
Als Manuskript gedruckt

Technische Universität Dresden

Herausgeber: Der Rektor

Modulus semigroups and perturbation
classes for linear delay equations in Lp

H. Vogt, J. Voigt
Institut für Analysis

MATH-AN-07-02





Modulus semigroups and perturbation classes for
linear delay equations in Lp

Hendrik Vogt and Jürgen Voigt

Fachrichtung Mathematik, Technische Universität Dresden,
D-01062 Dresden, Germany

Dedicated to the memory of H. H. Schaefer

Abstract

In this paper we study C0-semigroups on X×Lp(−h, 0;X) associated with linear
differential equations with delay, where X is a Banach space. In the case that X is
a Banach lattice with order continuous norm, we describe the associated modulus
semigroup, under minimal assumptions on the delay operator. Moreover, we
present a new class of delay operators for which the delay equation is well-posed
for p in a subinterval of [1,∞).
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Introduction
We treat two topics arising in connection with the Cauchy problem for the linear delay
equation {

u′(t) = Au(t) + Lut (t > 0),

u(0) = x, u0 = f,
(DE)

with initial values x ∈ X , f ∈ Lp(−h, 0;X), whereX is a Banach space, 1 6 p <∞,
and 0 < h 6 ∞. (For a function u : (−h,∞) → X , we recall the notation

ut(θ) := u(t+ θ) (−h < θ < 0),

for t > 0.) The foundations for treating this problem in the context of C0-semigroups
on X × Lp(−h, 0;X) have been presented in [2]; we also refer to [3].

One of the topics concerns the question of the kind of operators L that are allowed
in (DE). In the previous papers it was assumed that L is associated with a function
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η : [−h, 0] → L(X) of bounded variation (cf. Example 5.1). Then the problem (DE)
could be treated in X × Lp(−h, 0;X) for any p ∈ [1,∞). We present a class of
operators L that allows this treatment only for p in a proper subset of [1,∞): We only
require L : W 1

p (−h, 0;X) → X to be continuous as an operator from Lr(µL;X) to X ,
for some r ∈ [1, p] and a suitable measure µL on [−h, 0].

For the other topic we additionally assume that X is a Banach lattice. Then we
determine the modulus semigroup in a rather general context. This generalises the
results of [5], [13], [10].

In order to put the results of the paper into the proper context, we now describe
the C0-semigroup setting of (DE). Let X be a Banach space, A the generator of a C0-
semigroup T on X . Let T0 be the C0-semigroup on Xp := X × Lp(−h, 0;X) given
by

T0(t) =

(
T (t) 0
Tt S(t)

)
(t > 0),

where Tt ∈ L(X,Lp(−h, 0;X)) denotes the operator given by

Ttx(θ) :=

{
0 for − h < θ 6 −t,
T (t+ θ)x for − t < θ < 0,

and S is the C0-semigroup of left translation on Lp(−h, 0;X), i.e., S(t)f = ft, where
we assume that f ∈ Lp(−h, 0;X) is extended by 0 to a function on (−h,∞). It is
known (see [2; Prop. 3.1]) that the generator of T0 is given by

A0 =

(
A 0
0 d

dθ

)
, D(A0) =

{
( xϕ ) ∈ D(A)×W 1

p (−h, 0;X); x = ϕ(0)
}
.

Let now L ∈ L(W 1
p (−h, 0;X), X). Then B := ( 0 L

0 0 ) ∈ L(D(A0), Xp), and we
define

A := A0 + B =

(
A L
0 d

dθ

)
, D(A) = D(A0).

Assuming that A is the generator of a C0-semigroup T one knows that, for ( xϕ ) ∈
D(A), the first component of the function t 7→ T (t)( xϕ ) is the unique solution of
(DE); cf. [2].

Next, assume that X is a Banach lattice with order continuous norm and that
T possesses a modulus semigroup (which is the smallest semigroup dominating T ),
whose generator will be denoted by A#. Assume that L possesses a modulus |L|,
that L is massless at 0 (cf. Section 1), and that Ã :=

(
A# |L|
0 d

dθ

)
, with domain

D(Ã) =
{
( xϕ ) ∈ D(A#) × W 1

p (−h, 0;X); x = ϕ(0)
}

, is a generator. Then we
show that Ã generates the modulus semigroup of T (Theorem 2.7).

The paper is organized as follows. In Section 1 we investigate operators from
W 1
p (−h, 0;X) to Y , where X , Y are Banach lattices. The main objective is establish-

ing relations between masslessness at 0 of L and |L|. In Section 2 we determine the
modulus semigroup of T ; see above.
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In Section 3 we discuss an inequality needed for L in order to make B a small
Miyadera perturbation of A. In Section 4 we present our class of operators L
mentioned above; the conditions are such that the inequality singled out in Sec-
tion 3 is satisfied. Section 5 presents an example illustrating that the class of op-
erators from Section 4 contains more operators than those associated with functions
η : [−h, 0] → L(X) of bounded variation.

Throughout this paper, let 1 6 p <∞, 0 < h 6 ∞.

1 Operators defined on W 1
p (−h, 0;X) that are massless at 0

In this section we investigate how to describe that operators L : W 1
p (−h, 0;X) → Y

attribute no mass to the point 0, and we present relations between different notions of
this kind. We start with a result in a more abstract setting.

Proposition 1.1. Let X be a (real or complex) vector lattice, Y a Banach lattice with
order continuous norm. Let L : X → Y be a linear operator, and assume that L has a
modulus |L|,

|L|x = sup
{
|Lz|; z ∈ X, |z| 6 x

}
for x ∈ X+. Let Qn : X → X be linear operators, 0 6 Qn 6 I (n ∈ N).

(a) Assume that the strong limit LQ := s-limn→∞ LQn exists. Then the linear
operators LQ and L− LQ both have a modulus, and |L|Qn → |LQ|, |L|(I −Qn) →
|L− LQ| strongly.

(b) If the sequence (Qn) is monotone then s-limn→∞ LQn exists.

