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Abstract

We use an intrinsic metric type approach to investigate when C0-semigroups generated
by second order elliptic differential operators are stochastic. We give a new condition for
stochasticity that encompasses the volume growth conditions by Karp and Li and by
Perelmuter and Semenov.
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1 Introduction

Let Ω ⊆ Rn be an open set, and let a: Ω → Rn×n be a measurable function with values in
the positive semidefinite matrices. We assume that a is sectorial, i.e., there exists α > 1 such
that

(aξ · η)2 6 α(aξ · ξ)(aη · η) a.e. (ξ, η ∈ Rn). (1.1)

Let m ∈ L1,loc(Ω) such that m > 0 a.e. and ma is locally integrable, and let µ := mλn,
where λn is the Lebesgue measure on Ω. We are going to study conditions under which
certain realisations of the operator 1

m∇ · (ma∇) generate stochastic C0-semigroups on L1(µ).
Throughout the paper, the function spaces are assumed to be real vector spaces.

In order to give a precise meaning to the operator in question, we define the sectorial form
τ0,max in L2(µ) by

D(τ0,max) :=
{
u ∈ L2(µ) ∩W 1

1,loc(Ω); a∇u · ∇u ∈ L1(µ)
}
,

τ0,max(u, v) :=
∫

Ω
a∇u · ∇v dµ.

Note that C∞
c (Ω) ⊆ D(τ0,max) since ma is locally integrable. Let τ0 be a restriction of τ0,max

that is densely defined and satisfies F ◦ u ∈ D(τ0) for all u ∈ D(τ0) and all normal contrac-
tions F ∈ C∞(R). Examples for D(τ0) are D(τ0,max) itself, C∞

c (Ω), and the intersection of
D(τ0,max) with C∞(Ω),

{
u|Ω; u ∈ C∞(Rn)

}
or

{
u|Ω; u ∈ C∞

c (Rn)
}
.

We are particularly interested in the case that the form τ0 is Neumann type, by which we
mean that

D(τ0,max) ∩
{
u|Ω; u ∈ C∞

c (Rn)
}
⊆ D(τ0). (1.2)

This condition will be needed (in combination with the assumption µ = λn) in Examples 3.2
and 3.5 and in Corollary 4.4.

We assume that τ0 is closable; then τ := τ0 is a (non-symmetric) Dirichlet form (see, e.g.,
[MaRö92; Prop. I.4.10]). For conditions ensuring closability of τ0 we refer to [RöWi85]; see
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also [VoVo03; Prop. A.1] for the case τ0 = τ0,max. Let A be the m-sectorial operator in L2(µ)
associated with τ . Then −A generates a C0-semigroup T2 on L2(µ), and the Beurling-Deny
criteria imply that T2 extrapolates to a substochastic C0-semigroup T1 on L1(µ) and to a
sub-Markovian weak∗-continuous semigroup T∞ on L∞(µ).

Within the above framework, we are going to study when the semigroup T1 is stochastic,
i.e., when ||T1(t)f ||1 = ||f ||1 for all t > 0, 0 6 f ∈ L1(µ). Related problems studied in the
literature are conservativeness of the L∞-semigroup and L1-uniqueness. In the symmetric
case it is clear that T1 is stochastic if and only if T∞ is conservative, i.e., T∞11Ω = 11Ω for all
t > 0.

If C∞
c (Ω) ⊆ D(A1), where A1 is the generator of T1, then A1|C∞c (Ω) is said to be L1-unique

if C∞
c (Ω) is a core for A1. For Ω = Rn, D(τ0) = C∞

c (Rn) and sufficiently regular coefficients,
stochasticity of T1 is equivalent to L1-uniqueness of A1|C∞c (Ω). It follows from [Sta99; Cor. 2.2]
that this equivalence holds if m = ϕ2 for some ϕ ∈ W 1

2,loc(Rn), a ∈ L∞,loc(Rn)n×n, ∂ja ∈
L2,loc(µ)n×n (j = 1, . . . , n) and a is locally Hölder continuous and locally uniformly elliptic.
(These assumptions imply that A1 is an extension of the operator − 1

m∇· (ma∇) with domain
C∞

c (Ω).)
There are two important means to approaching the above problems: Lyapunov functions

and the intrinsic metric of τ . In [Dav85; Sec. 2] a Lyapunov function approach going back to
[Kha60] is used to study conservativeness in the case of smooth symmetric coefficients (and
manifolds, not just subdomains of Rn). This approach has been generalised in [Sta99; Sec. I.1]
to non-symmetric operators with non-smooth coefficients; there, stochasticity is studied for
non-divergence form operators, but the operators can be written in divergence form.

1.1 Example. Let Ω = Rn, D(τ0) = C∞
c (Rn), m = 11Rn and a(x) = a0(|x|)In (x ∈ Rn),

where a0: R → (0,∞) is an even C∞-function satisfying
∫∞
0

r
a0(r) dr = ∞ and In is the

identity matrix. Then from [Dav85; Thm. 2.4] it follows that T1 is stochastic. Indeed, for the
Lyapunov function

u(x) := n+
∫ |x|

0

r

a0(r)
dr (x ∈ Rn)

we obtain that u(x) → ∞ as |x| → ∞ and a∇u(x) = a0(|x|) · |x|
a0(|x|)

x
|x| = x for all x ∈ Rn.

Thus, u ∈ C∞(Rn) and ∇ · (a∇u) = n 6 u, so T∞ is conservative by [Dav85; Thm. 2.4].
The above might inspire the conjecture that T1 is stochastic if instead of a(x) = a0(|x|)In

one only assumes
||a(x)|| 6 a0(|x|) (x ∈ Rn).

This conjecture is known to be true in dimension n = 1 (see Proposition 2.2), but in higher
dimensions we can only prove it under the additional assumption that r 7→ r−2a0(r) is in-
creasing on (R,∞) for some R > 0; see Corollary 4.4.

As pointed out in [PeSe87], Lyapunov functions are particularly useful for proving conser-
vativeness of semigroups generated by non-divergence form operators. In the case of diver-
gence form operators (or stochasticity and non-divergence form operators), the method has
the disadvantage that it leads to assumptions on the derivative of the coefficient matrix a;
see, e.g., [Dav85; Thm. 2.5] and [Sta99; Prop. 1.10(c)]. These assumptions can be avoided by
working with the intrinsic metric (or related functions) as in [PeSe87] and [Stu94; Sec. 3]. We
would like to point out, however, that with an intrinsic metric approach one can recover nei-
ther Example 1.1 nor the well-known criterion for stochasticity in the one-dimensional case;
see Proposition 2.2 and Example 2.4 below.
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In [Stu94], the question of conservativeness is studied in the general abstract context of
strongly local symmetric regular Dirichlet forms, under the assumption that the intrinsic
metric induces the topology of Ω. Sturm gives a condition for conservativeness in terms of
the volume growth of intrinsic balls, which in the context of the canonical Dirichlet form on
Riemannian manifolds is due to [KaLi83] and [Gri87]. (Note that in our framework, the form
τ need neither be symmetric nor regular. Moreover, our assumptions do not imply that the
intrinsic metric of τ induces the topology of Ω.)

