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Abstract

For geometrically finite non-compact hyperbolic orbisurfaces fulfilling mild as-
sumptions, we provide transfer operator families whose Fredholm determinant
functions are identical to the respective Selberg zeta function. Our proof yields an
algorithmic and uniform construction. By application of the cusp expansion algo-
rithm by Pohl [54] and introduction of a similar algorithmic procedure for orbisur-
faces without cusps, we establish cross sections for the geodesic flow on the con-
sidered orbisurfaces, that yield highly faithful, but, in general, non-uniformly ex-
panding discrete dynamical systems modeling the geodesic flow. The central ob-
ject for this pursuit is the set of branches, which encapsulates the structure guar-
anteeing the cross section to be suitable for its purpose. These sets of branches
are introduced and extensively studied. Through a number of algorithmic steps
of reduction, elimination, and acceleration on a set of branches, we turn the asso-
ciated cross section into one that yields a still highly faithful, but now uniformly
expanding discrete dynamical system. By virtue of the strict transfer operator
approach in the sense of Fedosova and Pohl [22], this gives rise to a family of
transfer operators nuclear of order zero on a well-chosen Banach space, and the
Fredholm determinant function is seen to admit a meromorphic continuation to
the whole complex plane and to equal the Selberg zeta function. All statements
allow for the inclusion of finite-dimensional representations with non-expanding
cusp monodromy, in the sense that a twisted version of the Selberg zeta func-
tion as well as twisted transfer operators may be considered. A comprehensive
overview of the required background knowledge in hyperbolic geometry precedes
the investigations.
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Zusammenfassung

Wir entwickeln Familien von Transferoperatoren fiir eine grofe Klasse von geo-
metrisch endlichen, nichtkompakten, hyperbolischen Orbiflichen, deren Fred-
holmsche Determinantenfunktionen mit der jeweiligen Selbergschen Zetafunk-
tion tibereinstimmen. Unser Beweis stellt eine algorithmische und uniforme Kon-
struktion dieser Operatoren bereit. Durch Anwendung von Pohls cusp expan-
sion algorithm [54] und der Einfithrung eines darauf basierenden alorithmischen
Ansatzes in Situationen ohne Spitzen, geben wir Schnitte fiir den geodatischen
Fluss auf den betrachteten Orbifldchen an, welche hochgradig treue, jedoch im
Allgemeinen nicht uniform expandierende diskrete Dynamiken liefern, die den
geoditischen Fluss modellieren. Das zentrale Objekt fiir dieses Unterfangen stellt
das set of branches dar, welches die fiir die Eignung des betreffenden Schnittes
wesentlichen Strukturinformationen enthélt. Diese sets of branches werden einge-
fihrt und umfassend untersucht. Mittels diverser algorithmischer Arbeitsschritte
betreffend Reduktion, Elimination und Beschleunigung auf diesem set of branches,
gelingt es, den zugehorigen Schnitt so umzuwandeln, dass nach wie vor ein hoch-
gradig treues, nun jedoch ebenfalls uniform expandierendes diskretes dynamisch-
es System induziert wird. Auf Grundlage des strict transfer operator approach von
Fedosova und Pohl [54], ermdglicht dies die Konstruktion einer Familie von nu-
klearen Operatoren der Ordnung Null auf einem geeigneten Banachraum, deren
Fredholm-Determinantenfunktion eine meromorphe Fortsetzung auf die gesamte
komplexe Ebene erméglicht und dort mit der Selbergschen Zetafunktion iiberein-
stimmt. Alle Aussagen gestatten zudem die Betrachtung von endlich-dimensiona-
len Darstellungen mit nicht-expandierender Spitzenmonodromie, in dem Sinne,
dass eine getwistete Version der Selbergschen Zetafunktion sowie Familien ge-
twisteter Transferoperatoren betrachtet werden kénnen. Den Untersuchungen
ist ein umfanglicher Uberblick tiber das benétigte Hintergrundwissen in hyper-
bolischer Geometrie vorangestellt.
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Introduction

