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Abstract
We study Schrödinger operators on Rn formally given by Hµ = −∆− µ, where

µ is a positive, compactly supported measure from the Kato class. Under the
assumption that a certain condition on the µ-volume of balls is satisfied and that
Hµ has at least two eigenvalues below the essential spectrum σess(Hµ) = [0,∞),
we derive a lower bound on the first spectral gap of Hµ. The assumption on the
µ-volume of balls is in particular satisfied if µ is of the form µ = aσM , where M is a
compact (n−1)-dimensional Lipschitz submanifold of Rn, σM the surface measure
on M , and 0 6 a ∈ L∞(M).

MSC 2000: 35J10, 35P15, 47A55

1 Introduction and main results

There is extensive literature on estimates for the first spectral gap of Schrödinger oper-
ators. Many papers concentrate on one of the following two extreme situations: On the
one hand, for Schrödinger operators with convex potentials on convex domains the gap
turns out to be relatively large (see, e.g., [SWYY85], [Smi96] and the references therein);
on the other hand, in tunneling situations, where the potential has two or more separated
wells (minima) of equal depth, the gap becomes exponentially small with respect to a
separation parameter (see, e.g., [Har78], [Har80], [Sim84]).

For Schrödinger operators on Rn with bounded potentials, Kirsch and Simon proved in
[KiSi87; Sec. 4] that the first spectral gap always admits a lower bound that is comparable
to the gap size in tunnelling situations, without particular assumptions on the shape of V .
In [KoVe07], Kondej and Veselic proved a similar result in dimension n = 2 for potentials
given by certain measures supported on compact curves. This is the only gap estimate
known to us for Schrödinger operators with a singular interaction given by a measure.

In the present paper we generalise the gap estimate of [KoVe07] to higher dimensions,
for operators Hµ = −∆−µ on Rn (defined as a form sum, cf. Section 2). We assume that
µ is a positive, compactly supported measure on the Borel σ-algebra of Rn satisfying the
volume bound

µ(B(x, r)) 6 cµr
n−α (x ∈ Rn, r > 0) (1.1)
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for some cµ > 0, α ∈ [0, 2). (Up to a change in the constant cµ, we could equivalently
assume this bound for r 6 1 only since µ has compact support.) Assumption (1.1) implies
that µ is in the Kato class; conversely, µ being in the Kato class implies (1.1) for α = 2
and some cµ > 0 (cf. Proposition 2.2). In Example 2.3(b) we will show that the surface
measure on a compact (n−1)-dimensional Lipschitz submanifold of Rn satisfies (1.1) with
α = 1.

The proof of the gap estimate in [KiSi87] uses the fact that the eigenfunctions of the
Schrödinger operator are Lipschitz continuous if the potential is bounded. For singular
potentials, Lipschitz continuity is no longer true in general. This difficulty is overcome
in [KoVe07] by means of a method that relies on detailed knowledge of the geometry of
sptµ, such as curvature bounds. Theorem 1.1 below provides a better (though not sharp)
gap estimate, based only on the volume estimate (1.1).

Since µ has compact support, we have σess(Hµ) = [0,∞) by [BEKŠ94; Thm. 3.1], so
σ(Hµ) \ [0,∞) consists of isolated eigenvalues of finite multiplicity. In the main results of
this paper, Theorems 1.1 and 1.3 below, we will assume that

(A) Hµ has at least two negative eigenvalues; the lowest two are denoted by λ0 = −κ2
0

and λ1 = −κ2
1 (> λ0).

The proofs of these theorems are given in Section 6.

1.1 Theorem. Let n > 2 and suppose that µ > 0 is a compactly supported measure on
Rn satisfying (1.1) for some cµ > 0, 0 6 α < 2. Let d denote the diameter of the smallest
closed ball containing sptµ. If assumption (A) is satisfied then there exist C, p, q, β > 0
depending only on n and α such that

λ1 − λ0 >
C|λ0|

(cµ + 1)p(d+ 1)q
e−βκ0(d+1). (1.2)

More precisely, for α < 1 one can choose β = n + 1, for α = 1 any β > n + 1, and
β = n−1

2−α
+ 2 for α > 1. For n > 5, the factor |λ0| on the right hand side of (1.2) can be

omitted.

1.2 Remarks. (a) In [KoVe07; Thm. 4.3], a gap estimate similar to the above is proved
for the case n = 2, µ = cσim γ, where c > 0 and γ is a C2-curve without self-intersections,
parameterised by arc length (cf. Example 2.3(c)). An application of Theorem 1.1 in this
situation yields a slightly better estimate: Firstly, in [KoVe07] the constant C depends
on the curvature of γ, and β is not given explicitly. Secondly, there is a factor |λ1| in the
gap estimate of [KoVe07]; replacing this factor by |λ0| is in fact achieved by a simple trick
(see the argument leading to equation (6.3)). Thirdly, in [KoVe07] the estimate contains
an additional factor that behaves like |λ0|8 for small |λ0|.

(b) One can hardly expect that the value of β given in Theorem 1.1 is sharp. Com-
putable examples of tunneling situations might lead to the conjecture that (1.2) always
holds with β = 1, but it does not seem possible to prove this with the method presented
in this paper.

(c) The attentive reader will note that the estimate (1.2) is not scaling invariant: It
is easy to see that for s > 0 the operators Hµ and Hµs are unitarily equivalent, where µs
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is defined by µs(A) := s2−nµ(sA). Moreover, under the assumptions of Theorem 1.1 one
computes that µs satisfies (1.1) with cµs = s2−αcµ, that the smallest closed ball containing
sptµs has diameter d/s, and that the lowest two eigenvalues of Hµs are s2λ0 and s2λ1.
Applying Theorem 1.1 to µs, with s = εd for some ε > 0, we thus obtain the scaling
invariant estimate

λ1 − λ0 >
Cε|λ0|(

(εd)2−αcµ + 1
)p e

−(1+ε)βκ0d,

where Cε = C/(1
ε + 1)q.

In dimension n = 1 we obtain a much simpler result.

1.3 Theorem. Let µ > 0 be a compactly supported measure on R, d the diameter of
sptµ. If assumption (A) is satisfied then

λ1 − λ0 >
|λ0|

d||µ||+ 1
e−2κ0d and λ1 − λ0 >

κ1

d(κ1d+ 1)
e−2κ0d. (1.3)

The paper is organised as follows. In Section 2 we recall some basic results on form
small measures and the (extended) Kato class of measures. In Section 3 we use a ground
state transformation to show the representation

λ1 − λ0 =
∣∣∣∣ϕ0∇ϕ1

ϕ0

∣∣∣∣2
2
||ϕ1||−2

2

of the lowest spectral gap, where ϕj is an eigenfunction corresponding to the eigenvalue
λj, for j = 1, 2. We demonstrate how this representation can be used to prove the main
results, given the following two ingredients: (i) an estimate of the modulus of continuity
of the eigenfunctions, (ii) a pointwise estimate from below for the ground state ϕ0 of
Hµ. These ingredients are provided in Sections 4 and 5, respectively. Since they are
of independent interest, we will prove estimates that are sharper than necessary for the
proof of Theorem 1.1. The proofs of Theorems 1.1 and 1.3 are given in Section 6. In the
appendix we provide an estimate on the convolution kernel of (κ2 −∆)−1 (where κ > 0),
needed in Section 5, that we did not find in the literature.

