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Abstract

In this paper we describe the modulus semigroup ofthesemigroup associated
with the linear differential equation with delay

u'(t) = Au(t) + Luy (¢t = 0),
w0)=ze€X, w =feLly,(-h0;X),

in the Banach latticeX x L,(—h,0; X), where X is a Banach lattice with order
continuous norm. The progress with respect to previous papers iglthady be
an unbounded generator of@-semigroup possessing a modulus semigroup.
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Introduction

In the present paper the results of the papers [3], [12] are further generalised. The main
object is to obtain the modulus semigroup fo€gsemigroup arising in the study of
the initial value problem for a linear differential equation with delay,

u'(t) = Au(t) + Lu,  (t = 0),
{u(O) =x, uy=/f, (DE)

in the L,-context, forl < p < oo, with initial valuesz € X, f € L,(—h,0; X).
Here, X is a Banach lattice with order continuous norm, d@né 1 or h = oo, corre-
sponding to finite or infinite delay. Furthed is the (possibly unbounded) generator
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of a Cy-semigroup onX—the unboundedness of is the important new feature in
this paper—, and.: C([—h,0]; X) — X is the bounded linear operator given by

L= f[ @A) (708 X)),

wheren: [—h,0] — L(X) is a function of bounded variation with no mass in zero.
Also, for a functionu: (—h, ) — X, we recall the notation

u(0) == u(t +9) (—h <9 <0),

for ¢t > 0.
It is shown in [1] that the delay equation (DE) is equivalent to an abstract Cauchy
problem

Uut)=Au) (t=0),
uo) = (%)
on the spaceX x L,(—h,0; X), where A is given by

(AL
A"(o %)’

D(A) := {(z, ) € D(A) x W) (=h,0; X); ©(0) = z}.

with domain

From [1], [4], [5], [8] it is known that the operatad generates &'y-semigroup? :=
(e");=0 on the Banach lattic&X x L,(—h, 0; X).

Next, assume that th€,-semigroup generated by possesses a modulus semi-
group, i.e., a smallest semigroup dominatitg*);~o, whose generator will be de-
noted by A#. Also, assume thay is ‘of finite regular variation’ (see Section 1.3 for
details), which implies that the operatarpossesses a modulus. It is the object of the
paper to show that then th&,-semigroup generated by

~ #
A= (f% |§|),
v

D(A) = {(x, ) € D(A*) x W, (=h,0; X); ¢(0) = x},

with domain

is the modulus semigroup of thé,-semigroup generated hyt.

This result is shown in [3] for the cas& = R", where necessarily the generator
A is abounded operator. In [12] the result is generalised to the case of a Banach lattice
X with order continuous norm, but still with a bounded generator



The first result on the subject is contained in [2], where the ¢ase R" is treated
in the framework of continuous functions (insteadof L,(—h, 0; X')). We will also
generalise this result to the case whe¥eis a Banach lattice with order continuous
norm; cf. Section 4.

For motivation why it is interesting to investigate modulus semigroups we refer to
[2], [7], [12].

In Section 1 we recall certain notions and present some results needed in the se-
guel. We prove a ‘domination lemma’, and we introduce the delay semigroups in more
detail. In particular, in the second part of Section 1.2 we indicate a new (simplified)
method to treat the perturbed delay equation in the gasel.

In Section 2 we apply the ‘domination lemma’ of Section 1.1 in order to show that
a semigroup dominating the perturbed (by the operdtpsemigroup for the delay
eqguation is also a dominating semigroup for the unperturbed semigroup.

In Section 3 we show the main result. Besides the new ideas prepared in Section 2
the proof relies heavily on results contained in [12].

In Section 4 we transfer the result to the framework of continuous functions, using
consistent semigroups.

1 Preliminaries

1.1 The domination lemma

For use in Section 2 we single out the following ‘domination lemma’. A version of
this technical result was already used in [10; proof of Proposition 1.2].

1.1 Lemma. Let X be a Banach lattice. LeT’, S be C,-semigroups onX, S posi-
tive, and assume thak: [0, 1] — L(X) satisfies

RO =0 (- 0).
Assume that
T(0)e] < (1) el + | R(t)a] (11)

forall re X, 0 <t <1.
ThenT is dominated byS, i.e., |T(t)z| < S(t)|z| (x € X, t = 0).