Historical Background and Motivation

Selberg’s zeta function, introduced in his groundbreaking work [74] in 1956, is
a mediator between the worlds of differential geometry and spectral theory on
Riemannian orbifolds. Despite being defined in terms of the primitive geodesic
length spectrum—and hence by purely geometric means—its zeros nevertheless
encode profound spectral information in form of the L?-eigenvalues and reso-
nances of the Laplacian on the surface. That makes the Selberg zeta function a
highly valued object in the study of resonances (or vice versa, in the investigation
of periodic geodesics using knowledge on resonances). Selberg zeta functions are
now available for all geometrically finite hyperbolic orbisurfaces, and their theory
is already quite extensive. Nevertheless, new contributions are made regularly, as
we will do with this thesis.

Let X be a geometrically finite hyperbolic orbisurface. By that we mean a two-
dimensional hyperbolic connected Riemannian orbifold (see, e. g., [77]). Further
denote by £x the multiset of lengths of prime periodic geodesics on X—the prim-
itive length spectrum of X. Then the infinite Euler product

Zx(s) = H ﬁ (1 — ef(‘”k)g) (1)

lePx k=0

converges for Re s > 1 and admits an analytic continuation to a meromorphic
function on C [74, 27, 78, 10], which we continue to denote by Zx (). The set of ze-
ros of Zx (s) is known to contain the resonances of the Laplacian. For instance, for
various orbisurfaces (and also in combination with non-trivial finite-dimensional
unitary representations) a factorization

Zx(s) = G(S) . PX

isknown [11, 52, 19], where G/(s) is a meromorphic function and Pk is the Weier-
straf3 product of resonances of X (including multiplicities), that are the poles of the
resolvent of the Laplacian on X. Hence, every resonance re-appears as a zero of Zx
with (almost) matching multiplicities. This relationship has also been shown in
further settings and by other means (see [74, 78]). We provide a more extensive
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survey of these results in Section 1.12.

The link to the spectral theory of hyperbolic orbisurfaces motivates extended
interest in the study of the zeros of the Selberg zeta function. This undertaking
has gained a lot of traction with the introduction of transfer operator techniques
from statistical mechanics, whose use goes back to work of Ruelle [69, 70, 71],
Mayer [39, 40, 41], Fried [23], and Pollicott [65] and has made a great leap for-
ward in recent years due to the efforts of many further researchers (see the list
of references below). In the most general setting, the transfer operator associated
with a given dynamical system

T:X — X,

where X is an arbitrary set, is an operator on the space Fct(X;C) of func-
tions f: X — C defined as

Lf(x)= Y ofy),

yeT—1(x)

for z € X, where T~!(x) denotes the complete preimage of x under 7" and g is
some auxiliary valuation function. In settings where 7" has a non-zero Jacobian
determinant, a common choice for g is |T’|_1 (Perron—Frobenius operator). While
the study of discrete-time dynamics on X naturally leads to considerations re-
garding the orbits of the points of X under iteration of 7', the transfer operator
encapsulates how functions of various regularity evolve under iteration. It is de-
signed to disclose the action of the dynamical system on mass densities of initial
conditions. Consider, for example, the case that the Lebesgue measure A on X is
non-singular with respect to 7'. Then, for every measure p on X absolutely con-
tinuous with respect to ), its push-forward y1 o 7! is also absolutely continuous
with respect to A, and both their densities are A-almost unique by the Radon-
Nikodym theorem. Then a transfer operator can be chosen which transforms the
density of i into the density of its pushforward, for every such measure p [73].
The (discrete-time or Ruelle-type) transfer operators, which are of interest
for the thesis in hand, are associated to a discretizations of the (continuous-time)
geodesic flow on a hyperbolic orbisurface X. This is realized via a cross section suf-
ficiently well structured to admit a first return map, hence yielding a time-discrete
dynamical system on the unit tangent bundle of the orbisurface semi-conjugate
to a Hadamard-type symbolic dynamics on subsets of the geodesic boundary of
the hyperbolic plane. The transfer operators associated to this symbolic dynam-
ics (with well-chosen valuation functions; see Section 1.11 for the details) then
bear profound geometric information in terms of their eigenvalues and eigen-
functions. Via a complexification procedure on said subsets and an application
of Grothendieck theory [26, 25], a Banach space of holomorphic functions can
be obtained, on which every member of a certain one-parameter family of trans-
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fer operators associated to the symbolic dynamics (and hence, by proxy, to the
geodesic flow) is seen to be nuclear of sufficiently small order, i. e., of (general-
ized) trace-class. This makes it possible to assign a Fredholm determinant. See
Section 3.2 for a brief survey on nuclear operators and their traces and determi-
nants.

