbation of U if and only if there exist α > 0 and γ > 0 such that∫ t

s

||V (τ)U(τ, s)f ||p dτ 6 γ||f ||p (2.11)

for all (t, s) ∈ DJ with t−s 6 α and all f ∈ Lp(µ). (Recall from Lemma 1.17 that Xs = X
for closed Miyadera perturbations; moreover, by the monotone convergence theorem one
sees that V (·)U(·, s)f is measurable on J>s if it is a.e. defined.) Note that it suffices to
require (2.11) for f > 0 since ||V (τ)U(τ, s)f ||p 6 ||V (τ)U(τ, s)|f |||p for all (τ, s) ∈ DJ .

In the following theorem, which extends [LVV06; Thm. 2.8], we formulate a sufficient
condition under which a potential V > 0 is U -regular, and U -admissible in case that U
is strongly continuous. The latter generalises the strong continuity assertion in [RäSc99;
Thm. 3.3].
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2.23 Theorem. Let V > 0. Assume that for each s ∈ J there exists a dense sublattice
Xs of Lp(µ) such that τ 7→ U(t, τ)V (τ)U(τ, s)f ∈ Lp(µ) is a.e. defined and integrable on
(s, t), for all t ∈ J>s and all f ∈ Xs. (This assumption is satisfied with Xs = Lp(µ) if V
is a Miyadera perturbation of U.) Then V is U-regular, and

UV (t, s)f = U(t, s)f −
∫ t

s

UV (t, τ)V (τ)U(τ, s)f dτ (2.12)

= U(t, s)f −
∫ t

s

U(t, τ)V (τ)UV (τ, s)f dτ (2.13)

for all (t, s) ∈ DJ and all f ∈ Xs. Moreover, if U is strongly continuous then V is
U-admissible.

Proof. Let (t, s) ∈ DJ and f ∈ Xs. Then |f | ∈ Xs. For n ∈ N and Vn := V ∧ n we have
UVn 6 U and hence ∣∣UVn(t, τ)Vn(τ)U(τ, s)f

∣∣ 6 U(t, τ)V (τ)U(τ, s)|f |,∣∣U(t, τ)Vn(τ)UVn(τ, s)f
∣∣ 6 U(t, τ)V (τ)U(τ, s)|f |

for all τ ∈ (s, t). Thus, by the dominated convergence theorem we can pass to the limit
in

UVn(t, s)f = U(t, s)f −
∫ t

s

UVn(t, τ)Vn(τ)U(τ, s)f dτ

= U(t, s)f −
∫ t

s

U(t, τ)Vn(τ)UVn(τ, s)f dτ

to obtain (2.12) and (2.13).
The assumption of the theorem is also satisfied for εV in place of V , and UεV 6 U for

all ε > 0. By (2.12) we thus obtain that

UεV (t, s)f = U(t, s)f − ε

∫ t

s

UεV (t, τ)V (τ)U(τ, s)f dτ → U(t, s)f

as ε→ 0, for all (t, s) ∈DJ and all f ∈Xs, so Proposition 2.19 implies that V is U -regular.
Finally, if U is strongly continuous, then from Proposition 1.10 we conclude that UV is
strongly continuous, i.e., V is U -admissible.

In the case of a small Miyadera perturbation V of U , a perturbed propagator can be
defined either by Theorem 1.8 or by using absorption propagators. The following result
shows that these two approaches lead to the same object.

2.24 Theorem. Let V be a Miyadera perturbation of U, with V − Miyadera small. Then
V is U-regular, (2.12) and (2.13) hold for all (t, s) ∈ DJ and all f ∈ Lp(µ), and UV is the
unique locally bounded strongly measurable propagator satisfying either of these Duhamel
formulas. Moreover, if U is strongly continuous then V is U-admissible.
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Proof. We only have to show that V is weakly U -admissible, that V is a Miyadera per-
turbation of UV , and that the two Duhamel formulas hold. Then the U -regularity of
V + and hence of V follows from Theorem 2.23, the uniqueness assertion results from
Corollary 1.19, and, as in the proof of Theorem 2.23, Proposition 1.10 implies that V is
U -admissible if U is strongly continuous.

Assume first that V 6 0. Then V is Miyadera small, so by Theorems 1.8 and 1.20(a)
there exists a locally bounded strongly measurable propagator ŨUV satisfying (2.12) and
(2.13) with ŨUV in place of UV , for all (t, s) ∈ DJ and all f ∈ Lp(µ). Moreover, V is a

Miyadera perturbation of ŨUV by Theorem 1.20(b). From Corollary 1.19 we infer that U
is the unique locally bounded strongly measurable propagator satisfying

U(t, s)f = ŨUV (t, s)f −
∫ t

s

U(t, τ)(−V )(τ)ŨUV (τ, s)f dτ
(
(t, s) ∈ DJ , f ∈ Lp(µ)

)
.

By Theorem 2.23, the latter also holds with (ŨUV )−V in place of U , so we obtain that
(ŨUV )−V = U . Therefore, V is weakly U -admissible, and UV = ŨUV since −V is ŨUV -regular
by Theorem 2.23. This proves the theorem in the case V 6 0.

If V > 0 then V is a Miyadera perturbation of UV since UV 6 U ; the case V > 0 is thus
already covered by Theorem 2.23. In the general case, the above implies that −V − and
hence V is weakly U -admissible. Moreover, it follows from Theorem 1.20(b) that V is a
Miyadera perturbation of U−V − and hence of UV since UV 6 U−V − . By Proposition 1.18 we
conclude from the cases V > 0 and V 6 0 that UV = (UV +)−V − satisfies (2.12) and (2.13)
for all (t, s) ∈ DJ and all f ∈ Lp(µ), and the proof is complete.

We conclude this section by investigating under what conditions a weakly U -admissible
potential is a Miyadera perturbation of U or of UV . The results are limited to the case that
p = 1 and that V is of one sign, and they demonstrate that Miyadera perturbations are
particularly interesting in this case. Part (b) of the following proposition is a propagator
version of [Voi86; Lemma 4.1]. We use the notation Dα :=

{
(t, s) ∈ DJ ; t − s 6 α

}
, for

α ∈ (0,∞].

2.25 Proposition. Let p = 1 and c > 0, and let V > 0. Assume that there exist M > 1
and α ∈ (0,∞] such that ||U(t, s)|| 6 M for all (t, s) ∈ Dα.

(a) Assume that ||UV (t, s)f ||1 > c||f ||1 for all (t, s) ∈ Dα and all 0 6 f ∈ L1(µ). Then
V is a Miyadera perturbation of U with constants (α, Mc − 1).

(b) Assume that ||U(t, s)f ||1 > c||f ||1 for all (t, s) ∈ Dα and all 0 6 f ∈ L1(µ). Then
V is a Miyadera perturbation of UV with constants (α, Mc ).

Proof. Let 0 6 f ∈ L1(µ) and (t, s) ∈ Dα, and for n ∈ N let Vn := V ∧ n.
(a) For n ∈ N we have UV 6 UVn , so we can estimate

c

∫ t

s

||Vn(τ)U(τ, s)f ||1 dτ 6
∫ t

s

||UVn(t, τ)Vn(τ)U(τ, s)f ||1 dτ

=
∣∣∣∣∣∣∫ t

s

UVn(t, τ)Vn(τ)U(τ, s)f dτ
∣∣∣∣∣∣
1

= ||U(t, s)f − UVn(t, s)f ||1.
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Letting n→∞ we infer that

c

∫ t

s

||V (τ)U(τ, s)f ||1 dτ 6 ||U(t, s)f ||1 − ||UV (t, s)f ||1 6 M ||f ||1 − c||f ||1,

and the assertion follows.

(b) As above we obtain that

c

∫ t

s

||Vn(τ)UV (τ, s)f ||1 dτ 6
∫ t

s

||U(t, τ)Vn(τ)UVn(τ, s)f ||1 dτ

= ||U(t, s)f − UVn(t, s)f ||1 6 M ||f ||1

for all n ∈ N, and the assertion follows for n→∞.

Recall from Proposition 2.13 that (UV )−V = U if V 6 0 is weakly U -admissible. Thus,
applying Proposition 2.25 with UV and −V in place of U and V , we immediately obtain
the following result.

2.26 Corollary. Let p = 1 and c > 0, and let V 6 0 be weakly U-admissible. Assume
that there exist M > 1 and α ∈ (0,∞] such that ||UV (t, s)|| 6 M for all (t, s) ∈ Dα.

(a) Assume that ||U(t, s)f ||1 > c||f ||1 for all (t, s) ∈ Dα and all 0 6 f ∈ L1(µ). Then
V is a Miyadera perturbation of UV with constants (α, Mc − 1).

(b) Assume that ||UV (t, s)f ||1 > c||f ||1 for all (t, s) ∈ Dα and all 0 6 f ∈ L1(µ). Then
V is a Miyadera perturbation of U with constants (α, Mc ).

2.27 Remarks. (a) Let p = 1 and assume that U is stochastic, i.e., ||U(t, s)f ||1 = ||f ||1 for
all (t, s) ∈ DJ and all 0 6 f ∈ L1(µ). Let V 6 0 be weakly U -admissible and assume that
UV is exponentially bounded. Then Mα := sup

{
||UV (t, s)||; (t, s) ∈ Dα

}
<∞ for all α > 0,

and by Corollary 2.26(a), V is a Miyadera perturbation of UV with constants (α,Mα− 1).
In the context of C0-semigroups, an analogous result has already been shown in [Voi86;
Prop. 4.6].

Since U 6 UV , the above implies that V is also a Miyadera perturbation of U with con-
stants (α,Mα−1). The constant Mα−1 will be considerably improved in Remark 2.44(b)
below, but for this we will have to assume that U is strongly continuous.

(b) Proposition 2.25(b) implies in particular that any V > 0 is a Miyadera perturbation
of UV with constants (∞, 1) if U is stochastic.

(c) It follows from Corollary 2.26(a) that there are no “borderline” weakly U -admissible
potentials V 6 0 if U is stochastic. More precisely, if K is a compact subinterval of J then
UV |DK

is bounded, so there exists εK > 0 such that εKV |K×Ω is a small Miyadera per-
turbation of UV |DK

. Using Theorem 2.24, we infer that there exists ϕ : J → (0,∞) such
that Vϕ(t, x) := ϕ(t)V (t, x) defines a weakly UV -admissible potential, and from Proposi-
tion 2.10(b) we obtain that V + Vϕ is weakly U -admissible.



42 CHAPTER 2. ABSORPTION PROPAGATORS

2.3 The backward Miyadera condition

Let (Ω,A, µ) be a measure space, and let 1 6 p < ∞. In the case p = 1 we assume
that µ is localisable, which is equivalent to L1(µ)′ = L∞(µ). Let U be a locally bounded
positive strongly measurable propagator on Lp(µ) with parameter interval J ⊆ R, and let
V : J × Ω → R be locally measurable.

2.28 Remark. Let A ∈ A be σ-finite, let t ∈ J , and let 0 6 f ∈ Lp′(µ). Then the function

J6t 3 τ 7→ ϕ(τ) := ||1AV (τ)U(t, τ)′f ||1 ∈ [0,∞]

is measurable. Indeed, let (An) be a sequence of sets of finite measure such that 1An ↑ 1A
a.e. Then gn(τ) := |V (τ)| ∧ (n1An) defines a measurable function on gn : J6t → Lp(µ), for
all n ∈ N. It follows that

J6t 3 τ 7→ ||gn(τ)U(t, τ)′f ||1 =

∫
f U(t, τ)gn(τ) dµ

is measurable, so the monotone convergence theorem implies that ϕ is measurable.

2.29 Proposition. Let γ > 0, and let t, s ∈ J satisfy t > s. Then the following conditions
on V are equivalent.

(i) Let h : (s, t) → Lp(µ) be such that τ 7→ |V (τ)|h(τ) ∈ Lp(µ) is integrable on (s, t) and
0 6 h(τ) 6 1 a.e. for all τ ∈ (s, t). Then∣∣∣∣∣∣∫ t

s

U(t, τ)|V (τ)|h(τ) dτ
∣∣∣∣∣∣
∞

6 γ.

(ii) For all 0 6 g ∈ Lp(µ) one has∣∣∣∣∣∣∫ t

s

U(t, τ)
(
|V (τ)| ∧ g

)
dτ

∣∣∣∣∣∣
∞

6 γ.

(As in (i), the integral on the left-hand side is an Lp-valued Bochner integral.)

(iii) For all 0 6 f ∈ L1(µ) ∩ Lp′(µ) and all σ-finite sets A ∈ A one has∫ t

s

||1AV (τ)U(t, τ)′f ||1 dτ 6 γ||f ||1.

Proof. Without loss of generality assume that V > 0. Let h : (s, t) → Lp(µ) be as in
condition (i). Then, for all 0 6 f ∈ L1(µ) ∩ Lp′(µ), the function ϕf : (s, t) → R,

ϕf (τ) := ||V (τ)h(τ)U(t, τ)′f ||1 =

∫
Ω

f U(t, τ)V (τ)h(τ) dµ

is integrable, and ∫ t

s

ϕf (τ) dτ =

∫
Ω

f

∫ t

s

U(t, τ)V (τ)h(τ) dτ dµ.



2.3. THE BACKWARD MIYADERA CONDITION 43

It follows that the inequality in (i) holds if and only if∫ t

s

||V (τ)h(τ)U(t, τ)′f ||1 dτ 6 γ||f ||1
(
0 6 f ∈ L1(µ) ∩ Lp′(µ)

)
. (2.14)

In the same way we obtain that the inequality in (ii) is equivalent to∫ t

s

||(V (τ) ∧ g)U(t, τ)′f ||1 dτ 6 γ||f ||1
(
0 6 f ∈ L1(µ) ∩ Lp′(µ)

)
(2.15)

(use the integrability of (s, t) 3 τ 7→ V (τ) ∧ g ∈ Lp(µ)).
Now we derive the equivalence of conditions (i) to (iii) from the monotone convergence

theorem.
(i)⇒ (iii). Let A ∈ A be σ-finite, and let (An) be a sequence of sets of finite measure

such that 1An ↑ 1A a.e. For n ∈ N we define hn : (s, t) → Lp(µ) by hn(τ) :=
(
nV (τ)−1

)
∧

1An . Then V (τ)hn(τ) = n ∧
(
1AnV (τ)

)
↑ 1AV (τ) as n → ∞, for all τ ∈ (s, t), and

τ 7→ V (τ)hn(τ) ∈ Lp(µ) is integrable for all n ∈ N. Thus, (iii) follows from (2.14).
(iii)⇒ (ii). Let 0 6 g ∈ Lp(µ). Then A := [g > 0] =

{
x ∈ Ω; g(x) > 0

}
is σ-finite and

V (τ) ∧ g 6 1AV (τ) for all τ ∈ (s, t), so (2.15) follows from (iii).
(ii)⇒ (i). Let h : (s, t) → Lp(µ) be as in condition (i). By Remark 2.1(b) there exists

a σ-finite set Ωh ⊆ Ω such that V (τ)h(τ) = 1Ωh
V (τ)h(τ) a.e. for a.e. τ ∈ (s, t). Choose

0 6 g ∈ Lp(µ) such that [g > 0] = Ωh. Then V (τ) ∧ (ng) ↑ 1Ωh
V (τ) > V (τ)h(τ) a.e. as

n→∞, for a.e. τ ∈ (s, t), and hence (2.15) implies (2.14).

For p, q ∈ [1,∞] and a linear operator B in L1(µ) + L∞(µ), we denote the norm of B
as an operator from Lp(µ) to Lq(µ) by

||B||p→q := sup
{
||Bf ||q; f ∈ Lp(µ) ∩D(B), ||f ||p 6 1

}
∈ [0,∞].

In the following we assume that the propagator U is locally L∞-bounded, i.e., for all
compact subintervals K of J there exists MK > 1 such that ||U(t, s)||∞→∞ 6 MK for all
(t, s) ∈ DK .

We say that V is a backward Miyadera perturbation of U (with constants (α, γ) ∈
(0,∞]× [0,∞)) if the conditions of Proposition 2.29 are satisfied for all (t, s) ∈ DJ with
t − s 6 α. This is a Desch-Schappacher type condition; in the case of the heat equation
one easily shows that it coincides with the backward Kato condition mentioned in the
introduction (see also Remark 3.21(d)). Observe that for exponentially bounded U any
V ∈ L∞(J × Ω) is an infinitesimally small backward Miyadera perturbation (which is
defined in the obvious way).

2.30 Theorem. Assume that V is weakly U-admissible and that V − is a backward
Miyadera perturbation of U with constants (α, γ), γ < 1. Then UV is locally L∞-bounded.
If ||U(t, s)||∞→∞ 6 M for all (t, s) ∈ DJ then

||UV (t, s)||∞→∞ 6 M
1−γ e

ω(t−s) (
(t, s) ∈ DJ

)
,

where ω = 1
α

ln(1 + γ
1−γM).
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Proof. We only have to show the second assertion since for the first assertion we can
assume without loss of generality that J is compact. Moreover, UV + 6 U and hence V − is
a backward Miyadera perturbation of UV + with constants (α, γ), so we can assume without
loss of generality that V 6 0. Then Vn := V ∨ (−n) is a backward Miyadera perturbation
of U with constants (α, γ), for each n ∈ N. Since the operators UVn(t, s) are positive and
UVn(t, s)f ↑ UV (t, s)f as n→∞, for all (t, s) ∈ DJ and all 0 6 f ∈ Lp(µ)∩L∞(µ), we only
have to estimate ||UV (t, s)f ||∞ for f > 0, and we can assume without loss of generality
that V is bounded.