Proof. Let x € X. By induction, inequality (1.1) yields

(T() ] < S@)"|z] + ) SO ROT(E)™ 'l

m=1



forall 0 <t <1, neN. Replacingt by ¢/n we obtain

n n

IT(t)x| < S(t)|z| + Z S(=m) |R(L)T (L 1) (1.2)

forall neN, 0 <t < n. With ¢; := supgc,<; |S(5)|, di := supg<,<; |T(s)| the
last term in inequality (1.2) can be estimated as

n

Y S(=m) [R(T (2

m=1

< ne| Rz = i t 3| RG]

Since this tends to zero as— oo, inequality (1.2) yields the assertion. O

1.2 The delay semigroup

In this part we fix our assumptions concerning the delay semigroup. Assumg tisat
a Banach space. We assume that the operator X is the generator of &/,-semi-
groupT'. We assume thal € {1, 0}, we choosep € [1, «0), and we denote by the
Cy-semigroup of left translation of,(—h, 0; X),

o(t + ) for —h <9< —t,
0 for —t <9 <0.

S(t)p(0) = {
We recall that the operatod, in X x L,(—h,0;X),

Aoi= (g ) DO = {(o9) € DA X W0 )5 9(0) = 2},

is the generator of &,-semigroupZ, which is given by

_(T@®) 0
70 = (") sty) (13
Here, T, € L(X, L,(—h,0; X)) denotes the operator defined by

0 for —h <9< —t,

Tix (V) := {
T(t+9)x for —t <9 <0.
For these statements we refer to [1; Proposition 3.1].
Next, letn: [—h,0] — L(X) be a function of bounded variation (where, in the
case ofh = oo, [—h,0] denotes the one point compactification (efco, 0]). Then
one can define an operatare L(C([—h,0]; X), X) by

Ly = j ()  (peC—h0]; X):



we refer to [12; Section 2] for details. We assume thas left continuous, i.e.,

n(0) = lim n(?) (1.4)

for all ¥ € (—h,0]. For ¥ € (—h,0), this can always be achieved by redefining
without changingL. For ¢ = 0, however, this means thatdoes not give rise to mass

at zero; we refer to [8; beginning of Section 2] for a short discussion concerning this
assumption. We recall that, as a consequence, the variation

n

(=0, 0)) i=sup{ 3 In(@) =00 )l5 —a =y <. <V =0, neN},

j=1

of n on [—«, 0] tends to zero as — 0+; cf. [12; Lemma 2.1].

0 L
0 0
[11], [6], [8]) of Ay, foranyp € [1,0), if the norm onX x L,(—h,0; X) is chosen
suitably. Forl < p < oo this is known (and true for any of the norms on the product),
whereas forp = 1, this is a new observation (making part of the paper [8] obsolete).
We recall the following estimate from [1; Example 3.1]: Wit := sup,.,; |7'(s)],

1,1 _
7t 1, one has

We are going to show thdt := is a small Miyadera perturbation (cf. [9],

L | L(Tex + S(s) /)| ds < tMn|([=t,0) ] + 7 [n|([=h. 0]) | /], (1.5)

forall (z, f) € D(Ap), 0 <t < 1. Note thatL(Tsz + S(s)f) is the first component
of B7y(s)(7) (the second component being zero)1 i p < oo, then the coefficients
of |z| and | f[, tend to zero ag — 0, and thereforeB is an infinitesimally small
Miyadera perturbation of4,. For p = 1, however, we choose a norm

|G Pl = Nzl + el fly

with ¢ > |n|([—h,0]). Then (1.5) shows

L |BTo(s)(7), ds < tMIn[([=¢, 0D || + Inl([=h, 0]) |£]y
< max (tM|n|([—t, 01), [nl([=h. 0D /c) (=, f)]..

forall (z, f) € D(Ao), 0 <t < 1, wheremax(tM|n|([—t,0]), |n|([—h,0])/c) <1

for small ¢, i.e., B is a small Miyadera perturbation od,. These statements imply

that A := 61 é) with D(A) = D(A), is the generator of &j-semigroup7,
dv

forall 1 < p < oo. The semigrouf is associated with the Cauchy problem (DE).



