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Abstract

In 1998, V. Liskevich and Y. Semenov proved sharp Gaussian upper bounds for
Schrédinger semigroups on R? with potentials satisfying a global Kato class condi-
tion. Using similar basic ideas we show sharp Gaussian upper bounds for Schrédinger
semigroups on the half-line, also assuming a suitable global Kato class condition. Our
proof strategy includes a new technique of weighted ultracontractivity estimates.

MSC 2020: 35J10, 35K08, 47A55, 47D06

Keywords: Gaussian upper bounds, boundary behaviour, Schrodinger semigroups,
absorption semigroups, weighted ultracontractivity estimates

1 Introduction

In this paper we show a kernel estimate for the Cip-semigroup generated by the Schrodinger
operator A +V on (0, 00) for potentials V' satisfying the integral condition given by (1.1)
below. This integral condition amounts to a global Kato class condition with respect to
the Dirichlet Laplacian on (0, 00); see Remark 4.6.

Throughout the paper let K € {R,C} and d € N. Let Q@ C R? be open, and let T be the
Co-semigroup on Ly(2) generated by the Dirichlet Laplacian on €2, i.e., by the operator
Ap defined by

dom(Ap) = {u € Hy(); Au € Ly(Q)}
Apu = Au.

Our main result is as follows.

Theorem 1.1. Letd =1 and Q2 = (0,00). Let V: (0,00) — R be measurable, and assume
that there exists a € (0,1) such that

/OOO:E\V(SC)| dx < a. (1.1)



Then V is T-admissible, for every t > 0 the operator Ty (t) has an integral kernel k! €
Loo((0,00) x (0,00)), and there exists ¢ > 0 such that

\% LY (.flf — y)2 s/t —1/2 —(z—y)? /4t
ngt(:p,y)gc 1A T 1+4—t t (& (12)

for allt >0 and a.e. x,y € (0,00).

Recall that k! being an integral kernel of the operator Ti/(t) means that Ty (¢) f(z) =
IS kY (@,y) f(y) dy for all f € Ly(0,00) and a.e. 2 € (0,00). In Theorem 4.10 we will show
that in the case V' < 0 the integral condition (1.1) for some o < oo is in fact necessary for
the validity of the kernel estimate (1.2).

For V = 0 the kernel £? satisfies

(ot b < ) < (1 )
see (3.2). The term 1 A Z¥ describes the boundary behaviour: it is ‘small’ if 2 and y
are ‘close’ to the boundary {0} of (0,00) (where the meaning of ‘close’ depends on t).
Observe that the Gaussian upper bound (1.2) is ‘almost sharp’; in particular, the factor 4
in the exponential term e~ (*~%°/4 is the same as in k?. In comparison with k2, the major
difference is the polynomial correction factor (1 + (z — y)?/4t) 3a/4 for the term 2Tt s
an open question whether this term can be avoided.

In the general context of ultracontractive self-adjoint Cjy-semigroups on metric measure
spaces with the doubling property it is known that a Davies-Gaffney estimate implies the
kernel estimate
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where p is the measure, p the metric and D the dimension defined via the polynomial
volume growth that holds because of the doubling property; see [Sik04, Remark 3 after
Theorem 5]. (Note that in [Sik04, p. 651, line -2] the exponent should read D — 1 and not
(D—1)/2.) In our context, the above result would lead to a kernel estimate similar to (1.2),
but with the (larger!) exponent 1 instead of 3r/4 in the polynomial correction factor since
we will be working with the measure 2% dz on (0, o), for which one obtains D = 3. (We
refer to [Mol75] for an example showing that in general the exponent (D — 1)/2 is sharp.)

We point out that the 1 in the boundary term 1 A % goes without a correction factor.
To that effect, the estimate (1.2) in Theorem 1.1 is in the spirit of [LiSe98, Cor. 1], one
of the few results on kernel estimates that do not include a polynomial correction factor
either. There is vast literature on kernel estimates including a polynomial correction
factor; see for instance [DaPa89] and [Ouh06]. In [Ouh06] it was shown that in many
circumstances, Gaussian upper bounds “automatically” improve to sharp bounds with a
polynomial correction factor.



In the remainder of this introduction we explain the major steps in the proof of Theo-
rem 1.1. We will first show a kernel estimate for Schrodinger semigroups on an arbitrary
open set 2 C R? under the assumption that the potential V satisfies the form smallness
condition

/ Vllu2dz < al—Apu, u) = of|Vul?  (u € dom(Ap)) (1.3)
Q

for some o € (0, 1) and that the Schrodinger semigroup 7y satisfies a suitable exponentially
weighted Li-estimate; see Theorem 2.11. More precisely, we show the kernel estimate

0 < kY (z,y) < et~ Y2 lovl/4 (t >0, ae. z,y € ). (1.4)

Note that there is no restriction on the dimension d in this kernel estimate. It will be
proved by means of weighted ultracontractivity estimates and the well-known Davies trick
(see [Dav87]); in Subsection 2.3 we develop new techniques that allow us to avoid the use
of (weighted) sesquilinear forms that is common in this context.

In Section 3 we consider the special case in which {2 is the positive half-space, i.e.,

O (0, 00) ifd=1,
0T (0,00) xR ifd > 2.

In Subsection 3.1 we prove exponentially weighted L;- and ultracontractivity estimates
for the heat semigroup T with suitable weights. They will be needed later in that section,
where we show a second kernel estimate for the Schrodinger semigroup Ty,

‘l’ B y‘z a(d+2)/4 )
0 <k (2,y) < capyyt™ >0 (1 + 4—t) et/ (1.5)

for all t > 0 and a.e. z,y € y, again using the technique of weighted ultracontractivity

estimates and Davies trick. This kernel estimate will be proved under condition (1.3) and

the assumption that Ty, satisfies suitable weighted L-estimates; see Theorem 3.4.
Taking the minimum of (1.4) and (1.5) yields the kernel estimate

v T1Y1 |z —y/? el —d/2 ,~|z—y|? /4t
0< Kk (z,y) <c|1A . 1+ m t~%%e (1.6)

for all ¢t > 0 and a.e. x,y € Qq, see Corollary 3.6. In the case d = 1, (1.6) is exactly
the kernel estimate stated in Theorem 1.1 above. Therefore, for the proof of Theorem 1.1
it remains to show that (1.1) implies the assumptions indicated above for the validity of
(1.4) and (1.5); this will be done in Section 4.

The basic idea for the proof of (1.4) is similar as in [LiSe98]. There the case of
Schrodinger semigroups on 2 = R? is treated, based on the following main observation: for
every £ € R? the Green kernel G¢ of the resolvent (|¢|* — Ap)~! of the Dirichlet Laplacian
satisfies the weighted estimate e¢*G¢(z,y)e Y < lime 0 Ge(z,y), for all z,y € R3. In




our case 2 = (0,00) € R! an analogous weighted estimate is valid, as we will show in
Subsection 4.2.

Notation. For x,y € [—00,00] we denote by Ay and z V y the minimum and the
maximum of x and y, respectively. Similarly, if A is a set and f,g: A — [—00, 0], then
fAgand fVgis the pointwise minimum and maximum of f and g, respectively. Moreover
we write [f > g| == {x € A; f(x) > g(x)}; the sets [f < ¢], [f > g] and [f = ¢g] are
defined in a similar way.

We write C; := {z € C; Rez > 0} for the right complex half-plane.

If X,Y are two Banach spaces, then we denote by £(X,Y’) the space of all bounded
linear operators from X to Y. In the case X =Y we simply write £(X) := L(X, X).

Now let (€2, A, 1) be a measure space. We write 1,4 for the indicator function of a set
A € A. For a measurable function p: 2 — [0,00) we denote by pu the measure that has
density p with respect to . If p € [1,00) and V' : Q — K is measurable, then we denote by
V' the associated multiplication operator on Ly, (p) as well. Furthermore, if p,q,r € [1, 0]
and A: L,(p) = Ly(p) is linear, then we write

1Al = Al o2, = sUP{IAS |5 f € Ly 0V Ly(p), [ fllg < 1} (€ [0, 00]).