Coming back to the Selberg zeta function, the result most seminal for the
study of transfer operators in this setting is Mayer’s thermodynamic formalism
approach on the modular surface M [41]. Based on a Farey tessellation of H
provided by Series [75], Mayer showed that a certain family of trace-class op-
erators {,CISW}Re +1 related to the Gauff map (and including the famous Gauf3-
Kuzmin-Wirsing o2perator as a member) represents the Selberg zeta function by
means of their Fredholm determinants:

Zx(s) = det(1 — L), )

for X = M. The identity (2) converts the search for zeros of Zx (and hence
for the resonances of X) to a question on the existence of eigenfunctions with
eigenvalue 1 of the transfer operator £X with parameter s. A priori, the latter
seems to be the more involved problem. However, this conversion allows to take
advantage of, e. g., functional-analytic properties of £X and the spectral theory
for compact operators for investigations. This explains why a relation as in (2) is
so powerful and thus desired to have, not only in the case of the modular surface,
but for as many hyperbolic orbisurfaces as feasible. Accordingly, in recent years
much progress has been made for several (classes of) hyperbolic orbisurfaces by
various researchers, and thus representations of the form (2) are now available in
many settings (see the references listed below).

In such studies of resonances, sometimes also a twisted variant of the Selberg
zeta function, Zx ,, features, which enjoys quite similar properties as Zx for x a
finite-dimensional representation of the fundamental group of X of appropriate
regularity (see below). We refer the reader to Section 1.12 for exact definitions. For
some hyperbolic orbisurfaces, also a family of twisted transfer operators {Eiﬁx} s
is available, yielding a twisted analogue of (2):

Zx(s) =det(1—LF ). A3)

While the (twisted or untwisted) Selberg zeta function focuses on the static
geometry of hyperbolic orbisurfaces (namely, the lengths of periodic geodesics),
transfer operators take advantage of the dynamics of the geodesic flow (namely,
the paths of periodic geodesics). Accordingly, investigations of spectral properties
of hyperbolic surfaces by means of transfer operators on the one hand and by
means of Selberg zeta functions on the other hand are complementary. A number
of particularly good results have been achieved by combining both approaches
and making crucial use of (2) or (3), of which we can list here but a few examples:
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« prime geodesic theorems, including error terms [50, 51, 66, 67, 47, 49] (some
of these works use a variant of (2) or (3) or are for other spaces, but are
nevertheless good examples),

« relations between Patterson—Sullivan distributions and Wigner distribu-
tions [3],

« numerical investigations of resonances [9, 5],
« distribution and counting results for resonances [28, 32, 48, 62],

« meromorphic continuation of Selberg zeta functions [23, 70, 71, 69, 40, 41,
,46,17,42,44,59, 61, 22] (some of these results use variants of (2) in order
to compensate for non-exact codings).

Presentation of the Main Results

In this thesis we greatly expand the realm of hyperbolic orbisurfaces for which a
representation as in (3) can be obtained. With respect to this objective, our main
result reads as follows.

Theorem A. For admissible developable hyperbolic orbisurfaces X and good rep-
resentations x there exists a Banach space B of functions and a family of opera-
tors {£§x}s which are nuclear of order zero on I3 and such that (3) holds true for Re s
sufficiently large. Both Zx ,(s) and s — L, extend to meromorphic functions
in s € C, the latter with values in nuclear operators of order zero.

A hyperbolic orbisurface X is called developable, if it has a fundamental group,
that is, if there exists a group I' of isometries on H such that X = I'\ H. By a good
representation we mean a linear representation of I' on a finite-dimensional Her-
mitian vector space that has non-expanding cusp monodromy (see Section 1.12).
This includes, in particular, all finite-dimensional unitary representations. In
what follows we discuss the strategy of proof for Theorem A and, by doing so,
elaborate on which orbisurfaces we shall call admissible.

