Technische Universität Dresden

Herausgeber: Der Rektor

A monotonicity property of the Γ -function

Hendrik $Vogt^1$ and Jürgen $Voigt^1$ Institut für Analysis MATH-AN-03-00

A monotonicity property of the Γ -function

HENDRIK VOGT¹ AND JÜRGEN VOIGT¹

Abstract. It is shown that the function $x \mapsto 1 + \frac{1}{x} \ln \Gamma(x+1) - \ln(x+1)$ is strictly completely monotone on $(-1, \infty)$ and tends to one as $x \to -1$, to zero as $x \to \infty$. This property is derived from a suitable integral representation of $\ln \Gamma(x+1)$.

MSC 2000: 33B15

Keywords: Gamma function, strictly completely monotone

The starting point of this note was an inequality,

$$1 \leqslant \frac{\Gamma(\frac{n}{2}+1)^{\frac{n-d}{n}}}{\Gamma(\frac{n-d}{2}+1)} \leqslant e^{\frac{d}{2}},\tag{1}$$

for all pairs of integers $0 \le d \le n$, in [5; Lemma 2.1]. Note that the left hand side of this inequality is an immediate consequence of the logarithmic convexity of the Γ -function; see [5]. Looking for a stream-lined proof of inequality (1), we first found a proof of the more general inequality

$$\frac{\Gamma(p+1)^{\frac{1}{p}}}{\Gamma(q+1)^{\frac{1}{q}}} \leqslant e^{\frac{p}{q}-1},\tag{2}$$

valid for all $0 < q \le p$, and finally showed

$$\frac{\Gamma(p+1)^{\frac{1}{p}}}{\Gamma(q+1)^{\frac{1}{q}}} \leqslant \frac{p+1}{q+1},\tag{3}$$

for all $-1 < q \le p$. These inequalities will be immediate consequences of the following result.

Theorem 1. The function $f(x) := 1 + \frac{1}{x} \ln \Gamma(x+1) - \ln(x+1)$ is strictly completely monotone on $(-1, \infty)$,

$$\lim_{x \to -1} f(x) = 1, \quad \lim_{x \to \infty} f(x) = 0,$$

$$f(0) = \lim_{x \to 0} f(x) = 1 - \gamma.$$

(Here, γ is the Euler-Mascheroni constant, and strictly completely monotone means $(-1)^n f^{(n)}(x) > 0$ for all $x \in (-1, \infty)$, $n \in \mathbb{N}_0$.)

Address: Technische Universität Dresden, Fachrichtung Mathematik, 01062 Dresden, Germany e-mail: vogt@math.tu-dresden.de, voigt@math.tu-dresden.de

 $^{^1\}mathrm{partly}$ supported by the Deutsche Forschungsgemeinschaft

Proof. The main ingredient of the proof is the integral representation

$$\ln \Gamma(x+1) = x \ln(x+1) - x + \int_0^\infty \left(\frac{1}{t} - \frac{1}{e^t - 1}\right) e^{-t} \frac{1}{t} (1 - e^{-xt}) dt,$$

which is an immediate consequence of [6; formula 1.9 (2) (p. 21)] and [6; formula 1.7.2 (18) (p. 17)]. We obtain

$$f(x) = \int_0^\infty \left(\frac{1}{t} - \frac{1}{e^t - 1}\right) e^{-t} \frac{1}{xt} (1 - e^{-xt}) dt.$$

The function

$$g(y) := \frac{1}{y}(1 - e^{-y}) = \int_0^1 e^{-sy} ds$$

is strictly completely monotone on \mathbb{R} . Since $\frac{1}{t} - \frac{1}{e^t - 1} > 0$ for all t > 0, we conclude that f is strictly completely monotone. As $y \to \infty$, g(y) tends to zero, and hence $\lim_{x \to \infty} f(x) = 0$. The definition of f shows $\lim_{x \to 0} f(x) = 1 + \psi(1) = 1 - \gamma$; cf. [6; formula 1.7 (4) (p. 15)]. Finally,

$$\lim_{x \to -1} f(x) = 1 - \lim_{x \to -1} \left(\frac{1}{x} \left(\ln \Gamma(x+2) - \ln(x+1) \right) - \ln(x+1) \right) = 1.$$

Corollary 2. Inequalities (3), (2), (1) are valid for the indicated ranges.

Proof. Inequality (3) is just a reformulation of the monotonicity of the function f from Theorem 1. Continuing (3) to the right,

$$\frac{p+1}{q+1} \leqslant \frac{p}{q} \leqslant e^{\frac{p}{q}-1} \quad (0 < q \leqslant p),$$

we obtain (2). Setting $q = \frac{n-d}{2}$, $p = \frac{n}{2}$ we get (1).

Remark 3. (a) In [4] it was shown that the function $\xi \mapsto \xi \left(\Gamma(1+\frac{1}{\xi})\right)^{\xi}$ is increasing on $(0,\infty)$. This fact follows immediately from our Theorem 1, because of

$$\ln\left(\frac{1}{x}\Gamma(x+1)^{\frac{1}{x}}\right) + 1 = -\ln x + \frac{1}{x}\Gamma(x+1) + 1 = \ln(x+1) - \ln x + f(x).$$

(In fact, the latter function even is strictly completely monotone as well.)

(b) For other recent results on (complete) monotonicity properties of the Γ -function we refer to [1], [2], [3].

References

- [1] H. Alzer: On some inequalities for the gamma and psi functions. Math. Comp. 66 (1997), no. 217, 373–389.
- [2] G. D. Anderson and S.-L. Qiu: A monotoneity property of the gamma function. Proc. Amer. Math. Soc. 125 (1997), no. 11, 3355–3362.
- [3] Á. Elbert and A. Laforgia: On some properties of the gamma function. Proc. Amer. Math. Soc. 128 (2000), no. 9, 2667–2673.
- [4] D. Kershaw and A. Laforgia: *Monotonicity results for the gamma function*. Atti Accad. Sci. Torino, Cl. Sci. Fis. Mat. Natur. **119** (1985), no. 3-4, 127–133.
- [5] A. Koldobsky and M. Lifshits: Average volume of sections of star bodies. In: Geometric Aspects of Functional Analysis, V. D. Milman and G. Schechtmann (eds.), Lect. Notes Math. 1745, Springer, Berlin, 2000, 119–146.
- [6] A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi: *Higher transscendental functions*. McGraw-Hill Book Company, New York-Toronto-London, 1953.