Proof. (a) For x ∈ X we have |LQx| = limn→∞ |LQnx| 6 |L||x| since 0 6 Qn 6 I .
Thus LQ has a modulus, by the order completeness of Y (which, in turn, follows from
the order continuity of the norm); cf. [9]. Similarly, L− LQ has a modulus.

Since X = linX+ it now suffices to show that |L|Qnx → |LQ|x and |L|(I −
Qn)x → |L − LQ|x for all x ∈ X+. Let ε > 0. Since Y has order continuous
norm, there exist xj ∈ X , |xj| 6 x (j = 1, . . . ,m) such that y := supj |LQxj| and
z := supj |(L− LQ)xj| satisfy∣∣∣∣|LQ|x− y

∣∣∣∣ 6 ε,
∣∣∣∣|L− LQ|x− z

∣∣∣∣ 6 ε. (1.1)

The lattice operations in Y are continuous, so we have

yn := sup
j
|LQnxj| → sup

j
|LQxj| = y,

zn := sup
j
|L(I −Qn)xj| → sup

j
|(L− LQ)xj| = z.

Let now n0 ∈ N such that ||yn− y|| 6 ε, ||zn− z|| 6 ε for all n > n0. By the definition
of yn, zn we obtain, using the estimate |L|x 6 |LQ|x+ |L− LQ|x,

zn − |L− LQ|x 6 |L|(I −Qn)x− |L− LQ|x 6 |LQ|x− |L|Qnx 6 |LQ|x− yn.
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For n > n0 the left and right hand sides of this chain of inequalities have norm 6 2ε
by (1.1), so |L|Qnx→ |LQ|x and |L|(I −Qn)x→ |L− LQ|x as n→∞.

(b) It clearly suffices to treat the case that (Qn) is monotone increasing. Let x ∈ X .
For n 6 m we estimate

|LQmx− LQnx| 6 |L||Qmx−Qnx| 6 |L|(Qm −Qn)|x|.

The order continuity of the norm in Y implies that the increasing sequence (|L|Qn|x|)
in [0, |L||x|] is convergent, and therefore is a Cauchy sequence. The previous estimate
implies that (LQnx) is a Cauchy sequence as well.

Definition. Let X , Y be Banach spaces, and let L : W 1
p (−h, 0;X) → Y be a bounded

linear operator. We say that L is massless at 0 if for all x ∈ X and for all sequences
(χn) in W 1

∞(−h, 0), 0 6 χn 6 1, χn(t) = 0 (t 6 −1/n) for all n ∈ N, one has

L(χnx) → 0 (n→∞).

We say that L is strongly massless at 0 if for all ϕ ∈ W 1
p (−h, 0;X) and for all se-

quences (χn) as above, one has

L(χnϕ) → 0 (n→∞) (1.2)

(note that χnϕ ∈ W 1
p (−h, 0;X)).

Remark 1.2. Obviously, L is massless at 0 if and only if for all x ∈ X and for all
ε > 0 there exists δ > 0 such that ||L(χx)|| 6 ε for all χ ∈ W 1

∞(−h, 0), 0 6 χ 6 1,
χ(t) = 0 (t 6 −δ).

Remarks 1.3. Let X , Y be Banach lattices with order continuous norm.
(a) We recall that W 1

p (−h, 0;X) is a vector lattice, and that
∣∣∣∣|ϕ|∣∣∣∣

p,1
6 ||ϕ||p,1 for

all ϕ ∈ W 1
p (−h, 0;X); cf. [13; Thm. 1 and Rem. 5].

(b) Assume that L : W 1
p (−h, 0;X) → Y is linear and possesses a modulus. We

show that thenL and |L| are continuous. Because of (a) it suffices to prove the assertion
for the case that L is positive.

We show that ϕn → 0 in W 1
p (−h, 0;X) implies Lϕn → 0 in Y . Without loss

of generality suppose
∑∞

n=1 n||ϕn||p,1 < ∞. Defining ϕ :=
∑∞

n=1 n|ϕn| we obtain
|Lϕn| 6 L|ϕn| 6 1

n
Lϕ for all n ∈ N.

We note that the continuity of positive operators between ordered Banach spaces
can be obtained in more general situations; cf. [7; Thm. 2.1].

(c) Assume thatL : W 1
p (−h, 0;X) → Y is linear and possesses a modulus, and that

L is strongly massless at 0. Proposition 1.1 implies that then |L| is strongly massless at
0 as well. Indeed, if (χn) is a sequence as in the definition above then with Qn defined
by Qnϕ := χnϕ we obtain LQ = 0, and therefore |LQ| = 0.

The following lemma shows that it suffices to require property (1.2) for a special
sequence in the definition of ‘strongly massless at 0’ if L possesses a modulus.
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Lemma 1.4. Let X , Y be Banach lattices with order continuous norm,
L : W 1

p (−h, 0;X) → Y a linear operator. Assume that L possesses a modulus and
that there exists a sequence (χn) in W 1

∞(−h, 0), 0 6 χn 6 1, χn(0) = 1 for all
n ∈ N, such that

L(χnϕ) → 0 (n→∞) (1.3)

for all ϕ ∈ W 1
p (−h, 0;X). Then L is strongly massless at 0.

Proof. Since Proposition 1.1 implies |L|(χnϕ) → 0 (n → ∞), it is sufficient to treat
the case L > 0. Let (χ̃n) be a sequence as in the definition of ‘strongly massless at 0’,
ϕ ∈ W 1

p (−h, 0;X), ϕ > 0. Let n ∈ N. Then there exists m0 ∈ N such that for all
m > m0 one has χ̃m 6 2χn, and therefore

0 6 L(χ̃mϕ) 6 2L(χnϕ).

By (1.3) this implies that limm→∞ L(χ̃mϕ) = 0.

We are going to show that in a rather general context L can be decomposed as the
sum of two operators, the first only depending on the value of the function at 0, the
second being strongly massless at 0.