We start with a briefly survey of a result by Méller and Pohl [44], where they
established (2) (i. e., (3) for x the trivial one-dimensional representation) for cofi-
nite Hecke triangle groups. These groups I'; are generated by the two isometries

s:z»—>—; and th:z—> 24+ X,
for = € Hand A € {2cos(7/q) | ¢ > 3}. The orbisurface X, associated with I,
has a single cusp and two conical singularities, one of order 2 and one of order ¢
(the modular surface M is the Hecke triangle surface to the parameter ¢ = 3).
The cusp of X, makes it prone to the cusp expansion algorithm developed by Pohl
in her dissertation thesis [54]. For every geometrically finite Fuchsian group with
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cusps which fulfills a certain technical condition (see below), this algorithm estab-
lishes a cross section for the geodesic flow that gives rise to a symbolic dynamics
as described above. In the case of a cofinite Hecke triangle surface, the repre-
sentatives of this cross section in H are of particularly convenient structure: one
obtains a subset of the unit tangent vectors based on the imaginary axis and point-
ing into the half-space {Re z > 0} (see Figure 1). The arising symbolic dynamics

Fa
s(C) u(C)

} 1
I I
I |
I |
I ]
I |
l I
l I
| |
| |
| |
| |
I I
I |
- - S .
l l
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I I
I I
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I I

0 Vi 112 V3

Figure 1: A fundamental domain F; for I's and a representative C of the cross
section constructed by Pohl [54] together with the relevant translates. We abbre-
viate here t := ¢ 5 and u := ¢ - s. The gray stripes indicate that the respective set
consists of unit tangent vectors which are based on the adjacent geodesic arc and
point into the indicated half-space relative to that arc.

and family of transfer operators can be described as follows: fork =1,...,¢—1
define the diffeomorphisms

gr: T —>

on R, as well as the subsets!

Dy = (_sin(lﬂquw) sin(gw)

sin(Ew) ’ _Sin(klﬂ')) \Lg-00,

q q

where I';.00 denotes the orbit of the ideal point oo under I, or equivalently, the
set of representatives of the cusp of X,. Then the symbolic dynamical system is

We consider the sets Dy, as subsets of ]IAQ This means we identify +co and —oco. Furthermore,

»

we use the convention “1/) = c0”.
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given by
F:D— D, Flp,=g,k=1,...,q—1,

for D := Uz;ll Dy,. Via the operators 75(g): Fct(D;C) — Fct(D;C) given by

7s(g ) f (@) =g (@) (fog)(a),

forgeI'y,s € C,and z € D, an action of I'; on Fct(D; C) can be defined. With
that the associated transfer operator family

Lrs: Fet(D;C) — Fet(D; C)

for s € C is given by

q—1

EF,S = ZTs(gk) 5

k=1
for x € D. The family {Lp}s is called the family of slow transfer operators
and it will fail to be nuclear of order zero on any Banach space of holomorphic
functions on open @—neighborhoods of the sets Dy, (complexification). The reason
for that is the cusp of the orbisurface X,, or more precisely the local structure
of the underlying cross section in proximity to the cusp. Periodic geodesics with
extended sojourns into the cusp experience particularly slow coding, wherefore
the symbolic dynamics (D, F') fails to be uniformly expanding on certain subsets
of the geodesic boundary of H.

To overcome this issue Méller and Pohl applied an acceleration procedure, also

called induction on parabolic elements. This procedure gives rise to a second family,
called the family of fast transfer operators. For its definition let