In Theorem 4.6, the main result of the paper, we will present a new condition for stochas-
ticity that generalises the above mentioned volume growth condition. We will follow an
intrinsic metric approach and work with a function ψ satisfying the condition

0 6 ψ ∈W 1
1,loc(Ω), a∇ψ · ∇ψ 6 1 a.e., ρ ◦ ψ ∈ D(τ0)

(
0 6 ρ ∈ C∞

c [0,∞)
)
. (1.3)

This is parallel to the use of the function U in [PeSe87].

1.2 Remarks. (a) Assume that µ(Ω) < ∞. Then ψ = 11Ω satisfies condition (1.3) if and
only if 11Ω ∈ D(τ0). Observe that the latter already implies that

∫
Au = τ(u, 11Ω) = 0 for all

u ∈ D(A) and hence that T1 is stochastic.
(b) Condition (1.3) clearly depends on the choice of the form τ0. Let 0 6 ψ ∈ W 1

1,loc(Ω)
such that a∇ψ · ∇ψ 6 1 a.e. For τ0 = τ0,max it is straightforward that then condition (1.3) is
satisfied if ψ(x) →∞ as |x| → ∞ and µ

(
Ω ∩B(0, r)

)
<∞ for all r > 0. If one only assumes

τ0 to be Neumann type (see (1.2)), then one needs in addition that ψ is the restriction of a
C∞-function on Rn. In the case D(τ0) = C∞

c (Ω), condition (1.3) is satisfied if and only if
ψ ∈ C∞(Ω) and ψ(x) →∞ as x→ ∂Ω.

(c) If ψ satisfies condition (1.3) then one has ρ ◦ ψ ∈ D(τ) ∩ D(τ0,max) for all 0 6 ρ ∈
W 1
∞,c[0,∞). Indeed, let R > 0 such that spt ρ ⊆ [0, R), and let c := ||ρ′||∞. Choose 0 6 ρ̃ ∈

C∞
c [0,∞) such that ρ̃(r) = c(R+1−r) for all r ∈ [0, R]. Then ρ 6 ρ̃, so ρ̃◦ψ ∈ L2(µ) implies

ρ ◦ ψ ∈ L2(µ). Moreover,

a∇(ρ ◦ ψ) · ∇(ρ ◦ ψ) 6 c211[ψ6R]a∇ψ · ∇ψ 6 a∇(ρ̃ ◦ ψ) · ∇(ρ̃ ◦ ψ) ∈ L1(µ)

and hence ρ◦ψ ∈ D(τ0,max). Finally, let (ρk) be a sequence in C∞
c [0,∞) converging uniformly

to ρ that satisfies spt ρk ⊆ [0, R) and ||ρ′k||∞ 6 c for all k ∈ N. Then as above we obtain that
ρk ◦ ψ 6 ρ̃ ◦ ψ and τ0(ρk ◦ ψ) 6 τ0(ρ̃ ◦ ψ) for all k ∈ N. Therefore, (ρk ◦ ψ) is a bounded
sequence in D(τ) with ρk ◦ ψ → ρ ◦ ψ in L2(µ) as k → ∞, and from the closedness of τ we
infer that ρ ◦ ψ ∈ D(τ).

(d) We note the following important consequence of part (c): If D(τ0) = D(τ)∩D(τ0,max)
and ψ satisfies (1.3) then ρ ◦ ψ satisfies (1.3) for all 0 6 ρ ∈ W 1

∞[0,∞) with ||ρ′||∞ 6 1 and
ρ(r) →∞ as r →∞.

The paper is organised as follows. In Section 2 we recall the well-known criterion for
stochasticity in the one-dimensional case and give an example that illustrates the limitations of
intrinsic metric approaches. In Section 3 we generalise the result of [PeSe87] to our framework
and give a new proof. In Section 4 we present new conditions for stochasticity in terms of
growth of the coefficient matrix a (in the case µ = λn) and in terms of volume growth.

2 The one-dimensional case

In this section we assume that n = 1, Ω = (c, d) for some −∞ 6 c < d 6 ∞ and C∞
c (Ω) ⊆

D(τ0). We first show that then D(τ) contains all compactly supported elements of D(τ0,max).
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2.1 Lemma. Under the above assumptions one has D(τ0,max) ∩ W 1
1,c(Ω) ⊆ D(τ). If, in

addition, µ
(
(c, x0)

)
= µ

(
(x0, d)

)
= ∞ for some (and hence all) x0 ∈ (c, d), then D(τ0,max) ⊆

D(τ), i.e., C∞
c (Ω) is a core for τ0,max.

Proof. First observe that W 1
∞,c(Ω) ⊆ D(τ) by a standard convolution argument (recall

m,ma ∈ L1,loc(Ω)). Let u ∈ D(τ0,max) ∩ W 1
1,c(Ω). Let c0 := min sptu, d0 := max sptu

and ε > 0 such that d1 := d0 + ε < d. For k ∈ N define uk ∈ W 1
∞,c(Ω) by uk(x) :=∫ x

c (u′(y) ∧ k) ∨ (−k) dy for x 6 d0, uk(x) := uk(d0)
(
1 − ε−1(x − d0)

)
for d0 < x < d1 and

uk(x) := 0 for x > d1. Then sptuk ⊆ [c0, d1] for all k ∈ N and uk → u uniformly, hence
uk → u in L2(µ) as k → ∞. Moreover, |u′k| 6 |u′| + |uk(d0)|ε−111[d0,d1] for all k ∈ N and
u′k → u′ a.e. as k → ∞. We conclude that uk → u in D(τ0,max), and the first assertion
follows.

Assume now that µ
(
(c, x0)

)
= µ

(
(x0, d)

)
= ∞, and let u ∈ D(τ0,max). Then u ∈ C(Ω), and

lim infx→c |u(x)| = lim infx→d |u(x)| = 0 since u ∈ L2(µ). It follows that uε := (|u|− ε)+ sgnu
can be approximated in D(τ0,max) by compactly supported elements of D(τ0,max). Moreover,
uε → u in D(τ0,max) as ε→ 0, so the first assertion implies the second one.

