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Abstract

We investigate selfadjoint C0-semigroups on Euclidean domains satisfy-
ing Gaussian upper bounds. Major examples are semigroups generated by
second order uniformly elliptic operators with Kato potentials and magnetic
fields. We study the long time behaviour of the L∞ operator norm of the
semigroup. As an application we prove a new L∞-bound for the torsion
function of a Euclidean domain that is close to optimal.
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1 Introduction and main results

If H is a Schrödinger operator in a Euclidean domain with ground state energy
inf σ(H) = 0, then clearly the L2 operator norm of e−tH equals 1 for all t > 0.
By duality and interpolation, the L∞ operator norm is bounded below by 1, and
typically one has an upper bound that grows polynomially in t, with an exponent
that depends on the dimension. This phenomenon was studied, e.g., in [Sim80],
[DaSi91], [Ouh06a]; see the discussion below for more details. In Theorem 1.1 we
give an improvement of the growth bound shown by Ouhabaz in [Ouh06a].

If H = −∆D is the negative Dirichlet Laplacian on a bounded Euclidean do-
main D, then H is invertible, and one can compare the L2 and L∞ operator norms
of H−1. This leads to L∞-estimates for the torsion function uD = H−11 of D;
cf. Remark 1.3. Following the work of van den Berg and Carroll [BeCa09], we
prove an estimate for ||uD||∞ in terms of the ground state energy inf σ(−∆D), with
a dimension dependent constant that is close to optimal. This is obtained as a
consequence of the more general Theorem 1.5.
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The following are our standing assumptions.

(A) Let Ω ⊆ Rd be measurable, where d ∈ N, and let H be a selfadjoint operator
in L2(Ω) with the following properties:

E0 := E0(H) := inf σ(H) > −∞,

and the C0-semigroup generated by −H satisfies Gaussian upper bounds:
e−tH has an integral kernel pt, for every t > 0, and there exist M > 1, ω ∈ R
and a > 0 such that

|pt(x, y)| 6Meωt · (aπt)−d/2exp

(
−|x− y|

2

at

)
(1.1)

for all t > 0 and a.e. x, y ∈ Ω.

Expressed differently, (1.1) means that e−tH is dominated by Meωte
a
4
t∆,

|e−tHf | 6Meωte
a
4
t∆|f |

(
t > 0, f ∈ L2(Ω)

)
, (1.2)

where ∆ = ∆Rd denotes the Laplacian on Rd and |f | is extended by 0 to a function
on all of Rd.

Assumption (A) is satisfied, e.g., if Ω is an open set and H is a selfadjoint
second order uniformly elliptic operator in divergence form subject to Dirichlet
boundary conditions; see [Dav89; Thm. 3.2.7]. If some regularity of the boundary
of Ω is assumed, then a variety of other boundary conditions are covered, such as
Neumann or Robin boundary conditions ([Ouh05; Thm. 6.10, Prop. 4.24]). More-
over, H may include a magnetic field (due to the diamagnetic inequality) and a
potential from the Kato class; cf. [Sim82; Prop. B.6.7].

The first topic of the paper is to investigate the asymptotic behaviour of
||e−tH ||∞→∞, i.e., of the norm of the semigroup operators in L(L∞(Ω)). In [Sim80;
formula (1.9)], the estimate

||e−tH ||∞→∞ 6 C(1 + t)d/2e−E0t

was shown for a certain class of Schrödinger operators H on Rd. This estimate
was substantially improved and generalized in [Ouh06a; Thm. 4] for operators
on Euclidean domains and in [Ouh06b; Thm. 7] for operators on open subsets
of complete Riemannian manifolds: If the semigroup generated by −H satisfies
Gaussian upper bounds, then

||e−tH ||∞→∞ 6 C(1 + t ln t)d/4e−E0t.