1 1
—_, — ry.
(n-f—l))\’n)\)\ o

Dgn) = (n\, (n+1)A) \Tq.00 and Dg@l = <
for n € N, and define the dynamics F:D—D by the diffeomorphisms
ﬁ|Dk:zgk:Dk—>D for k=2,...,q—2,
as well as
ﬁ’Dg”) =g D%n) — D\ Dy, and
Flom = gg_1: Dt(;i)l — D\ Dg—1,

for all n € N. The transfer operator family associated with this dynamics is then
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formally given by
() q—2 0o
Lp,= Z 1p\p,7s(97) + Z Ts(gk) + Z Ip\p, 1 7s(9g-1) » (4)
n=1 k=2 n=1

where 1, denotes the characteristic function of any subset M of C. Now, a com-
plexification of the underlying sets exists, which gives rise to a suitable Banach
space of functions on which operator sums induced by (4) converge to nuclear
operators L of order zero for Re s sufficiently large, and the map s — L, admits
a meromorphic continuation to all of C, with values in nuclear operators of order
zero. We refer the reader to [44, Section 4.2] for the details (see also Property 5 in
Section 3.1 and the definitions in Section 3.3). The identity (2) is then obtained via
a thermodynamic formalism approach [44, Theorem 4.15]. Therefore, the orbit
space of every cofinite Hecke triangle group is admissible for Theorem A, at least
for x the trivial one-dimensional representation.

In order to extend the scope of admissible orbisurfaces we aim to generalize
the approach by Méller and Pohl. Pohl’s cusp expansion algorithm already applies
to (almost) all non-cocompact geometrically finite Fuchsian groups with cusps,
regardless of torsion and covolume. Thus, the desired approach for these groups
breaks down to a generalization of the acceleration procedure and the thermody-
namic formalism. Also, one would like to include non-trivial finite-dimensional
representations of fitting regularity. Fortunately, for the latter two objectives a
framework has already been provided by Fedosova and Pohl in [22]. Their strict
transfer operator approach provides a list of properties that together guarantee the
existence of a suitable Banach space, a family of (twisted) fast transfer operators,
as well as feasibility of a thermodynamic formalism approach to the y-twisted
Selberg zeta function, for all finite-dimensional linear representations x having
non-expanding cusp monodromy. Hence, in other words, they proved the follow-
ing statement.

(STOA) Every hyperbolic orbisurface that admits a strict transfer operator ap-
proach is admissible for Theorem A, for every good representation.

For twists without non-expanding cusp monodromy they further showed that the
product in the definition of Zx , (s) diverges for every choice of s. Thus, the good
representations are optimal for their purpose in Theorem A.

The demands for a strict transfer operator approach are listed in Section 3.1.
These demands make it possible to verify, on a group-by-group basis, that a given
cross section gives rise to a fast transfer operator family suitable for a represen-
tation as in (3). If this is the case, then this family is given explicitly in terms of
the transformation sets and intervals one is required to provide (i.e., in terms
of the structure tuple, see Section 3.3). But they do not allow to directly obtain
these cross sections and hence, in particular, they do not imply existence of strict
transfer operator approaches.
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To find such cross sections and thereby deduce such an existence statement
is the main objective of this thesis. To that end, for a geometrically finite Fuch-
sian group I' we introduce the notion of sets of branches (see Section 4.1). These
are finite families of subsets of the unit tangent bundle of H, the union of which
represents a cross section for the geodesic flow on the orbit space of I'. They are
defined by purely geometric means, which makes it easy to verify the fulfillment
of all requirements for given candidates. Mirroring the approach in the case of
Hecke triangle groups, sets of branches give rise to a family of slow transfer op-
erators (Section 4.7), and, depending on I', require an acceleration procedure for
the construction of an accompanying family of fast transfer operators (Chapter 5).
The notion of sets of branches therefore encapsulates the insight that the struc-
ture of the cross section conducting the discretization of the geodesic flow already
completely determines the eligibility of all objects that stem from it. The central
result about sets of branches reads as follows.

Theorem B. Every Fuchsian group that admits the construction of a set of branches
also admits a strict transfer operator approach.

The combination of Theorem B with (STOA) implies Theorem A, wherefore
it remains to investigate for which Fuchsian groups sets of branches can be ob-
tained. For this an obvious starting point is Pohl’s cusp expansion algorithm,
the cross sections emerging from which are indeed seen to come from a set of
branches (Section 7.1). But we are not content with Fuchsian groups with cusps,
for it turns out that, while non-compactness of the orbisurface is indeed crucial
for our approach, the presence of cusps is not. By an auxiliary group argument
we manage to construct sets of branches also for non-compact hyperbolic or-
bisurfaces whose hyperbolic ends are all funnels (Section 7.2). Since we do so by
essentially applying the cusp expansion algorithm “out of context” (i.e., for or-
bisurfaces without cusps), we inherit a technical limitation faced by the Fuchsian
group I', simply called Condition (A) (see Section 2.1).

