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Abstract

If z = a, is a holomorphic function with values in the sectorial forms
in a Hilbert space, then the associated operator valued function z — A,
is resolvent holomorphic. We give a proof of this result of Kato, on the
basis of the Lax-Milgram lemma. We also show that the Cy-semigroups T,
generated by —A, depend holomorphically on z.
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Introduction

The main objective of this note is to present a proof of the following theorem
connecting holomorphic dependence of forms in a Hilbert space with holomorphy
of the associated operator function.

0.1 Theorem. Let H be a complex Hilbert space, V- C H a dense subspace, and
let 2 C C be open. For each z € Q) let a, be a closed sectorial form in H with
domain dom(a,) =V, and let A, denote the (m-sectorial) operator associated
with a,. Assume that for all z,y € V the function Q > z — a,(z,y) € C is
holomorphic.

Then the function > z — A, is resolvent holomorphic, and the sectoriality
of (A,).eq is locally uniform.

This theorem is due to Kato [4; Theorem VII.4.2] and is proved there via a
representation of m-sectorial operators involving the square roots of their real
parts. We will present a proof that might be regarded as more natural; our
crucial observation is a formula expressing the operator associated with a form
in terms of the ‘Lax-Milgram operator’; see Proposition 1.1 below.

A rather striking application of Theorem 0.1, due to B. Simon, has been given
in Kato [3; Addendum]. In this application a Trotter product formula for sectorial
forms is derived from the validity of the corresponding Trotter product formula
for symmetric forms.
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Concerning notation, we recall that a form a is called sectorial if there exist
v € R and C' > 0 such that

Ima(u)| < C(Rea(u) —[ull*)  (u € dom(a)),

and similarly for an operator in H. This means that the numerical range of
the form (or the operator) is contained in a sector with vertex v and semi-angle
arctan C'.

In Kato [4; Section VII.4.2], a function z + a, as in Theorem 0.1 is called
holomorphic of type (a). We call a function 2 5 z — A, with values in the closed
operators in H resolvent holomorphic if the following condition is satisfied. For all
2p € {2 and some (and then all) A € p(A,,) there exists an open neighbourhood €2,
such that A € p(A,) for all z € Q,, and the function Q,, 3> z+— (A\—A,)"' € L(H)
is holomorphic; see Kato [4; Theorem VII.1.3].

In Section 1 we recall the Lax-Milgram lemma and present the resulting for-
mula mentioned above. Section 2 contains the proof of Theorem 0.1. In Section 3
we sketch a result that, in the particular context of Theorem 0.1, implies that
the associated Cy-semigroups depend holomorphically on z.

1 The Lax—Milgram lemma

Let V be a Hilbert space over K € {R,C}, and let a: V' x V — K be a coercive
bounded sesquilinear form, where coercive means that there exists a > 0 such
that

Rea(u) > ollull} (weV).

Let V* denote the anti-dual space of V', with the V*-V-pairing denoted by (-, -).
Then
(Au,v) = a(u,v) (u,v €V)

defines a bounded operator A: V — V*. The Lax—Milgram lemma states that .4
is an isomorphism, and || A™!|| < 1/«; see [5; Theorem 2.1}, [1; Satz 4.9] (for the
complex case).

Let H be a Hilbert space over K, and let j € L(V, H) be an injective operator
with dense range. Then

A={(z,y) e Hx H;Ju e V: ju==x, alu,v) = (y|jv)y (veV)}

defines the operator A associated with (a, j). There exists ¢ > 0 such that ||ju||g <
c|lully for all v € V. If x € dom(A), then there exists u € V' such that ju = x
and a(u,u) = (Azx|z); hence

(07
Re (Az|2) = Rea(u,u) > ollulli > gllxllfq-

This inequality means that A is strictly accretive; see Kato [3; Chapter V, §3.11].
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1.1 Proposition. In the situation described above the operator A is strictly m-
accretive, and

AT = A, (1.1)

with the canonical injection k € L(H,V*) defined by H > y — (y|j(-))y € V*
(the ‘anti-dual operator’ of j).

Proof. Let y € H. Then (y|j(-)),; € V*, so by the Lax-Milgram lemma there
exists u € V such that

a(u,v) = (yljo)y  (weV),

i.e., Au = ky. By the definition of A, this implies that = := ju € dom(A) and
Az = y. This shows that y € ran(A) and A~'y = z = j A" ky. We conclude that
A is strictly m-accretive and that (1.1) holds. O

2 Proof of the main theorem

We start with a preliminary step of the proof of Theorem 0.1; this also serves to
fix some notation. We note that for each z € ) there exist v, € R and C, > 0
such that

Ima.(u)| < C:(Rea.(u) = vllullf)  (weV).

The closedness of a, means that the space (V|| -||a.), with the norm

lull. = (Reas(uw) + (1 =) [ul)? (weV),

is complete. Using that the embedding (V, || - |l..) < (H, || - || &) is continuous and
applying the closed graph theorem we conclude that the norms || - ||,, are pairwise
equivalent. For notational convenience we can therefore assume that (V, (-|-),/)
is a Hilbert space with a norm equivalent to all norms || - ||,..

Proof of Theorem 0.1. For z € Q2 we define A, € L(V,V*) by

(A u,v) == a,(u,v) (u,v € V)

and note that the hypotheses together with Kato [4; Theorem I11.3.12] yield the
holomorphy of 2 3 z — A, € L(V,V*).

Let zp € 2. Without loss of generality we assume that zp = 0 and that aq is
sectorial with vertex vy = 1; then there exists C' > 0 such that

lull: < Cllull;, = CReag(u)  (u€ V).