1.3 The dominating delay semigroup

Additionally to the assumptions of Section 1.2 we now assume khas a Banach
lattice with order continuous norm, and that thg-semigroup’” possesses a modulus
semigroupI’”, with generatorA#. Applying the assertions of Section 1.2 we obtain
~ - ~
that A, := (‘% 2) , with domain D(Ag) := {(z, p) € D(A*) x W, (—h,0; X);
dd
©(0) = z}, is the generator of &/-semigroup?,.
We assume that the function is ‘of bounded regular variation’, i.en takes its
values in the regular operators,

n(t) = sup{ > 1n(0;) =0 )l; —h =00 <+ < =t, neN}
j=1

exists for all—h < t < 0, and 7 is of bounded variation. It has been shown in [12;
Lemma 3.1] that then the functiof is left continuous, in particular

7(0) = lim 7i(9).

Also, it has been shown in [12; Proposition 2.5] that the operator associated with the
function 7 is the modulus|L| € L(C([—h,0]; X), X) of L. Again, the operator
A= (1%# @) , with D(A) := D(A,), generates &-semigroup? .

dd
1.2 Remarks(a) From the expression (1.3) for the semigrdlip and the correspond-
ing expression for the semigroufy, it is immediate that/, dominatesi,.

(b) Arguing as in [3; Lemma 2.1] one shows thAt dominates7 . (In fact, in
view of the second part of Section 1.2 it is no longer necessary to treat the cage
separately.)

(c) The Banach latticeX x L,(—h,0; X) has order continuous norm. Therefore
it follows from part (a) and [2; Theorem 2.1] thd}y possesses a modulus semigroup
77, and 77" (t) < Zo(t) (¢ = 0). In the same way, th€’;-semigroupZ” possesses a
modulus semigrou@ #, and 7#(t) < 7 (t) (¢ = 0).

2 Domination of unperturbed and perturbed delay
semigroups

In the present section we assume tiatis a Banach lattice, and that, L, 1 < p <
w, Ao, 7y, A, T are as in Section 1.2.

The following result is the main tool for helping to identify the domain of the
generator of the modulus semigroup for the delay semigroup; cf. Section 3.

2.1 Proposition. Let the notation be as above, and assume that dominated by a
Cop-semigroupS on X x L,(—h,0; X). ThenZ, is dominated byS as well.



Recall from Section 1.2 thaf := (8 g) is a (small) Miyadera perturbation of
A. Therefore,7 can be represented as
T(t) = To(t) + Ra(t), (2.1)

with
t

RA(1)(E) = f T(t - )BT(s)(3)ds  ((e.9) € D(AL)).

0
The procedure of the proof of Proposition 2.1 is similar to [10; proof of Proposi-
tion 1.2]. The method consists in finding parts in the representation (27) afow-
ing to estimate7,, and other parts allowing an estimate needed for the application of
Lemma 1.1. The difference to [10] is that in that paper one has to use an iterated form
of (2.1).

2.2 Lemma. There exists: > 0 such that

[RAB)(E)] < etlnl([=¢, 0[],
forall ze D(A), 0 <t < 1.

Proof. This inequality is shown in the same way as [3; inequality (2.4) in Lem-
ma 2.2(a)]. ]

2.3 Remark.n the proof of Proposition 2.1 we will need the following general fact
about delay semigroups. Fgre L,(—h,0; X), 0 <t < h one has

Ln - nPT(t)(}) =5S1)f

(where P, is the projection onto the second componentofx L,(—h,0; X)), and
this implies

T ()] = (sl < [T

Proof of Proposition 2.1Let (z, f) € X x L,(—h,0;X). We estimate (using Re-
mark 2.3 in the second estimate)

To(t) (DI < [T )]+ [(To(t) = T@)(5)
< SOOI+ [Ru(®)(5)] + S(1)]
= SO+ IROCHI,

where R(t) := R1(¢)({§). By Lemma 2.2 we havéR (¢)(7)| < ctin|{[—t,0])|z|,
and thus

|+ 1 To(t)(7)]
()l

HR@I -0 (@ 0)

(Recall that|n|([—¢,0]) — 0 becausen is assumed to induce no mass(aj By
Lemma 1.1 we obtain thel, is dominated bysS. O



3 The modulus semigroup

In this section we assume that is a Banach lattice with order continuous norm.
3.1 Theorem. Let X, A, and A be as introduced in Section 1.3. Thet¥ = A.
The following result will serve as a final preparation for the proof.