By Proposition 2.3(a) we have ||UV (t, s)||∞→∞ 6 Me||V ||∞(t−s) for all (t, s) ∈ DJ . Given
f ∈ Lp(µ) such that 0 6 f 6 1 a.e., we are going to prove that

cj := sup
{
||UV (t, s)f ||∞; (t, s) ∈ DJ , t− s 6 jα

}
6 M

1−γ

(
1 + γ

1−γM
)j−1

(2.16)

for all j ∈ N. As in the proof of Proposition 1.14, the assertion then follows by choosing
j such that (j − 1)α 6 t− s 6 jα. Let n ∈ N and assume that (2.16) holds for all j < n.
Let (t, s) ∈ DJ with t − s 6 nα, and let tj := s + j

n(t − s) for j = 0, . . . , n. Applying
condition (i) of Proposition 2.29 with h = UV (·, s)f : (tj−1, tj) → Lp(µ), 0 6 h(τ) 6 cj
a.e. for all τ ∈ (tj−1, tj), we obtain that∣∣∣∣∣∣∫ tj

tj−1

U(tj, τ)V (τ)UV (τ, s)f dτ
∣∣∣∣∣∣
∞

6 γcj

for j = 1, . . . , n. From the second Duhamel formula (2.13) we infer that

||UV (t, s)f ||∞ 6 ||U(t, s)f ||∞ +
n∑
j=1

∣∣∣∣∣∣∫ tj

tj−1

U(t, tj)U(tj, τ)V (τ)UV (τ, s)f dτ
∣∣∣∣∣∣
∞

6 M +M
n−1∑
j=1

γcj + γcn,

and as in the proof of Proposition 1.14 we conclude that (2.16) holds for j = n.

2.31 Remarks. (a) The local L∞-boundedness of U implies that U(t, s)′|L1(µ)∩Lp′ (µ) ex-
tends to a bounded operator U ′(s, t) on L1(µ), for each (t, s) ∈ DJ . We thus obtain
a locally bounded backward propagator U ′ on L1(µ) with parameter interval J , i.e., a
function

U ′ :
{
(s, t) ∈ J × J ; s 6 t

}
→ L(L1(µ))

that satisfies

U ′(t, t) = I, U ′(r, t) = U ′(r, s)U ′(s, t) (r 6 s 6 t in J).

(We refer to [Gul02; Def. 3] for this definition.) Note that taking the adjoint of a propaga-
tor is connected with time reversal. Moreover, observe that U ′ is (separately and jointly)
weakly measurable. Therefore, U ′ is a strongly measurable backward propagator if L1(µ)
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is separable. If one only assumes µ to be σ-finite then U ′ need not be strongly measurable;
see Example 2.32(a) below.

(b) If µ is σ-finite then condition (iii) in Proposition 2.29 simplifies to∫ t

s

||V (τ)U ′(τ, t)f ||1 dτ 6 γ||f ||1
(
0 6 f ∈ L1(µ) ∩ Lp′(µ)

)
. (2.17)

It follows from Remark 2.1(b) that the same is true if U ′(·, t) is strongly measurable. In
Example 2.32(b) below we will show that one cannot omit the indicator function 1A in the
general case. We point out that in [LVV06; Sec. 3.1], strong continuity of U ′ was required
for the backward Miyadera condition.

(c) Assume that U ′ is strongly measurable. As observed in part (b), V is a backward
Miyadera perturbation of U with constants (α, γ) if and only if (2.17) holds for all (t, s) ∈
DJ with t− s 6 α. This can also be expressed as V being a Miyadera perturbation of the
backward propagator U ′ with constants (α, γ) (cf. (2.11)), or equivalently, as (−J)×Ω 3
(t, x) 7→ V (−t, x) being a Miyadera perturbation of the associated (forward) propagator

D−J 3 (t, s) 7→ U ′(−t,−s).

If γ < 1 then from the above it is clear how the perturbed backward propagator (U ′)V
is defined. Following the last step in the proof of [LVV06; Prop. 3.6] one can show that
(U ′)V = (UV )′ if additionally V is a small Miyadera perturbation of U . For a weakly
U -admissible potential V it follows that UV is locally L∞-bounded if and only if V is
weakly U ′-admissible, and again (U ′)V = (UV )′ in this case.

2.32 Example. (a) Let Ω := [0, 1][0,1], and let µ be the canonical product probability
measure on Ω. Then L1(µ) is not separable since any function y 7→ f(y) in L1(µ) depends
only on countably many of the variables ys, s ∈ [0, 1]. Let J := [0, 1]. We define a
propagator U : DJ → L(L1(µ)) by U(t, t) := I for all t ∈ J and

U(t, s)f :=

∫
Ω

2ysf(y) dµ(y) · 1Ω

(
0 6 s < t 6 1, f ∈ L1(µ)

)
.

Then U(t, s)1Ω = 1Ω for all (t, s) ∈ DJ , and it follows that U is a propagator. Moreover,
U(t, s)f =

∫
Ω
f(y) dµ(y) · 1Ω =: Pf if t > s and f ∈ L1(µ) does not depend on the

variable ys, so for t ∈ J we obtain that U(t, s)f = Pf for a.e. s ∈ J6t. This implies that
U is a strongly measurable propagator. Note, however, that the function (s, y) 7→ 2ys is
not measurable on J × Ω since it depends on all the variables ys.

Now observe that ||U(t, s)||∞→∞ 6 1 for all (t, s) ∈DJ and that U ′ is given by U ′(t, t) =
I for all t ∈ J and

U ′(s, t)f(x) = 2xs

∫
Ω

f(y) dµ(y)
(
0 6 s < t 6 1, f ∈ L1(µ), x ∈ Ω

)
.

Therefore, if t > 0 and
∫

Ω
f(y) dy 6= 0, then U ′(·, t)f is not separably valued and hence

not measurable.
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(b) As in Remark 2.1(a) let J := Ω := [0, 1], let µ be the counting measure on Ω, and
let V : J × Ω → R be the indicator function of the diagonal

{
(t, t) ∈ J × Ω; 0 6 t 6 1

}
.

We define U : DJ → L(L1(µ)) by U(t, t) := I for all t ∈ J and

U(t, s)f :=
(
f(s) + f(0)

)
δ0

(
0 6 s < t 6 1, f ∈ L1(µ)

)
.

One easily checks that U is a propagator on L1(µ). Moreover, ||U(t, s)||∞→∞ 6 2 for all
(t, s) ∈ DJ .

Since V = 0 locally a.e., V is a backward Miyadera perturbation of U with constants
(∞, 0); in fact UV = U by Remark 2.1(a). Let now t ∈ J and 0 6 f ∈ L1(µ) ∩ L∞(µ).
Then V (τ)U(t, τ)′f = V (τ)f(0)(δ0 + δτ ) = f(0)δτ for all 0 < τ < t, so∫ t

0

||V (τ)U(t, τ)′f ||1 dτ =

∫ t

0

|f(0)| dτ = t|f(0)|.

This shows that in general one cannot omit the indicator function 1A in condition (iii) of
Proposition 2.29.

2.4 Logarithmically convex functions

The ideas presented in this section play a central role for this thesis; they are the basis for
the interpolation inequalities of the next section. The following definition is motivated by
the paper [Haa07].

Let X be an ordered vector space, i.e., X is a (real or complex) vector space endowed
with a proper convex cone X+ of positive elements, where X+ being proper means that
X+∩(−X+) = {0}. Let D be a non-empty subset of R. We say that a function f : D→X
is logarithmically convex if

f(ξθ) 6 (1− θ)r−θf(ξ0) + θr1−θf(ξ1) (r > 0) (2.18)

for all ξ0, ξ1 ∈ D and all θ ∈ (0, 1) with ξθ := (1− θ)ξ0 + θξ1 ∈ D. By choosing ξθ = ξ0 = ξ1
and r 6= 1 (so that (1− θ)r−θ + θr1−θ > 1) we see that a logarithmically convex function
f takes its values in X+.

In the following let (Ω, µ) be a measure space. The next lemma implies in particular
that f : D → [0,∞) is logarithmically convex if and only if ln ◦f is convex, where we use
the convention ln 0 := −∞.

2.33 Lemma. Let M(µ) be the ordered vector space of all scalar-valued locally measurable
functions on Ω, where functions are identified if they coincide locally a.e., and M(µ)+ =
{f ∈M(µ); f > 0 locally a.e.}.

(a) A function f : D →M(µ)+ is logarithmically convex if and only if

f(ξθ) 6 f(ξ0)
1−θf(ξ1)

θ

locally a.e. for all ξ0, ξ1 ∈ D and all θ ∈ (0, 1) with ξθ := (1− θ)ξ0 + θξ1 ∈ D.
(b) For h ∈M(µ) the function ξ 7→ eξh is logarithmically convex. If f, g : D→M(µ)+

are logarithmically convex, then ξ 7→ f(ξ)g(ξ) is logarithmically convex, too.
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Proof. (a) follows from Young’s inequality: For a, b > 0 and θ ∈ (0, 1) we have

a1−θbθ =
(
r−θa

)1−θ(
r1−θb

)θ
6 (1− θ)r−θa+ θr1−θb (r > 0)

and

a1−θbθ = inf
{
(1− θ)r−θa+ θr1−θb; 0 < r ∈ Q

}
.

(b) is an immediate consequence of part (a).

The next result, though being elementary, is important for the kernel estimates in
the next chapter. We assume that Lp(µ) and L(Lp(µ)) are endowed with their natural
orderings, in particular, L(Lp(µ))+ consists of the positive operators on Lp(µ).

2.34 Proposition. Let p ∈ [1,∞), and let T : D → L(Lp(µ)). Then the following are
equivalent:

(i) T is logarithmically convex;

(ii) ξ 7→ T (ξ)f is logarithmically convex for all f ∈ Lp(µ)+;

(iii) ξ 7→ 〈T (ξ)f, g〉 is logarithmically convex for all f ∈ Lp(µ)+, g ∈ Lp′(µ)+.
Assume, in addition, that µ is σ-finite and that the operators T (ξ) are integral opera-

tors with integral kernels kξ. Then (i)–(iii) hold if and only if D 3 ξ 7→ kξ ∈M(µ⊗ µ) is
logarithmically convex.

Proof. The equivalences are immediate from the following two facts: A function h ∈ Lp(µ)
is in Lp(µ)+ if and only if 〈h, g〉 > 0 for all g ∈ Lp′(µ)+, and an integral operator is positive
if and only if its integral kernel is > 0 a.e.

2.35 Remarks. (a) We find it worth emphasizing that the conclusion from the logarith-
mic convexity of T to the logarithmic convexity of ξ 7→ kξ is entirely elementary. In the
literature, δ-sequences (fn), (gn) and continuity of the kernel or Lebesgue points of the
kernel are sometimes used instead; see, e.g., [Sim82; proof of Thm. B.6.7] and [LiSo03;
proof of Prop. 2.8].

(b) Clearly, if f : D → X is logarithmically convex and T : X → X is a positive
operator, then T ◦ f is logarithmically convex. In the case X = Lp(µ) we can prove the
following more general result.

2.36 Lemma. Let p ∈ [1,∞), and let f : D → Lp(µ) and T : D → L(Lp(µ)) be logarith-
mically convex. Then D 3 ξ 7→ T (ξ)f(ξ) ∈ Lp(µ) is logarithmically convex, too.

Proof. Let ξ0, ξ1 ∈ D and θ ∈ (0, 1) with ξθ := (1 − θ)ξ0 + θξ1 ∈ D. Let g := f(ξ0) and
h := f(ξ1). Then f(ξθ) 6 g1−θhθ by Lemma 2.33(a), so the assertion follows if we show
that

T (ξθ)(g
1−θhθ) 6 (1− θ)r−θT (ξ0)g + θr1−θT (ξ1)h (r > 0). (2.19)

For the proof of this inequality we can assume without loss of generality that g and h are
simple functions,

g =
m∑
j=1

aj1Aj
, h =

m∑
j=1

bj1Aj
,
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with m ∈ N, aj, bj > 0 and pairwise disjoint measurable sets Aj of finite measure (j =
1, . . . ,m). By Proposition 2.34, (i)⇒(ii), and Lemma 2.33(a), the logarithmic convexity
of T implies that

a1−θ
j bθjT (ξθ)1Aj

6
(
ajT (ξ0)1Aj

)1−θ(
bjT (ξ1)1Aj

)θ
6 (1− θ)r−θajT (ξ0)1Aj

+ θr1−θbjT (ξ1)1Aj

for all r > 0 and j = 1, . . . ,m. Summation over j yields (2.19), and the proof is complete.

The following consequence of Lemma 2.36 will be applied in Section 3.1 to show
ultracontractivity of perturbed propagators. It replaces the use of the Stein interpolation
theorem in [LVV06]. As before, if B is a linear operator in L1(µ) + L∞(µ), then ||B||p→q

denotes the norm of B considered as as operator from Lp(µ) to Lq(µ).

2.37 Corollary. Let p ∈ [1,∞), and let T : D→ L(Lp(µ)) be logarithmically convex. Let
ξ0, ξ1 ∈ D and p0, p1, q0, q1 ∈ [1,∞], and assume that ||T (ξj)||pj→qj < ∞ for j = 0, 1. Let
θ ∈ (0, 1) be such that ξθ := (1− θ)ξ0 + θξ1 ∈ D, and define pθ, qθ ∈ [1,∞] by

1

pθ
=

1− θ

p0

+
θ

p1

,
1

qθ
=

1− θ

q0
+
θ

q1
. (2.20)

Then

||T (ξθ)||pθ→qθ 6 ||T (ξ0)||1−θp0→q0
||T (ξ1)||θp1→q1

.

If, in addition, ρ1, ρ2 : D →M(µ)+ are logarithmically convex then

||ρ1(ξθ)T (ξθ)ρ2(ξθ)||pθ→qθ 6 ||ρ1(ξ0)T (ξ0)ρ2(ξ0)||1−θp0→q0
||ρ1(ξ1)T (ξ1)ρ2(ξ1)||θp1→q1

,

where ρj(ξ) is considered as a multiplication operator, for j = 1, 2 and ξ ∈ D.

Proof. Let g ∈ L1(µ)+ be bounded, µ(spt g) <∞ and ||g||1 6 1. Define f : [0, 1] → Lp(µ)
by f(τ) := g1/pτ1spt g, where pτ is defined as in (2.20). (The indicator function is only
needed for the case pτ = ∞.) Then f is logarithmically convex, so from Lemma 2.36 we
infer that

T (ξθ)f(θ) 6
(
T (ξ0)f(0)

)1−θ(
T (ξ1)f(1)

)θ
.

By Hölder’s inequality and the estimate ||f(j)||pj
6 1 for j = 0, 1 it follows that

||T (ξθ)f(θ)||qθ 6 ||T (ξ0)f(0)||1−θq0
||T (ξ1)f(1)||θq1 6 ||T (ξ0)||1−θp0→q0

||T (ξ1)||θp1→q1
=: c.

In the case pθ <∞ we thus have shown ||T (ξθ)h||qθ 6 c for all bounded functions h ∈ Lp(µ)+

with µ(spth) <∞ and ||h||pθ
6 1; in the case pθ = ∞ we have shown ||T (ξθ)1A||qθ 6 c for

all measurable sets A with µ(A) < ∞. This implies the first assertion since T (ξθ) is a
positive operator.

For the proof of the second assertion let

An :=
{
x ∈ Ω; ρk(ξj)(x) 6 n (k = 1, 2, j = 0, 1)

}
for all n ∈ N. Then [0, 1] 3 θ 7→ 1Anρ1(ξθ)T (ξθ)ρ2(ξθ)1An ∈ L(Lp(µ)) is logarithmically
convex for all n ∈ N, by Lemma 2.36 and Proposition 2.34, and 1An ↑ 1Ω as n → ∞.
Thus, by the monotone convergence theorem, the second assertion follows from the first
one.
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2.5 Interpolation inequalities for absorption propagators

In this section we assume that U is a positive strongly continuous propagator on Lp(µ)
with parameter interval J ⊆ R, where (Ω, µ) is a measure space and p ∈ [1,∞). We do
not know if the subsequent results are true without the strong continuity assumption.
The following is the first main result of the section; for a discussion of its assumptions see
Remark 2.41(a) below.

2.38 Theorem. Let V0, V1 : J × Ω → R be weakly U-admissible potentials, and assume
that V +

0 ∧ V −
1 and V −

0 ∧ V +
1 are U-regular. Then Vθ := (1 − θ)V0 + θV1 is weakly U-

admissible, for every θ ∈ (0, 1), and [0, 1] 3 θ 7→ UVθ
is logarithmically convex.

By Propositions 2.7 and 2.34 we immediately obtain the following consequence of
Theorem 2.38, which will be crucial for the kernel estimates in the next chapter.

2.39 Corollary. In addition to the assumptions of Theorem 2.38 suppose that U(t, s) is
an integral operator, for some t, s ∈ J with t > s. Then UVθ

(t, s) is an integral operator
with kernel pVθ

t,s, for every θ ∈ [0, 1], and [0, 1] 3 θ 7→ pVθ
t,s is logarithmically convex.

2.40 Remark. One of the first results on interpolation of integral kernels is proved in
[HeSl78; Thm. 8.2], for translation invariant ultracontractive positive selfadjoint C0-semi-
groups. There the perturbation V1 is allowed to contain a form small distributional part,
and V0 = 0. The proof is based on the Trotter product formula, as our proof below, but
it additionally involves kernel techniques.

Several different methods have since been used to prove versions of the above results.
For Schrödinger semigroups it is well-known that the Feynman-Kac formula and Hölder’s
inequality in path space can be used to obtain interpolation inequalities; see, e.g., [Sim82;
Lemma B.4.1]. In the rather general framework of perturbation of positive C0-semi-
groups on a Banach lattice X by operators from the centre of X, logarithmic convexity
of θ 7→ UVθ

is implicit in [Voi88; top of p. 121]; the proof is based on the three lines
theorem. In [ArDe06; Thm. 2.4], the case of positive C0-semigroups on Lp-spaces and
negative admissible perturbations is treated by means of the Gelfand-Naimark theorem.