For the remainder of the section we assume that (ma)−1 ∈ L1,loc(Ω). Then the form
τ0,max is closed: For a Cauchy sequence (uk) in D(τ0,max) we obtain that uk → u in L2(µ)
and (ma)1/2u′k → f in L2(Ω) for some u ∈ L2(µ) and f ∈ L2(Ω), hence u′k → (ma)−1/2f in
L1,loc(Ω). It follows that u ∈ W 1

1,loc(Ω), (ma)1/2u′ = f ∈ L2(Ω), and thus u ∈ D(τ0,max),
uk → u in D(τ0,max).

It is well-known that in the case D(τ0) = C∞
c (Ω), the semigroup T1 is stochastic if and

only if the boundary points c and d are non-exit in the classification of Feller; see, e.g., [Osh92;
Lemma 3.1] or [Aze74; Prop. 4.6]. The latter condition is still sufficient for stochasticity if as
above we only assume C∞

c (Ω) ⊆ D(τ0). For the convenience of the reader we include a proof
that is based on the same ansatz as the proofs in the next two sections.

2.2 Proposition. Let x0 ∈ (c, d), M(x) :=
∫ x
x0
m(y) dy (c < x < d) and assume that

∫ c

x0

M(x)
m(x)a(x)

dx =
∫ d

x0

M(x)
m(x)a(x)

dx = ∞.

Then T1 is stochastic.

Proof. Define v ∈ W 1
1,loc(Ω) by v(x) :=

∫ x
x0

M(y)
m(y)a(y) dy. Then v > 0 and v(x) → ∞ as x → c

or x → d. Thus, for ε > 0 we have vε := (1 − εv)+ ∈ W 1
1,c(Ω) and 0 6 vε 6 1. Moreover,

v′ε = −ε Mma11[εv61], hence ma(v′ε)
2 = ε2M2

ma 11[εv61] is integrable, and therefore vε ∈ D(τ0,max).
By Lemma 2.1 we obtain that vε ∈ D(τ) for all ε > 0.

Let now 0 6 f ∈ L1∩L2(µ) and u := (1+A)−1f . For ε > 0 let cε ∈ (c, x0) and dε ∈ (x0, d)
such that spt vε = [cε, dε]. Then

τ(u, vε) =
∫ d

c
mau′v′ε = −ε

∫ dε

cε

u′M = −εuM |dε
cε + ε

∫ dε

cε

um

= −εu(dε)M(dε) + εu(cε)M(cε) + ε

∫ dε

cε

u dµ 6 ε||u||1
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since u > 0, M(dε) > 0 and M(cε) < 0. Using vε ↑ 1 as ε→ 0, we conclude that

0 6 ||f ||1 − ||u||1 =
∫

(f − u) dµ =
∫
Audµ = lim

ε→0
τ(u, vε) 6 0,

which implies the assertion.

2.3 Remark. It is easy to see that the condition
∫ c
x0

M(x)
m(x)a(x) dx = ∞ can be omitted in

the above result if µ
(
(c, x0)

)
< ∞ and the Neumann boundary condition is posed at c. An

analogous observation holds for the right boundary point d.

The following example indicates that Proposition 2.2 cannot be proved by an intrinsic
metric approach.

2.4 Example. Let m := 11R and define a ∈ L1,loc(R) by

a(x) :=

{
1 if 2k 6 |x| 6 2k + 2−k, k ∈ N,
e|x| otherwise.

Then M(x) = x for all x ∈ R and∫ −∞

0

x

a(x)
dx =

∫ ∞

0

x

a(x)
dx >

∞∑
k=1

∫ 2k+2−k

2k

x dx = ∞,

so T1 is stochastic by Proposition 2.2.
Let now ψ ∈W 1

1,loc(R) with a(ψ′)2 6 1 a.e. Then

∫ ∞

0
|ψ′(x)| dx 6

∫ ∞

0
a(x)−1/2 dx <

∫ ∞

0
e−|x|/2 dx+

∞∑
k=1

2−k = 3,

in the same way
∫ 0
−∞ |ψ′(x)| dx < 3, and thus the intrinsic distance between 0 and ±∞ is less

than 3. It also follows that there is no function ψ satisfying condition (1.3).
On the other hand, for m = 11R and a(x) =

(
(1 + |x|) ln(2 + |x|)

)2 (x ∈ R) one obtains
that the intrinsic distance between 0 and ±∞ is ∞, yet T1 is not stochastic (cf. [Dav85;
Example B]). Therefore, the intrinsic distance between 0 and ±∞ yields no information
about whether T1 is stochastic or not.

3 A condition of Perelmuter and Semenov

We start with a simple condition for T1 being stochastic, which is needed for the proof of
Theorem 3.3.

3.1 Lemma. Assume that there exists a sequence (vk) ⊆ D(τ0) such that

sup
k∈N

τ(vk) <∞, sup
k∈N

||vk||∞ <∞

and vk|Bk
= 1 a.e. for some sequence (Bk) of measurable subsets of Ω with Bk ↑ Ω as k →∞.

Then T1 is stochastic.
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Proof. For u ∈ D(τ0) we have (a∇u · ∇vk)2 6 α(a∇u · ∇u)(a∇vk · ∇vk) by (1.1) and hence

τ(u, vk)2 6 ατ(vk)
∫

Ω\Bk

a∇u · ∇u dµ→ 0 (k →∞).

Using supk τ(vk) < ∞ again, we infer that τ(u, vk) → 0 as k → ∞ for all u ∈ D(τ). For
u ∈ (1 +A)−1(L1 ∩ L2(µ)) we conclude that∫

Ω
Audµ = lim

k→∞

∫
Ω
Au · vk dµ = lim

k→∞
τ(u, vk) = 0,

which implies the assertion.

3.2 Example. Assume that n 6 2, µ = λn, τ0 is Neumann type (i.e., (1.2) holds) and
that a is bounded. Then the assumptions of Lemma 3.1 are satisfied for vk = v( ·k )|Ω, where
v ∈ C∞

c (Rn), v = 1 on B(0, 1). Indeed,

τ(vk) = 1
k2

∫
Ω
a∇v( ·k ) · ∇v(

·
k ) dλ

n 6 kn−2||a||∞||∇v||2∞ · λn(spt v),

and vk = 1 on Bk = B(0, k) ∩ Ω.

In the next theorem we give a much better (but not quite sharp) condition for T1 being
stochastic; see also Theorem 4.6 below. The result is essentially due to [PeSe87], except
for the more restrictive framework of that paper. (Perelmuter and Semenov assumed that
Ω = Rn, a ∈ C∞ and µ = λn; the case of more general measures µ was studied in [Lis99;
Thm. 4], for a the identity matrix. Our main contribution is a new and simpler proof.