More generally, if p1, pa: @ — (0,00) are measurable, we also write

”pl_lAfOl||Lq(p2u)—>Lr(pzu)
= sup{ [|pr  Ap1 fll Loy s £ € Lalpatt), [ fllLgoamy <1, prf € Ly(p) }-

In the case py = 1 we simply write ||p7 " Ap1]lgr = [lo7 Ap1 |2y (0)— L0 () -

Finally, let H be a Hilbert space. Then we denote the scalar product of x,y in H by
(x,y). We also write (z,y) if it is obvious from the context that this is the scalar product
on H.

2 Kernel estimates for Schrodinger semigroups via
weighted ultracontractivity estimates

The ultimate goal of this section is the proof of the kernel estimate (1.4). To achieve this
goal, we will show that the Schrodinger semigroup 7y, provided with exponential weights
is ultracontractive and then use the well-known Davies trick. The main tool to prove
this ultracontractivity will be given in Subsection 2.3, where we show more generally for
a positive self-adjoint Cy-semigroup 7" on an arbitrary measure space and a suitable T-
admissible potential V' that a weighted ultracontractivity estimate for 7" implies a similar
estimate for the perturbed Cy-semigroup Ty ; see Theorem 2.7. The kernel estimate (1.4)
will then be proved in Subsection 2.4. In Subsection 2.1 we first recall some important
properties of admissible potentials. Subsection 2.2 provides an interpolation inequality for
positive Cy-semigroups, which we will prove using logarithmically convex funtions. It will
be important for the proof of the perturbation results in Subsection 2.3.
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2.1 Admissibility of real-valued measurable potentials

The purpose of this subsection is to recall the notion of admissibility for real-valued mea-
surable potentials, which was introduced in [Voi86, Sec. 2|. For this let (€2, ) be a measure
space, p € [1,00) and T" a positive Cy-semigroup on L,(u) with generator A.

For V € Lo (p), the Cy-semigroup generated by A — V' is denoted by Ty. If VW €
Loo(p), V.= W, then 0 < Ty(t) < Tw(t) for all ¢ > 0 (see [Voi86, Rem. 2.1(a)]); in
particular, Ty, is positive.

If now V':  — [0, 00) is measurable, then we have

0< TV/\(n+1) (t> < TV/\n(t) (t P O)

and, therefore, Ty (t) := s-lim, oo Tvan(t) exists for all t > 0 by dominated convergence.
The function V' is called T-admissible if Ty : [0,00) — L(L,(u)) thus defined is a Cp-
semigroup.

Similarly, a measurable function V: Q — (—o00,0] is called T-admissible if Ty (t) :=
s-1imy, o0 Tyv(—n)(t) exists for all ¢ > 0 and Ty : [0,00) = L(L,(1)) is a Cy-semigroup.

More generally, a measurable function V': Q — R is called T-admissible if V' and =V~
are T-admissible. In this case Ty (t) := s-lim,_o0 T(van)v(—n)(t) exists and Ty : [0,00) —
L(L,(p)) thus defined is a Cp-semigroup; see [Voi88, Thm. 2.6]. (Note that for V' € Lo ()
(resp. V >0, V < 0) the two definitions of T} given above coincide.)

The following basic properties of admissible potentials will be used througout without
further notice. Let V': 2 — R be T-admissible. Then Ty is positive because T{y an)v(—n)
is positive for all n € N. If W: Q — R is T-admissible and W < V| then Ty (t) < Tw(t)
for all t > 0; see [Voi88, Remark 2.7]. Finally, if p = 2 and T is self-adjoint, then
Ty is self-adjoint. Indeed, A — (V A n) V (—n) is self-adjoint for all n € N, and thus
Ty (t) = s-limy, 00 Tyan(t) is self-adjoint for all ¢ > 0.

Note that for p € [1,00) and a measurable function m: 2 — (0,00), the mapping
L,(mPu) > f+— mf € L,(p) is an isometric lattice isomorphism. Thus, if 7" is a positive
Co-semigroup on Ly (), then we can define a positive Cp-semigroup 7™ on L,(m?u) by

() f == m'T(t)mf (t >0, feL,(mPu)).

In the next lemma we characterize T™-admissibility of a potential V' by means of the
Co-semigroup 7.

Lemma 2.1. Let p € [1,00), and let T' be a positive Cy-semigroup on L,(u) with gener-
ator A. Let m: Q — (0,00) and V : Q — R be measurable. Then V is T™-admissible if
and only if V' is T-admissible. Moreover, in this case one has (T™)y = (Ty)™.

Proof. Observe that the generator A™ of T™ is given by

dom(A™) := {f € L,(mPu); mf € dom(A)},
A" f=m  Amf (f € dom(A™)).



For W € Loo(pt) = Loo(mPp) it is straightforward to show that A™ + W = (A + W)™
and hence (T™)y = (Tw)™. From this identity and the definition of admissibility one
easily infers that +V* is T-admissible if and only if £V* is T™-admissible, using that
L,(mPp) > f+— pf € L,(p) is an isometry. This proves the first assertion. The second
assertion then follows from the identity (77)w an)v(—n) = (T(van)v(=n))™- O

To conclude this subsection, we show that in the case p = 2, a potential V is T-
admissible if it is form small with respect to the generator of T

Proposition 2.2. Let T be a positive Cy-semigroup on Lo(p) and A its generator. Let
V:Q — R be measurable, and assume that

/Q IV ||ul* du < Re(—Au, u) (u € dom(A)). (2.1)

Then V' is T-admissible. Moreover, Ty, is contractive.

Proof. For every n € N, (2.1) implies that
Re((A+ (VF An))u,u) < Re(Au, u) +/ V| [ul*du <0 (u € dom(A)),
Q

so A+ (V* An) is dissipative. It follows that T_(v+nn) is contractive for all n € N, so
[Voi88, Prop. 2.2] shows that —V* is T-admissible. By [Voi88, Prop. 3.3(b)] it follows that
V* and hence also V is T-admissible. The contractivity of Ty follows from Ty < T_y -
since T (- np) s contractive for all n € N. O

2.2 Logarithmically convex functions

Throughout let (€2, 1) be a measure space. The aim of this subsection is to prove the
following interpolation inequality.

Theorem 2.3. Let p € (1,00), let T be a positive Cy-semigroup on L,(u), and let V: Q —
R be T-admissible. Let t > 0, po,p1,qo, q1 € [1,00], and assume that || Tjy(t)||p,—q, < 00
for j=0,1. Let 6 € (0,1), and define pg,qs € [1,00] by

1 1-40 0 1 1-0 0
De Po P1 qe qo0 q1

Then
ITov ()lpg—sgo < ITEV e lao I TV (EV10, —ra -

For bounded potentials V' this inequality is well-known and can be proved by means
of the Stein interpolation theorem. The problem is that the inequality does not easily
carry over from bounded to admissible potentials since one only has strong convergence
Ty, (t) — Tv(t), which does not imply convergence of the operator norms. To remedy this



problem we introduce the notion of logarithmic convexity that is motivated by [Haa07].
Our presentation largely follows [Vogl0, Sec. 2.3].

Let X be an ordered vector space, i.e., X is a (real or complex) vector space endowed
with a proper convex cone X, of positive elements, where X, being proper means that
X, N(=X;) = {0}. Let I C R be an interval. We say that a function f: 1 — X is
logarithmucally convex if

F((1 =0ty +0t) < (1 —0)r~ 0 fty) +0r =0 f(t1) (r > 0) (2.3)

for all to,t; € I and all § € (0,1). By choosing ty = t; and r # 1 (so that (1 — 8)r=% +
Or'=% > 1) we see that a logarithmically convex function f takes its values in X .

The next lemma implies in particular that f: I — R is logarithmically convex if and
only if f > 0 and Inof is convex, where we use the convention In(0 := —oco. Thus, the
assertion of Theorem 2.3 is that [0,1] 2 0 — || Tpy (t)||py—q € R is logarithmically convex.

