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Abstract

We study Lp-theory of second order elliptic divergence type operators
with measurable coefficients. To this end, we introduce a new method
of constructing positive C0-semigroups on Lp associated with sesquilinear
(not necessarily sectorial) forms in L2. A precise condition ensuring that
the elliptic operator is associated with a quasi-contractive C0-semigroup
on Lp is established.

1 Introduction and main results

In this paper we study the Lp-theory of second order elliptic differential opera-
tors on an open set Ω ⊆ RN , N ∈ N, corresponding to the formal differential
expression

L = −∇ · (a∇) + b1 · ∇+∇ · b2 + V,

with singular measurable coefficients a: Ω→ R
N ⊗RN , b1, b2: Ω→ R

N , V : Ω→
R. The aim of the paper is to construct a quasi-contractive C0-semigroup on
Lp := Lp(Ω), whose generator is associated with L in a natural way which will
be made precise below. As is well-known, this implies well-posedness of the
corresponding Cauchy problem.

Elliptic operators in divergence form with measurable coefficients are usually
defined by means of the form method. The form associated with the above
differential expression is

τ(u, v) := 〈a∇u,∇v〉+ 〈∇u, b1v〉 − 〈b2u,∇v〉+ 〈V u, v〉 (1.1)
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on a suitable domain D(τ) corresponding to the boundary conditions. (Here
and in the sequel, 〈f, g〉 is defined as

∫
Ω
f(x) · g(x) dx whenever f · g ∈ L1, for

f, g: Ω→ C or f, g: Ω→ C
N measurable.)

The traditional way of constructing the corresponding C0-semigroup is the
following. If the form τ is densely defined, sectorial and closed then it is associated
with an m-sectorial operator A in L2 which generates a quasi-contractive analytic
semigroup e−At on L2 (cf. [4, Thm. VI.2.1]). If

∣∣∣∣e−At�L2∩Lp

∣∣∣∣
Lp→Lp

6 Meωpt for

some p ∈ [1,∞), then the semigroup extends to a semigroup Tp on Lp. In this
case we say that e−At extrapolates to the semigroup Tp on Lp, which is consistent
with e−At in the sense that e−At�L2∩Lp = Tp(t)�L2∩Lp for all t > 0. For p > 1, the
semigroup Tp is always strongly continuous, whereas for p = 1 this is the case
if, e.g., T1 is positive or quasi-contractive (see [19]). The above approach was
used for constructing semigroups acting in all Lp, 1 6 p < ∞ (this case is well-
documented, see, e.g., [14] and [3]), as well as for constructing semigroups acting
in Lp only for p from some subinterval of [1,∞) containing 2; see, e.g., [2], [6].

However, we do not assume τ to be a sectorial form in L2; even its real part
need not be bounded below, so that the traditional approach is not applicable.
In the case b2 = 0 and V = 0, non-sectorial forms have been studied in [5], [6]
where the coefficients of the first order terms of L are approximated in such a
way that the approximating forms become sectorial in L2 and the corresponding
semigroups converge to a C0-semigroup, in a suitable Lp.

In this paper we develop a new approach to the construction of a quasi-
contractive C0-semigroup associated with the form τ , which even in L2 gives rise
to a C0-semigroup under assumptions when all known representation theorems
break down. Our approach is based upon approximations by sectorial forms,
however, not related to approximations of the coefficients of the first order terms.

Instead, we approximate the potential: we introduce a positive potential U
which ‘absorbs’ all the singularities of the lower order terms of L in the sense
that, being added to τ , it makes the sum sectorial in L2. The sequence of
the approximating semigroups Tm, which are associated with the sectorial forms
τm := τ+U−U∧m (m ∈ N), extrapolates to a suitable Lp and strongly converges
to a quasi-contractive C0-semigroup on Lp. The use of the perturbation theory
of positive semigroups developed in [17], [18] is crucial for the realization of this
idea.

The approach we present is in fact a general method of constructing positive
C0-semigroups on Lp corresponding to sesquilinear forms in L2 (see Section 3
for details). In the context of Schrödinger operators with magnetic fields, and
dominated semigroups with singular complex potentials, a similar approximation
idea was used in [12] and in [7].

The result we obtain is sharp in the sense that, for a wide class of coefficients,
the sufficient condition (see estimate (1.3) below) for the validity of our main
theorem becomes necessary (see Section 6 for details).
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We make the following qualitative assumptions on the coefficients of L.

(a) a ∈ L1,loc, a is a.e. invertible with a−1 ∈ L1,loc, and a is uniformly sectorial,
i.e.,

|Im ζ∗aζ| 6 αRe ζ∗aζ a.e. (ζ ∈ CN)

for some α > 0 (where ζ∗ is the transpose of ζ). Let as := a+a>

2
. Then

τN(u, v) := 〈a∇u,∇v〉, D(τN) :=
{
u ∈ W 1

1,loc ∩ L2; (∇u)∗as∇u ∈ L1

}
defines a closed sectorial (non-symmetric) Dirichlet form in L2 (for the
closedness cf. [13, Theorem 3.2]). Let τa ⊆ τN be a Dirichlet form.

(bV) The potentials Wj := bj
>a−1

s bj (j = 1, 2) and |V | are τa-regular, i.e.,
D(τa) ∩ Q(Wj) and D(τa) ∩ Q(|V |) are cores for τa. (For a potential
U > 0, Q(U) :=

{
u ∈ L2; U |u|2 ∈ L1

}
denotes the domain of the form

U(u) = 〈U |u|2〉 in L2.)

We define the form τ on D(τ) := D(τa) ∩ Q(W1 + W2 + |V |) by (1.1). This
is possible since for u, v ∈ D(τ) and j = 1, 2 we have, by the Cauchy-Schwarz
inequality,

|∇u · bjv| =
∣∣a1/2
s ∇u · a−1/2

s bjv
∣∣ 6 (as∇u · ∇u)1/2(

Wj|v|2
)1/2 ∈ L1. (1.2)

Furthermore, D(τ) is dense in D(τa) as can be seen from Lemma 3.13 below. In
particular, τ is densely defined.

Although the form τ itself need not be sectorial, the form τ +U with domain
D(τ) ∩ Q(U) is sectorial and closed for all U > U0 := W1 + W2 + 2V − since
the sum of the first order terms of τ is form small with respect to τa +W1 +W2

by (1.2).

The only quantitative condition we need is obtained from the Lumer-Phillips
theorem by a formal computation. Suppose τ is associated with a positive quasi-
contractive C0-semigroup Tp(t) = e−Apt on Lp, for some p ∈ [1,∞). Then Ap
is quasi-accretive which by the positivity of Tp is equivalent to 〈Apu, up−1〉 >
−ωp||u||pp in case p > 1, and to 〈A1u〉 > −ω1||u||1 in case p = 1, for some ωp ∈ R
and all 0 6 u ∈ D(Ap). Formally, Apu = Lu, ∇up−1 = 2

p′
up/2−1∇up/2, and

∇u = 2
p
u1−p/2∇up/2. Thus,

〈Apu, up−1〉 =
〈
−∇ · (a∇u) + b1 · ∇u+∇ · (b2u) + V u, up−1

〉
= 4

pp′
〈a∇up/2,∇up/2〉+ 〈(2

p
b1 − 2

p′
b2)up/2,∇up/2〉+ 〈V up〉

in case p > 1 and, in case p = 1,

〈A1u〉 =
〈
−∇ · (a∇u) + b1 · ∇u+∇ · (b2u) + V u

〉
= 2〈∇u1/2, b1u

1/2〉+ 〈V u〉.
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Now we define quadratic forms τp on D(τp) := D(τ) (1 6 p <∞),

τp(u) := 4
pp′
〈as∇u,∇u〉+ 2

p
〈∇|u|, b1|u|〉 − 2

p′
〈b2|u|,∇|u|〉+ 〈V |u|2〉 (p > 1),

τ1(u) := 2〈∇|u|, b1|u|〉+ 〈V |u|2〉.

Then the natural condition for Lp-accretivity is

τp(u) > −ωp||u||22
(
u ∈ D(τ)

)
, (1.3)

i.e., τp is bounded from below. Note that τ2 = Re τ (as to be expected), where the

form Re τ is defined by (Re τ)(u, v) := 1
2

(
τ(u, v) + τ(v, u)

)
on D(Re τ) := D(τ).

The construction of the C0-semigroup on Lp, corresponding to the formal
differential expression L with boundary conditions prescribed by D(τa), is given
in the following theorem, which constitutes a simplified version of the main result
of the paper, Theorem 4.2.

Theorem 1.1. Let assumptions (a) and (bV) be fulfilled. Let U0 := W1 +W2 +
2V −, and let T0,2 be the C0-semigroup on L2 associated with the form τ +U0. Let
I be the set of all p ∈ [1,∞) such that ωp := inf{ω ∈ R; τp > −ω} < ∞. Then
the following assertions hold.

(i) The set I is an interval in [1,∞), and T0,2 extrapolates to a C0-semigroup
T0,p(t) = e−A0,pt on Lp, for all p ∈ I.

(ii) For all p ∈ I, the sequence of C0-semigroups Tm,p(t) = e−(A0,p−U0∧m)t

strongly converges in Lp to a C0-semigroup Tp(t) = e−Apt satisfying
||Tp(t)|| 6 eωpt. For p, q ∈ I, the semigroups Tp and Tq are consistent.

(iii) For all p ∈ I \ {1}, the form τp is closable. For all u ∈ D(Ap) we have
|u|p/2 sgnu ∈ D(τp) and

Re〈Apu, u|u|p−2〉 > τp(|u|p/2 sgnu).

