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Abstract. We present a form convergence theorem for sequences of sectorial
forms and their associated semigroups in a complex Hilbert space. Roughly
speaking, the approximating forms an are all ‘bounded below’ by the limiting
form a, but in contrast to the previous literature there is no monotonicity
hypothesis on the sequence. Moreover, the forms are not supposed to be closed
or densely defined.

For a sectorial form one obtains an associated linear relation, whose nega-
tive generates a degenerate strongly continuous semigroup of linear operators.
Our hypotheses on the sequence of forms imply strong resolvent convergence
of the associated linear relations, which in turn implies convergence of the cor-
responding semigroups. The result is illustrated by two examples, one of them
closely related to the Galerkin method of numerical analysis.

MSC 2010: 47A07, 47B44, 47D06

Keywords: sectorial form, strong resolvent convergence, degenerate strongly
continuous semigroup, m-sectorial operator

Dedicated to Jerry Goldstein on the occasion of his 80th birthday

1. Introduction

The history of form convergence theorems goes back to at least the 1950’s. The
setup we consider involves a sequence (an) of sectorial forms in a Hilbert space
where all an are ‘bounded below’ in a suitable sense by a sectorial form a. Then
one seeks conditions implying that the operators An associated with an converge
to the operator A associated with a. We refer to Kato’s book [6; Chap. VIII,
Theorem 3.6] for a fundamental result concerning this topic as well as for an
account of the previous history.

A special case of this kind of results involves decreasing sequences of symmet-
ric forms; an interesting feature is that then one does not need to specify the
limiting form a in advance. Actually, this is a touchy issue because the limiting
form obtained pointwise need not be closable; see the cautious formulation in [6;
Chap. VIII, Theorem 3.11]. This issue was resolved by Simon in [8; Theorem 3.2],
where the ‘regular part’ of non-closable symmetric forms was introduced.

It appears that the topic of convergence ‘from above’ for the more general
case of sequences of sectorial forms was taken up only later, by Arendt and ter
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Elst [2]. One of the new features in that paper is that forms and the association
of operators are treated in a different setup, where closedness and closability of
forms – which played an important role in the previous treatments – are no longer
relevant.

We add a comment on form convergence theorems for increasing sequences of
forms. This topic is closely related, but employs rather different tools; we refer
to [6; Chap. VIII, Theorem 3.13], [8; Theorems 3.1 and 4.1], [7; Theorem 5], [4;
Theorems 1.2, 2.2 and 3.2], [10; Theorems 4.1 and 5.1]. An essential feature in
these results is that the domains of the sequence (an) of forms satisfy dom(an) ⊇
dom(an+1) for all n ∈ N.

Our theorem stated below is a generalisation of [6; Chap. VIII, Theorem 3.6]
and [2; Theorem 3.7]. We refer to Remark 3.3(c) for a discussion of the differences
between this theorem and the previous results.

1.1.Theorem. Let H be a complex Hilbert space, and let (a, j) be a quasi-sectorial
form in H. For n ∈ N let an be a form with dom(an) ⊆ dom(a). Let θ ∈ [0, π

2
),

and assume that

an(u)− a(u) ∈ Σθ

(
u ∈ dom(an), n ∈ N

)
. (1.1)

Let D be a core for a, and suppose that for all u ∈ D there exists a sequence
(un) in dom(a), un ∈ dom(an) for all n ∈ N, such that un → u in dom(a) and
an(un)− a(un) → 0 as n → ∞.

Let A be the linear relation associated with (a, j), and let An be the linear
relation associated with (an, j dom(an)), for n ∈ N. Then (An) converges to A in
the strong resolvent sense, i.e. (λ+An)

−1 → (λ+A)−1 (n → ∞) strongly for all
λ > −γ, where γ is a vertex of (a, j).

Clearly, this statement of the theorem asks for quite a number of clarifications.
These will be given in Section 2.

