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Abstract

We study positive C0-semigroups on Lp associated with second or-
der uniformly elliptic divergence type operators with singular lower order
terms, subject to a wide class of boundary conditions. We obtain an in-
terval (pmin, pmax) in the Lp-scale where these semigroups can be defined,
including the case 2 6∈ (pmin, pmax). We present an example showing that
the result is optimal. We also show that the semigroups are analytic with
angles of analyticity and spectra of the generators independent of p, for
the whole range of p where the semigroups are defined.

1 Introduction and main results

In this paper we continue to study the Lp-theory of second order elliptic differ-
ential operators on an open set Ω ⊆ RN , N > 3, corresponding to the formal
differential expression

L = −∇ · (a∇) + b1 · ∇+∇ · b2 + V

with singular measurable coefficients a: Ω→ R
N ⊗RN , b1, b2: Ω→ R

N , V : Ω→
R. In [24] a quasi-contractive C0-semigroup on Lp := Lp(Ω) is constructed, whose
generator is associated with L. In this paper we study the case of uniformly
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elliptic operators and show that, under some additional restrictions, the range of
Lp-spaces in which one can associate a C0-semigroup with L, can be extended
beyond the interval of quasi-contractivity. We also prove that the consistent
semigroups associated with L on Lp are analytic with angles of analyticity and
spectra of the generators independent of p.

The form associated with the above differential expression is

τ(u, v) := 〈a∇u,∇v〉+ 〈∇u, b1v〉 − 〈b2u,∇v〉+ 〈V u, v〉 (1.1)

on a suitable domain D(τ) responding to the boundary conditions. (Here and in
the sequel, 〈f, g〉 is defined as

∫
Ω
f(x)·g(x) dx whenever f ·g ∈ L1, for f, g: Ω→ C

or f, g: Ω→ C
N measurable.)

Our main interest lies in the case when the semigroup associated with L can be
defined on Lp for p from a proper subinterval of [1,∞). This case of the Lp-theory
of second order elliptic operators has been extensively studied [2, 5, 12, 15, 18,
19, 20, 21]. However, most of the results are related to sectorial forms (especially
to symmetric forms bounded below) and quasi-contractive semigroups. In [24]
a general method of constructing positive C0-semigroups on Lp corresponding
to sesquilinear (not necessarily sectorial) forms in L2 has been developed, and a
precise condition for quasi-contractivity has been established.

It was first observed in [11] that the Schrödinger semigroup with LN/2,weak-
potential can be defined on Lp for certain p outside of the interval of quasi-
contractivity. In [21] this result was extended to uniformly elliptic second order
divergence type operators in RN perturbed by a form bounded potential. Here we
study a general second order differential expression L for a wide class of boundary
conditions.

E.-M. Ouhabaz [17] was the first to establish analyticity of angle π
2

in Lp(R
N),

1 6 p < ∞, for symmetric semigroups satisfying Gaussian upper bounds.
E. B. Davies [5] extended this result to a more general setting of metric spaces
with polynomial volume growth. In [18] analyticity of angle π

2
was first shown for

symmetric semigroups that are defined only for p from an interval in [1,∞), un-
der the assumption of certain weighted estimates. In the present paper we prove
analogous results for general uniformly elliptic second order operators. The result
on p-independence of the spectrum we present here, which is an application of a
criterion from [16], generalizes respective results from [8, 19, 20, 21].

The main tool of the present paper is a technique of weighted estimates anal-
ogous to that used in [19, 5, 18]. For further development of this technique with
applications to Lp-theory we refer the reader to [14, 26].

We recall from [24] the following qualitative assumptions on the form τ .

(a) a ∈ L1,loc, a is a.e. invertible with a−1 ∈ L1,loc, and

| Im ζ∗aζ| 6 αRe ζ∗aζ a.e. (ζ ∈ CN)
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for some α > 0, i.e., a is uniformly sectorial (ζ∗ is the transpose of ζ). Let

as := a+a>

2
. Then

τN(u, v) := 〈a∇u,∇v〉, D(τN) :=
{
u ∈ W 1

1,loc ∩ L2; (∇u)∗as∇u ∈ L1

}
defines a closed sectorial (non-symmetric) Dirichlet form in L2. Let τa ⊆ τN
be a Dirichlet form.

(bV) The potentials Wj := b>j a
−1
s bj (j = 1, 2) and |V | are τa-regular, i.e., Q(Wj)∩

D(τa) and Q(|V |) ∩D(τa) are dense in D(τa).

(Q(V ) denotes the form domain of the multiplication operator V in L2.)

We define the form τ on D(τ) := D(τa) ∩Q(W1 +W2 + |V |) by (1.1).

As shown in [24], D(τ) is dense in D(τa), and the form τ + U0 − U0 ∧ m is
sectorial and closed for all U0 > W1 +W2 + 2V − and m ∈ N.

In order to formulate the main result from [24] we need to introduce the
following quadratic forms:

τp(u) : = 4
pp′
〈as∇u,∇u〉+ 2

p
〈∇|u|, b1|u|〉 − 2

p′
〈b2|u|,∇|u|〉+ 〈V |u|2〉, 1 < p <∞,

τ1(u) : = 2〈b1∇|u|, |u|〉+ 〈V |u|2〉.

on D(τp) := D(τ) (1 6 p <∞).

The construction of the quasi-contractive C0-semigroup on Lp, corresponding
to the form τ , is given in the following theorem which is the main result in [24]
(see [24, Thm. 1.1 and Cor. 4.4]).

Theorem 1.1. Let assumptions (a) and (bV) be fulfilled. Let U0 > W1 +W2 +
2V − be such that Q(U0) ∩ D(τa) is dense in D(τa), and T0 = T0,2 the C0-semi-
group associated with the form τ + U0 on L2. Let I be the set of all p ∈ [1,∞)
such that τp > −ωp for some ωp ∈ R.

(i) Then I is an interval in [1,∞), and T0 extrapolates to a positive C0-semi-
group T0,p(t) = e−A0,pt on Lp, for all p ∈ I.

(ii) For all p ∈ I, the sequence of C0-semigroups Tm,p(t) = e−(A0,p−U0∧m)t

strongly converges in Lp to a positive C0-semigroup Tp(t) = e−Apt satis-
fying ||Tp(t)|| 6 eωpt. For p, q ∈ I, the semigroups Tp and Tq are consistent.