Lemma 2.4. Let M(u) be the ordered vector space of all scalar-valued measurable func-
tions on ), where functions are identified if they coincide a.e., and M (), = {f € M(u);
f=0ae}.

(a) A function f: I — M(u)s is logarithmically convez if and only if

FUL = 0)to +0t1) < f(to)' ™" f(t1)’

a.e. for all to,t; € I and all 6 € (0,1).
(b) If f,g: I — M (u)y are logarithmically convex, then t — f(t)g(t) is logarithmically
convex as well.

Proof. (a) follows from Young’s inequality: For a,b > 0 and 0 € (0,1) we have
a' 0’ = (r_‘ga)lfe (Tl_eb)e <A=0)r%a+or (r>0)

and
a' =’ = inf{(1 — 0)r~%a+0r'%;0<rc Q}.

(b) is an immediate consequence of part (a). O

The next result, though being elementary, is the basis of the proof of Theorem 2.3. We
assume that L,(px) and £(L,(p)) are endowed with their natural orderings; in particular,
L(L,(1))+ consists of the positive operators on L,(u). Let (-,-),, denote the natural
bilinear map associated with the the dual pairing (L, (), Ly (1)).

Proposition 2.5. Let p € [1,00), f: I — Ly(p) and S: I — L(Ly(1)). Then
(a) f is logarithmically convex if and only if t — (f(t), g)py is logarithmically convex

forall g € Ly(p)+;
(b) S is logarithmically convez if and only if t — S(t)h is logarithmically convex for all

h € Ly(p)+-



Proof. (a) is immediate from the following fact: A function h € L,(p) is in L,(p)+ if and
only if (h,g),, = 0forall g € Ly(u)4.
(b) is clear. O

Clearly, if f: I — X is logarithmically convex and B: X — X is a positive operator,
then B o f is logarithmically convex. In the case X = L,(u) we can prove the following
more general result.

Lemma 2.6. Let p € (1,00), and let f: I — L,(p), g: I — Ly(p) and S: I — L(L,(1))
be logarithmically convex. Then

(a) I 3t~ (f(t),9(t)ppy € R is logarithmically convex.

(b) I >t S(t)f(t) € Ly(p) is logarithmically convex.

(c) It (S(t)f(t),9(t))py € R is logarithmically convez.

Proof. (a) follows from Lemma 2.4(b) and the positivity of the linear operator Li(u) >
[ [fdueR.

(b) It follows from Proposition 2.5 that I 3 ¢t — S(t)) € L(Ly(n)) is logarithmically
convex. Therefore, by part (a), I > t — (S(t)f(t),h)py = (f(t),S(t)h)p,y € R is
logarithmically convex, for all h € L,/ (1), and the assertion follows by Proposition 2.5(a).

(c) follows immediately from parts (a) and (b). O

Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. Fix t > 0. Forn € Nlet V,, := (V An)V (—n). It follows
from [Voi88, top of p. 121] and Proposition 2.5 that [0,1] > 6 — Ty, (t) € L(L,(n))
is logarithmically convex. Therefore, [0,1] 3 0 — Tpy(t) = s-lim, oo Thv, (t) =: S(0) €
L(L,(p)) is logarithmically convex. (Note that 0V is T-admissible for all § € [0, 1],
by [Voi88, Prop. 2.3].)

To prove the theorem we now show that [0, 1] 3 6 — ||S(0)]|py—q¢ € R is logarithmically
convex for any logarithmically convex function S': [0, 1] — L(Ly(u)) with [[S(5)|p, g, < 00
for j = 0,1. Let p,¢ € S(u)4, where S(u) denotes the vector space of simple functions
on (€, p). Define f:[0,1] — Ly(u) by f(0) = @P1 . and g: [0,1] — Ly (u) by
g(0) = Y%1.. (The indicator functions are only needed for the cases py = oo,
qy = 00, respectively.) Then f, g are logarithmically convex, so Lemma 2.6(c) implies that

[0,1] 3 6 — (S(0)f(0), 9(0))py € R
is logarithmically convex. It easily follows that

0.1]56 = sup (5 ()" Lpto), ¥ 1 s}y € R
@,

is logarithmically convex as well, where M := {p € S(u)+; ||¢|l1 < 1}
To complete the proof, it remains to observe that for ¢,r € [1,00] and a positive
operator B € L(L,(x)) one has

IBllgsr = sup (B Ljyso), 0" Liyos)) o
ppeM
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To see this identity, note that for ¢ < oo the set {oY 91,05 ¢ € M} = {h € S(p)s;
|hlly < 1} is dense in {h € Ly(u)4; [|hlly < 1}. If ¢ = oo then {@V>®1,4q; 0 € M} =
{14; A measurable, p(A) < oo}, and for all h € L,(p)4 with |||l < 1 there exists an
increasing sequence (A,) of measurable sets of finite measure such that A < lim,, o 14, .
Moreover

|Bfll, = 51615<Bf,w”’”'1[w¢01>p,p' (f € Ly(p)+),

where in the case r = oo we use the fact that the set [Bf # 0] is o-finite; note that for
r =1 the above equality reads ||Bf||y = sup{ [, Bf du; A measurable, u(A) <oo}. O

2.3 Weighted ultracontractivity estimates for perturbed Cy-semi-
groups on Ly

In this subsection let K = C, and let (€2, 1) be a measure space. The main result is the

next theorem; we state and prove it in greater generality than actually needed for showing
Theorem 1.1.

Note that, for a positive Cy-semigroup 7" on Lo(p) and measurable V: Q — R, the
potential V' is T-admissible if pV is T-admissible for some p > 1, by [V0i88, Prop. 2.3].

Theorem 2.7. Let p: Q@ — (0,00) be measurable, and let T be a positive self-adjoint
Co-semigroup on Lo(p) satisfying

™ T ()™ l1soe < et 7™, [|p T(£)p" |22 < ' (t>0, a €R)

for somec,v > 0. Let V: Q — R be measurable, and assume that there existp > 1, M > 1
and r > 1 such that pV is T-admissible, | T,y (t)|l2—2 < 1,

10Ty (D% o < Me™, 0Ty (9 lowmroe < M (>0, a > 0).
Then there exists ¢ > 0 such that
1o~ Ty (£)p°||1500 < @t (14 (r — 1)a2t)y/2pea2t (t>0, aeR).

We first show an extrapolation result that extends [Cou90, Lemme 1], for semigroups
that are not necessarily self-adjoint; in the proof of Theorem 2.7 it will be applied to the
semigroup t e_C“Qtp_aTv(t)pa.

Proposition 2.8. Let T be a one-parameter semigroup on Lo(p). Assume that there exist
1<p<qg<oo,c,v>0,M>=1andw >0 such that

1Tl S M, (T (O)lloosoo < Me, (T (E)]lpsg < ct™F77 (2> 0).
Then T is ultracontractive,
1T ()10 < (1 +wt)/1 (¢ >0),

with a constant ¢ > 0 depending only on p,q,c,v and M.
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Proof. (i) In the first step we show that

T 1y S cot™ (> 0), (2.4)

with ¢ = 2°/9c*M, a = ilil. (Actually this is the first step in the proof of the
extrapolation result [Cou90, Lez;m(ile 1], except that there no explicit constant ¢y is given.
Since it will be crucial for us that ¢y depends only on p,q,c,v and M, we present the
extrapolation argument in full detail.)

Fix f € L1 N Lo (), ||f||1 < 1 and tg > 0. Since by assumption || 1(t)]],—q < V(52
for all t > 0, there exists ¢, > 0 (depending on f and ty!) such that

ITA)fllqg < ot (0<t<ty);

we choose the minimal constant ¢y making this estimate valid. Let 6 € [0, 1] be such that
1—9 + 2 5, ie. z% = g. Then by Holder’s inequality

I7(t/2) 1, < IT@/2) FIROT(E/2) £l < M0 (2/2) "/

and thus

1T flla < NTE/ 2ol TE/2) F

c(t/2) ™5 MUOEE (1/2) P = M0 2/ a I

NN

for all 0 < t < tg. By the choice of ¢, it follows that ¢y < ecM 1_969 2v/7" and hence
&% < eM792v/4 . Thus (2.4) is valid with ¢y = 207/ c* M, o = L5 = il T as asserted.