We point out two important issues concerning our result. Firstly, there is no
kind of monotonicity required for the sequence (an); see Remark 3.3(c). Sec-
ondly, the result implies that the sequence of semigroups generated by the linear
relations −An converges to the semigroup generated by −A; see Section 4.

In Section 2 we explain the concept of (not necessarily densely defined) quasi-
sectorial forms and their associated linear relations.

Section 3 is devoted to the proof of Theorem 1.1, including preparations. We
also include some comments on the hypotheses of the theorem as well as an
additional result concerning norm convergence of the resolvents in Theorem 1.1.

In Section 4 we describe the degenerate strongly continuous semigroups asso-
ciated with the forms an in the theorem and show that these semigroups converge
to the semigroup associated with a.

Section 5 contains examples illustrating the main theorem.
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2. Sectorial forms and associated linear relations

The topic of this section is a review of sesquilinear forms and their associated
linear relations; this review is a brief presentation and extension of notions and
results from [2]. Let H be a complex Hilbert space.

Let a be a sesquilinear form on some complex vector space, called dom(a). We
say that a is sectorial of angle θ ∈ [0, π/2) if

a(u) ∈ Σθ (u ∈ dom(a)),

where Σθ :=
{
reiα; r > 0, α ∈ (−θ, θ) ∪ {0}

}
. (Note that our definition of

‘sectorial’ is slightly more restrictive than the one used in [6; Chap. V, § 3.10].)
Additionally, let j : dom(a) → H be a linear operator; then the couple (a, j) is

called a form in H. The form (a, j) is called quasi-sectorial of angle θ and with
vertex γ ∈ R if

a(u) ∈ γ + Σθ (u ∈ dom(a), ∥j(u)∥ = 1),

or equivalently

a(u)− γ∥j(u)∥2 ∈ Σθ (u ∈ dom(a)).

Let (a, j) be a sectorial form of angle θ in H. Then

(x |y)a,j := (Re a)(x, y) + (j(x) |j(y))H (x, y ∈ dom(a)) (2.1)

defines a semi-inner product on dom(a), where Re a is defined by (Re a)(x, y) :=
1
2
(a(x, y)+a(y, x)). Let (V, q) be the completion of (dom(a), (· | ·)a,j), which means

that V is a Hilbert space and q : dom(a) → V is a linear operator with dense range
and (x |y)a,j = (q(x) |q(y))V for all x, y ∈ dom(a). Then the mappings j and a
possess unique continuous ‘extensions’ ȷ̃ : V → H and ã : V × V → C, satisfying
ȷ̃(q(x)) = j(x) and ã(q(x), q(y)) = a(x, y) for all x, y ∈ dom(a). More generally,
if W is a Banach space and L : (dom(a), ∥ · ∥a,j) → W is a continuous linear

mapping, then there exists a (unique) continuous linear operator L̃ : V → W
such that L̃(q(x)) = Lx for all x ∈ dom(a). (This property will be needed in the
proof Theorem 1.1.)

Now suppose additionally that (a, j) is densely defined, i.e. ran(j) is dense
in H. With the above preparations one then defines the m-sectorial operator A
associated with (a, j) by

A :=
{
(x, y) ∈ H ×H; ∃u ∈ V : ȷ̃(u) = x, ã(u, v) = (y | ȷ̃(v))H (v ∈ V )

}
. (2.2)

Note that A is also the operator associated with the form (ã, ȷ̃) in H.
To complete the picture – still for the case of sectorial forms – it remains to

discuss the case when ran(j) is not dense in H. In this case the above procedure

can be carried out with H replaced by H1 := ran(j), and the formula correspond-
ing to (2.2) yields an m-sectorial operator A1 in H1. Then the formula (2.2), as
it stands, yields the linear relation A = A1 ⊕ ({0} × H⊥

1 ) in H, which we call
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the linear relation associated with (a, j). The direct sum in this description is an
orthogonal direct sum in H ×H.