3.2 Proposition. With the previous hypotheses and notations, we have:
(@) 777 (t) < T#(t) < T(t), forall t > 0.
(b) A¥ = A,.

Proof. (a) The first inequality follows from Proposition 2.1 sin@&” is a Cj-semi-
group dominatingZ . The second inequality was mentioned in Remark 1.2(c).
(b) From Section 1.2 we recall the representation (1.3), and correspondingly,

~ #
50 = () st @D

The inequalities|7;(¢)| < 777 (t) < 7Zo(t) (for the second of these inequalities we
refer to Remark 1.2(c)) show thag# is of the form

(TEW) 0
70#<”‘(v<t> s<t>)’

with positive operatord (¢), V(t) satisfying

T(t)
T

| < T (t) < T#(1), (3.2)
| < V(1) < (T7):, (3.3)
forall t > 0.

From the semigroup property &f;” one obtains that T} (t))., is a Cy-semi-
group onX, and therefore (3.2) implie%’félé =T%,

Inequality (3.3) impliesspt V (t)z < [—t,0), forall z € X. Let (z,¢) € D(A¥),
0 <t<h. ThenT (t)(%) = (T#éf)x), where

5(0) = o(t + 9) for —h < ¥ < —t,
Vs for —t <9 < 0.

The existence ofim,_., 1 (75" (t)(§) — (§)) showsz € D(A#), p € W}(—h,0; X),
and we obtaind; (%) = (Aj,w). Since7;” leavesD(AY) invariant, we also obtain

&1 € WH{(—h,0; X), and hence

p(0) = Ge(=t) = lim &)= lim V(H)z(d) =z,

1
I—(—t)+ I—(—t)+



where the last equality holds because of (3.3). (In fact, this last equality is first shown
for > 0, and then carries over to general)

Thus we have showm c A,. Since both of these operators are generators we
concludeA? = AO. O

Proof of Theorem 3.1From Proposition 3.2(a) and [10; Proposition A.1] we obtain
D(A) (= D(AY)) < D(A#). For (z,¢) € D(A), we have

~

TP < THO(2) < T(M(E) (= 0),

and this implies

()% () () <4()-(75). o
¥ ¥ ¥ ¥ ¥

We define
L#p = PLAT(#0)) — A% p(0)

(where P, is the projection onto the first component &f x L,(—h,0; X)). Then
(3.4) implies
A# (x) _ (A#az + L#go)
@ ¢’

0< L¥p < |L|g. (3.5)
If additionally ¢(0) = 0 then we obtain

and

Lo = PLAP(0) =l - PTH(1)(2). (3.6)

Now, let ¢ € W) (—h,0; X), 1(0) = 0. Then(0,v) € D(A), [¢| € W) (=h,0; X)
(by [12; Theorem 1.1]), and therefo(é lv]) € D(A#) Now (3.6), the corresponding
equality for L and 7, and |7 (t)( )| < 7#(t) |()] (t = 0) imply

L] < L#[]. (3.7)

We are going to show that (3.5), (3.7) imply equality in (3.5). First observe that,
sincei] does not give rise to mass@&tthere exists a sequentg;) in W, (—h,0; X),
0r(0) =0, 0 < ¢p < ¢ (keN) suchthat|L|pr — |L|¢ (kK — o). Fork eN the
application of [12; Theorem 1.1 and Remark 1.2] yields

|L]pr, = sup{|Le|; 1 € W, (=h,0; X), || < i}
< sup{L#|y]; » e W, (—h,0; X), [¢] < g1} < L¥pp < L¥ .

For k — oo we conclude| Ly < L#¢.

Having established equality in (3.5) we have shadre A#. Since both of these
operators are generators we obtaln= A% . O
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4 The modulus semigroup in the space of continuous
functions

We assume that all the quantities are as in Section 1.3. We want to treat the delay
semigroup in the space of continuous functions and to show properties analogous to
those of the preceding section.