(ii) The one-parameter semigroup S on Lo(p) defined by S(t) := e “'T'(t)* satisfies
1S(H)]l1isr < M and ||S(t)]lgop < ct =3 for all £ > 0. Applying step (i) to S (and

noting + — 1 =1 _ i,) we obtain
p q q D

1T lpsoe = [T @) 1oy < xt™Pe (¢ > 0),

with ¢; = 20/PcP M, B = 119 . By the Riesz-Thorin interpolation theorem we infer that
IT(O)llg00 < NTONZLNTONHL < eot™/%e (&> 0), (2.5)

with ¢y = &/*M~P/4. Combining (2.4) and (2.5) we conclude that
T () 12500 < NT(L = D) 1 ITED gm0 < co((L—)t) /7 - cy(et) /e
forallt >0, e € (0,1). For e :=1/(2 4 wt) (< 1/2) we obtain
1T ()10 < 027777 - 2(2 + wit) /e (t >0),

and the asserted ultracontractivity estimate follows, with ¢ = 2"ecycs. O]
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In the proof of Theorem 2.7 we will use the following result to show an Ls-bound for

the operators p~*T,y (t)p*.

Proposition 2.9. Let p: Q — (0,00) be measurable, and let T be a positive self-adjoint
Co-semigroup on Lo(p) satisfying

P T (1)p" |22 < Me™™™ (>0, a €R)

for some M > 1, w € R. Let V:Q — R be T-admissible, and assume that Ty is
contractive. Then
I~ Ty (£)p*[lase < e (20, a €R).

Proof. Let n € N and V,, :== V V (—n); then the assumption implies that
P Tv (D)9 |22 < M HOFIE (120, a €R).

Moreover, Ty, is contractive because Ty, < Ty, and Ty, is self-adjoint. Thus Ty, is an
analytic semigroup of angle 7, |7y, (z)|| < 1 for all z € C,. Now [Vogl9, Prop. 2.3]
yields the estimate ||p=@Ty, (£)p®||22 < e’ for all t > 0 (independent of n!), and letting

n — oo we obtain the assertion. O]
The next result deals with strong continuity and admissibility for weighted semigroups.

Proposition 2.10. Let p: Q — (0,00) be measurable, and let T' be a positive Cy-semigroup

on Lo(p) satisfying
I T(Opllass < Me* (¢ > 0) (26)

for some M > 1, w e R.

Then p~*T(t)p extends to a bounded operator TP(t) on Lo(u), for all t > 0, and the
family (T?(t))i=0 thus defined is a Cy-semigroup on Lo(p). Moreover, if V: Q — R is
bounded from below and T-admissible, then V is T?-admissible, (T?)y = (Tv)".

Proof. For t > 0 the operator p~'T(t)p is defined on the dense subspace dom(p) = {f €
Lo(u); pf € Lo(p)} and extends by continuity to a bounded operator T%(t) on La(u),
by (2.6). It is easy to see that 7% is a semigroup; we show that it is strongly contin-
uous, arguing as in [Voi92, proof of Prop. 1]. If f € dom(p) and g € dom(p™'), then
t— (T*(t)f,9) (= (T(t)pf,p~"'g)) is continuous. The bound (2.6) implies that the conti-
nuity carries over to all f,g € Lo(). Thus, T* is weakly continuous and hence strongly
continuous; see [EnNa00, Thm. 1.5.8].

For bounded V' the identity (77)y = (Ty)” follows from the Trotter product formula
stated in [EnNa00, Exercise I11.5.11]. In the case of unbounded V' > 0 we infer that

(T7)y (t) = s-im(T?)ypn(t) = s-im(Tvpn)?(t) = (Tv)°(t) (1= 0);

n—o0 n—oo

then as above, the strong continuity of T} implies that (7)” (and hence (T7)y ) is strongly
continuous, so V' is T”-admissible. The assertion in the general case follows similarly. [
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Now we can turn to the proof of Theorem 2.7.

Proof of Theorem 2.7. By Proposition 2.9, the assumed estimates ||T,v (¢)|l2—2 < 1 and
1o~ T (t)p*||22 < € (t > 0, a € R) imply that

o Tow ()P 22 < € (t>0, @ €R). (2.7)

Now fix @ > 0. Let n € N and V,, := V' Vv (—n). Applying Proposition 2.10 with p* in
place of p, we see that

T

P,

() = e T (t>0)

defines a Cy-semigroup 7, , on Lo(p). Moreover, for s € {1,p} the potential sV}, is T}, »-
admissible, and (T}, ).y, (t) = e p=*T,y, (t)p® on dom(p®) for all ¢ > 0.
Let ¢ := 2p and observe that

1 1/p 1 1 1/p 1

q 1 2’ g 2

Note that |[(7),4)(t)|isee < ct™” by assumption. The inequalities Ty, (t) < T,v(t)
and (2.7) imply that ||(T),4)pv, (£)||2m2 < 1. Thus, using Theorem 2.3 we obtain

1 / 1 12 Yy /
1 Tpe)v llg—a < 1) O 1 Ty D137 < P27 (8> 0).
Moreover, since Ty, < Ty, the assumptions imply
I(Tpe)ve i1 < M, [(Tha)ve () |oosoo < M (¢ > 0).

Thus, applying Proposition 2.8 to the semigroup (7, )y, we obtain
e 0Ty, ()% 1 soe < & (14 (r — D)™ (£ >0),

with a constant ¢ > 0 depending only on p,c,v and M. Now the assertion follows by
taking the limit n — oo. ]

2.4 Kernel estimates for Schrodinger semigroups with exponen-
tially weighted L;-bounds

In this subsection we show the kernel estimate (1.4). Throughout let  C R? be open, Ap
the Dirichlet Laplacian on 2 and 7" the generated Cy-semigroup on Lo (£2). It is well-known
that 7" is dominated by the free heat semigroup T%" on Ly(R%), i.e., T(t)(1of) < T®'(t)f
for all + > 0 and all 0 < f € Ly(R?); see, e.g., [Ouh05, Prop. 4.23]. For & € R? let
pe: 8 — (0,00) be defined by pe(z) := €& (z € Q). Let V: Q — R be measurable and
assume that there exists o € (0, 1) such that

/Q Vilufde < ol—Apu,u) (1 € dom(Ap)): (2.8)

12



note that then V' is T-admissible by Proposition 2.2.

Further, let £ € R?, and for t > 0 let k; be the integral kernel of T'(t). Then the integral
kernel k¢, of pgT(t)pg1 is given by ke (7,y) = @ ¥k, (z,y), and since T is dominated
by the free heat semigroup, we obtain

ke (2, y) < (4t) =28 v —lomylP /4t — (grp) =2 lEPP oy —20€ /41 (r,y € Q). (2.9)
It easily follows that
1o () pg lpp < € (20, p € [1,00)). (2.10)
Now we can prove the kernel estimate (1.4).

Theorem 2.11. Let (2.8) be true, and assume that there exists M > 1 such that
0Ty (o7 o < MU (20, € € RY).
Then for every t > 0 the operator Ty (t) has an integral kernel kY € Loo(2 x Q) such that
0 < kY (z,y) < ct~W2elemvl?/4 (a.e. z,y € Q)

for some ¢ > 0 independent of t.

