Lq-estimates for eigenfunctions and heat kernel estimates
for semigroups dominated by the free heat semigroup
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Abstract

We investigate selfadjoint positivity preserving Cpy-semigroups that are
dominated by the free heat semigroup on R%. Major examples are semi-
groups generated by Dirichlet Laplacians on open subsets or by Schrodinger
operators with absorption potentials. We show explicit global Gaussian up-
per bounds for the kernel that correctly reflect the exponential decay of the
semigroup. For eigenfunctions of the generator that correspond to eigen-
values below the essential spectrum we prove estimates of their Li-norm in
terms of the Lo-norm and the eigenvalue counting function. This estimate
is applied to a comparison of the heat content with the heat trace of the
semigroup.
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1 Introduction and main results

In the recent paper [BHV13|, the authors studied Dirichlet Laplacians on open
subsets 2 of R?. They proved an estimate for the L;-norm of eigenfunctions in
terms of their Lo-norm and spectral data, and they used this to estimate the heat
content of {2 by its heat trace. The aim of the present paper is to provide sharper
estimates in the following more general setting.

Let Q C R? be measurable, where d € N, and let T be a selfadjoint positivity
preserving Cy-semigroup on Ls(€2) that is dominated by the free heat semigroup,
ie.,

0<T(t)f <e? (t=0, 0< f e Ly().

Let —H denote the generator of 7.
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An important example for the operator —H is the Dirichlet Laplacian with a
locally integrable absorption potential on an open set  C R?. For more general
absorption potentials the space of strong continuity of the semigroup will be Ly ()
for some measurable 2 C ().

In our first main result we estimate the L;-norm of eigenfunctions of H in
terms of their Ly-norm and the eigenvalue counting function Ny(H), which for
t < inf os(H) denotes the number of eigenvalues of H that are < ¢, counted with
multiplicity.

1.1 Theorem. Let ¢ be an eigenfunction of H with eigenvalue A < inf oegs(H ).
Then

_ d .
[olf < calt =02 25) " N()lpl; (A<t <infoes(H)),

with cqg = 359T1d4/2,

1.2 Remarks. (a) We point out that as in [BHV13; Thm. 1.6] one has the lower
bound 402
el > (254)" Xl

Thus, the factor d%/? in the constant cg is of the correct order. The factor (¢t —\)~%?2
matches the factor A=%2; cf. Corollary 1.3 below. See [BHV13; Example 1.8(3)]
for an explanation why the estimate should contain a factor like N;(H) with some
t> A

(b) In [BHV13; Thm. 1.3], in the framework of Dirichlet Laplacians on open
subsets of R?, the estimate

4 A A d J A 4d—3 by 4d
Jol? < Colfy™ ((gm) wavanynm+(2) (725) >Hs0!|§

was shown under the additional assumption ¢t < 3\, where Fy = info(H). Our

estimate ]2 < cgA™9? (ﬁ)d/2 (In tﬁ—tA)dNt(H)”goH% improves on this in several

regards; most notably, the factors Eio, (ln N,(H ))d and the second summand are
removed altogether.

(c) In [BHV13], a partition of R? into cubes was used in the proof. We will
work with a “continuous partition” into balls instead; see the proof of Lemma 4.2.
Working with balls leads to a better constant c4 in the estimate.

(d) In the case d = 1 and H the Dirichlet Laplacian on an open subset of R, an
improved estimate is given in [BHV13; Rem. 1.5]. For that estimate it is crucial
that H is a direct sum of Dirichlet Laplacians on intervals. The improvement is
not possible for general H in dimension d = 1; this can be seen similarly as in
[BHV13; Example 1.8(3)].



If H has compact resolvent, then one can apply Theorem 1.1 with ¢ = (14 ¢)A
for any € > 0 to obtain the following estimate. Note that it contains the same
factor A~%2 as the lower bound of Remark 1.2(a).