Finally, if I' does not contain hyperbolic elements, then the product in (1) (and
also the analogue in the definition of Zx , ) is void, and hence Zx , = 1. In this
degenerate case it will also be impossible to construct sets of branches by virtue
of their definition. In conclusion, because we provide explicit sets of branches in
the settings described above, Theorem B then proves the following result.

Theorem C. Let I' be a geometrically finite non-cocompact Fuchsian group that
contains hyperbolic elements and fulfills Condition (A). Then X = IN\H is an
admissible orbisurface for Theorem A.

Below we provide a diagram that visualizes the structure of proof for Theo-
rem A, including explicit references to the results in this thesis.

We close this section with a few remarks on the accompanying family of slow
transfer operators. This family, which we obtain not only in the case of cofinite
Hecke triangle groups (see the family {Lrs}s above), but also for every set of
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developed in [54]

. | Cusp Expansion Auxiliary Group
: Algorithm Approach
! for orbisurfaces -+----- enables ------- for orbisurfaces
! with cusps | without cusps
| Section 7.1 | Section 7.2
Theorem 7.1 Theorem 7.16
Set of Branches
Chapter 4
Theorem 6.1

Strict Transfer
Operator Approach
Chapter 3

Theorem 3.1

[ Theorem A }

branches approach (see Section 4.7), is far from a superfluous by-catch. In [44]
Moller and Pohl have shown that a certain subset of the eigenspace to the eigen-
value 1 of the transfer operator L from above is in bijection with the space of
Madass cusp forms to the eigenvalue s(1 — s). These are a special class of automor-
phic forms: highly regular eigenfunctions of the Laplacian on the orbisurface X
invariant under the fundamental group. In [56] Pohl provided this identification
between Maass cusp forms and eigenfunctions of slow transfer operators for al-
most all nonuniform cofinite Fuchsian groups. Recently, Bruggeman and Pohl
[15] managed to obtain a first such result for a class of Fuchsian groups of infi-
nite covolume, namely the non-cofinite Hecke triangle groups, necessitating an
extension to a broader class of automorphic forms in the process.

On a related note, Adam and Pohl [1] have shown that the 1-eigenspaces of
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fast and slow transfer operators for Hecke triangle groups are closely related as
well. More precisely, the 1-eigenspace of the (unitarily twisted) fast transfer oper-
ator with parameter s is isomorphic to a certain subset of the 1-eigenspace of the
(unitarily twisted) slow transfer operator with parameter s. Hence, these transfer
operator techniques ultimately reveal a relation between automorphic forms and
resonances of the Laplacian.

To date, we do not know whether such relations between the eigenspaces of
transfer operators hold in general, and this subject is not studied in this thesis.
But we expect similar results to be obtainable for various classes of hyperbolic
orbisurfaces, and we do provide, in this thesis, families of closely related slow and
fast transfer operators prone to spectral investigations.

Structure of the Thesis

The first three chapters of this thesis are of preliminary nature. In Chapter 1
we provide the necessary background in hyperbolic geometry, including rigorous
definitions for cross sections for the geodesic flow and transfer operators associ-
ated with them, as well as for (twisted) Selberg zeta functions and their relation
to the resonances of the Laplacian.

Chapter 2 recalls the cusp expansion algorithm from [54] and collects certain
properties of the arising cross section. In comparison to [54] the exposition has
been simplified in various regards to better fit the needs of our analysis.

In Chapter 3 we recall the concept of strict transfer operator approaches as
well as the main result of [22], which constitutes a significant part of the proof
of Theorem A. Chapter 3 also includes a brief survey on the definition of nuclear
operators and their traces and Fredholm determinants.

Chapter 4 is dedicated to the definition and extensive study of our central
object, the set of branches.