2 Form small measures and Kato class measures

Throughout this section let µ > 0 be a measure on the Borel σ-algebra of Rn. We recall
the definition of the operator Hµ for form small µ and some results on the (extended)
Kato class of measures. In the following we write for brevity Lp for Lp(Rn), and similarly
W 1

2 , C∞
c , etc.

The measure µ is called form small with respect to the Laplacian on Rn if µ does not
charge sets of zero capacity and there exist γ ∈ [0, 1), c ∈ R such that∫

|u|2 dµ 6 γ

∫
|∇u|2 dx+ c

∫
|u|2 dx (u ∈ W 1

2 ). (2.1)
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Here and in the following, we tacitly assume that a quasi-continuous representative of u
is chosen if we write u ∈ W 1

2 ; then the integral
∫
|u|2 dµ is unambiguously defined. It is

well-known that, under condition (2.1),

D(τµ) := W 1
2 , τµ(u) :=

∫
|∇u|2 dx−

∫
|u|2 dµ (2.2)

defines a closed quadratic form τµ in L2. The domain D(τµ) is dense in L2, so we can
define the Schrödinger operator Hµ as the selfadjoint operator in L2 associated with τµ.

In accordance with [StVo96; p. 114] we say that µ is in the extended Kato class if
there exists κ > 0 such that Gκ ∗ µ ∈ L∞, where Gκ is the convolution kernel of the free
resolvent (κ2 −∆)−1. (It is automatic that then µ does not charge sets of zero capacity.)
We say that µ is Kato small if limκ→∞ ||Gκ ∗µ||∞ < 1. By [StVo96; Thm. 3.1], a Kato small
measure is also form small. The measure µ is in the (proper) Kato class if ||Gκ ∗ µ||∞ → 0
as κ→∞.

In the following let kt denote the convolution kernel of et∆, i.e., kt(x) = (4πt)−
n
2 e−

|x|2
4t

for t > 0, x ∈ Rn. Moreover, for an operator B on L2 and p, q ∈ [1,∞] we denote by
||B||p→q the norm of B|Lp∩L2 regarded as an operator from Lp to Lq.

2.1 Proposition. Let α > 0, γ ∈ [0, 1) and assume that∣∣∣∣∣∣∫ α

0

kt ∗ µ dt
∣∣∣∣∣∣
∞

6 γ.

Then µ is Kato small, and ||e−tHµ||1→1 6 1
1−γ

for all t ∈ [0, α].

Proof. Arguing as in [Voi86; Prop. 4.7(b)] one finds κ > 0 such that

||Gκ ∗ µ||∞ =
∣∣∣∣∣∣∫ ∞

0

e−κ2tkt ∗ µ dt
∣∣∣∣∣∣
∞
< 1,

so µ is Kato small. We recall the approximation of Hµ given in [StVo96]: For j,m ∈ N,
m > κ let µj := 11B(0,j)µ, Vj,m := (m2 − κ2)Gm ∗ µj. Then∣∣∣∣∣∣∫ α

0

et∆Vj,m dt
∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣(m2 − κ2)Gm ∗

∫ α

0

kt ∗ µj dt
∣∣∣∣∣∣
∞

6 ||m2(m2 −∆)−1||∞→∞
∣∣∣∣∣∣∫ α

0

kt ∗ µ dt
∣∣∣∣∣∣
∞

6 γ,

and by [Voi77; Thm. 1(c) and the last formula line of part (i) of its proof] we obtain
that ||e−tHVj,m ||1→1 6 1

1−γ
for all t ∈ [0, α], j,m ∈ N, m > κ. Moreover, HVj,m

→ Hµj

in the strong resolvent sense as m → ∞, by [StVo96; Cor. 2.4(a)], and Hµj
→ Hµ in

the strong resolvent sense as j → ∞, by [StVo96; Thm. 3.3(a)]. We thus conclude that
||e−tHµ||1→1 6 1

1−γ
for all t ∈ [0, α]; cf. [StVo96; proof of Cor. 2.4(b)].

In the next result we show the relation between the Kato class condition and the
volume bound (1.1). We will need the following fact: Assume that m : [0,∞) → [0,∞) is
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increasing, m(0) = 0, µ(B(x, r)) 6 m(r) for all x ∈ Rn, r > 0. Then for any decreasing
function f : [0,∞) → [0,∞) and all x ∈ Rn, one can estimate∫

Rn

f(|x− y|) dµ(y) 6
∫ ∞

0

f(r) dm(r); (2.3)

cf. [Dav95; p. 179].

2.2 Proposition. Let 0 6 α 6 2. Assume that there exists c > 0 such that∣∣∣∣∣∣∫ t

0

ks ∗ µ ds
∣∣∣∣∣∣
∞

6 ct1−
α
2 (t > 0). (2.4)

Then the volume estimate (1.1) holds with cµ = c/g(e1), where g(x) :=
∫ 1

0
ks(x) ds.

Conversely, if α < 2 (α 6 1 in the case n = 1) then (1.1) implies (2.4) with c =
2

2−α
2−απ−

n
2 Γ(n−α

2
+ 1)cµ; in particular, µ is in the Kato class.

Proof. Let r > 0. For y ∈ Rn \ {0} we compute, substituting s = r2t, that∫ r2

0

ks(y) ds =

∫ 1

0

(4πr2t)−
n
2 e−

|y|2

4r2t r2dt = r2−n

∫ 1

0

kt

(
y
r

)
dt = r2−ng

(
y
r

)
=: gr(y).

Since gr ∗ µ is lower semicontinuous, we thus obtain from assumption (2.4) that sup(gr ∗
µ) 6 cr2−α. Moreover, gr(y) > gr(re1) = r2−ng(e1) for 0 < |y| 6 r, so we infer for all
x ∈ Rn that

r2−ng(e1)µ(B(x, r)) 6
∫

B(x,r)

gr(x− y) dµ(y) 6 gr ∗ µ(x) 6 cr2−α,

and the first assertion follows.
Conversely, assume that (1.1) holds and that α < 2. Then for s > 0 we obtain by (2.3),

substituting r = (4sρ)
1
2 , that

||ks ∗ µ||∞ 6
∫ ∞

0

(4πs)−
n
2 e−

r2

4s cµ dr
n−α = cµ(4πs)−

n
2

∫ ∞

0

e−ρ(4s)
n−α

2 dρ
n−α

2

= cµ(4s)−
α
2 π−

n
2 Γ(n−α

2
+ 1).

(This computation is also valid in the case n = α = 1 if one replaces drn−α and dρ
n−α

2

with the Dirac measure at 0.) Integration from 0 to t now yields the second assertion.

If n = 1 and µ is finite, then assumption (1.1) is trivially satisfied with α = 1 and
cµ = ||µ||. We now give examples in dimension n > 2 where assumption (1.1) is satisfied
with α = 1.

