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1 Introduction and Main Results

The aim of this paper is to investigate spectral properties of second order el-
liptic operators with measurable coefficients. Namely, we study the problems
of Lp-independence of the spectrum and stability of the essential spectrum.

The problem of Lp-independence of the spectrum for elliptic operators
has a long history going back to B. Simon [30] where the question was posed
for Schrödinger operators. The main breakthrough was made by R. Hempel
and J. Voigt [14] who answered the question in the affirmative for the case
that the negative part of the potential is from the Kato class. This result
was a starting point for many extensions in different directions [2, 9, 10, 15,
17, 25, 26, 27] (the list is by no means complete).

Most of the results deal with cases when the operators are selfadjoint in L2

and can be defined in all Lp, 1 6 p <∞. Under these conditions an abstract
approach based on a functional calculus was developed by E. B. Davies [9].
In [26] Lp-independence was established for the Schrödinger operator with
form bounded negative part of the potential. In this case the operator exists
only in Lp for p from a certain interval around p = 2. The ideas from [26]
were put in a more general context in [25]. Further progress was made by
Yu. Semenov [27] who treated selfadjoint elliptic operators with unbounded
coefficients, adapting the method from [26]. In the non-symmetric case the
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best result known so far is proved in [17] under assumption of a Gaussian
estimate using ideas from [2].

In the present paper we treat second order non-symmetric divergence
form elliptic operators with unbounded coefficients in the main part as well
as unbounded lower order terms. Such operators generate C0-semigroups on
Lp for p from an interval. The semigroup does not map L1 into L∞ and,
as a result, does not enjoy any pointwise Gaussian estimate. All known
approaches break down for this case. In order to treat it we develop a new
approach (as discussed below and in Section 5) which inherits ideas from
[26], [25], [27].

The paper is organized as follows. In this section we describe the frame-
work and state the main results. Their proofs are delegated to the three
subsequent sections. In Section 5 we discuss further applications and ex-
tensions of the results. Some auxiliary propositions and technicalities are
collected in Appendices A, B and C.

In the course of the paper we use the following notation. Ω denotes an
open subset of Rd (d > 1), ‖ · ‖p the norm in Lp := Lp(Ω), L∞c the set
of bounded measurable functions with compact support. 〈·, ·〉 is the inner
product in L2, 〈f〉 :=

∫
Ω
f(x)dx, ‖ · ‖p→q is the norm of a linear operator

acting from Lp to Lq. D(A) denotes the domain of an operator A, Q(A) the
domain of the associated quadratic form (in L2), � is the sign of restriction.

Our main abstract result on Lp-independence of the spectrum is con-
tained in Theorem 1. To formulate it we need the following notion (due to
Yu. Semenov [27]). We say that a function ψ : Zd −→ R

d is L1-regular, if

sup
k∈Zd

∑
j∈Zd

e−|ψ(k)−ψ(j)| =: Mψ <∞.

A function ψ : Rd −→ R
d is called L1-regular, if it is Lipschitz continuous

(i.e. uniformly Lipschitz continuous) and ψ �Zd is L1-regular. Equivalent
descriptions are given in Appendix A.

Theorem 1. Given 1 6 p < q < ∞ let Tp and Tq be closed operators in
Lp(Ω) and Lq(Ω), respectively. If there exist ε > 0, C <∞, λ0 ∈ ρ(Tp)∩ρ(Tq)
and a L1-regular function ψ : Rd −→ R

d such that

(i) (λ0 − Tp)−1, (λ0 − Tq)−1 are consistent,
i.e. (λ0 − Tp)−1 �Lp∩Lq= (λ0 − Tq)−1 �Lp∩Lq ,

(ii) ‖eξψ(λ0 − Tp)−1e−ξψ �L∞c ‖p→q 6 C for all ξ ∈ Rd, |ξ| 6 ε,

then σ(Tp) = σ(Tq), and (λ − Tp)
−1, (λ − Tq)

−1 are consistent for all λ ∈
ρ(Tp) = ρ(Tq).
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Remarks. 1. Although the theorem is stated for arbitrary closed operators
Tp and Tq, in the following we only consider the case when they are generators
of consistent C0-semigroups. Note that condition (i) is trivially fulfilled in
this case for large λ0.

2. We call condition (ii) the “weighted” resolvent estimate. It is ful-
filled, for instance, in case of the validity of a Gaussian estimate for the
corresponding semigroup, with ψ(x) = x (see details in Section 5).

3. It is an obvious but important observation that condition (ii) carries
over to generators of semigroups which are dominated by e−tTp.

Now we pass to our main application of Theorem 1, namely to second
order elliptic operators. First we introduce the framework.

Let a : Ω −→ R
d⊗Rd be a matrix-valued measurable function, b : Ω −→

R
d be a vector-valued measurable function, V : Ω −→ R be a measurable

function.
Consider the second order formal differential expression

T̂ = −∇ · a · ∇+ b · ∇+ V := −
d∑

j,k=1

∂jajk∂k +
d∑
j=1

bj∂j + V.

We assume that the following conditions on the coefficients are satisfied:

Assumptions on a.

A1. ajk ∈ L1
loc(Ω) and ajk = akj for 1 6 j, k 6 d.

A2. a is strictly elliptic, i.e. a(x) > σI in matrix sense, for some σ > 0 and
almost all x ∈ Ω.

Let a be the following sesquilinear form in L2:

a[u, v] := 〈∇u, a · ∇v〉 :=

∫
Ω

d∑
j,k=1

ajk(x)
∂u(x)

∂xk

∂v(x)

∂xj
dx, D(a) := C∞c (Ω).

It is well-known that the form a is closable in L2 and, without additional
assumptions on Ω and ajk, may have infinitely many closed extensions. We
confine ourselves to the ones which are Dirichlet forms. In particular, we
define the following extensions of the form a:

τD := a, the closure of a,

τN [u, v] := 〈∇u, a · ∇v〉, D(τN) := {u ∈ W 1,2(Ω); 〈∇u · a · ∇u〉 <∞},
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τi := τN �D(τi), D(τi) := D(τN) ∩
◦
W 1,2(Ω),

which represent Dirichlet, Neumann and intermediate boundary conditions.
These forms are Dirichlet forms (cf. [12]), so the associated selfadjoint

operators AD, AN and Ai, respectively, generate Markov semigroups. Below
we denote by τ one of the above forms and by A the associated operator.

Assumptions on b and V .

In order to formulate our assumptions on the first order term we need to
introduce the function b · a−1 · b :=

∑d
j,k=1 bjbka

jk where ajk are the entries

of the inverse matrix a−1.

B. b · a−1 · b ∈ L1
loc(Ω) and there exist β, c(β) > 0 such that

b · a−1 · b 6 βA+ c(β) in the form sense.

V. V = V + − V −, V ± > 0, V + admissible with respect to e−tA (i.e.
D(τ) ∩Q(V +) is dense in L2; cf. [31]),
V − 6 γA+ c(γ) in the form sense for some γ, c(γ) > 0.

FS.
√
β + γ < 1.

