An Eberlein-Šmulian type result for the weak* topology

Hendrik Vogt

Abstract. We present a result on relative weak* compactness in the dual of a Banach space X that allows a short proof of both the Eberlein-Šmulian theorem and Šmulian's characterisation of weak compactness of closed convex subsets of X.

Mathematics Subject Classification (2000). 46A50.

A subset A of a Banach space X is called conditionally countably weakly compact if every sequence in A has a weak accumulation point in X. The difficult implication of the Eberlein-Šmulian theorem states that such a set is already relatively weakly compact. This implication was proved by W. Eberlein in [Ebe47]; an elementary proof was given by R. Whitley [Whi67]. H. Cohen observed in [Coh67] that Whitley's argument can also be used to show that a relatively weakly compact subset A of X is sequentially dense in the weak closure of A.

The aim of the present note is twofold. On the one hand, we apply Whitley's argument and a version of Cohen's argument to obtain an Eberlein-Šmulian type result for the weak* topology of the dual X' (Proposition 2), thus avoiding the use of the bidual X'' in these arguments. On the other hand, we add a further equivalence to the Eberlein-Šmulian theorem (condition (iv) in Theorem 3) that allows us to obtain Šmulian's characterisation of weak compactness of closed convex subsets of X as an immediate corollary. In fact, the implication (iv) \Rightarrow (ii) of Theorem 3 is implicit in the proof of Šmulian's theorem in [DuSc88; Thm. V.6.2].

The following lemma was already used in [Whi67]; the short proof is included for the convenience of the reader.

1. Lemma. Let X be a Banach space, and let Z be a finite dimensional subspace of X'. Then there exists a finite subset F of B_X such that

$$||x'|| \leqslant 2 \max_{x \in F} |x'(x)| \qquad (x' \in Z).$$

Proof. The unit sphere S_Z of Z is compact, so there exist $x_1', \ldots, x_n' \in S_Z$ such that $S_Z \subseteq \bigcup_{k=1}^n B(x_k', \frac{1}{4})$. Let now $x_1, \ldots, x_n \in B_X$ such that $x_k'(x_k) \geqslant \frac{3}{4}$ for

k = 1, ..., n. Then for all $x' \in S_Z$ there exists $k \in \{1, ..., n\}$ such that

$$|x'(x_k)| \geqslant x'_k(x_k) - |(x'_k - x')(x_k)| \geqslant \frac{3}{4} - \frac{1}{4} = \frac{1}{2} ||x'||,$$

and the assertion follows with $F = \{x_1, \dots, x_n\}$.

The following result in particular gives a condition for a subset A of a dual space X' to be relatively weakly* compact in the norm-closed linear hull of A.

2. Proposition. Let X be a Banach space, and let $A \subseteq X'$. Assume that for every sequence (a'_n) in A one has

$$\bigcap_{n\in\mathbb{N}}\overline{\operatorname{conv}}\{a_k';\,k\geqslant n\}\neq\varnothing.$$

Then A is bounded, the weak* closure $cl_{w^*}A$ of A is contained in $\overline{conv}A$, and A is sequentially dense in $cl_{w^*}A$.

Proof. Assume without loss of generality that X is a real Banach space. If A is not bounded, then by the uniform boundedness principle there exist $x \in X$ and a sequence (a'_n) in A such that $a'_n(x) \to \infty$ as $n \to \infty$. This contradicts the assumption that $\bigcap_{n \in \mathbb{N}} \overline{\operatorname{conv}}\{a'_k; k \ge n\} \ne \emptyset$.

Let now $x'_0 \in cl_{w^*}A$. Then by the definition of the weak*-neighbourhoods of x'_0 and by Lemma 1 we can recursively choose an increasing sequence $(F_n)_{n\in\mathbb{N}_0}$ of finite subsets of B_X and a sequence $(a'_n)_{n\in\mathbb{N}}$ in A such that $F_0 = \emptyset$,

$$|(x_0' - a_n')(x)| \le \frac{1}{n}$$
 $(x \in F_{n-1})$

and

$$||x'|| \le 2 \max_{x \in F_n} |x'(x)| \qquad (x' \in \lim\{x'_0, a'_1, \dots, a'_n\}).$$

Let $M := \bigcup_{n \in \mathbb{N}} F_n$ and $Y := \ln(\{x'_0\} \cup \{a'_n; n \in \mathbb{N}\})$. Then

$$||x'|| \leqslant 2 \sup_{x \in M} |x'(x)|$$

holds for all $x' \in Y$ and hence for all $x' \in \overline{Y}$.