(iii) For all p ∈ I \ {1} the form τp is closable, and for u ∈ D(Ap) we have
|u|p/2 sgnu ∈ D(τp) and

Re〈Apu, u|u|p−2〉 > τp(|u|p/2 sgnu). (1.2)
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(iv) If, in addition, we assume that∣∣Im〈(b1 + b2)u,∇u〉
∣∣ 6 c1τp(u) + c2||u||22

(
u ∈ D(τ)

)
(1.3)

for some p ∈
◦
I, c1 > 0, c2 ∈ R, then Tp extends to an analytic semigroup

on Lp for all p ∈
◦
I (the interior of I).

As shown in [24], the semigroup Tp does not depend on the choice of U0. We
say that the semigroup Tp is associated with the form τ .

In the rest of the paper we assume that a ∈ L∞. Moreover, we make the
following assumption:

(BC) For all ϕ ∈ W 1
∞, if u ∈ D(τa) then ϕu ∈ D(τa).

The above assumption is a restriction on the type of boundary conditions.
It holds in the case of Neumann boundary conditions, i.e. τa = τN , and one
can easily see that it is also satisfied if D(τa) is an ideal of D(τN) (u ∈ D(τa),
v ∈ D(τN) and |v| 6 |u| imply that v ∈ D(τa)). In particular, it is satisfied in
case of Dirichlet boundary conditions. However, (BC) does not hold for periodic
type boundary conditions.

Now we are ready to formulate the main result of this paper.

Theorem 1.2. Let (a), (bV) and (BC) hold, and let the interior
◦
I =: (p−, p+)

of the interval I defined in Theorem 1.1 be non-empty. Assume that

(i) the matrix a is uniformly elliptic, i.e., there exists σ > 1 such that

σ−1 id 6 as 6 σ id;

(ii) for some p ∈
◦
I, (1.3) holds and, for some C > 0,∣∣〈(b1 + b2)|u|2〉

∣∣ 6 C
√

(τp + C)(u)||u||2
(
u ∈ D(τ)

)
; (1.4)

(iii) D(τa) ⊆ L 2N
N−2

.

For q ∈ I, let Tq be the semigroup constructed in Theorem 1.1. Let pmax :=
N
N−2

p+, pmin :=
(

N
N−2

p′−
)′

.
Then Tq(t)�L∞,c extends to an analytic C0-semigroup on Lp for all p ∈

(pmin, pmax). The sector of analyticity and the spectrum of the generators are
p-independent. For pmin < p < q < pmax, there exist constants c1, c2 > 0 such
that

||Tp(t)||p→q 6 c1t
−N

2 ( 1
p
− 1
q )ec2t. (1.5)

In case 1 ∈ I the assertions hold for all p ∈ [1, pmax).
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Remarks. 1. By [24, Prop. 4.1(b)], condition (1.4) holds in particular if, for
some C > 0, ∣∣〈(b1 + b2)|u|2〉

∣∣ 6 C||u||H1||u||2 (u ∈ H1).

Note that it is much less restrictive to pose a condition on
∣∣〈(b1 + b2)|u|2〉

∣∣ than
on
〈
|b1 + b2| |u|2

〉
.

2. Assumption (iii) of the theorem is in fact the Sobolev imbedding theorem
which holds, for example, for Dirichlet boundary conditions or if the domain Ω
satisfies the cone property or the extension property [1].

3. In Section 4 we present an example of a semigroup that cannot be extended
to a wider interval in the Lp-scale than that obtained in Theorem 1.2. In this
sense the result of Theorem 1.2 is sharp. For b1 = b2 = 0 the interval (pmin, pmax)
was computed in [21].

As a direct consequence of Theorem 1.2 we obtain a variant of that theorem
in which the interval (pmin, pmax) is more explicit.

Corollary 1.3. Let assumptions (a), (bV) and (BC) be fulfilled. Let V+, V− >
0 be τa-regular with V+−V− = V , and τ+ := Re τa +V+. Assume that the matrix
a is uniformly elliptic, D(τa) ⊆ L 2N

N−2
, and

(−1)j〈bju,∇u〉 6 βjτ+(u) +Bj||u||22, 〈V−u2〉 6 γτ+(u) +G||u||22,

〈|b1 + b2|2u2〉 6 K(τ+(u) + ||u||22) (1.6)

(0 6 u ∈ D(τ)∩Q(V+), j = 1, 2) for some constants β1, β2, γ > 0, B1, B2, G,K ∈
R. Let I be the interval defined in Theorem 1.1.

Suppose that (p−, p+) :=
{
p ∈ [1,∞); 4

pp′
− 2

p
β1 − 2

p′
β2 − γ > 0

}
6= ∅. Then

(p−, p+) ⊆ I, and all the assertions of Theorem 1.2 hold with pmax := N
N−2

p+,

pmin =
(

N
N−2

p′−
)′

.

Proof. The inclusion holds by [24, Cor. 4.5]. Condition (1.6) implies that as-
sumption (ii) of Theorem 1.2 is fulfilled. Then, by Theorem 1.2, the assertion
follows.

The rest of the paper is organized as follows. In Section 2 we present an
abstract result on weighted estimates which is a main tool in the proof the main
theorem which is given in Section 3. Sharpness of the main result is shown in
Section 4. In Section 5 we discuss Lp-theory for non-divergence type elliptic
operators.
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2 Technique of weighted estimates

In this section we are going to show the following theorem which contains an
abstract statement needed for the proof of our main result and is useful in some
other applications.

Theorem 2.1. Let 1 6 p 6 r0 6 q 6 ∞, T an analytic semigroup of angle
θ ∈ (0, π

2
] on Lr0 satisfying

||eξxT (t)e−ξx||p→q 6Mt−
N
m

( 1
p
− 1
q

)eµ|ξ|
mt+ωt (t > 0, ξ ∈ RN) (2.1)

for some M,µ > 0, m > 1 and ω ∈ R. Then T extrapolates to an analytic
semigroup of angle θ on Lr for all r ∈ [p, q] \ {∞}, and the spectrum of the
generators −Ar is independent of r.