Here we show that the term ln t can be removed, albeit only for the case of
operators on subsets of Rd. We point out that all the constants in our estimate
are explicit.
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1.1 Theorem. Let Assumption (A) hold. Then

||e−tH ||∞→∞ 6 21/4M
(
1 + 5.56

d
(E0 + ω)t

)d/4
e−E0t

for all t > 0.

1.2 Remark. As pointed out in [Ouh06a], the exponent d/4 is sharp in dimension
d = 4: in [Sim81; Thm. 3.1], examples are given where E0 = 0 and ||e−tH ||∞→∞
grows like (1+t)4/4

ln t
. It is not clear if d/4 is sharp in other dimensions; however,

a reduction of the exponent below (d − 2)/4 is impossible, which can be seen by
considering slowly varying resonances with index α ∈

(
0, (d− 2)/2

)
(see [DaSi91;

Prop. 10, Thm. 14]).

For our second main result we specialize to the case that Assumption (A) is
satisfied with M = 1, ω = 0 and a = 4, i.e., e−tH is dominated by the free heat
semigroup on Rd,

|e−tHf | 6 et∆|f |
(
t > 0, f ∈ L2(Ω)

)
. (1.3)

An important example for the operator −H is the Dirichlet Laplacian with mag-
netic field and a locally integrable absorption potential on an open set Ω ⊆ Rd (cf.
[Ouh05; Section 4.5]). For more general absorption potentials the space of strong
continuity of the semigroup will be L2(Ω′) for some measurable Ω′ ⊆ Ω.

Assuming E0(H) > 0, we are going to study the quantity

q(H) :=
||H−1||∞→∞
||H−1||2→2

= E0(H) · ||H−1||∞→∞ . (1.4)

Note that q(H) > 1 by duality and Riesz-Thorin interpolation, and q(H) = 1 if
H = −∆Rd + c for some c > 0. Also in the case where H is the negative Dirichlet
Laplacian on a bounded domain, q(H) may be arbitrarily close to 1, as was recently
shown in [Ber17].

1.3 Remark. (a) If H−1 is a positivity preserving operator, then

||H−1||∞→∞ = ||H−11||∞
so that

q(H) = E0(H) · ||H−11||∞ (1.5)

in this case.
(b) Let D be an open subset of Rd and H = −∆D, where ∆D denotes the

Dirichlet Laplacian on D. Then uD := H−11 is the torsion function of D, and
by (1.5) we have

||uD||∞ =
q(H)

E0(H)
.
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Thus, the bounds for the quantity q(H) that we prove in Theorem 1.5 below lead
to bounds for the L∞-norm of the torsion function uD. We mention that

uD(x) = Ex
(
inf{t > 0; B(t) /∈ D}

)
,

the expected time of first exit from D of Brownian motion B starting at x ∈ D.

We first consider the case that H = −∆Bd , where Bd denotes the open unit
ball in Rd.

1.4 Lemma. There exists C > 0 such that

d

8
6 q(−∆Bd) 6

d

8
+ Cd1/3

for all dimensions d.

Is is easy to see that q(−∆B) = q(−∆Bd) for all balls B ⊂ Rd. One might
conjecture that q(−∆D) 6 q(−∆Bd) for all bounded open subsets D ⊂ Rd ([Ber12;
top of p. 614]). This does not hold in dimension d = 2: if D is an equilateral
triangle, then q(−∆D) ≈ 1.462 > 1.446 ≈ q(−∆B2); see [Her79; top of p. 116]. It
was recently shown by Henrot et al. ([HLP17; Cor. 3.7]) that also the equilateral
triangle is not a maximizer of q(−∆D) in dimension 2.

Our second main result shows that, nevertheless, q(−∆Bd) is not far from an
upper bound for q(H), even for the general operator H in place of −∆D; note that
our estimate below with c

√
d is only slightly worse than the estimate with Cd1/3

in Lemma 1.4.

1.5 Theorem. Let Assumption (A) hold with the stronger estimate (1.3). Then

1 6 q(H) 6
d

8
+ c
√
d+ 1,

where c := 1
4

√
5(1 + 1

4
ln 2) < 0.61.