2.3 Example. (a) (cf. [BEKŠ94; Thm. 4.1(iv)]) Let U ⊆ Rn−1 be open and bounded,
f : U → Rn Lipschitz continuous, and

|f(x)− f(y)| > |x− y| (x, y ∈ U).
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Let µ = σf(U), i.e., ∫
ϕdµ =

∫
U

ϕ(f(y))g(y) dy (ϕ ∈ Cc(Rn)),

with g :=
(
det(f ′>f ′)

) 1
2 the square root of the Gram determinant. We show that then (1.1)

holds with

α = 1, cµ = 2n−1ωn−1||g||∞,

where ωn−1 denotes the volume of the (n−1)-dimensional unit ball.

Indeed, let x ∈ Rn, r > 0. There exists y0 ∈ U such that r0 := dist(x, f(U)) =
|x − f(y0)|. If r < r0 then µ(B(x, r)) = 0 6 cµr

n−1. If r > r0 then for y ∈ U with
f(y) ∈ B(x, r) we have

|y − y0| 6 |f(y)− f(y0)| 6 |f(y)− x|+ |x− f(y0)| 6 r + r0 6 2r,

and it follows that

µ(B(x, r)) =

∫
U

11B(x,r)(f(y))g(y) dy 6
∫

B(y0,2r)

||g||∞ dy = ωn−1(2r)
n−1||g||∞.

(b) Let M be a compact (n−1)-dimensional Lipschitz submanifold of Rn, σM the
surface measure on M and 0 6 a ∈ L∞(M). Then M can be covered by finitely many
relatively open subsets that can be parameterised as in (a), so µ = aσM satisfies (1.1)
with α = 1.

(c) Let n = 2, N ∈ N, γ1, . . . , γN Lipschitz curves in R2, γj : Ij → R2 parameterised by
arc length on a compact interval Ij ⊆ R (j = 1, . . . , N), and assume that |γj(s)− γj(t)| >
1
2
|s − t| for all j ∈ {1, . . . , N}, s, t ∈ Ij. In particular, each curve γj is intersection free,

but the different curves may intersect. If, e.g., γ : I → R2 is a curve (with a compact
interval I ⊆ R) that is piecewise C1 and parameterised by arc length, then γ can be split
into finitely many parts γ1, . . . , γN satisfying the above.

Let now

Γ :=
N∑

j=1

γj, a ∈ L∞(im Γ), µ := aσim Γ.

By part (a), applied with fj(t) := γj(2t), we obtain that then (1.1) holds with α = 1,
cµ = N ||a||∞21ω1 · 2 = 8N ||a||∞. It follows that the spectral gap estimate of [KoVe07] can
be obtained as a special case of Theorem 1.1.

The following representation of the eigenfunctions of Hµ is extracted from [BEKŠ94;
proof of Cor. 2.3]. We include the proof for the reader’s convenience.

2.4 Lemma. Assume that µ is form small, ϕ an eigenfunction of Hµ, Hµϕ = −κ2ϕ for
some κ > 0. Then ϕ = Gκ ∗ (ϕµ).
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Proof. The form smallness of µ implies that D(Hµ) ⊆ W 1
2 ⊆ L2(µ), so ϕ ∈ L2(µ). By

[BEKŠ94; Lemma 2.2] we obtain that u := Gκ ∗ (ϕµ) ∈ W 1
2 and

〈u, v〉κ := 〈∇u,∇v〉+ κ2〈u, v〉 =

∫
ϕv dµ (v ∈ W 1

2 ). (2.5)

Moreover, for v ∈ W 1
2 we have

0 = 〈(Hµ + κ2)ϕ, v〉 = (τµ + κ2)(ϕ, v) = 〈ϕ, v〉κ −
∫
ϕv dµ. (2.6)

Combining (2.5) and (2.6) we conclude that 〈ϕ, v〉κ = 〈u, v〉κ for all v ∈W 1
2 and therefore

ϕ = u.

We use the above representation for proving the following estimates of the L2-norm
against the L∞-norm of the eigenfunctions of Hµ (cf. [KoVe07; Lemma 5.5]); these esti-
mates will be needed in the proofs of the main results.

2.5 Proposition. Assume that µ is form small, ϕ a bounded eigenfunction of Hµ, Hµϕ =
−κ2ϕ for some κ > 0.

(a) If µ is finite then ||ϕ||22 6 κ−2||µ||||ϕ||2∞.

(b) If n = 1 and sptµ ⊆ B[0, R] for some R > 0 then ||ϕ||22 6 (2R + 1
κ)||ϕ||2∞.

(c) If n > 5 and sptµ ⊆ B[0, R] for some R > 0 then ||ϕ||22 6 2n−4
n−4

ωnR
n||ϕ||2∞.

Proof. Without loss of generality assume that ||ϕ||∞ = 1. By Lemma 2.4 we have ϕ =
Gκ ∗ (ϕµ).

(a) Since ||Gκ||1 = ||(κ2 −∆)−1||1→1 = κ−2, we obtain that

||ϕ||22 6 ||ϕ||1||ϕ||∞ = ||Gκ ∗ (ϕµ)||1 6 κ−2||µ||.

(b) Outside sptµ we have (κ2−∆)ϕ = 0 and hence (κ2−∆)|ϕ|6 0 in the distributional
sense, i.e., |ϕ| is a subsolution of the equation (κ2−∆)u = 0. Moreover, u(x) := e−κ(|x|−R)

defines a solution of this equation on R\{0}, and |ϕ| 6 u on [−R,R]. Since ϕ = Gκ ∗ (ϕµ)
vanishes at ∞, we conclude that |ϕ| 6 u on R and therefore

||ϕ||22 6 2

∫ R

0

1 dx+ 2

∫ ∞

R

e−2κ(x−R) dx = 2R + 1
κ .

(c) Arguing as in (b) we obtain that |ϕ| is subharmonic on Rn \ B[0, R] and vanishes

at ∞. Therefore, |ϕ(x)| 6
(

R
|x|

)n−2
for |x| > R and hence

||ϕ||22 6
∫ (

R
|x| ∧ 1

)2(n−2)
dx = ωnR

n + nωn

∫ ∞

R

R2(n−2)r−2(n−2) rn−1dr

= ωnR
n + nωnR

2(n−2) 1
n−4

R4−n =
(
1 + n

n−4

)
ωnR

n.
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3 The ground state transformation

Throughout this section, µ > 0 is a Kato class measure on Rn. It follows from [BlMa90;
Thm. 3.2.(ii)] that then the eigenfunctions of Hµ are in C0(Rn), the space of continuous
functions vanishing at ∞.

Assume that λ0 := inf σ(Hµ) < 0 is an eigenvalue of Hµ. It is well-known that λ0

is non-degenerate and that a corresponding eigenfunction ϕ0 can be chosen such that
ϕ0 > 0. Lemma 2.4 implies that then infB[0,R] ϕ0 > 0 for all R > 0. We define the
unitarily transformed (and shifted) form τ̃µ in L2(ϕ

2
0) := L2(Rn, ϕ2

0dx) by

D(τ̃µ) :=
{
u ∈ L2(ϕ

2
0); ϕ0u ∈ D(τµ)

}
, τ̃µ(u) := (τµ − λ0)(ϕ0u).

In the case µ = V dx, with V from the Kato class, the following result is already proved
in [DaSi84; Prop. 4.4S]; see [KoVe07; Thm. 3.1] for the case µ = cσM , with M ⊆ Rn a
compact C2-manifold of codimension 1 (cf. Example 2.3(b)).