The last condition ensures form smallness of the lower order terms with
respect to the main part of the operator. This in turn guarantees that the
form

t[u, v] := τ [u, v] + 〈b · ∇u, v〉+ 〈V u, v〉, D(t) = D(τ) ∩Q(V +)

is a densely defined closed sectorial form in L2. By the representation theorem
(cf. [16], Ch. VI, Thm. 2.1) t is associated with an m-sectorial operator T
which generates a holomorphic semigroup e−tT on L2. Let η := 2 −

√
β. It

was shown in [18] (see also [28], Appendix) that

e−tT �L∞c extends to a C0-semigroup e−tTp on Lp

for p ∈ [p−, p+] := [ 4

η+
√
η2−4γ

, 4

η−
√
η2−4γ

] (and p ∈ [ 2
2−
√
β
,∞) in the case

γ = 0, i.e. V − bounded). It is positivity preserving, and also L∞-contractive
if V − = 0.

Theorem 2. Let A be one of the operators AD, Ai, AN defined above. In the
case A = AN assume that Ω satisfies the cone property. Let ψ : Rd −→ R

d be
L1-regular. Assume that there exist constants c0, c1 such that the inequality

∇(ξψ) · a · ∇(ξψ) 6 c0(A+̇V +) + c1 (1)

is fulfilled in the form sense for all ξ ∈ Rd, |ξ| 6 1, where the left-hand side
of (1) is to be read as a multiplication operator. Then σ(Tp) = σ(T ) for all
p ∈ [p−, p+] (and for p ∈ [ 2

2−
√
β
,∞) in the case γ = 0).
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A+̇V + appearing in condition (1) is the operator associated with the form
τV [u, v] := τ [u, v] + 〈V +u, v〉, D(τV ) := D(τ) ∩Q(V +).

Remarks. 1. For the uniformly elliptic case (ajk bounded), condition (1) is
obviously satisfied with ψ(x) = x. The ajk are also allowed to grow to infinity
as V + does. Since ψ can be constant on compact sets, the ajk may have local
L1-singularities on these sets.

2. The result of Theorem 2 carries over to the case of divergence form
elliptic operators containing singular magnetic vector potentials and an ad-
ditional imaginary scalar potential. This follows from Remark 3 after Theo-
rem 1 (see e.g. [19] for the corresponding constructions).

3. The cone property for Ω in the formulation of the theorem is needed
only to ensure the validity of Sobolev’s embedding theorem [1].

The next problem we are going to discuss is the stability of the essen-
tial spectrum, namely we will show that under quite general conditions on
the coefficients of an elliptic operator, its essential spectrum is [0,∞]. This
problem was addressed by M. S. Birman [7], M. Reed and B. Simon [23],
M. Schechter [24], D. E. Edmunds and W. D. Evans [11], R. Hempel [13],
E. M. Ouhabaz [21], and in [22] in a more general setting.

By the essential spectrum we mean here

σess(A) := {λ ∈ C ;λ− A is not a Fredholm operator}.

With this notation, if (λ − A)−1 − (λ − B)−1 is a compact operator then
σess(A) = σess(B) (see [16], Ch. IV, §5.6).

In order to formulate our result we need to introduce the spaces lp(Lq)
and c0(Lq) [8, 29]. We subdivide Rd into the cubes

Qj := {x ∈ Rd ; |x− j|∞ 6
1

2
}, j ∈ Zd,

so that Rd =
⋃
j Qj, |Qj| = 1. Let χk denote the characteristic function

of Qk. Define a mapping Jr : Lrloc,unif → l∞(Zd) by Jrf := ((Jrf)(j))j∈Zd ,
where

(Jrf)(j) := ‖χjf‖r.

Then we say that f ∈ lp(Lq) if Jqf ∈ lp(Zd), with ‖f‖lp(Lq) := ‖Jqf‖lp .
Similarly, c0(Lq) is defined as a subspace of l∞(Lq) by: f ∈ c0(Lq) if Jqf ∈
c0(Zd).

Note the following simple inclusions:

L2 = l2(L2) ⊂ c0(L2) ⊂ c0(L1),

c0(L1) ∩ L∞ ⊂ c0(L2).
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Now we consider a more general operator, however acting on the whole
space Rd. Namely, let ajk, bj, cj, V ∈ l∞(L1), 1 6 j, k 6 d.

Let t0 be the form

〈∇u, a∇v〉+ 〈∇u, bv〉 − 〈cu,∇v〉+ 〈V u, v〉 (2)

with D(t0) := C∞c . We assume that t0 is sectorial and closable.
Let t be a closed extension of t0 such that on D(t)∩W 1,2 it is represented

by (2).

Theorem 3. Let T be the m-sectorial operator associated with t. Assume
that the following conditions are satisfied:

(i) b, c, V ∈ c0(L2),

(ii) (a) D(T ), D(T ∗) ⊂ W 1,2,

(b) there exists a positive definite matrix a0 ∈ Cd ⊗ Cd such that
a− a0 ∈ c0(L2),

or

(ii ′) (a) a is symmetric and strictly elliptic,

(b) the form corresponding to the lower order terms b, c, V is relatively
bounded with respect to the main part of t0, with bound less than
one,

(c) there exists a positive definite matrix a0 ∈ Cd ⊗ Cd such that
a− a0 ∈ c0(L1).

Then σess(T ) = [0,∞).

Remark. If a is strictly elliptic (in the sense that Re
∑

jk ajkξj ξ̄k > ε|ξ|2 for
some ε > 0) and the form corresponding to the lower order perturbations is
relatively bounded with respect to the main part of t0, with bound less than
one, then t0 is closable and sectorial, and condition (ii(a)) of Theorem 3 is
fulfilled.

Theorem 3 is a direct generalization of the main result in [21] and of Ex-
ample 1 from [13]. In the latter paper only selfadjoint operators are studied
while in the former one there is a requirement of ultracontractivity and the
conditions on the coefficients of the operator are much more restrictive. In
[22] E. M. Ouhabaz and P. Stollmann consider more general operators (with
σess not necessarily [0,∞]). Applying their results to our operator leads to ad-
ditional restrictions. In both [21] and [22] unbounded coefficients are treated
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by an approximation method which requires strict ellipticity of the matrix
while the approach described here avoides this. In the case of Schrödinger
operators our result is not optimal, but we did not pursue generalizations in
order to preserve simplicity.

2 A general criterion of Lp-independence

of the spectrum

In this section we prove our abstract criterion of Lp-independence of the
spectrum, Theorem 1. In order to prove the inclusion ρ(Tp) ⊂ ρ(Tq) one
has to show that for λ ∈ ρ(Tp) the operator (λ − Tp)−1 can be extended to
a bounded operator on Lq. This is expressed in the following proposition
which is stated in a more general context.

Let E, F be Banach spaces. We assume that there exists a vector space
G, such that E ⊂ G, F ⊂ G and E ∩ F is dense in both E and F . Let TE
and TF be closed operators in E and F , respectively.

Proposition 4. Assume that there exists a λ0 ∈ ρ(TE) ∩ ρ(TF ) such that
(λ0 − TE)−1 and (λ0 − TF )−1 are consistent, i.e. (λ0 − TE)−1 �E∩F= (λ0 −
TF )−1 �E∩F . Let λ ∈ ρ(TE).

If (λ − TE)−1 �E∩F extends to a bounded linear operator R ∈ L(F ), then
λ ∈ ρ(TF ) and (λ− TF )−1 = R.

Proof. For simplicity let λ0 = 0. By the assumption BE := (λ − TE)T−1
E =

λT−1
E −1 and BF := (λ−TF )T−1

F = λT−1
F −1 are consistent bounded operators

and BE is an isomorphism on E, B−1
E = λ(λ−TE)−1− 1 extends from E ∩F

to a bounded operator on F . From this it follows that BF := (λ−TF )T−1
F =

λT−1
F − 1 is an isomorphism on F and that B−1

E and B−1
F are consistent,

which implies the desired conclusion.