1.6 Remark. (a) Clearly, the upper bound Cd := d
8

+ c
√
d+ 1 in Theorem 1.5 is

not optimal. But, as discussed above, d
8

is the correct leading order term in high
dimensions. It turns out that the bound Cd is also quite good in low dimensions.
Here is a table of approximate values for qd := q(−∆Bd) and Cd :

d 1 2 3 4 5

qd 1.2337 1.4458 1.6449 1.8352 2.0191

Cd 1.7305 2.1063 2.4238 2.7110 2.9790

It appears that Cd is never off by more than a factor of 1.5.
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(b) In [BeCa09; Thm. 1] it is shown that

q(−∆D) 6 3 ln 2 · d+ 4

for all open subsets D ⊂ Rd with E0(−∆D) > 0. Theorem 1.5 improves the
constant 3 ln 2 in front of d to the optimal 1

8
(cf. Lemma 1.4).

The proofs of Lemma 1.4 and of Theorems 1.1 and 1.5 will be given in Section 3.
In Section 2 we provide the necessary tools and prove an auxiliary result.

2 The method of weighted estimates

The aim of this section is to prove the following theorem, which will be used in
the proofs of our two main results.

2.1 Theorem. Let Assumption (A) hold. Then for all ε ∈ (0, 1] one has

||e−tH ||∞→∞ 6 21/4M

(
1 + 1/

√
ε

2

)d/2
eε(E0+ω)t−E0t (t > 0).

2.2 Remark. The precise form of the factor
(1+1/

√
ε

2

)d/2
will be important for the

proof of Theorem 1.5, where ω = 0: given t > 0, it is not difficult to show that
there exists ε ∈ (0, 1] with(

1 + 1/
√
ε

2

)d/2
eεE0t−E0t < 1

if and only if E0t >
d
8
. This is the origin of the leading term d

8
in the upper estimate

of Theorem 1.5.

The proof of Theorem 2.1 is based on the method of weighted estimates. We
need two ingredients: a result on complex interpolation and a way to derive
L∞→L∞-estimates from weighted L2→L∞-estimates. Our first ingredient is a
refinement of Proposition 3.1 from [Vog15], where the case ε = ω = 0 is proved.
We denote C+ := {z ∈ C ; Re z > 0}.

2.3 Proposition. Let (Ω, µ) be a measure space, and let ρ : Ω→ R be measurable.
Let E0 ∈ R, and let T : C+ → L(L2(µ)) be analytic, ||T (z)||2→2 6 e−E0 Re z for all
z ∈ C+. Assume that for every ε > 0 there exist C > 0 and ω ∈ R such that

||e−αρT (t)eαρ||2→2 6 Ce(1+ε)α2t+ωt (α, t > 0).

Then ||e−αρT (t)eαρ||2→2 6 eα
2t−E0t for all α, t > 0.
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Here and in the following we denote

||e−ρBeρ||p→q := sup
{
||e−ρBeρf ||q ; f ∈ Lp(µ), ||f ||p 6 1, eρf ∈ L2(µ)

}
for a given operator B ∈ L(L2(µ)), a measurable function ρ : Ω → C and p, q ∈
[1,∞].

Proof of Proposition 2.3. We define a rescaled analytic function T̃ : C+→L(L2(µ))
by

T̃ (z) := exp
(
− ωz

1+ε

)
T
(

z
1+ε

)
.

Then
||T̃ (z)||2→2 6 exp

(
−ωRe z

1+ε
− E0

Re z
1+ε

)
= exp

(
−ω+E0

1+ε
Re z

)
for all z ∈ C+. Moreover,

||e−αρ T̃ (t)eαρ||2→2 6 exp
(
− ωt

1+ε

)
· C exp

(
(1 + ε)α2 t

1+ε
+ ω t

1+ε

)
= C exp(α2t)

for all t > 0. Thus we can apply [Vog15; Prop. 3.1] to obtain

||e−αρ T̃ (t)eαρ||2→2 6 exp
(
α2t− ω+E0

1+ε
t
)

for all t > 0 and hence

e−ωt||e−αρT (t)eαρ||2→2 = ||e−αρ T̃ ((1 + ε)t)eαρ||2→2 6 eα
2(1+ε)t−(ω+E0)t.