Proposition 1.5. Let X , Y be Banach lattices with order continuous norm. Assume
that L : W 1

p (−h, 0;X) → Y is linear and possesses a modulus.
(a) Let (χn) be a sequence in W 1

∞(−h, 0), 0 6 χn 6 1, χn(t) = 0 (t 6 −1/n),
χn(0) = 1 for all n ∈ N. Then

L0ϕ := lim
n→∞

L(χnϕ)

exists for all ϕ ∈ W 1
p (−h, 0;X), and the limit does not depend on the sequence (χn).

The linear operatorL0 thus defined satisfiesL0ϕ = 0 if ϕ ∈ W 1
p (−h, 0;X), ϕ(0) = 0;

the operator L− L0 is strongly massless at 0.
(b) The operator L0 has the modulus |L|0, and L−L0 has the modulus |L| − |L|0.

Proof. (a) We first suppose that (χn) is a monotone decreasing sequence satisfying
the assumptions. Then L0ϕ := limn→∞ L(χnϕ) exists for all ϕ ∈ W 1

p (−h, 0;X),
and L0 as well as L − L0 possess a modulus, by Proposition 1.1. Obviously, L0ϕ =
0 if ϕ = 0 in a neighbourhood of 0. Since the set of those ϕ is dense in {ϕ ∈
W 1
p (−h, 0;X); ϕ(0) = 0} and L0 is continuous (cf. Remark 1.3(b)), we obtain that

L0ϕ = 0 if ϕ(0) = 0. From this we conclude that

(L− L0)(χnϕ) = L(χnϕ)− L0(χnϕ) = L(χnϕ)− L0ϕ→ 0 (n→∞).

Thus, by Lemma 1.4, L− L0 is strongly massless at 0.
Let now (χn) be any sequence satisfying the assumptions. Then with L0 obtained

as above we have

L(χnϕ) = (L− L0)(χnϕ) + L0ϕ→ L0ϕ (n→∞)

by the definition of ‘strongly massless at 0’. This completes the proof of (a).
(b) follows from Proposition 1.1.
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The following result is another version of Lemma 1.4. It contains as a consequence
that, for operators possessing a modulus, ‘massless at 0’ implies ‘strongly massless at
0’.

Proposition 1.6. Let X , Y be Banach lattices with order continuous norm,
L : W 1

p (−h, 0;X) → Y a linear operator. Assume that L possesses a modulus and
that there exists a sequence (χn) in W 1

∞(−h, 0), 0 6 χn 6 1, χn(t) = 0 (t 6 −1/n),
χn(0) = 1 for all n ∈ N such that L(χnx) → 0 (n → ∞) for all x ∈ X . Then L is
strongly massless at 0.

Proof. We use the decomposition obtained in Proposition 1.5. Let χ ∈ W 1
p (−h, 0),

χ = 1 in a neighbourhood of 0. Then

L0ϕ = L0(χϕ(0)) = lim
n→∞

L(χnχϕ(0)) = 0

for all ϕ ∈ W 1
p (−h, 0;X), i.e., L0 = 0. Therefore L = L− L0 is strongly massless at

0.

2 The modulus semigroup
The following two lemmas are technical results which will be needed later. We assume
that X is a Banach space, that A is the generator of a C0-semigroup T on X , and that
L ∈ L(W 1

p (−h, 0;X), X). Let A0, T0 and B be as defined in the introduction. For
later use we note that

BT0(s)(
x
ϕ ) =

(
0 L
0 0

) (
T (s)x

Tsx+ S(s)ϕ

)
=

(
L(Tsx+ S(s)ϕ)

0

)
(2.1)

for ( xϕ ) ∈ D(A)0.

Lemma 2.1. The spectral radius of B(λ−A0)
−1 tends to 0 as λ→∞.

Proof. For c > 0 we endow Xp = X × Lp(−h, 0;X) with the norm ||( xf )||c := ||x|| +
c||f ||p and also denote the corresponding norm on L(Xp) by || · ||c.

Let ( xf ) ∈ Xp, λ larger than the type of T0. Denoting by P2 the projection of Xp

onto its second component, we obtain that∣∣∣∣B(λ−A0)
−1( xf )

∣∣∣∣
c
= ||LP2(λ−A0)

−1( xf )|| 6 ||L||||P2(λ−A0)
−1( xf )||p,1

and

P2(λ−A0)
−1( xf ) =

∫ ∞

0

e−λtP2T0(t)(
x
f ) dt =

∫ ∞

0

e−λt
(
Ttx+ S(t)f

)
dt.

A straightforward computation shows that
∫∞

0
e−λtTtx dt = ελ(λ − A)−1x, where

ελ(θ) := eλθ for θ ∈ (−h, 0) (cf. [6; Prop. VI.6.7]). This implies

P2(λ−A0)
−1( xf ) = ελ(λ− A)−1x+ (λ− d

dθ
)−1f,
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where d
dθ

denotes the generator of S. There exist λ0 > 0, M > 1 such that (λ +
1)||(λ − A)−1|| 6 M and ||(λ − d

dθ
)−1: Lp(−h, 0;X) → W 1

p (−h, 0;X)|| 6 M for all
λ > λ0.

In the following let λ > λ0. Then

||P2(λ−A0)
−1( xf )||p,1 6 (λ+ 1)||ελ||Lp(−h,0)||(λ− A)−1x||+M ||f ||p

6 Mδλ||x||+M ||f ||p,

with δλ := ||ελ||Lp(−h,0) → 0 as λ→∞. For c := 1
δλ

we conclude that∣∣∣∣B(λ−A0)
−1( xf )

∣∣∣∣
c
6 ||L||M

(
δλ||x||+ ||f ||p

)
= δλ||L||M ||( xf )||c,

so ||B(λ−A0)
−1||c 6 δλ||L||M , and this implies that the spectral radius of B(λ−A0)

−1

is less or equal δλ||L||M .