In Chapter 5 we show how to transform these sets of branches in order to ob-
tain the structure necessary for a strict transfer operator approach. This is com-
prised of three distinct algorithms, called branch reduction, identity elimination,
and cuspidal acceleration.

Chapter 6 consists of our first main result, the explicit version of Theorem B, as
well as its proof. The proof successively verifies each of the properties demanded
by the strict transfer operator approach, which is reflected in the formal structure
of Chapter 6.

Finally, in Chapter 7, we construct explicit sets of branches for non-cocompact
Fuchsian groups with and without cusps. This yields a constructive proof of The-
orem C.

Throughout this thesis a multitude of examples and figures is provided in or-
der to illustrate the various statements and constructions. Besides the bibliogra-
phy, also an index of figures, of terminology, as well as of notations are appended.

10
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Chapter 1

Elements of Hyperbolic
Geometry

In this chapter we present the background material on hyperbolic orbisurfaces and

their geodesic flows necessary for our investigations. Comprehensive treatises,

including proofs for all statements that we leave unproven, can be found in the

many excellent textbooks on hyperbolic geometry. We refer in particular to [4, 6,
, 76, 33, 35, 31].

We will use throughout standard notations such as N, Ny, and Z for the set of
positive numbers, non-negative numbers, and all integers, respectively. We use R
and C for the set of real and complex numbers, respectively, both equipped with
the Euclidean topology. The induced norm in both cases is denoted by |- |. We
write i := \/—1 for the imaginary unit. For any set M we denote by

#M € [0, +o0]

the number of elements in /. We denote closed, semi-closed/half-open and open
intervals in R by [a, b], (a, b], [a, ) and (a, b) for any a,b € R, respectively, or, if
applicable also for a,b € R U {£o00}. We use the abbreviations R~ := (0, +00)
and R>g = [0,+00). For any z € C we denote its real part by Re z and its
imaginary part by Im z. We emphasize that we consider Re and Im as projections:

C — R C — R
Re: . and Im: .
r+iy — =z rt+1y — Yy

Hence, for instance, Re(M) = {Re z | z € M} for any subset M of C, and
Re 'z ={2€C|Rez=2} and Re '(N)={zeC|Reze N},

for any z € R and any subset N of R. In particular, we allow restrictions:

12
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For M C Cand N C R we write
Re|;/(N)={z€ M |Rez € N} .

We denote the sign function by sgn: R — {—1,0, 1}, where

-1 if x <0
sgn(z) = 0 ifzxz=0
1 ifx>0

For M a subset of any group G we denote by (M) = (z|x € M) the subgroup
of G generated by the elements of /. We further denote by M * the subset of all
non-neutral elements of M. Hence, for instance, for GG a group of transformations
with a neutral element id we have

M* =M\ {id}. (1.1)

1.1 The Hyperbolic Plane

As model for the hyperbolic plane throughout this thesis we use the upper half-
plane
H:={2€C|Imz> 0},

endowed with the hyperbolic metric given by the line element
ds? = (Im z) 2 dzdz

at any z € H. The hyperbolic distance function for this metric is given by

, |z —wl”
d = h({l+ —7— 1.2
isty (2, w) = arcos < t I Tme (1.2)

for z, w € H (see, e. g., [10, Proposition 2.4]), and we write

distg(z, M) :== inf distyg(z,w)
weM

and

disty (M, N) = weJ\i/?f;eN disty (w, v)

'Recall that arcosh(z) denotes the inverse of cosh(z) in [0, +00) and thus is well-defined
on [1,+00). We have arcosh(z) = log (z + V22 — 1) .

13
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for subsets M, N of H. The geodesic boundary 0,H of H can and shall be iden-
tified, in the obvious way, with the Alexandroff extension (one-point compactifi-

cation) R
R:=RU{o0}

of the real line R. Likewise, we understand the geodesic closure
H* =HUJ,H
of H as a subset of the Alexandroff compactification
C :=C U {o0} (1.3)

of C, also known as the Riemann sphere. In the topology of C, the geodesic
boundary d,H of H is indeed the topological boundary of H, and the geodesic
closure H? is the topological closure of H. The topology of H” can also be char-
acterized intrinsically, most conveniently by taking advantage of the Riemannian
isometries of H. We will recall this characterization in the next subsection, but
will not make use of it here.