(iv) If, in addition, we assume that∣∣Im〈(b1 + b2)u,∇u〉
∣∣ 6 c1τp(u) + c2||u||22

(
u ∈ D(τ)

)
for some p ∈

◦
I, c1 > 0, c2 ∈ R, then Tp extends to a quasi-contractive

analytic semigroup on Lp and Ap is an m-sectorial operator in Lp, for all
p ∈

◦
I.

We shall call Ap the m-accretive operator in Lp, Tp the quasi-contractive C0-
semigroup on Lp associated with the form τ . The operator Ap is an Lp-realization
of L with boundary conditions prescribed by D(τa).

4



Remarks 1.2. (a) In fact, as it will be shown in the main body of the paper
(see Corollary 4.4 below), the semigroups Tp constructed in the theorem do not
depend on the approximating sequence of potentials. Furthermore, the assertions
hold with U0 replaced by any positive τa-regular potential U such that τ + U is
sectorial and closable in L2.

(b) The domain of τa determines the ‘boundary conditions’ under consider-
ation. The standard examples are the case of Neumann boundary conditions
τa = τN and of Dirichlet boundary conditions τa = τD := τN�C∞c (Ω). Assump-
tion (bV) expresses that the lower order perturbations must not disturb the
boundary conditions prescribed by D(τa). In the case of Dirichlet boundary
conditions, assumption (bV) is fulfilled in particular if W1,W2, V ∈ L1,loc.

Suppose that assumption (bV) is not fulfilled, but D(τ) is dense in L2. Let
τ̃a := τN�D(τ) (note that τ̃a is a Dirichlet form). Then assumptions (a) and (bV)
are fulfilled with τ̃a in place of τa, so Theorem 4.2 is still applicable to the form
τ .

(c) If the form τ itself is sectorial then it is closable (see Lemma 3.5 below). In
this case we have 2 ∈ I, A2 is the m-sectorial operator associated with τ and, for
f ∈ L2, the function u(t) := T2(t)f is the weak solution of the Cauchy problem{

ut = −Lu,
u(0) = f

with boundary conditions prescribed by D(τ).
(d) Let us point out that the interval I given in Theorem 4.2 is a set of p ∈

[1,∞) for which the form τ is associated with a quasi-contractive C0-semigroup
Tp on Lp (I \ {1} is the maximal set of such p ∈ (1,∞) under the conditions of
Corollary 6.4 below). The set of all p ∈ [1,∞) such that τ is associated with a
C0-semigroup Tp on Lp can be strictly larger than I, see [8].

The remainder of the paper is organized as follows. In Section 2 we give a
brief account of Voigt’s perturbation theory for positive semigroups. In Section 3
we show how to associate a positive C0-semigroup on Lp(µ) with a sesquilinear
form in L2(µ). Section 4 contains the precise formulation of the main theorem
and some useful consequences of it. The proof of the main theorem is given in
Section 5. In Section 6 we discuss the sharpness of the main result.

2 Perturbations of positive C0-semigroups by

real-valued potentials

In this section we give a short survey of J. Voigt’s perturbation theory for positive
C0-semigroups developed in [17], [18].

Let (Ω, µ) be a measure space, 1 6 p <∞. Let T be a positive C0-semigroup
on Lp(µ), i.e., the semigroup operators T (t) (t > 0) are positivity preserving. Let

5



−A be the generator of T and V : Ω → R a measurable function. If V ∈ L∞(µ)
then TV denotes the C0-semigroup generated by −(A+ V ).

The definition of TV is extended to unbounded real-valued potentials by ap-
proximating V by V (n) := (V ∧ n) ∨ (−n) and letting

TV (t) := s-lim
n→∞

TV (n)(t) (t > 0) (2.1)

if the limits exist. Obviously, TV is a semigroup in this case. If V > 0 then
(TV (n)) is a monotone decreasing sequence, for V 6 0 it is monotone increasing.
This leads to the following definition.

Definition 2.1. ([17, Def. 2.2], [18, Def. 2.5], [18, Def. 3.1])
(a) If V > 0 then the limit in (2.1) exists for all t > 0. If TV is strongly

continuous, V is called T -admissible. In this case, TV (n) → TV as n → ∞, i.e.,
T (t)f = limn→∞ TV (n)(t)f , uniformly for t in bounded subsets of [0,∞), for all
f ∈ Lp.

(b) If V 6 0 then V is called T -admissible if the limit in (2.1) exists for all
t > 0 and defines a C0-semigroup. In this case, TV (n) → TV as n→∞.

By [18, Prop. 2.2], V is T -admissible if and only if sup06t61, n∈N ||TV (n)(t)|| <∞.
(c) If V > 0 and V is T -admissible then −V is TV -admissible. If T = (TV )−V ,

then V is called T -regular.

The following result expresses, roughly speaking, that negative admissible
potentials are always regular.

Lemma 2.2. (cf. [18, Thm. 2.6, Prop. 3.3(b)]) Let V > 0 be measurable. If −V
is T -admissible, then (T−V )V = T , and V is T -regular.

Lemma 2.3. ([17, Prop. 3.1]) Let p, q ∈ [1,∞), Tp, Tq consistent positive C0-
semigroups on Lp(µ), Lq(µ), respectively, V > 0 measurable.

(a) (Tp)V and (Tq)V are consistent, and V is Tp-admissible if and only if V
is Tq-admissible.

(b) If −V is Tp- and Tq-admissible, then (Tp)−V and (Tq)−V are consistent.
(c) V is Tp-regular if and only if V is Tq-regular.

We conclude the section with the following approximation result which we will
use in Section 4 to show that the semigroup constructed in [6, Thm. 6] coincides
with the semigroup constructed in Theorem 1.1.

Proposition 2.4. Let p ∈ (1,∞). Let Tn (n ∈ N ∪ {∞}) be positive C0-semi-
groups on Lp(µ) with Tn → T∞. Let 0 6 V ∈

(
L1 + L∞

)
(µ) such that −V is

Tn-admissible (n ∈ N ∪ {∞}), and

||(Tn)−V (t)||p→p 6 eωt, ||(Tn)−V (t)||∞→∞ 6 Ceωt (n ∈ N, t > 0).

for some ω ∈ R, C > 1. Then (Tn)−V → (T∞)−V .
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The crucial idea of the proof is to make use of the following result which gives
an explicit rate of the convergence T−V ∧n → T−V .

Lemma 2.5. Let p ∈ (1,∞), T be a positive C0-semigroup on Lp(µ), and 0 6
V ∈

(
L1 +L∞

)
(µ) such that −V is T -admissible, and T−V is contractive in Lp(µ)

and bounded in L∞(µ). Let −A be the generator of T , −A−V the generator of
T−V . Then

||(λ+ A−V )−1f − (λ+ A− V ∧ n)−1f ||p 6 Cλ−1−1/p||(V − n)+||1/p1 ||f ||∞
for all 0 6 f ∈

(
Lp ∩ L∞

)
(µ), λ > 0 and n ∈ N such that (V − n)+ ∈ L1(µ),

where C is the L∞-bound of T−V .

Proof. Let f, λ, n be given. For m ∈ N let Vm := V ∧m. Then

um := (λ+ A− Vm)−1f ↑ u := (λ+ A−V )−1f as m→∞,

and ||u||∞ 6 C
λ
||f ||∞. For m ∈ N we have

(λ+ A− Vm)−1 − (λ+ A− Vn)−1 = (λ+ A− Vm)−1(Vm − Vn)(λ+ A− Vn)−1

and therefore (λ + A − Vm)(um − un) = (Vm − Vn)un. The contractivity of T−V
implies that A− Vm is accretive, so we obtain, for m > n,

λ||um − un||pp 6 〈(λ+ A− Vm)(um − un), (um − un)p−1〉
= 〈(Vm − Vn)un, (um − un)p−1〉
6 〈(V − Vn)up〉 6 ||(V − n)+||1||u||p∞.

We conclude that ||um − un||pp 6 λ−p−1||(V − n)+||1(C||f ||∞)p, and m → ∞ com-
pletes the proof.

Proof of Proposition 2.4. Without restriction assume ω = 0. Let −An,
−(An)−V be the generators of Tn, (Tn)−V , respectively. By the assumption,
An → A∞ in the strong resolvent sense as n→∞. So An−V ∧m→ A∞−V ∧m
in the strong resolvent sense as n→∞, for all m ∈ N. By Lemma 2.5 we know
that An − V ∧m→ (An)−V in the strong resolvent sense as m→∞, uniformly
in n ∈ N. Since A∞− V ∧m→ (A∞)−V in the strong resolvent sense, this yields
the desired conclusion.

3 The first Beurling-Deny criterion for sesqui-

linear forms

It is well-known that with every densely defined closed sectorial form in a Hilbert
space H one can associate an analytic semigroup on H. In this section we are
going to present a procedure how to associate a positive C0-semigroup on Lp(µ)
with a sesquilinear form in L2(µ) fulfilling the first Beurling-Deny criterion ((Ω, µ)
a measure space), even in cases when the form is not bounded below.
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Definition 3.1. Let τ be a sesquilinear form in L2(µ).
(a) τ is called real if Reu ∈ D(τ) for all u ∈ D(τ), and τ(u, v) ∈ R for all

real-valued u, v ∈ D(τ).
(b) τ is said to fulfill the first Beurling-Deny criterion if τ is real and u+ ∈

D(τ), τ(u+, u−) 6 0 for all real-valued u ∈ D(τ).