1.3 Corollary. Assume that H has compact resolvent. Let ¢ be an eigenfunction
of H with eigenvalue \. Then

[el? < caCINNason(H)lel; (e > 0),
with cq as in Theorem 1.1 and C. = ¢~ /2In(3 + 2).

1.4 Remark. The assumption that H has compact resolvent is in particular sat-
isfied if Q has finite volume. Note that then the trivial estimate [p[? < vol(92)]¢]3
holds. We point out that, up to a dimension dependent constant, the estimate of
Corollary 1.3 is never worse since one has the bound N,(H) < K, vol(Q)t%/? for all
t > 0. (To obtain this bound, apply [LiYa83; Cor. 1] to open sets Q O Q and note
that e < e7"®a, where Ag denotes the Dirichlet Laplacian on Q.)

Our second main result is the following heat kernel estimate for semigroups
dominated by the free heat semigroup. This estimate is obtained as a by-product
of the preparations for the proof of Theorem 1.1.

1.5 Theorem. For allt > 0 the semigroup operator e "1 has an integral kernel p;.
If By :=info(H) > 0 then

eEy vz |x_y|2 d d
0 < pi(z,y) < ord) P —Eot—T (t>m, z,y € RY).

1.6 Remark. (a) For 0 <t < ﬁ one just has the estimate with respect to the
free heat kernel,

—d/2 . [z —y[?
0 < pe(w,y) < (4mt)" " exp )

In combination with Theorem 1.5 this gives

d/2 2e " |z —y|?
0 < pe(z,y) < (4mt)~Y (1 + EEDt) exp (—Eot i ) (t>0).

(In the case Ey = 0 this estimate is true but inconsequential.)
(b) In [Ouh06; formula (22)], the following estimate was proved in the frame-
work of Dirichlet Laplacians with absorption potentials on open subsets of R%:

i (1] [z — 2\ jz —yf*
pule) < cmt) (14 3ot VD) e (e - L),



where ¢ > 0 and ¢, = €*(1+ 1)¥2. Part (a) shows that the summand 5‘%—3'2 is
actually not needed, which may come as a surprise.

(c) In the generality of our setting, the estimate provided in Theorem 1.5 is
probably the best one can hope for. Suppose, for example, that the semigroup T’
is irreducible and that FEj is an isolated eigenvalue of H. Then the large time
behaviour of p; is known:

ePlpy(z,y) = plx)p(y)  (t — o0),

where ¢ is the non-negative normalized ground state of H; see, e.g., [KLVW13;
Thm. 3.1]. Moreover, if inf o(H) = 1 then E¥*p(E/2.) is the ground state of an
appropriately scaled operator Hg with info(Hg) = E. This explains the factor
Eg/ % in our estimate.

Note, however, that better estimates are known for Dirichlet Laplacians un-
der suitable geometric assumptions on the domain 2. Then a boundary term
like p(x)p(y) can be included in the estimate. This can be shown via intrinsic
ultracontractivity as in [OuWa07].

An important application of Corollary 1.3 is that it allows us to compare the
“heat content” of H with its “heat trace”. We assume that H has compact re-
solvent, with (A;) the increasing sequence of all the eigenvalues of H, repeated
according to their multiplicity. For ¢ > 0 we denote by Q(t) := |e " 1q|; the
heat content, by Zy(t) := > po, e the heat trace of H.

Note that Qp, Zy are decreasing functions. It may well occur that Qg (t) = oo
and/or Zy(t) = oo for some but not all ¢ > 0 if © has infinite Lebesgue measure,
see [BeDa89; Thm. 5.5].

1.7 Theorem. Assume that H has compact resolvent and that Zy(tg) < oo for
some to > 0. Then Qg(t) < oo for all t > 2t,

Qu(t) < ceahiZu(3)"  (0<e<i-2),

with c. q = chf as in Corollary 1.3.

The proof is rather short, so we give it right here. We will use the following
simple estimate.