The method of [HeSl78] is generalised to the non-autonomous situation in [MiSe03;
Sec. 2], under the assumption that the propagator U has local infinitesimal generators
that are sectorial, that V0 = 0, and that −V −

1 is a small Miyadera perturbation of U .
General positive strongly continuous propagators are investigated in [LVV06; Prop. 3.8];
the proof given there is based on the three lines theorem as in [Voi88], and again the V −

j

are assumed to be Miyadera small.
All the above results require at least some smallness of the perturbations or admissibil-

ity of the negative parts, and mostly V0 = 0 is assumed. Much more general perturbations
are allowed in [Stu93; Lemma 2.20], which deals with Schrödinger semigroups on Rieman-
nian manifolds with (possibly highly oscillating) signed smooth measures. (We refer to
[Stu93; top of p. 326] for an explanation where the smoothness assumption comes into
play.) The assumption that the measures are smooth corresponds to our regularity as-
sumption. Our definitions of weak admissibility and of regularity in Section 2.1 were
motivated by the desire to cover, in the context of potentials, the same generality in the
perturbations.
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Proof of Theorem 2.38. First assume that V0 and V1 are bounded. Then we only have
to show that [0, 1] 3 θ 7→ UVθ

(t, s) ∈ L(Lp(µ)) is logarithmically convex for all (t, s) ∈ DJ ,
without loss of generality t > s. Let t0, . . . , tn ∈ [s, t] satisfy s = t0 < t1 < · · · < tn = t,
and for k = 1, . . . , n let

Vθ,k :=

∫ tk

tk−1

Vθ(τ) dτ =

∫ tk

tk−1

V0(τ) dτ + θ

∫ tk

tk−1

(V1 − V0)(τ) dτ (θ ∈ [0, 1]).

Recall from Remark 2.35(b) that logarithmic convexity is stable under composition with
positive operators. By Lemma 2.33(b) we thus obtain that

[0, 1] 3 θ 7→ eVθ,nU(tn, tn−1)e
Vθ,n−1U(tn−1, tn−2) · · · eVθ,1U(t1, t0)

is logarithmically convex, so the assertion follows from the Trotter product formula (The-
orem 1.26) since logarithmic convexity is also stable under strong convergence.

Next assume that V0 > c and V1 > c for some c ∈ R. Let θ ∈ [0, 1]. Then V n
θ :=

(1 − θ)(V0 ∧ n) + θ(V1 ∧ n) → Vθ as n → ∞, and c 6 V n
θ 6 Vθ for all n ∈ N. Therefore,

UV n
θ
→ UVθ

strongly as n→∞ by Theorem 2.21, and the assertion follows from the first
step.

For the proof of the general case let Vθ,± := (1− θ)V ±
0 + θV ±

1 ,

V n
θ,− := (1− θ)(V −

0 ∧ n) + θ(V −
1 ∧ n) and V n

θ := Vθ,+ − V n
θ,−

for all θ ∈ [0, 1] and all n ∈ N. Then for θ ∈ [0, 1] we infer from Theorem 2.17(b) and the
second step that

(UVθ,+
)−V n

θ,−
= UV n

θ
6 (1− θ)UV n

0
+ θUV n

1
6 (1− θ)UV0 + θUV1

for all n ∈ N. By Proposition 2.8(a) it follows that −Vθ,− is weakly UVθ,+
-admissible since

V n
θ,− ↑ Vθ,− as n→∞ and (1 − θ)UV0 + θUV1 is locally bounded. Since Vθ = Vθ,+ − Vθ,−,

and the potential

Vθ,+ ∧ Vθ,− = (θV +
1 ) ∧

(
(1− θ)V −

0

)
+ (θV −

1 ) ∧
(
(1− θ)V +

0

)
is U -regular by Corollary 2.16, we conclude from Remark 2.18(a) that Vθ is weakly U -
admissible and UVθ

= (UVθ,+
)−Vθ,− = s-lim

n→∞
(UVθ,+

)−V n
θ,−

. Finally, θ 7→ (UVθ,+
)−V n

θ,−
= UV n

θ
is

logarithmically convex by the second step, so the proof is complete.

2.41 Remarks. (a) The assumption that V +
0 ∧V −

1 and V −
0 ∧V +

1 are U -regular is a rather
technical condition. It is trivially satisfied if V0 = 0, so as a special case of Theorem 2.38
we obtain: If V is weakly U -admissible then θV is weakly U -admissible for all θ ∈ [0, 1],
and [0, 1] 3 θ 7→ UVθ

is logarithmically convex.
For the lower bounds in the next chapter we will need another application of The-

orem 2.38: There we assume that V1 = V is U -regular and that V0 := −εV is weakly
U -admissible, for some ε > 0 (see Theorem 3.12); then it follows from Lemma 2.20 that
the assumptions on V0 and V1 are satisfied.



2.5. INTERPOLATION INEQUALITIES FOR ABSORPTION PROPAGATORS 51

(b) We use part (a) to show that Proposition 2.19 is valid for any weakly U -admissible
potential V (not just for V > 0) if U is strongly continuous. For ε > 0 we have

UεV + 6 UεV 6 (1− ε)U + εUV , (2.21)

where the second inequality is due to Theorem 2.38. If V is U -regular then both the right-
hand side and the left-hand side of (2.21) converge to U strongly, by Proposition 2.19, so
UεV → U strongly as ε→ 0.

Assume now that V is weakly U -admissible, and let U0,V := (UV )−V = (UV +)−V + .
Then it follows from Proposition 2.13 and Lemma 2.15(b) that V + and hence also V
is U0,V -regular. Moreover, using Theorem 2.17 one shows that (U0,V )εV + = UεV + for all
ε > 0, so by the above we conclude that UεV = (U0,V )εV → U0,V = (UV )−V as ε→ 0.

Whereas versions of Theorem 2.38 have long been known (see Remark 2.40), our
second main result on logarithmic convexity and its consequences seem to be new. As in
Remark 1.12(a) we denote by Uk = Uk,−V the constituents of the Dyson-Phillips series for
U and V if V is a Miyadera perturbation of U ; recall that the minus sign is due to (2.1).

2.42 Theorem. Let V 6 0 be a Miyadera perturbation of U. Then N0 3 k 7→ k!Uk is
logarithmically convex.

By Proposition 2.34 and Lemma 2.33(a), the logarithmic convexity of k 7→ k!Uk can
be expressed as follows: If (t, s) ∈ DJ and f ∈ Lp(µ)+ then(

`!U`(t, s)f
)m−k

6
(
k!Uk(t, s)f

)m−`(
m!Um(t, s)f

)`−k
(0 6 k 6 ` 6 m). (2.22)

The proof of Theorem 2.42 will be given at the end of the section. We first present an
application that is particularly interesting for the perturbation of stochastic propagators
on L1(µ); see Remark 2.44(b) below.

2.43 Corollary. Let V 6 0 be a small Miyadera perturbation of U, and let (t, s) ∈ DJ .
(a) Let f ∈ Lp(µ)+ and Ω0 := [U(t, s)f = 0]. Then U1(t, s)f = UV (t, s)f = 0 a.e. on

Ω0 and
U1(t, s)f

U(t, s)f
6 ln

UV (t, s)f

U(t, s)f

a.e. on Ω \ Ω0.
(b) If p = 1 then

||U1(t, s)f ||1
||U(t, s)f ||1

6 ln
||UV (t, s)f ||1
||U(t, s)f ||1

for all f ∈ L1(µ)+ with ||U(t, s)f ||1 > 0.

Proof. (a) By Theorem 2.42, k 7→ k!Uk(t, s)f is logarithmically convex. By (2.22) it
follows that Uk(t, s)f = 0 a.e. on Ω0 for all k ∈ N and hence also UV (t, s)f = 0 a.e. on Ω0.
Moreover, (

U1(t, s)f
)k

6
(
U(t, s)f

)k−1 · k!Uk(t, s)f (2.23)
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for all k ∈ N and thus

1

k!

(
U1(t, s)f

U(t, s)f

)k
6
Uk(t, s)f

U(t, s)f

a.e. on Ω \ Ω0. The latter inequality is trivially true for k = 0, so we conclude that

exp

(
U1(t, s)f

U(t, s)f

)
6
UV (t, s)f

U(t, s)f

a.e. on Ω \ Ω0.
(b) By Hölder’s inequality it follows from (2.23) that

||U1(t, s)f ||k1 6 ||U(t, s)f ||k−1
1 · k!||Uk(t, s)f ||1.

Since ||UV (t, s)f ||1 = ||
∑∞

k=0 Uk(t, s)f ||1 =
∑∞

k=0 ||Uk(t, s)f ||1, we obtain as in (a) that

exp

(
||U1(t, s)f ||1
||U(t, s)f ||1

)
6
||UV (t, s)f ||1
||U(t, s)f ||1

,

and the proof is complete.

2.44 Remarks. (a) The estimate in Corollary 2.43(a) is sharp as one sees in the trivial
example that U(t, s) = I for all (t, s) ∈ DJ : Then

U1(t, s)f = −
∫ t

s

V (τ) dτ · f and UV (t, s)f = exp

(
−

∫ t

s

V (τ) dτ

)
· f

for all (t, s) ∈ DJ and all f ∈ Lp(µ).
(b) In the situation of Corollary 2.43(b) assume that U is stochastic (as defined in

Remark 2.27(a)). Let (t, s) ∈ DJ . Then for f ∈ L1(µ)+ with ||f ||1 = 1 we obtain by
Corollary 2.43(b) that ||U1(t, s)f ||1 6 ln ||UV (t, s)f ||1 6 ln ||UV (t, s)||, so

||U1(t, s)|| 6 ln ||UV (t, s)||. (2.24)

Moreover,

||U1(t, s)f ||1 =

∫ t

s

||U(t, τ)V (τ)U(τ, s)f ||1 dτ =

∫ t

s

||V (τ)U(τ, s)f ||1 dτ

for all f ∈ L1(µ)+. Given α > 0, it follows that

γα := sup
{
||U1(t, s)||; (t, s) ∈ DJ , t− s 6 α

}
is the smallest constant such that V is a Miyadera perturbation of U with constants
(α, γα). With Mα := sup

{
||UV (t, s)||; (t, s) ∈ DJ , t− s 6 α

}
we infer from (2.24) that

γα 6 lnMα.
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This estimate is considerably better that the estimate γα 6 Mα− 1 from Remark 2.27(a).
On the other hand, by Proposition 1.14 we know that

Mα 6
1

1− γα

if γα < 1, so we obtain the two-sided estimate 1− 1
Mα

6 γα 6 lnMα.
(c) We want to show that an estimate analogous to the one in part (b) also applies to

backward Miyadera perturbations of Markovian propagators. For simplicity we assume
that the measure µ is σ-finite. We will say that an operator B ∈ L(Lp(µ)) extrapolates to
a bounded operator on Lq(µ), for some q ∈ [1,∞), if B|Lp(µ)∩Lq(µ) extends to an operator
in L(Lq(µ)). We will also use this notion for operator-valued functions and for the case
q = ∞ and weakly∗ continuous extensions; the space of weakly∗ continuous operators on
L∞(µ) will be denoted by Lw∗(L∞(µ)).

We start with the following observation. Let B be a positive operator on Lp(µ), and
assume that ||B||∞→∞ < ∞. Then B extrapolates to an operator B∞ ∈ Lw∗(L∞(µ)),
and if Lp(µ)+ 3 fn ↑ 1 a.e. then Bfn ↑ B∞1 a.e. Indeed, B′ extrapolates to a bounded

operator B̃B′ on L1(µ), and B∞ :=
(
B̃B′)′ is a weakly∗ continuous extension of B|Lp(µ)∩L∞(µ).

Moreover, fn ↑ 1 a.e. implies that fn → 1 weakly∗, so Bfn → B∞1 weakly∗, and from the
positivity of B it follows that Bfn ↑ B∞1 a.e.

If the propagator U is locally L∞-bounded then by the above, U extrapolates to a
locally bounded propagator ŨU : DJ → Lw∗(L∞(µ)). We assume that U is Markovian, i.e.,
U is L∞-contractive and ŨU(t, s)1 = 1 for all (t, s) ∈ DJ . Let V ∈ L∞(J × Ω), V 6 0.

Then U1 and UV are locally L∞-bounded and hence extrapolate to functions ŨU1 and ŨUV
from DJ to Lw∗(L∞(µ)). By the above observation we infer from Corollary 2.43(a) that

ŨU1(t, s)1 6 ln ŨUV (t, s)1 a.e. for all (t, s) ∈ DJ . Now it is easy to see that∫ t

s

U(t, τ)
(
|V (τ)| ∧ g

)
dτ =

∫ t

s

U(t, τ)
(
|V (τ)| ∧ g

)
ŨU(τ, s)1 dτ 6 ŨU1(t, s)1

a.e. for all (t, s) ∈ DJ and all g ∈ L1(µ), so we obtain the following.
Let V 6 0 be weakly U -admissible, let α > 0, and assume that

Mα := sup
{
||UV (t, s)||∞→∞; (t, s) ∈ DJ , t− s 6 α

}
<∞.

Then from the above, applied with Vn := V ∨ (−n) in place of V , we conclude that∫ t

s

U(t, τ)
(
|Vn(τ)| ∧ g

)
dτ 6 ln ŨUVn(t, s)1 6 ln ||UV (t, s)||∞→∞ 6 lnMα

a.e. for all n ∈ N, g ∈ L1(µ) and all (t, s) ∈ DJ with t − s 6 α, so V is a backward
Miyadera perturbation of U with constants (α, lnMα).

We point out that the above argument requires strong continuity of U but not of the
(stochastic) backward propagator U ′ defined in Remark 2.31(a).

(d) If U is only strongly measurable then one can use the observation in part (c) to show
the following analogues of Proposition 2.25(a) and of Corollary 2.26(a). Let α ∈ (0,∞]
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and M > c > 0. If V > 0 and c1 6 ŨUV (t, s)1 6 ŨU(t, s)1 6 M1 for all (t, s) ∈ DJ with
t− s 6 α, then V is a backward Miyadera perturbation of U with constants (α, Mc − 1).
On the other hand, if V 6 0 is weakly U -admissible and c1 6 ŨU(t, s)1 6 ŨUV (t, s)1 6 M1

for all (t, s) ∈ DJ with t− s 6 α, then V is a backward Miyadera perturbation of UV and
hence also of U with constants (α, Mc − 1).

We now turn to the proof of Theorem 2.42. The crucial ingredient is the following result
on logarithmically convex sequences in [0,∞). Observe that a sequence x : N0 → [0,∞)
is logarithmically convex if and only if x2

k 6 xk−1xk+1 for all k ∈ N.

2.45 Proposition. Let x : N0 → [0,∞) be logarithmically convex. Then

N0 3 k 7−→
k∑
j=0

(
k

j

)
xj ∈ [0,∞)

is logarithmically convex, too.

Proof. Let ` ∈ N. We have to show that

L :=

(∑̀
j=0

(
`

j

)
xj

)2

6

( `−1∑
j=0

(
`− 1

j

)
xj

)( `+1∑
j=0

(
`+ 1

j

)
xj

)
=: R.

For k = 0, . . . , 2` we are going to prove that

Lk :=
k∑
j=0

(
`

j

)(
`

k − j

)
xjxk−j 6

k∑
j=0

(
`− 1

j

)(
`+ 1

k − j

)
xjxk−j =: Rk (2.25)

(where
(
`
j

)
= 0 if j > `); then the assertion follows since L =

∑2`
k=0 Lk and R =

∑2`
k=0Rk.

Observe that for y ∈ R we have

2∑̀
k=0

yk
k∑
j=0

(
`

j

)(
`

k − j

)
=

(∑̀
j=0

(
`

j

)
yj

)2

= (1 + y)2`

=

( `−1∑
j=0

(
`− 1

j

)
yj

)( `+1∑
j=0

(
`+ 1

j

)
yj

)
=

2∑̀
k=0

yk
k∑
j=0

(
`− 1

j

)(
`+ 1

k − j

)
.

For a fixed k ∈ {0, . . . , 2`} we thus obtain, with

αj :=

(
`

j

)(
`

k − j

)
−

(
`− 1

j

)(
`+ 1

k − j

)
(j = 0, . . . , k),

that
∑k

j=0 αj = 0. With this notation, (2.25) simplifies to
∑k

j=0 αjxjxk−j 6 0. The latter

is equivalent to
∑k

j=0 βjxjxk−j 6 0, where βj := αj+αk−j. From the logarithmic convexity

of x it follows that j 7→ xjxk−j is decreasing on [0, k
2
] ∩ N0 and increasing on [k

2
, k] ∩ N0.

Below we will show that there exists j0 ∈ [0, k
2
]∩N0 such that βj > 0 for j = j0, . . . , k− j0
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and βj 6 0 otherwise. Combining these properties with
∑k

j=0 βj = 0, we then conclude

that
∑k

j=0 βjxjxk−j 6 0, which proves (2.25) and hence the assertion.
Let now j ∈ {0, . . . , k}, and let i := k − j. Assume that i, j 6 ` + 1; otherwise

βj = αj + αi = 0. The inequality βj > 0 holds if and only if

2

(
`

j

)(
`

i

)
>

(
`− 1

j

)(
`+ 1

i

)
+

(
`− 1

i

)(
`+ 1

j

)
.

Since
(
`−1
j

)
= `−j

`

(
`
j

)
= `−j

`
`+1−j
`+1

(
`+1
j

)
and

(
`+1
j

)
,
(
`+1
i

)
6= 0, the latter is equivalent to

2
`+ 1− j

`+ 1

`+ 1− i

`+ 1
>
`− j

`

`+ 1− j

`+ 1
+
`− i

`

`+ 1− i

`+ 1

and thus to

aj := 2`
`+1

(`+ 1− j)(`+ 1− i) > (`− j)(`+ 1− j) + (`− i)(`+ 1− i) =: bj.

Note that j 7→ aj is concave on {0, . . . , k} since i = k − j. Moreover,

bj = 2`(`+ 1)− (2`+ 1)j + j2 − (2`+ 1)i+ i2 = 2`(`+ 1)− (2`+ 1)k + j2 + (k − j)2,

so j 7→ bj is convex on {0, . . . , k}. Therefore, there exists j0 ∈ [0, k
2
]∩N0 such that aj > bj

for j = j0, . . . , k− j0 and aj < bj otherwise. Then βj > 0 for j = j0, . . . , k− j0 and βj 6 0
otherwise, and the proof is complete.

