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Abstract

We study L,-theory of second order elliptic divergence type operators
with measurable coefficients. To this end, we introduce a new method
of constructing positive Cp-semigroups on L, associated with sesquilinear
(not necessarily sectorial) forms in Ls. A precise condition ensuring that
the elliptic operator is associated with a quasi-contractive Cy-semigroup
on L, is established.

1 Introduction and main results

In this paper we study the L,-theory of second order elliptic differential opera-
tors on an open set Q2 C RY, N € N, corresponding to the formal differential
expression

L=-V-(aV)+b -V+V-by+V,

with singular measurable coefficients a: Q — RY @ RN, by, by: Q — RY, V: Q —
R. The aim of the paper is to construct a quasi-contractive Cy-semigroup on
L, = L,(Q), whose generator is associated with £ in a natural way which will
be made precise below. As is well-known, this implies well-posedness of the
corresponding Cauchy problem.

Elliptic operators in divergence form with measurable coefficients are usually
defined by means of the form method. The form associated with the above
differential expression is

7(u,v) := (aVu, Vv) + (Vu, bv) — (bau, Vo) + (Vu,v) (1.1)



on a suitable domain D(7) corresponding to the boundary conditions. (Here
and in the sequel, (f,g) is defined as [, f(z) - g(x) do whenever f-g € Ly, for
f,9: 2 — Cor f,g: Q — CV measurable.)

The traditional way of constructing the corresponding Cy-semigroup is the
following. If the form 7 is densely defined, sectorial and closed then it is associated
with an m-sectorial operator A in Ly which generates a quasi-contractive analytic
semigroup e on Ly (cf. [4, Thm. VI.2.1]). If e~ rLzﬁLpHLpaLp < Mer! for
some p € [1,00), then the semigroup extends to a semigroup 7, on L,. In this
case we say that e~ extrapolates to the semigroup T, on L,, which is consistent
with e~ in the sense that e= [, ;= T,(t)[,n, for all t > 0. For p > 1, the
semigroup 7, is always strongly continuous, whereas for p = 1 this is the case
if, e.g., T} is positive or quasi-contractive (see [19]). The above approach was
used for constructing semigroups acting in all L,, 1 < p < oo (this case is well-
documented, see, e.g., [14] and [3]), as well as for constructing semigroups acting
in L, only for p from some subinterval of [1, c0) containing 2; see, e.g., [2], [6].

However, we do not assume 7 to be a sectorial form in Lo; even its real part
need not be bounded below, so that the traditional approach is not applicable.
In the case by = 0 and V' = 0, non-sectorial forms have been studied in [5], [6]
where the coefficients of the first order terms of £ are approximated in such a
way that the approximating forms become sectorial in Ly and the corresponding
semigroups converge to a Cy-semigroup, in a suitable L,,.

In this paper we develop a new approach to the construction of a quasi-
contractive Cy-semigroup associated with the form 7, which even in L, gives rise
to a Cp-semigroup under assumptions when all known representation theorems
break down. Our approach is based upon approximations by sectorial forms,
however, not related to approximations of the coefficients of the first order terms.

Instead, we approximate the potential: we introduce a positive potential U
which ‘absorbs’ all the singularities of the lower order terms of £ in the sense
that, being added to 7, it makes the sum sectorial in Ls. The sequence of
the approximating semigroups 7, which are associated with the sectorial forms
T = T+U—UAm (m € N), extrapolates to a suitable L, and strongly converges
to a quasi-contractive Cp-semigroup on L,. The use of the perturbation theory
of positive semigroups developed in [17], [18] is crucial for the realization of this
idea.

The approach we present is in fact a general method of constructing positive
Cop-semigroups on L, corresponding to sesquilinear forms in Ly (see Section 3
for details). In the context of Schrodinger operators with magnetic fields, and
dominated semigroups with singular complex potentials, a similar approximation
idea was used in [12] and in [7].

The result we obtain is sharp in the sense that, for a wide class of coefficients,
the sufficient condition (see estimate (1.3) below) for the validity of our main
theorem becomes necessary (see Section 6 for details).



We make the following qualitative assumptions on the coefficients of L.

(a) a € Lo, a is a.e. invertible with a=! € Ly jo., and a is uniformly sectorial,
ie.,

Im ¢*al| < aReC*al a.e. (( € CY)

for some a > 0 (where (* is the transpose of {). Let a, := atal Thep

-
v (u,v) := (aVu, V), D(ry) = {u € W}, N Ly; (Vu)*a,Vu € L1}

loc

defines a closed sectorial (non-symmetric) Dirichlet form in L, (for the
closedness cf. [13, Theorem 3.2]). Let 7, C 7 be a Dirichlet form.

(bV) The potentials W; := b;’a;'b; (j = 1,2) and |V| are 7,-regular, i.e.,
D(r,) N Q(W;) and D(r,) N Q(|V|) are cores for 7,. (For a potential
U >0, QU):={ué€ Ly Uul> € L1} denotes the domain of the form
U(u) = (Ulul?) in Ly.)

We define the form 7 on D(7) := D(7,) N Q(W; + Wy + |V]) by (1.1). This
is possible since for u,v € D(7) and j = 1,2 we have, by the Cauchy-Schwarz
inequality,

|Vu - b;jv| = |a;/2Vu : a§1/2bj5| < (asVu- V) V2 (Wj‘UF)lﬂ € L. (1.2)

Furthermore, D(7) is dense in D(7,) as can be seen from Lemma 3.13 below. In
particular, 7 is densely defined.

Although the form 7 itself need not be sectorial, the form 7+ U with domain
D(1) N Q(U) is sectorial and closed for all U > Uy := Wy + Wy + 2V~ since
the sum of the first order terms of 7 is form small with respect to 7, + W7 + W
by (1.2).

The only quantitative condition we need is obtained from the Lumer-Phillips
theorem by a formal computation. Suppose 7 is associated with a positive quasi-
contractive Cp-semigroup T,(t) = e “#' on L,, for some p € [1,00). Then A,
is quasi-accretive which by the positivity of 7}, is equivalent to (Ayu,uf™t) >
—wp|ul? in case p > 1, and to (Ayu) > —wi|uf; in case p = 1, for some w, € R
and all 0 < u € D(A,). Formally, Aju = Lu, VuP™! = ]%up/2_1Vup/2, and
Vu = ]%ul’p/QVup/Q. Thus,

(Apu,w’™") = (=V - (aVu) + by - Vu+ V - (bou) + Vu, uP™ ")
= o (aVuP Vur?) (b — Zbo)ub?, Vubl?) + (Vur)
in case p > 1 and, in case p =1,
= 2(Vu'? but’?) + (V).



Now we define quadratic forms 7, on D(7,) := D(7) (1 < p < 00),
7p(u) = o5{asVu, V) + 2(V]ul, biful) = Z(bolul, Vul) + (V[u?) (p>1),

71(u) := 2(Vul, biful) + (V]ul?).
Then the natural condition for L,-accretivity is
7p(u) = —wplul;  (u € D(r)), (1.3)

i.e., 7, is bounded from below. Note that 5 = Re 7 (as to be expected), where the

form Re 7 is defined by (Re7)(u,v) := 1(7(u,v) + 7(v,u)) on D(ReT) := D(1).

The construction of the Cy-semigroup on L, corresponding to the formal
differential expression £ with boundary conditions prescribed by D(7,), is given
in the following theorem, which constitutes a simplified version of the main result
of the paper, Theorem 4.2.

Theorem 1.1. Let assumptions (a) and (bV) be fulfilled. Let Uy := W1+ Wy +
2V~ and let Ty o be the Cy-semigroup on Lo associated with the form T4 Uy. Let
I be the set of all p € [1,00) such that w, == inf{w € R; 7, > —w} < co. Then
the following assertions hold.

(i) The set I is an interval in [1,00), and Tyo extrapolates to a Cy-semigroup
Top(t) = e Aort on L, forallp e .

(ii) For all p € I, the sequence of Cy-semigroups Ty, ,(t) = e~ (Aos=lorm)t
strongly converges in L, to a Cy-semigroup T,(t) = e~ 4t satisfying
|T,(t)| < evrt. Forp,q € I, the semigroups T, and T, are consistent.

(i1i) For all p € I\ {1}, the form 7, is closable. For all w € D(A,) we have
lulP/?sgnu € D(7,) and

Re(Ayu, ululP~2) > 7 (|ufP/? sgnu).