1.8 Lemma. (cf. [BHV13; Lemma 5.2]) For T, \ > 0 one has N\(H) < Zg(T)e™.

Proof. If k € N is such that Ay < A, then k < e?™* Z?Zl e TA L T Zy(T). Thus,
NA(H) = #{k: Ao < A} < P2 (T). 0



Proof of Theorem 1.7. Let T := 2+E Let (¢x) be an orthonormal basis of Ly(€2)
such that Hyp = A\ for all £ € N. By Corollary 1.3 and Lemma 1.8 we obtain

lorl? < ceade > Nagon (D ox]2 < coahs P Zy (T)eT 0+

for all k € N. For f € Ly(2) N Loo(2) one has e ™ f =527 (f, or)e ™y and
hence

o0
el < 3 1l fipul?
k=1

Using a sequence (f;) in Lo(2) with 0 < fr 1 1 and recalling T'(1 4+¢) =t — T,
we conclude that

e Mgy <) e plf < c&dA;d/ZZH(T)Ze—m = NP Zy(T)?. O
k=1 k=1

The paper is organized as follows. In Section 2 we investigate properties of
selfadjoint positivity preserving semigroups dominated by the free heat semigroup.
In Section 3 we prove Theorem 1.5, and we show off-diagonal resolvent estimates
needed in the proof of Theorem 1.1, which in turn is given in Section 4.

2 Semigroups dominated by the free heat semigroup

Throughout this section let €2 C R? be measurable, and let T be a selfadjoint
positivity preserving Cp-semigroup on Lo(2) that is dominated by the free heat
semigroup, with generator —H. Let 7 be the closed symmetric form associated
with H. The purpose of this section is to collect some basic properties of 7 and H.

It is crucial that D(7) is a subset of H!(R?) (in fact an ideal; see, e.g., [MVVO05;
Cor. 4.3]). Thus we can define a symmetric form o by

o(u,v) = 7(u,v) — (Vu, Vv) (u,v € D(0) := D(1)). (2.1)

This gives a decomposition of the form 7 as the standard Dirichlet form plus a
form o that is positive and local in the sense of the following lemma. If —H is the
Dirichlet Laplacian with an absorption potential V' > 0 on an open set  C R,
then o(u,v) = [ Vuv. In this case the next three results are trivial.

2.1 Lemma. Let 0 < u,v € D(7). Then o(u,v) 20, and o(u,v) =0 if uAv =0.

Proof. By [MVV05; Cor. 4.3], the first assertion follows from the assumption that
T is a positive semigroup dominated by the free heat semigroup. For the second
assertion let w := u —v. Then 7(u,v) = 7(w™,w™) < 0 since T is a positive semi-
group (see, e.g., [MVVO05; Cor. 2.6]). Since (Vu, Vv) = 0, this implies o(u,v) < 0
and hence o(u,v) = 0. O



2.2 Lemma. If £ € WL (R?) and u € D(7), then &u € D(7). Moreover, f: R —
D(1), f(x):=&(- — x)u is continuous.

Proof. By [MVVO05; Cor. 4.3], D(7) is an ideal of H'(R?). This implies the first
assertion éu € D(7) since u € HY(RY) and [€u| < |€]oo|u| € D(7).

For the second assertion it suffices to show continuity at 0, and we can assume
without loss of generality that £, u are real-valued. From the identity

f@) = f(0) =&(- — @) (u—u(- — 7)) + (€u)(- —2) — &u

one deduces that f: R? — H'(R?) is continuous at 0. By Lemma 2.1 we obtain

o (f(x) = f(0)) = o (f(x) = F(0)]) < o(JE( — 2) = Elclul) < IVEIS |2 o (ful).
Due to the decomposition (2.1) this yields continuity of f: R? — D(r) at 0. O
2.3 Lemma. Let u,v € D(7). Then o(&u,v) = o(u,&v) for all € € WL(RY).

Proof. Since D(7) is a lattice, it suffices to show the assertion for u,v > 0 and
real-valued £. Throughout the proof we consider only real-valued function spaces.
We define a bilinear form b by

b, ¥) == a(pu,gv) (g, € D(b) == WL o(RY)).