Note that, if τ fulfills the first Beurling-Deny criterion then so does Re τ .
The following proposition, due to Ouhabaz ([11, Prop. 2.2 and Thm. 2.4]),

shows the relevance of these two notions.

Proposition 3.2. Let τ be a densely defined closed sectorial form in L2(µ), T
the associated analytic semigroup on L2(µ). Then T is real (i.e., all semigroup
operators are reality preserving) if and only if τ is real, and T is positive if and
only if τ fulfills the first Beurling-Deny criterion.

The next lemma states that it suffices to verify the conditions of Definition 3.1
on a form core.

Lemma 3.3. Let τ be a closable sectorial form. If τ fulfills the first Beurling-
Deny criterion then so does τ .

Proof. We first show that τ is real. Without restriction Re τ > 0. Then

τ(Reu) 6 τ(Reu) + τ(Imu) = Re τ(u)
(
u ∈ D(τ)

)
since τ is real. From this we easily deduce: if u ∈ D(τ), (un) ⊆ D(τ) with
un → u in D(τ), then Reu ∈ D(τ) and Reun → Reu in D(τ). By the latter we
show that τ(u, v) ∈ R for all real-valued u, v ∈ D(τ), i.e., τ is real.

From the above it follows that the set of all real-valued elements of D(τ)
is dense in the set of all real-valued elements of D(τ). Now, for real-valued
u ∈ D(τ), we have τ(u+, u − u+) = −τ(u+, u−) > 0 and τ(u − u+, u+) =
−τ
(
(−u)+, (−u)−

)
> 0. Thus, we can apply [9, Lemma I.4.9] to conclude that

u+ ∈ D(τ), τ(u+, u−) 6 0 for all real-valued u ∈ D(τ).

For the remainder of this section let τ be a densely defined sesquilinear form
in L2(µ) fulfilling the first Beurling-Deny criterion. The next result characterizes
admissibility of potentials via form conditions, in the case of symmetric forms.

Proposition 3.4. (cf. [17, Prop. 5.7, Prop. 5.8(a)]) Let τ be symmetric and
closed, T the associated positive C0-semigroup on L2(µ), V : Ω→ [0,∞) measur-
able.

(a) The potential V is T -admissible if and only if τ + V is densely defined,
and TV is associated with τ + V in this case.

(b) The potential −V is T -admissible if and only if V 6 τ+ω for some ω ∈ R.
In this case, τ − V is closable and T−V is associated with τ − V .
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Proof. All the assertions of the proposition, except for the closability of τ − V ,
are shown in [17]. There the proof is given for the case of the diffusion semigroup
on RN only, but literally the same proof carries over to the general case. The
closability of τ − V is due to A. Manavi ([10, Prop. 12.1.7]); we present his
argument here.

Note that T−V is a symmetric C0-semigroup. Let τ̃ be the densely defined,
closed symmetric form in L2(µ) associated with T−V . By part (a) of the propo-
sition, (T−V )V = T is associated with both τ̃ + V and τ , taking into account
Lemma 2.2 and the definition of T . Hence τ̃ + V = τ . Since Q(V ) ⊇ D(τ), this
implies that τ̃ ⊇ τ − V , i.e., τ − V has a closed extension.

Proposition 3.4(a) is valid even for sectorial forms, see [10, Kor. 12.1.4(a)].
It is clear that a sesquilinear form τ fulfills the first Beurling-Deny criterion

if and only if the same holds for τ + V , for some measurable function V : Ω→ R

with Q(V ) ⊇ D(τ). Surprisingly, a similar result holds for closability. It is a
direct consequence of Proposition 3.4(b).

Corollary 3.5. (cf. [10, Kor. 12.1.14]) Let τ be sectorial. Then τ is closable if
and only if τ + V is closable for some measurable function V > 0 with Q(V ) ⊇
D(τ).

Proof. Without restriction τ is symmetric. Let V > 0 be measurable with
Q(V ) ⊇ D(τ). If τ is closable then it is clear that τ + V is closable. If τ + V is
closable then V 6 τ + V + ω for some ω ∈ R. Proposition 3.4(b) implies that
τ + V − V is closable. Thus, τ is closable since τ ⊆ τ + V − V .

Definition 3.6. Let τ be sectorial and closable, V > 0 measurable. We say that
V is τ -regular if D(τ + V ) is a core for τ , i.e., D(τ) ∩Q(V ) is dense in D(τ).

Remark 3.7. (a) For example, V ∈
(
L1 +L∞

)
(µ) is τ -regular if τ is a Dirichlet

form, since D(τ) ∩ L∞(µ) ⊆ Q(V ) is a core for τ .
(b) Obviously, if V is τ -regular then V is τ -regular, but the converse is not

true in general (D(τ + V ) may be {0} although V is τ -regular, see [15]).

The following lemma states in particular that form regularity implies semi-
group regularity.

Lemma 3.8. Let τ be sectorial and closable, T the positive C0-semigroup asso-
ciated with τ , V > 0 τ -regular. Then V is T -regular, and TV is associated with
τ + V .

Proof. Note that, by Lemma 3.3, τ + V fulfills the first Beurling-Deny criterion.
Let T1 be the positive C0-semigroups associated with τ + V .

Since D(τ + V ) is a core for τ and (τ + V − V ∧ n)(u) → τ(u) for all u ∈
D(τ + V ), we can use [4, Thm. VIII.3.6] to obtain (T1)−V ∧n → T . Thus, −V is
T1-admissible, and (T1)−V = T . Lemma 2.2 implies that V is T1-regular and that
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T1 = TV . The latter shows the second assertion, and V is regular with respect to
T = (T1)−V , by [18, Prop. 3.4(a)].

In [10, Kor. 12.1.4(b)] it is shown that form regularity and semigroup regu-
larity are actually equivalent, but we do not need this fact here.

Now we are ready to formulate the main result of this section. It is funda-
mental for Section 4.

Proposition 3.9. Let U > 0 be measurable, Q(U) ⊇ D(τ), τ + U sectorial
and closable, TU,2 the positive C0-semigroup associated with τ + U . Let V > 0
be (τ + U)-regular, τ + V sectorial and closable, TV,2 the positive C0-semigroup
associated with τ + V . Let p ∈ [1,∞).

Assume that TU,2 extrapolates to a positive C0-semigroup TU,p on Lp(µ) and
that −U is TU,p-admissible. Then the same holds with V in place of U , V is
(TU,p)−U -regular, and (TU,p)−U = (TV,p)−V .

Proof. Let Tp := (TU,p)−U . It suffices to show that V is TU,p-regular and that
TV,2, (Tp)V are consistent: then V is Tp-regular by [18, Prop. 3.4(a)] and thus
(TU,p)−U =

(
(Tp)V

)
−V .

The potential U is (τ +V )-regular since Q(U) ⊇ D(τ +V ), and V is (τ +U)-
regular by the assumptions. Lemma 3.8 implies that both

(
TV,2

)
U

and
(
TU,2

)
V

are

associated with (τ + V ) + U = (τ + U) + V and that U is TV,2-regular. There-
fore,

TV,2 =
(
(TV,2)U

)
−U =

(
(TU,2)V

)
−U .

Moreover, V is TU,2-regular and hence TU,p-regular by Lemma 2.3(c). Since −U
is TU,p-admissible we obtain by [18, Thm. 2.6] that

(Tp)V =
(
(TU,p)−U

)
V

=
(
(TU,p)V

)
−U .

Now we combine the above two equalities and conclude by Lemma 2.3(a) and (b)
that TV,2 and (Tp)V are consistent.

Proposition 3.9 leads to the following definition. Recall that τ is a densely
defined sesquilinear form fulfilling the first Beurling-Deny criterion.

Definition 3.10. Let p ∈ [1,∞). We say that τ is associated with a positive
C0-semigroup Tp on Lp(µ), τ ↔ Tp on Lp(µ) for short, if the following holds:

There exists U > 0 with Q(U) ⊇ D(τ) such that τ+U is sectorial and closable,
the positive C0-semigroup TU,2 on L2(µ) associated with τ + U extrapolates to a
C0-semigroup TU,p on Lp(µ), −U is TU,p-admissible, and Tp = (TU,p)−U .

According to Proposition 3.9, the semigroup Tp is uniquely determined by the
form τ . If τ itself is sectorial and closable, we can choose U = 0. In this case
T2(t) = e−At where A is the m-sectorial operator associated with τ by the first
representation theorem (see [4, Thm. VI.2.1]).

The following result is a generalization of Lemma 3.8.
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Proposition 3.11. Let p ∈ [1,∞) and assume that τ is associated with a positive
C0-semigroup Tp on Lp(µ). Let U > 0 with Q(U) ⊇ D(τ) be such that τ + U
is sectorial and closable. If V > 0 is (τ + U)-regular then V is Tp-regular, and
τ + V ↔ (Tp)V .

Proof. First assume that V > U . Then τ + V is a closable sectorial form. Let
TV,2 be the C0-semigroup associated with τ + V . By Proposition 3.9 we obtain
that TV,2 extrapolates to a C0-semigroup TV,p on Lp, (TV,p)−V = Tp, and V is
Tp-regular. Lemma 2.2 implies that TV,p = (Tp)V , i.e., τ + V ↔ (Tp)V .

In the general case we apply the above argument to U + V in place of V . We
conclude that (τ + V ) + U ↔ (Tp)U+V and that U + V is Tp-regular. Thus, V
is Tp-regular, by [18, Prop. 3.3(a)]. Moreover, −U is admissible with respect to
(Tp)U+V and

(
(Tp)U+V

)
−U = (Tp)V , by [18, Thm. 3.4]. Hence τ +V ↔ (Tp)V .