(iv) If, in addition, we assume that
[Im((by + ba)u, Vu)| < e17p(u) + eoul3  (u € D(7))

for some p € IO, cp =2 0, co € R, then T, extends to a quasi-contractive
analytic semigroup on Ly, and A, is an m-sectorial operator in Ly, for all
pel.

We shall call A, the m-accretive operator in L,, T, the quasi-contractive Cp-
semigroup on L, associated with the form 7. The operator A, is an L,-realization
of £ with boundary conditions prescribed by D(7,).



Remarks 1.2. (a) In fact, as it will be shown in the main body of the paper
(see Corollary 4.4 below), the semigroups 7, constructed in the theorem do not
depend on the approximating sequence of potentials. Furthermore, the assertions
hold with U, replaced by any positive 7,-regular potential U such that 7 + U is
sectorial and closable in L.

(b) The domain of 7, determines the ‘boundary conditions’ under consider-
ation. The standard examples are the case of Neumann boundary conditions
To = Ty and of Dirichlet boundary conditions 7, = 7p = 7n [Cgo(m. Assump-
tion (bV) expresses that the lower order perturbations must not disturb the
boundary conditions prescribed by D(7,). In the case of Dirichlet boundary
conditions, assumption (bV) is fulfilled in particular if Wy, Wy, V' € Ly jo,.

Suppose that assumption (bV) is not fulfilled, but D(7) is dense in Ly. Let
Ta = TN | p(r) (n0te that 7, is a Dirichlet form). Then assumptions (a) and (bV)
are fulfilled with 7, in place of 7,, so Theorem 4.2 is still applicable to the form
T.

(c) If the form 7 itself is sectorial then it is closable (see Lemma 3.5 below). In
this case we have 2 € I, A, is the m-sectorial operator associated with 7 and, for
[ € Lo, the function u(t) := Ty(t)f is the weak solution of the Cauchy problem

{ut = —Lu,
u(©0) =f

with boundary conditions prescribed by D(T).

(d) Let us point out that the interval I given in Theorem 4.2 is a set of p €
[1,00) for which the form 7 is associated with a quasi-contractive Cp-semigroup
T, on L, (I\ {1} is the maximal set of such p € (1,00) under the conditions of
Corollary 6.4 below). The set of all p € [1,00) such that 7 is associated with a
Co-semigroup 7}, on L, can be strictly larger than I, see [8].

The remainder of the paper is organized as follows. In Section 2 we give a
brief account of Voigt’s perturbation theory for positive semigroups. In Section 3
we show how to associate a positive Cy-semigroup on L, (x) with a sesquilinear
form in Ly(p). Section 4 contains the precise formulation of the main theorem
and some useful consequences of it. The proof of the main theorem is given in
Section 5. In Section 6 we discuss the sharpness of the main result.

2 Perturbations of positive Cj-semigroups by
real-valued potentials

In this section we give a short survey of J. Voigt’s perturbation theory for positive
Co-semigroups developed in [17], [18].

Let (€2, 1) be a measure space, 1 < p < 0o. Let T be a positive Cy-semigroup
on Ly,(p), i.e., the semigroup operators 7'(t) (¢t > 0) are positivity preserving. Let
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—A be the generator of T and V: Q@ — R a measurable function. If V' € L (u)
then Ty denotes the Cy-semigroup generated by —(A + V).

The definition of Ty is extended to unbounded real-valued potentials by ap-
proximating V by V™ := (V An) Vv (—n) and letting

Ty(t) = slim Tye(t) (t>0) (2.1)

if the limits exist. Obviously, Ty is a semigroup in this case. If V' > 0 then
(Tyy) is a monotone decreasing sequence, for V' < 0 it is monotone increasing.
This leads to the following definition.

Definition 2.1. ([17, Def. 2.2, [18, Def. 2.5], [18, Def. 3.1])

(a) If V' > 0 then the limit in (2.1) exists for all t > 0. If Ty is strongly
continuous, V' is called T-admissible. In this case, Ty, — Ty as n — oo, i.e.,
T(t)f = limy,_ oo Ty (t) f, uniformly for ¢ in bounded subsets of [0, 00), for all
J €Ly

(b) If V"< 0 then V is called T-admissible if the limit in (2.1) exists for all
t > 0 and defines a C-semigroup. In this case, Ty, — Ty as n — oo.

By [18, Prop. 2.2], V' is T-admissible if and only if supy<;<; nen [Ty ()] < 0.

(¢) If V >0 and V is T-admissible then —V' is Ty-admissible. If T' = (Tv)_v,
then V' is called T'-reqular.

The following result expresses, roughly speaking, that negative admissible
potentials are always regular.

Lemma 2.2. (cf. [18, Thm. 2.6, Prop. 3.3(b)]) Let V"= 0 be measurable. If =V
is T-admissible, then (T_v)y =T, and V is T-regular.

Lemma 2.3. ([17, Prop. 3.1]) Let p,q € [1,00), T, T, consistent positive Cp-
semigroups on L, (1), Ly(p), respectively, V> 0 measurable.

(a) (T,)v and (T,)v are consistent, and V is T,-admissible if and only if V
is Ty-admaissible.

(b) If =V is T,- and T,-admissible, then (T,)_v and (T,)_v are consistent.

(¢) V is T,-regular if and only if V is T,-reqular.

We conclude the section with the following approximation result which we will
use in Section 4 to show that the semigroup constructed in [6, Thm. 6] coincides
with the semigroup constructed in Theorem 1.1.

Proposition 2.4. Let p € (1,00). Let T,, (n € NU{oo}) be positive Cy-semi-
groups on L,(p) with T, — Tn,. Let 0 <V € (L1 + Loo) (1) such that =V is
T,,-admissible (n € NU{oo}), and

[(T) v Dy < & T) v (]ce < Ce (n €N, ¢ > 0).

for somew € R, C > 1. Then (T,,)-yv — (Two)-v-
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The crucial idea of the proof is to make use of the following result which gives
an explicit rate of the convergence T yn, — T_y.

Lemma 2.5. Let p € (1,00), T be a positive Cy-semigroup on Ly(p), and 0 <
V € (L1 + Lo ) (1) such that =V is T-admissible, and T_y is contractive in Ly (i)
and bounded in Lo (). Let —A be the generator of T, —A_y the generator of
T_v. Then

[N+ A ) = A+ A=V AR ], <OV =) 177 flloo

for all0 < f € (L, N Loo) (), A > 0 and n € N such that (V —n)* € Li(u),
where C' is the Loo-bound of Ty .

Proof. Let f,\,n be given. For m € N let V,,, :=V Am. Then
Up = AN+ A=V)) S Tu=\+Ay) ' f asm — oo,
and |ufoe < §|f[oo- For m € N we have
A+A=V) ' = A+ A=V) ' =M+ A=V,) " (Vin = Vi) A+ A= V)
and therefore (A + A — V,,,)(uy, — up) = (Vin — Vi)u,. The contractivity of Ty
implies that A — V,,, is accretive, so we obtain, for m > n,
D Un||§ <A+ A= Vi) (U — ), (Um — un)p%)

= ((Vin = V)t (i — 1 )'™)

<V =Vo)u?) < (V= n) " [1ull%.
We conclude that [, — u,[? < AP H(V = n)T[1(C] floo)?, and m — oo com-

pletes the proof. O

Proof of Proposition 2.4. Without restriction assume w = 0. Let —A,,
—(A,)_v be the generators of T, (1,)_v, respectively. By the assumption,
A, — A, in the strong resolvent sense asn — 0o. So A, —V Am — A —V Am
in the strong resolvent sense as n — oo, for all m € N. By Lemma 2.5 we know
that A, —V Am — (A,)_y in the strong resolvent sense as m — oo, uniformly
inn € N. Since Ao, —V Am — (As)_v in the strong resolvent sense, this yields
the desired conclusion. O

3 The first Beurling-Deny criterion for sesqui-
linear forms

It is well-known that with every densely defined closed sectorial form in a Hilbert
space H one can associate an analytic semigroup on H. In this section we are
going to present a procedure how to associate a positive Cy-semigroup on L, ()
with a sesquilinear form in Ly () fulfilling the first Beurling-Deny criterion ((€2, i)
a measure space), even in cases when the form is not bounded below.
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Definition 3.1. Let 7 be a sesquilinear form in Lo(p).