Then b(p,1) > 0 for ¢,9 > 0 by Lemma 2.1. Now one can proceed similarly as
in [ArWa03; proof of Thm. 4.1] to show that

o (pu, Pv) = /W dp (.0 € Wit o(RY)) (2.2)

for some finite positive Borel measure p on R? (depending of course on u,v). We
only sketch the argument: first one can extend b to a continuous bilinear form
on Cy(R%), by positivity. Then one uses the linearisation of b in Cp(R? x R?)’ to
obtain a finite Borel measure v on R? x R? such that b(p,v) = [ p(2)¥(y) dv(z,y)
for all ¢,¢ € WL ((R?). Finally, sptv C {(z,2); 2 € R?} since b(¢, ) = 0 in the
case spt o NsptyY = &, by Lemma 2.1, and this leads to the asserted measure .

To complete the proof, we show that the representation (2.2) is valid for all
¢, € WL(RY). Let x € CHR?) such that 0 < x < 1 and x|p@,1) = 1. Then
U, = x(3)u — u in HY(R?) as n — oo, and o(u,) < o(u) for all n € N by
Lemma 2.1. Therefore, limsup 7(u,) < 7(u), and this implies u,, — w in D(7).
Applying (2.2) to J(X(;)gpu, X(;)wv) and letting n — oo we derive (2.2) for any
@, € WL(R?). For real-valued £ € W (R?) we now obtain

o(&u,v) = /ﬁdu = o(u,&v). O



In the proof of Theorem 1.1 we will work with operators that are subordinated
to H as follows. For an open set U C RY let Hy; denote the selfadjoint operator in
Ly(2NU) associated with the form 7 restricted to D(7) N Hi(U). (Observe that
this form domain is dense in Ly(Q2NU).)

2.4 Lemma. Let ¢ be an eigenfunction of H with eigenvalue \. Let U be an open
subset of RY, and let € € W2(R?), € =0 on R\ U. Then &g € D(Hy) and

(Hy — M) (§p) = —2VE -V — (A,

Proof. By Lemma 2.2 we have £ € D(7). Moreover, {p € H}(U) due to the
assumption £ = 0 on R?\ U. For v € D(7) N H}(U) we have (v € D(7) N HE(U)
and

(T = M, €v) = ((H = Mg, Ev) = 0.

Since o(&p,v) = o(p, &v) by Lemma 2.3, the decomposition (2.1) yields

(T =N (Ep,v) = (T = N)(€p,v) = (T = A)(p, Ev)
= (V(€p), Vv) = (Vi, V(Ev)) = (pVE, V) — (Vp,vVE).

Now V¢ is in HY(RY)? and V - (pVE) = Vo - VE + A&, so we conclude that

for all v € D(7) N H}(U), which proves the assertion. O

3 Heat kernel estimates

In this section we prove Theorem 1.5, and we provide resolvent estimates needed
in the proof of Theorem 1.1. Throughout we denote

C;:={z€C; Rez > 0}.
We point out that in the following result 7" is not required to be a semigroup.

3.1 Proposition. Let (€2, 1) be a measure space, and let p: @ — R be measurable.
Let \€ R, and let T: Cy — L(La(p)) be analytic, |T(2)| < e B for all z € C,.
Assume that there exists C' > 0 such that

[T (t)e | < Ce®™  (a,t > 0).
Then
|e**T(z)e | < exp(a®/Rei — ARez) (>0, z€C,),

in particular, |e®?T(t)e | < e for all a,t > 0.

7



Here and in the following we denote

lwBw™| = sup{JwBuw " fls; f € Lo(u), |f]> < 1, w'f € L(u)}
for an operator B € £(Ls(1)) and a measurable function w: Q — (0, 00).