3.1 Proposition. For all u ∈ D(τ̃µ) one has ∇u ∈ L2(ϕ
2
0)

n and

τ̃µ(u) =

∫
|∇u|2 ϕ2

0dx. (3.1)

Proof. We first assume that u ∈ W 1
2 ∩ L∞. Then ϕ0u ∈ W 1

2 and ϕ0uu ∈ W 1
2 since

ϕ0 ∈ W 1
2 ∩ L∞. Therefore, by the product rule,∫

∇(ϕ0u) · ∇(ϕ0u) dx =

∫
|∇u|2 ϕ2

0dx+

∫
∇ϕ0 · ∇(ϕ0uu) dx,

and hence

τ̃µ(u)−
∫
|∇u|2 ϕ2

0dx = τµ(ϕ0u)− λ0

∫
|ϕ0u|2 dx−

∫
|∇u|2 ϕ2

0dx

=

∫
∇ϕ0 · ∇(ϕ0uu) dx−

∫
ϕ0 · ϕ0uu dµ− λ0

∫
ϕ0 · ϕ0uu dx

= (τµ − λ0)(ϕ0, ϕ0uu) =

∫
(Hµ − λ0)ϕ0 · ϕ0uu dx = 0.

Thus we have shown the assertion for u ∈ D := W 1
2 ∩ L∞.

Now observe that D ⊇ ϕ−1
0 C∞

c (ψ ∈ C∞
c implies ϕ−1

0 ψ ∈ D since ϕ−1
0 ∈W 1

2,loc∩L∞,loc).
Since C∞

c is a core for τµ, it follows that D is a core for τ̃µ. Let u ∈ D(τ̃µ), (uk) ⊆ D,
uk → u in D(τ̃µ). Then uk → u in L2(ϕ

2
0), and by (3.1) applied to uk − uk′ ∈ D we

obtain that (∇uk)k is a Cauchy sequence in L2(ϕ
2
0)

n. This implies ∇u ∈ L2(ϕ
2
0)

n in the
distributional sense, ∇uk → ∇u in L2(ϕ

2
0)

n, and we conclude that (3.1) holds for all
u ∈ D(τ̃µ).

In the following assume in addition that µ has compact support and that λ1 :=
inf

(
σ(Hµ)\{λ0}

)
< 0; then λ1 is an eigenvalue of Hµ since σess(Hµ) = [0,∞) by [BEKŠ94;

Thm. 3.1]. Let ϕ1 be an associated eigenfunction, ϕ1 real-valued. By Proposition 3.1 we
then obtain

(λ1 − λ0)||ϕ1||22 = (τµ − λ0)(ϕ1) = τ̃µ
(

ϕ1
ϕ0

)
=

∣∣∣∣ϕ0∇ϕ1
ϕ0

∣∣∣∣2
2
. (3.2)
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We now describe how this formula can be used for the estimation of λ1 − λ0. The ansatz
is largely the same as in [KiSi87] and [KoVe07]; we will indicate the differences below.

As in [KiSi87; p. 405] we normalise ϕ0, ϕ1 such that ||ϕ0||∞ = ||ϕ1||∞ = 1, supϕ1 = 1.
Note that then inf ϕ1 < 0 since ϕ0, ϕ1 are orthogonal. Since ϕ1 ∈ C0(Rn), there exist
x0, x1 ∈ Rn such that ϕ1(x0) = minϕ1, ϕ1(x1) = maxϕ1. By Lemma 2.4 we have ϕ1 =
G√|λ1|

∗ (ϕ1µ), and hence (|λ1| − ∆)ϕ1 = 0 on Rn \ sptµ. This implies that ϕ1 has no

positive maxima and no negative minima outside sptµ, and thus x0, x1 ∈ sptµ.
In the following we first assume that n > 2. Let R be the radius of the smallest closed

ball containing sptµ; for simplicity suppose that sptµ ⊆ B[0, R]. Let ε := 1
4
infB(0,R+1) ϕ0.

Then 0 < ε 6 1
4
. Since ϕ1 ∈ C0(Rn), there exists δ ∈ (0, 1] such that |ϕ1(x)− ϕ1(y)| 6 ε

for |x − y| 6 δ. (Explicit estimates from below for ε and δ will be given in the next two
sections.) It follows that

ϕ1
ϕ0

6 ε
ϕ0

6 1
4

on B(x0, δ),
ϕ1
ϕ0

> ϕ1 > 1− ε > 3
4

on B(x1, δ). (3.3)

In [KiSi87] and [KoVe07], similar estimates were proved by means of gradient estimates
on ϕ0 and ϕ1.

Let now T̃ be the convex hull of B(x0, δ) ∪ B(x1, δ), and T :=
{
x ∈ T̃ ; 0 6 〈x −

x0, x1 − x0〉 6 |x1 − x0|2
}
. Then T is a tube connecting the two points x0 and x1. By the

Cauchy-Schwarz inequality we obtain from (3.2) that

(λ1 − λ0)||ϕ1||22 >
∫

T

ϕ2
0

∣∣∇ϕ1
ϕ0

∣∣2 >
1

|T |
inf
T
ϕ2

0

(∫
T

∣∣∇ϕ1
ϕ0

∣∣)2

,

where |T | denotes the volume of T . (This estimate leads to better results than the
corresponding estimate in [KiSi87; eq. (4.4)] and [KoVe07; eq. (16)].) Using the funda-
mental theorem of calculus, we infer from (3.3) that

∫
T

∣∣∇ϕ1
ϕ0

∣∣ > 1
2
ωn−1δ

n−1. Moreover,
|T | = |x1 − x0|ωn−1δ

n−1, so we conclude that

(λ1 − λ0)||ϕ1||22 >
1

2Rωn−1δn−1
(4ε)2

(
1
2
ωn−1δ

n−1
)2

=
2ωn−1

R
ε2δn−1. (3.4)

For n = 1, the above estimation simplifies considerably: If sptµ ⊆ [−R,R] then
from (3.2) we obtain, again using the Cauchy-Schwarz inequality and the fundamental
theorem of calculus, that

(λ1 − λ0)||ϕ1||22 >
∫ R

−R

ϕ2
0

∣∣∇ϕ1
ϕ0

∣∣2 >
1

2R
inf

[−R,R]
ϕ2

0

(∫ R

−R

∣∣∇ϕ1
ϕ0

∣∣)2

>
1

2R
inf

[−R,R]
ϕ2

0. (3.5)

4 Hölder continuity of the eigenfunctions

Throughout this section we assume that n > 2 and that µ > 0 is a Kato class measure
on Rn. Then the eigenfunctions of Hµ are uniformly continuous since they are in C0(Rn)
by [BlMa90]. In the main result of this section, Theorem 4.3 below, we will show that
the eigenfunctions are Hölder continuous if the volume bound (1.1) is satisfied for some
cµ > 0, α ∈ [0, 2), with a Hölder exponent depending on α.
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We start with an estimate of the modulus of continuity of the eigenfunctions of Hµ

that is rather simple but holds in great generality. Let G0 be the fundamental solution of
−∆ given by

G0(x) =

{
1
2π

ln 1
|x| if n = 2,

1
(n−2)σn−1

|x|2−n if n > 3.