3.3 Theorem. Assume that there exists ψ satisfying condition (1.3) such that∫
[rk6ψ6rk+dk]

a∇ψ · ∇ψ dµ 6 ecd
2
k − 1 (k ∈ N) (3.1)

for some c > 0 and (rk), (dk) ⊆ (0,∞) with rk →∞ as k →∞. Then T1 is stochastic.

3.4 Remarks. (a) Because of a∇ψ · ∇ψ 6 1, assumption (3.1) is in particular satisfied if

µ
(
[rk 6 ψ 6 rk + dk]

)
6 ecd

2
k − 1 (k ∈ N). (3.2)

It is straightforward that the latter holds, e.g., if lim infr→∞ µ
(
[r 6 ψ 6 2r]

)1/r2
<∞.

(b) In [PeSe87], the (equivalent, see introduction) question of L1-uniqueness is studied,
and instead of condition (3.1) the following is assumed: There exist sequences (tk), (εk), (βk) ⊆
(0,∞) such that tk →∞, εk → 0 as k →∞ and

M := sup
k∈N

εk
βk

√
tk µ

(
[1 6 εkψ 6 1 + βk]

)1/(tk+1)
<∞ (3.3)

(cf. [PeSe87; Rem. 3]). We now show: If (3.3) is satisfied then condition (3.2) holds for
rk = 1/εk, dk = βk/εk, c = M2 and all k with tk > 1. Observe that (3.3) is equivalent to

µ
(
[rk 6 ψ 6 rk + dk]

)
= µ

(
[1 6 εkψ 6 1 + βk]

)
6

(
Mdk√
tk

)tk+1

(k ∈ N),
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so we only have to show that
(
Mdk/

√
t
)t+1

6 eM
2d2k − 1 for all t > 1. With x = M2d2

k/t this
inequality reads x(t+1)/2 6 etx − 1. The latter is clear for 0 6 x 6 1: then x(t+1)/2 6 x 6
ex − 1 6 etx − 1. For x > 1 we can estimate

x(t+1)/2 6 xt = et lnx 6 et(x−1) 6 e−1etx 6 etx − 1

since etx > e.
Conversely, it is easy to see that (3.2) implies (3.3) with tk = d2

k, εk = 1/rk and βk = dk/rk,
so the assumption in [PeSe87; Rem. 3] is satisfied if (3.2) holds with dk →∞.

3.5 Example (cf. the corollary in [PeSe87; p. 719]). Assume that µ = λn and that τ0 is
Neumann type (i.e., (1.2) holds), and let R > 1. Define ψ ∈ C∞(Ω) by ψ(x) :=

√
ρ(|x|), where

ρ ∈ C∞[0,∞) is increasing and satisfies ρ(r) = lnR for r 6 R and ρ(r) = ln r for r > R + 1.
Then ∇ψ = 0 on B(0, R)∩Ω and ∇ψ(x) = 1

2(ln |x|)−1/2|x|−1 x
|x| for x ∈ Ω\B(0, R+1). Thus,

if there exists c > 0 such that

arr(x) := a(x) x|x| ·
x
|x| 6 c|x|2 ln |x| (x ∈ Ω, |x| > R) (3.4)

then δψ satisfies condition (1.3) for some δ > 0 (cf. Remark 1.2(b)). Moreover, for x ∈ Ω and
r > R+ 1 we have ψ(x) 6 2r if and only if |x| 6 e4r

2
, so

λn
(
[r 6 δψ 6 2r]

)
6 ωne

4nr2/δ2
(
r > δ(R+ 1)

)
,

where ωn = λn
(
B(0, 1)

)
. Therefore, Theorem 3.3 is applicable if (3.4) is satisfied.

It is shown in [Dav85; Example B] that T1 is not stochastic if (Ω, µ) = (Rn, λn), D(τ0) =
C∞

c (Rn), ε > 0 and a(x) = (1+ |x|)2
(
ln(1+ |x|)

)1+ε
In for all x ∈ Rn, where In is the identity

matrix. In this sense condition (3.4) is rather sharp; however, in Example 4.5 below we will
show that the condition can be slightly relaxed.

Since we do not assume τ0 to be closed, we need the following auxiliary lemma for the
proof of Theorem 3.3. We note that the assertion of part (a) is a rather strong result; for our
purposes weak convergence would suffice.

3.6 Lemma. (a) Let ϕ: R → R be Lipschitz continuous, ϕ(0) = 0. Let u ∈ D(τ), (uk) a
sequence in D(τ) such that uk → u in D(τ). Then ϕ ◦ uk → ϕ ◦ u in D(τ).

(b) Let 0 6 u ∈ D(τ) ∩ L∞(µ). Then there exists a sequence (uk) ⊆ D(τ0) such that
uk → u in D(τ) and 0 6 uk 6 ||u||∞ a.e. for all k ∈ N.

Proof. (a) follows from [Anc76; Théorème 10].
(b) Let (vj) be a sequence in D(τ0) with vj → u in D(τ), and let (ρk) ⊆ C∞(R) be a

sequence of normal contractions satisfying 0 6 ρk(t) ↑ t+ ∧ ||u||∞ =: ρ(t) as k → ∞, for all
t ∈ R. Then by part (a) we have D(τ0) 3 ρk ◦ vj → ρk ◦ u in D(τ) as j → ∞, for all k ∈ N.
Moreover, ρk◦u→ ρ◦u = u in D(τ) (see, e.g., [Anc76; Prop. 11]), so the assertion follows.

We point out that in the case that (dk) is not bounded, Theorem 3.3 can be deduced from
our main result, Theorem 4.6 below (see Remark 4.8(c)). Here we give an independent proof
that is much more elementary.
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Proof of Theorem 3.3. Let ρ ∈ C∞(R) be a decreasing function such that ρ = 1 on
(−∞, 0) and ρ = 0 on (1,∞). For k ∈ N define ρk ∈ C∞

c [0,∞) by ρk(t) := ρ
(
t−rk
dk

)
; then

vk := ρk ◦ ψ ∈ D(τ0) by condition (1.3) and vk = 1 on [ψ 6 rk]. Moreover, with C := ||ρ′||2∞
and w := a∇ψ · ∇ψ ( 6 1) we obtain that

a∇vk · ∇vk = (ρ′k ◦ ψ)2a∇ψ · ∇ψ 6 Cd−2
k 11[rk6ψ6rk+dk]w (k ∈ N). (3.5)

Suppose first that (dk) is bounded. Then

τ(vk) 6 Cd−2
k

∫
[rk6ψ6rk+dk]

w dµ 6 Cd−2
k

(
ecd

2
k − 1

)
(k ∈ N)

implies supk τ(vk) <∞, and the assertion follows from Lemma 3.1.
If (dk) is not bounded then we can assume without loss of generality that dk → ∞ as

k →∞. Let δ > 0 and v ∈ D(τ0). For 0 6 u ∈ D(τ0) ∩ L∞(µ) we have ln(1 + u/δ) ∈ D(τ0),
∇ ln(1 + u/δ) = (u+ δ)−1∇u and hence

(a∇u · ∇v)2 6 α
(
a∇u · ∇ ln(1 + u/δ)

)
· (u+ δ)(a∇v · ∇v),

so we obtain the estimate

τ(u, v)2 6 ατ
(
u, ln(1 + u/δ)

) ∫
(u+ δ)(a∇v · ∇v) dµ.