This theorem is a generalization of Theorem 2.3 in [9]. There the case p =
1, q = ∞ is treated by showing estimates on the integral kernels of powers of
the resolvents (λ+A)−1 for λ from some sector. In this case one can use Davies’
trick to show that estimate (2.1) is equivalent to a Gaussian estimate of order m
of the integral kernel of the semigroup (cf. [6]).

The main tools needed in the proof of the theorem are Stein interpolation
and the following lemma on weighted estimates which is a refinement of Propo-
sition 3.2 from [19].

Lemma 2.2. Let 1 6 p 6 q 6 ∞, γ > 0. Let B: L∞,c → L1,loc be a linear
operator satisfying

||eξxBe−ξx||p→q 6 1 for all ξ ∈ RN with |ξ| = γ.

Then ||B||r→r 6 cNγ
−N( 1

p
− 1
q

) for all r ∈ [p, q], where the constant cN depends only
on the dimension N .

Proof. For γ = 1 the lemma is proved in [19], with cN = e
√
N ||(e−|k|)k||1. (In fact,

there the estimate ||eξxBe−ξx||p→q 6 1 is assumed for all |ξ| 6 1, but only |ξ| = 1
is used in the proof.) Using a rescaling argument, we now deduce the assertion
for general γ.

Define the operator Dγ by Dγf(x) := f(γx) for all f : Ω → C and all x ∈ Ω.

Then ||Dγf ||r = γ−
N
r ||f ||r for all r ∈ [1,∞], f ∈ Lr. Moreover, Dγ ◦eξx = eγξx◦Dγ

for all ξ ∈ RN . From the assumption we thus obtain, with B̃ := D−1
γ BDγ,

||eξxB̃e−ξx||p→q = ||D−1
γ eγξxBe−γξxDγ||p→q 6 γ−N( 1

p
− 1
q

) for all |ξ| = 1.

An application of the lemma in the known case γ = 1 completes the proof.
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It should be pointed out that Lemma 2.2 is of particular interest for large
γ. Similar results have first been used in [6] and [18], the difference being that
there a weighted norm estimate for all ξ ∈ RN is assumed, not only for |ξ| = γ.
Lemma 2.2 will be applied in form of the next corollary.

Corollary 2.3. Let B: L∞,c → L1,loc be a linear operator. Assume that

||eξxBe−ξx||p→q 6Mt−
N
m

( 1
p
− 1
q

)eµ|ξ|
mt (ξ ∈ RN)

for some 1 6 p 6 q 6∞, M, t, µ > 0. Then

(a) ||B||r→r 6M1 := MecNµ
N
m

( 1
p
− 1
q

) for all r ∈ [p, q].

(b) For all p 6 r 6 s 6 q we have

||eξxBe−ξx||r→s 6M1t
−N
m

( 1
r
− 1
s

)eµ1|ξ|mt (ξ ∈ RN),

with µ1 = 2mµ.

Proof. (a) By Lemma 2.2 we have, choosing γ = (µt)−1/m:

||B||r→r 6 cN(µt)
N
m

( 1
p
− 1
q

) ·Mt−
N
m

( 1
p
− 1
q

)e1

= cNµ
N
m

( 1
p
− 1
q

)Me.

(b) Let ξ ∈ RN . For Bξ := eξxBe−ξx and ξ0 ∈ RN we have by assumption that

||eξ0xBξe
−ξ0x||p→q 6Mt−

N
m

( 1
p
− 1
q

)eµ|ξ+ξ0|
mt.

By (a) we conclude, noting |ξ + ξ0|m 6 2m(|ξ|m + |ξ0|m),

||Bξ||r→r 6M1e
µ2m|ξ|mt.

Riesz-Thorin interpolation between this inequality and the assumption of the
corollary leads to the desired conclusion.

Proposition 2.4. Let T be a C0-semigroup on Lq and assume that

||eξxT (t)e−ξx||p→q 6Mt−
N
m

( 1
p
− 1
q

)eµ|ξ|
mt (t > 0, ξ ∈ RN)

for some 1 6 p 6 q, M, µ > 0. Then T extrapolates to a C0-semigroup on Lp.

Proof. It follows from Corollary 2.3(a) that T extrapolates to a bounded semi-
group on Lp. Thus, it suffices to show that T (t)f → f in Lp as t → 0, for all
f ∈ L∞,c with ||f ||p = 1. By Corollary 2.3(b) (with r = s = p) we have

||eξxT (t)f ||p 6M1e
µ1|ξ|mt||eξxf ||p (t > 0, ξ ∈ RN).
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Let t 6 1, |ξ| = 1. Then ||eξxT (t)f ||p 6 M1e
µ1||e|x|f ||p =: c < ∞ since f

has compact support. Let R > 0 and χξ the characteristic function of the set
{x ∈ Ω; ξx > R}. Then ||χξT (t)f ||p 6 ||eξx−RT (t)f ||p 6 ce−R. Let KR be the
cube of edge length 2R centered at 0. Then, with ej being the standard unit
vectors of RN ,

||χΩ\KRT (t)f ||p 6
∣∣∣∣∣∣ N∑
j=1

(χej + χ−ej)T (t)f
∣∣∣∣∣∣
p
6 2Nce−R.

For R so large that supp f ⊆ KR it follows that

||T (t)f − f ||p 6 ||χΩ∩KRT (t)f − f ||p + ||χΩ\KRT (t)f ||p
6 |Ω ∩KR|

1
p
− 1
q ||T (t)f − f ||q + 2Nce−R,

which proves the assertion.

Remark. For p > 1 or in case T is positive, the above proposition follows directly
from Corollary 2.3(a) and [28].

Until now we have used weighted estimates with weights of the form ρ(x) =
eξx. Generally, we call ρ: Ω→ (0,∞) a weight function if ρ, ρ−1 ∈ L∞,loc. In the
proof of Theorem 2.1 we need to extend the weighted estimate (2.1) from real
to complex times. The next proposition serves this purpose. Comparable results
are shown in [4], [18] and [9] by means of the Phragmen-Lindelöf theorem on a
sector. But it seems to be more natural to use the Stein interpolation on a strip,
similar to the proof of [6, Lemma 9] by means of the three lines theorem.