By the assumption there exists $y'\in\bigcap_{n\in\mathbb{N}}\overline{\operatorname{conv}}\{a'_k;\,k\geqslant n\}$. Then $y'\in\overline{\operatorname{conv}}A$, so the second assertion is proved if we show that $y'=x'_0$. Let $x\in M$. Then there exists $n_0\in\mathbb{N}$ such that $x\in F_{n_0}$. For $n>n_0$ we have $x\in F_{n-1}$ and hence $|(x'_0-a'_n)(x)|\leqslant \frac{1}{n}$, so that $|(x'_0-x')(x)|\leqslant \frac{1}{n}$ for all $x'\in\overline{\operatorname{conv}}\{a'_k;\,k\geqslant n\}$. It follows that $(x'_0-y')(x)=0$, and as $x'_0-y'\in\overline{Y}$ we conclude that

$$||x'_0 - y'|| \le 2 \sup_{x \in M} |(x'_0 - y')(x)| = 0.$$

Note that above we have shown that $\bigcap_{n\in\mathbb{N}} \overline{\operatorname{conv}}\{a'_k; k \geq n\} = \{x'_0\}$. In order to prove that A is sequentially dense in $\operatorname{cl}_{\mathbf{w}^*} A$, we now show that in fact $a'_n \to x'_0$ weakly*. By the assumption we obtain for any subsequence (a'_{n_i}) of (a'_n) that

$$\varnothing \neq \bigcap_{k \in \mathbb{N}} \overline{\mathrm{conv}} \{a'_{n_j}; j \geqslant k\} \subseteq \bigcap_{k \in \mathbb{N}} \overline{\mathrm{conv}} \{a'_n; n \geqslant k\} = \{x'_0\}$$

and hence $x'_0 \in \overline{\text{conv}}\{a'_{n_i}; j \in \mathbb{N}\}$. Given $x \in X$, we infer that

$$x_0'(x) \in \overline{\operatorname{conv}}\{a_{n_j}'(x); j \in \mathbb{N}\}$$

for any subsequence $(a'_{n_j}(x))$ of $(a'_n(x))$. From this property of the sequence $(a'_n(x))$ (of real numbers) one easily deduces that $a'_n(x) \to x'_0(x)$.

With the above, the proof of the difficult implication of the Eberlein-Šmulian theorem is easy. We change perspective and apply Proposition 2 to the dual of a Banach space.

- **3. Theorem.** (Eberlein-Šmulian) Let A be a subset of a Banach space X. Then the following are equivalent.
 - (i) A is relatively weakly compact;
 - (ii) A is conditionally sequentially weakly compact;
 - (iii) A is conditionally countably weakly compact;
 - (iv) for every sequence (a_n) in A one has

$$\bigcap_{n\in\mathbb{N}}\overline{\mathrm{conv}}\{a_k;\,k\geqslant n\}\neq\varnothing.$$

Moreover, if one of the above conditions holds then the weak closure of A is equal to the weak sequential closure of A.

Proof. (i) \Rightarrow (ii). Let (a_n) be a sequence in A. Then $X_0 := \overline{\lim}\{a_n; n \in \mathbb{N}\}$ is weakly closed, hence $A_0 := A \cap X_0$ is a relatively weakly compact subset of X_0 . Since X_0 is separable, we thus obtain that the weak topology on A_0 is metrisable. It follows that (a_n) has a subsequence that converges weakly in X_0 and hence also weakly in X.

- $(ii) \Rightarrow (iii)$ is trivial.
- (iii) \Rightarrow (iv) follows from the fact that the weak accumulation points of a sequence (a_n) in A are contained in $\bigcap_{n\in\mathbb{N}} \overline{\operatorname{conv}}\{a_k; k \geq n\}$.
- (iv) \Rightarrow (i). By Proposition 2 we obtain that the weak* closure of A in X'' is a bounded subset of $\overline{\operatorname{conv}}A\subseteq X$. By the Banach-Alaoglu theorem this implies that A is relatively weakly compact. The proposition also yields equality of the weak closure of A and the weak sequential closure of A.

As an immediate consequence of implication (iv) \Rightarrow (i) of the above theorem we obtain the following result.

4. Theorem. (\check{S} mulian, [Smu39]) Let A be a closed convex subset of a Banach space X. Then A is weakly compact if and only if every decreasing sequence of non-empty closed convex subsets of A has a non-empty intersection.

References

- [Coh67] H. B. Cohen: Sequential denseness and the Eberlein-Šmulian theorem. Math. Ann. 172 (1967), 209–210.
- [DuSc88] N. Dunford and J. Schwartz: Linear Operators. Part I: General Theory. John Wiley, New York, 1988.
- [Ebe47] W. F. EBERLEIN: Weak compactness in Banach spaces. I. *Proc. Nat. Acad. Sci. U. S. A.* **33** (1947), 51–53.
- [Smu39] V. ŠMULIAN: On the principle of inclusion in the space of the type (B). Mat. Sbornik N.S. $\bf 5$ (1939), 317–328.
- [Whi67] R. Whitley: An elementary proof of the Eberlein-Šmulian theorem. Math. Ann. 172 (1967), 116–118.

Hendrik Vogt Fachrichtung Mathematik Technische Universität Dresden D-01062 Dresden Germany

 $e\text{-}mail: \verb|hendrik.vogt@tu-dresden.de|$