By Lemma 3.6 it follows that this estimate is valid for all 0 6 u ∈ D(τ) ∩ L∞(µ).
Let now 0 6 f ∈ L1(µ) ∩ L∞(µ), u := (1 +A)−1f . Then 0 6 u ∈ D(τ) ∩ L1(µ) ∩ L∞(µ),

so due to (3.5) we infer for all k ∈ N that

〈Au, vk〉2 = τ(u, vk)2 6 α
〈
Au, ln(1 + u/δ)

〉
· Cd−2

k

∫
[rk6ψ6rk+dk]

(u+ δ)w dµ

6 α||Au||1 ln(1 + ||u||∞/δ) · Cd−2
k

(∫
[rk6ψ6rk+dk]

u dµ+ δ(ecd
2
k − 1)

)
.

Choosing δ = e−2cd2k we conclude that 〈Au, vk〉2 → 0 as k →∞, and hence
∫
Audµ = 0. Thus

we have shown
∫
Audµ = 0 for all u ∈ (1 +A)−1(L1 ∩L∞(µ)), and the assertion follows.

4 New conditions for stochasticity

In this section we present new conditions in terms of volume growth and of growth of the
coefficient matrix a that imply T1 being stochastic. All the results are based on the following
abstract condition.

4.1 Proposition. Assume that there exist an integrable function ϕ: [0, 1] → [1,∞] and a
sequence (vk) ⊆ D(τ0) such that supk ||vk||∞ <∞, vk → 1 a.e. and∫

Ω

a∇vk · ∇vk
ϕ ◦ u

dµ→ 0 (k →∞) (4.1)

for all u = (1 +A)−1f , where 0 6 f ∈ L∞,c(Ω), ||f ||∞ 6 1. Then T1 is stochastic.
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Proof. Let 0 6 f ∈ L∞,c(Ω), ||f ||∞ 6 1 and u := (1 +A)−1f . We are going to show that

τ(u, v)2 6 α||ϕ||1||Au||1
∫

Ω

a∇v · ∇v
ϕ ◦ u

dµ
(
v ∈ D(τ0)

)
. (4.2)

Then by (4.1) we obtain that∫
Ω
Audµ = lim

k→∞

∫
Ω
Au · vk dµ = lim

k→∞
τ(u, vk) = 0,

hence
∫
Audµ = 0 for all u ∈ (1 +A)−1(L∞,c(Ω)), and the assertion follows.

Let ε > 0. Then there exists an increasing sequence (ϕj) ⊆ C∞[0, 1] such that ϕj > 1,
||ϕj ||1 6 (1+ε)||ϕ||1 for all j ∈ N and limj→∞ ϕj > ϕ pointwise. Let j ∈ N, define hj ∈ C∞[0, 1]
by hj(t) :=

∫ t
0 ϕj(s) ds, and fix v ∈ D(τ0). For 0 6 u ∈ D(τ0) with ||u||∞ 6 1 we obtain that

hj ◦ u ∈ D(τ0), ∇(hj ◦ u) = (ϕj ◦ u)∇u and thus

(a∇u · ∇v)2 6 α
(
a∇u · ∇(hj ◦ u)

)
· (ϕj ◦ u)−1(a∇v · ∇v),

so we can estimate

τ(u, v)2 6 ατ(u, hj ◦ u)
∫

Ω
(ϕj ◦ u)−1(a∇v · ∇v) dµ. (4.3)

Let now 0 6 f ∈ L∞,c(Ω), ||f ||∞ 6 1 and u := (1 + A)−1f . Then 0 6 u ∈ D(τ) and
||u||∞ 6 1. By Lemma 3.6 there exists a sequence (uk) ⊆ D(τ0) such that 0 6 uk 6 1 for
all k ∈ N, uk → u a.e. and in D(τ), and hj ◦ uk → hj ◦ u in D(τ) as k → ∞. Moreover,
(ϕj ◦ uk)−1 → (ϕj ◦ u)−1 a.e. as k →∞ and ||(ϕj ◦ uk)−1||∞ 6 1 for all k ∈ N, so from (4.3) it
follows that

τ(u, v)2 6 ατ(u, hj ◦ u)
∫

Ω
(ϕj ◦ u)−1(a∇v · ∇v) dµ 6 α||Au||1||hj ◦ u||∞

∫
Ω

a∇v · ∇v
ϕj ◦ u

dµ.

Finally, observe that ||hj ◦u||∞ 6 ||hj ||∞ = ||ϕj ||1 6 (1+ ε)||ϕ||1. Therefore, letting first j →∞
and then ε→ 0, we conclude that (4.2) holds, and the proof is complete.

Remark. The above proof can be simplified if the function ϕ is continuous. In the applica-
tions below, ϕ will even be continuous and decreasing.

Proposition 4.1 will be applied via the following result, which is a preliminary version of
our main result, Theorem 4.6 below.

4.2 Proposition. Assume that there exist ψ satisfying condition (1.3) and a decreasing
integrable function ϕ: [0, 1] → [0,∞] such that

exp
(
−ϕ ◦ (a∇ψ · ∇ψ)

)
∈ L1(µ).

Then T1 is stochastic.