If (a, j) is quasi-sectorial with vertex γ, then one obtains the linear relation
A associated with (a, j) by first applying the previous procedure to the sectorial
form (a−γ, j), dom(a−γ) := dom(a),

a−γ(x, y) := a(x, y)− γ(j(x) |j(y))H (x, y ∈ dom(a)),

with associated linear relation A−γ, and then adding γI leads to

A := A−γ + γI :=
{
(x, y + γx); (x, y) ∈ A−γ

}
.

In this case the semi-inner product (2.1) on dom(a) becomes

(x |y)a−γ ,j
= Re a(x, y) + (1− γ)(j(x) |j(y))H (x, y ∈ dom(a)). (2.3)

The definition of A given above does not depend on the choice of the vertex γ.
As a consequence, if (a, j) is quasi-sectorial and λ ∈ R, then the linear relation

associated with the form aλ, aλ(x, y) = a(x, y) + λ(j(x) |j(y))H (x, y ∈ dom(a)),
is given by A+ λI =

{
(x, y + λx); (x, y) ∈ A

}
.

The inverse of a linear relation B ⊆ H×H is the linear relation B−1 :=
{
(y, x);

(x, y) ∈ B
}
. We point out that the resolvents (λ + An)

−1 = (An + λI)−1 and
(λ+ A)−1 = (A+ λI)−1 of −An and −A at the point λ, in Theorem 1.1, in fact
are operators; see Remark 3.2(d).

3. Proof of Theorem 1.1

The following result provides a key estimate needed in the proof of Theorem 1.1.

3.1. Proposition. Let V be a complex Hilbert space, and let a be a bounded
coercive form on V ,

|a(u, v)| ⩽ M∥u∥V ∥v∥V , Re a(u) ⩾ α∥u∥2V (u, v ∈ V )

for some M ⩾ 0, α > 0.
Let qV be a complex Hilbert space, ǎ a bounded coercive form on qV , J ∈ L(qV, V ),

and assume that there exists θ ∈ [0, π
2
) such that

ǎ(v)− a(Jv) ∈ Σθ (v ∈ qV ).

Let η ∈ V ∗ (the antidual space of V ), and let u ∈ V , ǔ ∈ qV be the unique
elements such that

a(u, v) = ⟨η, v⟩V ∗,V (v ∈ V ), ǎ(ǔ, v) = ⟨η, Jv⟩V ∗,V (v ∈ qV ).

Then

∥u− Jǔ∥2V ⩽ inf
v∈qV

(M2

α2
∥u− Jv∥2V +

c2

2α

∣∣ǎ(v)− a(Jv)
∣∣), (3.1)

where c := 1 + tan θ.
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Proof. The existence of u and ǔ is a consequence of the Lax–Milgram lemma.
We define a form b on qV by

b(w, v) := ǎ(w, v)− a(Jw, Jv).

The assumptions imply that b is sectorial of angle θ; hence [6; Chap. VI, (1.15)]
implies

|b(w, v)| ⩽ c(Re b(w))1/2(Re b(v))1/2 (w, v ∈ qV ). (3.2)

For v ∈ qV we compute

a(u− Jǔ, Jv) = ⟨η, Jv⟩V ∗,V − a(Jǔ, Jv) = ǎ(ǔ, v)− a(Jǔ, Jv) = b(ǔ, v).

Hence, for v ∈ qV we obtain

α∥u− Jǔ∥2V ⩽ Re a
(
u− Jǔ, (u− Jv) + J(v − ǔ)

)
= Re a(u− Jǔ, u− Jv) + Re b(ǔ, v − ǔ).