Lemma 2.2. Assume that L is massless at 0 and that A = A0 + B is the generator of
a C0-semigroup T on Xp. Then

1
t

(
T (t)− T0(t)

)
( x0 ) → 0 (t→ 0)

for all x ∈ D(A).

Proof. Let t > 0, x ∈ D(A). For n ∈ N define ϕn ∈ W 1
p (−h, 0;X) by ϕn(θ) :=

(1 + nθ)+x. Then ϕn → 0 in Lp(−h, 0;X) as n→∞ and hence∣∣∣∣(T (t)− T0(t)
)
( x0 )

∣∣∣∣ = lim
n→∞

∣∣∣∣(T (t)− T0(t)
)
( x
ϕn )

∣∣∣∣. (2.2)

For s ∈ [0, t] let now χn,s ∈ W 1
∞(−h, 0), χn,s(θ) :=

(
1 + n(θ + s)

)+ ∧ 1 and
ψs ∈ W 1

p (−h, 0;X), ψs(θ) := 0 for θ 6 −s, ψs(θ) := T (s + θ)x − x for θ > −s.
Then Tsx + S(s)ϕn = χn,sx + ψs. Defining M := sup06s6t ||T (s)|| and using the
Duhamel formula and (2.1), we obtain∣∣∣∣(T (t)− T0(t)

)
( x
ϕn )

∣∣∣∣ =
∣∣∣∣∣∣ ∫ t

0

T (t− s)BT0(s)(
x
ϕn ) ds

∣∣∣∣∣∣
6 M

∫ t

0

||L(Tsx+ S(s)ϕn)|| ds 6 M

∫ t

0

(
||L(χn,sx)||+ ||L||||ψs||p,1

)
ds.

Together with (2.2) this implies the assertion: We have

||ψs||pp,1 = ||ψs||pp +

∫ 0

−s
||T (s+ θ)Ax||p dθ → 0 (s→ 0),

and L(χn,sx) → 0 as n→∞ and s→ 0 since L is massless at 0.

The following proposition is an abstract result on generation, positivity and dom-
ination of perturbed semigroups. It will be needed for the application to delay semi-
groups.

We recall that for operators B, B̃ ∈ L(X), where X is a Banach lattice, B is
dominated by B̃ if |Bx| 6 B̃|x| for all x ∈ X . If T , T̃ are C0-semigroups on X then
T is dominated by T̃ if T (t) is dominated by T̃ (t) for all t > 0.
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Proposition 2.3. Let X be a Banach lattice. Let T , T̃ be C0-semigroups on X , with
generators A, Ã respectively, and assume that T is dominated by T̃ . Let B: D(A) →
X , B̃: D(Ã) → X be linear operators, B̃ > 0,

B(λ− A)−1 dominated by B̃(λ− Ã)−1 (λ > λ0)

for some λ0 ∈ R. Assume that Ã+ B̃ generates a C0-semigroup T̃ eB on X and that the
spectral radius of B̃(λ − Ã)−1 is less that 1 for all λ > λ0. Then T̃ eB is positive, and
A+B generates a C0-semigroup TB on X that is dominated by T̃ eB.

Proof. Let λ > λ0. The assumptions imply that

(λ− Ã− B̃)−1 = (λ− Ã)−1

∞∑
k=0

(
B̃(λ− Ã)−1

)k
> 0

(cf. [1; Thm. 3.1]). Therefore, the C0-semigroup T̃ eB is positive.
Since B(λ− A)−1 is dominated by B̃(λ− Ã)−1, we obtain in the same way that

(λ− A−B)−1 = (λ− A)−1

∞∑
k=0

(
B(λ− A)−1

)k
.

We conclude that (λ − A − B)−1 is dominated by (λ − Ã − B̃)−1. Hence ||(λ −
A − B)−n|| 6 ||(λ − Ã − B̃)−n|| for all n ∈ N, and the assertion follows from the
Hille-Yosida generation theorem.

The following ‘domination lemma’ is a generalisation of [10; Lemma 1.1]; a more
restricted form has already been used in [11; proof of Prop. 1.2].

Lemma 2.4. Let X be a Banach lattice. Let T, S be C0-semigroups on X , S positive,
and let A be the generator of T . Let k ∈ N0, R : [0, 1] → L(DAk , X) (where DAk is
the domain of Ak endowed with the graph norm of Ak), and assume that

1
t
R(t)x→ 0 (t→ 0)

for all x ∈ D(Ak). Further assume that

|T (t)x| 6 S(t)|x|+ |R(t)x|

for all x ∈ D(Ak), 0 6 t 6 1. Then T is dominated by S.

Proof. Let x ∈ D(Ak), t > 0. As in [10; proof of Lemma 1.1, eqn. (1.2)] we obtain

|T (t)x| 6 S(t)|x|+
n∑

m=1

S(n−m
n
t)

∣∣R( t
n
)T (m−1

n
t)x

∣∣ (2.3)
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for all n ∈ N, n > t. With ct := sup06s6t ||S(s)|| we estimate∣∣∣∣∣∣∣∣ n∑
m=1

S(n−m
n
t)

∣∣R( t
n
)T (m−1

n
t)x

∣∣ ∣∣∣∣∣∣∣∣ 6 ct

n∑
m=1

∣∣∣∣R( t
n
)T (m−1

n
t)x

∣∣∣∣
6 tct max

{∣∣∣∣n
t
R( t

n
)T (m−1

n
t)x

∣∣∣∣; 1 6 m 6 n
}
.

The hypothesis on R implies that n
t
R( t

n
) → 0 strongly in L(DAk , X) as n → ∞. We

recall that strong convergence is uniform on compact sets and that T (·)x : [0,∞) →
DAk is continuous. Therefore the right hand side of the last inequality converges to 0
as n → ∞. Letting n → ∞ in (2.3) we obtain |T (t)x| 6 S(t)|x| for all x ∈ D(Ak).
This implies the assertion since D(Ak) is dense in X .

The following proposition generalises [10; Prop. 2.1].