Multiplying by eωt and letting ε→ 0 we obtain the asserted estimate.

We will work with the weight functions e±αρw , where α > 0 and ρw : Rd→ [0,∞]
is defined by

ρw(x) := |x− w|,

for given w ∈ Rd. Note that e−αρw ∈ L1 ∩ L∞. We will need a good estimate for
the integral of e−αρw .

2.4 Lemma. (a) For x > 0 one has Γ(x+ 1
2
) 6 (xe )x

√
2π.

(b) For α > 0 one has
∫
Rd e

−α|y| dy 6
√

2
(

2πd
e

)d/2
α−d.

Proof. (a) We have to show that

f(x) := x lnx− x+ ln
√

2π − ln Γ(x+ 1
2
) > 0

for all x > 0. More strongly, we show that

f(x) =

∫ ∞
0

1

t

(
1

t
− 1

2 sinh(t/2)

)
e−tx dt =: g(x)
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for all x > 0, which even implies that f is completely monotone.
First observe that the function t 7→ 1

t

(
1
t
− 1

2 sinh(t/2)

)
is bounded on (0,∞), so g

is defined and g(x)→ 0 as x→∞. Moreover, by Stirling’s formula we obtain

lim
x→∞

f(x) = lim
x→∞

(
x lnx− x− x ln(x+ 1

2
) + (x+ 1

2
)
)

= lim
x→∞

(
x ln x

x+1/2
+ 1

2

)
= 0.

According to [AbSt72; 6.4.1] we have (ln Γ)′′(x) =
∫∞

0
t

1−e−t e
−xt dt for all x > 0. It

follows that

f ′′(x) =
1

x
− (ln Γ)′′(x+ 1

2
) =

∫ ∞
0

(
1− te−t/2

1− e−t

)
e−xt dt

=

∫ ∞
0

1

t

(
1

t
− 1

et/2 − e−t/2

)
t2e−xt dt = g′′(x)

for all x > 0. Together with limx→∞(f − g)(x) = 0 we conclude that f − g = 0.
(b) Assume without loss of generality that α = 1. With σd−1 denoting the

surface measure of the unit sphere we compute∫
Rd
e−|y| dy = σd−1

∫ ∞
0

rd−1e−r dr =
2πd/2

Γ(d/2)
Γ(d).

By [AbSt72; 6.1.18] and part (a) we obtain

Γ(2x)/Γ(x) = (2π)−1/222x−1/2Γ(x+ 1
2
) 6 22x−1/2(xe )x

for all x > 0. It follows that∫
Rd
e−|y| dy 6 2πd/2 · 2d−1/2

(
d
2e

)d/2
=
√

2
(

2πd
e

)d/2
.

Based on Lemma 2.4 we can prove our second ingredient in the method of
weighted estimates.

2.5 Proposition. Let Ω ⊆ Rd be measurable, α > 0, and let B be a bounded
operator on L2(Ω) satisfying

||e−αρwBeαρw ||2→∞ 6 1

for all w ∈ Ω. Then

||B||∞→∞ 6 21/4
(
πd
2e

)d/4
α−d/2.

Proof. Let f ∈ L2(Ω) ∩ L∞(Ω) have bounded support. Observe that ||Bf ||∞ =
supw∈Ω ||e−αρwBf ||∞. For all w ∈ Ω we can use the assumption to estimate

||e−αρwBf ||∞ 6 ||e−αρwf ||2 6 ||e−αρw ||2||f ||∞ .
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By Lemma 2.4(b) we have

||e−αρw ||22 =

∫
Ω

e−2α|y| dy 6
√

2
(
πd
2e

)d/2
α−d,

so it follows that ||Bf ||∞ 6 21/4
(
πd
2e

)d/4
α−d/2||f ||∞. A simple approximation shows

that the same estimate holds for arbitrary f ∈ L2(Ω) ∩ L∞(Ω), which proves the
assertion.