2.46 Remark. Let x : N0 → [0,∞) be logarithmically convex, and let q > 0. Then
k 7→ qkxk is logarithmically convex. By Proposition 2.45 we thus obtain that

k 7−→
k∑
j=0

(
k

j

)
qk−jxj =: zk

is logarithmically convex. (For the case q = 0 note that then zk = xk.) This might lead
one to the conjecture that more generally k 7→

∑k
j=0

(
k
j

)
xjyk−j is logarithmically convex

if y : N0 → [0,∞) is a second logarithmically convex sequence. We do not know whether
this is true, but the idea of the proof of Proposition 2.45 does not work: One can show,
e.g., that the analogue of the estimate (2.25) does not hold for ` = k = 2.

Proof of Theorem 2.42. Let (t, s) ∈ DJ and f ∈ Lp(µ)+; we show logarithmic convex-
ity of k 7→ k!Uk,−V (t, s)f . Using the monotone convergence theorem, one easily proves
by induction that Uk,(−V )∧n(t, s) → Uk,−V (t, s) strongly as n → ∞, for all k ∈ N0, so we
can assume without loss of generality that V is bounded. Then by Remark 1.25 we can
assume without loss of generality that U and V are “discrete” on [s, t], i.e., there exist
m ∈ N and s = t0 < t1 < · · · < tm = t such that

U(τ, σ) = I and V (τ) = V (tn)

for all (τ, σ) ∈ D(tn−1,tn] and n = 1, . . . ,m.
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We show by induction on n that k 7→ k!Uk(tn, t0)f is logarithmically convex for n =
0, . . . ,m. For n= 0 this is trivial since Uk(t0, t0) = 0 for all k ∈ N. Assume that logarithmic
convexity is valid for some n ∈ {0, . . . ,m− 1}. Then

k 7−→ gk := k!U(tn+1, tn)Uk(tn, t0)f

is logarithmically convex by Remark 2.35(b). As explained in Remark 1.25(b), we have
Uk(tn+1, tn) = 1

k!
W kU(tn+1, tn) for all k ∈ N0, where W := −(tn+1 − tn)V (tn+1) > 0. By

Proposition 1.13 we infer that

k!Uk(tn+1, t0)f = k!
k∑
j=0

Uk−j(tn+1, tn)Uj(tn, t0)f =
k∑
j=0

k!

(k − j)!j!
W k−jgj,

so from Remark 2.46 it follows that k 7→ k!Uk(tn+1, t0)f is logarithmically convex.

2.6 Consistent propagators on weighted Lp-spaces

Let (Ω, µ) be a measure space. Let ρ : Ω → (0,∞) be locally measurable, and let p ∈
[1,∞). Then the operator of multiplication with ρ1/p is an isometry ρ1/p : Lp(ρµ)→ Lp(µ).
Let U be a locally bounded positive strongly measurable propagator on Lp(ρµ) with

parameter interval J . Then ŨU(t, s) := ρ1/pU(t, s)ρ−1/p defines a locally bounded positive
strongly measurable propagator on Lp(µ).

2.47 Lemma. A potential V is weakly U-admissible if and only if it is weakly ŨU-admis-
sible, and ŨUV (t, s) = ρ1/pUV (t, s)ρ−1/p for all (t, s) ∈ DJ in this case.

Proof. Since ρ1/pV ρ−1/p = V , the assertion for bounded V follows from uniqueness in
Duhamel’s formula. Then for general V one uses the definition of absorption propagators
to complete the proof.

For j = 0, 1 let now ρj : Ω → (0,∞) be locally measurable, let pj ∈ [1,∞), and let Uj
be a positive strongly continuous propagator on Lpj

(ρjµ) with parameter interval J . We
assume that U0 and U1 are consistent, i.e., U0(t, s)f = U1(t, s)f for all (t, s) ∈ DJ and
all f ∈ Lp0(ρ0µ) ∩ Lp1(ρ1µ). Observe that Lp0(ρ0µ) ∩ Lp1(ρ1µ) is dense in Lpj

(ρjµ), for
j = 0, 1, so U0 and U1 determine each other uniquely.

2.48 Lemma. (cf. [Voi86; Prop. 3.1]) Let V be weakly U0- and U1-admissible.
(a) Then (U0)V and (U1)V are consistent.
(b) The potential V is U0-regular if and only if it is U1-regular.

Proof. (a) For bounded V one obtains by induction that the constituents of the Dyson-
Phillips series for (U0)V and (U1)V are consistent, which implies the assertion in this case.
The general case follows since strong limits of consistent propagators are again consistent.

(b) It follows from part (a) that
(
(U0)V

)
−V and

(
(U1)V

)
−V are consistent. This yields

the assertion.
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For θ ∈ (0, 1) define pθ ∈ [1,∞) by 1
pθ

= 1−θ
p0

+ θ
p1

, and let ρθ := ρ
(1−θ)pθ/p0
0 ρ

θpθ/p1
1 . We

conclude the chapter with a result on interpolation of weak admissibility in the spaces
Lpθ

(ρθµ). In the application in Section 3.2 we will only use the case p0 = p1; note that
then ρθ = ρ1−θ

0 ρθ1.

2.49 Proposition. For j = 0, 1 let Vj be weakly Uj-admissible. Assume that V +
0 ∧ V −

1

and V −
0 ∧V +

1 are U0-regular. Then U0 extrapolates to a strongly continuous propagator Uθ
on Lpθ

(ρθµ), for each θ ∈ (0, 1), the potential Vθ := (1−θ)V0 +θV1 is weakly Uθ-admissible,
and

||(Uθ)Vθ
(t, s)|| 6 ||(U0)V0(t, s)||1−θ||(U1)V1(t, s)||θ

(
(t, s) ∈ DJ

)
. (2.26)

Proof. First assume that V0 and V1 are bounded from below. Then [0, 1] 3 θ 7→ (U0)Vθ

is logarithmically convex by Theorem 2.38. Moreover, [0, 1] 3 θ 7→ ρ
1/pθ

θ ∈ M(µ)+ is
logarithmically convex. Given θ ∈ (0, 1), we thus we obtain by Corollary 2.37 that

||ρ1/pθ

θ (U0)Vθ
(t, s)ρ

−1/pθ

θ ||pθ→pθ
6 ||ρ1/p0

0 (U0)V0(t, s)ρ
−1/p0
0 ||1−θp0→p0

||ρ1/p1
1 (U0)V1(t, s)ρ

−1/p1
1 ||θp1→p1

= ||(U0)V0(t, s)||1−θ||(U1)V1(t, s)||θ

for all (t, s) ∈ DJ , where we have used that (U0)V1 and (U1)V1 are consistent by Lem-
ma 2.48(a). By considering Vθ = V0 = V1 = 0, we obtain in particular that U0 extrapolates
to a propagator Uθ on Lpθ

(ρθµ); the strong continuity of Uθ is easily proved by means of
the inequality ||g||Lpθ

(ρθµ) 6 ||g||1−θLp0 (ρ0µ)||g||θLp1 (ρ1µ) that follows from Hölder’s inequality and

is valid for all g ∈ Lp0(ρ0µ) ∩ Lp1(ρ1µ). This completes the proof in the case that V0 and
V1 are bounded from below since (U0)Vθ

and (Uθ)Vθ
are consistent by Lemma 2.48(a).

In the case of general V0, V1 we proceed as in the proof of Theorem 2.38: Let θ ∈ (0, 1)
and Vθ,± := (1 − θ)V ±

0 + θV ±
1 . Using that the right-hand side of (2.26) defines a locally

bounded function on DJ , we infer from the first part of the proof that −Vθ,− is weakly
(Uθ)Vθ,+

-admissible and that∣∣∣∣((Uθ)Vθ,+

)
−Vθ,−

(t, s)
∣∣∣∣ 6 ||(U0)V0(t, s)||1−θ||(U1)V1(t, s)||θ

for all (t, s) ∈ DJ . As in the proof of Theorem 2.38 we obtain that Vθ,+ ∧ Vθ,− is U0-reg-
ular, and hence Uθ-regular by Lemma 2.48(b). Since Vθ = Vθ,+ − Vθ,−, we conclude from
Remark 2.18(a) that Vθ is weakly U -admissible and (Uθ)Vθ

=
(
(Uθ)Vθ,+

)
−Vθ,−

.



Chapter 3

Bounds for the integral kernels of
propagators

In this chapter we apply the results of the previous two chapters and prove stability
of kernel estimates for strongly continuous propagators under perturbation by weakly
admissible potentials.

Section 3.1, which deals with rather general kernel estimates for ultracontractive prop-
agators, is adapted from [LVV06; Sec. 3]. The main difference is that the assumptions
on the perturbation V are formulated in terms of weak admissibility and regularity, not
in terms of Miyadera conditions. Moreover, we avoid the technical assumption of strong
continuity of the backward propagator from Remark 2.31(a).

In Section 3.2 we investigate Gaussian type estimates with boundary terms, still in the
setting of ultracontractive propagators. The main issue here is stability of the boundary
terms under perturbations. In Section 3.3 we drop the ultracontractivity assumption and
prove stability of a type of kernel estimate that includes heat kernel estimates on complete
Riemannian manifolds with Ricci curvature bounded below.

3.1 Stability of kernel bounds for ultracontractive propagators

Throughout this section we assume that (Ω, µ) is a σ-finite measure space and that

(A1) U is a positive strongly continuous propagator on L1(µ) with parameter interval
J ⊆ R, and there is a constant L > 1 such that

||U(t, s)||1→1 6 L
(
(t, s) ∈ DJ

)
.

3.1 Remark. If U is only exponentially bounded then U can be rescaled to a propaga-
tor (t, s) 7→ e−ω(t−s)U(t, s) satisfying the bound in (A1). Observe that a potential V is
(weakly) U -admissible if and only if V is (weakly) admissible with respect to the rescaled
propagator. Moreover, a small Miyadera perturbation of U is also a small Miyadera per-
turbation of the rescaled propagator. (Make α in the definition smaller if necessary.)
Thus, all the qualitative assertions of the subsequent results remain true in the more
general case of exponentially bounded U .

We will also use the ultracontractivity assumption that

58
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(A2) there exist constants K, ν > 0 and A ∈ R such that

||U(t, s)||1→∞ 6 K(t− s)−νeA(t−s) (
(t, s) ∈ D ′

J

)
,

where D ′
J :=

{
(t, s) ∈ J × J ; t > s

}
.

3.2 Remarks. (a) In assumption (A2), only the case A 6 0 is of actual interest. In fact,
if (A1) holds and ||U(t, s)||1→∞ 6 K(t − s)−ν for all (t, s) ∈ D ′

J with t − s 6 1, then for
(t, s) ∈ D ′

J with t− s > 1 we have

||U(t, s)||1→∞ 6 ||U(t, t− 1)||1→∞||U(t− 1, s)||1→1 6 KL.

With C := KL and f(t) := t−ν ∨ 1 we thus obtain that

(A2’) ||U(t, s)||1→∞ 6 Cf(t− s) for all (t, s) ∈ D ′
J

(which is slightly weaker than (A2) with A = 0, but much stronger than (A2) with A > 0).

More generally, let us briefly discuss the assumption (A2’) with

f(t) := t−ν0 (0 < t 6 1), f(t) := t−ν1 (t > 1), (3.1)

where ν0, ν1 > 0. (Above we had ν0 = ν, ν1 = 0.) For heat propagators on manifolds,
the different t-exponents for t 6 1 and t > 1 are important; e.g., for a compact complete
Riemannian manifold one has to take ν1 = 0. Our subsequent results can be adapted to
this more general setting, but we confine ourselves to assumption (A2) for the sake of
simplicity.

(b) By the Dunford-Pettis theorem, assumption (A2) implies that U(t, s) is an integral
operator, for each (t, s) ∈ D ′

J , with a positive kernel pt,s bounded by K(t − s)−νeA(t−s).
Here, pt,s being a kernel of U(t, s) means that

U(t, s)f(x) =

∫
Ω

pt,s(x, y)f(y) dµ(y)

for all f ∈ L1(µ) and a.e. x ∈ Ω.

We start with the following result that requires only assumptions (A1) and (A2).

3.3 Proposition. Assume (A1) and (A2). Let p ∈ (1,∞), and let V be a potential such
that pV is weakly U-admissible. Assume that UpV is exponentially bounded. Then V is
weakly U-admissible, and there exist c > 0 and ω ∈ R such that

||UV (t, s)||1→p 6 c(t− s)−ν/p
′
eω(t−s) (

(t, s) ∈ D ′
J

)
. (3.2)

If V − is a small Miyadera perturbation of U with constants (α, γ), γ < 1, then for all
1 6 p < 1

γ there exists c > 0 such that (3.2) holds with ω = 1
pα

ln
(
1 + pγL

1−pγ

)
+ (1− 1

p
)A.



60 CHAPTER 3. KERNEL BOUNDS FOR PROPAGATORS

Proof. By Theorem 2.38 and Corollary 2.37 we obtain that V is weakly U -admissible and
that

||UV (t, s)||1→p 6 ||U(t, s)||1−1/p
1→∞ ||UpV (t, s)||1/p1→1 (3.3)

for all (t, s) ∈ D ′
J . The estimate (3.2) thus follows from (A2) and the exponential bound-

edness of UpV .
Let now V − be a small Miyadera perturbation of U with constants (α, γ), γ < 1, and

let 1 6 p < 1
γ . Then (pV )− is a small Miyadera perturbation of U with constants (α, pγ),

so Proposition 1.14 yields

||UpV (t, s)||1→1 6 L
1−pγ e

ωp(t−s) (
(t, s) ∈ DJ

)
,

where ωp = 1
α

ln(1 + pγ
1−pγL). By (3.3) this implies the second assertion.

In order to obtain L1–L∞-estimates, we will need in addition that the propagator U
is L∞-bounded,

(A3) ||U(t, s)||∞→∞ 6 L for all (t, s) ∈ DJ .

3.4 Remarks. (a) Let assumptions (A1) and (A3) be satisfied. Then ||U(t, s)||p→p 6 L for
all 1 6 p 6 ∞ and all (t, s) ∈ DJ by Riesz-Thorin interpolation. Thus, U extrapolates to
a consistent family of bounded strongly continuous propagators Up on Lp(µ), 1 6 p <∞
(for f ∈ L1(µ) ∩ L∞(µ), the continuity of (t, s) 7→ Up(t, s)f can be obtained from the

inequality ||g||p 6 ||g||1/p1 ||g||1−1/p
∞ , valid for all g ∈ L1(µ) ∩ L∞(µ)).

(b) In addition, let V be a potential such that V − is a small Miyadera perturbation
of U, with bound γ < 1. For 1 6 p < 1

γ and (t, s) ∈ DJ we obtain by Theorem 2.38 and
Corollary 2.37 that

||UV (t, s)||p→p 6 ||UpV (t, s)||1/p1→1||U(t, s)||1/p′∞→∞.

Thus, UV extrapolates to a consistent family of exponentially bounded strongly continuous
propagators Up,V on Lp(µ), 1 6 p < 1

γ . It follows from Lemma 2.48(a) that V is Up-
admissible and Up,V = (Up)V , for 1 6 p < 1

γ . If additionally (A2) holds, then by Riesz-
Thorin interpolation the above inequality together with (3.2) implies the estimates

||Up,V (t, s)||p→q 6 C(t− s)−ν(
1
p
− 1

q
)eω(t−s) (

(t, s) ∈ D ′
J , 1 6 p 6 q < 1

γ

)
, (3.4)

where C > 0 and ω ∈ R are constants depending on q.
In particular, if V − is infinitesimally Miyadera small then the above holds with 1

γ

replaced by ∞. This observation generalises [Gul02; Thm. 2]. In [Gul05; Thm. 3(b)], an
example is presented showing that (3.4) need not hold for p = q = ∞, for infinitesimally
Miyadera small V .

The following extrapolation lemma is a propagator version of [Cou90; Lemme 1], which
deals with semigroups. The analogous proof is included for the reader’s convenience.
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3.5 Lemma. Let W be a propagator on L1(µ) with parameter interval J . Let p ∈ (1,∞)
and ν > 0, and assume that there exist c,M > 0 and ω, ω∞ ∈ R such that

||W (t, s)||1→p 6 c(t− s)−ν/p
′
eω(t−s), ||W (t, s)||∞→∞ 6 Meω∞(t−s) (

(t, s) ∈ D ′
J

)
.

Then there exists c1 > 0 such that

||W (t, s)||1→∞ 6 c1(t− s)−νeω1(t−s) (
(t, s) ∈ D ′

J

)
, (3.5)

where ω1 = max{ω, ω∞}.
Proof. By rescaling W we can assume without loss of generality that ω, ω∞ 6 0. Let
t ∈ J , T > 0 and f ∈ L1(µ) ∩ L∞(µ) with ||f ||1 6 1. Then

ϕ(s) := ||W (t, s)′f ||∞ 6 ||W (t, s)′||p′→∞||f ||p′ 6 c(t− s)−ν/p
′||f ||p′

for all s ∈ J<t, by the assumption on ||W (t, s)||1→p, so there exists c0 > 0 (depending on
the quantities fixed above) such that

ϕ(s) 6 c0(t− s)−ν
(
s ∈ [t− T, t) ∩ J

)
.

We choose the minimal c0 making this estimate valid. Let r ∈ [t − T, t) ∩ J , and let
s := r+t

2
. For g := W (t, s)′f we can estimate

||g||p′ 6 ||g||1/p
′

1 ||g||1/p∞ 6 ||W (t, s)′||1/p
′

1→1ϕ(s)1/p 6 M1/p′
(
c0(t− s)−ν

)1/p
.

Moreover, ||W (s, r)′||p′→∞ 6 c(s− r)−ν/p
′
. Since t− s = s− r = 1

2
(t− r), we infer that

ϕ(r) = ||W (s, r)′W (t, s)′f ||∞ 6 ||W (s, r)′||p′→∞||g||p′ 6 cM1/p′c
1/p
0 2ν(t− r)−ν .

From the choice of c0 it follows that c0 6 cM1/p′c
1/p
0 2ν and hence c0 6 cp

′
M2νp

′
. We thus

have shown
||W (t, s)′f ||∞ 6 cp

′
M2νp

′
(t− s)−ν

for all (t, s) ∈D ′
J and all f ∈ L1(µ)∩L∞(µ) with ||f ||1 6 1, which implies the assertion.