Given τ , we consider the adjoint form τ ∗ which is defined by

τ ∗(u, v) := τ(v, u) on D(τ ∗) := D(τ).

Proposition 3.12. Let p ∈ (1,∞) and assume that τ is associated with a posi-
tive C0-semigroup Tp on Lp(µ). Then the form τ ∗ is associated with the adjoint
semigroup T ∗p on Lp′(µ).

Note that, since Tp is a real semigroup, it makes no difference whether the
adjoint semigroup is taken with respect to the bilinear or with respect to the
sesquilinear duality bracket.

Proof of Proposition 3.12. Let U > 0 with Q(U) ⊇ D(τ) such that τ + U is
sectorial and closable, the positive C0-semigroup TU,2 on L2(µ) associated with
τ + U extrapolates to a C0-semigroup TU,p on Lp(µ), −U is TU,p-admissible, and
Tp = (TU,p)−U .

It is easy to see that τ ∗ + U is closable, fulfills the first Beurling-Deny crite-
rion, and that τ ∗ + U = (τ + U)∗. Thus, τ ∗ + U is associated with the positive
C0-semigroup T ∗U,2 which in turn extrapolates to the semigroup T ∗U,p on Lp′(µ).

Moreover,
(
(T ∗U,p)−U∧n

)
n∈N is an increasing sequence of semigroups, and

(T ∗U,p)−U∧n =
(
(TU,p)−U∧n

)∗ → T ∗p weakly as n→∞

since (TU,p)−U∧n → Tp. We deduce that (T ∗U,p)−U∧n → T ∗p strongly as n → ∞.
Hence, −U is T ∗U,p-admissible and (T ∗U,p)−U = T ∗p , i.e., τ ∗ is associated with T ∗p .

We conclude the section by a result needed for applications of Proposition 3.9.

Lemma 3.13. Let τ be sectorial and closable, U, V > 0 measurable. Assume
that U is τ -regular. Then V is τ -regular if and only if V is (τ + U)-regular. As
a consequence, U + V is τ -regular if U, V are τ -regular.
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Proof. Let V be (τ + U)-regular. Then D((τ + U) + V ) is a core for τ + U and
hence a core for τ . Therefore, D(τ + V ) is a core for τ , i.e., V is τ -regular.

Conversely, assume that V is τ -regular. Without restriction, τ is symmetric
and τ > 0. Let 0 6 u ∈ D(τ + U). There exists (un) ⊆ D(τ + V ) such that
un → u in D(τ) as n → ∞. Let vn := (Reun)+. Since τ fulfills the first
Beurling-Deny criterion we have lim supn→∞ τ(vn) 6 limn→∞ τ(un) = τ(u). The
lower semicontinuity of τ implies that vn → u in D(τ) as n → ∞. Moreover,
τ((u − vn)+) 6 τ(u − vn) → 0 and thus u ∧ vn = u − (u − vn)+ → u in D(τ)
as n → ∞. Finally, u ∧ vn → u in Q(U) by Lebesgue’s dominated convergence
theorem. We infer that D((τ + U) + V ) 3 u ∧ vn → u in D(τ + U). This shows
that D((τ + U) + V ) is a core for τ + U .

4 Lp-properties of elliptic differential operators

In this section we formulate the main result of the paper and deduce some corol-
laries. We refer to Section 1 for the notation.

Recall that the form τ is defined on D(τ) := D(τa)∩Q(W1+W2+|V |) by (1.1).
Since τa is a Dirichlet form, (Reu)+ ∈ D(τ) for all u ∈ D(τ). Therefore, τ fulfills
the first Beurling-Deny criterion (we actually have τ(u+, u−) = 0 for all real-
valued u ∈ D(τ), and τ(u, v) ∈ R for all real-valued u, v ∈ D(τ).) Further, D(τ)
is a core for τa by Lemma 3.13, in particular, τ is densely defined.

The forms τp play a crucial role in all our results on elliptic operators. We
will also make use of the symmetric form τ∞ defined by

τ∞(u) := −2〈∇|u|, b2|u|〉+ 〈V |u|2〉, D(τ∞) := D(τ).

In the following proposition we collect several simple properties of the forms τ
and τp which are important for the understanding of the subsequent results.

Proposition 4.1. Assume that (a) and (bV) hold. Let I be the set of all p ∈
[1,∞) such that ωp := inf{ω ∈ R; τp > −ω} <∞ (then τp > −ωp for all p ∈ I).

(a) For all potentials U > W1 + W2 + 2V −, the form τ + U is sectorial and
closed. For all 1 < p < ∞ and U > p′W1 + pW2 + 2V −, the symmetric form
τp +U is non-negative and closed. In particular, τp is closable for all p ∈ I \ {1}.

(b) The set I is an interval and, for all p ∈
◦
I, there exist εp > 0, cp ∈ R such

that τp > εp Re τa − cp. If, for some 1 6 p0 < p < p1 6 ∞, we have τpj > −ωpj
(j = 0, 1) then we can choose εp = 4( 1

p0
− 1

p
)(1
p
− 1

p1
), cp = θωp0 + (1− θ)ωp1, with

θ =
p−1

0 −p−1

p−1
0 −p

−1
1

.

(c) For all p, q ∈
◦
I, the norms on the Hilbert spaces D(τp) and D(τq) are

equivalent.

Proof. (a) From (1.2) we deduce by Euclid’s inequality (|ab| 6 ε
2
a2 + 1

2ε
b2 for all

a, b ∈ R, ε > 0) that the sum of the first order terms of τ is form small with
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respect to τa +W1 +W2. Thus, τ +U is a closed sectorial form for any potential
U > W1 + W2 + 2V −. The same argument works for τp if 1 < p < ∞. By
Corollary 3.5 we obtain that τp is closable if it is bounded below.

The proof of (b) and (c) relies on the following identity which results directly
from the definition of the forms τp: for all p0, p1 ∈ I, θ ∈ (0, 1) and pθ defined by
1
pθ

= 1−θ
p0

+ θ
p1

we have

τpθ = (1− θ)τp0 + θτp1 + 4

(
1

pθp′θ
− 1− θ

p0p′0
− θ

p1p′1

)
Re τa. (4.1)

In order to prove (b), it now suffices to show that

1

pθp′θ
− 1− θ

p0p′0
− θ

p1p′1
=

(
1

p′θ
− 1

p′0

)(
1

pθ
− 1

p1

)(
=

(
1

p0

− 1

pθ

)(
1

pθ
− 1

p1

))

which in turn follows from the equality

1

pθp′0
+

1

p′θp1

=

(
1− θ
p0

+
θ

p1

)
1

p′0
+

(
1− θ
p′0

+
θ

p′1

)
1

p1

=
1− θ
p0p′0

+
θ

p1p′1
+

1

p′0p1

.

(c) By (4.1) we have τpθ > (1− θ)τp0 + θτp1 . We deduce that, for all p, q ∈
◦
I,

there exist ε > 0, ω ∈ R such that τp > ετq − ω and τq > ετp − ω.

The form τ itself need not be sectorial. In fact, Theorem 4.2 includes cases
where τ is not even bounded from the left. However, the form τ+W1 +W2 +2V −

is sectorial and closed by Proposition 4.1(a). This enables us to make use of
Definition 3.10 in the main result of the paper which reads as follows.

Theorem 4.2. Assume that (a) and (bV) hold. Let I be the interval of all
p ∈ [1,∞) such that ωp := inf{ω ∈ R; τp > −ω} <∞. Then τ is associated with
a consistent family of positive C0-semigroups Tp on Lp with ||Tp(t)|| 6 eωpt for all
p ∈ I, t > 0.

Let −Ap be the generator of Tp (p ∈ I). Then, for all p ∈ I \ {1} and
u ∈ D(Ap) we have vp := u|u|p/2−1 = |u|p/2 sgnu ∈ D(τp) and

Re〈Apu, u|u|p−2〉 > τp(vp). (4.2)

If, in addition,∣∣Im〈(b1 + b2)u,∇u〉
∣∣ 6 c1τp(u) + c2||u||22

(
u ∈ D(τ)

)
(4.3)

for some p ∈
◦
I, c1 > 0, c2 ∈ R then Ap is an m-sectorial operator for all p ∈

◦
I,

in particular, Tp extends to an analytic semigroup on Lp.

The proof of the theorem is delegated to Section 5.
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Remarks 4.3. (a) We point out that the case I = {1} is quite possible. By
definition, 1 ∈ I if τ1 > −ω for some ω ∈ R. Note that the coefficient b2 is not
involved in this condition. In particular, if (a) holds, b1 = 0 and V > 0 then τ is
associated with a positive contractive C0-semigroup on L1, whenever b2

>a−1
s b2 is

τa-regular.
(b) For the case p = ∞ we obtain the following by considering the adjoint

picture in L1. If τ∞ > −ω∞ for some ω∞ ∈ R then we can associate a weak∗-
continuous quasi-contractive semigroup T∞ on L∞ with the form τ . Observe that
the condition on τ∞ imposes no additional restriction on b1.

(c) Lemma 4.1(b) demonstrates the relevance of inequality (4.2): Assume that
the domain of τa admits Sobolev imbedding, i.e., D(τa) ⊆ L2j for some j > 1.
Then it is easy to show that, for all p ∈

◦
I,

||(λ+ Ap)
−1||p→pj 6 cp(λ− ωp)−

1
p (λ > ωp).

In [6], an inequality similar to (4.2) was proved only for |u| p2 in place of
|u| p2 sgnu.