Proof. Without loss of generality let K = C.
It follows from (2.9) that

1peT (1) pg (100 < (4mt) ™25 (1> 0, ¢ € RY);
Expressed differently,

e TP 1500 < (Amt) ™2™ (1> 0, BER)
for all £ € R? with |¢] = 1. Moreover, by (2.10) we have

log T e <™ (120, FER)
for all £ € R? with |¢] = 1.
Let p :=1/a (> 1). Then, by (2.8) and Proposition 2.2, the potential pV" is T-admissible
and T,y is contractive. Since
o Ty (pe i < M (20, BER)

for all £ € RY with |¢] = 1 by hypothesis and thus also

e “Tv (1) p |l < Me™t (£ =0, BER)

13



by duality and the self-adjointness of Ty, we can now apply Theorem 2.7 (with r = 1) and
conclude that there exists ¢ > 0 such that

e Ty (1) pl 100 < ct™2e™ (£ >0, BER)

for all € € R? with [£] = 1, i.e., [|peTv (£)pg ' [[1-00 < ct=%2el€ for all t > 0 and all € € R%.
Hence, the Dunford-Pettis theorem implies that for every ¢ > 0 the operator Ty (¢) has an
integral kernel k' € Loo(Q x Q) such that

0 < kY (z,y) < ct= Y2 Elev)ell (a.e. z,y € Q)

for all £ € R%. The assertion now follows from the well-known Davies trick by putting
{=(z—y)/2t. O

3 Kernel estimates for Schrodinger semigroups: the
boundary term

In this section we prove the kernel estimate (1.5). We apply Theorem 2.7 to a weighted
Schrodinger semigroup on the positive half-space provided with the weighted measure
22 dr and then use Davies trick. In order to be able to apply Theorem 2.7, we need to
show an exponentially weighted ultracontractivity estimate for this semigroup, which is
topic of Subsection 3.2. The kernel estimate (1.5) is also shown in Subsection 3.2.

3.1 Li-contractivity and ultracontractivity of the heat semigroup
on the positive half-space with weight z;

In this subsection let

0 {E0,00) ifd=1,

0,00) x R4-1 if d > 2.

Let T be the Cy-semigroup on Lo(£2y) generated by the Dirichlet Laplacian on €, and
let m: Qp — (0,00) be defined by m(x) := x; (x € ). As in Lemma 2.1 we define the
unitarily transformed semigroup T™ on Lo(Q, m2\9) by T™(t)f := m~'T(t)mf, where
A is the Lebesgue measure on €)y. We show that the semigroup 7™ satisfies exponentially
weighted L;- and ultracontractivity estimates on (Qg, m?\?). Later, in Section 4, we will
use these estimates to show corresponding estimates for the perturbed semigroup (77)y,
in dimension d = 1.

We will use the fact that for every t > 0 the operator T'(t) has the integral kernel
ki Qo x Qo — (0,00) defined by

ki(a,y) = (dmt) "2 (eTlomwlP /At _ mlsamulPaty gy € Q)

14



where S : Qy — R? is defined by Sx := (=1, 29, ...,24). This can be seen by a reflection
principle. Observe that

ki(x,y) = (4t) 42 le—vl?/4 (1-— e_x”’”/t) (x,y € Q). (3.1)
Thus, by the elementary inequality %(1 AT)<1—e"<1AT (r>=0), we have
L1 A ) (drt) =R () < (1A T (drrt) 2l ul /At (3.2)

for all z,y € Q.
To show that T satisfies exponentially weighted Li-estimates, we will use the following
properties of the kernel k;.

Lemma 3.1. (a) Lett > 0 and y € Q. Then

(b) Lett >0, y € Qy and £ € RY. Then

/ ﬂeﬁ'(l’—y)kt(x’ y) dr < 9d/2+1 2[¢[*t
00 Y1

Moreover, if & < 0, then

/ ﬂef’(x_y)kt(:v,y) dr < €€’
Q N1

Proof. (a) Note that in the case d > 1 we have

(
/ 1
hn
/ 47Tt 1/26—(731—2/1)2/‘“(1 _ e—xlyl/t)/ (47Tt)—(d—1)/26—|5—§\2/4t dz dx,
Rd-1
_/ (4 t)” 1/26—(331—?;1)2/415(1 _ e—$1y1/t) dry
0o Y1

for all t > 0 and all y = (y1,7) € (0,00) x R*! = . Hence, we may assume that d = 1.
Now let t,y € (0,00). Then

/ fk‘t(x,y) dx = (47rt)_1/2y_1(/ xe_($_y)2/4tdx—/ xe_(_w_y)2/4tdx).
o Y 0 0

oo 0
_ / L / e~V gy
0 —00

15
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we conclude that

/ k() de = (drt) 2y / we T iy = 4y T2y / (z +y)e =4 dz
o Y B

—00

= (47rt)_1/2/ e F My =1,

(b) We observe that the Peter-Paul inequality (i.e. ab < 3(va?+~71b?) for all a,b € R,
~v > 0) implies

€ -y <AePer -yl (r ey

Moreover, since the function [0,00) > r +— 1 —e™" € [0,00) is concave and takes the
value 0 for r = 0, we have that

Using these inequalities we estimate

2 [ B St (1 e
Q0 Y1

< 2U2(gp) /22l / L1 o=yl /8t 9(1 _ gmmn/2t) gy
Q0 Y1

o [ o)
Q

0 Y1

This completes the proof of the first assertion of (b), by part (a).
For the proof of the second assertion we put

G(§) = (47Tt)_d/2/ %e—lz—y2/4t+£~(z—y)—§|2t<1 _ e—wlyl/t) dr (€ € Rd);
Qo

we have to show that G(§) < 1if & < 0. Let F: RY — [0,00) be defined by F(z) :=
(47Tt)_d/2%(1 — e mwi/tyif p € Qp and F(x) := 0 if 2 € R\ €. Then, using the identity

1 1
o=y + € (=) — € = — e — y — 261 (33)

and a change of variables, we can rewrite G(§) as

G = /Q F(m)e—\x—y—2£t|2/4t dr = / Flz+y+ 2§t)e_|z‘2/4t dz (€ € RY).

R4
Therefore, since F' is monotone increasing in the z;-variable and F(z) = F(x,0,...,0)
for all z € RY G: R? — [0, 00) is increasing in the & -variable and G(§) = G(&,0,...,0)
for all ¢ € R which in turn implies that G(£) < G(0) for all £ € RY, & < 0. Now
G(0) = Jo, Stke(z,y)dz = 1 by part (a), so we conclude that the asserted estimate
G(&) < 1 holds for & < 0. O
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Now we turn to the proof of the exponentially weighted L;- and ultracontractivity
estimates for T™.

Proposition 3.2. (a) Let £ € R? and t > 0. Then

lm ™ peT (1) g 'l Ly (merdy— Ly (m2rd)y < pd/2 Lt

Moreover, if & < 0, then

T 52
||m pé ( )pé m“L ”L —L1(m | |

(b) Let £ € RY and t > 0. Then

Hm_lpET(t)pg_lmHL1(m2/\d)—>Loo(m2)\d) < (47T)_d/2t_(d/2+1)€|€‘2t.

Proof. (a) For t = 0 there is nothing to show, so we assume that ¢ > 0. Then k; is the
integral kernel of T'(t); hence for f € L;(m2)\¢) with pglmf € Ly(Qp) we obtain

Hm1p§T(t)p€1mf”L1(m2>\d)</ / wy e k(@ y)e Myl f(y)] dy d(m? A7) (x)

Qo J Qo
/ / L€y (2,y) da f(y) dm*AY) (). (34)
Q0 J0 Y

Consequently, the assertions of (a) follow from Lemma 3.1(b).
(b) Let f € Li(m?\?) be such that pglmf € Ly(f). Then we estimate, using (3.2) for
the first and (3.3) for the second inequality,

1
[m~ peT(p mf ()] < | —— - 2 (dt) Rl ()] d(m? A7) (y)
0 11t
< (47T)_d/2t_(d/2+1)€‘§|2t||f||L1(m2>\d) (a.e. z € Q). O

Remark 3.3. Note that Proposition 3.2(a) with £ = 0 implies that 7™ is L;-contractive.
Actually, it follows from the identity (3.4) and Lemma 3.1(a) that 7™ is even stochastic,
ie. HTm(t)fHLl(mQ)\d) = HfHL1(m2)\d) for all f € Ll N LQ(mQ)\d)+.