Proposition 2.5. Let X be a Banach lattice. Assume that L is massless at 0, and that
A is the generator of a C0-semigroup T on Xp.

If T is dominated by a C0-semigroup S on Xp then T0 is dominated by S as well.

Proof. For t > 0 we define R1(t) := T (t)− T0(t), R(t) := R1(t) ( 1 0
0 0 ).

Let ( xf ) ∈ D(A0). Estimating as in [10; proof of Prop. 2.1] we obtain that

|T0(t)(
x
f )| 6 S(t)|( xf )|+ |R(t)( xf )|.

Lemma 2.2 implies that 1
t
R(t)( xf ) → 0 as t → 0. Now applying Lemma 2.4, with

k = 1, we obtain the assertion.

Remark 2.6. Assume that X is a Banach lattice with order continuous norm and that
L possesses a modulus. Then one may rearrange the setting in such a way that L is
(strongly) massless at 0.

Indeed, let χ ∈ W 1
p (−h, 0), χ(0) = 1. Define E ∈ L(X,W 1

p (−h, 0;X)) by
Ex := χx. Let L0 ∈ L(W 1

p (−h, 0;X), X) be as in Proposition 1.5. Since ϕ(0) = x
for ( xϕ ) ∈ D(A), we obtain

A =

(
A L
0 d

dθ

)
=

(
A+ L0E L− L0

0 d
dθ

)
.

Thus, we have written A with a generater A + L0E and an off-diagonal term L − L0

that is (strongly) massless at 0.

For the remainder of this section we assume that X is a Banach lattice with or-
der continuous norm and that T possesses a modulus semigroup, T#, with genera-
tor A#. (We recall that the modulus semigroup of T is the smallest C0-semigroup
dominating T ; see [4] for results on modulus semigroups.) It was shown in [10;
Prop. 3.2(b)] that then the C0-semigroup T0 possesses a modulus semigroup, T #

0 ,
whose generator is given by A#

0 =
(
A# 0
0 d

dθ

)
, with domain D(A#

0 ) = {( xϕ ) ∈
D(A#)×W 1

p (−h, 0;X); x = ϕ(0)}.
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Assume additionally that L is massless at 0, that L possesses a modulus and that
Ã := A#

0 +
(

0 |L|
0 0

)
=

(
A# |L|
0 d

dθ

)
, with domain D(Ã) = D(A#

0 ), is the generator of a

C0-semigroup T̃ .
Taking into account Lemma 2.1, we then obtain by Proposition 2.3 that A is the

generator of a C0-semigroup T on Xp, and that T is dominated by T̃ . From the order
completeness of Xp we conclude that T possesses a modulus semigroup, T #, with
generator A#, and it is a consequence of Proposition 2.5 that then T #

0 (t) 6 T #(t) 6
T̃ (t) for all t > 0; cf. [10; Prop. 3.2(a)].

Theorem 2.7. Let X , T , and T̃ be as introduced above. Then T # = T̃ .

The proof of this result is the same as for [10; Theorem 3.1]. Therefore we are
not going to reproduce it; cf. [10; pp. 397–398]. We only mention that in [10; bot-
tom of p. 397], for 0 6 ϕ ∈ W 1

p (−h, 0;X), the existence of a sequence (ϕk) in
W 1
p (−h, 0;X), ϕk(0) = 0, 0 6 ϕk 6 ϕ (k ∈ N) such that |L|ϕk → |L|ϕ (k → ∞)

was needed. In the present context, the existence of such a sequence follows from the
fact that |L| is strongly massless at 0. (Note that the hypotheses and Proposition 1.6
imply that L is strongly massless at 0, and recall Remark 1.3(c).)

3 Miyadera perturbations of delay semigroups
We assume that X is a Banach space, T a C0-semigroup on X , L ∈
L(W 1

p (−h, 0;X), X), and we use the notation of the introduction.
The following theorem is a slight generalisation of [2; Thm. 3.2]; see also [3;

Thm. 3.26]. Our contribution—already used in [10; Sec. 1.2] as well as in the proof
of Lemma 2.1 above—is the use of a suitable norm on the product space Xp =
X × Lp(−h, 0;X).

Theorem 3.1. Assume that there exist t, c > 0 and γ < 1 such that∫ t

0

||L(Tsx+ S(s)ϕ)|| ds 6 γ||x||+ c||ϕ||p
(
( xϕ ) ∈ D(A0)

)
. (3.1)

Then A = A0 + B is the generator of a C0-semigroup T on Xp.
More precisely, if Xp is endowed with the norm ||( xf )||c/γ := ||x||+ c

γ
||f ||p then B is

a small Miyadera perturbation of A0, i.e.,∫ t

0

||BT0(s)(
x
ϕ )||c/γ ds 6 γ||( xϕ )||c/γ

(
( xϕ ) ∈ D(A0)

)
.

(For Miyadera perturbations and the Miyadera perturbation theorem we refer to
[12], [6; III.3.c].)

Proof. By (2.1) we obtain that∫ t

0

||BT0(s)(
x
ϕ )||c/γ ds =

∫ t

0

||L(Tsx+ S(s)ϕ)|| ds 6 γ||x||+ c||ϕ||p = γ||( xϕ )||c/γ.
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Remarks 3.2. (a) The only difference between condition (3.1) in Theorem 3.1 and
[2; Thm. 3.2, condition (M)] is that in the latter c = γ < 1 is assumed, whereas we
allow arbitrary c > 0. This refinement is important for the application to more general
perturbations than studied in [2], and it avoids the separate study of the case p = 1
given in [8; Sec. 2]; see also [10; Sec. 1.2].