For r0 > 0 let

ρ1,r0 :=
(
G0 −G0(r0e1)

)+
, ρ2,r0 := |∇(G0 − ρ1,r0)|.

Then ρ2,r0(x) = 1
σn−1

|x|1−n for |x| > r0, ρ2,r0(x) = 0 otherwise.

4.1 Proposition. Let ϕ be an eigenfunction of Hµ, Hµϕ = −κ2ϕ for some κ > 0. Let
ε > 0. If r0 > 0 satisfies ||ρ1,r0 ∗ µ||∞ 6 ε

4
then

|ϕ(x)− ϕ(y)| 6 ε||ϕ||∞ for all x, y ∈ Rn such that |x− y| 6 ε
2
||ρ2,r0 ∗ µ||−1

∞ .

Proof. Let g1 :=
(
Gκ −Gκ(r0e1)

)+
, g2 := Gκ − g1. By Lemma 2.4 we have

ϕ = Gκ ∗ (ϕµ) = (g1 + g2) ∗ (ϕµ).

Since g1∗(ϕµ) = ϕ−g2∗(ϕµ) is continuous, we can estimate |g1∗(ϕµ)(x)−g1∗(ϕµ)(y)| 6
2||g1 ∗ (ϕµ)||∞ and hence

|ϕ(x)− ϕ(y)| 6 |g2 ∗ (ϕµ)(x)− g2 ∗ (ϕµ)(y)|+ 2||g1 ∗ (ϕµ)||∞
6 |x− y| · |||∇g2| ∗ (ϕµ)||∞ + 2||g1 ∗ (ϕµ)||∞
6

(
|x− y| · |||∇g2| ∗ µ||∞ + 2||g1 ∗ µ||∞

)
||ϕ||∞ (4.1)

for all x, y ∈ Rn. Observe that

∇Gκ(z) =

∫ ∞

0

(4πt)−
n
2

(
−2z

4t

)
e−

|z|2
4t
−κ2tdt

for all z ∈ Rn \ {0}, and that this formula also holds for κ = 0. (For n > 3 the latter is
clear; for n = 2 it can easily be seen by computing the integral.) We infer that |∇g2|6 ρ2,r0

and g1 6 ρ1,r0 . By the assumption on r0 we thus obtain from (4.1) that

|ϕ(x)− ϕ(y)| 6
(
|x− y| · ||ρ2,r0 ∗ µ||∞ + 2 · ε

4

)
||ϕ||∞,

and the assertion follows.

4.2 Remarks. (a) The above estimate of the modulus of continuity does not depend on
κ. It is clear that for large κ one obtains a better estimate using (4.1) without further
estimating g1 and |∇g2|.

(b) Let r0 > 0 be as in Proposition 4.1 and assume that µ is finite. Obviously,
||ρ2,r0 ∗ µ||∞ 6 ||ρ2,r0||∞||µ|| = 1

σn−1
r1−n
0 ||µ||, so it follows that

|ϕ(x)− ϕ(y)| 6 ε||ϕ||∞ if |x− y| 6 σn−1

2||µ||
εrn−1

0 .
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For the proof of Theorem 1.1 we will need the following application of Proposition 4.1.
In the case of Example 2.3(c) (where n = 2 and α = 1), a related result is given in [KoVe07;
Prop. 6.8].

4.3 Theorem. Assume that the measure µ is finite and that (1.1) holds for some cµ > 0,
0 6 α < 2. Let ϕ be an eigenfunction of Hµ and ε > 0. Then

|ϕ(x)− ϕ(y)| 6 ε||ϕ||∞ for all |x− y| 6 δ,

where

δ =


σn−1

2
1−α
n−α

||µ||−
1−α
n−α cµ

− n−1
n−α ε if α < 1,

σn−1

2n
ε
cµ

[
ln

(
1 + 4

σn−1
||µ||

1
n−1 c

n−2
n−1
µ

1
ε

)]−1

if α = 1,

1
2
(σn−1)

1
2−α α−1

n−1

(
2−α

4

)α−1
2−α

(
ε
cµ

) 1
2−α if α > 1.

Proof. Let r0 > 0. In order to apply Proposition 4.1, we have to estimate ||ρ1,r0 ∗µ||∞ and
||ρ2,r0 ∗ µ||∞. Let m(r) := cµr

n−α (r > 0). Using (2.3) we estimate

||ρ1,r0 ∗ µ||∞ 6
∫ r0

0

ρ1,r0(re1) dm(r) = ρ1,r0(re1)m(r)
∣∣r0

0+
−

∫ r0

0

m(r) dρ1,r0(r)

=

∫ r0

0

m(r) 1
σn−1

r1−n dr = cµ

σn−1

∫ r0

0

r1−α dr = cµ

σn−1(2−α)
r2−α
0 .

Setting

r0 :=
(

2−α
4
σn−1

ε
cµ

) 1
2−α (4.2)

we thus obtain ||ρ1,r0 ∗ µ||∞ 6 ε
4
, so

|ϕ(x)− ϕ(y)| 6 ε||ϕ||∞ for all |x− y| 6 ε
2
||ρ2,r0 ∗ µ||−1

∞ (4.3)

by Proposition 4.1.
Recall that σn−1ρ2,r0(x) 6 (|x| ∨ r0)1−n for all x ∈ Rn. In the case α > 1 we obtain

by (2.3) that

σn−1||ρ2,r0 ∗ µ||∞ 6
∫ ∞

0

(r ∨ r0)1−n dm(r) = r1−n
0 m(r0) +

∫ ∞

r0

r−α(n− α)cµ dr

= cµr
1−α
0 + cµ

n−α
α−1

r1−α
0 = cµ

n−1
α−1

r1−α
0 ,

hence
ε
2
||ρ2,r0 ∗ µ||−1

∞ > 1
2

α−1
n−1

σn−1
ε
cµ
rα−1
0 = 1

2
α−1
n−1

(
2−α

4

)α−1
2−α

(
σn−1

ε
cµ

)1+α−1
2−α

by (4.2), and the assertion follows from (4.3).

Let now r1 :=
( ||µ||

cµ

) 1
n−α . Then m(r1) = cµr

n−α
1 = ||µ|| and hence, again by (2.3),

σn−1||ρ2,r0 ∗ µ||∞ 6
∫ r1

0

(r ∨ r0)1−n dm(r).
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In the case α < 1 we estimate

σn−1||ρ2,r0 ∗ µ||∞ 6
∫ r1

0

r1−n dm(r) =

∫ r1

0

r−α(n− α)cµ dr = cµ
n−α
1−α

r1−α
1 = n−α

1−α
||µ||

1−α
n−α c

n−1
n−α
µ ,

so as above the assertion follows from (4.3).