3.6 Remark. In the situation of Lemma 3.5 assume that ω 6= ω∞. Then by a suitable
modification of the above proof one can show that for any ω1 > min{ω, ω∞} there exists
c1 > 0 such that (3.5) holds. The following simple argument yields a better estimate for
large t− s.

By Lemma 3.5 and the Riesz-Thorin interpolation theorem we obtain C > 0 such that
||W (t, t− 1)||p→∞ 6 C for all t ∈ J with t− 1 ∈ J . It follows that there exists C̃C > 0 such
that for (t, s) ∈ DJ with t− s > 2 we have

||W (t, s)||1→∞ 6 ||W (t, t− 1)||p→∞||W (t− 1, s)||1→p

6 Cc(t− 1− s)−ν/p
′
eω(t−s−1) 6 C̃C(t− s)−ν/p

′
eω(t−s).

If ω∞ < ω then the estimate

||W (t, s)||1→∞ 6 ||W (t, s+ 1)||∞→∞||W (s+ 1, s)||1→∞ 6 C1Me−ω∞eω∞(t−s)

is better for large t − s, where C1 := sup
{
||W (s + 1, s)||1→∞; s ∈ J, s + 1 ∈ J

}
. In

the same way, if ω1 ∈ R is such that ||W (t, s)||1→1 6 Meω1(t−s) for all (t, s) ∈ DJ , then
||W (t, s)||1→∞ 6 C1Me−ω1eω1(t−s) for t− s > 1.
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As an immediate consequence of Proposition 3.3 and Lemma 3.5 we obtain the follow-
ing result which strengthens [LVV06; Prop. 3.6]. Besides the weaker qualitative assump-
tions, the difference is that the condition on the L∞-bound is posed on the propagator
UV itself, not on UpV for some p > 1 as the condition on the L1-bound. This is parallel
to [ArDe06; Thm. 3.3], where also a variant of [Cou90; Lemme 1] is used.

3.7 Proposition. Assume (A1) to (A3). Let p ∈ (1,∞), and let V be a potential such
that pV is weakly U-admissible. Assume that UpV is exponentially bounded and that UV
is exponentially L∞-bounded. Then there exist c > 0 and ω ∈ R such that

||UV (t, s)||1→∞ 6 c(t− s)−νeω(t−s) (
(t, s) ∈ D ′

J

)
. (3.6)

3.8 Remark. Assume that V − is a small Miyadera perturbation and a small backward
Miyadera perturbation of U , both with constants (α, γ), γ < 1. Then one can use Propo-
sition 3.3 and an analogous estimate for ||UV (t, s)||p′→∞ to show as in [LVV06; Prop. 3.6]
that for θ ∈ (γ, 1) there exists c > 0 such that (3.6) holds with ω = θ

α
ln

(
1+ γL

θ−γ

)
+(1−θ)A.

More strongly than in (A2) we now assume that the integral kernels pt,s of the operators
U(t, s) satisfy the Gaussian type upper bound

pt,s(x, y) 6 K(t− s)−νeA(t−s)−ψt,s(x,y)
(
(t, s) ∈ D ′

J , x, y ∈ Ω
)
, (3.7)

with constants K, ν > 0, A ∈ R and measurable functions ψt,s : Ω× Ω → [0,∞).

3.9 Remark. If Ω = Rn, ν = n
2
, A = 0 and ψt,s(x, y) = ad(x,y)

2

t−s for some a > 0, then (3.7)
becomes the classical Gaussian bound. By the results of [Aro68], this bound holds for the
fundamental solution of (0.1).

Let now Ω be a complete n-dimensional Riemannian manifold with Ricci curvature
bounded below, µ the Riemannian volume and d the Riemannian distance. Assume that
infx∈Ω µ(B(x, 1)) > 0. Then it follows from [Dav93; Thm. 3 and bottom of p. 3] that a
modified form of the above Gaussian bound also holds for the heat kernel on Ω: The
term (t − s)−n/2 has to be replaced by (t − s)−n/2 ∨ 1 (cf. Remark 3.2(a)), and one can
choose A = −λ0 and any 0 < a < 1

4
, where λ0 > 0 is the bottom of the spectrum of the

Laplace-Beltrami operator in L2(Ω, µ). In particular, for a negatively curved manifold
one can have A < 0. However, without a uniform lower bound on the volume of unit
balls, not even the ultracontractivity bound (A2) is valid. We will show in Section 3.3
how our method can be adapted to cover this more general case, too.

After the above preparations we easily obtain the following result on stability of upper
kernel bounds.

3.10 Theorem. Let U satisfy (A1), (A3) and the Gaussian type upper bound (3.7). Let
p ∈ (1,∞), and let V be a potential such that pV is weakly U-admissible. Assume that
UpV is exponentially bounded and exponentially L∞-bounded. Then the operators UV (t, s)
are integral operators, and for 1

p < β < 1 there exist c > 0 and ω ∈ R such that the kernels
pVt,s satisfy

pVt,s 6 c(t− s)−νeω(t−s)−(1−β)ψt,s
(
(t, s) ∈ D ′

J

)
.
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Proof. We have 1
β
< p, so by Proposition 3.7 there exist c1 > 0 and ω1 ∈ R such that

||UV/β(t, s)||1→∞ 6 c1(t− s)−νeω1(t−s) (
(t, s) ∈ D ′

J

)
.

From Corollary 2.39 we obtain that pVt,s 6
(
p
V/β
t,s

)β
(pt,s)

1−β. Thus, by (3.7) the assertion
follows with ω = βω1 + (1− β)A.

In the following, a Miyadera perturbation V of U will also be called a forward Miyadera
perturbation.

3.11 Remarks. (a) Assume that V − is a small forward and backward Miyadera perturba-
tion of U, both with constants (α, γ), γ < 1. Then the assumptions on V in Theorem 3.10
are satisfied for all p ∈ (1, 1

γ ), by Theorem 2.24, Proposition 1.14 and Theorem 2.30. In
this situation one can use Remark 3.8 to show that for γ < θ < β < 1 there exists c > 0
such that the kernel estimate of Theorem 3.10 holds with ω = θ

α
ln

(
1 + γL

θ−γ

)
+ (1− θ)A;

cf. [LVV06; Thm. 3.10].
Assume that Ω = Rn, that U is stochastic and Markovian and that U satisfies a classical

Gaussian upper bound as in Remark 3.9. This is the case, e.g., if U corresponds to the
Cauchy problem for (0.1). Then for V 6 0 the conditions on V in the previous paragraph
are close to necessary for the assertion of Theorem 3.10. Indeed, if UV satisfies a Gaussian
upper bound, then UV is exponentially bounded and exponentially L∞-bounded, so from
Corollary 2.26(a) and Remark 2.44(c) it follows that V is a (not necessarily small) forward
and backward Miyadera perturbation of U .

(b) If V − is an infinitesimally small forward and backward Miyadera perturbation of
U then one can choose any β > 0 in Theorem 3.10, and we obtain sharp upper bounds for
t− s 6 1. In applications to second-order parabolic equations this observation shows the
difference between the non-autonomous Kato class NK and the enlarged non-autonomous
Kato class N̂K.

(c) Assume that (3.7) holds with A = 0; we call this a global upper bound. For
questions of long time behaviour it is important to know under what conditions the
global upper bound is stable under perturbation by a potential V . By part (a) this is the
case if V − is a forward and backward Miyadera perturbation of U with constants (∞, γ),
γ < 1.

With the same methods as above we obtain the following result about stability of the
lower bound of the integral kernels, in which regularity of the perturbation V plays a
crucial role.

3.12 Theorem. Let U satisfy (A1) to (A3) and the Gaussian type lower bound

pt,s(x, y) > K1(t− s)−νe−A1(t−s)−ψt,s(x,y)
(
(t, s) ∈ D ′

J , x, y ∈ Ω
)
, (3.8)

with some K1 > 0, A1 ∈ R and measurable functions ψt,s : Ω × Ω → [0,∞). Let V be
a U-regular potential. Let ε > 0, and assume that −εV is weakly U-admissible and that
U−εV is exponentially bounded and exponentially L∞-bounded. Then for β > 1

ε there are
constants c > 0 and ω ∈ R such that the kernels pVt,s of the operators UV (t, s) satisfy

pVt,s > c(t− s)−νe−ω(t−s)−(1+β)ψt,s
(
(t, s) ∈ D ′

J

)
.



64 CHAPTER 3. KERNEL BOUNDS FOR PROPAGATORS

Proof. We have 1
β
< ε, so by Proposition 3.7 there exist c1 > 0 and ω1 ∈ R such that

||U−V/β(t, s)||1→∞ 6 c1(t− s)−νeω1(t−s) (
(t, s) ∈ D ′

J

)
. (3.9)

Recall from Lemma 2.20 that V + and V − are U -regular. Therefore, V +
0 ∧V − and V −

0 ∧V +

are U-regular by Corollary 2.16, and Corollary 2.39 yields

pt,s 6
(
p
−V/β
t,s

) β
1+β

(
pVt,s

) 1
1+β , so pVt,s >

(
p
−V/β
t,s

)−β
(pt,s)

1+β

for all (t, s) ∈ D ′
J . The asserted lower bound thus follows from (3.8) and (3.9), with

ω = βω1 + (1 + β)A1.

Observations similar to those in Remark 3.11 also apply to the lower bounds.

3.13 Remarks. (a) If V is weakly U -admissible and V + is a forward and backward
Miyadera perturbation of U , both with constants (α, γ), γ > 0, then the assumptions on
V in Theorem 3.12 are satisfied for all ε ∈ (0, 1

γ ), and one can use Remark 3.8 to show
that for β > θ > γ there exists c > 0 such that the kernel estimate of Theorem 3.12 holds
with ω = θ

α
ln

(
1 + γL

θ−γ

)
+ (β − θ)A+ (1 + β)A1; cf. [LVV06; Thm. 3.12].

Assume that Ω = Rn and that U satisfies a classical Gaussian lower bound (cf. Re-
mark 3.9). Then for V > 0 the above conditions on V are necessary for the validity of
a Gaussian lower bound for UV . Indeed, one easily sees that there exists c ∈ (0, 1] such
that ||UV (t, s)f ||1 > c||f ||1 and ŨUV (t, s)1 > c1 for all (t, s) ∈ DJ with t − s 6 1 and all

0 6 f ∈ L1(µ), where ŨUV is defined as in Remark 2.44(c). From Proposition 2.25(a) and
Remark 2.44(d) it thus follows that V is a forward and backward Miyadera perturbation
of U . We point out that this argument does not require U to be stochastic or Markovian.

(b) If V is weakly U -admissible and V + is an infinitesimally small forward and back-
ward Miyadera perturbation of U , then one can choose any β > 0 in Theorem 3.12, and
we obtain sharp lower bounds for t− s 6 1.

(c) Assume that A = 0 in the ultracontractivity bound (A2) and A1 = 0 in (3.8). Then
by part (a), the global lower bound is stable under perturbation by the potential V if V +

is a forward and backward Miyadera perturbation of U with constants (∞, γ), with any
γ > 0.

3.2 Stability of the boundary behaviour

Let Ω be a bounded connected open subset of Rn with C1,α-boundary, let T > 0, and let U
be the propagator with parameter interval [0, T ) associated with the uniformly parabolic
equation (0.4) with Dini continuous coefficients. Recall from the introduction that by
[Cho06] there exist c, a > 0 such that the kernels pt,s of U(t, s) satisfy the Gaussian type
upper bound

pt,s(x, y) 6 c(t− s)−n/2
(
d(x)d(y)

t− s
∧ 1

)
· exp

(
−a |x− y|2

t− s

)
(3.10)

for all (t, s) ∈DJ and a.e. x, y ∈ Ω, where d(x) denotes the distance from x to the boundary
of Ω, and also an analogous lower bound.
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The propagator U is ultracontractive, so one can apply Theorem 3.10 in this situation;
however, this does not yield stability of the kernel estimate: It leads to the boundary term
d(x)d(y)
t−s ∧ 1 being raised to the power 1− β. In fact, one can show that without stronger

assumptions on the perturbation V , this change of the boundary behaviour of the kernel is
possible. It will turn out that for stability of (3.10) one has to assume weak admissibility
of V in a suitable weighted space. We will now study this type of kernel estimate in a
more general framework.

For the remainder of the section let (Ω, µ) be a σ-finite measure space and d : Ω×Ω →
[0,∞) a measurable semi-metric on Ω (see also Remark 3.14(a) below). We assume that
the volume growth condition

µ(B(x, r)) 6 Crneκr (x ∈ Ω, r > 0) (3.11)

is satisfied for some C, n > 0 and κ > 0, where B(x, r) denotes the open ball with centre
x and radius r with respect to d. Moreover, let U be a positive strongly measurable
propagator on L1(µ) with parameter interval J ⊆ R. We assume that for each (t, s) ∈ D ′

J

the operator U(t, s) is an integral operator whose kernel pt,s satisfies the Gaussian type
estimate

pt,s(x, y) 6 c0(t− s)−n/2
m∏
j=1

(
dj(x)dj(y)

t− s
∧ 1

)αj

· exp
(
−ad(x, y)

2

t− s

)
(3.12)

for a.e. x, y ∈ Ω, where n is the constant from (3.11), m ∈ N, c0, a, αj > 0 for j = 1, . . . ,m,
and dj : Ω→ (0,∞) is a d-Lipschitz continuous function with Lipschitz constant 1 for each
j = 1, . . . ,m.

3.14 Remarks. (a) The measurability of the semi-metric d is meant with respect to the
product σ-algebra on Ω × Ω, so it implies that d(x, ·) is measurable on Ω for all x ∈ Ω.
Therefore, the open balls B(x, r) in (3.11) are measurable sets. The setting we chose here
is more flexible than that of metric measure spaces, i.e., metric spaces with a measure on
the Borel σ-algebra. It allows, e.g., to take a bounded open set Ω ⊆ Rn with Lebesgue
measure and the discrete metric. In this (admittedly pathological) example, the Borel
σ-algebra is the power set of Ω, so one does not obtain a metric measure space.

(b) For the validity of (3.11) it is necessary that µ is σ-finite.
(c) Condition (3.11) is chosen in such a way that it comprises both the volume growth

of Rn and exponential volume growth. For the case of exponential volume growth it
would be more natural to assume µ(B(x, r)) 6 Ceκr for r > 1, but we want to keep the
notational effort to a minimum.

(d) We have assumed for simplicity that the dj are everywhere strictly positive. The
case that dj > 0 a.e. can easily be accommodated by replacing Ω with

⋂m
j=1[dj > 0].

(e) We observe that the upper bound in (3.12) is not changed essentially if the terms
dj(x)dj(y)

t−s ∧ 1 are replaced with
( dj(x)√

t−s ∧ 1
)( dj(y)√

t−s ∧ 1
)
. Indeed, for a, b > 0 one easily shows

the estimate

(a ∧ 1)(b ∧ 1) 6 (ab) ∧ 1 6 (1 + |a− b|)(a ∧ 1)(b ∧ 1)

(in the case a < 1 < b use that ab ∧ 1 6 a(b− a+ 1)), and for a =
dj(x)√
t−s and b =

dj(y)√
t−s one

obtains that |a− b| 6 d(x,y)√
t−s 6 cε exp

(
εd(x,y)

2

t−s

)
.
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3.15 Example. Let n > 2, let Ω be an open subset of Rn, and let T be the C0-semigroup
on L1(Ω) associated with the heat equation ∂tu = ∆u on [0,∞) × Ω with homogeneous
Dirichlet boundary condition at ∂Ω.

(a) Let Ω := (0,∞)n. Then it is easy to see that, for t > 0, the kernel kt of T (t) is
given by

kt(x, y) = (4πt)−n/2
n∏
j=1

(
1− e−xjyj/t

)
· exp

(
−|x− y|2

4t

)
(x, y ∈ Ω)

(cf. [Dav89; Examples 4.1.1 and 4.1.2]). Since 1
2
(r ∧ 1) 6 1− e−r 6 r ∧ 1 for all r > 0, the

kernels kt satisfy (an autonomous version of) the kernel bound (3.12) and an analogous
lower bound, with m = n, αj = 1 and dj(x) = xj for j = 1, . . . , n and x ∈ Ω.

(b) Let Ω be a conical domain, i.e., Ω =
{
rξ; r > 0, ξ ∈ Σ

}
, where Σ is a proper open

subset of the unit sphere Sn−1. We assume that Σ has C2-boundary; then the ground state
ϕ0 > 0 of the spherical Dirichlet Laplacian on Σ satisfies c−1dΣ 6 ϕ0 6 cdΣ for some c > 1,
where dΣ(ξ) denotes the distance of ξ ∈ Σ from ∂Σ; see, e.g., [Var99; formula (0.2.1)]. If
λ0 > 0 denotes the ground state energy and α is the positive solution of α(α+n−2) = λ0,
then h(x) := |x|αϕ0(

x
|x|) defines a positive harmonic function on Ω that vanished at ∂Ω,

the so-called réduite of Ω; cf. [Var99; p. 335]. By the above, there exists C > 1 such that

C−1|x|α−1d(x) 6 h(x) 6 C|x|α−1d(x) (x ∈ Ω),

where d(x) denotes the distance from x to ∂Ω.
We further suppose that α > 1 (which is satisfied, e.g., if Ω is convex) and that en ∈ Ω

and −en /∈ Ω, where en denotes the n-th unit vector. The latter implies that ∂Ω is the
graph of a Lipschitz function Φ: Rn−1 → R. Under these assumptions it is straightforward
to show the estimate

C−1
1

(
|x|√
t
∧ 1

)α−1(
d(x)√
t
∧ 1

)
6

h(x)

h(x+
√
ten)

6 C1

(
|x|√
t
∧ 1

)α−1(
d(x)√
t
∧ 1

)
for all x ∈ Ω and all t > 0, with a constant C1 > 1. From [GySa09; Cor. 6.14 and Sec. 6.5.2]
we now conclude, taking into account Remark 3.14(e), that the kernel kt of T (t) satisfies
(an autonomous version of) the kernel bound (3.12) and an analogous lower bound, for
all t > 0. Here one takes m = 2, α1 = α − 1, d1(x) = |x|, α2 = 1 and d2(x) = d(x), and
d(x, y) is the intrinsic geodesic distance of x, y ∈ Ω (d(x, y) = |x− y| if Ω is convex).