(a) 7 is called real if Reu € D(7) for all u € D(7), and 7(u,v) € R for all
real-valued u,v € D(r).

(b) 7 is said to fulfill the first Beurling-Deny criterion if 7 is real and u™ €
D(1), 7(u™,u) < 0 for all real-valued u € D(7).

Note that, if 7 fulfills the first Beurling-Deny criterion then so does Re 7.
The following proposition, due to Ouhabaz ([11, Prop. 2.2 and Thm. 2.4]),
shows the relevance of these two notions.

Proposition 3.2. Let 7 be a densely defined closed sectorial form in Lo(p), T
the associated analytic semigroup on Ls(u). Then T is real (i.e., all semigroup
operators are reality preserving) if and only if T is real, and T is positive if and
only if T fulfills the first Beurling-Deny criterion.

The next lemma states that it suffices to verify the conditions of Definition 3.1
on a form core.

Lemma 3.3. Let 7 be a closable sectorial form. If T fulfills the first Beurling-
Deny criterion then so does T.

Proof. We first show that 7 is real. Without restriction Re7 > 0. Then
7(Reu) < 7(Reu) + 7(Imu) = Re7(u) (u € D(7))

since 7 is real. From this we easily deduce: if v € D(7), (u,) C D(7) with
u, — win D(T), then Rew € D(T) and Rew,, — Rew in D(7). By the latter we
show that 7(u,v) € R for all real-valued u,v € D(7), i.e., T is real.

From the above it follows that the set of all real-valued elements of D(7)
is dense in the set of all real-valued elements of D(7). Now, for real-valued

u € D(1), we have T(u™,u — u") = —7T(u",u”) > 0 and T(u — u™,ut) =
—F((—u)*, (—u)_) > 0. Thus, we can apply [9, Lemma 1.4.9] to conclude that
ut € D(T), T(ut,u™) < 0 for all real-valued u € D(7). O

For the remainder of this section let 7 be a densely defined sesquilinear form
in Ly(p) fulfilling the first Beurling-Deny criterion. The next result characterizes
admissibility of potentials via form conditions, in the case of symmetric forms.

Proposition 3.4. (c¢f. [17, Prop. 5.7, Prop. 5.8(a)]) Let T be symmetric and
closed, T the associated positive Cy-semigroup on La(p), V:  — [0,00) measur-
able.

(a) The potential V is T-admissible if and only if T +V is densely defined,
and Ty is associated with T +V in this case.

(b) The potential =V is T-admissible if and only if V < 7+w for somew € R.
In this case, T — V is closable and Ty is associated with 7 — V.




Proof. All the assertions of the proposition, except for the closability of 7 — V|
are shown in [17]. There the proof is given for the case of the diffusion semigroup
on RY only, but literally the same proof carries over to the general case. The
closability of 7 — V is due to A. Manavi ([10, Prop. 12.1.7]); we present his
argument here.

Note that Ty is a symmetric Cy-semigroup. Let 7 be the densely defined,
closed symmetric form in Lo(u) associated with T_y,. By part (a) of the propo-
sition, (T_y)y = T is associated with both 7 4+ V and 7, taking into account
Lemma 2.2 and the definition of 7. Hence 7+ V = 7. Since Q(V) D D(7), this
implies that 7 O 7 — V, i.e., 7 — V has a closed extension. O

Proposition 3.4(a) is valid even for sectorial forms, see [10, Kor. 12.1.4(a)].

It is clear that a sesquilinear form 7 fulfills the first Beurling-Deny criterion
if and only if the same holds for 7 4+ V', for some measurable function V:  — R
with Q(V) 2 D(7). Surprisingly, a similar result holds for closability. It is a
direct consequence of Proposition 3.4(b).

Corollary 3.5. (cf. [10, Kor. 12.1.14]) Let T be sectorial. Then T is closable if
and only if T+ V is closable for some measurable function V = 0 with Q(V) 2
D(T).

Proof. Without restriction 7 is symmetric. Let V' > 0 be measurable with
Q(V) D D(r). If 7 is closable then it is clear that 7 + V is closable. If 7+ V is
closable then V' < 7+ V 4+ w for some w € R. Proposition 3.4(b) implies that
74V — V is closable. Thus, 7 is closable since t C 7+ V — V. O

Definition 3.6. Let 7 be sectorial and closable, V' > 0 measurable. We say that
V' is 7-regular if D(7 + V) is a core for 7, i.e., D(7) N Q(V) is dense in D(7).

Remark 3.7. (a) For example, V € (L1 + Loo) (1) is T-regular if 7 is a Dirichlet
form, since D(7) N Loo(1) € Q(V) is a core for 7.

(b) Obviously, if V' is 7-regular then V' is T-regular, but the converse is not
true in general (D(7 4+ V') may be {0} although V' is 7-regular, see [15]).

The following lemma states in particular that form regularity implies semi-
group regularity.

Lemma 3.8. Let 7 be sectorial and closable, T the positive Cy-semigroup asso-
crated with 7, V- = 0 7-reqular. Then V' s T-reqular, and Ty s associated with
T+V.

Proof. Note that, by Lemma 3.3, 7 + V fulfills the first Beurling-Deny criterion.
Let 77 be the positive Cy-semigroups associated with 7+ V.

Since D(1 + V) is a core for 7 and (7 +V — V An)(u) — T(u) for all u €
D(t + V), we can use [4, Thm. VIIL.3.6] to obtain (71)_yp, — 7. Thus, —V is
Ti-admissible, and (77)_y = T. Lemma 2.2 implies that V' is Tj-regular and that
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Ty = Ty . The latter shows the second assertion, and V' is regular with respect to
T = (T1)-v, by [18, Prop. 3.4(a)]. O

In [10, Kor. 12.1.4(b)] it is shown that form regularity and semigroup regu-
larity are actually equivalent, but we do not need this fact here.

Now we are ready to formulate the main result of this section. It is funda-
mental for Section 4.

Proposition 3.9. Let U > 0 be measurable, Q(U) 2 D(7), T+ U sectorial
and closable, Ty the positive Cy-semigroup associated with T +U. Let V = 0
be (1 + U)-regular, T + V sectorial and closable, Ty o the positive Cy-semigroup
associated with T+ V. Let p € [1,00).

Assume that Ty o extrapolates to a positive Cy-semigroup Ty, on L,(p) and
that =U s Ty p-admissible. Then the same holds with V' in place of U, V is
(Tup)-v-regular, and (Ty,)-v = (Tv,y)-v.

Proof. Let T, := (Ty,)—u. It suffices to show that V' is Ty ,-regular and that
Tva, (T,)v are consistent: then V' is T,-regular by [18, Prop. 3.4(a)] and thus
(TU@)—U = ((Tp)V)_V'

The potential U is (7 + V)-regular since Q(U) 2 D(7+ V), and V is (1 +U)-
regular by the assumptions. Lemma 3.8 implies that both (Ty,2) p and (T U,g)v are
associated with (1 4+ V) +U = (1 +U) +V and that U is Ty -regular. There-
fore,

Tvp = ((TVQ)U)_U = ((TU72)V)—U'

Moreover, V' is Ty o-regular and hence Ty ,-regular by Lemma 2.3(c). Since —U
is Ty ,-admissible we obtain by [18, Thm. 2.6] that

(To)v = ((Tvp)-v)y = (Tup)v) 4

Now we combine the above two equalities and conclude by Lemma 2.3(a) and (b)
that Ty o and (7,)y are consistent. O

Proposition 3.9 leads to the following definition. Recall that 7 is a densely
defined sesquilinear form fulfilling the first Beurling-Deny criterion.

Definition 3.10. Let p € [1,00). We say that 7 is associated with a positive
Co-semigroup T}, on L, (p), 7 <> T, on L,(p) for short, if the following holds:
There exists U > 0 with Q(U) 2 D(7) such that 74U is sectorial and closable,
the positive Cy-semigroup Ty 2 on La(p) associated with 7 + U extrapolates to a
Co-semigroup 1y, on L,(u), —U is Ty -admissible, and T), = (Ty,)-v-

According to Proposition 3.9, the semigroup 7}, is uniquely determined by the
form 7. If 7 itself is sectorial and closable, we can choose U = 0. In this case
Ty(t) = =4t where A is the m-sectorial operator associated with 7 by the first
representation theorem (see [4, Thm. VI.2.1]).