Remark. In [2] Proposition 4 is proved for generators of C0-semigroups.

The main tool needed for the proof of Theorem 1 is the following result

Proposition 5. Let 1 6 p 6 r 6 s 6 q 6 ∞, ε > 0 and ψ : Rd −→ R
d be

L1-regular. For a linear operator A : L∞c (Ω) −→ L1
loc(Ω) define

‖A‖p→q,ε := sup{‖eξψAe−ξψ‖p→q; ξ ∈ Rd, |ξ| 6 ε} (∈ [0,∞]).

(i) There exists C = C(ε, ψ) <∞ such that

‖A‖r→s 6 C · ‖A‖p→q,ε.
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(ii) For ε0 < ε we have ‖A‖r→s,ε0 6 C(ε− ε0, ψ) · ‖A‖p→q,ε.

(iii) There exists c(ξ) = c(ξ; ε, ψ) with c(ξ)→ 0 (ξ → 0) such that

‖eξψAe−ξψ − A‖r→s 6 c(ξ) · ‖A‖p→q,ε for all |ξ| < ε.

Remark. For ψ(x) = x assertions (i) and (ii) are due to G. Schreieck and
J. Voigt [26], (iii) is proved in [25]. For the case of L1-regular ψ assertion (i)
can be found in [27]. Although the proof of the proposition for general ψ does
not differ substantially from the case ψ(x) = x, for the reader’s convenience
we give the detailed proof below.

Note that for bounded Ω the assertion of Proposition 5 is trivial since
then Lr is continuously embedded in Lp, as well as Lq in Ls. In order to
prove the proposition for general Ω we subdivide Ω into the bounded subsets

Qj := {x ∈ Ω; |x− j|∞ 6
1

2
}, j ∈ Zd,

so that Ω =
⋃
j Qj, |Qj| 6 1. Let χk denote the characteristic function of Qk.

For the proof of Proposition 5 we need the following simple lemma which is
a modification of Schur’s Lemma (cf. [34], Thm. 6.23).

Lemma 6. Let 1 6 p 6 q 6∞, A : L∞c (Ω) −→ L1
loc(Ω) be a linear operator.

Let K : Zd × Zd → [0,∞) be symmetric and such that

sup
k∈Zd

∑
j∈Zd

K(j, k) =: CK <∞.

Suppose that

‖χkAχj‖p→q 6 K(j, k) for j, k ∈ Zd.

Then ‖A‖p→q 6 CK.

Proof. Recall from Section 1 the norm preserving mapping Jr : Lr(Ω) −→
lr(Zd) defined for r ∈ [1,∞] by (Jrf)(k) = ‖χkf‖r. For f ∈ L∞c we get

Jq(Af)(k) 6
∑
j

‖χkAχj(χjf)‖q 6
∑
j

K(j, k)‖χjf‖p = IK(Jpf)(k).

Here IK denotes the operator on lq(Zd) defined by

(IKg)(k) :=
∑
j

K(j, k)g(j).
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This implies the estimate

‖Af‖q = ‖Jq(Af)‖lq 6 ‖IK(Jpf)‖lq 6 ‖IK‖lq→lq‖Jpf‖lq .

Since ‖Jpf‖q 6 ‖Jpf‖p = ‖f‖p it remains to show ‖IK‖lq→lq 6 CK . For q = 1
and q =∞ this is readily seen, so the assertion follows from the Riesz-Thorin
interpolation theorem.

Proof of Proposition 5. For x ∈ Qj one has |ψ(x)− ψ(j)| 6 L|x− j| 6 L
2

√
d

(with L the Lipschitz constant of ψ), hence eξψ(x)e−ξψ(j) 6 e|ξ||ψ(x)−ψ(j)| 6
e|ξ|

L
2

√
d =: C|ξ|. (Notice that C|ξ| → 1 as |ξ| → 0.) Therefore

sup
x∈Qj

eξψ 6 C|ξ|e
ξψ(j). (3)

Below we use the shorthand Aξ for eξψAe−ξψ and denote ‖f‖Qj ,p := ‖χjf‖p.
Let j, k ∈ Zd and f ∈ L∞c with supp f ⊂ Qj. Then we have

‖Af‖Qk,s 6 ‖e−ξψAξeξψf‖Qk,q 6 C|ξ|e
−ξψ(k)‖Aξeξψf‖q

6 C|ξ|e
−ξψ(k)‖Aξ‖p→q‖eξψf‖p 6 C2

|ξ|e
−ξψ(k)+ξψ(j)‖Aξ‖p→q‖f‖Qj ,p

6 C2
ε e
−ε|ψ(k)−ψ(j)|‖A‖p→q,ε‖f‖Qj ,r, (4)

where we have chosen ξ = ε ψ(k)−ψ(j)
|ψ(k)−ψ(j)| . Lemma 6 now implies

‖A‖r→s 6 C2
ε‖A‖p→q,ε sup

k

∑
j

e−ε|ψ(k)−ψ(j)| = C(ε, ψ)‖A‖p→q,ε,

which completes the proof of (i), taking into account Proposition A1 from

Appendix A.

Let ξ0 ∈ Rd and |ξ0| 6 ε0. If |ξ| 6 ε− ε0 then |ξ + ξ0| 6 ε, and (i) yields

‖Aξ0‖r→s 6 C(ε− ε0)‖Aξ0‖p→q,ε−ε0 6 C(ε− ε0)‖A‖p→q,ε,

which proves assertion (ii).

To show (iii) let again j, k ∈ Zd, f ∈ L∞c , supp f ⊂ Qj. Recall that

supx∈Qj e
±(ξψ(j)−ξψ(x)) 6 C|ξ|, hence supx∈Qj |e

ξψ(j)−ξψ(x) − 1| 6 C|ξ| − 1. Set-

ting fξ,j := eξψ(j)−ξψf we consequently have

‖fξ,j − f‖Qj ,r 6 (C|ξ| − 1)‖f‖Qj ,r. (5)

Denote M := C|ξ|e
|ξ||ψ(k)−ψ(j)|. It follows from (3) that

sup
x∈Qk

eξψ(x)−ξψ(j) 6M and sup
x∈Qk
|eξψ(x)−ξψ(j) − 1| 6M − 1,
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so we can estimate

‖Aξf − Af‖Qk,s = ‖eξψ−ξψ(j)Aeξψ(j)−ξψf − Af‖Qk,s
6 ‖eξψ−ξψ(j)A(fξ,j − f)‖Qk,s + ‖(eξψ−ξψ(j) − 1)Af‖Qk,s
6M‖A(fξ,j − f)‖Qk,s + (M − 1)‖Af‖Qk,s.

Hence by (4) and (5) we obtain

‖Aξf − Af‖Qk,s 6 Kξ(j, k)‖A‖p→q,ε‖f‖Qj ,r,

where

Kξ(j, k) := C2
ε e
−ε|ψ(k)−ψ(j)|(C2

|ξ|e
|ξ||ψ(k)−ψ(j)| − 1).