In order to apply Proposition 2.5 in the proof of Theorem 2.1, we need the
following weighted estimates of the free heat semigroup (et∆)t>0 on Rd.

2.6 Lemma. Let w ∈ Rd and α > 0. Then

||e−αρwet∆eαρw ||2→2 6 eα
2t, ||e−αρwet∆eαρw ||2→∞ 6

(
1 + 1

β

)d/4
(8πt)−d/4e(1+β)α2t

for all t, β > 0.

Proof. Let x, y, w ∈ Rd and α, β, t > 0. Let kt be the convolution kernel of et∆.
First observe that

−α|x− w|+ α|y − w| 6 α|x− y| 6 (1 + β)tα2 + |x−y|2
4(1+β)t

.

It follows that

e−α|x−w|kt(x− y)eα|y−w| = (4πt)−d/2 exp
(
−α|x− w|+ α|y − w| − |x−y|

2

4t

)
6 (4πt)−d/2 exp

(
(1 + β)α2t− β

1+β
|x−y|2

4t

)
=
(

1+β
β

)d/2
e(1+β)α2tks(x− y),

with s = 1+β
β
t. Therefore,

||e−αρwet∆eαρw ||2→2 6
(

1+β
β

)d/2
e(1+β)α2t||es∆||2→2 .

Since ||ez∆||2→2 6 1 for all z ∈ C+, the function z 7→ ez∆ satisfies the assumptions
of Proposition 2.3 with E0 = 0, and the first assertion follows.

Similarly,

||e−αρwet∆eαρw ||2→∞ 6
(

1+β
β

)d/2
e(1+β)α2t||es∆||2→∞ .

This implies the second assertion since ||es∆||2→∞ = (8πs)−d/4 =
(

1+β
β

)−d/4
(8πt)−d/4.

Now we are ready to prove the main result of this section.
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Proof of Theorem 2.1. We first show the assertion in the case where E0 = 0 and
a = 4; then the general assertion is proved by rescaling.

Assumption (A) implies that ||e−zH ||2→2 6 e−E0 Re z = 1 for all z ∈ C+ and

||e−αρwe−tHeαρw ||2→2 6Meωt||e−αρwet∆eαρw ||2→2 6Meωt+α
2t (w ∈ Rd, α, t > 0),

where the last estimate is due to Lemma 2.6. By Proposition 2.3 it follows that

||e−αρwe−tHeαρw ||2→2 6 eα
2t

(
w ∈ Rd, α, t > 0

)
. (2.1)

Applying (1.2) and Lemma 2.6 again we obtain

||e−αρwe−tHeαρw ||2→∞ 6Meωt||e−αρwet∆eαρw ||2→∞
6M(8πt)−d/4

(
1 + 1

β

)d/4
eωt+(1+β)α2t.

Using the semigroup property and (2.1), we deduce for ε ∈ (0, 1] that

||e−αρwe−tHeαρw ||2→∞ 6 ||e−αρwe−εtHeαρw ||2→∞||e−αρwe−(1−ε)tHeαρw ||2→2

6M(8πεt)−d/4
(
1 + 1

β

)d/4
eωεt+(1+β)α2εt+α2(1−ε)t.

By Proposition 2.5 it follows that

||e−tH ||∞→∞ 6 21/4
(
πd
2e

)d/4
α−d/2 ·M(8πεt)−d/4

(
1 + 1

β

)d/4
eωεt+(1+βε)α2t

= 21/4M
(

d
16eε

)d/4 · (α2t)−d/4
(
1 + 1

β

)d/4
eωεt+(1+βε)α2t.