For convenience, we only treat the case= 1 and refer to Remark 4.3(c) for
the necessary modifications féor= co. The delay semigrouff¢ in C([—1,0]; X),
associated with the Cauchy problem (DE) is generated by the opedator

D(Ac) := {p e CH([-1,0]; X); ¢(0) € D(A), ¢'(0) = Ap(0) + Ly},
Acp 1= ¢';

cf. [6; Chap. VI, Sec. 6].

For the remainder of this section we fix < p < oo. The operator
Jp: C([-1,0]; X) —» X x L,(—h,0; X), T = (¥(0),¢), is continuous. For
¢ € D(Ap), the functionu(t) := Zo(t)e (¢t = 0) is the unique solution of the
Cauchy problem for the delay differential equation

u'(t) = Au(t) + Luy, g = o.
It is easy to see that this implies that> 7,u(t) =: u,(t) is a solution of
up(t) = Apup(t),  up(0) = (£(0), ),
and thereforeZ,,(t)(?)) = u,(t). These considerations show the following result.

4.1 Proposition. (a) The semigroups/~ and 7, are consistent, in the sense that
GTo(t) = ()T, (t=20).
(b) The semigroupd and 7, are consistent.

For the proof of Theorem 4.2 below we recall how the modulus semigrfq'ﬁp
can be obtained. We denote bythe set of all subdivisions of by positive reals,

I={ye1]";m+ -+ =1 neN}.
Fort =0, v=(y,...,7) €l we define
(Z5)+(t) = [Ty (l)] - - [Tp(mt)]
and, for (z,p) € Xy x L,(—h,0; X),, obtain

THO(E) = sup(T,), (0)(%) = m(T,), (O)(5).

yel yer

These statements are proved in [2; proof of Theorem 2.1].
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4.2 Theorem. 7 is the modulus semigroup G-

Proof. The property that, dominatesZ, clearly shows thatlc dominates7; as
well. Assume thatS is a Cy-semigroup onC'([—1,0]; X') dominatingZ.

Let ¢ € C([-1,0;X).. Then S(s)p = |Tc(s)y| forall s = 0, ¢ €
C([-1,0]; X), |¢| < ¢. This shows7,S(s)p = |7,(s)|Tpp forall s > 0. Let
t > 0. Then, fory = (v,...,7,) €', we obtain

TpS(t)p = TpS(nt) - S(nt)e = [T ()| TpS(Vn-1t) - - - S(mit)p
= 2 T ()] - | Tp(nt) | T = (1), () T

Taking the supremum ovey € I' we conclude
TS = TH(O)Twe = T,(1)Tp = T Tc(t)e,

and thereforeS(t)p = 7¢(t) .
So we have shown tha dominatesZ.. This shows the assertion. O

4.3 Remarks(a) For the caseX = R", the result of Theorem 4.2 was shown in [2;
Proposition 3.3].

(b) The result of Theorem 4.2 is less general than one might hope to show. Namely,
in the space of continuous functions, the delay semigroup can be defined under weaker
conditions than assumed in the present paper. Indeed, instead of being defined by a
function n of bounded variation, one may just assumeC'([—1,0]; X) — X to be
continuous, in order to obtain th@,-semigroup7 ; cf. [6; Chap. VI, Sec. 6]. Then,
assumingL to have a modulusZ|, and assuming that and || do not have mass
at zero, one obtaines that the correspondiigsemigroupZ dominatesZe; cf. [7],

[2; Proposition 3.2]. Our method of proof does not yield the conjectured result that
also in this case the modulus semigroupZef is given by 7.

(c) In the case of = o0 we note that results corresponding to Proposition 4.1 and

Theorem 4.2 can be shown in the space

Col(—20,0]; X) = { € C (=0, 0; X); _lim_o(0) = 0}.

In this case the mapping, used above does no longer exist. However, on the dense
subspace”,.((—0,0]; X) (= {¢ € C((—»,0]; X); spte compac}) the mapping

J, exists, and the restriction qf/, to subspace€’;((Jy,0]; X) is continuous with
respect to the supremum norm, for &lj € (—o0,0). Also, 7¢(t)(Cy((Yo,0]; X)) <
Co((¥p—t,0]; X) forall ¢t = 0. These observations can be used to carry out the proof
in an analogous way as for the casehof 1.
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