By Lemma 6 we conclude

‖Aξ − A‖r→s 6 sup
k

∑
j

Kξ(j, k)‖A‖p→q,ε = c(ξ)‖A‖p→q,ε,

where c(ξ) := supk
∑

j C
2
ε e
−ε|ψ(k)−ψ(j)|(C2

|ξ|e
|ξ||ψ(k)−ψ(j)| − 1). It remains to

prove that c(ξ) → 0 as ξ → 0. (Notice that Kξ satisfies the conditions of

Lemma 6 since Kξ(j, k) 6 C4
ε e
−(ε−|ξ|)|ψ(k)−ψ(j)|.)

Let Bn(k) := {j; |ψ(k) − ψ(j)| ∈ [n, n + 1)}. Then #Bn(k) 6 cnd by

Proposition A1. Using the bound

Kξ(j, k) 6 C2
ε e
−εn(C2

|ξ|e
|ξ|(n+1) − 1) for j ∈ Bn(k)

we obtain∑
j

Kξ(j, k) =
∞∑
n=0

∑
j∈Bn(k)

Kξ(j, k)

6
∞∑
n=0

cC2
εn

de−εn(C2
|ξ|e
|ξ|(n+1) − 1) −→ 0 as |ξ| → 0.

Next we prove the following technical lemma which will be used later on.

Lemma 7. Let X be a Banach space, B an isomorphism of X and A a

closed densely defined operator in X. Suppose that

(i) A is injective, ρ(A) 6= ∅,
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(ii) there exists a core D for A with BA : D −→ R(A),

(iii) A−1BA �D is a bounded operator in X, and its extension BA ∈ L(X)

satisfies the inequality

‖µ(BA −B)(µ− A)−1‖ < ‖B−1‖−1

for some µ ∈ ρ(A).

Then A−1BA is an isomorphism of D(A), in particular B−1 is a bijection

from R(A) to R(A), and B−1
A x = A−1B−1Ax for x ∈ D(A).

Proof. Since A is closed, it is easy to conclude from (ii) that

BAx ∈ R(A), A−1BAx = BAx for all x ∈ D(A).

According to (iii) the operator

(µ− A)A−1BA(µ− A)−1 =
[
µA−1BA− µB +B(µ− A)

]
(µ− A)−1

= µ(BA −B)(µ− A)−1 +B =: B̂

is an isomorphism of X. Hence A−1BA can be represented as the composition

of the isomorphisms µ − A : D(A) −→ X, B̂ : X −→ X and (µ − A)−1 :

X −→ D(A).

Proof of Theorem 1. We only show that ρ(Tp) ⊂ ρ(Tq). The proof of the other

inclusion is almost the same. Let λ ∈ ρ(Tp), set B := (λ− Tp)(λ0 − Tp)−1 =

1 + (λ− λ0)(λ0 − Tp)−1. According to Proposition 5(ii) there exists C1 <∞
such that

‖eξψ(λ0 − Tp)−1e−ξψ‖p→p 6 C1 for |ξ| 6 ε/2.

This yields ‖eξψBe−ξψ‖p→p 6 1 + |λ− λ0|C1 for |ξ| 6 ε/2. Applying Propo-

sition 5(iii) we obtain

‖eξψBe−ξψ −B‖p→p → 0 as |ξ| → 0.

Let Bξ be the continuous extension of eξψBe−ξψ to the whole of Lp. There

exists ε0 ∈ (0, ε/2) such that ‖Bξ−B‖p→p 6 1
2
‖B−1‖−1 for all |ξ| 6 ε0. Since

B is an isomorphism of Lp, it follows that Bξ is also an isomorphism, and

‖B−1
ξ ‖p→p 6 2‖B−1‖p→p for |ξ| 6 ε0. (6)
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Next we apply Lemma 7 to show B−1
ξ �D(e−ξψ)= eξψB−1e−ξψ: In the no-

tation of Lemma 7 we set A = e−ξψ, D = L∞c , µ = −1 and note that

‖(−1− e−ξψ)−1‖ 6 1.

Let f ∈ L∞c , |ξ| 6 ε0. Using (6) we obtain

‖eξψ(λ− Tp)−1e−ξψf‖q = ‖eξψ(λ0 − Tp)−1e−ξψeξψ(λ0 − Tp)(λ− Tp)−1e−ξψf‖q
6 ‖eξψ(λ0 − Tp)−1e−ξψ‖p→q‖B−1

ξ ‖p→p‖f‖p 6 2C‖B−1‖p→p‖f‖p.

Applying Proposition 5(i) we finally obtain ‖(λ − Tp)−1 �L∞c ‖q→q < ∞. Ac-

cording to Proposition 4 this implies λ ∈ ρ(Tq) and the consistency of the

resolvents, since L∞c is dense in Lp ∩ Lq in the sum norm.

3 Lp-independence of the spectrum.

Proof of Theorem 2

We apply Theorem 1 in order to prove Theorem 2. Since the condition (i) of

Theorem 1 is evidently satisfied for generators of consistent C0-semigroups,

for sufficiently large λ0, all we have to prove is the appropriate “weighted”

resolvent estimate. The next theorem serves this purpose.

Theorem 8. Let A be one of the operators AD, Ai, AN defined above. In the

case A = AN assume that Ω satisfies the cone property. Let p, q ∈ [p−, p+]

(p, q ∈ [ 2
2−
√
β
,∞) in the case γ = 0) be such that 0 < 1

p
− 1

q
6 2

d
. Let

ρ : Ω → (0,∞) be such that ρ ∧ n and ρ−1 ∧ n are Lipschitz for all n ∈ N.

Then there exist δ > 0 and C <∞ such that if an inequality of the type

ρ−2∇ρ · a · ∇ρ 6 δ(A+̇V +) + cδ (7)

holds in the form sense then there exists a λ0 ∈ R satisfying

‖ρ(λ+ T )−1ρ−1‖p→q 6 C for all λ > λ0.

For the proof of Theorem 8 we need the following proposition. Recall

that A is associated with the form τ , A+̇V + with τV = τ + V +.

Proposition 9. Let ρ ∈ W 1,∞, i.e. ρ is bounded and Lipschitz. Assume that

there exist constants c0, c1 ∈ R such that

∇ρ · a · ∇ρ 6 c0(A+̇V +) + c1 (8)

in the form sense. Then ρ is a bounded multiplication operator on (τV , D(τV )).

12



Proof. First, observe that ρ is a bounded multiplicator onQ(V +). For τ = τN
or τ = τi the assertion follows from the inequality

τ [ρu] 6 2‖ρ‖2
∞τ [u] + 2〈∇ρ · a · ∇ρ, |u|2〉

6 2(‖ρ‖2
∞ + c0)τV [u] + 2c1‖u‖2

2.

To finish the proof for τ = τD, we apply Lemma B4 from Appendix B.

Proof of Theorem 8. In order to prove the theorem it suffices to prove the

estimate

‖ρ(λ+ T )−1ρ−1f‖q 6 C‖f‖p for 0 6 f ∈ L∞c , λ > λ0 (9)

for some C 6∞, λ0 ∈ R.

In the following let λ > c(β)√
β

+ c(γ). Then λ ∈ ρ(−Tp) for p ∈ [p−, p+]

(p ∈ [ 2
2−
√
β
,∞) in the case γ = 0) by [18], Thm. 5.

First, notice that we can reduce the proof to the case ρ, ρ−1 ∈ W 1,∞,

Indeed, let (9) hold for ρn := (ρ∧n)∨ 1
n
. Then ρn = ρ on supp f for sufficiently

large n. ρn satisfies (7) with the same constants since ∇ρn = (∇ρ)χ[1/n6ρ6n].