Proof of Proposition 3.1. Observe that
M :={f € Ly(p); p bounded on [f # 0]}

is dense in Ly(p). Let o« > 0, and let f,g € M with |f]|2 = |g|2 = 1. Define the
analytic function F': C, — C by

F(z2) := 2 (/2T (2)e /7 f g).
Let ¢ > 0 such that |[p| < con [f # 0] U [g # 0]. Then
[F(2)] < [T () le " fl2e*”Zgl> < exp(2acRei) (€ Cy),
in particular |F(t)] < e** for all ¢ > 1. Moreover,
|F(t)] < M| eP T (t)e 0/t < M/t Cele/Dt < el

for all 0 <t < 1. Thus, |F(2)] < 1 for all z € C; by the next lemma, and this
yields

|e?/* T (2)e /2| < exp(a®Rel — ARez) (a>0, z€Cy).
The assertion follows by replacing o with a/ Re 1. [
The following Phragmén-Lindel6f type result is similar to [CoSi08; Prop. 2.2].

3.2 Lemma. Let F': C, — C be analytic. Assume that there exist ¢, co > 0 such
that
|F(2)] < exp(eRez) (2 €Cy), [F(t) <cz (E>0).

Then |F(z)| <1 for all z € C,.

Proof. Note that limsup, ,;, [F(z)] <1 for all y € R\ {0}. Thus, [F(2)] < V1
for all z € C, by the Phragmén-Lindelof principle applied to the sectors {z e G
Rez>0, Imz > 0} and {z €C; Rez>0, Imz < O}. Then an application of the
Phragmén-Lindel6f principle to the sector C, implies |F| <1 on C,. O

In the next lemma we state a version of the well-known Davies’ trick; cf. [Dav95;

proof of Lemma 19]. For the proof note that inf¢cga exp(|£|2t —&- x) = exp(—%)
for all t > 0, z € R%.



3.3 Lemma. Let Q C R be measurable, and let B be a positive operator on Ly(S).
For &,z € R? let pe(x) := €. Then for t > 0 the following are equivalent:

(i) B < e,

(ii) ||p§Bp£_1||1_>C>O < (4mt) =926l for all € € RY.

In (i), the inequality B < e'® is meant in the sense of positivity preserving

operators, i.e.,
Bf<e™f (0L f e Ly(R).

The following result provides an estimate of the resolvent of H by the free
resolvent. Together with Proposition 3.5 below this will be an important stepping
stone in the proof of Theorem 1.1.

3.4 Theorem. Let Q C RY be measurable, and let T be a selfadjoint positive Cy-
semigroup on Lo(S2) that is dominated by the free heat semigroup. Let —H be the
generator of T, and let Ey :=info(H). Then for all € € (0,1] one has

T(t) < 67d/267(176)E0t€tA (t 2 0)7
(H-N"'<e(1-e)By—A—A)"" (A< (1—2)Ey).

Proof. As above let pg(z) := €. The assumptions imply [T(z)]22 < e PoRe= for
all z € C4 and

[0eT(D)pg oz < lpee™pg ame = € (£ €RY, 12 0).
By Proposition 3.1 it follows that
locT (B0 |on < /7750 (€€ RY, 12 0) (31)
Let ¢ > 0, and let k; be the convolution kernel of . Then for £ € R¢ the
kernel of e*t‘5|2p§empgl is given by
eI (0 —y) = (w2 —y)  (v,y €RY

since —t[¢]? + & (x —y) — % = —%. (The above identity is the key

point in the proof; this is why we need unbounded weights in Proposition 3.1.)
Therefore,

YT ()05 oo < [ e = #4112 = (8t 1

By duality we also have 6_t|£‘2Hp§T(t)pgl||1_>2 < (87t)~%*. Using the semigroup
property and (3.1), we conclude for € € (0, 1] that
lpeT()pe 1o < e (58)p  lomsoclpeT((1 = €)t) ¢ a2l peT (51) g 12
< et\g| (87r§t) d/4 —Eo(1—¢) (87?%) d/4 _ (47r£t) d/2 t|£|2 Eo(1— s)t_

Now the first assertion follows from Lemma 3.3, and this gives the second assertion
by the resolvent formula. m



Proof of Theorem 1.5. The existence of the kernel p, follows from the Dunford-
Pettis theorem, and Theorem 3.4 implies

2
pe(z,y) < (drmet)” 4/2g=Eot oxp) (—Eot — =~y >

4t

for all £ > 0. Then for t > the assertion follows by setting € := 5 g e [
0
We conclude this section Wlth an off-diagonal L;-estimate for the free resolvent.

