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Abstract

Let τ be a (not necessarily closable) positive symmetric form associated with a second
order elliptic differential expression. We show that the regular part of τ (in the sense of
B. Simon) can be obtained by modifying the coefficients of τ suitably; in particular, the
regular part is again associated with a second order elliptic differential expression.
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Selfadjoint second order elliptic differential operators in divergence form are commonly
defined by the form method: One starts with a positive symmetric form determined by the
coefficients of the operator and the boundary conditions under consideration. If this form is
closable, one defines the elliptic differential operator via Kato’s representation theorem as the
selfadjoint operator associated with the closure of the form.

In [ERSZ07], this approach is generalised as follows: Instead of assuming the form to be
closable, the regular part of the form is taken; since the latter is always closable, one can then
proceed as before. The aim of the present note is to demonstrate that by this approach one
does not obtain new types of elliptic differential operators. Indeed, taking the regular part
amounts to a modification of the coefficients of the form; see Theorem 1 below.

Before specifying our assumptions and notation, we recall the definition of the regular and
singular parts of a positive symmetric form, which is due to Simon [Sim78; Sec. 2]. Let τ be
a positive symmetric form in a Hilbert space H, and endow D(τ) with the norm || · ||τ given
by ||u||2τ = τ(u) + ||u||22. Let D̃(τ) be the completion of D(τ) and iτ the continuous extension
of the embedding D(τ) ↪→ H to D̃(τ). Denote by Qτ the orthogonal projection from D̃(τ)
onto the kernel of iτ . Then the regular part τr and the singular part τs of τ are the symmetric
forms in H defined by D(τr) := D(τs) := D(τ),

τs(u, v) := 〈Qτu, v〉D̃(τ)
, τr(u, v) := τ(u, v)− τs(u, v). (1)

By [Sim78; Thms. 2.1 and 2.2], τr is the largest closable symmetric form less than τ , and τr
is positive. (In [Sim78; Sec. 2], it is assumed that H is a complex Hilbert space and that τ is
densely defined, but these assumptions are not needed for the definition and properties of τr
and τs.)

Let now Ω ⊆ Rn be an open set and µ a positive Radon measure on Ω with sptµ = Ω.
Let a: Ω → Rn×n be a locally integrable function with values in the symmetric, positive
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semidefinite matrices. We define the symmetric form τmax in L2(µ) by

D(τmax) :=
{
u ∈ L2(µ) ∩W 1

1,loc(Ω); a∇u · ∇u ∈ L1(Ω)
}
,

τmax(u, v) :=
∫

Ω
a∇u · ∇v.

(Throughout we assume the function spaces to be real vector spaces.) Let τ be a restriction
of τmax with the following two properties:

(i) D(τ) ∩ L∞(µ) is invariant under multiplication with C∞c (Ω)-functions,
(ii) there exists ψ ∈ C1

b(R) with ψ(0) = 0 and ψ′(0) = 1 such that ψ ◦ u ∈ D(τ) for all
u ∈ D(τ).

One easily checks that these properties are satisfied, e.g., if τ = τmax, D(τ) = D(τmax) ∩
C∞(Ω) or D(τ) = C∞c (Ω), but also periodic type boundary conditions are covered.

Since a takes its values in the symmetric, positive semidefinite matrices, one can pointwise
take the square root of a. The function a1/2 thus obtained is measurable: For f ∈ C(R) one
sees by approximation with polynomials that the mapping B 7→ f(B), in the space of all
selfadjoint operators B ∈ L(RN ), is continuous. For f(t) := (t+)1/2 it follows that the
function x 7→ a(x)1/2 on Ω is measurable.

The following is the main theorem of this note; its proof will be given below.

Theorem 1. Under the above assumptions, the regular part τr of τ is given by

τr(u, v) =
∫
ar∇u · ∇v

(
u, v ∈ D(τr) = D(τ)

)
,

where ar = a1/2pa1/2 for some measurable function p: Ω → Rn×n with values in the orthogonal
projection matrices.

Corollary 2. Assume that n = 1 and D(τ) = C∞c (Ω). Then the assertion of Theorem 1
holds with ar = a11Ω0, where

Ω0 =
{
x ∈ Ω; ∃ ε > 0:

∫ x+ε

x−ε
a−1 <∞

}
.

Proof. For A ⊆ Ω let τA be the symmetric form in L2(µ) defined by D(τA) = C∞c (Ω),
τA(u, v) =

∫
Ω a11Au

′v′. It follows from [RöWi85; Thm. 1.1] that A = Ω0 is the largest set
A ⊆ Ω such that τA is closable. By Theorem 1, this implies the assertion.

For the proof of Theorem 1 we need the following criterion for an orthogonal projection
in a vector-valued L2-space to be a multiplication operator.