Corollary 4.4. Let the assumptions and notation be as in Theorem 4.2, p ∈
I. Let (Un)n∈N0 be a sequence of positive potentials such that U0 is τa-regular,
Un 6 U0, τ + Un is sectorial (n ∈ N) and Un → 0 a.e. (n → ∞). Then τ + Un
is closable, the analytic semigroup TUn,2 associated with τ + Un extrapolates to a
C0-semigroup TUn,p on Lp, and TUn,p = (Tp)Un → Tp as n→∞.

Proof. Let W := W1 + W2 + 2V −. Then τ + W is a closed sectorial form, by
Proposition 4.1(a). Since τ + Un + W is closed, the form τ + Un is closable by
Lemma 3.5. By Lemma 3.13, Un is (τa +W )-regular and hence (τ +W )-regular.
By Proposition 3.11, Un is Tp-regular and τ + Un ↔ (Tp)Un , i.e., TUn,2 and (Tp)Un
are consistent. Now, by [18, Cor. 3.6] we conclude that (Tp)Un → Tp as n → ∞
since U0 is Tp-regular.

As a direct consequence of Theorem 4.2 we obtain a more explicit version of
that theorem.

Corollary 4.5. Let V+, V− > 0 be τa-regular with V+ − V− = V , and τ+ :=
Re τa + V+. Assume that (a) and (bV) hold and that

(−1)j〈bju,∇u〉 6 βjτ+(u) +Bj||u||22, 〈V−u2〉 6 γτ+(u) +G||u||22

(0 6 u ∈ D(τ)∩Q(V+), j = 1, 2) for some constants β1, β2, γ > 0, B1, B2, G ∈ R.
Let I0 :=

{
p ∈ [1,∞); 4

pp′
− 2

p
β1 − 2

p′
β2 − γ > 0

}
. Then, with the notation of

Theorem 4.2, I ⊇ I0, and ωp 6 2
p
B1 + 2

p′
B2 +G for all p ∈ I0. Moreover, for all

p ∈
◦
I0 and u ∈ D(Ap) we have vp := |u| p2 sgnu ∈ D(τ+) and

Re〈Apu, u|u|p−2〉 >
(

4
pp′
− 2

p
β1 − 2

p′
β2 − γ

)
τ+(vp)−

(
2
p
B1 + 2

p′
B2 +G

)
||u||pp.
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If, in addition,∣∣Im〈(b1 + b2)u,∇u〉
∣∣ 6 c1τ+(u) + c2||u||22

(
u ∈ D(τ) ∩Q(V+)

)
for some c1 > 0, c2 ∈ R then Tp extends to an analytic semigroup on Lp for all
p ∈

◦
I.

Proof. Since τ+(|u|) 6 τ+(u) for all u ∈ D(τ+), and 1 > 4
pp′

, the assumptions
imply that

τp(u) = 4
pp′

Re τa(u) + 〈V+|u|2〉 −
(
−2
p
〈b1|u|,∇|u|〉

)
− 2

p′
〈b2|u|,∇|u|〉 − 〈V−|u|2〉

>
(

4
pp′
− 2

p
β1 − 2

p′
β2 − γ

)
τ+(u)−

(
2
p
B1 + 2

p′
B2 +G

)
||u||22

for all p ∈ [1,∞), u ∈ D(τ) ∩ Q(V+). Let W := W1 + W2 + |V |. Then τp is a
bounded form on D(τa + W ). Since V+ is (τa + W )-regular by Lemma 3.13, we
deduce that τp > −

(
2
p
B1 + 2

p′
B2 + G

)
for all p ∈ I0. Thus, Theorem 4.2 implies

the first two assertions. In order to obtain the remaining assertions, note that
the above also implies that

τp >
(

4
pp′
− 2

p
β1 − 2

p′
β2 − γ

)
τ+ −

(
2
p
B1 + 2

p′
B2 +G

)
for all p ∈

◦
I0.

For the remainder of the section, we are concerned with the case b2 = 0,
V > 0,

−〈∇u, b1u〉 6 (βτa + V + ω)(u)
(
0 6 u ∈ D(τ)

)
for some β < 2, ω ∈ R. Then τ is associated with a consistent family of positive
C0-semigroups Tp on Lp, p > 2

2−β , by Theorem 4.2. The semigroups are L∞-

contractive, by Remark 4.3(b).
In Corollary 4.4 we have shown that convergence of potentials implies strong

convergence of the corresponding semigroups. Here we discuss approximation of
the first order terms. For n ∈ N∪{∞}, let bn: Ω→ R

N be measurable and define
τn by

τn(u, v) := τa(u, v) + 〈∇u, bnv〉+ 〈V u, v〉

on D(τn) := D(τa) ∩Q(bn
>a−1

s bn + V ).

Proposition 4.6. Let (a) hold and assume that bn → b∞ a.e., V is τa-regular,
and there exist 0 < β < 2, ω ∈ R, 0 6 U0 ∈ L1 + L∞ such that, for all
n ∈ N ∪ {∞}, we have bn

>a−1
s bn 6 U0 and

−〈∇u, bnu〉 6 (βτa + V + ω)(u)
(
0 6 u ∈ D(τn)

)
.

Then, for all p > 2
2−β , τn ↔ T

(n)
p on Lp (n ∈ N ∪ {∞}), and T

(n)
p → T

(∞)
p as

n→∞.
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For the proof of the proposition, we need the following elementary form con-
vergence result which was proved in [16, Thm. A.1] for symmetric forms.

Lemma 4.7. For n ∈ N ∪ {∞}, let τn be a closed sectorial form in a Hilbert
space H, and An the associated m-sectorial operator. Assume that, for some
closed symmetric form h > 1 in H, and some c > 1, ω ∈ R we have

1

c
h 6 Re τn + ω 6 ch (n ∈ N ∪ {∞})

and

sup
h(v)61

∣∣(τ∞ − τn)(u, v)
∣∣→ 0 as n→∞

(
u ∈ D(h)

)
.

Then An → A∞ in the strong resolvent sense.

Proof. Without restriction assume that ω = 0. For all f, g ∈ H,

〈A−1
n f − A−1

∞ f, g〉 = (τ∞ − τn)(A−1
∞ f, (A

∗
n)−1g).

For all g ∈ H, n ∈ N we have h
(
(A∗n)−1g

)
6 cRe τn

(
(A∗n)−1g

)
6 c2||g||2 since

||(A∗n)−1|| 6 c. Hence

||A−1
n f − A−1

∞ f || = sup
||g||61

∣∣〈A−1
n f − A−1

∞ f, g〉
∣∣ 6 sup

h(v)6c2

∣∣(τ∞ − τn)(A−1
∞ f, v)

∣∣→ 0.

Proof of Proposition 4.6. Let q ∈ (1, 2
2−β ), U := q′U0. Then τq + U is non-

negative, by Proposition 4.1(a). Recall from Remark 3.7(a) that U is τa-regular.

Let p > 2
2−β . For n ∈ N ∪ {∞}, let T

(n)
p denote the positive C0-semigroup on

Lp associated with τn. Let T
(n)
U,2 denote the C0-semigroup on L2 associated with

the closed sectorial form τn + U . Since U is τa-regular, it is T
(n)
p -regular and

(τn + U)↔ (T
(n)
p )U , by Corollary 4.4. Thus, (T

(n)
p )U and T

(n)
U,2 are consistent.

We are going to show that T
(n)
U,2 → T

(∞)
U,2 as n → ∞. This will imply that

(T
(n)
p )U → (T

(∞)
p )U for all p > 2

2−β since T
(n)
U,2 is L∞- and Lq-contractive. Then

the assertion follows from Proposition 2.4.
Without restriction U > 1. Let h := τa + U + V . It is straightforward that,

for all n ∈ N ∪ {∞}, we have 1
2
h 6 τn + U 6 2h. Moreover, for all u, v ∈ D(h),∣∣(τ∞ − τn)(u, v)

∣∣2 =
∣∣〈∇u, (bn − b∞)v〉

∣∣2
6 〈U−1(bn − b∞)>a−1

s (bn − b∞)(∇u)∗a∇u〉〈U |v|2〉.

Therefore,

sup
h(v)61

∣∣(τ∞ − τn)(u, v)
∣∣→ 0

(
u ∈ D(h)

)
and hence T

(n)
U,2 → T

(∞)
U,2 , by Lemma 4.7. This completes the proof.
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Example 4.8. Here we give several examples of applications of Corollary 4.5 to
the case b2 = 0, V = 0.

(i) Assume W1 6 β2 Re τa + B for some 0 < β < 2, B > 0, in the sense of
quadratic forms on L2. Then, by Euclid’s inequality,

|〈b1∇u, u〉| 6 1
2β
||W 1/2

1 u||22 + β
2
||a1/2
s ∇u||22 6 β Re τa(u) + B

2β
||u||22.

Hence, by Corollary 4.5, τ is associated with a family of consistent positive quasi-
contractive C0-semigroups Tp on Lp with growth bound less or equal B

pβ
, for all

p > 2
2−β . If β < 1 then τ sectorial and closed. In this case [6, Thm. 1], with

use of [4, Thm. VI.2.1], associates τ with a family of consistent analytic quasi-
contractive C0-semigroups on Lp, p > 2, which coincide with Tp.

In [6, Thm. 6], under the additional condition that W1 ∈ L1 + L∞, τ was
associated with a family of consistent C0-semigroups on the same interval of the
Lp-scale, by approximation of b by bounded vector fields in such a way that the
corresponding semigroups converge in Lp. Proposition 4.6 shows that the limiting
semigroup does not depend on the choice of the approximating sequence. This
answers a question posed by V. Liskevich in a remark to [6, Thm. 6]. Moreover,
it follows from Proposition 4.6 that the semigroup constructed in [6] coincides
with the one constructed in Theorem 4.2.