3.2 Kernel estimates for Schrodinger semigroups with weighted
L1-bounds on the positive half-space

Throughout this subsection let €2y, m and p; be defined as in Subsection 3.1, and let
T be the Cy-semigroup on Ly(€)y) generated by the Dirichlet Laplacian Ap on €. Let
V: Q0 — R be measurable, and assume that V' satisfies the form smallness condition (2.8)
for some a € (0,1), with Q = Q. We will now show the kernel estimate (1.5) and then
derive the kernel estimate (1.6).

17



Theorem 3.4. Let (2.8) be true, and assume that there exists M > 1 such that
_ — 2
lm ™" peTy () pg 'l 1y (m2ady 1y (meady < Ml (t=0, (€RY, & >0),
Im ™" pe Ty (£)pg |y oty Ly mare) < t> <

Then for every t > 0 the operator Ty (t) has an integral kernel k) € Lo (2 x Q) such that
there exists ¢ > 0 independent of t with

|z — y|?

—lz—y[?/4t
e
4t

a(d+2)/4
0 < k) (z,y) < cayyt™ Y2+ (1 + )

for a.e. x,y € Q.

For the proof of Theorem 3.4 we define the unitarily transformed semigroup 77" on
Ly(Q0, m*A%) by T () f == m YTy (t)mf (t = 0, f € Ly(m?A\?)). By Lemma 2.1, T{" is
a Cyp-semigroup and V' is T™-admissible with (7)y = T{". (Recall from Proposition 2.2
that V' is T-admissible.)

Proof of Theorem 3.4. Without loss of generality let K = C.
Let £ € R |£| = 1. By Proposition 3.2(b) we have

Hpg_BTm(t)p?||L1(m2>\d)—>Loo(m2)\d) < (4r) 42 (/24D 5% (t>0, BER).
From (2.10) we deduce that
T () pl < P >0 R
||p§ ( >p§||L2(m2)\d)—>L2(m2)\d) X € ( = U, B & )

since Lo(m?\) o f + mf € Ly(0,00) is an isometric isomorphism. Moreover, the hy-
potheses imply that

— m 2
||Pgﬁ(T )V(t)pg||L1(m2>\d)—>L1(m2)\d) < M (t=0, p>0)
if & >0, and
||p§_B(Tm)V(t)p?||L1(m2)\d)—>L1(m2/\d) < M€2ﬂ2t (t > O’ ﬂ > 0)
if & < 0; by duality and self-adjointness of (7™)y the latter is equivalent to
”pr(Tm)V(t)pg||Loo(m2)\d)—>Loo(m2>\d) < Mt (t=0, 8>0)

for & > 0.

Let p := 1/a (> 1). Then pV is T™-admissible and (17"),y is contractive, by Propo-
sition 2.2 and Lemma 2.1. Hence, Theorem 2.7 implies that there exists ¢ > 0 such
that

”prT\T/n(t)pg||L1(m2)\d)—>Loo(m2>\d) < Ct_(d/2+1)(1 + 52t>(d/2+1)/2p662t (t > 07 6 S R)v
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forallz € RY, & >0, [£] =1, ie.,
e T (1)Pg M|y (meat) s Lo (maaty < b ™ WD (L 4 |22 @H AP (1> 0, € € RY).

Thus, by the Dunford-Pettis theorem one concludes that for every ¢ > 0 the operator
(T™)y (t) has an integral kernel k,"™™ € Loo(Qp x ) such that

0 < k™ (2,y) < et WP 4 g1 (e 2,y € Q) (3.5)
for all ¢ € R%. Now one easily shows that
K (y) = ak) M@ y)yr (2y € Qo)

defines an integral kernel k) of Ty (¢), and with (3.5) and Davies trick one sees that this
integral kernel satisfies the asserted kernel estimate. O

Remark 3.5. If one could show that
=" 0Ty (8)pg "m0l 2y oty oy mzaey < M (> 0) (3.6)

also holds for & > 0, then with the same proof as above one could infer that k) (z,y) <
cxyy @2 D lr=yl*/4t f51 some ¢ > 0. Thus one would obtain a kernel estimate better
than (1.5), without the polynomial correction factor (1 + (z — y)2/4t)a(d+2)/4. Unfortu-
nately, if & > 0, then one can show that (3.6) already fails for V' = 0 (cf. the proof of
Lemma 3.1(b)).

As a direct consequence of Theorems 2.11 and 3.4 we now obtain the kernel esti-
mate (1.6).

Corollary 3.6. Let (2.8) be true, and assume that there exists M > 1 such that
peTv (£)pg M|y (o) Loy < Mt (>0, € € RY),
— — 2
||m lpgTv(t)pE 1m||L1(m2>\d)—>L1(m2)\d) < M€2‘£| ¢ (t 2 07 f € Rd7 51 > 0)7
<Mt (>0, £eRY £ <0).

||m_1P§Tv(t)Pg_lm||L1(m2Ad)—>L1(m2Ad)

Then for every t > 0 the operator Ty (t) has an integral kernel k) € Lo (2 x ), and
there exists ¢ > 0 independent of t such that

v T1Y1 |z =yl e —d/2 ,—|z—y|? /4t
0<kt(x,y)<c 1A T 1+4—t t e Y

for a.e. x,y € Q.
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4 [qi-estimates for weighted Schrodinger semigroups
on the positive real axis

In this section we prove Theorem 1.1 by showing that the Schrodinger semigroup Ty
on L9(0,00) satisfies the three weighted L;-estimates assumed in Corollary 3.6 if the
potential V' satisfies the integral condition (1.1). The basic tool for the proof of the three
Ly-estimates will be given in Subsection 4.1. In Subsection 4.2 we show a kernel estimate
for the resolvents of the Dirichlet Laplacian on (0,00). This kernel estimate is used in
Subsection 4.3 to show that the operator norm ||V(A — A)7!||;; is small, where A is
the Dirichlet Laplacian provided with the weights that are needed for the application of
Corollary 3.6; the smallness of the operator norm will enable us to apply the results of
Subsection 4.1 to infer the three weighted Li-estimates indicated above.

4.1 Li-estimates for perturbed Cj-semigroups

The basis for our Li-estimates is the following general result for absorption semigroups
on Ll-

Proposition 4.1. Let (Q, 1) be a measure space. Let T be a positive Cy-semigroup on
Li(p) with generator A, and let M > 1, w € R be such that

17151 < Me*" (¢ =0).
Let V: Q — R be measurable, and assume that there exist X > w, « € (0,1) such that
IV = 4 < (4.1)
Then V' is T-admissible,

M
- e (t=0).

1Ty ()l <

o

Proof. By rescaling we can assume without loss of generality that w = 0. For n € N let
Vo= (V. ARV (=n) (€ Loo(p)).
(i) In the first step we show that

M

11—«

le™ Ty, () ]l11 < (t>0, neN). (4.2)
For this, fix n € N and note that ||[V,,(A — A)7!|151 < a by hypothesis. Since Ly(u) >
= Jo|Valfdp € Kis a continuous linear functional, we have

= Ve = A7l < el flls

1

/OO IVae™T(t) fl1 dt =

0

Vi /0 N e MT(t) f dt
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for all 0 < f € Li(u), so by the positivity of T it follows that

/0 Wae T flhdt <allfle (F € L),

Thus, [Voi77, Thm. 1(c)] (applied with B = —V},) implies (4.2).

(ii) Since (4.1) holds with —V~ and —V* in place of V, we conclude from step (i)
and [Voi88, Prop. 2.2] that =V~ and —V* are T-admissible. By [Voi88, Prop. 3.3(b)] the
latter implies that also V't is T-admissible, so that V is T-admissible. Now the asserted
estimate follows from (4.2) since Ty, (t) — Ty (t) strongly for all ¢ > 0. O

We will apply the above proposition in the form of the next result on absorption semi-
groups on L.