(b) Condition (3.1) is in particular satisfied if there exist t, c > 0 such that∫ t

0

||Lψs|| ds 6 c||ψ||p
(
ψ ∈ W 1

p (−h, t;X)
)

(3.2)

(recall that ψs(θ) = ψ(θ+s)). Indeed, let ( xϕ ) ∈ D(A0) and define ψ ∈ W 1
p (−h, t;X)

by ψ := ϕ on (−h, 0), ψ(θ) := T (θ)x for 0 6 θ 6 t. Then

||ψ||pp = ||ϕ||pp +

∫ t

0

||T (θ)x||p dθ 6 ||ϕ||pp + t(ct||x||)p,

where ct := sup06θ6t ||T (θ)||. Hence (3.2) implies∫ t

0

||L(Tsx+ S(s)ϕ)|| ds =

∫ t

0

||Lψs|| ds 6 c(t1/pct||x||+ ||ϕ||p).

It remains to choose t > 0 such that γ := ct1/pct < 1.

4 Perturbation classes

In this section we present a condition on L sufficient for (3.2). Here, as in Sec-
tion 1, we assume more generally that X , Y are Banach spaces and that L ∈
L(W 1

p (−h, 0;X), Y ). For a Borel measure µ on R and t > 0 we define vµ,t: R →
[0,∞) by

vµ,t(s) := µ((s− t, s]) (s ∈ R).

Theorem 4.1. Assume that there exist r ∈ [1, p] and a Borel measure µL on [−h, 0]
((−∞, 0] in case h = ∞) such that vµL,1 ∈ L p

p−r
(−h, 1) and

||Lϕ|| 6 ||ϕ||Lr(µL;X)

(
ϕ ∈ W 1

p (−h, 0;X)
)
. (4.1)

Then ∫ t

0

||Lψs|| ds 6 t1/p
′||vµL,1||

1/r
p

p−r
||ψ||p

for all 0 < t 6 1, ψ ∈ W 1
p (−h, t;X).

This theorem is an immediate consequence of Proposition 4.3 below.
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Remarks 4.2. (a) Assume that X = Y . If (4.1) holds then L satisfies condition (3.2)
and hence condition (3.1). Thus, (4.1) is a condition forA = A0 +B to be a generator.
Observe that this condition does not depend on the generator A.

(b) If µL is finite (in particular if h < ∞) then the condition vµL,1 ∈ L p
p−r

(−h, 1)

in Theorem 4.1 is automatically satisfied. If µL is not finite then this condition is
responsible for the inclusion W 1

p (−h, 0;X) ⊆ Lr(µL;X).
Indeed, for ϕ ∈ W 1

p (−h, 0;X) we compute

||ϕ||rLr(µL;X) =

∫ 0

−∞

∫ θ+1

θ

dt ||ϕ(θ)||r dµL(θ) =

∫ 1

−∞

∫ t∧0

t−1

||ϕ(θ)||r dµL(θ) dt.

Now
∫ t∧0

t−1
||ϕ(θ)||r dµL(θ) 6 vµL,1(t)||ϕ|(t−1,t∧1)||r∞, so by Hölder’s inequality we con-

clude that

||ϕ||rLr(µL;X) 6 ||vµL,1|| p
p−r

∣∣∣∣t 7→ ||ϕ|(t−1,t∧0)||r∞
∣∣∣∣

p
r

= ||vµL,1|| p
p−r

∣∣∣∣t 7→ ||ϕ|(t−1,t∧0)||∞
∣∣∣∣r
p
.

Using the Sobolev embedding W 1
p (0, 1;X) ⊆ L∞(0, 1;X), we deduce that the latter

can be estimated by c||ϕ||rp,1, with c > 0 not depending on ϕ, so the asserted inclusion
follows.

(c) Assume that (4.1) holds. Then the operator L extends to a bounded operator
L̂: Lr(µL;X) → Y .

(d) Assume additionally that µL({0}) = 0. Then it is obvious that L is strongly
massless at 0, in the sense of Section 1.

Conversely, assume that L is massless at 0. We show that then µL can be chosen
such that µL({0}) = 0. Indeed, define µ̃L := µL − µL({0})δ0, where δ0 is the Dirac
measure at 0. Let ϕ ∈ W 1

p (−h, 0;X), ϕ constant in a neighbourhood of 0. Let (χn)
be a sequence as in the definition of ‘massless at 0’, χn(0) = 1 (n ∈ N). Then

||L((1− χn)ϕ)|| 6 ||(1− χn)ϕ||Lr(µL;X) = ||(1− χn)ϕ||Lr(eµL;X)

for all n ∈ N. From L((1 − χn)ϕ) → Lϕ in Y , (1 − χn)ϕ → ϕ in Lr(µ̃L;X)
(n → ∞) we obtain that ||Lϕ|| 6 ||ϕ||Lr(eµL;X). Thus, (4.1) holds with µL replaced by
µ̃L since the set of ϕ under consideration in dense in Lr(µL;X).

Proposition 4.3. Let r ∈ [1, p], and let µ be a Borel measure on R with vµ,1 ∈
L p

p−r
(R). Let 0 < t 6 1, ψ ∈ Lp(R). Then∫ t

0

||ψs||Lr(µ) ds 6 t1/r
′||vµ,t sptψ||

1/r
p

p−r
||ψ||p 6 t1/p

′||vµ,1||1/rp
p−r
||ψ||p.

Proof. We only show the first inequality, the second one being a consequence of
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Lemma 4.4 below. We have∫ t

0

∫
R
|ψ(θ + s)|r dµ(θ) ds =

∫
R

∫
R
1[0,t)(s) |ψ(θ + s)|r ds dµ(θ)

=

∫
R

∫
R
1[0,t)(s− θ) dµ(θ) |ψ(s)|r ds

=

∫
R
vµ,t(s) |ψ(s)|r ds 6 ||vµ,t sptψ|| p

p−r
|||ψ|r|| p

r
.

Since |||ψ|r|| p
r

= ||ψ||rp, we obtain by Hölder’s inequality that∫ t

0

||ψs||Lr(µ) ds 6 t1/r
′
( ∫ t

0

||ψs||rLr(µ) ds
)1/r

6 t1/r
′||vµ,t sptψ||

1/r
p

p−r
||ψ||p.