(ii) Let N > 2, Ω = R
N , a(x) = id, D(τa) = H1. Let (ej)

N
j=1 be the ca-

nonical orthonormal basis in RN , (xn)∞n=1 = Q
N , (cn)∞n=1 ⊆ (0,∞) be such that

the potential U(x) =
∑

n c
2
n|x − xn|−n is τa-regular (see [15] for details of the

construction). Let (βn)n∈N ⊆ R \ {0} be such that

|β|2 :=
∑
n

β2
n <∞

Let b1 :=
∑∞

n=1 b1n, where

b1n(x) = cn|x− xn|−
n
2 βn

(
∂|x−xn|
∂x1

e2 − ∂|x−xn|
∂x2

e1

)
.

We show that 〈b1n∇u, u〉 = 0 for all n ∈ N, u ∈ H1 ∩ Q(|b1n|2). For u ∈
C1
c

(
R
N \ {xn}

)
, the equality follows by integration by parts. For general u ∈

H1 ∩ Q(|b1n|2), it then follows from the fact that C1
c

(
R
N \ {xn}

)
is dense in

H1∩Q(|b1n|2) and that the form (u, v) 7→ 〈b1n∇u, v〉 is bounded on H1∩Q(|b1n|2).
The drift b1 is nowhere integrable on RN . However, by the Cauchy-Schwarz

inequality,

|b1|(x) 6
∞∑
n=1

|b1n|(x) 6
∞∑
n=1

cn|x− xn|−
n
2 · 2|βn| 6 2|β|U

1
2 (x).

Hence W1 = |b1|2 is τa-regular and 〈b1∇u, u〉 = 0 for all u ∈ H1 ∩Q(U).
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Thus, τ is associated with a consistent family of positive contractive C0-
semigroups Tp on Lp, p > 1.

(iii) Let N > 2, Ω = RN , a(x) = id, D(τa) = H1. Let b1(x) = cx|x|α for some
c, α ∈ R. Then |b1|2 is τa-regular. Moreover,

−〈b1∇u, u〉 =
c

2
(N + α)〈rαu2〉

(
0 6 u ∈ C1

c (RN \ 0)
)
.

Hence, if c(N + α) 6 0 then τ is associated with a consistent family of positive
contractive C0-semigroups on Lp, p > 1. If N > 3 we can use the Hardy inequality
||u
r
||22 6 4

(N−2)2 ||∇u||22 to treat the case c(N+α) > 0 with −2 6 α 6 0. For α = −2,

τ is associated with a quasi-contractive C0-semigroup on some Lp if (and only
if, see Remark 6.5 below) c < N − 2, and then τ is associated with a consistent
family of positive contractive C0-semigroups on Lp, p > N−2

N−2−c . For α ∈ (−2, 0],
we use the fact that rα 6 εr−2 + Cα,ε for all r, ε > 0 with some constant Cα,ε
to conclude that in this case τ is associated with a consistent family of positive
quasi-contractive C0-semigroups on Lp, p > 1. If α = 0 then the semigroup
extrapolates also to L1.

5 Proof of the main theorem

We separate the core of the proof of Theorem 4.2 into a lemma. Let p ∈ (1,∞).
For u ∈ L1,loc, n ∈ N let un,p :=

(
|u| p2−1

)
∧ n, vn,p := uun,p, wn,p := uu2

n,p,

vp(u) := u|u| p2−1 and wp(u) := u|u|p−2.

Lemma 5.1. Let τ be a densely defined sesquilinear form in L2 fulfilling the first
Beurling-Deny criterion. Let h be a closed symmetric form in L2, h > −ω for
some ω ∈ R. Assume that there exists a sequence (Un)n∈N0 of positive potentials
such that D(U0) ⊇ D(τ), τ + U0 is sectorial and closed, Un ↓ 0 (n→∞), and

wn,p ∈ D(τ), vn,p ∈ D(h), Re τ(u,wn,p) > h(vn,p)− 〈Un|vn,p|2〉 (5.1)

for all u ∈ D(τ), n ∈ N.
(a) Then τ is associated with a positive C0-semigroup Tp(t) = e−Apt on Lp

with ||Tp(t)|| 6 eωt (t > 0), and for all u ∈ D(Ap) we have vp(u) ∈ D(h) and

Re〈Apu,wp(u)〉 > h(vp(u)). (5.2)

(b) If, in addition,

|Im τ(u,wn,p)| 6M(Re τ + Un + ω̃)(u,wn,p) (u ∈ D(τ), n ∈ N) (5.3)

for some M > 0, ω̃ ∈ R, then Ap is m-sectorial of angle arctanM . In particular,
Tp is an analytic semigroup.
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Proof. (a) Without restriction assume ω = 0. The proof is divided into three
steps. In step (i) we consider the m-sectorial operator A0 in L2, associated
with τ + U0, and show that e−A0t extrapolates to a contractive C0-semigroup
T0,p(t) = e−A0,pt on Lp. In step (ii) we show that −U0 is T0,p-admissible and
(T0,p)−U0 is a contractive C0-semigroup. This proves the first assertion of (a).
The second assertion is proved in step (iii).

(i) By the exponential formula, it suffices to show that, given f ∈ L2∩Lp and
0 < λ ∈ ρ(−A0), one has ||(λ + A0)−1f ||p 6 1

λ
||f ||p. Let u := (λ + A0)−1f . Then

u ∈ D(τ +U0) = D(τ). This implies that vn,p ∈ Q(U0). By assumption (5.1) and
the equality uwn,p = |vn,p|2 we have, for all n ∈ N,

λ||vn,p||22 + (h + U0 − Un)(vn,p) 6 λ〈u,wn,p〉+ Re(τ + U0)(u,wn,p)

= Re
〈
(λ+ A0)u,wn,p

〉
6 ||f ||p||wn,p||p′ .

(5.4)

Observe that |wn,p|p
′

= |u|p′u2p′
n,p 6 |vn,p|2. Hence ||wn,p||p′ 6 ||vn,p||

2
p′
2 , and from

estimate (5.4) we obtain that

||vn,p||
2
p

2 6
1
λ
||f ||p (n ∈ N).

Since |vn,p| ↑ |vp(u)| we conclude by the Beppo Levi theorem that vp(u) ∈ L2,
and

||(λ+ A0)−1f ||p = ||vp(u)||
2
p

2 6
1
λ
||f ||p.

(ii) With the quantities introduced in (i) we proceed as follows. By Lebesgue’s
dominated convergence theorem, vn,p → vp(u) in L2 and wn,p → wp(u) in Lp′ .
Further, A0u = f − λu ∈ Lp. From estimate (5.4) we obtain

lim inf
n→∞

(
h(vn,p) + 〈(U0 − Un)|vn,p|2〉

)
6 lim

n→∞
Re〈A0u,wn,p〉 = Re〈A0u,wp(u)〉.

By the Beppo Levi theorem, (U0 − Un)|vn,p|2 ↑ U0|vp(u)|2 in L1. Hence the left
hand side of the previous inequality equals lim infn h(vn,p) + 〈U0|vp(u)|2〉. The
lower semicontinuity of h implies that

vp(u) ∈ D(h), (h + U0)(vp(u)) 6 Re〈A0u,wp(u)〉. (5.5)

So far we have proved inequality (5.5) for all u from the core D := (λ+A0)−1(L2∩
Lp) of A0,p, where λ > 0 is some element of ρ(−A0).

Let now u ∈ D(A0,p). Choose (u(m)) ⊆ D such that u(m) → u in D(A0,p).
Then vp(u

(m)) → vp(u) in L2 and wp(u
(m)) → wp(u) in Lp′ . From (5.5) we

conclude that

lim inf
m→∞

(h + U0)(vp(u
(m))) 6 lim

m→∞
Re〈A0,pu

(m), wp(u
(m))〉 = Re〈A0,pu,wp(u)〉.

The lower semicontinuity of h + U0 implies that (5.5) holds for all u ∈ D(A0,p).
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For m ∈ N, let Am := A0,p − U0 ∧ m. Then Am is a closed operator and,
by (5.5), Re〈Amu,wp(u)〉 > 0 for all u ∈ D(Am) = D(A0,p). By the Lumer-
Phillips theorem, e−Amt = (T0,p)−U0∧m(t) is a contractive C0-semigroup on Lp
and, by [18, Prop. 2.2] (see Definition 2.1(b)), we conclude that −U0 is T0,p-
admissible and that Tp := (T0,p)−U0 is a contractive C0-semigroup on Lp.

(iii) Let −Ap be the generator of Tp. By (ii), Am → Ap in the strong resolvent
sense. Let u ∈ D(Ap). Then u(m) := (1 +Am)−1(1 +Ap)u→ u in Lp as m→∞.
Since

u(m) + Amu
(m) = u+ Apu,

we also have Amu
(m) → Apu in Lp. Furthermore, vp(u

(m)) → vp(u) in L2 and
wp(u

(m))→ wp(u) in Lp′ as m→∞. Hence, estimate (5.5) yields

lim inf
m

h(vp(u
(m))) 6 lim〈Amu(m), wp(u

(m))〉 = 〈Apu,wp(u)〉.

The lower semicontinuity of h implies (5.2).
(b) Let u ∈ D(A0) ∩D(A0,p). Then, since uwn,p is real,

Im〈Amu,wn,p〉 = Im〈(A0 − U0 ∧m)u,wn,p〉 = Im τ(u,wn,p).