Finally, let α = 1. Then

σn−1||ρ2,r0 ∗ µ||∞ 6 r1−n
0 m(r0 ∧ r1) +

∫ r1

r0∧r1

r−1(n− 1)cµ dr

= r1−n
0 cµ(r0 ∧ r1)n−1 + (n− 1)cµ ln r1

r0∧r1

= cµ

[(
r1
r0
∧ 1

)n−1
+ (n− 1) ln

(
r1
r0
∨ 1

)]
= cµf

(
r1
r0

)
,

with f(x) := (x ∧ 1)n−1 + (n − 1) ln(x ∨ 1). We show that f(x) 6 n ln(1 + x) by distin-
guishing the cases x < 1 and x > 1: If x < 1 then

f(x) = xn−1 + 0 6 x 6 1
ln 2

ln(1 + x) 6 n ln(1 + x)

since n > 2. If x > 1 then f(x) = 1 + (n − 1) lnx, so we have to show that hn(x) :=
n ln(1 + x) − (n − 1) lnx > 1. Observe that hn(x) > h2(x) and that h2 is increasing on
[1,∞), hence hn(x) > h2(1) = 2 ln 2− ln 1 > 1. We conclude that

||ρ2,r0 ∗ µ||∞ 6 cµ

σn−1
f
(

r1
r0

)
6 ncµ

σn−1
ln

(
1 + r1

r0

)
.

By (4.3) this implies the assertion since r1 =
( ||µ||

cµ

) 1
n−1 and r0 = σn−1

4
ε
cµ

.

4.4 Remark. Theorem 4.3 implies that the eigenfunctions of Hµ are Lipschitz continuous
if α < 1. In general, the eigenfunctions are not Lipschitz continuous if α = 1: One can
show that for n > 2 and µ = cσM , where M = BRn−1(0, 1)×{0} and c > 0 is large enough
for the ground state ϕ0 to exist, the logarithmic factor given in Theorem 4.3 reflects the
correct behaviour of the modulus of continuity of ϕ0.

5 Estimate of ϕ0 from below

In this section we prove a pointwise estimate of the ground state ϕ0 of Hµ from below.
Throughout the section we assume that∣∣∣∣∣∣∫ t

0

ks ∗ µ ds
∣∣∣∣∣∣
∞

6 ctθ (t > 0) (5.1)

for some c > 0, θ ∈ (0, 1] (cf. Proposition 2.2); in particular, µ is in the Kato class.

As mentioned in Section 3, µ being in the Kato class implies that the eigenfunctions
of Hµ are in C0(Rn). The following result provides an estimate of the L∞-norm of the
eigenfunctions.
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5.1 Proposition. Assume that (5.1) holds for some c > 0, θ ∈ (0, 1]. Let ϕ be an
eigenfunction of Hµ, Hµϕ = −κ2ϕ for some κ > 0. If

∫
|ϕ| dµ <∞ then

||ϕ||∞ 6 cn(c, θ, κ)

∫
|ϕ| dµ,

where

c1(c, θ, κ) = 1
2κ
,

c2(c, θ, κ) = e
2π

ln
(
1 + (4c)

1
θκ−2

)
,

cn(c, θ, κ) = 1
n−2

ω−2/n
n (4π)−

n−2
2 (4c)

n−2
2θ (n > 3).

Before proving this proposition, we state and prove the main result of this section, the
announced pointwise estimate of ϕ0.

5.2 Theorem. Assume that sptµ ⊆ B[0, R] for some R > 0 and that (5.1) holds for some
c > 0, θ ∈ (0, 1]. Let 0 6 ϕ0 ∈ D(Hµ) be the ground state of Hµ, ||ϕ0||∞ = 1, κ > 0 such
that Hµϕ0 = −κ2ϕ0.

(a) If n = 1 then ϕ0(x) > e−κ(|x|+R) for all x ∈ R.
(b) If n = 2 then

ϕ0(x) >
1

2e

([
(4c)−

1
2θ (|x|+R)−1

]
∧ 1

)
e−κ(|x|+R) (x ∈ R2).

(c) If n > 3 then

ϕ0(x) > cn(4c)−
n−2
2θ (|x|+R)2−ne−κ(|x|+R) (x ∈ Rn),

where cn = 1
σn−1

ω
2/n
n (4π)

n−2
2 = 2n−3

(
2
n

) 2
n Γ

(
n
2

)n−2
n .

Proof. Lemma 2.4 implies that

ϕ0(x) =

∫
B(0,R)

Gκ(x− y)ϕ0(y) dµ(y) > Gκ

(
(|x|+R)e1

) ∫
ϕ0 dµ (5.2)

for all x ∈ Rn.
(a) For n = 1 we have Gκ(x) = 1

2κ
e−κ|x| (x ∈ R), and

∫
ϕ0 dµ > 2κ by Proposition 5.1,

so the assertion follows from (5.2).
(b) Let x ∈ R2 \ {0}. Proposition A.1(b) from the appendix and Proposition 5.1 yield

Gκ(x)

∫
ϕ0 dµ >

1
2π

ln
(
1 + 1

κ|x|

)
e−κ|x|

e
2π

ln
(
1 + (4c)

1
2θ

1
κ

)2 =
1

2e

ln
(
1 + a

κ

)
ln

(
1 + b

κ

)e−κ|x|,

with a = 1
|x| and b = (4c)

1
2θ . By (5.2) the assertion follows if ln(1 + x)/ ln(1 + y) > x

y
∧ 1

for all x, y > 0. In the case x > y the latter inequality is clear; for x < y it is equivalent
to 1

x
ln(1 + x) > 1

y
ln(1 + y), which is a consequence of the concavity of ln, so the proof of

(b) is complete.
(c) Let x ∈ Rn \ {0}. Proposition A.1(a) from the appendix and Proposition 5.1 yield

Gκ(x)

∫
ϕ0 dµ > 1

(n−2)σn−1
|x|2−ne−κ|x| · (n− 2)ω2/n

n (4π)
n−2

2 (4c)−
n−2
2θ ,

so the assertion follows from (5.2).
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For the proof of Proposition 5.1 we need the following estimate of ||Tµ(t)||p→∞.

5.3 Lemma. Assume that (5.1) holds for some c > 0, θ ∈ (0, 1]. Let t0 := 2(4c)−
1
θ . Then

||Tµ(t0)||p→∞ 6 2(2πt0)
− n

2p = 2(4π)−
n
2p (4c)

n
2θp (1 6 p 6 ∞).

Proof. Let t1 := 1
2
t0 = (4c)−

1
θ . By assumption (5.1) we have∣∣∣∣∣∣∫ t1

0

kt ∗ µ dt
∣∣∣∣∣∣
∞

6 ctθ1 = 1
4
.

From Proposition 2.1 it follows that ||Taµ(t1)||1→1 6 1/(1− a
4
) for all 0 6 a < 4. Moreover,

||T0µ(t1)||1→∞ = ||et1∆||1→∞ = (4πt1)
−n

2 , so by the Stein interpolation theorem we infer as
in [StVo96; Thm. 5.1] that

||Tµ(t1)||1→2 6 ||T2µ(t1)||
1
2
1→1||T0µ(t1)||

1
2
1→∞ 6 2

1
2 (4πt1)

−n
4 .

Hence, by duality,

||Tµ(t0)||1→∞ 6 ||Tµ(t1)||21→2 6 2(4πt1)
−n

2 = 2(2πt0)
−n

2 .

The assertion now follows from Riesz-Thorin interpolation with the estimate

||Tµ(t0)||∞→∞ 6 ||Tµ(t1)||21→1 6
(

1
1−1/4

)2
< 2.