We are going to study under what conditions the kernel estimate (3.12) is stable under
perturbation by a potential V : J×Ω→ R; for a precise statement see Theorem 3.20 below.
As a preparation we show that U extrapolates to a scale of weighted L1-spaces. In the
following, a measurable function ρ : Ω → (0,∞) will be called a weight.

3.16 Proposition. Let a and the αj be as in (3.12), and let ρ be a weight satisfying

ρ(x)

ρ(y)
6 c

m∏
j=1

(
dj(x)

dj(y)
∨ dj(y)

dj(x)

)αj

(x, y ∈ Ω) (3.13)
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for some c > 1. Then for all a1 < a there exists M > 1 such that

||ρU(t, s)ρ−1||p→p 6 Meω(t−s) (
(t, s) ∈ DJ , 1 6 p 6 ∞

)
holds with ω = κ2

4a1
. Moreover, U extrapolates to an exponentially bounded strongly meas-

urable propagator Uρ on L1(ρµ), and Uρ is bounded if κ = 0. If U is strongly continuous
then so is Uρ.

The above proposition implies in particular that U is exponentially bounded, and
bounded if κ = 0. In the proof of the proposition we will use the following lemma in which
the volume growth condition (3.11) is essentially reformulated as an integral condition.

3.17 Lemma. Let y ∈ Ω and n > 0. If

µ(B(y, r)) 6 c1r
neκr (r > 0) (3.14)

for some c1 > 0 and κ > 0, then for all θ ∈ (0, 1) there exists c2 > 0 such that∫
Ω

e−d(x,y)
2/t dµ(x) 6 c2t

n/2eωt (t > 0) (3.15)

holds with ω = κ2

4θ
, in particular, ω = 0 if κ = 0. Conversely, if (3.15) holds for some

c2 > 0 and ω > 0, then (3.14) holds with c1 = ec2 and κ = 2
√
ω.

Proof. Assume that (3.14) holds, without loss of generality with c1 = 1, and let m(r) :=
rneκr for all r > 0. Then for any decreasing function f : [0,∞) → [0,∞) we can estimate∫

Ω

f(d(x, y)) dµ(x) 6
∫ ∞

0

f(r) dm(r).

(This is clear if f = 1[0,r) for some r > 0; for general f it follows by a superposition

argument.) Given t > 0 we thus obtain, substituting r =
√
ts and integrating by parts,

that ∫
Ω

e−d(x,y)
2/t dµ(x) 6

∫ ∞

0

e−r
2/t dm(r) =

∫ ∞

0

e−s dm(
√
ts) =

∫ ∞

0

m(
√
ts)e−s ds.

Let θ ∈ (0, 1). Then κ
√
ts 6 κ2

4θ
t+ θs for all s > 0 and hence m(

√
ts) 6 (ts)n/2eωt+θs, with

ω = κ2

4θ
. We conclude that∫
Ω

e−d(x,y)
2/t dµ(x) 6 tn/2eωt

∫ ∞

0

sn/2e−(1−θ)s ds = Γ(n
2

+ 1)(1− θ)−n/2−1tn/2eωt.

Assume now that (3.15) holds, and let r > 0. Then for all t > 0 we have

µ(B(y, r)) 6
∫

Ω

e(r
2−d(x,y)2)/t dµ(x) 6 er

2/t · c2tn/2eωt.

In the case r < ω−1/2 we choose t = r2. Then ωt = ωr2 6
√
ωr and hence

µ(B(y, r)) 6 ec2r
ne
√
ωr.

In the case ω > 0 and r > ω−1/2 we choose t = rω−1/2. Then t 6 r2, r2/t+ ωt = 2
√
ωr,

and thus

µ(B(y, r)) 6 c2r
ne2

√
ωr.
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3.18 Remarks. (a) Let k : Ω× Ω → [0,∞) be measurable. It is easy to see that

Bf(x) :=

∫
Ω

k(x, y)f(y) dµ(y)
(
f ∈ L1(µ)

)
defines a bounded operator on L1(µ) if and only if

b := ess sup
y∈Ω

∫
Ω

k(x, y) dµ(x) <∞,

and that then ||B|| = b. Moreover,

||B||∞→∞ = ess sup
x∈Ω

∫
Ω

k(x, y) dµ(y)
(
∈ [0,∞]

)
.

For θ ∈ (0, 1) we thus obtain by Lemma 3.17 that there exists c2 > 0 such that the following
holds: If a, t > 0 and k(x, y) 6 t−n/2e−ad(x,y)

2/t for a.e. x, y ∈ Ω, then ||B|| 6 c2a
−n/2eωt

and ||B||∞→∞ 6 c2a
−n/2eωt, with ω = κ2

4θa
.

(b) Let k and B be as above, and let ρ be a weight. If B extrapolates to a bounded
operator Bρ on the weighted space L1(ρµ), then the kernel kρ of Bρ is given by kρ(x, y) =
k(x, y)ρ(y)−1. It follows that

bρ := ||B : L1(ρµ) → L1(ρµ)|| = ess sup
y∈Ω

∫
Ω

ρ(x)

ρ(y)
k(x, y) dµ(x),

and as in (a) we obtain that bρ 6 c2a
−n/2eωt if ρ(x)

ρ(y)
k(x, y) 6 t−n/2e−ad(x,y)

2/t for a.e. x, y ∈ Ω
and some a, t > 0.

Proof of Proposition 3.16. Let (t, s) ∈ D ′
J . First observe that for all x, y ∈ Ω and

j = 1, . . . ,m we have

dj(x)

dj(y)

(
dj(x)dj(y)

t− s
∧ 1

)
=
dj(x)

2

t− s
∧ dj(x)

dj(y)
6 3

(
1 +

d(x, y)2

t− s

)
.

Indeed, in the case dj(x) 6 3dj(y) the inequality is clear, and in the case dj(x) > 3dj(y) the

Lipschitz continuity of dj yields d(x, y) > dj(x)−dj(y) > 2
3
dj(x) and hence

dj(x)
2

t−s 6 9
4
d(x,y)2

t−s .
Interchanging the roles of x and y we obtain that(

dj(x)

dj(y)
∨ dj(y)

dj(x)

)(
dj(x)dj(y)

t− s
∧ 1

)
6 3

(
1 +

d(x, y)2

t− s

)
.

From (3.12) and (3.13) we conclude that for θ ∈ (0, 1) there exists cθ > 0 such that

ρ(x)

ρ(y)
pt,s(x, y) 6 c · c0(t− s)−n/2

m∏
j=1

3αj

(
1 +

d(x, y)2

t− s

)αj

· exp
(
−ad(x, y)

2

t− s

)
6 cθ(t− s)−n/2 exp

(
−θad(x, y)

2

t− s

) (3.16)
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for a.e. x, y ∈ Ω and all (t, s) ∈ D ′
J . The first assertion now follows from Remark 3.18(a)

and the Riesz-Thorin interpolation theorem. In particular, U extrapolates to an expo-
nentially bounded propagator Uρ on L1(ρµ) (cf. Remark 3.18(b)), and Uρ is bounded if
κ = 0.

Given f ∈ L1(ρµ) ∩ L1(µ) we now show that (t, s) 7→ Uρ(t, s)f ∈ L1(ρµ) is separately
measurable; then it follows that Uρ is a strongly measurable propagator. For (t, s) ∈ DJ

we have U(t, s)f ∈ L1(ρµ) and hence ρU(t, s)f ∈ L1(µ), so (ρ ∧ n)U(t, s)f → ρU(t, s)f
in L1(µ) as n→∞. Since U is separately strongly measurable, this implies the separate
measurability of (t, s) 7→ ρU(t, s)f ∈ L1(µ) and hence of (t, s) 7→ U(t, s)f ∈ L1(ρµ).

Now assume that U is strongly continuous. We first show that Uρ is strongly continuous
in (t0, t0), for all t0 ∈ J . Observe that the set

F :=
{
f ∈ L1(µ); spt f is bounded, d±1

j is bounded on spt f (j = 1, . . . ,m)
}

is dense in L1(ρµ). It thus suffices to show that U(t, s)f → U(t0, t0)f = f in L1(ρµ) as
(t, s) → (t0, t0), for all f ∈ F . Given f ∈ F , we obtain from the Lipschitz continuity of
the dj that there exists ε > 0 such that ρ is bounded on B :=

{
x ∈ Ω; dist(x, spt f) 6 ε

}
.

Therefore, the strong continuity of U implies that 1BU(t, s)f → 1Bf = f in L1(ρµ) as
(t, s) → (t0, t0), and it remains to show that 1Ω\BU(t, s)f → 0 in L1(ρµ).

For x ∈ Ω \B and y ∈ spt f we have d(x, y) > ε and hence d(x, y)2 > 1
2
d(x, y)2 + 1

2
ε2,

so by (3.16) we obtain that

ρ(x)

ρ(y)
1Ω\B(x)pt,s(x, y)1spt f (y) 6 exp

(
− aε2

4(t− s)

)
· c1/2(t− s)−n/2 exp

(
−a

4

d(x, y)2

t− s

)
.

By Remark 3.18(b) we infer that there exist M > 0 and ω > 0 such that

||1Ω\BU(t, s)f ||L1(ρµ) 6 exp
(
− aε2

4(t− s)

)
·Meω(t−s)||f ||L1(ρµ) → 0

as t− s→ 0.
Finally, given ε ∈ (0, 1), we show that Uρ is strongly continuous on

Dε
J :=

{
(t, s) ∈ DJ ; ε 6 t− s 6 1

ε

}
.

Let f ∈ L1(ρµ) ∩ L1(µ). Then the continuity of Dε
J 3 (t, s) 7→ U(t, s)f in L1(ρµ) can be

deduced from the continuity in L1(µ) by means of the dominated convergence theorem if
there exists g ∈ L1(ρµ) such that |U(t, s)f | 6 g for all (t, s) ∈ Dε

J . By (3.16) we obtain
that

ρ(x)

ρ(y)
pt,s(x, y) 6 c1/2ε

−n/2 exp
(
− εa

2
d(x, y)2

)
=: k(x, y)

for all (t, s) ∈ Dε
J and a.e. x, y ∈ Ω, so

|U(t, s)f(x)| 6 ρ(x)−1 ·
∫

Ω

k(x, y)|ρf |(y) dµ(y) =: g(x)

for all (t, s) ∈ Dε
J and a.e. x ∈ Ω. This completes the proof of the strong continuity of Uρ

since g ∈ L1(ρµ) by Remark 3.18(a).
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From now on we assume that U is strongly continuous. Moreover, let ρ0 :=
∏m

j=1 d
αj

j

in the following. Then ρ0 is a weight that satisfies the assumption of Proposition 3.16.

3.19 Corollary. Let V be weakly Uρ0-admissible, and let ρ be a weight satisfying

ρ(x)

ρ(y)
6 c

m∏
j=1

(
dj(x)

dj(y)
∨ 1

)αj

(x, y ∈ Ω)

for some c > 1. Then 1
2
V is weakly Uρ-admissible. Moreover, if (Uρ0)V is exponentially

bounded then so is (Uρ) 1
2
V .

Proof. Observe that the weight ρ1 := ρ2ρ−1
0 satisfies the assumption of Proposition 3.16.

Indeed,

ρ1(x)

ρ1(y)
6 c2

m∏
j=1

(
dj(x)

2

dj(y)2
∨ 1

)αj

· ρ0(y)

ρ0(x)
= c2

m∏
j=1

(
dj(x)

dj(y)
∨ dj(y)

dj(x)

)αj

for all x, y ∈ Ω. The assertions thus follow from Proposition 2.49, applied with Uj = Uρj

for j = 0, 1, V0 = V , V1 = 0 and θ = 1
2
.

After these preparations we are ready to prove our main result on stability of the
boundary behaviour of kernel estimates.

3.20 Theorem. Let V be a potential such that qV is weakly Uρ0-admissible, for some
q > 2. Assume that (Uρ0)qV is exponentially bounded and that

||ρ−1
0 (Uρ0)qV (t, s)ρ0||∞→∞ 6 Meω(t−s) (

(t, s) ∈ DJ

)
(3.17)

for some M > 1 and ω ∈ R. Then for 0 < a2 < (1 − 2
q )a there exist c2 > 0 and ω2 ∈ R

such that the kernels pVt,s of the operators UV (t, s) satisfy

pVt,s(x, y) 6 c2(t− s)−n/2
m∏
j=1

(
dj(x)dj(y)

t− s
∧ 1

)αj

· exp
(
ω2(t− s)− a2

d(x, y)2

t− s

)
for all (t, s) ∈ D ′

J and a.e. x, y ∈ Ω.

Proof. Let F ⊆ {1, . . . ,m} and ρF :=
∏

j∈F d
αj

j . Then ρF satisfies the assumption of
Corollary 3.19, so q

2
V is weakly UρF

-admissible and (UρF
) q

2
V is exponentially bounded.

The operator of multiplication with ρF is an isometry ρF : L1(ρ
2
Fµ) → L1(ρFµ), so

UF (t, s) := ρ−1
F UρF

(t, s)ρF
(
(t, s) ∈ DJ

)
defines a strongly continuous propagator UF on L1(ρ

2
Fµ). The kernel pFt,s of UF (t, s) is

given by pFt,s(x, y) = ρF (x)−1pt,s(x, y)ρF (y)ρF (y)−2, for all (t, s) ∈DJ (cf. Remark 3.18(b)),
so it satisfies

pFt,s(x, y) =
∏
j∈F

(
dj(x)dj(y)

)−αjpt,s(x, y) 6 c0(t− s)−n/2−
P

j∈F αj exp
(
−ad(x,y)

2

t−s

)
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for a.e. x, y ∈ Ω. In particular we obtain that UF is ultracontractive,∣∣∣∣UF (t, s) : L1(ρ
2
Fµ) → L∞(ρ2

Fµ)
∣∣∣∣ 6 c0(t− s)−n/2−

P
j∈F αj

(
(t, s) ∈ D ′

J

)
.

Let p := q
2
, and let (t, s) ∈ DJ . By Lemma 2.47, the weak UρF

-admissibility of pV
implies that pV is weakly UF -admissible, and with (UρF

)pV also (UF )pV is exponentially
bounded. Moreover,

(UF )pV (t, s)f = ρ−1
F (UρF

)pV (t, s)ρFf = ρ−1
F (Uρ0)pV (t, s)ρFf (3.18)

for all f ∈ L1(ρ
2
Fµ) with ρFf ∈ L1(ρ0µ) since (UρF

)pV and (Uρ0)pV are consistent by
Lemma 2.48(a). Let ρ1 := ρ2

Fρ
−1
0 , and observe that the weight ρ−1

1 satisfies the assumption
of Proposition 3.16. By Theorem 2.38 and Corollary 2.37 we obtain that

||ρ−1
F (Uρ0)pV (t, s)ρF ||∞→∞ 6 ||ρ−1

1 Uρ0(t, s)ρ1||1/2∞→∞||ρ−1
0 (Uρ0)qV (t, s)ρ0||1/2∞→∞.

From (3.18), Proposition 3.16 and the assumption (3.17) we thus infer that (UF )pV is
exponentially L∞-bounded.

Let now a2 < (1 − 1
p)a. Then by the above we can apply Theorem 3.10 to obtain

cF > 0 and ωF ∈ R such that, for all (t, s) ∈ D ′
J , the kernel pF,Vt,s of (UF )V (t, s) satisfies

pF,Vt,s (x, y) 6 cF (t− s)−n/2−
P

j∈F αj exp
(
ωF (t− s)− a2

d(x,y)2

t−s

)
for a.e. x, y ∈ Ω (see also Remark 3.1 for the case that UF is not bounded). Moreover,
(UF )V (t, s) = ρ−1

F (UρF
)V (t, s)ρF for all (t, s) ∈ DJ by Lemma 2.47, and (UρF

)V and UV are
consistent by Lemma 2.48(a), so we conclude that

pVt,s(x, y) = ρF (x)pF,Vt,s (x, y)ρF (y)

6 cF (t− s)−n/2
∏
j∈F

(
dj(x)dj(y)

t− s

)αj

exp
(
ωF (t− s)− a2

d(x, y)2

t− s

)
,

for all (t, s) ∈ D ′
J and a.e. x, y ∈ Ω. The assertion thus follows by taking the minimum

over F ⊆ {1, . . . ,m}.

3.21 Remarks. (a) Observe that the assumptions of Theorem 3.20 are necessary except
for the factor q > 2. Indeed, if UV satisfies the asserted upper bound, then by Propo-
sition 3.16 there exist M > 1 and ω ∈ R such that ||ρ±1

0 UV (t, s)ρ∓1
0 ||p→p 6 Meω(t−s) for

all (t, s) ∈ DJ and p = 1,∞. From this it follows that V is weakly Uρ0-admissible, that
(Uρ0)V is exponentially bounded and that (3.17) is satisfied.

(b) The assumption that qV is weakly Uρ0-admissible for some q > 2, and that (Uρ0)qV
is exponentially bounded (the “forward” condition), is in particular satisfied if V − is a
Miyadera perturbation of Uρ0 with constants (α, γ), γ < 1

2
.

Let Fm := {1, . . . ,m}; then ρFm = ρ0. Let the propagator UFm on L1(ρ
2
0µ) be defined as

in the proof of Theorem 3.20, and assume that V − is a backward Miyadera perturbation
of UFm with constants (α, γ), γ < 1

2
. Then (UFm)qV is exponentially L∞-bounded for



72 CHAPTER 3. KERNEL BOUNDS FOR PROPAGATORS

all q ∈ (2, 1
γ ), and this implies that (3.17) (the “backward” condition) is satisfied since

(UFm)qV (t, s) = ρ−1
0 (Uρ0)qV (t, s)ρ0 for all (t, s) ∈ DJ .