By (5.5) we know that Un|uwn,p| 6 U0|vp(u)|2 ∈ L1. Thus, 〈Unu,wn,p〉 → 0 by
Lebesgue’s dominated convergence theorem. By (5.3) we conclude that

|Im〈Amu,wp(u)〉| = lim
n→∞

|Im τ(u,wn,p)|

6 lim
n→∞

M(Re τ + (U0 −m)+ + Un + ω̃)(u,wn,p) = M Re〈(Am + ω̃)u,wp(u)〉.

This estimate carries over to all u ∈ D(Am) since D(A0) ∩D(A0,p) is a core for
Am. Let now u ∈ D(Ap) and u(m) be as in the beginning of step (iii). Then

|Im〈Apu,wp(u)〉| = lim
m
|Im〈Amu(m), wp(u

(m))〉|

6 lim
m
M Re〈(Am + ω̃)u(m), wp(u

(m))〉 = M Re〈(Ap + ω̃)u,wp(u)〉,

which shows the m-sectoriality of Ap with angle arctanM .

For the application of Lemma 5.1 in the proof of Theorem 4.2 we need to
compute the gradient of vn,p and wn,p.

Lemma 5.2. For α ∈ R, r > 0, z ∈ C, denote zα,r := |z|α ∧ r if α 6= 0 and
z0,r := 1 ∧ r. Let ϕ: C → C, ϕ(z) = zzα,r. Then, for all (complex valued)
u ∈ W 1

1,loc, v = ϕ ◦ u ∈ W 1
1,loc and

∇v = uα,r
(
∇u+ α11{|u|α<r} sgnu∇|u|

)
.
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Proof. It is easy to see that ϕ is a Lipschitz continuous function. So v = ϕ◦u is in
W 1

1,loc. If α 6∈ (0, 1) then the function [0,∞) 3 t 7→ tα ∧ r is Lipschitz continuous
too, hence uα,r ∈ W 1

1,loc, ∇uα,r = α11{|u|α<r}|u|α−1∇|u| and the second statement
of the lemma follows from the general product rule.

Let now 0 < α < 1. We denote zδ,α,r = (|z| + δ)α ∧ r and approximate ϕ
with the functions ϕδ, ϕδ(z) := zzδ,α,r. The function [0,∞) 3 t 7→ (t+ δ)α ∧ r is
Lipschitz continuous and

∇uδ,α,r = α11{(|u|+δ)α<r}(|u|+ δ)α−1∇|u|.

So, by the general product rule,

∇(ϕδ ◦ u) = uδ,α,r
(
∇u+ α u

|u|+δ11{(|u|+δ)α<r}∇|u|
)
.

Finally, ϕδ ◦ u→ ϕ ◦ u and ∇(ϕδ ◦ u)→ uα,r
(
∇u+α11{|u|α<r} sgnu∇|u|

)
in L1,loc

by Lebesgue’s dominated convergence theorem, which implies the assertion.

Proof of Theorem 4.2. Let p ∈ I, i.e., τp > −ωp. Let U0 := W1 + W2 + 2V −.
By Proposition 4.1(a), τ + U0 is a closed sectorial form.

First we study the case p > 1. Let u ∈ D(τ). Then vn,p, wn,p ∈ D(τ) as
multiples of normal contractions of u. At the end of the proof we will show that

Re τ(u,wn,p) > τp(vn,p)− 1
2
〈11n(W1 +W2)|vn,p|2〉, (5.6)

where 11n is the indicator of the set {x; |u| p−2
2 > n}. Applying Lemma 5.1(a)

with h = τp and Un = 1
2
11n(W1 + W2) (n ∈ N), we obtain all the assertions of

Theorem 4.2 except for the analyticity of Tp.
Let now assumption (4.3) hold for some p ∈

◦
I. Then it holds for all p ∈

◦
I, by

Proposition 4.1(c). To prove the analyticity of Tp, we need the inequality

|Im τ(u,wn,p)| 6 |Im τa(vn,p)|+ |1p −
1
p′
|Re τa(vn,p) + |Im〈(b1 + b2)vn,p,∇vn,p〉|

(5.7)

which is also shown at the end of the proof. The first term in the right hand side
of (5.7) can be estimated by αRe τa(vn,p), due to assumption (a). Thus, by (4.3)
we obtain that

|Im τ(u,wn,p)| 6
(
α + |1

p
− 1

p′
|
)

Re τa(vn,p) + c1τp(vn,p) + c2||vn,p||2.

By Proposition 4.1(b) we have Re τa(vn,p) 6 C(τp + ω̃1)(vn,p) for some ω̃1 ∈ R,
C > 0 depending on p. Moreover, τp(vn,p) 6 (Re τ + Un)(u,wn,p) by (5.6). We
conclude that

|Im τ(u,wn,p)| 6
[
C
(
α + |1

p
− 1

p′
|
)

+ c1

]
(Re τ + Un + ω̃2)(u,wn,p)

for some ω̃2 ∈ R, so Lemma 5.1(b) implies that Ap is an m-sectorial operator.
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The proof for the case p = 1 is based on the assertions of the theorem in the
case p > 1. Let U0 be as above. Then τ̃ := τ + U0 is a closed sectorial form
in L2. Let T0 be the associated analytic semigroup on L2. Let 1 < p < ∞ and
τ̃p := τp + U0. For all 0 6 u ∈ D(τ̃) = D(τ) we have

τ̃p(u) = 4
pp′
τa(u)− 2

p′
〈u, b2∇u〉+ 1

p

(
2〈b1∇u, u〉+ 〈V u2〉

)
+ 〈( 1

p′
V + U0)u2〉.

We apply Euclid’s inequality to the second term, and the estimate

τ1(u) = 2〈b1∇u, u〉+ 〈V u2〉 > −ω1||u||22

to the third term in the right hand side, to obtain

τ̃p(u) > 4
pp′
τa(u)− 2

p′

(
1
2
τa(u) + 1

2
〈W2u

2〉
)
− ω1

p
||u||22 + 〈(U0 − 1

p′
V −)u2〉

= 1
p′

(4
p
− 1)τa(u)− ω1

p
||u||22 + 〈(U0 − 1

p′
(V − +W2))u2〉.

For 1 < p 6 4, Theorem 4.2 applied to τ̃ implies: T0 extrapolates to a C0-
semigroup T0,p on Lp, and for the generator −A0,p of T0,p we have

〈A0,pu, u
p−1〉 > 〈(U0 − 1

p′
(V − +W2))up〉 − ω1

p
||u||pp

(
0 6 u ∈ D(A0,p)

)
. (5.8)

In particular, ||T0,p(t)||p→p 6 e
ω1
p
t for all t > 0, 1 < p 6 4. Since T0 is a positive

C0-semigroup, [19] implies that T0 extrapolates to a C0-semigroup T0,1 on L1.
Let now Un,m :=

(
U0 − 1

m
(V − + W2)

)
∧ n for n,m ∈ N. It follows from (5.8)

that

||(T0,p)−Un,m(t)||p→p 6 e
ω1
p
t (t > 0)

for all n ∈ N, m > 2 and 1 < p 6 m
m−1

(i.e., 1
p′
6 1

m
). Since (T0,p)−Un,m and

(T0,1)−Un,m are consistent by Lemma 2.3(b), we obtain ||(T0,1)−Un,m(t)||1→1 6 eω1t

for all t > 0, n ∈ N, m > 2. Since Un,m ↑ U0 ∧ n as m → ∞, we have
(T0,1)−Un,m → (T0,1)−U0∧n for all n ∈ N, by [17, Prop. A.2]. Hence

sup
n∈N
||(T0,1)−U0∧n(t)||1→1 6 eω1t (t > 0).

Finally, [18, Prop. 2.2] implies that −U0 is T0,1-admissible, and we obtain τ ↔
(T0,1)−U0 =: T1, with ||T1(t)||1→1 6 eω1t for all t > 0.

To complete the proof it remains to show inequalities (5.6) and (5.7). Let

11cn := 1 − 11n, i.e., the indicator of the set {x; |u| p−2
2 < n}. We write un = un,p,

vn = vn,p
(
= u(|u| p−2

2 ∧n)
)

and wn = wn,p
(
= u(|u|p−2∧n2)

)
for short. Lemma 5.2

implies that

∇vn = un(∇u+ p−2
2

11cn sgnu∇|u|) = sgnu(un sgnu∇u+ p−2
2

11cnun∇|u|).
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Let ϕn := un Re(sgnu∇u) = un∇|u| and ψn := un Im(sgnu∇u). Then we have

sgnu∇vn = ϕn + iψn + p−2
2

11cnϕn = (p
2
11cn + 11n)ϕn + iψn.

In the same way, with ρn = (p− 1)11cn + 11n, we have

∇wn = u2
n(∇u+ (p− 2)11cn sgnu∇|u|) = un sgnu(ρnϕn − iψn).

Now we compute the different terms occurring in τ(u,wn) and τp(vn) separately.

a∇u · ∇wn = a(un sgnu∇u) · (ρnϕn − iψn) = a(ϕn + iψn)(ρnϕn − iψn),

a∇vn · ∇vn = a(sgnu∇vn) · (sgnu∇vn)

= (p
2

4
11cn + 11n)asϕn · ϕn + asψn · ψn + i(a− as)ψn · (p11cn + 211n)ϕn.

(5.9)

Therefore Re a∇u · ∇wn =
(
(p − 1)11cn + 11n

)
asϕn · ϕn + asψn · ψn. Note that

4
pp′

p2

4
= p− 1. Hence, we obtain

Re τa(u,wn) = 4
pp′

Re τa(vn) + (1− 4
pp′

)〈11nasϕn · ϕn + asψn · ψn〉.