Proposition 2.5. Let ρ: Ω → (0,∞) be a weight function, θ ∈ (0, π
2
], Sθ :={

0 6= z ∈ C; |arg z| < θ
}

. Let F : Sθ → L(Lp) be a bounded continuous function,
analytic in the interior of Sθ, satisfying the inequality

||ργF (t)ρ−γ|| 6Meµγ
mt (t > 0, γ > 0)

for some M > 1, µ > 0, m > 1. Then, for α ∈ (0, θ), there exists µα > 0 such
that

||ργF (z)ρ−γ|| 6M1e
µαγm Re z (z ∈ Sα, γ > 0),

with M1 = max{||F ||∞,M}.

Proof. Fix γ > 0 and let ϕ(z) := exp
(
−µγm

sin θ
ei(

π
2
−θz)) for 0 6 Re z 6 1. Then

|ϕ(z)| = exp
(
−µγm sin θx

sin θ
eθy
)
, where z = x+ iy. We apply the Stein interpolation

theorem to the function

G(z) := ϕ(z)ρzγF (eiθ(1−z))ρ−zγ.
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For Re z = 0 the function z 7→ eiθ(1−z) describes the upper ray of the boundary
of Sθ, for Re z = 1 it describes the positive real semi-axis. For f, g ∈ L∞,c, the
function z 7→ 〈G(z)f, g〉 is analytic, and we have

|〈G(z)f, g〉| 6 |ϕ(z)|||F (eiθ(1−z))|| · ||ρ−zγf ||p||ρzγg||p′ 6 ||F ||∞ · c||f ||p||g||p′ <∞,

where c depends on γ and on the supports of f and g, but not on z. The function
ϕ is adapted to have ||G(z)|| 6 M1 = max{||F ||∞,M} for Re z = 0, 1. We infer
that ||G(z)|| 6M1 for all 0 6 Re z 6 1, so

||ρxγF (eiθ(1−x)eθy)ρ−xγ|| 6M1/|ϕ(x+ iy)| = M1 exp
(
µγm sin θx

sin θ
eθy
)
.

Choose now x = 1− α
θ

and let z := eiθ(1−x)eθy = eiαeθy. Then

||ρxγF (z)ρ−xγ|| 6M1 exp
(
µγm sin(θ−α)

sin θ
Re z
cosα

)
.

Writing γ
x

= θ
θ−αγ instead of γ we obtain the assertion with µα = µ( θ

θ−α)m sin(θ−α)
sin θ cosα

.

Proof of Theorem 2.1. Without restriction let ω = 0. Observe that for the
first assertion it suffices to consider the case p = r ∧ r0, q = r ∨ r0, by Corol-
lary 2.3(b). We confine ourselves to the case r < r0 (so that p = r, q = r0), the
proof of the case r > r0 being almost the same.

By Proposition 2.4, T (t)�L∞,c extends to a C0-semigroup on Lp. Let 0 < α < θ.
Note that the function Sα 3 z 7→ 〈T (z)f, g〉 is analytic for all f, g ∈ L∞,c and
that L∞,c is dense in Lp and a norming subset of L∗p. So we only have to show
that ||T (z)�L∞,c||p→p 6 Mα for |arg z| 6 α to conclude the assertion by a slight
modification of [10, Thm. III.1.12].

From assumption (2.1) and Corollary 2.3(b) we obtain that

||eξxT (t)e−ξx||q→q 6 Ceµ1|ξ|mt (t > 0, ξ ∈ RN).

Let α1 := α+θ
2

, and δ > 0 be such that z − δRe z ∈ Sα1 for all z ∈ Sα. For
z ∈ Sα, ξ ∈ RN and f ∈ L∞,c we obtain, taking into account Proposition 2.5 and
assumption (2.1),

||eξxT (z)e−ξxf ||q = ||eξxT (z − δRe z)e−ξxeξxT (δRe z)e−ξxf ||q
6M1e

µα1 |ξ|
m Re(z−δRe z)M(δRe z)−

N
m

( 1
p
− 1
q

)eµ|ξ|
mδRe z||f ||p

= M2(Re z)−
N
m

( 1
p
− 1
q

)eµ2|ξ|m Re z||f ||p,

with µ2 = (1 − δ)µα1 + δµ. An application of Corollary 2.3(a) yields the first
assertion.

The statement on p-independence of the spectra follows from [16, Sec. 5, 1.].
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In applications of Theorem 2.1 it is often hard to verify the weighted es-
timate (2.1) for p = 1. The next result serves the purpose to overcome this
difficulty.

Proposition 2.6. Let r0 > 1, T a contractive C0-semigroup on Lr0, and ρ > 0
a weight function. Assume that

||ργT (t)ρ−γ||p→q 6Mt−α( 1
p
− 1
q

)eµγ
mt (t, γ > 0)

for some r0 < p < q, M, α, µ > 0, m > 1. Then there exist M1, µ1 > 0 such that

||ργT (t)ρ−γ||r0→q 6M1t
−α( 1

r0
− 1
q

)
eµ1γmt (t, γ > 0).

Proof. For 0 < θ 6 1 let pθ :=
(
θ
p

+ 1−θ
r0

)−1
, qθ :=

(
θ
q

+ 1−θ
r0

)−1
. By the Stein

interpolation theorem, the assumption implies that

||ρθγT (t)ρ−θγ||pθ→qθ 6M θt−θα( 1
p
− 1
q

)eθµγ
mt (t, γ > 0). (2.2)

Let t, γ > 0, define θ ∈ (0, 1) by qθ = p and let θk := θk, tk := θmk t (k ∈ N0) and
β := α(1

p
− 1

q
). Then pθk = qθk+1

(k ∈ N0), and (2.2) yields

||ργT (tk)ρ
−γ||qθk+1

→qθk 6M θkt−θkβk eθkµ(γ/θk)mtk = M θk(θmkt)−θkβeθkµγ
mt

for all k ∈ N0. We use this as a starting point for a Moser type iteration: for
f ∈ L∞,c we obtain by Fatou’s lemma that

||ργT ( t
1−θm )ρ−γf ||q 6 lim inf

n→∞

∣∣∣∣∣∣ργT( n∑
k=0

tk
)
ρ−γf

∣∣∣∣∣∣
q

6 lim inf
n→∞

n∏
k=0

(
M θkθ−mβkθkt−θkβeθkµγ

mt
)
· ||f ||qθn+1

.