Clearly, un := ρn(λ+T )−1ρ−1
n f → u := ρ(λ+T )−1ρ−1f pointwise. Therefore

by Fatou’s lemma ‖u‖q 6 lim infn ‖un‖q 6 C‖f‖p. So from now on we

assume without loss of generality ρ±1 ∈ W 1,∞.

Let Tn be the operator associated with the form tn[u, v] := τ [u, v] +

〈∇u, bv〉 + 〈Vnu, v〉 (n ∈ N0), with Vn := V ∨ (−n), D(tn) := D(τV ). Let

f ∈ L∞c . Then un := ρ(λ + Tn)−1ρ−1f → u := ρ(λ + T )−1ρ−1f in L2 (see

e.g. [18], [31]), so passing to a subsequence we can assume that un → u a.e.

Therefore by Fatou’s lemma

‖ρ(λ+ T )−1ρ−1f‖q 6 lim inf
n
‖ρ(λ+ Tn)−1ρ−1f‖q, (10)

and the desired estimate reduces to the case V − ∈ L∞.

In the rest of the proof we distinguish two cases.

Case 1. 1
p

+ 1
q
6 1.

Let f ∈ L∞c , ρ ∈ W 1,∞, λ > c(β)√
β

+ c(γ), V − ∈ L∞ and set u := ρ(λ +

T )−1ρ−1f . Then ρ−1u ∈ D(τV ). We also claim that ρ−1u ∈ L∞. Indeed,

(λ + T )−1 maps L∞c to L∞: Take g ∈ L∞c , then by the second resolvent

identity we can write the representation

(λ+ T )−1g = (λ+ T0)−1g + (λ+ T0)−1V −(λ+ T )−1g. (11)
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The semigroup e−tT0 is L∞-contractive and (λ+ T0,p)
−1 maps Lp into Lq for

0 6 1/p− 1/q < 2/d (cf. [18], Thms. 1 and 4, [28], Appendix). This implies

(λ + T0)−1g ∈ L∞. Moreover, if (λ + T )−1g ∈ Lp, then from (11) it follows

that (λ + T )−1g ∈ Lq for 1/p− 1/q < 2/d. Repeating this argument [d
4
] + 1

times we conclude that (λ+ T )−1g ∈ L∞.

By Proposition 9 we now have 0 6 u ∈ L∞ ∩ D(τV ). Let ν := 1 + q
p′

,

hence (ν − 1)p′ = q and ν > 2. Then uν/2, uν−1 ∈ D(τV ) since they are mul-

tiples of normal contractions of u, and also ρuν−1 ∈ D(τV ) by Proposition 9.

Multiplying the equality ρ(λ+ T )ρ−1u = f scalarly in L2 by uν−1 we obtain

λ‖u‖νν + t[ρ−1u, ρuν−1] = 〈f, uν−1〉. (12)

Claim 1. There exist ε > 0 and c such that

t[ρ−1u, ρuν−1] > ετ [uν/2]− c‖u‖νν . (13)

Under the stated conditions inequality (13) is a standard quadratic esti-

mate. The details of its proof are delegated to Appendix C.

Using (13) we estimate the LHS of (12) as follows

λ‖u‖νν + t[ρ−1u, ρuν−1] > ετ [uν/2] + (λ− c)‖u‖νν
> εσ‖∇uν/2‖2

2 + εσ‖u‖νν + (λ− c− εσ)‖u‖νν
> εσ‖uν/2‖2

W 1,2 > εσCd‖uν/2‖2
2q/ν ,

provided λ > c+εσ =: λ0. In the last step we used Sobolev’s inequality with

the constant Cd, taking into account 1
p
− 1

q
6 2

d
. Applying Hölder’s inequality

to the RHS of (12) we get

εσCd‖u‖νq 6 ‖f‖p‖uν−1‖p′ = ‖f‖p‖u‖ν−1
q .

This completes the proof of (9) with C := (εσCd)
−1.

Case 2. 1
p

+ 1
q
> 1.

We have to treat this case separately since in the above proof ν becomes

less than 2, and one cannot conclude that uν−1 belongs to the form domain.

Instead of (9) we will prove the equivalent estimate

‖ρ−1(λ+ T ∗)−1ρf‖p′ 6 C‖f‖q′ . (14)

As was shown above we can assume without loss of generality that

ρ−1 ∈ W 1,∞ and V − ∈ L∞. Let 0 6 f ∈ L∞c , λ > c(β)√
β

+ c(γ), set
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u := ρ−1(λ+ T ∗)−1ρf . Then ρu = (λ+ T ∗)−1ρf ∈ D(τV ), and Proposition 9

implies u ∈ D(τV ). Let (ν − 1)q = p′, then ν ∈ [2, p′). By Proposition C1

(see Appendix C) and Proposition 9 we have uν/2 = ρ−ν/2(ρu)ν/2 ∈ D(τV ).

Note that

λu+ ρ−1T ∗ρu = f.

Multiplying this equality by uν−1 and integrating over Ω we obtain

λ‖u‖νν + 〈ρ−1T ∗ρu, uν−1〉 = 〈f, uν−1〉.

Claim 2. There exist ε1 > 0 and c1 such that

〈ρ−1T ∗ρu, uν−1〉 > ε1τ [uν/2]− c1‖u‖νν . (15)

The proof is delegated to Appendix C. The final part of the proof is the

same as in Case 1.

Proof of Theorem 2. Set ρ := eξψ, then ∇ρ = ρ∇(ξψ). It follows that

ρ−2∇ρ · a · ∇ρ =
d∑

j,k=1

ξjξk∇ψj · a · ∇ψk

6 c|ξ|2
d∑
j=1

∇ψj · a · ∇ψj,

with a constant c depending only on the dimension d. Therefore by the

assumption of the theorem there exists ε > 0 such that for |ξ| 6 ε the

inequality

ρ−2∇ρ · a · ∇ρ 6 δ(A+̇V +) + 1

holds in the form sense. Notice also that ρ ∧ n = eξψ∧lnn and ρ−1 ∧ n =

e(−ξψ)∧lnn are Lipschitz continuous, so that all assumptions of Theorem 8 are

fulfilled. Applying now Theorem 1 we obtain the result.

4 Comparison of essential spectra

In this section we present the proof of Theorem 3. For this we need some

auxiliary results and simple properties of lp(Lq) spaces.
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First, note that the following Hölder’s inequality holds:

‖fg‖lr1 (Lr2 ) 6 ‖f‖lp1 (Lp2 )‖g‖lq1 (Lq2 ),

where 1
rj

= 1
pj

+ 1
qj
, j = 1, 2. We will use it for the case r = r1 = r2, then

lr(Lr) = Lr. By Sobolev’s embedding theorem we also have

Wm,2 = l2(Wm,2) ⊂ l2(L∞)

for m > d
2
, where l2(Wm,2) is defined analogously to l2(Lq).

Lemma 10. Let h ∈ c0(L2),m ∈ N,m > d/2. Then the multiplicator h :

Wm,2 → L∞ is a compact operator.

Proof. First, let supph be a compact K ⊂ Rd, then h = hχK ∈ L2. The

embedding Wm,2 ⊂ L∞ is compact for bounded domains (see [1], Thm. 6.2).