Now we use (3.2), the boundedness of a and twice Young’s inequality (ab ⩽
1
2

(
γa2 + 1

γ b
2) for all a, b ⩾ 0, γ > 0) to estimate

α∥u− Jǔ∥2V ⩽ M∥u− Jǔ∥V ∥u− Jv∥V + c(Re b(ǔ))1/2(Re b(v))1/2 − Re b(ǔ)

⩽
α

2
∥u− Jǔ∥2V +

M2

2α
∥u− Jv∥2V +

c2

4
Re b(v).

Reshuffling terms we conclude that

∥u− Jǔ∥2V ⩽
M2

α2
∥u− Jv∥2V +

c2

2α
Re

(
ǎ(v)− a(Jv)

)
. □

3.2.Remarks. (a) If the space qV is a subspace of V, J : qV ↪→ V is the embedding
and ǎ = a

qV×qV , then Proposition 3.1 reduces to Céa’s lemma; see [5; p. 365,
Proposition 3.1] (with a slightly different version of the resulting inequality). In
this case (3.1) reduces to

∥u− ǔ∥V ⩽
M

α
inf
v∈qV

∥u− v∥V ,

expressing that, up to a constant not depending on qV , the approximate solution
ǔ is as close as possible to the solution u. Céa’s lemma is a tool for the Galerkin
method of numerical analysis; see also Example 5.1.

(b) We define the Lax–Milgram operator associated with a as the bounded
linear operator A : V → V ∗, u 7→ a(u, ·). As the form a is coercive, the Lax–
Milgram lemma implies that A is an isomorphism.

(c) The following considerations serve to transform (3.1) into an inequality that
will be used in the proof of Theorem 1.1 given below. In the setting of Propo-

sition 3.1, let A ∈ L(V, V ∗) and Ǎ ∈ L(qV, qV
∗
) be the Lax–Milgram operators

associated with a and ǎ, respectively. We define the dual operator J ′ ∈ L(V ∗, qV
∗
)

of J by
J ′η := η ◦ J (η ∈ V ∗).
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Then for η ∈ V ∗, the elements u ∈ V and ǔ ∈ qV specified in Proposition 3.1 are
given by

u = A−1η, ǔ = Ǎ−1J ′η.

With this notation (3.1) reads as

∥A−1η − JǍ−1J ′η∥2V ⩽ inf
v∈qV

(M2

α2
∥A−1η − Jv∥2V +

c2

2α

∣∣ǎ(v)− a(Jv)
∣∣). (3.3)

(d) Let (a, j) be a quasi-sectorial form with vertex γ > 0 in a complex Hilbert
space H, let V , (ã, ȷ̃) and the associated linear relation A be as described in
Section 2, and let A be the Lax–Milgram operator associated with the form ã.
Define k̃ ∈ L(H, V ∗) by k̃(y) := (y | ȷ̃(·))H for y ∈ H. Then A−1 = ȷ̃A−1k̃. Note
that this formula shows that A−1 is an operator.

Indeed, by (2.2) one has (x, y) ∈ A if and only if there exists u ∈ V such that
ȷ̃(u) = x and ã(u, v) = (y | ȷ̃(v)) for all v ∈ V . The latter property is equivalent

to Au = k̃(y), i.e. x = ȷ̃(u) = ȷ̃A−1k̃(y). (See also [9; Proposition 2.1] concerning
this interplay between A and the Lax–Milgram operator A.)

Proof of Theorem 1.1. Note that the hypotheses of the theorem imply that the
forms an are quasi-sectorial with the same vertex γ as a and with a common
angle.

(i) In this main step of the proof we suppose that γ > 0, and we show the
assertion for λ = 0 (> −γ), i.e. we show that A−1

n → A−1 (n → ∞) strongly.
We will use the representation of A−1 and of A−1

n described in Remark 3.2(d).
The hypothesis γ > 0 implies that Re a is a semi-inner product on dom(a) that
is equivalent to the semi-inner product ( · | ·)a,j defined in (2.1). Moreover (a, j)

is sectorial, and (1.1) implies that (an, j) is sectorial for all n ∈ N.
Let (V, q) denote the completion of (dom(a),Re a). Then there exist a unique