Set r :=
∑∞

k=0 θk(=
1

1−θ ) and s :=
∑∞

k=0 kθk(=
θ

(1−θ)2 ), and note that
∑∞

k=0 θkβ =

α( 1
r0
− 1

q
). We conclude that

||ργT ( t
1−θm )ρ−γf ||q 6M rθ−mβst

−α( 1
r0
− 1
q

)
erµγ

mt||f ||r0 .

This yields the assertion with M1 = M rθ−mβs(1 − θm)
−α( 1

r0
− 1
q

)
and µ1 = (1 −

θm)rµ.

The next extrapolation lemma is a modification of the result from [3] with
literally the same proof.
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Lemma 2.7. Let p0 6 p < q 6 p1. Let T be a semigroup satisfying ||T (t)||p0→p0 6
C, ||T (t)||p1→p1 6 C and

||T (t)||p→q 6 Ct−α( 1
p
− 1
q

) (t > 0).

Then there exists C1 > 0 such that

||T (t)||p0→p1 6 C1t
−α( 1

p1
− 1
p0

)
(t > 0).

In the next section we apply Theorem 2.1 via the following proposition.

Proposition 2.8. Let 1 6 p0 <∞, T an analytic semigroup of angle θ ∈ (0, π
2
]

on Lp0 satisfying

||eξxT (t)e−ξx||p0→p0 6Meµ|ξ|
mt+ωt,

||T (t)||p→q 6Mt−
N
m

( 1
p
− 1
q

)eωt,

for all t > 0, ξ ∈ RN and some 1 6 p < q 6 ∞. Then T (t)�L∞,c extends to an
analytic semigroup of angle θ on Lr for r ∈ (p∧p0, q∨p0)∪{p0}, and the spectrum
of the generators −Ar is independent of r. If in addition T is Lr0-contractive for
some 1 6 r0 < p0, the same holds for r ∈ [r0, p0].

Proof. Denote ρ(x) = eξx. Without restriction let ω = 0. By the Stein interpo-
lation theorem the assumptions imply that, for all θ ∈ (0, 1),

||eξxT (t)e−ξx||pθ→qθ 6Mt
−N
m

( 1
pθ
− 1
qθ

)
eθ

1−mµ|ξ|mt,

with 1
pθ

= 1−θ
p

+ θ
p0

and 1
qθ

= 1−θ
q

+ s
p0

. In the rest of the proof we distinguish
between three cases.

Case 1. p 6 p0 6 q. The assertion follows directly from Theorem 2.1.
Case 2. p0 < p. By Corollary 2.3(b) we have that

||eξxT (t)e−ξx||qθ→qθ 6Meµθ|ξ|
mt.

Then Lemma 2.7 (applied to the semigroup Tξ(t) = eξxT (t)e−ξx) and Theorem 2.1
yield the assertion.

Case 3. p0 > q. The proof is analogous to that of Case 2.
The last assertion is obtained in the same way, using Proposition 2.6.

3 Proof of the main result

In this section we prove Theorem 1.2. In order to apply Proposition 2.8, we
need to show appropriate weighted estimates for the semigroups Tp constructed in
Theorem 1.1. Recall that the semigroups Tp are associated with the form τ defined

11



in (1.1). We will establish estimates on the ‘twisted semigroups’ eξxTpe
−ξx, for

ξ ∈ RN , by studying the ‘twisted form’ τξ which is formally defined by τξ(u, v) =
τ(e−ξxu, eξxv). We point out that it is a nontrivial technical problem to establish
the relationship between τξ and eξxTpe

−ξx (see, e.g., [20, Prop. 3.4]).
Throughout this section we assume that (a), (bV) and (BC) are fulfilled

and that a ∈ L∞. Let τa, τ , τp (1 6 p < ∞) be the forms defined in Section 1.
Recall that

I =
{
p ∈ [1,∞); τp > −ωp for some ωp ∈ R

}
.

For a Lipschitz continuous function φ: Ω→ R, we introduce the form

τφ(u, v) := τ(u, v)−
〈
(a∇φ)u,∇v

〉
+
〈
∇u, (a>∇φ)v

〉
−
〈[
as∇φ · ∇φ+ (b1 + b2)∇φ

]
u, v
〉

on D(τφ) := D(τ). It is straightforward that

τφ(u, v) = τ(e−φu, eφv)
(
u, v ∈ D(τφ) such that e−φu, eφv ∈ D(τ)

)
.

The form τφ is of the same type as the form τ , with new lower order coefficients

b̃1 = b1 + a>∇φ, b̃2 = b2 + a∇φ, Ṽ = V − as∇φ · ∇φ− (b1 + b2)∇φ.

Since a ∈ L∞ and ∇φ ∈ L∞, it is easy to see that these new coefficients satisfy
assumption (bV).

Proposition 3.1. Assume that (a), (bV) and (BC) hold, and recall that a ∈
L∞. Let c > 0, 0 < ε < 1

2
, p ∈

◦
I, and Tp the positive C0-semigroup on Lp

associated with τ . Then there exists µ > 0 such that, for all Lipschitz continuous
φ: Ω→ R satisfying∣∣〈(b1 + b2)∇φ, u2〉

∣∣ 6 ετp(u) + c(1 + ||∇φ||2∞)||u||22
(
0 6 u ∈ D(τ)

)
, (3.1)

the following assertions hold.
The form τφ is associated with a positive C0-semigroup Tφ,p(t) = e−tAφ,p on

Lp. For all u ∈ D(Aφ,p) we have |u| p2 sgnu ∈ D(τp) and

〈Aφ,pu, |u|p−1 sgnu〉 > (1− 2ε)τp
(
|u|

p
2 sgnu

)
− µ(1 + ||∇φ||2∞)||u||pp.

Further, Tφ,p(t)f = eφTp(t)e
−φf for all f ∈ L∞,c, t > 0. In particular,

||eφTp(t)e−φ||p→p 6 eµ(1+||∇φ||2∞)t (t > 0).

For the proof of the proposition, we need the following technical lemma.