The following result is a generalization of Lemma 3.8.
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Proposition 3.11. Letp € [1,00) and assume that T is associated with a positive
Co-semigroup T, on L,(p). Let U > 0 with Q(U) D D(r) be such that 7 + U
is sectorial and closable. If V' > 0 is (1 4+ U)-reqular then V is T,-reqular, and
T + V — (Tp)v.

Proof. First assume that V' > U. Then 7 4+ V is a closable sectorial form. Let
Ty2 be the Cy-semigroup associated with 74 V. By Proposition 3.9 we obtain
that Ty extrapolates to a Cy-semigroup Ty, on L,, (Tv,)-v = T,, and V is
T)-regular. Lemma 2.2 implies that Ty, = (1)v, i.e., 7+ V «— (Tp)v.

In the general case we apply the above argument to U + V' in place of V. We
conclude that (7 + V) + U < (1,)y+v and that U 4+ V is T,-regular. Thus, V
is T-regular, by [18, Prop. 3.3(a)]. Moreover, —U is admissible with respect to
(Tp)U+V and ((Tp>U+V)_U = (Tp)v, by [18, Thm. 34} Hence 7+V «— (Tp)V- (]

Given 7, we consider the adjoint form 7* which is defined by

7 (u,v) = 7(v,u) on D(7%):= D(r1).

Proposition 3.12. Let p € (1,00) and assume that T is associated with a posi-
tive Cy-semigroup T, on L,(p). Then the form 7" is associated with the adjoint
semigroup T on Ly (p).

Note that, since T}, is a real semigroup, it makes no difference whether the
adjoint semigroup is taken with respect to the bilinear or with respect to the
sesquilinear duality bracket.

Proof of Proposition 3.12. Let U > 0 with Q(U) 2 D(r) such that 7 + U is
sectorial and closable, the positive Cy-semigroup Ty 2 on Lo(p) associated with
T+ U extrapolates to a Cy-semigroup Ty, on Ly(p), —U is Ty ,-admissible, and
Ty = (Tup)-v-

It is easy to see that 7% + U is closable, fulfills the first Beurling-Deny crite-
rion, and that 7+ U = (7 + U)*. Thus, 7* + U is associated with the positive
Co-semigroup Tp;, which in turn extrapolates to the semigroup 777, on Ly (p).

Moreover, ((T,jp),U/\n)neN is an increasing sequence of semigroups, and
(T5p)-vnn = ((TU,p)fU/\n)* — T, weakly as n — oo

since (Ty,)-van — Tp. We deduce that (T77,) van — T, strongly as n — oo,
Hence, —U is Tj; ,-admissible and (T(jp)_U =1T,,1.e., 7" is associated with T)7. [

We conclude the section by a result needed for applications of Proposition 3.9.

Lemma 3.13. Let 7 be sectorial and closable, U,V > 0 measurable. Assume
that U is T-reqular. Then V' is T-regular if and only if V is (7 + U)-reqular. As
a consequence, U + V' is T-regqular if U,V are T-reqular.

11



Proof. Let V be (1 4+ U)-regular. Then D((t + U) + V) is a core for 7 + U and
hence a core for 7. Therefore, D(7 + V) is a core for 7, i.e., V is 7-regular.
Conversely, assume that V' is 7-regular. Without restriction, 7 is symmetric
and 7 > 0. Let 0 < w € D(t + U). There exists (u,) C D(7 + V) such that
U, — uw in D(T) as n — oo. Let v, := (Reu,)". Since 7 fulfills the first
Beurling-Deny criterion we have limsup,,_, . 7(v,) < lim,, o 7(u,) = 7(u). The
lower semicontinuity of 7 implies that v, — w in D(7) as n — oo. Moreover,
T((u—v,)") < 7(u—wv,) — 0 and thus u Av, = v — (u —v,)" — win D(7)
as n — oo. Finally, u A v, — w in Q(U) by Lebesgue’s dominated convergence
theorem. We infer that D((7 +U) + V) 3 u A v, — w in D(7 + U). This shows
that D((7+U) 4+ V) is a core for 7+ U. O

4 L,-properties of elliptic differential operators

In this section we formulate the main result of the paper and deduce some corol-
laries. We refer to Section 1 for the notation.

Recall that the form 7 is defined on D(7) := D(7,)NQ(W1+Ws+|V]) by (1.1).
Since 7, is a Dirichlet form, (Reu)* € D(7) for all w € D(7). Therefore, 7 fulfills
the first Beurling-Deny criterion (we actually have 7(u®,u™) = 0 for all real-
valued u € D(7), and 7(u,v) € R for all real-valued u,v € D(7).) Further, D(7)
is a core for 7, by Lemma 3.13, in particular, 7 is densely defined.

The forms 7, play a crucial role in all our results on elliptic operators. We
will also make use of the symmetric form 7, defined by

Too() 1= =2(Vu], ba|u]) + (V]ul*), D(7s) := D().

In the following proposition we collect several simple properties of the forms 7
and 7, which are important for the understanding of the subsequent results.

Proposition 4.1. Assume that (a) and (bV) hold. Let I be the set of all p €
[1,00) such that wy, :=inf{w € R; 7, > —w} < 0o (then 1, > —w, for allp € I).

(a) For all potentials U > Wy + Wy + 2V, the form T+ U is sectorial and
closed. For all1 < p < oo and U = p'Wy + pWs + 2V~ the symmetric form
7p+ U is non-negative and closed. In particular, 7, is closable for all p € I'\ {1}.

(b) The set I is an interval and, for all p € I, there exist €, > 0, ¢, € R such
that 7, = e, Re 1y — ¢p. If, for some 1 < py < p < p1 < 00, we have 7,, = —wy,
(j = 0,1) then we can choose £, = 4(1%0 - %)(% — pil), ¢p = Owp, + (1 —0)w,, , with
0 — pyl—p!

pal—pfl . .

(¢) For all p,q € I, the norms on the Hilbert spaces D(7,) and D(T;) are
equivalent.

Proof. (a) From (1.2) we deduce by Euclid’s inequality (|ab| < 5a® + 5-b° for all
a,b € R, ¢ > 0) that the sum of the first order terms of 7 is form small with
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respect to 7, + Wi + Wy, Thus, 7+ U is a closed sectorial form for any potential
U > W+ Wy +2V~. The same argument works for 7, if 1 < p < co. By
Corollary 3.5 we obtain that 7, is closable if it is bounded below.

The proof of (b) and (c) relies on the following identity which results directly
from the definition of the forms 7,: for all py,p; € I, 6 € (0,1) and py defined by

L — 1204 9 we have
Do Po P1

1 1-46 0
Tp, = (1 —0)7, +971+4( — — )ReTa. 4.1
v = (L= 0)75 + 67, pery  Poby P (4.1)

In order to prove (b), it now suffices to show that

1 1—-46 0 _(1 1)(1 1) _(1 1)(1 1)
PePy  PoPy  Pipi Py Do) \Pe D1 po po) \Po M
which in turn follows from the equality
1 1 1-6 6\ 1 1-6 6\ 1 1-6 0 1
/ + / = + — v + / + ) = / + / + ;o
PoDy  DPpP1 Do P1/) Po Po b1/ D1 PoPg bip1 Pob1

(¢) By (4.1) we have 7,, > (1 — 0)7,, + 07,,. We deduce that, for all p,q € I,
there exist € > 0, w € R such that 7, > er;, —w and 7, > €7, — w. O

The form 7 itself need not be sectorial. In fact, Theorem 4.2 includes cases
where 7 is not even bounded from the left. However, the form 7+ W7+ Wy +2V~
is sectorial and closed by Proposition 4.1(a). This enables us to make use of
Definition 3.10 in the main result of the paper which reads as follows.

Theorem 4.2. Assume that (a) and (bV) hold. Let I be the interval of all
p € [1,00) such that w, == inf{w € R; 7, > —w} < co. Then T is associated with
a consistent family of positive Co-semigroups T, on L, with |T,(t)| < e“»" for all
pel, t>0.