3.5 Proposition. Let A, B C R? be measurable, and let d(A, B) denote the dis-
tance between A and B. Then

[La(k = A) " Lplion < (1= 6% L exp(—0,/id(A, B))
forallp>0, 0<d<1.
Proof. Let r := d(A, B). By duality we have to show

115(1 — A) A somoo < (1 —6%)~421 exp( Ory/i) =: C,

or equivalently, (u — A)7'14 < C on B. Let z € B. By the resolvent formula we
obtain

(n—A)"1a(z / t/ kt(y)lA(a:—y)dydt</ / y) dy dt,
R 0 lyl>r

where k;(y) = (4mt)=4? exp(—%). We substitute y = (4¢)"/2z and note that
ly| = r if and only if t > (2‘ |) : then by Fubini’s theorem we infer that

(n—A) 1y (z) < 72 /d/ , et dt e’ dz
R (ol

1 2
= 7Td/2—/ exp| — A |2|?) d=.
H JRd 4fz]?

Note that 0r\/u < 4|z2 + 6?|z|* and hence exp(— "” — [2?) < e Vi (1=
for all z € RY. We conclude that

(Iu_ A)_llA(I) < l%e—@r\/ﬁﬂ-—d/?/de (1—62)|z |2dZ 1 —Grf( _92)—d/2’
R

which proves the assertion. O

3.6 Remark. For p > (4)2 (where r = d(A, B)), optimizing the estimate of

r

Proposition 3.5 with respect to 0 leads to the choice § = (1— 7,\f) Y2 For > (%)2,
the choice § =1 —

5 \/ﬁ yields

_ e /21 _,
[La(p — A) Lo < (2 +ry/m) e VR,

10



4 Proof of Theorem 1.1

Throughout this section we assume the setting of Section 2, i.e., Q C R? is mea-
surable, T" a selfadjoint positivity preserving Cp-semigroup on Lo(2) dominated
by the free heat semigroup, with generator —H, and 7 the closed symmetric form
associated with H. We denote

Ey(H) :=info(H).

Recall that, for an open set U C RY, Hy; is the selfadjoint operator in Ly(Q2 N U)
associated with the form 7 restricted to D(r) N H}(U).

For A C R we denote by U.(A) = U, B(z,€) the e-neighborhood of A. If
A is measurable, then we write |A| for the Lebesgue measure of A. For r > 0 and
Eo(H) <t < infoes(H) we define the sets

Fr<t) = {.’L’ € Rda E0<HB(:):,7")> < t}7

(4.1)
G, (t) =R\ U, (F,(1)).

For the proof of Theorem 1.1 the following two facts will be crucial. On the one
hand, the set F,.(¢) is “small” in the sense that the Lebesgue measure of Us,.(F.(t))
is not too large, as is expressed in the next lemma. On the other hand, the set
G,(t) is “spectrally small” in the sense that the ground state energy of Hg, ) is
not much smaller than ¢; see Lemma 4.2 below.

4.1 Lemma. Letr >0 and Ey(H) <t < inf o.s(H). Then
Us(Fr ()] S wa(2r +5)IN(H) (s >0),
where wy := |B(0,1)].

Proof. Let M C F,.(t) be a maximal subset with the property that the balls
B(z,r), * € M are pairwise disjoint. Then by the min-max principle and the
definition of F,.(t) one sees that M has at most N,(H) elements. Moreover,
F.(t) € U,en B(w,2r) by the maximality of M. Therefore,

U(F(8)] < ) |B(,2r + 8)| < No(H) - wa(2r + 5)*. O

zeM

4.2 Lemma. Let Ey, denote the ground state energy of the Dirichlet Laplacian
on B(0,1). Then Egy < 3(d+1)(d+2) < 2(d+1)2, and

Eo(Hg,@) =t — Eoa/r° (r>0, Eo(H) <t <infoes(H)).

