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Abstract. It is shown that the function x 7→ 1 + 1
x ln Γ(x+ 1)− ln(x+ 1) is strictly

completely monotone on (−1,∞) and tends to one as x→ −1, to zero as x→∞. This
property is derived from a suitable integral representation of ln Γ(x+ 1).
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The starting point of this note was an inequality,
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for all pairs of integers 0 6 d 6 n, in [5; Lemma 2.1]. Note that the left hand side of this
inequality is an immediate consequence of the logarithmic convexity of the Γ-function;
see [5]. Looking for a stream-lined proof of inequality (1), we first found a proof of the
more general inequality
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valid for all 0 < q 6 p, and finally showed
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for all −1 < q 6 p. These inequalities will be immediate consequences of the following
result.

Theorem 1. The function f(x) := 1 + 1
x

ln Γ(x + 1) − ln(x + 1) is strictly completely
monotone on (−1,∞),

lim
x→−1

f(x) = 1, lim
x→∞

f(x) = 0,

f(0) = lim
x→0

f(x) = 1− γ.

(Here, γ is the Euler-Mascheroni constant, and strictly completely monotone means
(−1)nf (n)(x) > 0 for all x ∈ (−1,∞), n ∈ N0.)
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Proof. The main ingredient of the proof is the integral representation

ln Γ(x+ 1) = x ln(x+ 1)− x+

∫ ∞
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t
(1− e−xt) dt,

which is an immediate consequence of [6; formula 1.9 (2) (p. 21)] and [6; formula 1.7.2 (18)
(p. 17)]. We obtain

f(x) =
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The function

g(y) :=
1

y
(1− e−y) =

∫ 1

0

e−sy ds

is strictly completely monotone on R. Since 1
t
− 1
et−1

> 0 for all t > 0, we conclude that f is
strictly completely monotone. As y →∞, g(y) tends to zero, and hence limx→∞ f(x) = 0.
The definition of f shows limx→0 f(x) = 1 + ψ(1) = 1− γ; cf. [6; formula 1.7 (4) (p. 15)].
Finally,

lim
x→−1

f(x) = 1− lim
x→−1

(
1
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(
ln Γ(x+ 2)− ln(x+ 1)

)
− ln(x+ 1)

)
= 1.

Corollary 2. Inequalities (3), (2), (1) are valid for the indicated ranges.

Proof. Inequality (3) is just a reformulation of the monotonicity of the function f from
Theorem 1. Continuing (3) to the right,
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we obtain (2). Setting q = n−d
2
, p = n

2
we get (1).

Remark 3. (a) In [4] it was shown that the function ξ 7→ ξ
(
Γ(1 + 1

ξ
)
)ξ

is increasing on

(0,∞). This fact follows immediately from our Theorem 1, because of

ln
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1
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+ 1 = − lnx+

1

x
Γ(x+ 1) + 1 = ln(x+ 1)− lnx+ f(x).

(In fact, the latter function even is strictly completely monotone as well.)

(b) For other recent results on (complete) monotonicity properties of the Γ-function
we refer to [1], [2], [3].
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