12



Lemma 3.2. Let φ ∈ L∞,loc. Let τ , τφ be closed sectorial forms in L2 with
D(τ) = D(τφ), and A, Aφ the corresponding m-sectorial operators in L2. Assume
that

τφ(u, v) = τ(e−φu, eφv)
(
u, v ∈ D(τφ) such that e−φu, eφv ∈ D(τ)

)
.

Let λ ∈ ρ(−Aφ) ∩ ρ(−A). Then

(λ+ Aφ)−1f = eφ(λ+ A)−1e−φf (f ∈ L∞,c)

if and only if

eφv ∈ D(τ) (v ∈ (λ+ A)−1L∞,c).

Proof. The “only if” part is clear, so we prove the “if” part. Let f ∈ L∞,c,
u := eφ(λ + A)−1e−φf . Then e−φu ∈ (λ + A)−1L∞,c =: D ⊆ D(τ) and hence
u ∈ D(τ). For all v ∈ D we have eφv ∈ D(τ), so

τφ(u, v) = τ(e−φu, eφv) = 〈eφAe−φu, v〉.

Moreover, since D(τ) = D(τφ), the closed graph theorem implies that D is a core
for τφ. Thus we obtain that u ∈ D(Aφ) and Aφu = eφAe−φu, which implies the
assertion.

Proof of Proposition 3.1. In order to apply Theorem 1.1 we have to consider
the symmetric form τφ,p defined by

τφ,p(u) := Re τa(u) + 2
p
〈∇|u|, b̃1|u|〉 − 2

p′
〈b̃2|u|,∇|u|〉+ 〈Ṽ |u|2〉

= τp(u) +
〈
[(2
p
a>− 2

p′
a)∇φ]|u|,∇|u|

〉
−
〈[
as∇φ ·∇φ+ (b1 + b2) ·∇φ

]
|u|2
〉

on D(τφ,p) := D(τφ). By assumption (a) we have |〈aζ, η〉| 6 (α+1)|a1/2
s ζ| · |a1/2

s η|
for all ζ, η ∈ CN . A standard quadratic estimate shows that

τφ,p(u) > τp(u)− δ(α + 1)2τa(|u|)−
〈[

(1 + 1
δ
)as∇φ · ∇φ+ (b1 + b2)∇φ

]
|u|2
〉

for all δ > 0, u ∈ D(τ). By [24, Prop. 4.1(b)] there exist δ > 0, ω ∈ R such that

δ(α + 1)2 Re τa 6 ετp + ω.

By (3.1) we thus obtain

τφ,p >
(
1− 2ε

)
τp − ω − (1 + 1

δ
)||as||∞||∇φ||2∞ − c(1 + ||∇φ||2∞).

An application of Theorem 1.1 completes the proof of the first two assertions.
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Let now Uφ := (α + 1)2||as||∞||∇φ||2∞ + W1 + W2 + |V |. Then U := 5Uφ is
τa-regular by assumption (bV). Standard quadratic estimates show that

Re τφ >
1

4
Re τa − 4Uφ (3.2)

and that τ + U, τφ + U are densely defined closed sectorial forms, with domains
D(τa + Uφ). For m ∈ N let Um := (U − m)+, and Am, Aφ,m the m-sectorial
operators associated with τ +Um, τφ +Um, respectively. Due to Theorem 1.1(ii),
the last assertion of the proposition will follow by passing to the limit in

e−tAφ,mf = eφe−tAme−φf (f ∈ L∞,c, t > 0).

This in turn is equivalent to

(λ+ Aφ,m)−1f = eφ(λ+ Am)−1e−φf (m ∈ N, λ > m, f ∈ L∞,c).

Thus, by Lemma 3.2, it remains to show that

eφv ∈ Q := D(τa + Uφ) for all v ∈ D := (λ+ Am)−1L∞,c. (3.3)

For n ∈ N let φn := φ∧ n. It is easy to see that τφn +Um is a densely defined
closed sectorial form with domain Q. Let Aφn,m denote the m-sectorial operator
associated with τφn + Um. By (3.2) we estimate

Re τφn + Um >
1

4
Re τa − 4Uφn + 5Uφ −m >

1

4
Re τa + Uφ −m > −m

Let g ∈ L∞,c, v := (λ+Am)−1g. Note that φn ∈ W 1
∞. Hence, by assumption

(BC), we conclude from Lemma 3.2 that

(λ+ Aφn,m)−1(eφg) = eφn(λ+ Am)−1e−φn(eφng) = eφnv

for all λ > m and sufficiently large n ∈ N. Therefore,

(1
4

Re τa + Uφ)(eφnv) 6 Re(τφn + Um + λ)(eφnv) = Re〈eφg, eφnv〉 6 1
λ−m ||e

φg||22.

This shows that (eφnv) is a bounded sequence inQ. Moreover, (|eφnv|) is pointwise
increasing, and eφnv → eφv a.e. as n → ∞. Hence eφv ∈ L2 by monotone
convergence, and eφnv → eφv in L2 by dominated convergence. We conclude that
eφv ∈ Q, i.e., (3.3) holds.

Proof of Theorem 1.2. Let p ∈ (p−, p+), Tp(t) = e−Apt be the semigroup on
Lp associated with the form τ . For ξ ∈ RN let φξ(x) := ξ · x. Then ∇φξ = ξ. By
assumption (ii) of the theorem and Euclid’s inequality, we have∣∣〈(b1 + b2)ξ, u2〉

∣∣ 6 |ξ| · ∣∣〈(b1 + b2)u2〉
∣∣ 6 1

4
(τp + C)(u) + C2|ξ|2||u||22.
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So we can apply Proposition 3.1 to the form τφξ and obtain that

||eξxTp(t)e−ξx||p→p 6 eµ(1+|ξ|2)t (t > 0, ξ ∈ RN),

which verifies the first assumption of Proposition 2.8. Now we are going to
establish an estimate on ||Tp(t)||p→ N

N−2
p.

By [24, Prop. 4.1(b)], there exist εp > 0 and Cp ∈ R such that

τp > εp Re τa + Cp. (3.4)

Without restriction Cp = 1. Let 0 6 f ∈ Lp, t > 0, u := e−Aptf . Then
0 6 u ∈ D(Ap) since Tp is positive and analytic.