ȷ̃ ∈ L(V,H) and a unique bounded form ã : V × V → C such that ȷ̃ ◦ q = j and
ã(q(u), q(v)) = a(u, v) for all u, v ∈ dom(a). Analogously we define Vn, qn, ȷ̃n
and ãn corresponding to an and jn := j dom(an), for n ∈ N. It follows from (1.1)
that the embedding dom(an) ↪→ dom(a) is continuous for all n ∈ N, and from the
description of the completion in Section 2 it follows that
there exists Jn ∈ L(Vn, V ) such that Jn ◦ qn = q dom(an).

dom(a) V

H

dom(an) Vn

q
ȷ̃

qn

id

ȷ̃n

Jn

Then ȷ̃n ◦ qn = j dom(an) = ȷ̃ ◦ q dom(an) = ȷ̃ ◦Jn ◦ qn; hence
ȷ̃n = ȷ̃ ◦ Jn on ran(qn), and by denseness on all of Vn.

Let n ∈ N. Then for all u ∈ dom(an) we have

ãn(qn(u))− ã(Jnqn(u)) = an(u)− a(u) ∈ Σθ.

Since ran(qn) is dense in Vn, it follows that ãn(v)− ã(Jnv) ∈ Σθ for all v ∈ Vn.
For the application of Proposition 3.1 we note that the convergence hypothesis

of the theorem is equivalent to requiring that

inf
v∈dom(an)

(
∥u− v∥2a +

∣∣an(v)− a(v)
∣∣) → 0 (n → ∞), (3.4)
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for all u ∈ D. As D is a core for a, the convergence (3.4) carries over to all u ∈
dom(a). In view of the properties of the mappings q, qn and Jn the convergence
(3.4) can be rewritten as

inf
v∈ran(qn)

(
∥u− Jnv∥2V +

∣∣ãn(v)− ã(Jnv)
∣∣) → 0 (n → ∞),

for all u ∈ ran(q). Then, using the inclusions ran(qn) ⊆ Vn as well as the denseness
of ran(q) in V , one also obtains

inf
v∈Vn

(
∥u− Jnv∥2V +

∣∣ãn(v)− ã(Jnv)
∣∣) → 0 (n → ∞), (3.5)

for all u ∈ V .
Let Ã ∈ L(V, V ∗) and Ãn ∈ L(Vn, V

∗
n ) (n ∈ N) be the Lax–Milgram operators

associated with ã and ãn (n ∈ N), respectively. By Remark 3.2(d) we have

A−1 = ȷ̃Ã−1k̃ and A−1
n = ȷ̃nÃ−1

n k̃n for all n ∈ N, where k̃y = (y | ȷ̃(·))H and k̃ny =
(y | ȷ̃n(·))H for all y ∈ H. Combining (3.5) with inequality (3.3) in Remark 3.2(c)
we conclude that JnA−1

n J ′
n → A−1 strongly in L(V ∗, V ), as n → ∞.

Note that ȷ̃n = ȷ̃ ◦ Jn implies k̃n = J ′
n ◦ k̃, for all n ∈ N. Therefore

A−1
n = ȷ̃(JnA−1

n J ′
n)k̃ → ȷ̃A−1k̃ = A−1 (n → ∞) (3.6)

strongly in L(H).
(ii) For the general case let λ > −γ. As in Section 2 we define the form aλ by

dom(aλ) := dom(a),

aλ(x, y) := a(x, y) + λ(j(x) |j(y))H (x, y ∈ dom(a));

then aλ has the vertex γ + λ > 0. Defining an,λ correspondingly for n ∈ N, we
apply step (i) to the form aλ and the sequence (an,λ)n∈N. This yields A

−1
n,λ → A−1

λ

(n → ∞) strongly, where An,λ, Aλ are associated with the forms an,λ, aλ. As
An,λ = An + λI (n ∈ N) and Aλ = A+ λI by Section 2, we obtain the assertion
of the theorem. □

3.3. Remarks. (a) In the hypotheses of Theorem 1.1, the condition un → u in
dom(a) implies that a(un) → a(u). Therefore ‘an(un)− a(un) → 0 as n → ∞’ is
equivalent to requiring ‘an(un) → a(u) as n → ∞’.

