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Abstract

Defining an elliptic operator −∇ · (a∇) via the form method one
normally imposes pointwise conditions on the matrix valued function
a in order to get positivity, ellipticity and sectoriality of the form. In
this note we show that the pointwise conditions on a are equivalent
to the corresponding global ones on the form.
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Let Ω be an arbitrary open subset of Rd, a: Ω→ C
d×d a locally integrable,

hermitian matrix valued function. Define the symmetric form τ in L2(Ω) by
τ(u) :=

∫
a∇u ·∇u on D(τ) := C∞c (Ω). If τ is positive and closable then, by

the form representation theorem, τ̄ is associated with a positive selfadjoint
operator in L2(Ω) (which corresponds to Dirichlet boundary conditions).
The main aim of this note is to show that the positivity of the form τ is
equivalent to the positivity of the function a, i.e., a > 0 in the matrix sense
a.e.

A case of particular interest is the following: Let a1: Ω → R
d×d be

locally integrable, symmetric matrix valued and locally strictly elliptic, i.e.,
for every compact set K ⊆ Ω there exists σ > 0 such that a1(x) > σ in the
matrix sense for almost all x ∈ K. Then it is known that

D(τN) :=
{
u ∈ L2(Ω) ∩W 1

2,loc(Ω); τN(u) :=

∫
a1∇u · ∇u <∞

}
defines a symmetric Dirichlet form in L2(Ω) (cf. [1, Thm. 1.3.9]; one can
show the closedness of τN like the completeness of the Sobolev space W 1

2 (Ω)
because of the local strict ellipticity of a1). The associated selfadjoint oper-
ator in L2(Ω) corresponds to Neumann boundary conditions.

Notation. Let |M | denote the Lebesgue measure of a measurable set
M ⊆ R

d, χM the characteristic function of M . Sd−1 is the unit sphere
of Rd, for the spectral radius of a hermitian matrix A ∈ Cd×d we write
|A|(= supξ∈Sd−1

|Aξ · ξ|). For a function f : Ω → R we use the shorthand
[f > 0] for the set {x ∈ Ω; f(x) > 0} (and similarly [f < g] etc). Q(f)
denotes the form domain of the multiplication operator f in L2(Ω).

Theorem. Let a: Ω→ C
d×d be a locally integrable hermitian matrix valued

function, τ(u) :=
∫
a∇u · ∇u for u ∈ C∞c (Ω).
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(a) The following are equivalent:

(i) a > 0 a.e.,

(ii) τ(u) > 0 for all u ∈ C∞c (Ω),

(iii) τ is bounded from below, i.e., there exists c > 0 such that τ(u) >
−c||u||22 for all u ∈ C∞c (Ω).

(b) Let D be a sublattice of W 1
1,loc(Ω)∩L2(Ω) with C∞c (Ω) ⊆ D ⊆ {u; a∇u·

∇u ∈ L1(Ω)}. Let V : Ω → [0,∞) be a measurable function such
that D ∩ Q(V ) is dense in L2(Ω). Define the form τ0 in L2(Ω) by
τ0(u) :=

∫
a∇u · ∇u +

∫
V |u|2 on D(τ0) := D ∩ Q(V ). Then τ0 is

positive if and only if a > 0 in the matrix sense a.e.

Remark. Let a1 and τN be as in the introduction. Assume that a1ξ · ξ >
|aξ · ξ| a.e. for all ξ ∈ Rd (e.g. a1 = (|a| + 1)I). Then D := D(τN) is
an example of a sublattice D satisfying the assumption of part (b) of the
theorem (or any sublattice D of D(τN) with C∞c (Ω) ⊆ D). A particular
example is D = W 1

∞,c(Ω), the space of Lipschitz continuous functions with
compact support.

Proof of the Theorem. The only nontrivial part of (a) is showing that
(iii) implies (i). For this purpose we assume that [a 6> 0] has positive mea-
sure. In the following we construct a function violating (iii), later on we
modify this function in order to show that the form τ0 defined in (b) is not
positive.

Let (ξk) be a dense sequence in Sd−1. If a(x) 6> 0 for some x ∈ Ω then
there exists k > |a(x)| such that a(x)ξk · ξk 6 −1/k. We obtain

[a 6> 0] =
⋃
k∈N

(
[aξk · ξk 6 −1/k] ∩ [|a| 6 k]

)
,

so we can fix k ∈ N such that F := [aξk · ξk 6 −1/k] ∩ [|a| 6 k] has positive
measure.

Now we localize F : Almost all x ∈ Ω are Lebesgue points of the function
χF , so since F has positive measure there exists x ∈ Ω satisfying

1

|Bδ(x)|

∫
Bδ(x)

χF → χF (x) = 1 for δ → 0.

Let ε ∈ (0, 1) be given. Fix δ > 0 in such a way that B := Bδ(x) ⊆ Bδ(x) ⊆
Ω and |B∩F | =

∫
B
χF > (1−ε)|B|. Since the function |a| restricted to B is

integrable, there exists α > 0 such that for all measurable sets M ⊆ B with
|M | 6 α we have

∫
M
|a| 6 ε|B|. By the regularity of the Lebesgue measure

there exists an open set Ω0, B ∩ F ⊆ Ω0 ⊆ B, with |Ω0 \ F | 6 α. It follows
that ∫

Ω0\F
|a| 6 ε|B| and |Ω0| > |B ∩ F | > (1− ε)|B|. (1)
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We can choose functions un ∈ C∞c (Ω0) satisfying

0 6 un 6
1

n
, ||∇un||∞ 6 1, and |[∇un 6= ±ξk] ∩ Ω0| 6 ε|B|

for all n ∈ N. (The reader should think of pieces of hyperplanes orthogonal
to ξk which have distance 2

n
to each other and to the boundary of Ω0. On

these hyperplanes set un := 1
n

and extend like a wash board.) The important
point is that on the set G := F ∩ [∇un = ±ξk] the function a∇un · ∇un is
less or equal −1/k.