There exists 7 > 0 such that B[0,r] € Q and ||A. — Ay < 55 for all z € B[0,r].
This implies that for all z € B[0,r], u € V one has

1 1
|a:(u) — ao(u)| < %HUH%/ < g Reao(u), (2.1)
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in particular

1 1
Rea,(u) > éReao(u) > %HUH%, (2.2)

This inequality shows that a, is coercive for all z € B[0,r|. Therefore Propo-
sition 1.1 implies that A, is strictly m-accretive, and

AT = AT, (2:3)

where j: V — H denotes the embedding and k is as in Proposition 1.1. The
holomorphy of z — A, and the existence of the inverse A;! € L(V*, V) for all
z € B(0,r) imply that B(0,7) > z — A;! € L(V* V) is holomorphic; cf. [4;
bottom of p.365]. By (2.3), this implies the holomorphy of B(0,r) > z — A;! €
L(H).

The inequalities (2.1) and (2.2) imply

1 1
Tma,(u)| < [Imag(u)| + 5 Reap(u) < (Co + 5) Reagp(u) < (2Cy + 1) Rea,(u).

This estimate shows that the form a, is sectorial with semi-angle arctan(2Cy + 1)
and vertex 0, for all z € B[0,r]. O

2.1 Remark. We will show here that the equivalence of the norms || - |,. is locally
uniform. Note that this was not needed explicitly in the proof of Theorem 0.1.

Putting ourselves into the context of the proof of Theorem 0.1 we show the
uniform equivalence of the norms on B(0,7). For z € B(0,r) the form a, is
sectorial with vertex 0; so we will use the norm

1/2
lulla. = Reaz(u) + [ul3)?  (weV).

From (2.2) and (2.1) we know that

1
3 Reap(u) < Rea,(u) < ;Re ao(u) (ueV)

for all z € B(0,r), and this implies

1 3
Shul, < Jul, < S, (@eV).

3 Holomorphic dependence of C)-semigroups

In the context of Theorem 0.1, every operator —A, is the generator of a holomor-
phic Cy-semigroup T,. The following theorem shows that the function z — T,
is also holomorphic, in a suitable sense. Note, however, that in this result no
holomorphy of the semigroups is required.
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3.1 Theorem. Let X be a complex Banach space, and let 2 C C be open. For
z € Q let T, be a Cy-semigroup on X, with generator A,, and assume that there
exists w € R such that

M = sup{e | T.(t)|;t >0, z € Q} < cc.

Assume further that Q2 z — (A—A,)~! € L(X) is holomorphic, for some X\ > w.
Then

(a) the function Q2 3> z — T,(-)x € C([0,t1]; X) is holomorphic for all t; > 0,
re X,

(b) the function Q2 3 z > T,(t) € L(X) is holomorphic for all t > 0.

Sketch of the proof. Without loss of generality we assume w = 0; then
M
[(A =47 < = (n €N, A >0). (3.1)

The holomorphy hypothesis implies that Q 3 z — (A — A,)™! € £(X) is holo-
morphic for all A > 0; see Kato [4; Theorem VII.1.3]. The exponential formula
shows that

T.(t) = s-lim (1 - %AZW (t>0), (3.2)

n—oo

and the strong convergence is uniform for ¢ in bounded subsets of [0,00); see
Pazy [6; Theorem 1.8.3].

From (3.1) and (3.2) one obtains the assertions, using standard facts of the
theory of Banach space valued holomorphic functions; see [2; Proposition A.3].

[]

3.2 Remarks. (a) In Theorem 3.1, assume additionally that all the semigroups
T, are holomorphic on a common sector Yy := {T € C; |ArgT| < 9}, with some
6 € (0,7/2], and that

M :=sup{e “"T||T.(7)||; T € Ty, 2 € U} < o0,
for some w € R. Then as above one can show that
Q32— T.()z € C((Se U{0}) N Be(0,7); X)

is holomorphic for all x € X, ¢ € (0,0), r > 0.

(b) The statement presented in part (a) above is a well-established result;
see [3; Theorem IX.2.6]. The proof given in this reference uses the representation
of the semigroups expressed by contour integrals. The authors are not aware of a
source in the literature for the result stated in Theorem 3.1, for non-holomorphic
semigroups.



H. Vogt, J. Voigt

References

1]
2]

3]

H. W. Alt: Lineare Funktionalanalysis. Springer-Verlag, Berlin, 1985.

W. Arendt, C.J.K. Batty, M. Hieber and F. Neubrander: Vector-valued
Laplace Transforms and Cauchy Problems. Birkhauser, Basel, 2001.

T. Kato: Trotter’s product formula for an arbitrary pair of self-adjoint
contraction semigroups. Topics in functional analysis (essays dedicated to
M. G. Krein on the occasion of his 70th birthday), pp. 185-195, Adv. in
Math. Suppl. Stud., vol. 3, Academic Press, New York, 1978.

T. Kato: Perturbation Theory for Linear Operators. Corrected printing of
the second edition, Springer-Verlag, Berlin, 1980.

P.D. Lax and A.N. Milgram: Parabolic equations. Contributions to the
theory of partial differential equations (L. Bers, S. Bochner, F. John eds.),
pp. 167-190. Annals of Mathematical Studies, no.33. Princeton University
Press, Princeton, NJ, 1954.

A. Pazy: Semigroups of Linear Operators and Applications to Partial Differ-
ential Equations. Springer-Verlag, New York, 1983.

Hendrik Vogt

Fachbereich Mathematik
Universitat Bremen

Postfach 330 440

28359 Bremen, Germany
hendrik.vogt@uni-bremen.de

Jiirgen Voigt

Technische Universitat Dresden
Fachrichtung Mathematik
01062 Dresden, Germany
juergen.voigt@tu-dresden.de