Proof of Proposition 5.1. By Lemma 2.4 we have ϕ = Gκ ∗ (ϕµ) = (κ2 −∆)−1(ϕµ).
In the case n = 1, the assertion follows since ||Gκ||∞ = 1

2κ
. For n > 2 we estimate, with

t0 = 2(4c)−
1
θ as in Lemma 5.3,

||ϕ||∞ = ||e−κ2t0Tµ(t0)ϕ||∞ 6
∣∣∣∣Tµ(t0)(κ

2 −∆)−1 : M(Rn) → L∞(Rn)
∣∣∣∣ ∫

|ϕ| dµ,

where M(Rn) is the Banach space of finite Borel measures on Rn. We now have to show
that the norm of Tµ(t0)(κ

2 −∆)−1 is less or equal cn(c, θ, κ).
First suppose that n = 2. Then for all p ∈ [1,∞) we have

||(κ2 −∆)−1 : M(Rn) → Lp(Rn)|| 6
∫ ∞

0

e−κ2t||et∆ : M(Rn) → Lp(Rn)|| dt

6
∫ ∞

0

(4πt)−
2
2
(1− 1

p
)e−κ2t dt = κ−

2
p (4π)

1
p
−1

∫ ∞

0

s
1
p
−1e−s ds.

Since
∫∞

0
s

1
p
−1e−s ds = Γ(1

p) = pΓ(1 + 1
p) 6 p, we conclude by Lemma 5.3 that

||Tµ(t0)(κ
2 −∆)−1 : M(Rn) → L∞(Rn)|| 6 2(4π)−

2
2p (4c)

2
2θp · κ−

2
p (4π)

1
p
−1p

= 1
2π
p
(
(4c)

1
θκ−2

) 1
p =: f(p).
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For the proof of the case n = 2 it remains to show that there exists p ∈ [1,∞) such that
f(p) 6 c2(c, θ, κ). With a := (4c)

1
θκ−2 this inequality reads pa

1
p 6 e ln(1 + a). If a 6 e

then a 6 e ln(1 + a), so the inequality holds with p = 1. For a > e we take p = ln a; then

pa
1
p = pe

1
p

ln a = ln a · e1 6 e ln(1 + a).

Let now n > 3. For m ∈M(Rn) we have (κ2 −∆)−1m =
∫
Gκ(· − y) dm(y) (Bochner

integral of y 7→ Gκ(· − y) ∈ L1(Rn)) and hence

||Tµ(t0)(κ
2 −∆)−1m||∞ 6

∫
||Tµ(t0)Gκ(· − y)||∞ dm(y) 6 sup

y∈Rn

||Tµ(t0)G0(· − y)||∞ · ||m||.

Using Lemma 5.4 below and Lemma 5.3, we deduce that

||Tµ(t0)(κ
2 −∆)−1 : M(Rn) → L∞(Rn)|| 6 1

2(n−2)
ω
− 2

n
n ||Tµ(t0)||

n−2
n

1→∞||Tµ(t0)||
2
n
∞→∞

6 1
2(n−2)

ω
− 2

n
n · 2(4π)−

n−2
2 (4c)

n−2
2θ

and conclude the proof.

In the following interpolation lemma we implicitly use the fact that G0 is in the weak
Lebesgue space L n

n−2
,w.

5.4 Lemma. Let n > 3. Let T : L1 + L∞(Rn) → L∞(Rn) be a bounded linear operator,
y ∈ Rn, f(x) := (n− 2)G0(x− y) = 1

σn−1
|x− y|2−n (x ∈ Rn \ {y}). Then

||Tf ||∞ 6 1
2
ω
− 2

n
n ||T ||

n−2
n

1→∞||T ||
2
n
∞→∞ .

Proof. Without loss of generality assume that y = 0. Let r0 > 0, f1 :=
(
f − f(r0e1)

)+
,

f2 := f − f1. Then ||f2||∞ = f(r0e1) = 1
σn−1

r2−n
0 ,

||f1||1 =

∫ r0

0

(r2−n − r2−n
0 ) rn−1dr =

∫ r0

0

(r − r2−n
0 rn−1) dr =

(
1
2
− 1

n

)
r2
0,

and hence

||Tf ||∞ 6 ||Tf1||∞ + ||Tf2||∞ 6 ||T ||1→∞ n−2
2n
r2
0 + ||T ||∞→∞ 1

σn−1
r2−n
0 .

Let now a := 1
n ||T ||1→∞, b := 1

σn−1
||T ||∞→∞ and r0 :=

(
b
a

)1/n
(without loss of generality

T 6= 0, so a 6= 0). Then we obtain that

||Tf ||∞ 6 r2
0

(
n−2

2
a+ br−n

0

)
= r2

0

(
n−2

2
a+ a

)
=

(
n

σn−1

||T ||∞→∞
||T ||1→∞

)2
n

n
2

1
n
||T ||1→∞,

and the assertion follows.
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6 Proofs of the main results

We are now in a position to prove our main theorems stated in Section 1.

Proof of Theorem 1.1. Let R := d
2

and assume without loss of generality that sptµ ⊆
B[0, R]. As in Section 3 we normalise ϕ0, ϕ1 such that ||ϕ0||∞ = ||ϕ1||∞ = 1 and supϕ0 =
supϕ1 = 1. Let ε := 1

4
infB[0,R+1] ϕ0. Then ε ∈ (0, 1

4
]. Let δ̃ > 0 be as in Theorem 4.3, so

that |ϕ1(x) − ϕ1(y)| 6 ε for |x − y| 6 δ̃, and let δ := δ̃ ∧ 1. According to (3.4) we can
estimate

λ1 − λ0 >
2ωn−1

R
ε2δn−1||ϕ1||−2

2 . (6.1)

By Proposition 2.5(a) we have ||ϕ1||−2
2 > |λ1|||µ||−1. Moreover,

||µ|| = µ(B[0, R]) 6 cµR
n−α (6.2)

and hence

κ2
0 − κ2

1 = λ1 − λ0 > 2ωn−1|λ1|c−1
µ Rα−n−1ε2δn−1 > γκ2

1,

where γ := 2ωn−1(cµ +1)−1(d+1)α−n−1ε2δn−1. This implies κ2
0 > (1+ γ)κ2

1, and therefore
κ2

0 − κ2
1 > κ2

0 − 1
1+γ

κ2
0 = γ

1+γ
κ2

0. Since γ 6 2ωn−1(
1
4
)2 6 1, we conclude that

λ1 − λ0 > γ
1+γ

κ2
0 > γ

2
κ2

0 = ωn−1|λ0|(cµ + 1)−1(d+ 1)α−n−1ε2δn−1. (6.3)

In the case n > 5 we have ||ϕ1||22 6 6ωnR
n by Proposition 2.5(c); then (6.1) yields

λ1 − λ0 >
2ωn−1

6ωn

(d+ 1)−n−1ε2δn−1. (6.4)

We are going to show that

ε2δn−1 > C0(cµ + 1)−p0(d+ 1)−q0e−βκ0(d+1), (6.5)

with β as in the assertion of the theorem and constants C0, p0, q0 > 0 depending only on
n and α. Then (6.3) implies (1.2) with C = ωn−1C0, p = p0 + 1, q = q0 + n+ 1− α, and
the additional assertion for n > 5 follows from (6.4).