By Theorem 1.1(iii), (3.4), and assumption (iii) of the theorem, there exists
δ > 0 such that

〈Apu, up−1〉 > εpτa(u
p/2) + ||up/2||22 > δ||u||pN

N−2
p
.

Using the analyticity of Tp we obtain by Hölder’s inequality that

〈Apu, up−1〉 6 C

t
||f ||pp,

with some C > 0 not depending on t. Combining the above two estimates we

arrive at ||u|| N
N−2

p 6 C1t
− 1
p ||f ||p, so that

||T (t)||p→ N
N−2

p 6 C1t
− 1
p . (3.5)

Applying now Proposition 2.8 (note that 1
p

= N
2

(1
p
− N−2

Np
)), we infer the assertion

of the theorem for p ∈ (p−, pmax) (and, in case 1 ∈ I, for p ∈ [1, pmax)).
The p→q estimate (1.5) follows from (3.5) and Lemma 2.7.
Thus, in case 1 ∈ I the proof is complete while otherwise we obtain the

assertions of the theorem only with (p−, pmax) in place of (pmin, pmax). In order
to complete the proof in the case 1 6∈ I, one should repeat the arguments for the
adjoint semigroup T ∗ which is associated with the form τ ∗ (see [24, Prop. 3.11]).

4 Sharpness of the main theorem

In this section we give an example of a semigroup for which the interval in the
Lp-scale obtained in Corollary 1.3 cannot be extended.

Let b: Ω → R
N , V : Ω → R be such that H1

0 ∩ Q(|b|2 + |V |) is dense in H1
0 .

Define the form τ in L2 by

τ(u, v) = 〈∇u,∇v〉+ 〈b∇u, v〉+ 〈V u, v〉

on D(τ) := H1
0 ∩Q(|b|2 + |V |).

15



Proposition 4.1. Assume that τ is associated with a C0-semigroup e−Apt on Lp
for some p > 1. Then

D(Ap) ⊇ Dp :=
{
u ∈ H2

0 ∩W 2
p ; |b| |∇u|, |b|2u, V u ∈ L2 ∩ Lp

}
and Ap ⊇ (−∆ + b∇+ V )�Dp.

Proof. Define the operator L by Lu = (−∆ + b∇ + V )u, D(L) = Dp. Then L
acts in both L2 and Lp. Let U0 := |b|2 + 2|V |, and let e−A0t be the semigroup on
L2 associated with the closed sectorial form τ + U0. Then e−A0t extrapolates to
a C0-semigroup e−A0,pt on Lp.

It is easy to see that Dp ⊆ D(τ + U0) and

(τ + U0)(u, v) = 〈(L+ U0)u, v〉
(
u ∈ Dp, v ∈ D(τ)

)
.

Hence A0 ⊇ L+ U0 and, moreover, A0,p ⊇ L+ U0 since L+ U0 is an operator in
Lp. By [27, Cor. 2.7] we conclude that Ap ⊇ A0,p − U0 ⊇ L.

In the following we denote r(x) := |x|.

Corollary 4.2. Let Ω = R
N , b = c1r

−1∇r, V = c2r
−2 + r2 and u = r−σe−

r2

2 ,
σ ∈ R. Assume that τ is associated with a C0-semigroup e−Apt on Lp, for some
p ∈ [1,∞) satisfying p(σ + 2) < N . Then u ∈ D(Ap) and

Apu =
(
−(σ2 − (N − 2− c1)σ − c2)r−2 +N − c1 − 2σ

)
u.

Proof. Note that ∆u, ∇u
r

, u
r2 and r2u belong to L1 ∩ L∞(RN \ Bε) for all ε > 0,

where Bε = {x ∈ RN ; |x| < ε}. Let ϕ ∈ C∞(RN), 0 6 ϕ 6 1, ϕ(x) = 1 for all
x ∈ Bc

1, ϕ(x) = 0 for all x ∈ B1/2. Let ϕn(x) := ϕ(nx), un := ϕnu. Then, by
Proposition 4.1, un ∈ D(Ap) and

Apun = (−∆ + b∇+ V )un

= ϕn(−∆ + b∇+ V )u− 2∇ϕn · ∇u+ (b · ∇ϕn −∆ϕn)u.

Since supp(1 − ϕn) ⊆ B 1
n
, we have |∆ϕn(x)| 6 |∆ϕ|(nx)r−2 and |∇ϕn(x)| 6

|∇ϕ|(nx)r−1. Moreover, ∆u, ∇u
r
, u
r2 ∈ Lp since σ + 2 < N

p
. Hence Apun →

(−∆ + b∇ + V )u in Lp, by the dominated convergence theorem. So u ∈ D(Ap)
and Apu = (−∆ + b∇+V )u since un → u in Lp and Ap is a closed operator. The
second assertion now results from a direct computation.

Let now b = βN−2
2
r−1∇r and V = −γ (N−2)2

4
r−2 + r2 with β < 2, 0 < γ <

(1 − β/2)2. Let µ :=
√

(1− β/2)2 − γ. Then by Corollary 1.3, τ is associated
with a consistent family of C0-semigroups e−Apt on Lp, for all

pmin :=
2N

4 + (N − 2)(1− β
2

+ µ)
< p <

2N

(N − 2)(1− β
2
− µ)

=: pmax.

16



We are going to show that, for q 6∈ (pmin, pmax), the semigroup e−Apt does not
extrapolate to a C0-semigroup on Lq. Let

σ :=
N

pmax

=
N − 2

2
(1− β

2
− µ), p0 :=

N

σ + 2
=

2N

4 + (N − 2)(1− β
2
− µ)

.

Then p0 ∈ (pmin, pmax). By Corollary 4.2, u = r−σe−
r2

2 is an eigenfunction of
Ap for p ∈ (pmin, p0). Now assume that e−Apt extrapolates to a semigroup on
Lq, for some q > pmax. Then, by (1.5) and Lemma 2.7, e−Apt: Lp → Lq for
all p ∈ (pmin, pmax). In particular, e−Aptu ∈ Lq. This contradicts the fact that
e−Aptu = ectu 6∈ Lq (recall σ = N

pmax
> N

q
). Considering the adjoint semigroup we

show that e−Apt does not extrapolate to a semigroup on Lq, for any q 6 pmin.