The right hand side in the previous inequality becomes minimal for α2 = d/4
(1+βε)t

.

Then (α2t)−d/4 =
(

4
d
(1 + βε)

)d/4
and (1

e)
d/4e(1+βε)α2t = 1, so

||e−tH ||∞→∞ 6 21/4M

(
1 + βε

4ε

(
1 + 1

β

))d/4
eωεt.

Now the right hand side becomes minimal for β = ε−1/2. Then 1+βε
4ε

(
1 + 1

β

)
=

(1+
√
ε)2

4ε
, and we conclude that

||e−tH ||∞→∞ 6 21/4M

(
1 + 1/

√
ε

2

)d/2
eωεt.

Now we prove the assertion for general E0 ∈ R and a > 0. Observe that the
operator H̃ := 4

a(H − E0) satisfies Assumption (A) with Ẽ0 = 0, ω̃ = 4
a(E0 + ω)

and ã = 4. Thus we can apply the above to obtain

||e−
a
4
tH̃ ||∞→∞ 6 21/4M

(
1 + 1/

√
ε

2

)d/2
eω̃ε

a
4
t

for all t > 0. The assertion in the general case follows since ||e−a4 tH̃ ||∞→∞ =
eE0t||e−tH ||∞→∞ and ω̃εa

4
t = ε(E0 + ω)t.
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We conclude this section by explaining how sharp the method of weighted
estimates from Proposition 2.5 is in certain cases.

2.7 Remark. Fix t > 0 and consider B = et∆. Applying Lemma 2.6 with β = 1
gives

||e−αρwet∆eαρw ||2→∞ 6 (4πt)−d/4e2α2t

for all α > 0 and w ∈ Rd. We only need this estimate for α =
(
d
8t

)1/2
. Then

α2t = d
8
, and by Proposition 2.5 we obtain

||et∆||∞→∞ 6 21/4
(
πd
2e

)d/4
α−d/2 · (4πt)−d/4e2α2t = 21/4

(
d

8eα2t

)d/4
e2α2t = 21/4,

which is quite sharp since ||et∆||∞→∞ = 1. It also follows that in the estimate of
Lemma 2.6 not much is lost.

3 Proof of Theorems 1.1 and 1.5

We first prove bounds for q(−∆Bd), where Bd is the unit ball in Rd.

Proof of Lemma 1.4. It is easy to show that (−∆Bd)
−11(x) = 1

2d
(1 − x2) for all

x ∈ Bd, so ||∆−1
Bd

1||∞ = 1
2d

. In [FMPP07; Example 5.8] the estimate E0(−∆Bd) >
1
4
d2 is shown. Now the lower estimate follows from (1.5):

q(−∆Bd) = E0(−∆Bd) ·
1

2d
>
d

8
.

It is well-known that E0(−∆Bd) = j2
(d/2)−1,1, where jν,1 denotes the first positive

zero of the Bessel function Jν . By [Tri49] it follows that E0(−∆Bd) = 1
4
d2 +O(d4/3).

Thus, q(−∆B) = d
8

+O(d1/3), which implies the upper estimate.

Theorem 1.1 follows from Theorem 2.1 by an optimization with respect to ε.

Proof of Theorem 1.1. Let t > 0. By Theorem 2.1 we know that

||e−tH ||∞→∞ 6 21/4M

(
1 + 1/

√
ε

2

)d/2
eε(E0+ω)t−E0t

for all ε ∈ (0, 1]. Thus it remains to show that there exists ε ∈ (0, 1] such that(
1 + 1/

√
ε

2

)d/2
eε(E0+ω)t 6

(
1 + 5.56

d
(E0 + ω)t

)d/4
. (3.1)