Let —A, be the generator of T, (p € I). Then, for all p € I\ {1} and
u € D(A,) we have v, := ululP/*7! = |u|P/?sgnu € D(7,) and

Re(Apu, ulul” %) > 75(0p). (12)
If, in addition,
[Im((by + ba)u, Vu)| < e17p(u) + e2oul3 (v € D(7)) (4.3)

for some p € 19, c1 20, cg € R then A, is an m-sectorial operator for all p € f,
in particular, T, extends to an analytic semigroup on L.

The proof of the theorem is delegated to Section 5.
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Remarks 4.3. (a) We point out that the case I = {1} is quite possible. By
definition, 1 € I if /; > —w for some w € R. Note that the coefficient by is not
involved in this condition. In particular, if (a) holds, by = 0 and V' > 0 then 7 is
associated with a positive contractive Cy-semigroup on L, whenever bQTagle is
To-Tegular.

(b) For the case p = 0o we obtain the following by considering the adjoint
picture in Ly. If 7., > —ws for some w,, € R then we can associate a weak*-
continuous quasi-contractive semigroup 7, on L., with the form 7. Observe that
the condition on 7, imposes no additional restriction on b;.

(c) Lemma 4.1(b) demonstrates the relevance of inequality (4.2): Assume that
the domain of 7, admits Sobolev imbed(ging, ie., D(1,) € Ly; for some j > 1.
Then it is easy to show that, for all p € I,

[(A+ Ap)_1||p—>pj < Cp()‘ - wp)i’; (A> wp)-

In [6], an inequality similar to (4.2) was proved only for |u|? in place of
|u|? sgn .

Corollary 4.4. Let the assumptions and notation be as in Theorem 4.2, p €
I. Let (Up)nen, be a sequence of positive potentials such that Uy is 7,-regular,
U, < Uy, 7+ U, is sectorial (n € N) and U,, — 0 a.e. (n — o0). Then 7+ U,
is closable, the analytic semigroup Ty, o associated with T + U, extrapolates to a
Co-semigroup Ty, , on Ly, and Ty, , = (T,)v, — T, as n — oo.

Proof. Let W := Wi + W5 4+ 2V ~. Then 7 + W is a closed sectorial form, by
Proposition 4.1(a). Since 7 + U,, + W is closed, the form 7 + U, is closable by
Lemma 3.5. By Lemma 3.13, U, is (7, + W)-regular and hence (7 + W)-regular.
By Proposition 3.11, U, is T)-regular and 7 + U,, < (1,)v,, i.e., Ty, 2 and (T},
are consistent. Now, by [18, Cor. 3.6] we conclude that (7,)y, — 1, as n — oo
since Uy is T),-regular. O]

As a direct consequence of Theorem 4.2 we obtain a more explicit version of
that theorem.

Corollary 4.5. Let V., V_ > 0 be 1,-reqular with V., —V_ =V, and 7, :=
Ret, + V. Assume that (a) and (bV) hold and that

(=1) (bju, V) < B (u) + Bylulz,  (Vou®) < y7e(u) + Glul;
(0<ue Dr)NQ(VL), j=1,2) for some constants 3y, 52,7 = 0, By, By, G € R.
Let Iy = {p € [1,00); & — %ﬁl — }%ﬁg -7 2= 0}. Then, with the notation of

7 pp’

Theorem 4.2, I D Iy, and w, < %Bl + Z%Bg + G for all p € Iy. Moreover, for all
pelyandue D(A,) we have v, := |u|? sgnu € D(ry) and

Re(Ayu, ululr=?) > (G5 = 28— 28— 7) 74 (vy) = (2B1 + 3 B2 + G) luly,

pp p
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If, in addition,
T ((by + ba)u, Vu)| < 17y (u) + c2fuf3  (u € D(r) NQ(V4))

for some ¢y 2 0, ¢z € R then T, extends to an analytic semigroup on L, for all
pel.

Proof. Since 7y (Ju]) < 74(u) for all w € D(7y), and 1 > ]%, the assumptions
imply that

7p(u) = o Re7a(w) + (Vilul?) — (=2(bsul, Vul)) = Z{bolul, Vul) = (V_|ul?)

> (4 =281 — 28, — )74 (u) — (2B1+ 2By + G) Jul3

for all p € [1,00), uw € D(1)NQ(V}). Let W := W, + Wy + |V|. Then 7, is a
bounded form on D(1, + W). Since V, is (7, + W)-regular by Lemma 3.13, we
deduce that 7, > —(%Bl + I%Bg + G) for all p € Iy. Thus, Theorem 4.2 implies
the first two assertions. In order to obtain the remaining assertions, note that
the above also implies that

Tp = (%_§61_1%62_7>T+_ <}%Bl+§Bz+G)
for allpefo. O

For the remainder of the section, we are concerned with the case by = 0,
V=0,

—(Vu,biu) < (B1, +V +w)(u) (0 <uc€ D(T))

for some < 2, w € R. Then 7 is associated with a consistent family of positive
Co-semigroups T, on Ly, p = by Theorem 4.2. The semigroups are L.-
contractive, by Remark 4.3(b).

In Corollary 4.4 we have shown that convergence of potentials implies strong
convergence of the corresponding semigroups. Here we discuss approximation of
the first order terms. For n € NU{oo}, let b,: © — RY be measurable and define
Tn by

2
25

To(u,v) := T, (u,v) + (Vu, byv) + (Vu,v)
on D(1,) := D(7,) N Q(by"a; b, + V).

Proposition 4.6. Let (a) hold and assume that b, — by a.e., V is 7,-regular,
and there exist 0 < 0 < 2, w € R, 0 < Uy € L1 + Ly such that, for all
n € NU {oo}, we have b, a;'b, < Uy and

—(Vu,byu) < (Bra +V +w)(u) (0 <ue D(r)).

Then, for all p > ﬁ, oo T on L, (n € NU{}), and 7" — T as
n — oo.
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For the proof of the proposition, we need the following elementary form con-
vergence result which was proved in [16, Thm. A.1] for symmetric forms.

Lemma 4.7. For n € NU {oo}, let 7, be a closed sectorial form in a Hilbert
space H, and A, the associated m-sectorial operator. Assume that, for some
closed symmetric form by > 1 in H, and some ¢ > 1, w € R we have

1
-h<Rer,+w<ch (neNU{oo})
c
and
sup ’(TOO — Tn)(u,v)| —0 asn— o0 (u € D(b)).
h(v)<1
Then A, — A. in the strong resolvent sense.

Proof. Without restriction assume that w = 0. For all f,g € H,

(A= AL 9) = (T — ) (AL F5 (A7) 9).
For all g € H, n € N we have h((A;)'g) < cRe7,((A;)'g) < ?|g|? since
|(Az)~| < c. Hence
|4 f — AL fl = sup [(A F — AL F9)| < sup (70 — Ta) (A fL0)| — 0.

lgl<1 bv)<e?

O

Proof of Proposition 4.6. Let ¢q € (1,5 ) U := ¢'Uy. Then 7, + U is non-
negative, by Proposition 4.1(a). Recall from Remark 3.7(a) that U is 7,-regular.

Let p > ﬁ For n € NU {oc}, let TIS") denote the positive Cy-semigroup on

L, associated with 7,. Let T, ((JHQ) denote the Cy-semigroup on L, associated with
the closed sectorial form 7, + U. Since U is 7,-regular, it is Tp(")—regular and
(1o + U) < (T}")y, by Corollary 4.4. Thus, (T\™)y and ng are consistent.

We are going to show that T(n) — T(OO) as n — oo. This will imply that
(TS — (T°)y for all p > Lﬂ since T,(JQ) is Loo- and L,-contractive. Then
the assertion follows from Proposition 2.4.

Without restriction U > 1. Let § := 7, + U + V. It is straightforward that,
for all n € NU {oo}, we have %b < 7, + U < 2h. Moreover, for all u,v € D(h),

[(7oc = ) (1 0)|” = [V, (B = b))
<(U- (b — boe) a7 (b — boo) (V) aVu) (U [o]2).

2

Therefore,
sup |(7’Oo — Tn)(u,v)‘ — 0 (u € D(h))
h(v)<1
and hence T((JnQ) — T[(]?;), by Lemma 4.7. This completes the proof. O]
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Example 4.8. Here we give several examples of applications of Corollary 4.5 to
the case by =0, V = 0.

(i) Assume Wi < ?Re7, + B for some 0 < 8 < 2, B > 0, in the sense of
quadratic forms on L. Then, by Euclid’s inequality,

(b0, u)] < SIW2ul + £lal*Vulg < BRera(u) + Zul3.