Corollary 4.2. Let (2, 1) be a measure space. Let T be a positive Cy-semigroup on La(p)
with generator A, and assume that there exist M > 1, w € R such that

1Tl < Met, || T(H)]|l2e < Me*.

for allt > 0. Let V:Q — R be T-admissible, and assume that there exist a sequence
(Ak)ken in (w,00) converging to w and o € (0,1) such that

Vs —A) o <a (k € N). (4.3)

Then
M

wt t>0).
T ¢ ( )

1Ty ()]l <

Proof. For every t > 0 the operator T'(t)|,nL,(u) extends to a bounded operator 77 (t) on
Ly(p) with || T1(t)[[1-1 < Me**; and the mapping 77 : [0,00) — L£(L1(x)) thus defined is a
positive Cy-semigroup by [Voi92, Thm. 7]. Since (4.3) holds for V,, := (V An)V (—n) in
place of V, it follows from Proposition 4.1 that

M\,

(Ty)v, (D) ]l 151 < e

(t>0, keN)

11—«

for all n € N. Letting k¥ — oo we obtain

=

I(T)v, (D121 < et (t=0, neN).

11—«

Since (Th) v, (t)|£1nLa(w) = TV, (t)| L1112 for alln € N by [Voi86, Prop. 3.1(a)], the assertion
follows by letting n — oo in the last inequality. O]

The final result of this subsection, a version of [Voi86, Proposition 4.6], will be needed
for the proof of Theorem 4.10, a kind of converse to Theorem 1.1. It is more or less known;
we include a proof for the reader’s convenience.
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Proposition 4.3. Let (Q, ) be a measure space. Let T be a positive Cy-semigroup
on Li(p), and let V: Q — (—o00,0] be measurable. Assume T is stochastic, that V is
T-admissible and that M := sup,.q ||Tv(t)|11 < oo. Then V satisfies the global Kato
class condition

/OOOHVT(f)ledtS(M—l)Hle (f € ().

Proof. Since T is a positive semigroup, it suffices to show the estimate for f € Li(p),.
Let t >0, n € Nand V, :=V V (—n). By Duhamel’s formula we have

To()f > Tv(t)f = T(8)f — / T(t — )V, Ty, ()] ds.

Since V,, < 0 and T is stochastic, it follows that

t t
IITv(7f)f||1—||f||1>/0 ||VnTVn(3)f||1dS>/O IVaT (s)f 11 ds.

Letting n — oo and ¢ — oo we obtain [ |[VT(s)f|l1 ds < (M — 1)| f]]x. O

The above argument even shows that [ [|[VTy (¢)f[l1dt < (M —1)||f]l1, but we will
not need this stronger estimate.

4.2 Integral kernel for the resolvents of the Dirichlet Laplacian
on the positive real axis

In this subsection let Ap be the Dirichlet Laplacian on (0,00) and 7" the generated Cj-
semigroup on Ls(0,00). We show that for A > 0 the integral kernel of the resolvent
(A — Ap)~! is given by the Green function Gy : (0,00) x (0,00) — (0, 00),

1
Ga(z,y) = meﬁwyl (1 - e*Qﬁ(my)> .

First note that (A — Ap)™' = [ e MT(t)dt (strong integral), and recall from (3.1) that
for every t > 0 the operator T'(¢) has the integral kernel k;: (0,00) x (0,00) — (0, 00)
defined by

ki(,y) o= (4mt) "M 2elamvP/at (1 — emow/t) (z,y € (0,00)); (4.4)
thus,
(\— Ap)- / / My (o) dtf(y)dy  (ae. 7€ (0,00)

for all f € Ly(0,00) and all A > 0. To conclude that G, is the integral kernel of (A—Ap)~*,
we now show that (0,00) 3 A — Gi(x,y) € (0,00) is the Laplace transform of the function
(0,00) 5t = ki(x,y) € (0,00), for every (z,y) € (0,00) x (0,00).
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Lemma 4.4. Let A\, xz,y € (0,00). Then

G}\(I, y) = / ei)\tkt(xa y) dt.
0

Proof. We observe that

/ e Mk (z,y) dt = / e_’\t(47rt)_1/2e_(x_y)2/4t(1 - e‘wy/t) dt (4.5)
0 0
2v/7 \Jo 0
To compute the two integrals in the right hand side, let r > 0, G(t) := — ftoo e ds
(t € R) and

F(t):zefﬁa(m+ >+e—fﬁG(\/ﬁ—L> (t > 0).

-
NG 2Vt
Using G'(t) = e (t € R), one easily verifies that
F'(t) = VAt 2= (15 0),
Moreover, since G(t) — 0 as t — 0o and G(t) — —/7 as t — —o0, we have
F(t)=0 (t—o0), Ft)— —vme ™ (t—0").

Hence,

/O e e gy % (tliglo F(t) - lim F(t)) - \/§ eV

Note that this identity also holds for r = 0. Using (4.5), we conclude that

_)\tk' dt = —— - \/j< —VAz—y| _ —ﬁ(m—&-y))
| e mte == 5 (e :

L VA ( ~VA(ety—fo
_ e—VXz=yl (| _ o~VA@+y—lo y|>)
2V/A

1
_ —VAz—y| (1 . —2\5(&0/\7;)) e 0
= e e x,y).
2v/A )

Using the elementary inequality 1 — e~ < 7 (r > 0) we obtain the following estimate
for the Green function G that will be crucial in the next subsection:

Gi(z,y) < (x A y)e"mx’y' ()\ >0, x,y € (0, oo)) (4.6)
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4.3 Li-estimates for weighted Schrédinger semigroups on (0, c0)

Let again Ap be the Dirichlet Laplacian on (0,00) and T' the generated Cyp-semigroup on
L5(0,00). Let V: (0,00) — R be measurable and assume that there exists a € (0,1) such
that

/Ooo 2|V (@) de < o (A7)

Our first goal is to show L;-estimates for the Schrodinger semigroup 7y with exponential
weights pe: (0,00) — (0,00) defined by pe(z) := €5 (z > 0), for all £ € R. We achieve
this by first showing that (4.7) implies an estimate of the form (4.3) (see Proposition 4.5(a)
below) and then applying Corollary 4.2 to the semigroup 7% defined as follows, for ¢ € R:
due to (2.10), pgT(t)pgl extends to a bounded operator T¢(t) on Ly(0,00) for all ¢t > 0,
and by Proposition 2.10 the family (7¢());>o thus defined is a (positive) Cp-semigroup on
Lo (0, 00). We denote by Ap ¢ the generator of T¢.

The second goal is to prove Li-estimates for 7y, with exponential weight p, and weight
m: (0,00) — (0,00) defined by m(z) := x (z > 0) on the measure space ((0,00), m?)\).
We will show this in a manner similar to the first goal from above, working with the
unitarily transformed semigroup 7™ on Ly(£y, m?)\) defined by

TS™() f = m™ T ()mf (t >0, f € La(m?N)).
Note that T¢™ is a positive Cy-semigroup satisfying
ITS™ ()| LamenysLamzny < €€F (£=0) (4.8)

since Ly(m?X\) 3 f+— mf € Ly(0,00) is an isometric lattice isomorphism and T is positive
and satisfies (2.10). We denote by Af}, the generator of T¢™.

Proposition 4.5. Let (4.7) be true, and let £ € R. Then
(a) IV(p— Apge) s < a for all p > &2, and
(b) ||V(# - Ag,5)71||L1(m)\2)—>L1(m)\2) < a for all p > 52-

Proof. We assume without loss of generality that V' € L (0, 00). (This can be done since
Vo = [V An € Ly(0,00) satisfies (4.7) for every n € N and, if the assertions of (a)
and (b) hold with V}, in place of V, then they also hold for V' by monotone convergence.)