Proposition 3. Let Ω ⊆ Rn be an open set and H a separable Hilbert space. Let G be
a closed subspace of L2(Ω;H) satisfying ϕf ∈ G for all ϕ ∈ C∞c (Ω), f ∈ G. Then the
orthogonal projection Q from L2(Ω;H) onto G is given by

(Qf)(x) = q(x)f(x)
(
f ∈ L2(Ω;H), x ∈ Ω

)
, (2)

for some strongly measurable function q: Ω → L(H) with values in the orthogonal projections.
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Proof. Below we will show that Qf = 0 a.e. on [f = 0] := {x ∈ Ω; f(x) = 0}, for all
f ∈ L2(Ω;H). Then from [ArTh05; Thm. 2.3 and Cor. 2.4] (see also [Eva76; Thm. 5.7]) it
follows that Q is given by (2), for some strongly measurable function q: Ω → L(H) with
||q||L∞(Ω;Ls(H)) = ||Q|| 6 1. For all f ∈ L2(Ω;H) we obtain that q2f = Q2f = Qf = qf , so
q2 = q a.e. Recalling that projections with norm less than or equal to 1 are orthogonal, we can
thus assume without loss of generality that all the operators q(x) are orthogonal projections,
and the assertion is proved.

Let now f ∈ L2(Ω;H); we show that Qf = 0 a.e. on [f = 0]. For A := [f 6= 0] we find by
convolution a sequence (ϕk) ⊆ C∞c (Ω) such that ϕk → 11A a.e. and ||ϕk||∞ 6 1 for all k ∈ N.
Then ϕkQf → 11AQf in L2(Ω;H), so the assumption implies that 11AQf ∈ G. Since

||f − 11AQf ||2 = ||11A(f −Qf)||2 6 ||f −Qf ||2

and Qf is the best approximation of f in G, we conclude that 11AQf = Qf , i.e., Qf = 0 a.e.
on Ω \A = [f = 0].

Proof of Theorem 1. We endow D(τ) with the norm || · ||τ given by ||u||2τ = τ(u) + ||u||22.
Then the embedding

D(τ) ↪→ L2(µ)× L2(Ω)n, u 7→ (u, a1/2∇u)

is isometric, so we can consider the completion D̃(τ) of D(τ) as a subspace of L2(µ)×L2(Ω)n.
The continuous extension of the embedding D(τ) ↪→ L2(µ) to D̃(τ) has the kernel {0} ×Hs,
where

Hs :=
{
w ∈ L2(Ω)n; (0, w) ∈ D̃(τ)

}
.

Let Q be the orthogonal projection from L2(Ω)n onto Hs. Then the orthogonal projection
from D̃(τ) onto {0}×Hs is given by (u,w) 7→ (0, Qw). Thus, by (1) the singular part τs of τ
is given by

τs(u, v) =
〈
(0, Q(a1/2∇u)), (v, a1/2∇v)

〉
D̃(τ)

=
∫

Ω
Q(a1/2∇u) · a1/2∇v

for all u, v ∈ D(τs) = D(τ).
Below we will show that ϕf ∈ Hs for all ϕ ∈ C∞c (Ω), f ∈ Hs. Then by Proposition 3 we

obtain that the projection Q is given by

(Qf)(x) = q(x)f(x)
(
f ∈ L2(Ω)n, x ∈ Ω

)
,

for some measurable function q: Ω → Rn×n with values in the orthogonal projection matrices.
We conclude that τs(u, v) =

∫
Ω a

1/2qa1/2∇u ·∇v for all u, v ∈ D(τs), and the assertion follows
(with p = id−q) since τr = τ − τs.

Let f ∈ Hs. Then there exists a sequence (ũk) ⊆ D(τ) such that

ũk → 0 in L2(µ), a1/2∇ũk → f in L2(Ω)n (k →∞),

without loss of generality ũk → 0 a.e. Let ψ ∈ C1
b(R) be as in property (ii) of τ . Then

uk := ψ ◦ ũk ∈ D(τ) for all k ∈ N. Moreover, the sequence (ψ′ ◦ ũk)k is bounded in L∞(Ω)
and ψ′ ◦ ũk → ψ′(0) = 1 a.e., so we obtain that

uk → 0 in L2(µ), a1/2∇uk = (ψ′ ◦ ũk)a1/2∇ũk → f in L2(Ω)n (k →∞).
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Let now ϕ ∈ C∞c (Ω). Then

||uka
1/2∇ϕ||2L2(Ω)n =

∫
Ω
|uk|2a∇ϕ · ∇ϕ→ 0 (k →∞)

by the dominated convergence theorem (use ||ψ||2∞a∇ϕ · ∇ϕ as a dominating function), and
hence

a1/2∇(ϕuk) = ϕa1/2∇uk + uka
1/2∇ϕ→ ϕf in L2(Ω)n (k →∞).

Moreover, ϕuk ∈ D(τ) for all k ∈ N by property (i) of τ and ϕuk → 0 in L2(µ) as k →∞, so
we conclude that ϕf ∈ Hs.
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