1
PRl
Hence, by Corollary 4.5, 7 is associated with a family of consistent positive quasi-
contractive Cp-semigroups 7}, on L, with growth bound less or equal p%, for all
p = ﬁ If B < 1 then 7 sectorial and closed. In this case [6, Thm. 1], with
use of [4, Thm. VI.2.1], associates 7 with a family of consistent analytic quasi-
contractive Cy-semigroups on L, p > 2, which coincide with 7},.

In [6, Thm. 6], under the additional condition that Wy € L; + Ly, T was
associated with a family of consistent Cy-semigroups on the same interval of the
L,-scale, by approximation of b by bounded vector fields in such a way that the
corresponding semigroups converge in L,,. Proposition 4.6 shows that the limiting
semigroup does not depend on the choice of the approximating sequence. This
answers a question posed by V. Liskevich in a remark to [6, Thm. 6]. Moreover,
it follows from Proposition 4.6 that the semigroup constructed in [6] coincides
with the one constructed in Theorem 4.2.

(i) Let N > 2, Q = RY, a(x) = id, D(r,) = H'. Let (e;))L, be the ca-
nonical orthonormal basis in RN, (x,)2%, = QY (c,)%, C (0,00) be such that
the potential U(z) = Y., 2|z — x,|™" is 7,-regular (see [15] for details of the
construction). Let (8,)neny € R\ {0} be such that

B =) B < oo
Let by := )", by, where

bin(x) = cplx — $n|_%ﬁn<8|%fn|€2 — a‘xa%:”‘el).

We show that (b1, Vu,u) = 0 for all n € N, w € H' N Q(|b1,|*). For u €
CHRN \ {z,}), the equality follows by integration by parts. For general u €
H' N Q(|b1,]%), it then follows from the fact that C!(RY \ {z,}) is dense in
H'NQ(|b1,|?) and that the form (u,v) — (by,, Vu,v) is bounded on H'NQ(|b1,|?).

The drift b, is nowhere integrable on RY. However, by the Cauchy-Schwarz
inequality,

b1](2) < 3 bial(2) < 3 ealr — wal7F - 208,] < 21U (2).
n=1 n=1

Hence Wy = |by]? is 7,-regular and (b;Vu,u) =0 for all u € H' N Q(U).
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Thus, 7 is associated with a consistent family of positive contractive Cp-
semigroups 1, on Ly, p > 1.

(iii) Let N > 2, Q =R a(z) = id, D(7,) = H'. Let by(z) = cz|z|* for some
¢, € R. Then |b;|? is 7,-regular. Moreover,

—(01Vu,u) = (N +a)(r*v®) (0<ue CHRY\0)).

c
2
Hence, if ¢(N + a) < 0 then 7 is associated with a consistent family of positive
contractive Cy-semigroups on L, p > 1. If N > 3 we can use the Hardy inequality
143 < ﬁHVUH% to treat the case ¢(N+a) > 0 with —2 < a < 0. For a = -2,
7 is associated with a quasi-contractive Cp-semigroup on some L, if (and only
if, see Remark 6.5 below) ¢ < N — 2, and then 7 is associated with a consistent

family of positive contractive Cp-semigroups on Ly, p = NN ;Ec For a € (—2,0],

we use the fact that r* < er=? + C,. for all r,e > 0 with some constant C, .
to conclude that in this case 7 is associated with a consistent family of positive
quasi-contractive Cp-semigroups on L,, p > 1. If a = 0 then the semigroup
extrapolates also to L.

5 Proof of the main theorem

We separate the core of the proof of Theorem 4.2 into a lemma. Let p € (1, 00).
For w € Lyjoe, n € N let u,, = (|u|§_1) ANy, Vpyp = Wy p, Wn,y = uuiﬂp,
vp(u) == ulu|2" and wy(u) = ulul[P~2.

Lemma 5.1. Let 7 be a densely defined sesquilinear form in Lo fulfilling the first
Beurling-Deny criterion. Let b be a closed symmetric form in Ly, § = —w for
some w € R. Assume that there exists a sequence (Uy)nen, of positive potentials
such that D(Uy) D D(7), T + Uy is sectorial and closed, U,, | 0 (n — 00), and

Wnp € D(T), vnyp € D(B), ReT(u, wny) = Hv,,) — (Un|vn7p|2> (5.1)
for allu € D(1), n € N.

(a) Then T is associated with a positive Co-semigroup T,(t) = e~ on L,
with |T,(t)] < et (t = 0), and for all uw € D(A,) we have v,(u) € D(h) and

t

Re{Apu, wp(u)) = hup(u)). (5.2)
(b) If, in addition,
Im 7(u, wy,,)| < M(Rer + U, +@)(u,w,,) (uwe D(1), neN) (5.3)
for some M > 0, @ € R, then A, is m-sectorial of angle arctan M. In particular,

T, is an analytic semigroup.
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Proof. (a) Without restriction assume w = 0. The proof is divided into three
steps. In step (i) we consider the m-sectorial operator Ay in Ly, associated
with 7 + Uy, and show that e~4°! extrapolates to a contractive Cy-semigroup
Top(t) = e Ao#t on L,. In step (ii) we show that —Uj is T ,-admissible and
(Top)-v, is a contractive Cy-semigroup. This proves the first assertion of (a).
The second assertion is proved in step (iii).

(i) By the exponential formula, it suffices to show that, given f € Lo N L, and
0 < A € p(—Ay), one has [(A+ Ag) "' fl, < ;[ flp- Let u:= (A + Ag)~"f. Then
u € D(1+Uy) = D(7). This implies that v, , € Q(Up). By assumption (5.1) and
the equality uw,, , = |v,,|* we have, for all n € N,

)‘”Un,p"g +(h+ Uy — Un)(vn,p) < Mu, wn,p> + Re(1 + Up)(u, wn,p)
= Re((A + Ao)t, wnp) < [ flplwnplp

2
Observe that |wy, [P = |[ulP'u) < |v,,[>. Hence |wyyly < |vnpls . and from
estimate (5.4) we obtain that

2
[vnpls < 31/, (n €N).

Since |vyp| T |vp(uw)| we conclude by the Beppo Levi theorem that v,(u) € Lo,
and

2
P

[+ A0) 7 flo = lop ()5 < 31£lp-

(ii) With the quantities introduced in (i) we proceed as follows. By Lebesgue’s
dominated convergence theorem, v, , — v,(u) in Lo and wy,, — wy(u) in Ly.
Further, Aju = f — Au € L,. From estimate (5.4) we obtain

liminf (h(vnp) + (Uo — Up)|vnpl®)) < lim Re(Aou, wn,) = Re{Aqu, wy(u)).

n—oo

By the Beppo Levi theorem, (Uy — Uy,)|vnpl* T Uolvp(u)]? in Ly. Hence the left
hand side of the previous inequality equals liminf, h(v,,) + (Ug|v,(u)|?). The
lower semicontinuity of h implies that

vp(u) € D(b), (b + Uo)(vp(u)) < Re{Agu, wp(u)). (5.5)

So far we have proved inequality (5.5) for all u from the core D := (A+Ag) ! (LyN
L,) of Ag,, where A > 0 is some element of p(—A).

Let now u € D(Ap,). Choose (u™) C D such that u™ — w in D(Ap,).
Then v,(u™) — v,(u) in Ly and w,(u™) — wy(u) in Ly. From (5.5) we
conclude that

lim inf (b + Up) (v, (u™)) < lim Re(Ag,u™, w,(u™)) = Re(Agpu, w,(u)).

m—00 m—o0

The lower semicontinuity of h + Uy implies that (5.5) holds for all u € D(A,).
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For m € N, let A,, :== Ay, — Uy Am. Then A,, is a closed operator and,

by (5.5), Re(Au,w,(uw)) > 0 for all w € D(A,,) = D(Apyp). By the Lumer-

Phillips theorem, e~ = (Tj,)_poam(t) is a contractive Cp-semigroup on L,

and, by [18, Prop. 2.2] (see Definition 2.1(b)), we conclude that —Uj, is T ,-
admissible and that 7T}, := (T5,)_g, is a contractive Cy-semigroup on L.