Setting x = (E0 + ω)t/d and raising both sides to the power 4
d
, we see that (3.1)

is equivalent to (
1 + 1/

√
ε

2

)2

e4εx 6 1 + 5.56x.
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Case 1: x 6 α := 0.14. Then we choose ε = 1 and use the inequality

e4x 6 1 + e4α−1
α x (0 6 x 6 α),

which is valid due to the convexity of x 7→ e4x. Now the assertion follows since
e4α−1
α < 5.4.
Case 2: x > α. Set τ = 4e−4α − 1 (> 0) and choose ε = α

x (< 1). Then(
1 + 1/

√
ε

2

)2

e4εx =

(
1 +

2√
ε

+
1

ε

)
1

4e−4α

6
(
1 + τ + 1

τε + 1
ε

)
1

τ+1
= 1 + 1

τε = 1 + 1
ταx,

and the assertion follows since 1
τα < 5.56.

The proof of Theorem 1.5 is also based on an optimization with respect to ε;
however, the required estimations are more involved.

Proof of Theorem 1.5. Recall that the lower bound q(H) > 1 holds by duality and
interpolation.

Let ε ∈ (0, 1), and choose t0 > 0 such that

21/4

(
1 + 1/

√
ε

2

)d/2
e−(1−ε)E0t0 = 1. (3.2)

The assumption on H implies ||e−tH ||∞→∞ 6 ||et∆||∞→∞ = 1 for all t > 0. Then by
the resolvent formula, Theorem 2.1 and (3.2) we obtain

||H−1||∞→∞ 6
∫ ∞

0

||e−tH ||∞→∞ dt

6 t0 +

∫ ∞
t0

21/4

(
1 + 1/

√
ε

2

)d/2
e−(1−ε)E0t dt = t0 +

1

(1− ε)E0

.

Thus,

q(H) = E0||H−1||∞→∞ 6 E0t0 +
1

(1− ε)
.

To prove the upper bound, we now show that

(1− ε)E0t0 + 1 6 (1− ε)
(
d
8

+ c
√
d+ 1

)
(3.3)

for a suitable choice of ε.

11



Set γ := 8
5
c; then γ < 8

5
· 0.61 < 1, c = 5

8
γ and 1 + 1

4
ln 2 = 16

5
c2 = 5

4
γ2. Further

set x := γ√
d

(< 1) and choose ε := 1
(1+2x)2

. Then ε ∈ (0, 1) as required. By the

choice of t0 in (3.2), the left hand side in (3.3) equals

1

4
ln 2 +

d

2
ln

1 + 1/
√
ε

2
+ 1 =

5

4
γ2 +

d

2
ln

1 + (1 + 2x)

2
=

5

4
dx2 +

d

2
ln(1 + x),

whereas the right hand side equals(
1− 1

(1 + 2x)2

)
· d

8

(
1 +

8c√
d

+
8

d

)
=

x+ x2

(1 + 2x)2
· d

2

(
1 + 5x+ 8

γ2
x2
)
,

so that it remains to prove the inequality

5

4
dx2 +

d

2
ln(1 + x) 6

x+ x2

(1 + 2x)2
· d

2

(
1 + 5x+ 8

γ2
x2
)
.

Since 8
γ2

= 10/(1 + 1
4

ln 2) ≈ 8.523 > 8.5, it suffices to show

5

2
x2 + ln(1 + x) 6

x+ x2

(1 + 2x)2
·
(
1 + 5x+ 8.5x2

)
=: g(x)

for all x ∈ [0, 1]. A straightforward computation yields

g(x)− 5

2
x2 = x− x2

2
+
x3

2
· 3 + x

(1 + 2x)2
> x− x2

2
+
x3

2
· 4/5

1 + x
.

(The last inequality simplifies to 11 + 4x > 11x2, which is trivial for x ∈ [0, 1].)
Thus the assertion follows if

f(x) := x− x2

2
+
x3

2
· 4/5

1 + x
− ln(1 + x) > 0.

Observe that f(0) = 0. Now another straightforward computation yields

f ′(x) =
1

5(1 + x)2
(x2 − x3) > 0

for all x ∈ [0, 1], which completes the proof.
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