For the first order terms we compute

vn∇vn = |vn|
(
(p

2
11cn + 11n)ϕn + iψn

)
,

wn∇u = |vn|un sgnu∇u = |vn|(ϕn + iψn), (5.10)

u∇wn = |vn|(ρnϕn − iψn).

Thus, Re vn∇vn = |vn|(p211cn + 11n)ϕn. We obtain that

Rewn∇u = |vn|ϕn = 2
p

Re(vn∇vn) + (1− 2
p
)11n|vn|ϕn

and, since 2
p′
p
2

= p− 1,

Reu∇wn =
(
(p− 1)11cn + 11n

)
|vn|ϕn = 2

p′
Re(vn∇vn) + (1− 2

p′
)11n|vn|ϕn.

Let now εp := 1
p′
− 1

p
= 1− 2

p
= −(1− 2

p′
). Then ε2

p = 1− 4
pp′

. We get

Re τ(u,wn) = Re τa(u,wn) + Re〈∇u, b1wn〉 − Re〈b2u,∇wn〉+ 〈V u,wn〉
= τp(vn) + ε2

p〈11nasϕn · ϕn + asψn · ψn〉+ εp〈11n(b1 + b2)|vn| · ϕn〉.

This implies (5.6) since εp11n|(b1 +b2)vn ·ϕn| 6 ε2
p11nasϕn ·ϕn+ 1

2
11n(W1 +W2)|vn|2,

by Euclid’s inequality.
To prove (5.7), we first compute Im τa(u,wn).

Im(a∇u · ∇wn) = ((p− 1)11cn + 11n)aψn · ϕn − aϕn · ψn
= (p− 2)11cnasψn · ϕn + (p11cn + 211n)(a− as)ψn · ϕn.
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The second term in the right hand side equals Im(a∇vn · ∇vn), by (5.9). The
first term we estimate, using Euclid’s inequality and (5.9), as follows:

|(p− 2)11cnasψn · ϕn| 6 |p− 2|11cn
(
p
4
asϕn · ϕn + 1

p
asψn · ψn

)
= |1− 2

p
|11cn
(
p2

4
asϕn · ϕn + asψn · ψn

)
6 |1

p
− 1

p′
|Re(a∇vn · ∇vn).

For the first order terms we have, by (5.10),

Im
(
〈∇u, b1wn〉 − 〈b2u,∇wn〉

)
= 〈(b1 + b2)|vn|, ψn〉 = − Im〈(b1 + b2)vn,∇vn〉.

Thus, inequality (5.7) follows.

6 Sharpness of the result

In this section we show that, under some conditions additional to (a) and (bV),
if τ ↔ Tp on Lp for some p ∈ (1,∞), with ||Tp(t)|| 6 eωpt for some ωp ∈ R, then
estimate (1.3) holds.

Lemma 6.1. Let 1 < p <∞, Tp a positive contractive C0-semigroup on Lp. Let
U > 0 be a Tp-admissible potential, −AU the generator of (Tp)U . Then

Re〈AUu, u|u|p−2〉 > 〈U |u|p〉
(
u ∈ D(AU)

)
.

Proof. Let −A be the generator of Tp. For m ∈ N let Um = U∧m. Let u ∈ D(AU)
and um := (1 + A+ Um)−1(1 + AU)u. Since A is accretive, we have

Re〈(1 + AU)u, um|um|p−2〉 = Re〈(1 + A+ Um)um, um|um|p−2〉 > 〈(1 + Um)|um|p〉.

Since um → u in Lp and Um ↑ U , we complete the proof by an application of
Fatou’s lemma.

The following theorem is the main part of our sharpness result.

Theorem 6.2. Let (a), (bV) hold and assume that τ ↔ Tp on Lp for some
p > 2, with ||Tp(t)|| 6 eωpt (t > 0) for some ωp ∈ R. If there exists a τa-regular
potential U > 0 such that ||(Tp)U(t)||∞→∞ 6 C for all t > 0 then estimate (1.3)
holds.

If 〈∇u, b2u〉 6 ω||u||22 (u ∈ D(τ)) and U > V − + ω, then ||(Tp)U(t)||∞→∞ 6 1
for all t > 0, by Remark 4.3(b) and Proposition 3.11.

The proof of Theorem 6.2 is based on the following lemma.

Lemma 6.3. Let (M,µ) be a measure space, h a Dirichlet form in L2(µ) and
r > 1.

(a) Then D1 :=
{

0 6 u ∈ D(h)∩L∞(µ); u1/r ∈ D(h)
}

is dense in D(h)+, the
set of positive elements of D(h).
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(b) Let h1 be a densely defined closed sectorial form in L2(µ) fulfilling the first
Beurling-Deny criterion, A the m-sectorial operator associated with h1. Assume
that D(h1) = D(h), and ||e−At||∞→∞ 6 C (0 6 t 6 1) for some C > 0. Then
D2 :=

{
ur; 0 6 u ∈ D(A) ∩ L∞(µ), Au ∈ L∞(µ)

}
is dense in D(h)+.

Proof. (a) For n ∈ N define ϕn: [0,∞) → [0, n] by ϕn(s) := s ∧ (nsr) ∧ n. It is

easy to show that the functions ϕn are Lipschitz continuous with constant r, ϕ
1/r
n

are Lipschitz continuous and that ϕn(s)→ s (s > 0) as n→∞. For u ∈ D(h)+

we conclude that ϕn(u) ∈ D1, and from [1, Prop. 11] we deduce that ϕn(u)→ u
in D(h) as n→∞.

(b) By (a), it remains to show that D2 is dense in D1. Let u ∈ D1 and
v := u1/r. Then v ∈ D(h) ∩ L∞(µ). By [9, Thm. I.2.13(ii)] we have vλ :=
λ(λ + A)−1v → v in D(h1) and thus in D(h) as λ → ∞. The assumption on
A implies that vλ ∈ D(A) ∩ L∞ and ||vλ||∞ 6 2C||v||∞ for large λ. Moreover,
we have Avλ = λ(v − vλ) ∈ L∞. Therefore, vrλ ∈ D2 and, by [1, Théorème 10],
vrλ → vr = u in D(h) as λ→∞.

Proof of Theorem 6.2. Without restriction assume U > U0 := W1 +W2 +2|V |
(see Lemma 3.13). We have to prove τp > −ωp onD(τp) = D(τa+U0). Notice that
τp is a bounded form on D(τa+U0). Since U is (τa+U0)-regular, by Lemma 3.13,
it therefore suffices to show τp(u) > −ωp||u||22 for all u ∈ D(τa + U). Since τp
fulfills the first Beurling-Deny criterion we can restrict ourselves to u > 0.

By Proposition 4.1(a), τ + U is a closed sectorial form in L2. Let AU be
the m-sectorial operator in L2 associated with τ + U . Then the assumptions of
Lemma 6.3(b) are fulfilled with h = τa + U , h1 = τ + U , A = AU since e−AU t

and (Tp)U are consistent by Corollary 4.4. Below we show that

τp(u
p
2 ) > −ωp||u

p
2 ||22 (6.1)

for all 0 6 u ∈ D(AU) ∩ L∞ with AUu ∈ L∞. Then, an application of Lem-
ma 6.3(b) shows that τp(u) > −ωp||u||22 for all 0 6 u ∈ D(τa + U), and the proof
is complete.

So, let 0 6 u ∈ D(AU) ∩ L∞ with AUu ∈ L∞. Then u ∈ D(τa + U) ∩ L∞
and hence ur ∈ D(τa + U) ∩ L∞, ∇ur = rur−1∇u for all r > 1. From this we
easily obtain τ(u, up−1) = τp(u

p
2 ) (cf. the computation on page 3) and thus, by

the definition of AU , (τp + U)(u
p
2 ) = 〈AUu, up−1〉.

Since e−AU t and e−Ap,U t := (Tp)U are consistent and u,AUu ∈ L2 ∩ L∞ ⊆ Lp,
we obtain u ∈ D(Ap,U) and Ap,Uu = AUu. By Lemma 6.1 we infer that

(τp + U)(u
p
2 ) = 〈Ap,Uu, up−1〉 > 〈(U − ωp)up〉,

i.e., (6.1) holds.

By Proposition 3.12 we easily obtain the following corollary.
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Corollary 6.4. Let (a), (bV) hold and assume that, for some τa-regular poten-
tial U > 0, the form τ +U is sectorial and closable and the associated semigroup
TU satisfies ||TU(t)||1→1 6 C, ||TU(t)||∞→∞ 6 C (t > 0). If τ ↔ Tp on Lp for some
p ∈ (1,∞), with ||Tp(t)|| 6 eωpt (t > 0) for some ωp ∈ R, then estimate (1.3) holds.

Remark 6.5. The previous result is in particular applicable in the case of weakly
differentiable b1 and b2. For j = 1, 2, we assume that bj is of τa-regular divergence,
i.e., there exists a measurable function div bj such that |div bj| is τa-regular and

2〈bju,∇u〉 = −〈(div bj)u
2〉

(
0 6 u ∈ D(τ) ∩Q(|div bj|)

)
.

Let U := V − + |div b1|+ |div b2|. Then

(τ1 + U)(u) =
〈
(−div b1 + V + U)u2

〉
> 0,

(τ∞ + U)(u) =
〈
(div b2 + V + U)u2

〉
> 0

for all 0 6 u ∈ D(τ + U), so (Tp)U is L1- and L∞-contractive.
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