Therefore χK : Wm,2 → L∞ is compact. The operator h : L∞ → L2 is

bounded, so h : Wm,2 → L2 is compact.

Now let hR := χB(0;R)h. Then hR → h in the operator norm as operators

from Wm,2 to L2. Indeed, let f ∈ Wm,2. Then

‖(hR − h)f‖2 6 ‖hR − h‖l∞(L2)‖f‖l2(L∞) 6 ‖χB(0;R)ch‖l∞(L2)c‖f‖Wm,2 ,

and ‖χB(0;R)ch‖l∞(L2) → 0 by the definition of c0(L2).

This shows that h : Wm,2 → L∞ is a compact operator.

We use the notation |a(x)| for the norm of the operator a(x) : Cd → C
d.

Lemma 11. Let t be the form introduced in Section 1, a ∈ l∞(L1), m >

d/2 + 1. Then Wm,2 ⊂ D(t).

Proof. We only have to show that (C∞c , ‖ · ‖m,2) is continuously embedded

in (t, D(t)). Let u ∈ C∞c . Then ‖u‖l2(L∞) 6 c0‖u‖m,2 and ‖∇u‖l2(L∞) 6
c0‖∇u‖m−1,2 6 c0‖u‖m,2. Therefore

|〈∇u, a∇u〉| 6 ‖|a| · |∇u|2‖1

6 ‖a‖l∞(L1)‖∇u‖2
l2(L∞) 6 c2

0‖a‖l∞(L1)‖u‖2
m,2.

Estimating the lower order terms similarly, we get

|t[u]| 6 c2
0(‖a‖l∞(L1) + ‖b‖l∞(L1) + ‖c‖l∞(L1) + ‖V ‖l∞(L1))‖u‖2

m,2,

which leads to the desired conclusion.
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Proof of Theorem 3. Let τ 0 be the form 〈∇u, a0∇v〉 defined on W 1,2, and

A0 be the associated operator. It is well-known that the spectrum of A0 is

[0,∞) and coincides with the essential spectrum (see [24], Ch. 3, Cor. 3.3).

Therefore it suffices to show that (λ+T )−1−(λ+A0)−1 is a compact operator

(see [16], Ch. IV, §5.6). According to ([22], Prop. 2.2) we only have to show

that both

[(λ+ T )−1 − (λ+ A0)−1](λ+ A0)−k (16)

and

(λ+ A0)−k[(λ+ T )−1 − (λ+ A0)−1] (17)

are compact for some k ∈ N since both T and A0 are accretive and D(T ) ⊂
D(A0 1

2 ). Observe that T and T ∗ have the same form and (17) with T ∗ in

place of T is the adjoint operator to (16). So we confine ourselves to showing

the compactness of (17).

Next we use the quadratic form method in order to obtain a representation

of (17) which will lead to compactness. For u, v ∈ L2 we have (with the

shorthand R = (λ+ A0)−k−1)

〈(λ+A0)−k[(λ+ A0)−1 − (λ+ T )−1]u, v〉

= 〈u, (λ+ A0)−k−1v〉 − 〈(λ+ T )−1u, (λ+ A0)−kv〉

= (λ+ t)[(λ+ T )−1u,Rv]− (λ+ τ 0)[(λ+ T )−1u,Rv]

= 〈∇(λ+ T )−1u, ((a− a0)∇+ b)Rv〉+ 〈(λ+ T )−1u, (c̄∇+ V )Rv〉

= 〈[(a− a0)∇R]∗∇(λ+ T )−1u, v〉+ 〈[bR]∗∇(λ+ T )−1u, v〉

+ 〈[c̄∇R]∗(λ+ T )−1u, v〉+ 〈[V R]∗(λ+ T )−1u, v〉,

taking into account Lemma 11. This implies

(λ+ A0)−k[(λ+ T )−1 − (λ+ A0)−1]

= [(a− a0)∇R]∗∇(λ+ T )−1 + [bR]∗∇(λ+ T )−1

+ [c̄∇R]∗(λ+ T )−1 + [V R]∗(λ+ T )−1. (18)

By Lemma 10 the factors in the square brackets in the RHS of (18)

are compact for k > d/4. Using the assumption D(T ) ⊂ W 1,2 and the

closed graph theorem one concludes that ∇(λ+T )−1 is bounded, so the first

assertion of the theorem follows.
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Now let a be symmetric and strictly elliptic, that is a(x) > εI for some

ε > 0. Then we can rewrite the first term of the RHS of (18) in the form

[a−
1
2 (a− a0)∇R]∗[a

1
2∇(λ+ T )−1]. (19)

Note that the second factor of (19) is bounded, so for the second assertion

of the theorem it remains to show that a−
1
2 (a− a0) ∈ c0(L2).

By the next lemma, for x ∈ Rd we have

|a(x)−
1
2 (a(x)− a0)| 6 c1|a(x)− a0|

1
2 + c2(|a(x)− a0| ∧ |a0|).

But |a−a0| 12 ∈ c0(L2) and |a−a0|∧ |a0| ∈ c0(L1)∩L∞ ⊂ c0(L2), so we arrive

at the desired conclusion.

Lemma 12. Let A,B ∈ Cd ⊗ Cd be positive symmetric matrices, A > ε in

the matrix sense. Then

|A−
1
2 (A−B)| 6 c1|A−B|

1
2 + c2(|A−B| ∧ |B|), (20)

where c1 =
√
|B|
ε
∨ 1, c2 = d2−d√

ε
.

Proof. Since A is symmetric and the assertion is invariant under unitary

transformations, we assume that A is diagonal. Let C denote the matrix on

the LHS of (20), then cjk = a
−1/2
jj (ajjδjk− bjk). The off-diagonal entries of C

are easily estimated by

|cjk| = a
−1/2
jj |bjk| 6 ε−1/2(|A−B| ∧ |B|),

since bjk is an entry of A−B as well as of B.

The matrix norm of the diagonal part Cdiag of C is the greatest of the

absolute values of the diagonal entries, so without loss of generality |Cdiag| =
a
−1/2
11 |a11 − b11|. By distinguishing the cases a11 6 b11 and a11 > b11 (note

that b11 must be positive) one gets

|Cdiag| 6 c1|a11 − b11|
1
2 6 c1|A−B|

1
2 .

Putting these estimates together yields inequality (20).
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5 Concluding remarks

1. Let e−tT be a C0-semigroup on Lp0(Ω), Ω ⊂ Rd, for some p0 ∈ [1,∞). We

say that e−tT satisfies a generalized Gaussian estimate of order 2m (m > 0)

if there exist q0 ∈ (p0,∞] and constants ε0 > 0, C <∞, ω ∈ R such that

‖eξxe−tT e−ξx‖p→q 6 Ct−
d

2m
( 1
p
− 1
q

)eωt (21)

for all |ξ| 6 ε0, t > 0 and p0 6 p 6 q 6 q0. (We adopt the notion from [25]

where the case m = 1 was studied.) Then by [33] the semigroup extends

to a C0-semigroup on Lp, for p0 6 p 6 q0 (p0 6 p < ∞ if q0 = ∞).

Now representing the resolvent via the semigroup, by (21) we show that the

condition (ii) of Theorem 1 is fulfilled for 1
p
− 1

q
< 2m

d
, p0 6 p < q 6

q0. Therefore by Theorem 1 we conclude that the spectrum of Tp is p-

independent.