Let H := Ω0 \ G. Then |H| 6 |Ω0 \ F | + |Ω0 ∩ [∇un 6= ±ξk]| 6 2ε|B|
since |Ω0 \ F | 6 |B \ F | 6 ε|B| by (1). We can estimate

τ(un) =

∫
G

aξk · ξk +

∫
H

a∇un · ∇un 6 −
1

k
|G|+

∫
H∩F
|a|+

∫
H\F
|a|.

By (1) we obtain |G| = |Ω0| − |H| > (1− 3ε)|B| and (since |a| 6 k on F )

τ(un) 6 − 1
k
|G|+ k|H ∩ F |+

∫
Ω0\F |a| 6

(
− 1
k
(1− 3ε) + 2kε+ ε

)
|B|. (2)

Note that ||un||2 6 1
n
||χB||2 since 0 6 un 6 1

n
. Therefore, given c > 0, it is

easy to choose first ε and then n in such a way that τ(un)+c||un||22 < 0. This
completes the proof of (a).

Now we use the sequence (un) in order to construct a function u ∈ D(τ0)
with τ0(u) < 0, thus proving (b). Let ε := 1/(2k2 + 5k + 3). Since D(τ0) is
a dense sublattice of L2(Ω), there exists a function 0 6 ϕ ∈ D(τ0) satisfying
|[ϕ < χB]| < α. Hence ∫

[ϕ<χB ]

|a| 6 ε|B| (3)

according to the choice of α. Since ϕ ∈ Q(V ) and 0 6 un 6 1
n

(n ∈ N) there
exists n0 ∈ N with ∫

V |ϕ ∧ un|2 < ε|B| for all n > n0. (4)

By the assumptions on D we have a∇ϕ ·∇ϕ ∈ L1(Ω), so there exists α2 > 0
such that for all measurable sets M ⊆ Ω with |M | 6 α2 we have

∫
M
|a∇ϕ ·

∇ϕ| 6 ε|B|. Obviously
⋂
n∈N[0 < ϕ < 1/n] = ∅, so since un 6 1/n there

exists n > n0 with |[0 < ϕ < un]| 6 α2. Noting ∇ϕ = 0 a.e. on [ϕ = 0], we
obtain ∫

[ϕ<un]

|a∇ϕ · ∇ϕ| =
∫

[0<ϕ<un]

|a∇ϕ · ∇ϕ| 6 ε|B|. (5)

For u := ϕ∧ un ∈ D(τ0) we estimate (noting ∇u = ∇un a.e. on [u = un]
and ∇u = ∇ϕ a.e. on [u < un] = [ϕ < un])

τ(u) =

∫
[u=un]

a∇u · ∇u+

∫
[u<un]

a∇u · ∇u

6
∫
a∇un · ∇un +

∫
[ϕ<un]

|a∇un · ∇un|+
∫

[ϕ<un]

|a∇ϕ · ∇ϕ|.
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By (3) and (5) we conclude τ(u) 6 τ(un) + 2ε|B|. From (4) recall
∫
V |u|2 6

ε|B|. According to (2) and the choice of ε it follows that

τ0(u) 6 τ(un) + 3ε|B| 6 −ε|B| < 0.

This completes the proof of (b).

Now let a: Ω → C
d×d be a locally integrable matrix valued function

(no longer assumed to be hermitian). Define the sesquilinear form τa in
L2(Ω) by τa(u) :=

∫
a∇u · ∇u on C∞c (Ω). We call the function a sectorial

if | Im(aξ · ξ̄)| 6 αRe(aξ · ξ̄) a.e. for all ξ ∈ Cd and some α > 0 and strictly
elliptic if Re(aξ · ξ̄) > σ|ξ|2 a.e. for all ξ ∈ Cd and some σ > 0. The form
τa is called sectorial if | Im τa(u)| 6 αRe τa(u) + c||u||22 and strictly elliptic if
Re τa(u) > σ||∇u||22− c||u||22 for all u ∈ C∞c (Ω) and some c ∈ R, α > 0, σ > 0.

Corollary. The form τa is sectorial (strictly elliptic) if and only if a is
sectorial (strictly elliptic).

Proof. Let a(x)∗ denote the adjoint matrix of a(x). Then aR := (a + a∗)/2
and aI := (a− a∗)/2i are hermitian matrix valued functions. One calculates

Re(aξ · ξ̄) = aRξ · ξ̄ and Im(aξ · ξ̄) = aIξ · ξ̄ (6)

for all ξ ∈ Cd, so Re τa = τaR and Im τa = τaI . The form τa is sectorial with
α as above if and only if the forms αRe τa ± Im τa = ταaR±aI are bounded
from below. By the above theorem this is equivalent to αaR ± aI > 0 a.e.,
i.e. to the sectoriality of a according to (6).

For the second part of the Corollary just apply the theorem to the func-
tion aR − σ.

Acknowledgements. The research of the author was supported by the
Deutsche Forschungsgemeinschaft. The support is gratefully acknowledged.
The author would like to thank Jürgen Voigt for a number of valuable re-
marks.

References

[1] E. B. Davies, Heat kernels and spectral theory, Cambridge Univ. Press,
1989.

Fachrichtung Mathematik
Institut für Analysis
Technische Universität Dresden
D-01062 Dresden
Germany
vogt@math.tu-dresden.de

4