In view of Remark 4.2(a) one could be content with the first inequality given in
Proposition 4.3. Note, however, that the second inequality yields a better t-exponent if
p > r.

Lemma 4.4. Let µ be a Borel measure on R, t ∈ [0, 1], q ∈ [1,∞]. Then ||vµ,t||q 6
t1/q||vµ,1||q.

Proof. For q = ∞ the assertion is clear since vµ,t 6 vµ,1, so let q <∞. Below we will
show: If α > 0, t ∈ [0, 1) and

||vµ,sα||qq 6 s||vµ,α||qq (4.2)

holds for s = t then (4.2) holds for s = 1+t
2

, too. Since (4.2) trivially holds for s = 0,
by induction we obtain (4.2) for s = tn := 1 − 2−n (n ∈ N) and α > 0. Again by
induction, this shows the assertion of the lemma for t ∈ D := {tkn; k, n ∈ N}. Since
D is dense in [0, 1], and t 7→ ||vµ,t||q is increasing, the asserted inequality follows for
all t ∈ [0, 1].

Now let α > 0, t ∈ [0, 1), and assume that (4.2) holds for s = t. Let t′ := 1+t
2

.
Observe that, since t′ ∈ [1

2
, 1), we have θ− α < θ− t′α 6 θ− α+ t′α < θ and hence

1(θ−α,θ−α+t′α] + 1(θ−t′α,θ] = 1(θ−α,θ] + 1(θ−t′α,θ−α+t′α] (θ ∈ R).

Since t = 2t′ − 1, this implies

vµ,t′α(· − α+ t′α) + vµ,t′α = vµ,α + vµ,tα(· − α+ t′α), (4.3)

where both terms on the left hand side are bounded by vµ,α since (θ− α, θ− α+ t′α],
(θ − t′α, θ] are subsets of (θ − α, θ].

We now need the following inequality for numbers a, b, c, d > 0: If a+b = c+d =:
σ and a, b 6 c then aq + bq 6 cq + dq. This is a direct consequence of the fact that the
function [σ

2
, σ] 3 t 7→ tq + (σ − t)q is monotone increasing. Together with (4.3) we

obtain
vµ,t′α(· − α+ t′α)q + vqµ,t′α 6 vqµ,α + vµ,tα(· − α+ t′α)q.



14 Hendrik Vogt, Jürgen Voigt

Integrating both sides we infer, using (4.2) for s = t, that

2||vµ,t′α||qq 6 ||vµ,α||qq + ||vµ,tα||qq 6 (1 + t)||vµ,α||qq,
i.e., (4.2) holds for s = t′.

Remarks 4.5. (a) It is easy to see that for q = 1 the inequality in Lemma 4.4 is in fact
an equality. Since for q = ∞ the inequality is clear, one is tempted to use interpolation
to prove Lemma 4.4. The authors did not succeed in realising this idea.

(b) Applying Lemma 4.4 to µ = fλ with 0 6 f ∈ Lq(R) and Lebesgue measure λ
on R, we obtain

||1[0,t] ∗ f ||q 6 t1/q||1[0,1] ∗ f ||q (0 6 t 6 1).

We did not find a straightforward proof for this inequality.

We close this section by some observations concerning the modulus of operators L
admitting a measure µL as in Theorem 4.1.

Let X , Y be Banach lattices with order continuous norm. Assume that L ∈
L(W 1

p (−h, 0;X), Y ) possesses a modulus, and that for |L| there exists a measure µ|L|
such that the hypotheses of Theorem 4.1 are satisfies for |L| and µ|L|. Then clearly the
hypotheses of Theorem 4.1 are also satisfied for L, with µL := µ|L|.

Proposition 4.6. Let X , Y be Banach lattices with order continuous norm. Let L ∈
L(W 1

p (−h, 0;X), Y ), and assume that there exist r ∈ [1, p] and µL such that the
hypotheses of Theorem 4.1 are satisfied. Assume further that the operator L̂ defined in
Remark 4.2(c) possesses a modulus. Then L possesses a modulus, |L| is the restriction
of |L̂| to W 1

p (−h, 0;X), and |L| satisfies the hypotheses of Theorem 4.1, with µ|L| :=∣∣∣∣|L̂|∣∣∣∣µL.

Proof. It is sufficient to show that the restriction of |L̂| toW 1
p (−h, 0;X) is the modulus

of L. This, however, is a consequence of [13; Thm. 1, Rem. 2]; see also Remark 4.7(a)
below.

Remark 4.7. (a) In order to apply [13; Rem. 2]) in the present context we have to
convince ourselves of the following fact: If (Ω,A, µ) is a measure space, X a Banach
lattice, and f, g ∈ Lp(µ;X), g > 0 then

τgf(t) = τg(t)f(t) (t ∈ Ω). (4.4)

(We refer to [13; Sec. 2] for the truncation τ). If f, g are simple functions then the
right hand side of (4.4) defines a measurable function enjoying the properties of the
truncation; therefore (4.4) holds. Approximating general f, g by simple functions and
applying ∣∣τy1x1 − τy2x2

∣∣ 6 |x1 − x2|+ |y1 − y2|
(cf. [13; Eqn. (1)]) simultaneously to elements x1, y1, x2, y2 in X and Lp(µ;X), one
obtains (4.4) for f, g ∈ Lp(µ;X), g > 0.

(b) We point out that, in Proposition 4.7, it is much more restrictive to require the
existence of a modulus for L̂ than for L.
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5 Examples
Example 5.1. (a) Let X , Y be Banach spaces. Let η : [−h, 0] → L(X, Y ) be a func-
tion of bounded variation. Then a continuous linear operator Lη : C([−h, 0];X) → Y
is defined by

Lηϕ :=

∫
dη(θ)ϕ(θ);

cf. [13; Sec. 3]. Due to the embedding W 1
p (−h, 0;X) ⊆ C([−h, 0];X), the operator

Lη can be restricted to W 1
p (−h, 0;X); the restriction will be denoted by Lη,p.