Note that (21) is valid for all 1 6 p 6 q 6 ∞ if the semigroup satisfies

the Gaussian estimate pointwise, that is, it has an integral kernel Kt(x, y)

satisfying

|Kt(x, y)| 6 C1t
− d

2m exp(−C2|x− y|
2m

2m−1 t−
1

2m−1 + ωt) (22)

with some constants C1 <∞, C2 > 0 and ω ∈ R.

Estimates of this kind hold, for example, in the following cases

(a) second order uniformly elliptic operators in divergence form

– with real coefficients [3],

– with complex coefficients in dimensions 1 and 2 [5],

– with uniformly continuous complex coefficients in higher dimensions [4];

(b) superelliptic operators of order 2m in dimensions d < 2m [10].

(For more detailed discussions of examples for which (22) is valid, we refer

to [15], [17].)

Moreover, (21) holds in a certain interval around 2, for higher order su-

perelliptic operators for which the Lp-theory is developed in [10], Sec. 7, in

absence of pointwise Gaussian estimates.

2. In Theorem 2 we considered the operator associated with the formal

expression −∇·a·∇+b·∇+V , where b·a−1 ·b and V − are form bounded with
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respect to A with bounds β and γ, respectively, and
√
β+γ < 1. For V − = 0

it is even possible to treat the case 1 6 β < 4 if b · a−1 · b ∈ L1 + L∞. The

operator cannot be constructed via the form method but by approximation

with bounded drifts, for p ∈ [ 2
2−
√
β
,∞) (see [18]). In the same way as it is

done in the proof of Theorem 8 (see (10)) the estimate for the “weighted”

resolvent can be reduced to the case of bounded drifts, so the result on Lp-

independence of the spectrum also holds in this case.

3. Under the conditions of Theorem 3 the second order elliptic operator

T has essential spectrum σess(T ) = [0,∞). Following the argument due

to E. M. Ouhabaz [21], Cor. 3, one concludes from this that σ(T ) \ σess(T )

consists of isolated eigenvalues of finite algebraic multiplicity (see also [16],

Ch. IV, §5).

4. Theorem 3 can be easily reformulated for domains in Rd. The con-

clusion of the theorem then will read as follows: the essential spectra of the

operators with variable and with constant coefficients coincide.

Appendix A

We prove here a proposition which gives a characterization for a function ψ

to be L1-regular.

Proposition A 1. For ψ : Zd −→ R
d the following are equivalent:

(i) ψ is L1-regular,

(ii) supk∈Zd
∑

j∈Zd e
−ε|ψ(k)−ψ(j)| <∞ for all ε > 0,

(iii) there exists C <∞ such that for all unit cubes Q = x + [0, 1]d ⊂ Rd we

have #ψ−1(Q) 6 C,

(iv) there exists C <∞ such that for all x ∈ Rd, n ∈ N we have

#ψ−1(x+ [0, n]d) 6 Cnd.

Remark. In [27], L1-regularity was defined by property (ii) above. It is an

easy consequence of part (iv) of the proposition that there exists K ∈ N such

that

diam ψ(j + [0, Kn]d) > n for all j ∈ Zd, n ∈ N.
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This means that ψ cannot be more than linearly contractive.

Proof of Proposition A1. (i) =⇒ (iii) Let Q ⊂ Rd be a unit cube. Fix k ∈
ψ−1(Q). Then for j ∈ ψ−1(Q) we have ψ(j), ψ(k) ∈ Q, so |ψ(k)−ψ(j)| 6

√
d.

Therefore

#ψ−1(Q) =
∑

j∈ψ−1(Q)

1 6
∑
j∈Zd

e
√
d−|ψ(k)−ψ(j)| 6 e

√
dMψ =: C.

(iv) =⇒ (ii) Let k ∈ Zd. For n ∈ N0 define Bn := ψ−1(ψ(k) + (−n, n)d).

Then |ψ(k)− ψ(j)| > n for j 6∈ Bn. By (iv) we have #Bn 6 C(2n)d, hence

∑
j∈Zd

e−ε|ψ(k)−ψ(j)| 6
∞∑
n=0

∑
j∈Bn+1\Bn

e−εn 6
∞∑
n=0

C(2n+ 2)de−εn <∞.

The implications (iii) =⇒ (iv) and (ii) =⇒ (i) are trivial.

Appendix B

Here we collect some auxiliary facts on Dirichlet forms. We refer to [12], [20]

for main definitions and results of the theory of Dirichlet forms. Recall that

φ : C→ C is called a normal contraction if φ(0) = 0 and |φ(x)−φ(y)| 6 |x−y|
for all x, y ∈ C.

Below we constantly use the following simple proposition (see [16], Ch. VI,

Thm 1.16, [20], Lemma 2.12).

Proposition B 1. Let τ be a closed symmetric form in a Hilbert space H.

Let un ∈ D(τ) (n ∈ N), un → u in H. Suppose that supn τ [un] < ∞. Then

u ∈ D(τ) and τ [u] 6 lim infn τ [un].

The next two propositions will be needed to regularize approximating

sequences in the domain of a Dirichlet form.

Proposition B 2. Let (M,M, µ) be a measure space. Let (τ,D(τ)) be a

symmetric Dirichlet form on L2(M,µ), u ∈ D(τ) and φ a normal contraction.

If (un) ⊂ D(τ) and un → u in (τ,D(τ)), then φ(un) → φ(u) weakly in

(τ,D(τ)). If in addition lim inf τ [φ(un)] 6 τ [φ(u)] then the convergence is

strong. In particular, if φ(u) = u a.e. then φ(un)→ u in (τ,D(τ)).

For the proof we refer to [6]. We use the above proposition for two cases:

a) if u > 0 then φ(z) := |z|; b) if 0 6 u 6M then φ(z) := |z| ∧M .
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Proposition B 3. Let (τ,D(τ)) be a symmetric Dirichlet form on L2(M,µ).

Suppose that u, un ∈ D(τ), u > 0 and un → u in (τ,D(τ)). Then |un|∧u→ u

in (τ,D(τ)).

Proof. By Proposition B2 we have |un| → u in (τ,D(τ)), so without loss of

generality we assume that un > 0. Now τ [|un − u|] → 0 since τ [|un − u|] 6
τ [un − u]. Therefore un ∧ u = 1

2
(un + u− |un − u|)→ u in (τ,D(τ)).

Now we study the form τD introduced in Section 1.

Lemma B 4. (i) Let ρ ∈ W 1,∞. If u ∈ D(τD) ∩ L∞c , then ρu ∈ D(τD).

(ii) D(τV ) ∩ L∞c is a core of the form τV = τD + V +.

Proof. (i) Let τ := τD. Claim. W 1,∞
c ⊂ D(τ).

In order to prove the Claim take u ∈ W 1,∞
c . Let γn be the standard

mollifier. Then vn := u ∗ γn ∈ C∞c (Ω) for sufficiently large n, and vn → u in

L2. Choose a compact set K ⊂ Ω such that supp vn ⊂ K for n > n0. Since

‖∇vn‖∞ 6 ‖∇u‖∞, we have

|∇vn · a · ∇vn| 6 ‖∇u‖2
∞max

i

∑
j

|aij|χK ∈ L1.

Therefore supn τ(vn) <∞, and by Proposition B1 we obtain u ∈ D(τ).