Proof. First observe that we can assume without loss of generality that ϕ is continuous and
that ϕ(1) = 0. Moreover, by replacing ϕ with ϕ − ln we can assume that ϕ(0) = ∞,
ϕ(t) > ln t−1 for all t ∈ (0, 1) and that ϕ is strictly decreasing and hence bijective.
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We are going to apply Proposition 4.1 with ϕ1: [0, 1] → [1,∞] defined by ϕ1(0) := ∞ and
ϕ1(t) := 1

tϕ
−1

(
1
2 ln 1

t

)
for 0 < t 6 1. Substituting s = 1

2 ln 1
t we compute∫ 1

0
ϕ1(t) dt =

∫ 1

0
ϕ−1

(
1
2 ln 1

t

)
dt
t = 2

∫ ∞

0
ϕ−1(s) ds = 2

∫ 1

0
ϕ(r) dr <∞,

so ϕ1 is integrable. Next we show that
x

ϕ1(t)
6 t+ exp(−ϕ(x)) (t, x ∈ [0, 1]). (4.4)

This inequality is trivial in the cases t = 0 and x 6 tϕ1(t) = ϕ−1
(

1
2 ln 1

t

)
, so let 0 < t 6 1

and ϕ−1
(

1
2 ln 1

t

)
< x 6 1. Then ϕ(x) < 1

2 ln 1
t and hence exp(−ϕ(x)) > t1/2. Moreover,

ϕ(t1/2) > ln t−1/2 (see the beginning of the proof), thus ϕ−1(ln t−1/2) > t1/2, and we conclude
that

x

ϕ1(t)
=

tx

ϕ−1(ln t−1/2)
6 t1/2 < exp(−ϕ(x)).

Let now ρ ∈ C∞
c [0,∞) be a decreasing function with ρ(0) = 1. For k ∈ N let vk :=

ρ ◦ (ψ/k). Then vk ∈ D(τ0) by condition (1.3), ||vk||∞ 6 1 for all k ∈ N and vk → 1 a.e. as
k → ∞. Moreover, by (4.4) we obtain for 0 6 f ∈ L∞,c(Ω), ||f ||∞ 6 1 and u := (1 + A)−1f

that a∇ψ·∇ψ
ϕ1◦u 6 u+ exp

(
−ϕ ◦ (a∇ψ · ∇ψ)

)
∈ L1(µ) and hence∫

Ω

a∇vk · ∇vk
ϕ1 ◦ u

dµ 6 ||ρ′||2∞k−2

∫
Ω

a∇ψ · ∇ψ
ϕ1 ◦ u

dµ→ 0 (k →∞),

so the assertion follows from Proposition 4.1.

Remark. The function ϕ1 used in the above proof is strictly decreasing: Without loss of
generality it was assumed that ϕ + ln is decreasing; thus 2ϕ + ln = 2(ϕ + ln) − ln and
hence r 7→ re2ϕ(r) is strictly decreasing. Since ϕ is strictly decreasing, this implies that
s 7→ ϕ−1(s)e2s is strictly increasing on (0,∞), so t 7→ ϕ1(t) = ϕ−1

(
1
2 ln 1

t

)
exp

(
2 · 1

2 ln 1
t

)
is

strictly decreasing on (0, 1).

In the next two results, which deal with the special case µ = λn, we give conditions for
T1 being stochastic in terms of the growth of the coefficient matrix a at ∞.

4.3 Corollary. Let µ = λn and assume that there exist ψ satisfying condition (1.3) and a
decreasing function h: [0,∞) → (0, 1] such that∫ ∞

1

h(r)
r

dr <∞, (a∇ψ · ∇ψ)(x) 6 h(|x|) (x ∈ Ω).

Then T1 is stochastic.

Proof. Assume without loss of generality that h|[0,1] = 1 and that h: [1,∞) → (0, 1] is bijec-
tive. Then ln ◦ h−1: (0, 1] → [0,∞) is decreasing, and∫ 1

0
lnh−1(t) dt =

∫ ∞

0
h(es) ds =

∫ ∞

1
h(r) drr <∞.

Thus, ϕ := (n+ 1) ln ◦ h−1 (with ϕ(0) := ∞) is decreasing and integrable. Moreover,

exp
(
−ϕ ◦ (a∇ψ · ∇ψ)

)
(x) 6 exp

(
−ϕ(h(|x|))

)
= |x|−n−1 ∧ 1 (x ∈ Ω),

so the assertion follows from Proposition 4.2.
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The following result generalises Example 3.5; its proof illustrates the possible interplay
between the functions ψ and h in Corollary 4.3.

4.4 Corollary. Assume that µ = λn, τ0 is Neumann type (i.e., (1.2) holds) and that there
exist an open set X ⊆ (0,∞) and an increasing function g: (0,∞) → [1,∞) such that∫ ∞

1

dr

rg(r)
= ∞, arr(x) = a(x) x|x| ·

x
|x| 6 |x|2g(|x|) (x ∈ Ω, |x| ∈ X)

and lim infr→∞ λ
(
X ∩ (0, r)

)
/r > 0. Then T1 is stochastic.

If τ0 = τ0,max then the assumption on X to be open can be omitted.

Proof. Without loss of generality we can assume that g ∈ C∞(0,∞) (convolution with a
C∞

c (−1, 0)-function) and that (0, 1) ⊆ (0,∞) \X. Let ε,R > 0 such that λ
(
X ∩ (0, r)

)
> 2εr

for all r > R. Since X is open, there exists a C∞-function χ: (0,∞) → [0, 1] such that χ = 0
on (0,∞) \X and

∫ r
0 χ(s) ds > εr for all r > R.

Define f : [0,∞) → [1,∞) by f(r) = 1 +
∫ r
0

χ(s)
sg(s) ds and 0 6 ψ ∈ C∞(Ω) by ψ(x) :=

ln f(|x|). With c := 2/ε we obtain that∫ cr

r
χ(s) ds >

∫ cr

0
χ(s) ds− r > εcr − r = r =

1
c2 − c

∫ c2r

cr
ds (r > R). (4.5)

Since g is increasing, we deduce that∫ ∞

R

χ(s)
sg(s)

ds >
1

c2 − c

∫ ∞

cR

1
sg(s)

ds = ∞,

so f(r) →∞ as r →∞. Moreover,

(a∇ψ · ∇ψ)(x) =
(

χ(|x|)
f(|x|) · |x|g(|x|)

)2

arr(x) 6
1

f(|x|)2g(|x|)
6 1

for all x ∈ Ω, hence by Remark 1.2(b) it follows that ψ satisfies condition (1.3). Finally,
h := 1

f2g
is decreasing and as above we deduce from (4.5) that

1
c2 − c

∫ ∞

cR

h(r)
r

dr 6
∫ ∞

R

χ(r)h(r)
r

dr =
∫ ∞

R

f ′(r)
f(r)2

dr = − 1
f(r)

∣∣∣∣∞
R

=
1

f(R)
<∞,

so the assertion follows from Corollary 4.3.
In the case τ0 = τ0,max, the above proof works with χ = 11X . Then we only have ψ ∈

W 1
∞,c(Ω), but ψ still satisfies condition (1.3).