(b) In the proof of Theorem 1.1 it is shown that the convergence property
required for all u ∈ D is in fact satisfied for all u ∈ dom(a); see the argument
connected with the reformulation (3.4) of this property.

(c) The hypotheses of the theorem express a kind of convergence an → a.
In previous results on form convergence ‘from above’ (see, e.g., [6; Chap. VIII,
Theorem 3.6] and [2; Theorem 3.7]) a more restrictive hypothesis is used, namely
that the set

D :=
{
u ∈

⋃
k∈N

⋂
n⩾k

dom(an); an(u) → a(u) (n → ∞)
}
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is a core for a. In particular, the elements of D belong to almost every dom(an).
This kind of ‘monotonicity’ for the domains of the forms is not required in The-
orem 1.1.

Another important weakening in our hypotheses, with respect to the quoted
sources, is that we do not require the forms an to be densely defined. The inclu-
sion of this feature in our result was motivated by the well-established Galerkin
method; see Example 5.1. The use of non-densely defined (symmetric) forms in
the context of form convergence theorems was already promoted in [8].

The following result is a generalisation of [2; Theorem 3.8]; it is a simple
by-product of our method of proof for Theorem 1.1.

3.4. Theorem. Let the hypotheses be given as in Theorem 1.1. Assume addition-
ally that the operator j : (dom(a), (· | ·)a−γ ,j

) → H is compact, where (· | ·)a−γ ,j
is

the semi-inner product (2.3), with a vertex γ of a.
Then the conclusion of strong resolvent convergence of the linear relations

An to A can be strengthened to norm resolvent convergence, i.e. (λ + An)
−1 →

(λ+ A)−1 (n → ∞) in L(H) for all λ > −γ.

Proof. As in the proof of Theorem 1.1 it is sufficient to consider the case when
γ > 0 is a vertex of a and λ = 0, and we adopt the notation used in that proof.

The properties of the completion of dom(a) imply that the image under q of
the open unit ball of dom(a) is dense in the open unit ball of V . Therefore the
compactness of j implies that ȷ̃ is a compact operator as well. Now we go to
the last two paragraphs of step (i) in the proof of Theorem 1.1 and observe that,

by Schauder’s theorem on the adjoint of compact operators, the operator k̃ is
compact. Therefore the strong convergence JnA−1

n J ′
n → A−1 together with (3.6)

implies that A−1
n → A−1 in L(H). □

4. Degenerate strongly continuous semigroups

Let X be a Banach space, and let T : [0,∞) → L(X) be a one-parameter semi-
group on X; note that then P := T (0) is a projection. We call T a degenerate
strongly continuous semigroup if T (0) = s-limt→0+ T (t). A degenerate strongly
continuous semigroup T is the direct sum of a C0-semigroup T1 on X1 := P (X)
and the semigroup on X0 := (I − P )(X) that is identically zero; in fact T1 is the
restriction of T to X1. Let A1 be the generator of the C0-semigroup T1. Then it
is meaningful to call the linear relation A := A1 ⊕ ({0X0}×X0) =

{
(x,A1x+ y);

x ∈ dom(A1), y ∈ X0

}
the generator of the degenerate strongly continuous

semigroup T . We refer to [1] for the introduction and investigation of degenerate
semigroups. Arendt does not define the generator for degenerate strongly contin-
uous semigroups, but rather deals with the concept of pseudo-resolvents, which
are the resolvents of linear relations A as above.
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Let H be a complex Hilbert space, and let (a, j) be a quasi-sectorial form in H.

We define H1 := ran(j) and H0 := H⊥
1 . In Section 2 it was described that then

the linear relation A associated with (a, j) is of the form A1 ⊕ ({0}×H0), where
A1 is a quasi-m-sectorial operator, and as such the operator −A1 is the generator
of a C0-semigroup on H1. Hence, in the terms described above, the linear relation
−A is the generator of a degenerate strongly semigroup T , the direct sum of the
C0-semigroup T1 on H1 generated by −A1 and the zero-semigroup on H0.