To prove the assertion it suffices to consider 0 6 u ∈ D(τ) ∩ L∞c . Let

ũn ∈ C∞c be such that ũn → u in (τ,D(τ)) as n → ∞. Then un := |ũn| ∧
‖u‖∞ ∈ W 1,∞

c ⊂ D(τ) and un → u in (τ,D(τ)) by Proposition B2. In

particular supn τ [un] <∞.

Choose ϕ ∈ C∞c with 0 6 ϕ 6 1 and ϕ�suppu = 1, then ϕu = u. For

vn := ρϕun ∈ W 1,∞
c we have vn → ρϕu = ρu in L2. Using the Cauchy-

Schwarz inequality we obtain

τ [vn] 6 2‖ρϕ‖2
∞τ [un] + 2‖un‖2

∞τ(ρϕ)

6 2‖ρ‖2
∞τ [un] + 2‖u‖2

∞τ(ρϕ),

which implies that supn τ [vn] < ∞ (note that ρϕ ∈ W 1,∞
c ⊂ D(τ)). Hence

by Proposition B1 we conclude that ρu ∈ D(τ).

(ii) Let 0 6 u ∈ D(τV ) and ũn ∈ C∞c be such that ũn → u in (τ,D(τ))

as n → ∞. Then un := |ũn| ∧ u ∈ D(τV ) ∩ L∞c and un → u in (τ,D(τ)) by

Proposition B3. Also V +u2
n 6 V +u2 ∈ L1, therefore (V +)1/2un → (V +)1/2u

in L2 which proves the assertion.
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Appendix C

Proof of Claim 1. Denote Φ := ρ−1∇ρ and ψ := uν/2, then ψ ∈ D(τ)∩Q(V +).

A straightforward computation shows that

t[ρ−1u, ρuν−1] = 4
ν − 1

ν2
τ [ψ] +

2

ν
〈∇ψ, bψ〉 − 2(1− 2

ν
)〈∇ψ · a · Φψ〉

− 〈Φ · a · Φψ, ψ〉 − 〈Φψ, bψ〉+ 〈V +ψ, ψ〉 − 〈V −ψ, ψ〉. (23)

Using the Cauchy-Schwarz inequality and condition B on b one obtains

|〈∇ψ, bψ〉| 6
√
βτ [ψ] +

c(β)

2
√
β
‖ψ‖2

2. (24)

By condition (7) on ρ one has

〈Φ · a · Φψ, ψ〉 6 δτ [ψ] + δ〈V +ψ, ψ〉+ cδ‖ψ‖2
2.

So similarly to (24) we can estimate

|〈∇ψ · a · Φψ〉| 6
√
δτ [ψ] +

1

2

√
δ〈V +ψ, ψ〉+

cδ

2
√
δ
‖ψ‖2

2,

|〈Φψ, bψ〉| 6
√
βδτ [ψ] +

1

2

√
βδ〈V +ψ, ψ〉+

(
c(β)
√
δ

2
√
β

+
cδ
√
β

2
√
δ

)
‖ψ‖2

2.

Using the above inequalities and condition V on V − for the terms in the

RHS of (23) we obtain

t[ρ−1u, ρuν−1] >

(
4
ν − 1

ν2
− 2

ν

√
β − γ − 4

√
δ

)
τ [ψ]

+ (1− 5

2

√
δ)〈V +ψ, ψ〉 − c‖ψ‖2

2,

where we have taken into account that β, δ < 1. The constant c depends

upon β, c(β), c(γ), δ, cδ. Let ε := 1
2

(
4ν−1
ν2 − 2

ν

√
β − γ

)
. Then ε > 0 by the

conditions of Theorem 8 since ν ∈ (p, q). To complete the proof of Claim 1

one has to choose δ = min{ ε2
16
, 4

25
}.

Proposition C 1. Let T be the operator defined in Section 1. Let 0 6 f ∈
L∞c , λ > c(β)√

β
+c(γ), v := (λ+T ∗)−1f , p ∈ [2, p′−). Then vp/2 ∈ D(τ)∩Q(V +).
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Proof. It is easy to see that v ∈ D(τ)∩Q(V +)∩Lp. Therefore vn := v∧n ∈
D(τ) ∩ Q(V +) ∩ L∞. Since p > 2 the functions v

p/2
n and vp−1

n are multiples

of normal contractions of u, so v
p/2
n , vp−1

n ∈ D(τ) ∩ Q(V +). Multiplying the

equality (λ+ T ∗)v = f scalarly in L2 by vp−1
n we have

λ〈v, vp−1
n 〉+ t∗[v, vp−1

n ] = 〈f, vp−1
n 〉

or

λ〈v, vp−1
n 〉+ 4

p− 1

p2
τ [vp/2n ] +

2(p− 1)

p
〈bvp/2n ,∇vp/2n 〉+ 〈V +v, vp−1

n 〉

= 〈V −v, vp−1
n 〉+ 〈f, vp−1

n 〉.

Using (24), Hölder’s inequality for 〈f, vp−1
n 〉 and the fact that 0 6 vn 6 v ∈ Lp

we obtain

(λ− c(β)

p′
√
β

)‖vp/2n ‖2
2 +

(
4
p− 1

p2
− 2(p− 1)

p

√
β

)
τ [vp/2n ] + 〈V +vp/2n , vp/2n 〉

6 〈V −vp〉+ ‖f‖p‖v‖p−1
p .

Recall that V − ∈ L∞, so that the RHS of the last inequality is finite. Note

also that v
p/2
n → vp/2 in L2. Therefore by Proposition B1 we conclude that

vp/2 ∈ D(τ) ∩Q(V +).

Proof of Claim 2. First notice that ρ−1T ∗ρu = f − λu ∈ Lν , uν−1 ∈ Lν
′
.

Therefore

〈ρ−1T ∗ρu, uν−1〉 = lim
n→∞
〈ρ−1T ∗ρu, uν−1

n 〉 = lim
n→∞

t∗[ρu, ρ−1uν−1
n ],

where un := u ∧ n ∈ D(τ) ∩ Q(V +) ∩ L∞, so ρ−1uν−1
n ∈ D(t∗). As in the

proof of Claim 1 we use the notation: Φ := ρ−1∇ρ, ψ := uν/2, ψn := u
ν/2
n . A

straightforward computation gives

t∗[ρu, ρ−1uν−1
n ] = 4

ν − 1

ν2
τ [ψn] + 2

ν − 1

ν
〈∇ψn · a · Φψ〉 − 〈∇u · a · Φ, uν−1

n 〉

− 〈Φ · a · Φu, uν−1
n 〉+ 2

ν − 1

ν
〈∇ψn, bψn〉+ 〈Φu, buν−1

n 〉

+ 〈V +u, uν−1
n 〉 − 〈V −u, uν−1

n 〉.

¿From this point proceeding along the same lines as in the proof of Claim 1

we obtain the inequality

t∗[ρu, ρ−1uν−1
n ] >

(
4
ν − 1

ν2
− 2

ν − 1

ν

√
β − 2

√
δ

)
τ [ψn] + 〈V +ψn, ψn〉

− (3
√
δ + γ)τ [ψ]− 3

√
δ〈V +ψ, ψ〉 − c‖ψ‖2

2,
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where the constant c depends upon β, c(β), c(γ), δ, cδ. Taking into account

that τ [ψn] → τ [ψ] and 〈V +ψn, ψn〉 → 〈V +ψ, ψ〉 as n → ∞, one can pass to

the limit and complete the proof in the same manner as in Claim 1.
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