11



Proof. For ¢ € W3,(B(0,1)) defined by ¢(z) = 1 — |z| one easily computes
IVY3/|v]3 = 3(d + 1)(d + 2), thus proving the first assertion. Let now ¢ de-
note the normalized ground state of the Dirichlet Laplacian on B(0,1). For r > 0
let v, := r~%?(2); note that |+,], = 1 and ¢, € WL (R?).

To prove the second assertion, we need to show that

7(u) = (t = Boa/r?) lul (4.2)

for all uw € D(7) N H}(G,(t)), without loss of generality u real-valued. We will use
(¢r(- — 2)?) ,cpa as a continuous partition of the identity. By Lemma 2.2 we have
V(- — x)u € D(7) for all z € R%. Using (2.1) and Lemma 2.3 we obtain

T(%(' —.2? er —ZE)VU—FUV@&T - ”2+0 wr( )’LL)
= / (T = )) - Fu+ w290, = ) + (6, = ) 1)
=7(¢r(- — 2)?u,u) + /u2|Vwr(- —x)|?.

Note that [, (y — z)*dz = |¢,|3 =1 and

/ Vi (y — )2 dr = [V, |2 = [Vol3/r = Eoa/r?

for all y € R% Taking into account Lemma 2.2 (with & = ¢?) we thus obtain
[ 7 (- — )?u,u) dz = 7(u,u) and hence

/T(¢r(~ —z)u) dr = 7(u) + |ul3 - Eoa/r.

To conclude the proof of (4.2), we show that the left hand side of this identity is
greater or equal t|ul3: note that ¢,(- — x)u € H}(B(z,r)). For x € R%\ F,(t) we
have 7 (¢, (- — z)u) > t]h.(- — z)u|3 by the definition of F(t); for z € F,(t) we
have 9, (- — z)u = 0 since u € H}(G,(t)). Therefore,

/ (- / 160(- — 2)ul dz = t]ul3. m

4.3 Remark. It is known that Ej, behaves like %ldQ for large d. For d = 3,
however, the estimate Eog < 3(d + 1)(d + 2) = 10 from Lemma 4.2 is quite sharp
since Ep3 = 72 > 9.86.

4.4 Lemma. There ezists 0 < p € C*(RY) such that spt p C B(0,1) ), [p=1and

Vol <d+1,  [Apl < 2(d+1)% (4.3)
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Proof. Let py € WEHRY), po(z) := 242 (1 |2|*)15(0,1)(z), where 04—y denotes

204-1
the surface measure of the unit sphere 0B(0,1). Then one easily computes

d(d+ 2
/pozl, uwoul=—<d+1><d+1
and d(d + 2)
Apy = T(_dlB(O,l) + 583(0,1))

in the distributional sense, so Apy is a measure with |Apo| = 2d(d+2) < 2(d+1)%
Using a suitable mollifier and scaling, one obtains p as asserted. O

Proof of Theorem 1.1. (i) Let r > (133_,:\1)1/27 and let F, := F.(t), G, := G,(t) be

as in (4.1). Then Ey(Hg,) > A by Lemma 4.2. We define ¢ € C?(R?) satisfying
spté C G, spt(1ge — &) C Us, (F)
as follows: let p, := r~%p(%), where p is as in Lemma 4.4. Then
§:=1pa — prj2 * 1y, ,(p) = s1ga + pry2 % (31ga — 1u,, 0(F))
has the above properties, and
Vel < 5IVor2l = 21Vl 188l < 5180020 = FAp1 (4.4)

By Lemma 2.4 we obtain £p € D(Hg,) and

fri=(Ha, = N)(Ep) = =2VE- Vo — (A, spt f, Cspt VE C Us,(F).