4.5 Example. The condition of Corollary 4.4 is satisfied, e.g., if there exists c > 0 such that

arr(x) 6 c|x|2 ln |x| ln ln |x| (x ∈ Ω, |x| > 10).

The following is the main result of the paper; the proof will be given at the end of the
section.

11



4.6 Theorem. Assume that there exist ψ satisfying condition (1.3), a decreasing integrable
function ϕ: [0, 1] → [0,∞] and an increasing function v: (0,∞) → (3,∞) such that∫ ∞

0

r

ln v(r)
dr = ∞,

∫
[ψ6r]

exp
(
−ϕ ◦ (a∇ψ · ∇ψ)

)
dµ 6 v(r) (r > 0). (4.6)

Then T1 is stochastic.

Setting ϕ = 0 in this theorem, we obtain the following volume growth condition for
stochasticity.

4.7 Corollary. Assume that there exist ψ satisfying condition (1.3) and an increasing func-
tion v: (0,∞) → (3,∞) such that∫ ∞

0

r

ln v(r)
dr = ∞, µ

(
[ψ 6 r]

)
6 v(r) (r > 0).

Then T1 is stochastic.

4.8 Remarks. (a) In the context of stochastical completeness of Riemannian manifolds, the
volume growth condition in Corollary 4.7 is due to [KaLi83] and [Gri87]. In [Gri89] it is
shown that the condition is sharp in the following sense: Given a smooth increasing function
v: (0,∞) → (3,∞) such that

∫∞
0

r
ln v(r) dr <∞, there exists a complete Riemannian manifold

M such that µ
(
B(x, r)

)
6 v(r) for all r > 0 and some x ∈ M , and M is not stochastically

complete, i.e., the L1-semigroup associated with the canonical Dirichlet form on M is not
stochastic. (Here, µ

(
B(x, r)

)
denotes the Riemannian volume of the geodesic ball with centre

x and radius r.) This does not mean, however, that the condition of Corollary 4.7 is necessary;
see Example 4.9 below.

(b) The condition
∫∞
1

r
ln v(r) dr = ∞ is satisfied, e.g., if v(r) = ecr

2
or v(r) = ecr

2 ln r for
some c > 0. Observe that in the former case, Corollary 4.7 is already covered by Theorem 3.3
(see Remark 3.4(a)), but it is not hard to see that in the latter case it is not.

(c) As pointed out in Section 3, Theorem 3.3 can be deduced from Theorem 4.6 if (dk)
is not bounded. Note that in this case we can assume without loss of generality that (dk) is
increasing and that rk+dk < rk+1 for all k ∈ N. Moreover, D(τ0) = D(τ)∩D(τ0,max) without
loss of generality.

Let ρ: [0,∞) → [0,∞) be such that ρ(0) = 0, and ρ has slope 1 on the intervals [rk, rk+dk]
and slope 0 otherwise. Then ρ(r) → ∞ as r → ∞, so ψ̃ := ρ ◦ ψ satisfies condition (1.3) by
Remark 1.2(d). Moreover, for k ∈ N and r̃k :=

∑k
j=1 dj we obtain that∫

[ψ6r̃k]
a∇ψ̃ · ∇ψ̃ dµ =

k∑
j=1

∫
[rj6ψ6rj+dj ]

a∇ψ · ∇ψ dµ 6
k∑
j=1

ecd
2
j 6 kecd

2
k .

We now define the functions ϕ and v by ϕ(0) := ∞, ϕ(t) := ln 1
t for 0 < t 6 1 and

v(r) := kecd
2
k for r̃k−1 < r 6 r̃k, k ∈ N (where r̃0 := 0). Then∫
[ψ6r]

exp
(
−ϕ ◦ (a∇ψ · ∇ψ)

)
dµ =

∫
[ψ6r]

a∇ψ · ∇ψ dµ 6 v(r) (r > 0)

and ∫ ∞

0

r

ln v(r)
dr =

∞∑
k=1

∫ r̃k

r̃k−1

r

ln k + cd2
k

dr >
∞∑
k=1

d2
k/2

ln k + cd2
k

= ∞.

Thus, we can apply Theorem 4.6 to obtain that T1 is stochastic.
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We now present two examples for situations in which Theorem 4.6 is applicable, but
Corollary 4.7 is not. These examples illustrate that if one has good control of the coefficients
a and m on a suitable small portion of Ω then no control on the remainder of Ω is needed.

4.9 Example. We are going to apply Theorem 4.6 with ϕ|(0,1] = 0, ϕ(0) = ∞. Let (rk) ⊆
(0,∞) be a sequence with rk+1 > rk + 1 for all k ∈ N.

(a) Let Ω := R×(0, 1) ⊆ R2, and for k ∈ N let Ωk :=
{
x ∈ Ω; rk < |x1| < rk+1

}
. Assume

that m 6 1 and a11 6 k2 on Ωk, for all k ∈ N, and that

D(τ0) ⊇
{
u|Ω; u ∈ C∞(R2), u(x1, 0) = u(x1, 1) (x1 ∈ R)

}
.

(This includes Neumann and periodic boundary conditions.) There exists 0 6 ψ0 ∈ C∞(R)
such that ψ0(x) > 1

2 ln k and |ψ′0(x)| 6 1
k for all k ∈ N and all x ∈ R with rk 6 |x| 6 rk + 1,

ψ′0(x) = 0 otherwise. Then for ψ ∈ C∞(Ω) defined by ψ(x) := ψ0(x1) we obtain that ψ
satisfies condition (1.3) ((a∇ψ · ∇ψ)(x) = a11(x)ψ′0(x1)2 6 1 for all x ∈ Ω.)

Let now r > 0 and choose k ∈ N such that 1
2 ln k 6 r < 1

2 ln(k + 1). Then [ψ 6 r] is
contained in (−rk+1, rk+1)× (0, 1), hence

∫
[ψ6r]

exp
(
−ϕ ◦ (a∇ψ · ∇ψ)

)
dµ 6

k∑
j=1

µ(Ωj) 6 2k 6 2e2r,

so from Theorem 4.6 it follows that T1 is stochastic. Observe that we have no control of
µ([ψ 6 r]) in this example, so we cannot apply Corollary 4.7.