Recall from Proposition 2.2 that (5.1) holds with θ = 1− α
2

and c = 2
2−α

2−απ−
n
2 Γ(n−α

2
+

1)cµ. Hence, by Theorem 5.2 and the definition of ε we have

ε >

{
1
8e

(4c+ 1)−
1

2−α (2R + 1)−1e−κ0(2R+1) if n = 2,
cn

4
(4c)−

n−2
2−α (2R + 1)2−ne−κ0(2R+1) if n > 3.

We infer that there exists a constant cn,α > 0 (depending only on n and α) such that

ε > cn,α(cµ + 1)−
n−1
2−α (d+ 1)−(n−1)e−κ0(d+1). (6.6)

Assume now that α < 1. Then ||µ||−
1−α
n−α cµ

− n−1
n−α > R−(1−α)c−1

µ by (6.2). According to

Theorem 4.3 we thus have δ̃ > c̃n,α(cµ + 1)−1(d+ 1)−(1−α)ε =: δ1, with c̃n,α > 0 depending
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only on n and α. Without loss of generality c̃n,α 6 4; then δ1 6 1 since ε 6 1
4
. We obtain

that

ε2δn−1 > c̃n−1
n,α (cµ + 1)−(n−1)(d+ 1)−(n−1)(1−α)εn+1,

so from (6.6) we deduce that (6.5) holds with β = n + 1, p0 = n2−1
2−α

+ n − 1, q0 =
n2 − 1 + (n− 1)(1− α) and C0 = c̃n−1

n,α c
n+1
n,α .

In the case α > 1 we have δ̃ > c̃n,α

(
ε

cµ+1

) 1
2−α =: δ2. Again, a suitable choice of c̃n,α

ensures that δ2 6 1, and in the same way as above we deduce (6.5), now with β = n−1
2−α

+2,

p0 = β2 − β − 2, q0 = (n− 1)β and C0 = c̃n−1
n,α c

β
n,α.

Finally assume that α = 1. Given β > n + 1, there exists α̃ ∈ (1, 2) such that β =
n−1
2−α̃

+ 2. Then µ(B(x, r)) 6 cµ(r ∧ R)n−1 6 cµR
α̃−1rn−α̃ for all x ∈ Rn, r > 0, and from

the preceding paragraph we obtain that

ε2δn−1 > c̃n−1
n,α̃ c

β
n,α̃(Rα̃−1cµ + 1)−(β2−β−2)(d+ 1)−(n−1)βe−βκ0(d+1).

Using the inequality Rα̃−1cµ + 1 6 (R + 1)α̃−1(cµ + 1), we deduce by straightforward
computation that (6.5) holds with p0 = β2 − β − 2, q0 = β2 − β − n − 1 and C0 =
c̃n−1
n,α̃ c

β
n,α̃.

Proof of Theorem 1.3. Normalising µ, ϕ0 and ϕ1 as in the proof of Theorem 1.1, we
obtain from (3.5) and Theorem 5.2(a) that

λ1 − λ0 > 1
d

inf
[−d/2,d/2]

ϕ2
0||ϕ1||−2

2 > 1
d
e−2κ0d||ϕ1||−2

2 .

The second assertions thus follows from Proposition 2.5(b). Proposition 2.5(a) implies

that λ1 − λ0 > |λ1|
d||µ||e

−2κ0d, so the first assertion follows as in the argument leading to

equation (6.3).

A Appendix

Here we prove the estimate of Gκ from below that is needed in the proof of Theorem 5.2.
We assume that n > 2 and recall that σn−1 = 2πn/2

Γ(n/2)
is the (n−1)-dimensional volume of

the unit sphere in Rn.

A.1 Proposition. Let κ > 0, and let Gκ be the convolution kernel of (κ2 − ∆)−1 on
L2(Rn).

(a) If n > 3 then Gκ(x) > 1
(n−2)σn−1

|x|2−ne−κ|x| for all x ∈ Rn \ {0}.
(b) If n = 2 then Gκ(x) > 1

2π
ln

(
1 + 1

κ|x|

)
e−κ|x| for all x ∈ R2 \ {0}.

Proof. By [Sch66; eq. (VII,10;15)] we have

Gκ(x) = (2π)−
n
2 κ

n−2
2 |x|−

n−2
2 Kn−2

2
(κ|x|)

(
x ∈ Rn \ {0}

)
, (A.1)

where Kν is the modified Bessel function of the third kind of order ν > 0. In particular
we see that Gκ(x) = κn−2G1(κx), and that it therefore suffices to show the assertion for
κ = 1.
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(a) By [AbSt72; 9.6.9] we obtain from (A.1) that

G1(x) =
1

(n− 2)σn−1

|x|2−n + o(|x|2−n) as x→ 0.

Let ε > 0,

ϕε(x) :=
1− ε

(n− 2)σn−1

|x|2−ne−|x| −G1(x)
(
x ∈ Rn \ {0}

)
.

Then there exists δ > 0 such that ϕε < 0 on B(0, δ) \ {0}, and ϕε(x) → 0 as |x| → ∞.
Moreover, a straightforward computation shows that (1 − ∆)ϕε(x) = − 1−ε

(n−2)σn−1
(n −

3)|x|1−ne−|x| 6 0 for x 6= 0. Thus ϕε has no positive maxima. We conclude that ϕε < 0
on Rn \ {0} for all ε > 0, and for ε→ 0 we obtain (a).

(b) By (A.1) we have G1(x) = 1
2π
K0(|x|), so we must show that K0(r) > ln(1 + 1

r )e
−r

for all r > 0. Let a := 2e−γ, where γ = 0.577 . . . is the Euler-Mascheroni constant. (Then
1 < a < 2.) From [AbSt72; 9.6.13] it follows that K0(r) = ln a

r + o(r) as r → 0.
Let f(r) := ln(1 + a

r )e
−r for all r > 0. One easily sees that f(r) = (1− r) ln a

r +O(r)
as r→ 0, so g := f −K0 < 0 on (0, ε) for some ε > 0. We will prove that g < 0 on (0,∞);
then the claim follows. A straightforward computation shows that

g′′(r) + 1
rg
′(r)− g(r) = f ′′(r) + 1

rf
′(r)− f(r) = a

r(a+r)
h( r

a)e−r (A.2)

for all r > 0, with h(s) := 1
a

1
1+s

+ 2− (1 + s) ln(1 + 1
s), and that

h′′(s) =
1

(1 + s)3

(
2

a
−

(
1 +

1

s

)2
)

(s > 0).

We obtain that h is concave on (0, s0) and convex on (s0,∞), where s0 =
(q

2
a − 1

)−1
.

Since h(s) →−∞ as s→ 0 and h(s) → 1 as s→∞, we infer that there exists s1 ∈ (0, s0)
such that h < 0 on (0, s1) and h > 0 on (s1,∞).

Now, if g has a positive maximum at r > 0 then the left hand side of (A.2) is negative,
and hence r

a ∈ (0, s1). Similarly, if g has a negative minimum at r > 0 then r
a ∈ (s1,∞).

Thus, to the left of a positive maximum there cannot be any negative minimum. Since
g < 0 on (0, ε) and g(r) → 0 as r → 0, we conclude that g has no positive maximum.
This implies that g < 0 on (0,∞) since g(r) → 0 as r →∞.

Acknowledgement. The author thanks Ivan Veselić for introducing him to the subject
and for some valuable discussions.
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