4.1. Theorem. Let the hypotheses be given as in Theorem 1.1. Denote by T the
degenerate strongly continuous semigroup generated by the linear relation −A,
and for n ∈ N denote by Tn the degenerate strongly continuous semigroup gener-
ated by −An. Then

Tn(t)x → T (t)x (n → ∞) (4.1)

uniformly on compact subsets of [0,∞), for all x ∈ H.

Proof. We refer to [1; Theorem 4.2] for the result that the strong resolvent conver-
gence stated in Theorem 1.1 implies the convergence (4.1) for all x ∈ ran(T (0)) =

ran(j). However, on ran(j)⊥, the semigroup T and the semigroups Tn act as the
zero operator (note that ran(j)⊥ ⊆ ran(j dom(an))

⊥); hence the convergence (4.1)
on ran(j)⊥ is trivial. □

5. Examples

5.1. Example. Let H be a complex Hilbert space, and let (a, j) be an embed-
ded sectorial form in H. Here, ‘embedded’ means that dom(a) ⊆ H and that
j : dom(a) ↪→ H is the embedding. Then

(x |y)a,j := a(x, y) + (x |y)H (x, y ∈ dom(a))

defines a scalar product on V := dom(a).
Let (Vn)n∈N be a sequence of subspaces of V , and define an as the restriction of

a to Vn. Suppose that for all x ∈ V one has dist∥·∥a,j(x, Vn) → 0 as n → ∞. Then
Theorem 1.1 implies that the linear relations An associated with an converge to
the linear relation A associated with a, in the strong resolvent sense.

We add three comments: 1. It is not difficult to construct cases in which
the spaces Vn are such that Vn ∩ Vm = {0} for all n ̸= m; in particular, the
condition mentioned in Remark 3.3(c) is not satisfied. 2. For the proof of this
application of Theorem 1.1 one would need Proposition 3.1 only in the simplified
form of Céa’s lemma alluded to in Remark 3.2(a). 3. If all the spaces Vn are
finite-dimensional, then the assertion in the example corresponds to the Galerkin
method of numerical analysis.

5.2. Example. Let Ω ⊆ Rn be an open set, and let (Ωk)k∈N be a sequence of
open subsets of Ω with the property that for each compact set K ⊆ Ω there exists
kK ∈ N such that K ⊆ Ωk for all k ⩾ kK .
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Let a be the classical Dirichlet form on C∞
c (Ω),

a(f, g) =

∫
∇f · ∇g dx (f, g ∈ C∞

c (Ω)),

let ak be the restriction of a to dom(ak) := C∞
c (Ωk), and let A and Ak (k ∈ N)

be the self-adjoint linear relation associated with a and ak (k ∈ N), respectively.
This means that the operator A is the negative Dirichlet Laplacian in L2(Ω),
whereas for k ∈ N, Ak is the negative Dirichlet Laplacian in L2(Ωk) supplemented
by {0} × L2(Ω \ Ωk) to a self-adjoint linear relation in L2(Ω). (We refer to [3;
Section 5] for the first appearance and the analysis of self-adjoint linear relations
in Hilbert spaces.)

Then Theorem 1.1 (or Example 5.1) implies that Ak → A in the strong resol-
vent sense. If additionally Ω is bounded, then Theorem 3.4 in tandem with the
Rellich–Kondrachov theorem implies that Ak → A in the norm resolvent sense.

Note that, in general, in the above context one cannot expect to find a decreas-
ing subsequence of (ak)k. However, the condition mentioned in Remark 3.3(c) is
satisfied. We refer to [1; Section 6] for a treatment of semigroup convergence in
a similar context, where the approximating sets Ωk need not be subsets of Ω, but
Ω is required to satisfy a regularity property. It is not difficult to see that in the
proof given in [1] this regularity property can be removed if all the Ωk are subsets
of Ω.
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