(b) Let Ω := Rn, and for k ∈ N let Ωk :=
{
x ∈ Rn; rk < |x| < rk + 1

k

}
. Assume that

µ(Ωk) 6 exp
(
(ln k)2

)
and arr 6 1 on Ωk, for all k ∈ N, and that D(τ0) ⊇ C∞

c (Rn). There
exists a radially symmetric function 0 6 ψ ∈ C∞(Rn) such that ψ > 1

2 ln k and |∇ψ| 6 1 on
Ωk for all k ∈ N, ∇ψ = 0 otherwise. Then ψ satisfies condition (1.3), and with the same
argument as in part (a) one shows that∫

[ψ6r]
exp

(
−ϕ ◦ (a∇ψ · ∇ψ)

)
dµ 6 e2r+4r2 (r > 0),

so T1 is stochastic by Theorem 4.6.

For the proof of Theorem 4.6 we need the following technical result.

4.10 Lemma. Let γ: (0,∞) → (1,∞) be a measurable function with
∫∞
0

r
γ(r) dr = ∞.

(a) If γ is increasing then
∫∞
0

r
γ(r)+r2

dr = ∞.
(b) If γ(r) > r2 for all r > 0 then there exists a decreasing and bijective function

g: (0,∞) → (0, 1) such that g /∈ L1(0,∞) and γ ◦ (g2)−1 ∈ L1(0, 1).

Proof. (a) Let γ̃(r) := γ(r) + r2 for all r > 0. If there exists r0 > 0 such that γ(r) > r2 for
all r > r0 then

∫∞
0

r
γ̃(r) dr >

∫∞
r0

r
2γ(r) dr = ∞. If there exists no such r0 then there exists a

sequence (rk) ⊆ (1,∞) such that γ(rk) < r2k and rk+1 > 2rk for all k ∈ N. We conclude that
γ̃(r) 6 γ̃(rk) < 2r2k for all k ∈ N and all r 6 rk, and therefore∫ ∞

0

r

γ̃(r)
dr >

∞∑
k=1

1
2r2k

∫ rk

rk/2
r dr =

∞∑
k=1

1
2r2k

· 1
2(r2k − r2k/4) = ∞.
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(b) We define f, F, g̃: (0,∞) → (0,∞) by

f(r) :=
r

γ(r)
, F (r) := 2 +

∫ r

0
f(s) ds, g̃(r) :=

∫ ∞

r

ds

γ(s)F (s)
.

(The function g̃ is defined since γ(s) > s2 for all s > 0.) Then g̃ is strictly decreasing and
continuous, and∫ ∞

0
g̃(r) dr =

∫ ∞

0

1
γ(s)F (s)

∫ s

0
dr ds =

∫ ∞

0

f(s)
F (s)

ds = lnF (s)|∞0 = ∞

since F (r) →∞ as r →∞ by the assumption.
Let now c := 1/g̃(0+) and g := cg̃. Then g: (0,∞) → (0, 1) is decreasing and bijective. It

remains to show that γ ◦ (g2)−1 ∈ L1(0, 1). Because of F (r) > 2 and γ(r) > r2 we have

2rf(r)
F (r)2

=
2r2

γ(r)F (r)2
6

1
F (r)

and hence
1

F (r)
6

2
F (r)

− 2rf(r)
F (r)2

=
d

dr

2r
F (r)

for all r > 0. Thus,
∫ s
0

dr
F (r) 6 2r

F (r)

∣∣s
0

= 2s
F (s) for all s > 0. We conclude that

∫ 1

0
γ ◦ (g2)−1(r) dr =

∫ 0

∞
γ(r)(g2)′(r) dr = −2c2

∫ ∞

0
γ(r)g̃(r)g̃′(r) dr

= 2c2
∫ ∞

0

g̃(r)
F (r)

dr = 2c2
∫ ∞

0

1
γ(s)F (s)

∫ s

0

dr

F (r)
ds

6 2c2
∫ ∞

0

2s
γ(s)F (s)2

ds = − 4c2

F (s)

∣∣∣∣∞
0

=
4c2

F (0+)
= 2c2.

Proof of Theorem 4.6. Define γ: (0,∞) → (1,∞) by γ(r) := ln v(r + 1) + (r + 1)2. Then∫ ∞

0

r

γ(r)
dr =

∫ ∞

1

r − 1
ln v(r) + r2

dr = ∞

by Lemma 4.10(a) since v is increasing, and γ(r) > r2 for all r > 0. By Lemma 4.10(b)
there exists a decreasing and bijective function g: (0,∞) → (0, 1) such that g /∈ L1(0,∞) and
ϕ0 := γ ◦ (g2)−1 ∈ L1(0, 1).

Without loss of generality we assume thatD(τ0) = D(τ)∩D(τ0,max). Let ρ(r) :=
∫ r
0 g(s) ds

for all r > 0. Then ||ρ′||∞ 6 1 and ρ(r) →∞ as r →∞, so ψ̃ := ρ ◦ψ satisfies condition (1.3)
by Remark 1.2(d). Moreover,

a∇ψ̃ · ∇ψ̃ = (g ◦ ψ)2a∇ψ · ∇ψ.

Let now w := exp
(
−ϕ ◦ (a∇ψ · ∇ψ)

)
and ϕ̃ := ϕ0 + ϕ. Since both ϕ0 and ϕ are decreasing

and (g ◦ ψ)2 6 1, a∇ψ · ∇ψ 6 1 a.e., we infer that

ϕ̃ ◦ (a∇ψ̃ · ∇ψ̃) > ϕ0 ◦ (g ◦ ψ)2 + ϕ ◦ (a∇ψ · ∇ψ) = γ ◦ ψ − lnw.

14



We conclude that∫
Ω

exp
(
−ϕ̃ ◦ (a∇ψ̃ · ∇ψ̃)

)
dµ 6

∞∑
k=1

∫
[k−16ψ<k]

exp
(
−γ ◦ ψ + lnw

)
dµ

6
∞∑
k=1

exp
(
−γ(k − 1)

) ∫
[ψ6k]

w dµ 6
∞∑
k=1

exp(−k2) <∞,

where we have used that exp
(
−γ(k−1)

)
= exp(−k2)/v(k) for all k ∈ N. Since ϕ̃ is decreasing

and integrable, the assertion follows from Proposition 4.2.

4.11 Remark. In the above proof, only the estimate∫
[k−16ψ<k]

exp
(
−ϕ ◦ (a∇ψ · ∇ψ)

)
dµ 6 v(k) (k ∈ N)

was needed. This observation, however, is not useful for weakening the assumptions of The-
orem 4.6. Indeed, if the above estimate is satisfied for some increasing function v: (0,∞) →
(3,∞) such that

∫∞
0

r
ln v(r) dr = ∞ then a straightforward computation shows that (4.6) holds

with ṽ(r) := (r + 1)v(r + 1) in place of v(r) (take into account Lemma 4.10(a)).

Acknowledgement. The author thanks Jürgen Voigt for valuable discussions.
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