(a) Let D := {L; N Ly(0, 00); pglf € Ly(0,00)}, and let f € D. Then (u— Apg) ' f =
pe(p — AD)_lpglf since (n — Apg)™" is the Laplace transform of T%. Thus, using the
estimate (4.6) for the integral kernel G, of (u — Ap)~! and the assumption (4.7), we
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estimate
V= 80977l = [ Vol = 80) () d
= [ Wle [ Gt e il dyds
< [ Ul [ e n Vi) de dy

< / ) / " alV(@) dedy < ol £l

Now the assertion of (a) follows since D is dense in Ly N Ly (0, 00).
(b) Let D := {Ly N Ly(m?A); pe ' f € Lay(m?N)}, and let f € D. Then (u— Ap,) ™' f =
m ™ pe(p — Ap) ' pg 'mf, and similarly as in the proof of (a) we estimate

IV (= AB) ™ fllzigmen = /0 Vm™pe(p — Ap) ' p 'mf|(z) d(m?N)(x)

- / V() et / " G, y)e Syl £ ()] dy dmPA) (@)

</ |/ S0V (1 p )|V ()| dir d(mA) ()
< / )| / £V ()] dz d(m?A)(y) < o fllzs sy -

Now the assertion of (b) follows since D is dense in L; N Ly(mA?). O

Remark 4.6. The assertions of Proposition 4.5 have a kind of converse: below we will
show that

[ atv@de = i 1V 800 Mo = Ji 1V 00~ A5 oo
since limy, o1 |V (n — Ap) ' fllr = [T IVT(t) fll1dt for all f € Ly N Ly(0,00)4 (cf. the

proof of Proposition 4.1), it then follows that (4.7) is equivalent to the global Kato class
condition

/0 IO dt <alfls (F € LN Ly(0, 50)).

In the same way one sees that (4.7) is true if and only if

/ IVT™ () fllpymeny dt < all floymeyy  (f € Lo 0 La(m?X)).
0

Remarkably, (4.7) is thus equivalent to both an unweighted and a weighted global Kato
class condition on V.
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The inequality lim, o4 ||V (p—Ap) i1 < J;7 @V (2)] da holds by Proposition 4.5(a).
For the converse inequality first observe that G, (x,y) T zAy as | 0, for all z,y > 0. Thus,
by the monotone convergence theorem and a computation as in the proof of Proposition 4.5
one sees that

lim V(i — Ap) " flls = / i) / T ng)V@)| dedy > || / (@ AV ()| da

n—0+

for all f € Ly N Ly(0,00), with spt f C (n,00). Letting n — oo one obtains the desired
converse inequality.

Noting that iGu(% y) T %2 Az as i} 0 one shows the second equality fooo x|V (z)|dx =
limy oy ||V (= AR) | £y ma2)— L1 (ma2) 10 a similar way, now using f with spt f C (0,1/n).

Using Proposition 4.5(a) with £ = 0, we now show that (4.7) implies the form smallness
condition (2.8).

Proposition 4.7. Let (4.7) be true. Then
/ [V |[u*dr < a{—Apu,u) (u € dom(Ap)). (4.9)
0

Proof. As in the proof of Proposition 4.5 we assume without loss of generality that V' €
Loo(0,00).
Let p € (1,1/a). Then ||—p|V|(A — Ap)~!{|1=1 < pa for all A > 0 by Proposition 4.5(a).
Therefore, since T is contractive and Li-contractive,
1

1 —pa

1T pv (E)[[151 < (t>0)

by Corollary 4.2. Using duality and the self-adjointness of 7"y, we also get the estimate

1
1 —pa

1T pvi () loo—soo < (t > 0).

The Riesz-Thorin interpolation theorem now implies that || 7, v|(t)[|2—2 < 1/(1 — pa) for
all t > 0. Thus —(Ap + p|V]) is accretive, i.e.,

/ p|V||ul? dz < (—Apu,u) (u € dom(Ap)).
0

Letting p — 1/a we obtain the asserted estimate (4.9). O

Now we are ready to prove the Li-estimates mentioned in the beginning of this sec-
tion. We start with the exponentially weighted Li-estimate for Schrodinger semigroups
on (0,00). Note that V' is T-admissible by Proposition 4.7 and Proposition 2.2.

Proposition 4.8. Let (4.7) be true. Let £ € R. Then
1

16Ty (£) pg 1l 1 (0,00 = L1 (0,00) <
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Proof. Recall the definition of T% from the first paragraph of the present subsection.
By (2.10) we have ||T¢(t)|[151 < €& and || T6(t)|lame < €7 for all £ > 0. Now fix
n € Nand let V,, ;= (VAn)V (—n) € Ly(0,00). Then

(T)v, () f = peTv, (Dpg ' f - (E20, f e dom(pg!)) (4.10)

by Proposition 2.10. Moreover, we have ||[V,,(A — Ap¢) i1 < a for all A > &2 by
Proposition 4.5(a). Hence, Corollary 4.2 implies that

1
l1—«

I(T)v, ()]l < (= 0).

Now the assertion follows because of (4.10) and the fact that Ty, (t) — Ty (t) strongly for
all t > 0. ]

The next proposition deals with the exponentially weighted L;-estimates for Schrodinger
semigroups on ((0, 00), m?\).

Proposition 4.9. Let (4.7) be true. Let £ € R. Then

2v/2 o2t

||m_1p§TV(t)p§_1m||L1(m2>\)—>L1(m2)\) < - (t>0)
Moreover, if £ <0, then
_ _ 1 2
|m 1:0£Tv(t)ﬂg 1m||L1(m2)\)—>L1(m2)\) < T Oéeg t (t>0)

Proof. Let TS™ be defined as in the paragraph preceding Proposition 4.5, and recall (4.8).
Moreover, note that Proposition 3.2 yields

ITS™ ()| ymarysra(meny < €2 2eS™ (¢ 2 0),

where ¢ := 2 if £ > 0 and ¢ := 1 if £ < 0. Now one completes the proof by the same
argumentation as in the proof of Proposition 4.8, using part (b) of Proposition 4.5 instead
of part (a). O

With the above weighted Li-estimates at hand we can finally prove our main result.

Proof of Theorem 1.1. It follows from Propositions 4.7 and 2.2 that V' satisfies the form
smallness condition (2.8) and hence is T-admissible. Now Propositions 4.8 and 4.9 show
that Corollary 3.6 is applicable, and this gives the desired kernel estimate. O

To conclude, we prove a kind of converse to Theorem 1.1, for negative potentials.

Theorem 4.10. Let V' be T-admissible, and assume that V' < 0. Further, assume that
for every t > 0 the operator Ty (t) has an integral kernel kY € Lo ((0,00) x (0,00)) such
that (1.2) holds for some ¢ > 0 independent of t. Then

/Ooox|V(x)| dz < 0. (4.11)
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Proof. For t > 0 let k;: (0,00) x (0,00) — (0, 00) be the integral kernel of T'(¢); see (4.4).
One easily sees that

(z —y)° s/t (z—y)?/8t
1+4—t <M€ y (t,fl),y>0)
for some M > 1, so it follows from (1.2) and (3.2) that
kY (z,y) < cM (1 A %) 12 @/ AN/ Mgy (2, y) (a.e. z,y € (0,00))

for all + > 0. With C := (4v/2¢c¢M) V 1 we deduce that Ty (t) < CT(2t) and hence
(T™)y(t) = (Ty)™(t) < CT™(2t) for all t > 0. This together with the Li-stochasticity of
T™ (see Remark 3.3) implies that

Sup (T )v ()| 2y m2a)— Lo m2a) < C. (4.12)

Now T™(t)|1,nLym2y) extends to a stochastic operator T7"(t) on Ly(m?X), and the
mapping T7": [0,00) — L(L;(m?))) thus defined is a positive Cy-semigroup by [Voi92,
Thm. 7]. Further observe that, due to (4.12), we can apply [Voi86, Prop. 3.1(a)] and
obtain the T7"-admissibility of V' and the identity (77")v(t)f = (T™)v(t)f for all f €
Ly N Ly(m?)). Therefore, Proposition 4.3 implies that V' satisfies the global Kato class
condition

| VIO sl < © - Difl (€ L)
0
The asserted inequality (4.11) now follows from Remark 4.6. O
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