Remark. In the case of Schrödinger semigroups, a similar example was given by
Yu. Semenov (private communication).

5 Non-divergence type operators

In this section we consider the operator

A = −a∇2 = −
N∑

j,k=1

ajk
∂2

∂xj∂xk

in UCb(R
N), the space of bounded uniformly continuous functions, with D(A) =

UC2
b (RN) (the functions and their first and second derivatives are in UCb(R

N)).
We assume that (ajk) is symmetric with smooth entries and that σ−1 id 6 a 6 σ id
for some σ > 1. It is well-known that the closure of −A generates an analytic
semigroup T of full angle (i.e., of angle π

2
) on UCb(R

N) (see, e.g., [13, Thm. 8.2.1]).
The semigroup operators T (t) are integral operators with smooth integral

kernels p(t) satisfying ∫
RN

p(t, x, y)dy = 1.

The adjoint semigroup T ∗ on L1 is defined by

(T ∗(t)f)(y) =

∫
RN

p(t, x, y)f(x)dx.

It was proved in [7] that there exist q = q(σ,N) > N
N−1

and C = C(σ,N) such
that

sup
x∈RN

||p(t, x, ·)||q < Ct
− N

2q′ ,
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which implies that

||T ∗(t)||1→q 6 Ct
− N

2q′ . (5.1)

Now we introduce the ‘weighted semigroups’. Let ξ ∈ RN, ρξ(x) := eξx. Then

(ρ−1
ξ T (t)ρξf)(x) =

∫
RN

e−ξxp(t, x, y)eξyf(y)dy

Using the maximum principle we see that (cf. [25])

||ρ−1
ξ T (t)ρξ||∞→∞ 6 eσ|ξ|

2t so that ||ρξT ∗(t)ρ−1
ξ ||1→1 6 eσ|ξ|

2t. (5.2)

Estimates (5.1) and (5.2) allow us to apply Proposition 2.8.

Proposition 5.1. Let α ∈ [0, π
2
). There exists a constant Cα depending only on

α,N, σ such that

||e−Az||p→p 6 Cα
(
p ∈ [N,∞), |arg z| 6 α

)
.

In particular, the family e−At�Cc extends to an analytic semigroup of full angle
on Lp.

Remark. For α = 0, the above proposition was first proved in [22].

The estimate obtained in Proposition 5.1 is an a-priori estimate which carries
over to semigroups associated with the non-divergence form operator A that
are obtained by approximation by semigroups corresponding to operators with
smooth coefficients. We stress, however, that the above result does not contribute
to the problem of solvability of non-divergence type equations for non-smooth a.

At the same time, the main results of this paper can be applied to the problem
of well-posedness of the abstract Cauchy problem in Lp(R

N) for an operator re-
alization corresponding to the non-divergence type elliptic differential expression
A = −a∇2.

Assume that (ajk) is uniformly elliptic. Set b1,k =
∑N

j=1 ∂jajk (k = 1, . . . , N).
Suppose that b1 ∈ L1,loc,

||b1u|| 6 K||u||H1 for some K > 0, b1 = b11 + b12,

〈|b11|2|u|2〉 6 β||a1/2
s ∇u||22 + Cβ||u||22 for some β ∈ [0, 4), Cβ > 0,

div b12 ∈ L1,loc(R
N), (div b12)− ∈ L∞(RN).

Then A = −∇(a∇)+b1∇. By Corollary 1.3 one can associate with A an analytic
C0-semigroup Tp on Lp(R

N), for all p ∈
(

2N
2N−

√
β(N−2)

,∞
)
, with sector of analyt-

icity independent of p. This result is a generalization of the corresponding result
in [15] (for the case of a uniformly elliptic matrix (ajk)) in several directions:
firstly, the interval of solvability in the Lp-scale is extended (and in fact is sharp,
see Section 4); secondly, the conditions on b1 are relaxed; and thirdly, as follows
from Corollary 1.3, the sector of analyticity is p-independent.
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6 Remark on higher order operators

In this short section we show that, employing Theorem 2.1, one can obtain a
result similar to Theorem 1.2 for higher order (non-symmetric) operators from
the class of superelliptic operators studied by E. B. Davies [6]. We sketch the
construction of these operators below and refer the reader to [6] for details.

Let m < N
2

, Hm := Wm
2 (RN). Let τ , with D(τ) = Hm, be a closed sectorial

form in L2 which satisfies the G̊arding inequality

1

2
||(−∆)m/2f ||22 6 Re τ(f) 6 c||(−∆)m/2f ||22 + c||f ||22, (6.1)

for some c > 0 and all f ∈ Hm. Let Em denote the set of all bounded real-valued
C∞-functions φ on RN such that ||Dαφ||∞ 6 1 for all α such that 1 6 |α| 6 m.
Given λ ∈ R and φ ∈ Em, let

τλφ(f, g) = τ(e−λφf, eλφg) (f, g ∈ Hm).

We assume that

|τλφ(f)− Re τ(f)| 6 1

4
Re τ(f) + k(1 + |λ|2m)||f ||22 (f ∈ Hm), (6.2)

for some k > 0 independent of λ and φ.

Proposition 6.1. Let assumptions (6.1) and (6.2) hold. Then the analytic C0-
semigroup T (t) = e−At on L2, associated with τ , extrapolates to an analytic semi-
group Tp(t) = e−Apt on Lp, for all 2N

N+2m
6 p 6 2N

N−2m
. The sector of analyticity

of Tp and the spectrum σ(Ap) are p-independent.

Sketch of the proof. In order to apply Theorem 2.1 one needs to verify the estimate

||eλφT (t)e−λφ||2→ 2N
N−2m

6
c√
t
eµ(|λ|2m+1)t

(
t > 0, λ ∈ R, φ ∈ Em

)
, (6.3)

for some c, µ > 0 (see [6, Lemma 4]). It follows from (6.1) and (6.2) that τλφ
is a closed sectorial form in L2. By Lemma 3.2, the semigroup eλφT (t)e−λφ is
associated with τλφ. Now a simple modification of the arguments in [6, Lemmata
6, 7, 22] leads to estimate (6.3).
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