It it easy to see that L = Lη,p satisfies (4.1) for r = 1 if the variation |η| (a measure;
cf. [13; Sec. 3, p. 198]) of η is used as µL. Therefore, Lη,p satisfies the hypotheses of
Theorem 4.1; cf. Remark 4.2(b).

(b) Let µL be a finite Borel measure on [−h, 0] ((−∞, 0] in case h = ∞). Let Lη,p
be as above and observe that η is uniquely determined by Lη,p. It thus follows from
part (a) and Proposition 5.2 below that L = Lη,p satisfies (4.1) for r = 1 if and only if
|η| 6 µL.

(c) From part (b) and Remark 4.2(d) we obtain thatLη,p is (strongly) massless at 0 if
and only if |η|({0}) = 0. The latter holds if and only if η(0) = η(0−) := limθ→0− η(θ)
(i.e., η does not give rise to mass at 0).

Proposition 5.2. Let X , Y be Banach spaces, L ∈ L(W 1
p (−h, 0;X), Y ), and assume

that (4.1) holds for r = 1 and a finite Borel measure µL. Then there exists η: [−h, 0] →
L(X, Y ) of bounded variation such that |η| 6 µL and L = Lη,p.

Proof. Let L̂ be as in Remark 4.2(c). For a bounded interval I ⊆ [−h, 0] we define

η̂(I)x := L̂(1Ix) (x ∈ X);

moreover, η(θ) := η̂((θ, 0]) (θ ∈ (−h, 0]), η(−h) := η̂([−h, 0]) if h ∈ (0,∞). We
show that the variation of η on I is bounded by µL(I); then L = Lη,p follows from the
definition of Lη.

Let (I1, . . . , In) be a partition of I into subintervals. Let ε > 0. Then there exist
xj ∈ X , ||xj|| = 1 (j = 1, . . . , n) such that

n∑
j=1

||η̂(Ij)|| 6 (1 + ε)
n∑
j=1

||η̂(Ij)xj||.

Since (4.1) implies ||η̂(Ij)xj|| = ||L̂(1Ijxj)|| 6 ||1Ijxj||L1(µL;X) = µL(Ij) for j =
1, . . . , n, we conclude that

n∑
j=1

||η̂(Ij)|| 6 (1 + ε)µL
( n⋃
j=1

Ij
)

= (1 + ε)µL(I)

and hence |η|(I) 6 µL(I).
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Remark 5.3. In Example 5.1, let X , Y be Banach lattices, Y order complete. Assume
that the regular variation η̃ of η exists, and that η̃ is of bounded variation; cf. [13;
Sec. 3].

(a) It was shown in [13; Prop. 9] that then the modulus of Lη exists, and that |Lη| =
Leη.

(b) Assuming additionally that X , Y have order continuous norm we show that
η(0) = η(0−) implies η̃(0) = η̃(0−). This reproduces the result of [13; Lemma 10].

Indeed, part (a) and [13; Thm. 1 and Rem. 2] show that the modulus of Lη,p exists
and is given by Leη,p (the restriction of Leη to W 1

p (−h, 0;X)). Remark 5.1(c) shows that
Lη,p is massless at 0. Therefore Leη,p ( = |Lη,p|) is massless at 0, by Proposition 1.1.
Applying again Remark 5.1(c) we obtain η̃(0) = η̃(0−).

Example 5.4. Let X be a Banach space, (Yn) a sequence of Banach spaces, q ∈
(1,∞),

Y := `q((Yn)n∈N) :=
{
(yn) ∈

∞∏
n=1

Yn; ||(yn)||q :=
∞∑
n=1

||yn||q <∞
}
.

(The above is an abstraction of the case that Y = Lq(Ω, ν), where (Ω,A, ν) is a mea-
sure space, and Yn = Lq(Ωn, ν), with a sequence (Ωn) of pairwise disjoint measurable
subsets of Ω such that

⋃
n∈N Ωn = Ω.) For n ∈ N let ηn : [−h, 0] → L(X, Yn) be a

function of bounded variation. Then µn := |ηn| is a finite measure on [−h, 0].
Let r ∈ (1, q] and assume that

∑∞
n=1 ||µn||r < ∞. Then

∑∞
n=1 ||Lηn||q < ∞, so we

can define L: C([−h, 0];X) → Y by

Lf := (Lηnf)n∈N.

Assume without loss of generality that ηn(0) = 0 for all n ∈ N. Then∑∞
n=1 ||ηn(θ)||q 6

∑∞
n=1 ||µn||q < ∞ for all θ ∈ [−h, 0], and hence we can define

η : [−h, 0] → L(X, Y ) by η(θ)f :=
(
ηn(θ)f

)
n∈N. Then formally L = Lη, but η is not

of bounded variation if the µn have pairwise disjoint support and
∑∞

n=1 ||µn|| = ∞.
Nevertheless, we will show that L satisfies the hypotheses of Theorem 4.1 with the
finite measure µL :=

∑∞
n=1 ||µn||r−1µn.

Let ϕ ∈ C([−h, 0];X). Recall from Example 5.1(a) that ||Lηnϕ|| 6 ||ϕ||L1(µn;X) for
all n ∈ N. Since r 6 q, we infer that

||Lϕ||r =
( ∞∑
n=1

||Lηnϕ||q
) r

q
6

( ∞∑
n=1

||ϕ||qL1(µn;X)

) r
q

6
∞∑
n=1

||ϕ||rL1(µn;X).

By Hölder’s inequality we have ||ϕ||L1(µn;X) 6 ||µn||
1
r′ ||ϕ||Lr(µn;X) for all n ∈ N. We

conclude that

||Lϕ||r 6
∞∑
n=1

||µn||r−1

∫
||ϕ(θ)||r dµn(θ) =

∫
||ϕ(θ)||r dµL(θ),

by the definition of µL. This proves ||Lϕ|| 6 ||ϕ||Lr(µL;X).
We note that the operator L defined above is massless at 0 if and only if the opera-

tors Lηn are massless at 0.
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