(c) Assume that the backward propagator U ′ defined in Remark 2.31(a) is strongly
measurable. Then it is possible to reformulate condition (3.17) so that it becomes anal-
ogous to the forward condition. Since ||ρ0U

′(s, t)ρ−1
0 ||1→1 = ||ρ−1

0 U(t, s)ρ0||∞→∞ for all
(t, s) ∈ DJ , it follows from Proposition 3.16 that U ′ extrapolates to an exponentially
bounded strongly measurable backward propagator (U ′)ρ0 on L1(ρ0µ). By Remark 2.31(c),
Lemma 2.47 and Lemma 2.48(a) we obtain, for (t, s) ∈ DJ , that the estimate in (3.17)
holds if and only if∣∣∣∣((U ′)ρ0

)
qV ∨(−n)

(s, t)
∣∣∣∣ =

∣∣∣∣ρ0UqV ∨(−n)(t, s)
′ρ−1

0

∣∣∣∣
1→1

6 Meω(t−s)

for all n ∈ N. Therefore, (3.17) is satisfied if and only if qV is (U ′)ρ0-admissible and(
(U ′)ρ0

)
qV

is exponentially bounded.

(d) In the following we explain how the Miyadera conditions occurring in (b) can be
formulated analogously to the non-autonomous Kato class conditions discussed in the
introduction, as inequalities for integrals involving V , ρ and the kernels pt,s.

We assume that the kernels pt,s can be chosen in such a way that (t, s, x, y) 7→ pt,s(x, y)
is measurable on D ′

J ×Ω×Ω, and we fix such a choice. As in [ArBu94; proof of Thm. 2.1]
one can show that this is always possible if L1(µ) is separable. (The argument given
there requires only strong measurability of U ; Example 2.32(a) demonstrates that then
σ-finiteness of µ is not sufficient, as was claimed in [ArBu94].)

Let ρ be a weight satisfying the assumption of Proposition 3.16 (or, more generally, a
weight such that U extrapolates to a locally bounded strongly measurable propagator Uρ
on L1(ρµ)). Observe that a potential V is a Miyadera perturbation of Uρ with constants
(α, γ) if and only if the operators Ant,s ∈ L(L1(µ)) that are defined by

Ant,sf :=

∫ t

s

(|V | ∧ n)(τ)U(τ, s)f dτ

satisfy ||Ant,s : L1(ρµ) → L1(ρµ)|| 6 γ for all n ∈ N and all (t, s) ∈ D ′
J with t − s 6 α.

Moreover, the kernel knt,s of Ant,s is given by

knt,s(x, y) =

∫ t

s

(|V | ∧ n)(τ, x)pτ,s(x, y) dτ,

for n ∈ N and (t, s) ∈ D ′
J . Therefore, by Remark 3.18(b) and the monotone convergence

theorem, V is a Miyadera perturbation of Uρ with constants (α, γ) if and only if

γ+
α (ρ, V ) := sup

0<t−s6α
ess sup
x∈Ω

∫ t

s

∫
Ω

ρ(y)

ρ(x)
pτ,s(y, x)

∣∣V (τ, y)
∣∣ dµ(y) dτ 6 γ.

Let ŨUρ be the strongly measurable propagator on L1(ρ
2µ) defined by ŨUρ(t, s) :=

ρ−1Uρ(t, s)ρ. By condition (ii) of Proposition 2.29 and the monotone convergence the-

orem we obtain that V is a backward Miyadera perturbation of ŨUρ with constants (α, γ)
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if and only if

γ−α (ρ, V ) := sup
0<t−s6α

ess sup
x∈Ω

∫ t

s

∫
Ω

ρ(y)

ρ(x)
pt,τ (x, y)

∣∣V (τ, y)
∣∣ dµ(y) dτ 6 γ.

Note that the only difference to the definition of γ+
α (ρ, V ) is that there the term pτ,s(y, x)

occurs in the integral.
Now assume that µ(B(x, r)) > 0 for all x ∈ X and all r > 0. Observe that then any

lower semicontinuous function h on (Ω, d) satisfies ess supx∈Ω h(x) = supx∈Ω h(x). There-
fore, the ess sup in the definition of γ+

α (ρ, V ) can be replaced with a sup if the function

x 7→
∫ t

s

∫
Ω

ρ(y)

ρ(x)
pτ,s(y, x)

∣∣V (τ, y)
∣∣ dµ(y) dτ

is lower semicontinuous on (Ω, d) for all (t, s) ∈ D ′
J . By Fatou’s lemma, this is the case

if pt,s(y, ·) is lower semicontinuous for all (t, s) ∈ D ′
J and a.e. y ∈ Ω. An analogous

observation applies to the ess sup in the definition of γ−α (ρ, V ).

For the last result of this section we assume, in addition to the Gaussian type upper
bound (3.12), that the kernels pt,s satisfy a matching lower bound

pt,s(x, y) > K1(t− s)−n/2
m∏
j=1

(
dj(x)dj(y)

t− s
∧ 1

)αj

· exp
(
−A1(t− s)− a1

d(x, y)2

t− s

)
for all (t, s) ∈ D ′

J and a.e. x, y ∈ Ω, where K1, a1 > 0 and A1 > 0, and the other quantities
are the same as in the upper bound.

3.22 Theorem. Let V be a U-regular potential. Let ε > 0, and assume that −εV is
weakly Uρ0-admissible, that (Uρ0)−εV is exponentially bounded, and that

||ρ−1
0 (Uρ0)−εV (t, s)ρ0||∞→∞ 6 Meω(t−s) (

(t, s) ∈ DJ

)
for some M > 1 and ω ∈ R. Then for a2 > (1 + 2

ε)a1 there exist c2 > 0 and ω2 ∈ R such
that

pVt,s(x, y) > c2(t− s)−n/2
m∏
j=1

(
dj(x)dj(y)

t− s
∧ 1

)αj

· exp
(
−ω2(t− s)− a2

d(x, y)2

t− s

)
for all (t, s) ∈ D ′

J and a.e. x, y ∈ Ω.

Proof. Let a2 > (1+ 2
ε)a1, and let β > 2

ε be such that a2 = (1+β)a. Then q(−V/β) = −εV
with q = εβ > 2, so by Theorem 3.20 there exist c1 > 0 and ω1 ∈ R such that

p
−V/β
t,s (x, y) 6 c1(t− s)−n/2

m∏
j=1

(
dj(x)dj(y)

t− s
∧ 1

)αj

· eω1(t−s)

for all (t, s) ∈ D ′
J and a.e. x, y ∈ Ω. Moreover, as in the proof of Theorem 3.12 we obtain

that
pVt,s >

(
p
−V/β
t,s

)−β
(pt,s)

1+β
(
(t, s) ∈ D ′

J

)
.

The assertion thus follows from the lower bound on the kernels pt,s.
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3.3 Kernel estimates on manifolds

Throughout this section let (Ω, µ) be a σ-finite measure space, and let U be a positive
strongly continuous propagator on L1(µ) with parameter interval J ⊆ R. We assume that
the operators U(t, s) have integral kernels pt,s satisfying

pt,s(x, y) 6 ht−s(x)ht−s(y)e
A(t−s)−ψt,s(x,y) (3.19)

for all (t, s) ∈ D ′
J and a.e. x, y ∈ Ω, with A ∈ R and measurable functions ht : Ω → (0,∞)

and ψt,s : Ω × Ω → [0,∞). We do not need a multiplicative constant c in the estimate
since this can be incorporated into the functions ht.

In Section 3.1, ht was the constant function ht = K1/2t−ν/2, for t > 0. For the
heat kernel of a complete Riemannian manifold with non-negative Ricci curvature it is
proved in [LiYa86] that the bound (3.19) and a matching lower bound hold with A = 0,

ht(x) = cµ
(
B(x,

√
t)

)−1/2 and ψt,s(x, y) = ad(x,y)
2

t−s , where µ is the Riemannian volume and
d the Riemannian distance. This is the so-called Li-Yau estimate. Another possible choice
for heat kernel estimates on Riemannian manifolds is ht(x) = cµ

(
B(x,

√
t∧ 1)

)−1/2. Note
that in the above mentioned cases, t 7→ ht(x) is decreasing for all x ∈ Ω; this property of
the ht will be needed in some of the results below.

For our first result on stability of the kernel estimate (3.19) we only require the fol-
lowing asymmetric bound. For all k ∈ N there exist ck > 0 and rk ∈ R such that

pt,s(x, y) 6 ckhk(t−s)(x)
1+qhk(t−s)(y)

1−qerk(t−s) (3.20)

for all (t, s) ∈ D ′
J , a.e. x, y ∈ Ω and q = ±(k− 1). This is analogous to assumption (IV) in

[Stu93; Sec. 4], where similar results for Schrödinger semigroups with measures on mani-
folds are proved. (By [Stu93; Cor. 4.4], the heat kernel of a complete Riemannian manifold
with Ricci curvature bounded below satisfies (3.20) with ht(x) = cµ

(
B(x,

√
t)

)−1/2; see
also (3.30) below.) We point out that we do not require any quantitative assumptions on
the measure µ such as volume growth conditions.

3.23 Theorem. Assume (3.19) and (3.20). Let γ ∈ (0, 1), and let V be a potential such
that V/γ is weakly U-admissible. Assume that there exist M > 1 and ωγ ∈ R such that
||UV/γ(t, s)||p→p 6 Meωγ(t−s) for all (t, s) ∈ DJ and p = 1,∞. Then for β ∈ (γ, 1) there
exist c > 0 and ω ∈ R such that, for all (t, s) ∈ D ′

J , the kernel pVt,s of UV (t, s) satisfies

pVt,s(x, y) 6 cht−s(x)ht−s(y)e
ω(t−s)−(1−β)ψt,s(x,y) (x, y ∈ Ω). (3.21)

More precisely, if k ∈ N satisfies 1
k

6 1 − γ
β
, then there exists c > 0 such that the above

holds with ω = γωγ + k′γ rk
k

+ (1− k′γ)A, where 1
k

+ 1
k′

= 1.

Proof. Observe that the condition on k is equivalent to γ
β

6 1
k′

and hence to β > k′γ. We
can thus assume without loss of generality that β = k′γ. Then for (t, s) ∈ D ′

J we obtain
by Theorem 2.38, Corollary 2.37 and the bound (3.20) that∣∣∣∣h1−2/k

k(t−s)UV/β(t, s)h
−1
k(t−s)

∣∣∣∣
1→k′

6
∣∣∣∣hk−2

k(t−s)U(t, s)h−kk(t−s)
∣∣∣∣1/k
1→∞||UV/γ(t, s)||

1/k′

1→1

6
(
cke

rk(t−s))1/k(
Meωγ(t−s))1/k′

=: ϕ(t− s),
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and in the same way ∣∣∣∣h−1
k(t−s)UV/β(t, s)h

1−2/k
k(t−s)

∣∣∣∣
k→∞ 6 ϕ(t− s).

Another application of Corollary 2.37 yields∣∣∣∣h−1+2/q
k(t−s) UV/β(t, s)h

1−2/p
k(t−s)

∣∣∣∣
p→q

6 ϕ(t− s) (3.22)

for all 1 6 p < q 6 ∞ with 1
p − 1

q = 1
k
.

Let now (t, s) ∈ D ′
J , and let 1 = p0 < p1 < · · · < pk = ∞ and s = t0 < t1 < · · · < tk = t

satisfy 1
pj−1

− 1
pj

= 1
k

and tj − tj−1 = t−s
k

for j = 1, . . . , k. Then from (3.22) we infer that

||h−1
t−sUV/β(t, s)h

−1
t−s||1→∞ 6

k∏
j=1

∣∣∣∣h−1+2/pj

t−s UV/β(tj, tj−1)h
1−2/pj−1

t−s
∣∣∣∣
pj−1→pj

6 ϕ
(
t−s
k

)k
= ckM

k−1eω1(t−s),

where ω1 = rk
k

+ ωγ

k′
, so p

V/β
t,s (x, y) 6 ckM

k−1ht−s(x)ht−s(y)e
ω1(t−s) for a.e. x, y ∈ Ω. By

Corollary 2.39 and the upper bound (3.19) for pt,s we conclude that

pVt,s(x, y) 6 p
V/β
t,s (x, y)βpt,s(x, y)

1−β 6 cht−s(x)ht−s(y)e
ω(t−s)−(1−β)ψt,s(x,y)

for all a.e. x, y ∈ Ω, with c = cβkM
β(k−1) and ω = βω1 +(1−β)A. This implies the assertion

since β = k′γ and hence βω1 = k′γ rk
k

+ γωγ.

3.24 Remark. (a) The basic interpolation and iteration idea behind the L1–L∞-estimate
in the above proof already appears in [Voi86; proof of Prop. 6.3], in the context of
Schrödinger semigroups on Rn. In this case one does not need the weight ht−s in the
estimates. It seems that for kernel estimates on manifolds, this type of estimate is hardly
ever used. The argument in [Stu93; proof of Prop. 4.7] is similar, but not quite as straight-
forward.

(b) As explained in the previous two sections, theorems on upper bounds can also be
used to prove stability of lower bounds. Assume, e.g., that the propagator U is L1- and
L∞-bounded, that (3.20) holds with rk = 0 for all k ∈ N, and that V > 0 is a forward
and backward Miyadera perturbation of U with constants (∞, γ), for some γ > 0. Then

U−V/β is L1- and L∞-bounded for β > γ, so p
−V/β
t,s (x, y) 6 cht−s(x)ht−s(y) by Theorem 3.23

(applied with A = 0 and ψt,s = 0). From the estimate pVt,s >
(
p
−V/β
t,s

)−β
(pt,s)

1+β it thus
follows that the lower bound

pt,s(x, y) > c1ht−s(x)ht−s(y)e
−ψt,s(x,y)

is, up to a factor 1 + β in front of ψt,s, stable under perturbation by V .
In the context of complete Riemannian manifolds with non-negative Ricci curvature,

the above is a generalisation to the time-dependent situation of the fact that the Li-Yau
estimate is stable under perturbation by a positive Green bounded (time-independent)
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potential. This stability theorem is due to [Zha00; Thm. C]; see also [Gri06; Thm. 10.5]
for a different proof and [Tak07; Thm. 2] for a generalisation to perturbation by measures.

(c) Assume that one has good control of the exponential growth bound of UV/β in
L2(µ), for some β ∈ (γ, 1). Moreover, suppose that ht 6 h1 a.e. for all t > 1. Then one
can proceed as follows to obtain an alternative bound on pt,s for large t − s. As in the
above proof one shows that there exists C > 0 such that

||UV/β(s+ 1, s)h−1
1 ||1→2 6 C and ||h−1

1 UV/β(s+ 1, s)||2→∞ 6 C

for all s ∈ J satisfying s + 1 ∈ J . Therefore, if M > 1 and ω2,β ∈ R are such that
||UV/β(t, s)||2→2 6 Meω2,β(t−s) for all (t, s) ∈ DJ , then

||h−1
1 UV/β(t, s)h

−1
1 ||1→∞ 6 C2Meω2,β(t−s−2)

and hence

pVt,s(x, y) 6 p
V/β
t,s (x, y)βpt,s(x, y)

1−β 6 (C2Me−2ω2,β)βh1(x)h1(y)e
ω(t−s)−(1−β)ψt,s(x,y)

for all (t, s) ∈ DJ with t− s > 2 and a.e. x, y ∈ Ω, with ω = βω2,β + (1− β)A, where we
have used that ht−s 6 h1 a.e.

In the remainder of the section we discuss the case of classical Gaussian bounds in
more detail, i.e., we assume that ψt,s(x, y) = ad(x,y)

2

t−s with a > 0 and a measurable metric
d on Ω. Moreover, we assume that (Ω, d) is separable. Then one can use the following
version of Davies’ trick to refine the estimate of Theorem 3.23. We will use the weight
functions ρz defined by ρz(x) := e−d(x,z), for z ∈ Ω.

3.25 Lemma. Let A,α, β ∈ R and a > 0, and let (t, s) ∈ D ′
J . Then the estimate

pt,s(x, y) 6 ht−s(x)
αht−s(y)

β exp
(
A(t− s)− a

d(x, y)2

t− s

)
holds for a.e. x, y ∈ Ω if and only if

||h−αt−sρλzU(t, s)ρ−λz h−βt−s||1→∞ 6 exp
(
A(t− s) + λ2

4a
(t− s)

)
(3.23)

for all z ∈ Ω and all λ > 0.

Proof. By the Dunford-Pettis theorem, (3.23) holds if and only if

pt,s(x, y) 6 ht−s(x)
αht−s(y)

β exp
(
A(t− s) + λ2

4a
(t− s) + λd(x, z)− λd(y, z)

)
(3.24)

for a.e. x, y ∈ Ω. Observe that

inf
{
λ2

4a
(t− s) + λd(x, z)− λd(y, z); z ∈ Ω, λ > 0

}
= −ad(x, y)

2

t− s
,

the infimum being attained for z = x and λ = 2ad(x,y)
t−s . This implies the assertion since the

right-hand side of (3.24) is continuous in z and λ, and both Ω and [0,∞) are separable.
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It is important to get a grip on the constants ω and β in the kernel bound (3.21).
Remark 3.24(c) only gives some information about the constant ω. We now show that a
suitable weighted L2-estimate for UV leads to good control of both ω and β. We formulate
this as a result on the unperturbed propagator U since it does not involve perturbation
theory.

In fact, Gaussian estimates have the following “self-improving” property that is partic-
ularly useful in the time-independent symmetric situation. In [Ouh06; Thm. 1], a similar
result is proved in the context of Schrödinger semigroups on manifolds, and it is already
noted there that the method also works in greater generality. Thus, the main feature of
our result is not the more general context but the simpler and more transparent proof.