Then o = (Hg, — A) ' fr = (Hg, — N) "1y, fr- Since & =1 on Q\ Us,(F}), we
can now estimate

lel = 1o, melt + 11avus. 7)€@l

. (4.5)
< ”1U3T(Fr)90”1 _'_ ”:LQ\UST(FT)(HGT - >\) 11U27‘(FT)||14)1||fTH1'

The remainder of the proof consists of estimating the terms in this pivotal inequal-
ity.
Lemma 4.1 implies

1/2
110, (el < 1Use(F)I2lplla < (wa(5r)'No(H)) Y

Il (4.6)
and

[l < U (ED 21l < (waldr) No(H)) 1 oo (4.7)
2 2
[/l < 2V el Vel + [Allclelz < = IVol VA el + slAohlelz,  (4.8)

where in (4.8) we used (4.4) and V|2 = A|¢|3.
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(ii) Next we estimate |1o\u,, () (Ha, — N) "1y, (5)151- Let 6,60 € (0,1) and

€= 5?, = (1l—¢e)Ey(Hg,) — A

Then (Hg, — A)™! < e=2(u — A)~! by Theorem 3.4, and hence Proposition 3.5
implies
|1t () (He, = A) Lo, () o1 < e ¥2(1 = 67)" %2 Le70VE (4.9)
By Lemma 4.2 and the definition of € we have
p= (=)t —Eoa/r?) —A>t—ct—Eyq/r> — A= (1-0)(t —\) — Ega/r*.

We now choose r such that r? = ﬂ, with ¢ > d + 1 to be determined later.
(1-6)(t—X)

Then , 7/4 ;
r* < a=0t—n c (4.10)
since Fyq < 2(d+ 1)? < 3¢? by Lemma 4.2, and
pr? = (1= 68)(t — \r? — Egq = .
By (4.9) we thus obtain

2
_ _ CanT .
|Lovvs, () (He, — ) Loy, (101 < £772(1 = 67) d/QC_ge oe. (4.11)

(iii) In this step we incorporate an estimate for | f,.|; into (4.11). By (4.3) we
have |Vp|: < c and |Ap|; < 2¢2. Thus, using (4.8), (4.10) and X < ¢ we obtain
2
’
S lrl2 < IVolirvX lela + 140111 el2

7/4 ) t
< 2 . 2 < 2
<y 2 ekt 2ol < 20 ok

with C5 = 1/2/(1 — 0) + 2. Recalling ¢ = 6=, we infer by (4.11) that

2
~ _ 4 el
|Lo\0s, () (He, — N Loy, mo i) frlla < 721 — 62) 742 C—2||fr\|2 (4.12)

< 5—d/2($)(d+1)/2<1 N 92)7d/2€790 . 206”(,0”2-

Now we set K5 := 26(1 — 6?) and choose

d+1, (1t
c:= . .
20 Kso t—A\
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Then

5—d/2(ﬁ)(d+1)/2(1 _ 02)—(1/26—9(; _ (g)dﬂK;,/e?’

so by (4.7) and (4.12) we obtain

|Lovvs, () (Ha, — )™ Lo,y 11 fe

(4.13)
< (wa(Br)*N(H)) - K 2Cs [l
(iv) We set 6 := 3 and 6 := 12, so that Ks¢ =  and hence
c=(d+1)n2 >d+1 (4.14)

as required above. Moreover, one easily verifies that K (%2 -2C5 < g. By (4.5),
(4.6) and (4.13) we conclude that

lol? < (S (walsr) M) Plele)” = (2P uulsr)'Ni(Dlely.  (415)

Stirling’s formula yields

Wy =

/2 d/2

™

<
L(§+1) ~ \/2rdf2 (L)

T = (nd) V2 (2me)Y2d—4/?,

so by (4.10) we obtain

wd(5r)d < (Wd)_l/2 (27?6 ) %)dmd_d/z ) 5dCd(t _ )\)_d/g'

Using 2me - 125 < 72, (d+ 1)? < 24472 and (4.14) we finally derive
wa(5r)t <27 5) - 24 (In 2L) (8 — A) 72,
Together with (4.15) this proves the assertion since (%)2 7122 < 35. O
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