(iii) Let —A, be the generator of T,,. By (ii), A,, — A, in the strong resolvent
sense. Let u € D(4,). Then u™ := (1+ A,,) (1 + A,)u — u in L, as m — oo.
Since

w™ 4 Amu(m) =u+ Ay,

we also have A,,u™ — Ayu in L, Furthermore, v,(u™) — wv,(u) in Ly and
w,(u'™) — w,(u) in L,y as m — co. Hence, estimate (5.5) yields

lim inf b(v,(u™)) < lEm(A,,u™ w,(u™)) = (Au, w,(u)).

The lower semicontinuity of h implies (5.2).
(b) Let u € D(Ap) N D(Ap,). Then, since uiw,, is real,

Im (A, u, wy ) = Im((Ag — Ug A m)u, w,,) = Im7(u, wy,,).

By (5.5) we know that U,|uw, | < Uplv,(u)|? € Ly. Thus, (U,u,w,,) — 0 by
Lebesgue’s dominated convergence theorem. By (5.3) we conclude that

Im (A, u, wy(w))| = lm |Im 7(u, wy,,)|
< lim M(ReT + (Up — m)* + U, + @) (v, wnyp) = M Re((Ap + @)u, wy(u)).

This estimate carries over to all u € D(A,,) since D(A) N D(Ap,) is a core for
A, Let now u € D(A,) and u(™ be as in the beginning of step (iii). Then

[T (A, w, ()] = lim [T A ™, w, (™))
<lim M Re{(Ay, +0)u™ 1w, (u™)) = M Re((4, + &)u, w,(u),

which shows the m-sectoriality of A, with angle arctan M. O

For the application of Lemma 5.1 in the proof of Theorem 4.2 we need to
compute the gradient of v, , and w,,.

Lemma 5.2. Fora € R, r > 0, z € C, denote zo, = |z|* Ar if @ # 0 and
20, = 1L Ar. Let p: C — C, ¢o(2) = 224,. Then, for all (complex valued)
we Wi, v=pouecW],, and

locy loc

Vv =uq, (Vu + alfjyjo<r) gD uV|u|)
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Proof. 1t is easy to see that ¢ is a Lipschitz continuous function. So v = powu is in
Wi e If @ ¢ (0,1) then the function [0,00) 3 ¢ +— t* A7 is Lipschitz continuous
too, hence g, € Wiy, Vg, = alyecry|ul* " V|u| and the second statement
of the lemma follows from the general product rule.

Let now 0 < a < 1. We denote 254, = (|z| +9)* A r and approximate ¢
with the functions ¢s, ps(2) 1= 2254,. The function [0,00) 3¢ — (t +9)* A7 is
Lipschitz continuous and

Vu(;,w« = oz]l{(|u|+5)a<,,}(|u| -+ 5)0‘_1V|u|.
So, by the general product rule,

V(s 0 u) = s 00 (Vu + ot Liuae<n Vul).

Finally, psou — pou and V(psou) — g, (Vu + adlqjyjo<r) SgN uV\uD in L1 joc
by Lebesgue’s dominated convergence theorem, which implies the assertion. [

Proof of Theorem 4.2. Let p € I, ie., 7, > —w,. Let Uy := Wy + W5 +2V".
By Proposition 4.1(a), 7 + Uy is a closed sectorial form.

First we study the case p > 1. Let w € D(7). Then v,,, w,, € D(T) as
multiples of normal contractions of u. At the end of the proof we will show that

Re7(u, wnp) = 7p(vnp) — %(]ln(Wl + Wa)|vnpl?), (5.6)

where 1,, is the indicator of the set {z; ]u\Lf > n}. Applying Lemma 5.1(a)
with b = 7, and U, = 31,(W; + W) (n € N), we obtain all the assertions of
Theorem 4.2 except for the analyticity of 7,,. . .
Let now assumption (4.3) hold for some p € I. Then it holds for all p € I, by
Proposition 4.1(c). To prove the analyticity of T}, we need the inequality

|Im7(u7wn7p)| < [Im Ta(vn7p)| + |% - }%| Re Ta(vmp) + [Im((by + bQ)Un,p’ an7p>|
(5.7)

which is also shown at the end of the proof. The first term in the right hand side
of (5.7) can be estimated by a Re 7,(v,,), due to assumption (a). Thus, by (4.3)
we obtain that

|Im7_<u>wn7p)| < (a + |% - ;%') Re Ta(vn,p) + ClTp(Un,p) + 02||Un,p||2~

By Proposition 4.1(b) we have Re7,(v,,) < C(1, + &1)(vy,) for some &y € R,
C > 0 depending on p. Moreover, 7,(v,,) < (Re7T + U,)(u,w,,) by (5.6). We
conclude that

I 7(u, wy )| < [Cla+ |2 = L) + a]ReT + Uy + @2) (1, wy p)

p P

for some @y € R, so Lemma 5.1(b) implies that A, is an m-sectorial operator.

21



The proof for the case p = 1 is based on the assertions of the theorem in the
case p > 1. Let Uy be as above. Then 7 := 7 + U, is a closed sectorial form
in Ly. Let Ty be the associated analytic semigroup on Ly. Let 1 < p < oo and
7, =T, + Up. For all 0 <u € D(7) = D(7) we have

Fo) = 7o) — 2w, baV) + L (2001 Vi, u) + (Ve2)) + (BV + Up)u?).
We apply Euclid’s inequality to the second term, and the estimate
m(u) = 2(byVu,u) + (Vu?) > —w; |ul;
to the third term in the right hand side, to obtain

7o) 2 () — 2 (Ara(u) + (W) — 2 Jul3 + (Us — 2V7)u?)
= L Dra(w) — 2 Jul3 4+ (U — 5V + Wa))ud).

p

For 1 < p < 4, Theorem 4.2 applied to 7 implies: T, extrapolates to a Cjy-
semigroup Ty, on L, and for the generator —Ay, of Ty, we have

(Aopu,w?™) = {(Uo — Z(V- + Wo)u?) — <z (0 < ue D(Ag,)). (5.8)

In particular, |To,(t)],—p < ertforallt >0, 1< p < 4. Since Ty is a positive
Co-semigroup, [19] implies that Ty extrapolates to a Cp-semigroup Tp; on L.

Let now Uy, == (Up — L (V™ + Wa)) An for n,m € N. It follows from (5.8)
that

||(T0:p)_Un,m (t)up—*P < G?t (t > 0)

foralln € N, m > 2and 1 < p < %5 (ie, z% < +). Since (Tyy)-v,,, and
(Tv1)-u,.,, are consistent by Lemma 2.3(b), we obtain | (Ty1)-v,.,. (£)]1-1 < e
forallt > 0, n € N, m > 2. Since U,,, T Uy An as m — oo, we have

(To,1)-vnm — (To,1)-voan for all n € N, by [17, Prop. A.2]. Hence

sup [(To,)-vorn () l1—1 < e (£ > 0).
ne

Finally, [18, Prop. 2.2] implies that —Uy is T ;-admissible, and we obtain 7 «
(To1)-v, =: Th, with |T1(t)]1-1 < e“! for all ¢ > 0.

To complete the proof it remains to show inequalities (5.6) and (5.7). Let
1¢ :=1—1,, i.e., the indicator of the set {x; \u|p772 < n}. We write u, = ty,p,
Up = Uny (= u(|ul"z An)) and wy, = Wy, (= u(|u[P~>An?)) for short. Lemma 5.2
implies that

Vo, = u,(Vu + 5216 sgnuVul) = sgnu(u, sgnuVu + Z215u,V|ul).
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Let ¢, := u, Re(sgnuVu) = u,V|u| and 1, := u, Im(sgnuwVu). Then we have

sgnuVo, = @, + ith, + 2150, = (21 + 1), + ity
In the same way, with p, = (p — 1)1 + 1,,, we have

VW, = u(Va + (p — 2)1¢ sgnuV|u|) = u, sgn(ppen — itdn).

Now we compute the different terms occurring in 7(u, w,,) and 7,(v,) separately,

aVu - Vi, = a(u, sgnuVu) - (ppn — ithn) =

a(gon + Z¢n)(pngpn - 2.77[}”),
aVu, - VU, = a(sgnuVu,) - (sgnuVv,)

) . (5.9)
= (515 4 1,)aspn - @ + asthn - Y + i(a — a,)ip

n s (PLS +21,) ¢y

Therefore ReaVu - Vw,, = ((p — DI + ln)asgon “On + asthy, - YP,. Note that
I%; = p — 1. Hence, we obtain

Re Ta(ua wn) = % Re Ta(vn) + (1 - %)(lnas(pn * Pn + as¢n . ¢n>

For the first order terms we compute

0, VU, = |vg] ((%12 + 1,)en + Z¢n)7
W, Vu = |, |u, sgnuVu = |v,|(¢n + ithy),
uNW, = |y |(pntpn — 1n).