3.26 Proposition. Assume that t 7→ ht(x) is decreasing for all x ∈ Ω and that the kernels
pt,s of the operators U(t, s) satisfy

pt,s(x, y) 6
(
ht−s(x)

2 ∧ ht−s(y)2
)
exp

(
A(t− s)− a

d(x, y)2

t− s

)
(3.25)

for all (t, s) ∈ D ′
J and a.e. x, y ∈ Ω, with constants A ∈ R and a > 0. Moreover, assume

that there exist M > 1 and ω, ω2 ∈ R such that ||U(t, s)||p→p 6 Meω(t−s) and

||ρλzU(t, s)ρ−λz ||2→2 6 e(ω2+λ2)(t−s) (3.26)

for all (t, s) ∈ DJ , p = 1,∞, z ∈ Ω and λ > 0. Then

pt,s(x, y) 6 eMhε(t−s)(x)hε(t−s)(y) exp
(
ω2(t− s)− d(x, y)2

4(t− s)

)
for all (t, s) ∈ D ′

J and a.e. x, y ∈ Ω, where

ε =
1

2
∧

(
(ω + A− 2ω2)(t− s) + ( 1

a − 2)
d(x, y)2

4(t− s)

)−1

.

(We assume without loss of generality that ω + A > 2ω2 and a < 1
2
.)

Proof. Let z ∈ Ω and λ > 0. For (t, s) ∈ D ′
J we obtain by (3.25) and Lemma 3.25 that

||ρ2λ
z U(t, s)ρ−2λ

z h−2
t−s||1→∞ 6 exp

(
A(t− s) + (2λ)2

4a
(t− s)

)
and hence, by Corollary 2.37,

||ρλzU(t, s)ρ−λz h−1
t−s||1→2 6 ||U(t, s)||1/21→1||ρ2λ

z U(t, s)ρ−2λ
z h−2

t−s||
1/2
1→∞

6 M1/2 exp
(
ω+A

2
(t− s) + λ2

2a
(t− s)

)
.

An analogous estimate holds for ||h−1
t−sρ

λ
zU(t, s)ρ−λz ||2→∞. Let now (t, s) ∈ D ′

J and ε 6 1
2
,

and let s1, t1 ∈ (s, t) be such that s1 − s = t − t1 = ε(t − s). Then the above, together
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with (3.26), yields∣∣∣∣h−1
ε(t−s)ρ

λ
zU(t, s)ρ−λz h−1

ε(t−s)

∣∣∣∣
1→∞

6 ||h−1
t−t1ρ

λ
zU(t, t1)ρ

−λ
z ||2→∞||ρλzU(t1, s1)ρ

−λ
z ||2→2||ρλzU(s1, s)ρ

−λ
z h−1

s1−s||1→2

6 M exp
(
(ω + A)ε(t− s) + λ2

a ε(t− s) + (ω2 + λ2)(1− 2ε)(t− s)
)

6 M exp
(
(ω + A− 2ω2 + ( 1

a − 2)λ2)ε(t− s) + (ω2 + λ2)(t− s)
)
.

Choosing ε = ελ := 1
2
∧

(
ω + A− 2ω2 + ( 1

a − 2)λ2
)−1

(t− s)−1, we infer that∣∣∣∣h−1
ε(t−s)ρ

λ
zU(t, s)ρ−λz h−1

ε(t−s)

∣∣∣∣
1→∞ 6 M exp

(
1 + (ω2 + λ2)(t− s)

)
.

Now observe that λ 7→ hελ
(x) is increasing for all x ∈ Ω since t 7→ ht(x) is decreasing. We

thus obtain the assertion as in Lemma 3.25, letting Q>0 3 λ ↑ d(x,y)
2(t−s) .

3.27 Remark. (a) The factor
(
ht−s(x)

2 ∧ ht−s(y)2
)

in assumption (3.25) is chosen in-
stead of the (larger) factor ht−s(x)ht−s(y) in order to simplify the result. If the kernel

estimate (3.19) is satisfied with ψt,s(x, y) = ad(x,y)
2

t−s , and similarly as in (3.20) one has

pt,s(x, y) 6 ht−s(x)
1+qht−s(y)

1−qer3(t−s) for a.e. x, y ∈ Ω and q = ±2, then (3.25) holds
with Ã = 1

2
(A+ r3) and ã = a

2
in place of A and a.

There is no factor in front of λ2 in the weighted L2-estimate (3.26) since we assume that
the metric d is defined in such a way that (3.26) holds. In the context of C0-semigroups
generated by elliptic operators this is satisfied by the Davies metric.

Note that the above proof does not require strong continuity (or strong measurability)
of U . Moreover, the result is also valid for propagators that are not positive: Then one
has to use Stein interpolation instead of Corollary 2.37 in the proof, and one obtains an
estimate for |pt,s(x, y)|.

(b) Assume that there exist C, n > 0 such that hεt 6 Cε−n/4ht a.e. for all t > 0 and
all 0 < ε < 1. Then Proposition 3.26 implies that

pt,s(x, y) 6 eMC2ht−s(x)ht−s(y)g
(
t− s, d(x, y)

)
for all (t, s) ∈ D ′

J and a.e. x, y ∈ Ω, where

g(t, r) =
[
2 + (ω + A− 2ω2)t+ ( 1

a − 2) r
2

4t

]n/2
exp

(
ω2t−

r2

4t

)
.

(c) The assumption on the ht in part (b) holds, e.g., if ht(x) = cµ
(
B(x,

√
t)

)−1/2 and µ

satisfies the volume growth condition µ(B(x,R)) 6 C2
(
R
r

)n
µ(B(x, r)) for all R > r > 0.

It follows from [Sik04; Thm. 4] that in this situation the exponent n
2

in the estimate of
part (b) can be replaced with n−1

2
if, in addition, ω2 = 0 and the propagator U comes

from a selfadjoint C0-semigroup.

Even if the propagator U comes from a selfadjoint C0-semigroup: The perturbed situ-
ation is usually a non-symmetric one since the potential is time-dependent. Suppose, e.g.,
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that V is an infinitesimally small Miyadera perturbation of U , with backward Miyadera
constant close to 1. Then the kernel estimate from Theorem 3.23 is rather poor since
1 − β is close to 0. If one has no good control of ||ρλzUV (t, s)ρ−λz ||2→2, then instead of
Proposition 3.26 one can use the following theorem to obtain a better estimate. The
result may seem rather technical; in Remark 3.29 below we explain how it can be applied
in the context of Riemannian manifolds with Ricci curvature bounded below. For this
application it is important that the constants in the estimate are explicit.

3.28 Theorem. Assume that for all θ ∈ (0, 1] there exist cθ, aθ > 0 and Aθ ∈ R such that

pt,s(x, y) ∨ pt,s(y, x) 6 cθh(t−s)/θ(x)
1/θh(t−s)/θ(y)

2−1/θ exp
(
Aθ(t− s)− aθ

d(x, y)2

t− s

)
for all (t, s) ∈ D ′

J and a.e. x, y ∈ Ω. Let γ1, γ∞ > 0 satisfy σ := γ1 + γ∞ 6 1, and let V be
a potential such that V/γ1 is weakly U-admissible. Assume that there exist Mp > 1 and
ωp ∈ R such that∣∣∣∣U(V/γp)∨(−n)(t, s)

∣∣∣∣
p→p

6 Mpe
ωp(t−s) (

(t, s) ∈ DJ , n ∈ N, p = 1,∞
)
.

Then

pVt,s(x, y) 6 cht−s(x)ht−s(y) exp
(
ω(t− s)− a

d(x, y)2

t− s

)
for all (t, s) ∈ D ′

J and a.e. x, y ∈ Ω, where c =
(
M θ

1M
1−θ
∞ cθθc

1−θ
1−θ

)σ
c1−σ1 (with θ := γ1

σ ),
ω = σθ(1−θ)(ω1 +ω∞)+σθ2Aθ+σ(1−θ)2A1−θ+(1−σ)A1 and a = σ aθa1−θ

aθ + a1−θ
+(1−σ)a1.

Note that the slightly sophisticated formulation of the condition on the Lp-norm bound
of UV/γp is only needed for the case p = ∞ and γ∞ < γ1: Then the potential V/γ∞ need
not be weakly U -admissible. In the case p = 1 or γ1 6 γ∞ one can simply require
||UV/γp(t, s)||p→p 6 Mpe

ωp(t−s) for all (t, s) ∈ DJ . The estimate assumed for the pt,s can be
viewed as a combined version of the bounds (3.19) and (3.20).

Proof of Theorem 3.28. Without loss of generality assume that V is bounded from
below, and observe that 1− θ = γ∞

σ . Let z ∈ Ω and λ > 0. Then Lemma 3.25 yields

Nθ :=
∣∣∣∣h−1/θ

(t−s)/θρ
λ/θ
z U(t, s)ρ−λ/θz h

1/θ−2
(t−s)/θ

∣∣∣∣
1→∞ 6 cθ exp

(
Aθ(t− s) + (λ/θ)2

4aθ
(t− s)

)
and hence, due to Theorem 2.38 and Corollary 2.37,∣∣∣∣h−1

(t−s)/θρ
λ
zUV/σ(t, s)ρ

−λ
z h1−2θ

(t−s)/θ

∣∣∣∣
1/θ→∞ 6 ||UV/γ∞(t, s)||1−θ∞→∞N

θ
θ

6 c∞,θ exp
(
ω∞,θ(t− s) + λ2

4θaθ
(t− s)

)
for all (t, s) ∈ D ′

J , where c∞,θ := M1−θ
∞ cθθ and ω∞,θ := (1− θ)ω∞ + θAθ. In the same way,∣∣∣∣h1−2(1−θ)

(t−s)/(1−θ)ρ
λ
zUV/σ(t, s)ρ

−λ
z h−1

(t−s)/(1−θ)

∣∣∣∣
1→1/θ

6 c1,θ exp
(
ω1,θ(t− s) + λ2

4(1−θ)a1−θ
(t− s)

)
,
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with c1,θ := M θ
1 c

1−θ
1−θ and ω1,θ := θω1 + (1− θ)A1−θ. Let now (t, s) ∈ D ′

J , and let r ∈ (s, t)
be such that t− r = θ(t− s). Then r− s = (1− θ)(t− s), so by the above we obtain that

||h−1
t−sρ

λ
zUV/σ(t, s)ρ

−λ
z h−1

t−s||1→∞

6 ||h−1
t−sρ

λ
zUV/σ(t, r)ρ

−λ
z h1−2θ

t−s ||1/θ→∞||h2θ−1
t−s ρ

λ
zUV/σ(r, s)ρ

−λ
z h−1

t−s||1→1/θ

6 c1,θc∞,θ exp
(
ω0(t− s) + λ2

4a0
(t− s)

)
,

with ω0 := θω∞,θ + (1 − θ)ω1,θ and a0 > 0 defined by 1
a0

= 1
aθ

+ 1
a1−θ

, so a0 = aθa1−θ

aθ+a1−θ
.

Therefore,

p
V/σ
t,s (x, y) 6 c1,θc∞,θht−s(x)ht−s(y) exp

(
ω0(t− s)− a0

d(x,y)2

t−s

)
for a.e. x, y ∈ Ω by Lemma 3.25. Using the estimate pVt,s 6

(
p
V/σ
t,s

)σ
(pt,s)

1−σ, we conclude

that the asserted kernel bound holds with c = (c1,θc∞,θ)
σc1−σ1 ,

ω = σω0 + (1− σ)A1 = σ
(
θ(1− θ)(ω1 + ω∞) + θ2Aθ + (1− θ)2A1−θ

)
+ (1− σ)A1

and a = σa0 + (1− σ)a1.

We conclude by demonstrating how Theorem 3.28 can be applied to stability of heat
kernel estimates on Riemannian manifolds.

3.29 Remark. (a) Assume that Ω is a complete n-dimensional Riemannian manifold
with non-negative Ricci curvature. Then by Bishop’s comparison principle there exists
C0 > 1 such that

µ(B(x,R))

µ(B(x, r))
6 C0

(
R

r

)n
(x ∈ Ω, R > r > 0),

and it follows that

µ(B(x, r))

µ(B(y, r))
6
µ
(
B(y, r + d(x, y))

)
µ(B(y, r))

6 C0

(
1 +

d(x, y)

r

)n
(x, y ∈ Ω, r > 0).

Thus, if ht(x) = cµ
(
B(x,

√
t)

)−1/2 then there exists C > 1 such that

ht(x)

ht(y)
6 C

(
1 +

d(x, y)2

4t

)n/4
(x, y ∈ Ω, t > 0), (3.27)

and hθt 6 C
1/2
0 θ

−n0/4ht pointwise for all t > 0 and all θ ∈ (0, 1], where n0 = n. In the
following we will only use these two properties of the functions ht, without requiring
n0 = n. Note that (3.27) holds with n = 0 if the functions ht are constant, as in the
setting of Section 3.1. This is the reason why we have introduced the quantity n0 in the
second property of the ht.
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Let r > 0. Observe that 1 + r 6 1
ε(1 + εr) 6 1

εe
εr for all ε ∈ (0, 1] and 1 + r 6 eεr for

all ε > 1, and hence (1 + r)ν 6 (νε ∨ 1)νeεr for all ε, ν > 0. Thus, from (3.27) we infer that

ht(x)

ht(y)
6 C

(
n
4ε
∨ 1

)n/4
exp

(
ε
d(x, y)2

4t

)
(x, y ∈ Ω, t, ε > 0). (3.28)

Now assume that the kernel bound (3.19) holds with ψt,s(x, y) = d(x,y)2

4(t−s) , i.e.,

pt,s(x, y) 6 ht−s(x)ht−s(y) exp
(
A(t− s)− d(x, y)2

4(t− s)

)
for all (t, s) ∈ D ′

J and a.e. x, y ∈ Ω. Let ε > 0. Then for θ ∈ (0, 1) we obtain, using (3.28),
that

pt,s(x, y) ∨ pt,s(y, x) 6 C0θ
−n0/2h(t−s)/θ(x)h(t−s)/θ(y) exp

(
A(t− s)− d(x, y)2

4(t− s)

)
6 cθ,εh(t−s)/θ(x)

1/θh(t−s)/θ(y)
2−1/θ exp

(
A(t− s)− aθ,ε

d(x, y)2

t− s

)
,

with cθ,ε = C0θ
−n0/2

(
C( n

4ε
∨ 1)n/4

)
1/θ−1 and aθ,ε = 1

4
− εθ

4
(1/θ − 1) > 1

4
(1− ε).

One easily sees that the function (0, 1) 3 θ 7→ θθ(1 − θ)1−θ attains it minimum at
θ = 1

2
, so

cθθ,εc
1−θ
1−θ,ε = C0C

(
θθ(1− θ)1−θ)−n0/2( n

4ε
∨ 1

)n/4
6 C1

(
1 + n

4ε

)n/4
,

where C1 = C0C2n0/2. Moreover, 1
aθ,ε

+ 1
a1−θ,ε

6 8
1−ε . Thus, if the potential V satisfies the

assumptions of Theorem 3.28, then

pVt,s(x, y) 6 c
(
1 + n

4ε

)σn/4
ht−s(x)ht−s(y) exp

(
ω(t− s)− aε

d(x, y)2

t− s

)
(3.29)

for all (t, s) ∈ D ′
J and a.e. x, y ∈ Ω, where c =

(
M θ

1M
1−θ
∞ C1

)σ
(with θ := γ1

σ ),

ω = σθ(1− θ)(ω1 + ω∞) + σ(2θ2 − 2θ + 1)A+ (1− σ)A

= σθ(1− θ)(ω1 + ω∞) +
(
1− 2σθ(1− θ)

)
A

and aε = σ 1−ε
8

+ (1− σ)1
4

= 1−σ/2
4

− σ ε
8
. Since the right-hand side of the estimate (3.29)

is continuous in ε, we can choose ε such that n
ε

= d(x,y)2

t−s , so σ ε
8
d(x,y)2

t−s = σn
8

, and with

β := σ
2

= 1
2
(γ1 + γ∞) we conclude that

pVt,s(x, y) 6 ceβn/4ht−s(x)ht−s(y)

(
1 +

d(x, y)2

4(t− s)

)βn/2
exp

(
ω(t− s)− (1− β)

d(x, y)2

4(t− s)

)
for all (t, s) ∈ D ′

J and a.e. x, y ∈ Ω.
Summarising, we have achieved the following improvement of the bound (3.21) on the

perturbed kernel. An application of Theorem 3.23 leads to the condition β > γ1 ∨ γ∞
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for the bound to be valid, whereas the above shows that the bound is also valid for
β > 1

2
(γ1 + γ∞), or even for β = 1

2
(γ1 + γ∞) if one allows for the polynomial correction

factor
(
1 + d(x,y)2

4(t−s)

)βn/4
. If V is an infinitesimally small Miyadera perturbation of U , and

a backward Miyadera perturbation of U with bound γ < 1, then the condition β > γ is
replaced with the condition β > γ

2
. This is a considerable improvement since 1 − γ may

be close to 0, but 1− γ
2
> 1

2
.

(b) Now assume, more generally, that Ω is a complete n-dimensional Riemannian
manifold with lower bounded Ricci curvature. We indicate how the application of Theo-
rem 3.28 presented in part (a) can be adapted to this situation; we point out that then
the constants Aθ in the estimation will also depend on θ.

As in [Stu92b; proof of Lemma 2.2(a)] one obtains from Bishop’s comparison principle
and the explicit formula for the volume of balls in hyperbolic space there exists κ > 0
(depending on the bound for the Ricci curvature) such that

µ(B(x,R))

µ(B(x, r))
6
fn(κR)

fn(κr)
(x ∈ Ω, R > r > 0),

where fn(r) :=
∫ r

0

(
sinh t

n−1

)n−1
dt for all r > 0 (we assume that n > 2). One easily shows

that there exists a constant cn > 1 such that 1
cn gn 6 fn 6 cngn, where gn(r) := (r ∧ 1)ner.

From this one deduces that fn(R)
fn(r)

6 c2n
(
R
r

)n
eR−r for all R > r > 0, and as in (a) it follows

that

µ(B(x, r))

µ(B(y, r))
6
fn(κr + κd(x, y))

fn(κr)
6 c2n

(
1 +

d(x, y)

r

)n
eκd(x,y) (x, y ∈ Ω, r > 0) (3.30)

(which improves on the estimate provided in [Stu92b; Lemma 2.2(a)]). Using the in-

equality κd(x, y) 6 εd(x,y)
2

4(t−s) + 1
εκ

2(t− s), one can then proceed as in part (a) to verify the
assumptions of Theorem 3.28 with suitable constants cθ, Aθ and aθ.
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