Thus, Re @, Vv, = |v,|(515 + 1)

(5.10)

©n. We obtain that

Rew,Vu = |v,|¢, = %Re(Eann) + (1 — %)]ln|vn]<pn

and, since 3,% 1,

p—
ReuVw, = ((p— 1)1E + 1) [v,|en = Z%Re(Eann) +(1- Z%)]ln|vn|g0n.

Let now ¢, :=

SR

1 2 2 _ 4
5 —(1=3). Then e, =1—_5. We get
Re 7(u, w,) = Re 7, (u, w,) + Re(Vu, byw,) — Re(bau, Vw,) + (Vu, w,)
= 7p(vn) + ;2;<]lna380n Pt asthn - Pn) +Ep(Ln (b + b2)|vn] - pn).

This implies (5.6) since €,1,,|(by +b2)v, -] < € ]lnasgpn Onts M (W + W) |v,)?,
by Euclid’s inequality.

To prove (5.7), we first compute Im 7, (u, w,)
Im(aVu - Vw,) = ((p — D1 + 1,)ath, - ¢ — apy, - ¥y
= (p - 2)]12%1% “Pn T (p]l; + 2]171)(@ - as)wn “Pn-
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The second term in the right hand side equals Im(aVuv, - V7, ), by (5.9). The
first term we estimate, using Euclid’s inequality and (5.9), as follows:

’(p - 2)]1;%?% : Qpn‘ < ’p - 2‘1;(26159071 “On + %Qg?ﬁn : wn)
=11- %|]1$L(§asg0n COp + agthy, - @bn) <12 - L Re(aVo, - V).

2

For the first order terms we have, by (5.10),
Im(<vu7 blwn> - <b2u7 an)) = <(b1 + b?)’”nla 7wbn> == Im<<bl + b2>vn7 VUn)

Thus, inequality (5.7) follows. O

6 Sharpness of the result

In this section we show that, under some conditions additional to (a) and (bV),
if 7 < T, on L, for some p € (1,00), with |T,(¢)| < e*** for some w, € R, then
estimate (1.3) holds.

Lemma 6.1. Let 1 < p < oo, T, a positive contractive Cy-semigroup on L,. Let
U > 0 be a T,-admissible potential, —Ay the generator of (1,)y. Then

Re(Apu, ululP~?) = (Uul’) (v € D(Ay)).

Proof. Let —A be the generator of T,,. Form € Nlet U,, = UAm. Let u € D(Ay)
and u,, ;== (1+ A+ U,) (1 + Ay)u. Since A is accretive, we have

Re((1 + Av)u, tpm|un[P7%) = Re((1 + A + Upn )t tn|tm[P~2) 2 (1 + U [t [).

Since u,, — u in L, and U,, T U, we complete the proof by an application of
Fatou’s lemma. m

The following theorem is the main part of our sharpness result.

Theorem 6.2. Let (a), (bV) hold and assume that T < T, on L, for some
p = 2, with |T,(t)] < e“* (t = 0) for some w, € R. If there exists a T,-reqular
potential U = 0 such that |(T,)v(t)|ocomoe < C for all t = 0 then estimate (1.3)
holds.

If (Vu,bou) < wlul3 (v € D(7)) and U >V~ + w, then |(T)r(t)]oo—oo < 1
for all £ > 0, by Remark 4.3(b) and Proposition 3.11.

The proof of Theorem 6.2 is based on the following lemma.
Lemma 6.3. Let (M, p) be a measure space, b a Dirichlet form in Ls(p) and
r>1.

(a) Then Dy := {0 < u € D(h)N Log(p); u/" € D(B)} is dense in D(b), the
set of positive elements of D(h).
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(b) Let by be a densely defined closed sectorial form in Lo(p) fulfilling the first
Beurling-Deny criterion, A the m-sectorial operator associated with by. Assume
that D(h1) = D(h), and |e ™ |sos0o < C (0 < t < 1) for some C > 0. Then
Dy :={u";0 < u € D(A) N Loo(p), Au € Loo(p) } is dense in D(h).

Proof. (a) For n € N define p,: [0,00) — [0,n] by ¢,(s) := s A (ns") An. It is
easy to show that the functions ¢,, are Lipschitz continuous with constant r, gpi/ "
are Lipschitz continuous and that ¢, (s) — s (s > 0) as n — oo. For u € D(h)
we conclude that ¢, (u) € Dy, and from [1, Prop. 11] we deduce that ¢, (u) — u
in D(h) as n — oo.

(b) By (a), it remains to show that Dy is dense in D;. Let uw € D; and
v := u'". Then v € D(h) N Loo(pr). By [9, Thm. 1.2.13(ii)] we have vy :=
AA+ A" — v in D(h;) and thus in D(h) as A — oo. The assumption on
A implies that vy € D(A) N Ly and |vy]e < 2C|v| for large A. Moreover,
we have Avy = A(v — v)) € Lo. Therefore, v} € Dy and, by [1, Théoreme 10],
vi — v" =wuin D(h) as A — oo. O

Proof of Theorem 6.2. Without restriction assume U > Uy := Wi+ Wy +2|V|
(see Lemma 3.13). We have to prove 7, > —w, on D(7,) = D(7,+U,). Notice that
7, is a bounded form on D(7,+Up). Since U is (7, + Up)-regular, by Lemma 3.13,
it therefore suffices to show 7,(u) > —w,|ul3 for all w € D(r, + U). Since 7,
fulfills the first Beurling-Deny criterion we can restrict ourselves to u > 0.

By Proposition 4.1(a), 7 + U is a closed sectorial form in Ls. Let Ay be
the m-sectorial operator in Lo associated with 7 + U. Then the assumptions of
Lemma 6.3(b) are fulfilled with h = 7, + U, b = 7 + U, A = Ay since e~ 40
and (7,)y are consistent by Corollary 4.4. Below we show that

p(u?) > —wpluz|; (6.1)

for all 0 < u € D(Ay) N Ly with Ayu € L. Then, an application of Lem-
ma 6.3(b) shows that 7,(u) > —w,|u|3 for all 0 < u € D(7, + U), and the proof
is complete.

So, let 0 < u € D(Ay) N Ly with Ayu € Lo. Then u € D(1, + U) N Ly
and hence u" € D(7, + U) N Ly, Vu" = ru"'Vu for all » > 1. From this we
easily obtain 7(u,u?~) = 7,(u?) (cf. the computation on page 3) and thus, by
the definition of Ay, (7, + U)(u?) = (Agu, u?~").

Since e=4v? and e~ vt := (T,,)y are consistent and u, Ayu € Lo N Lo C Ly,
we obtain v € D(A, ) and A, yu = Ayu. By Lemma 6.1 we infer that

(rp +U) (U%) = (Apuu, Up_l) > (U = wy)ul),

i.e., (6.1) holds.

By Proposition 3.12 we easily obtain the following corollary.
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Corollary 6.4. Let (a), (bV) hold and assume that, for some 1,-regular poten-
tial U > 0, the form T+ U 1is sectorial and closable and the associated semigroup
Ty satisfies [Ty (t) |11 < C, [Ty (1) |oomoo < C (t = 0). If T < T, on L, for some
p € (1,00), with |T,(t)| < er' (t = 0) for some w, € R, then estimate (1.3) holds.

Remark 6.5. The previous result is in particular applicable in the case of weakly
differentiable b; and by. For j = 1,2, we assume that b; is of 7,-reqular divergence,
i.e., there exists a measurable function div b; such that |div b;| is 7,-regular and

2bju, Vu) = —((div b)u2) (0 < u € D(r) NQ(|div by])).

Let U :=V~ +|div by| + |div bg|. Then

(11 4+ U)(u) = ((—div by + V + U)u*) > 0,
(Too + U)(u) = ((div by + V + U)u*) = 0

forall 0 < w e D(1+U), so (T,)y is L;- and L.-contractive.
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