For a subset K of H, the closure of K in the topology of H may differ from
its closure in the topology of H?. We will write K for its closure in H, and K *
for its closure in H. Further, we will write 9K for the boundary of K in H], and
04 K for its boundary in H?. The geodesic boundary of K, that is the part of 04K
which is contained in 9, H, will be denoted by g K. For instance, for

K:={zeH|0<Rez<1}

we have
K={2€H|0<Rez<1},
K*={2€C|0<Rez<1, Imz>0}U{o0}
= KUJ[0,1]U {0},
and

gK =10,1] U {oco}.

The sets of inner points of K in the two topologies coincide and are therefore
denoted with the same symbol, K°. For M C R we also write M® for the inner
points of M and M for the closure of M in the I@-topology.

We will require the following extension of the notion of intervals in R to
intervals in R. For any a,b € R, a # b, we let

(a,b) if a<b
(a7 b)c = { .
(a,4+00) U{oo} U (—00,b) if a >

14
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be the open interval in R from a to b. For a = co € R and b € R we set
(a,b)c = (00,b)c = (—00,b),

and analogously we define (b, a).. We define semi-open and closed intervals in R
in the obvious, analogous way. In particular, we write (a, +00] = (a, +00)U{oo}
as well as [—00,b) := {oo} U (—00,b). The subscript ¢ refers to the cyclic order
of R that is used implicitly in this definition. We remark that singletons in R and
the empty set cannot be defined consistently within this notation. For subsets M
of R we write M° for the interior and M for the closure of M in R.

In order to distinguish between the point co in R and the two infinite end-
points of R with its standard order, we will write 00 whenever we refer to the lat-
ter ones and use the extended standard order of RU{£00} (i.e., —00 < 7 < 400
for all » € R). The unsigned symbol oo will always refer to the point in R. As
usual, we consider R to be embedded into R. In particular, we have

R = (—o00, +00) U {oo}.

1.2 Classification of the Elements in PSL2(R)

For a field K and n € N denote by K™*" the set of n x n-matrices with entries
in K. We write
SLn(K) == {q € K™ | det ¢ = 1}

for the special linear group of degree n over the field K. We define the projective
special linear group by setting

PSL,(K) := SLy,(K),/Z(SLn(K)) , (1.4)

where Z(SL,,(K)) denotes the center of SL,,(K). In this thesis we will be con-
cerned with the case n = 2 and K = R. In this setting the center takes the form

st = {(12). (22}

Hence, PSLy(R) consists of equivalence classes of real 2 x 2-matrices with de-
terminant 1 each of which has exactly two representatives in SLy(R) that dif-
fer only in sign. For (%) € SLy(R) we write [ 5] for its equivalence class
in PSLy(R). The underlying equivalence relation respects matrix multiplication,
which induces a multiplication in PSLy(R). Furthermore, for tr(g) denoting the

trace of g € SLa(R), the unsigned trace

[tr(g)] = [tr(g)] (1.5)

15
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is well-defined for every g = [g] € PSL2(R), as it is independent of the choice of
representative.

Let G be any subgroup of C2*2. Two elements g, h € G are called mutually
conjugate or similar in G if there exists a regular ¢ € GG such that

g=qhq".
This defines an equivalence relation on G which we denote by ~¢, where we
drop the subscript G whenever we are confident that the underlying group is clear
from the context. We write g +4¢ h for g, h being non-conjugate and handle the
subscript analogously. This concept directly descends to the quotient PSLy(R):
We say that two elements g, h € PSLy(R) are mutually conjugate, if there ex-
ists ¢ € PSLa(R) such that g- g-q*1 = h, or, equivalently, if there exists a choice
of representatives g of g and h of h such that g ~SLa(R) h.
Letg = (2%) and ¢ = (7 ¥) be elements in SLy(RR). Then

= (0 ) (o) (5 )
_ (x(aw — bw) + y(cw — dv) « ) |
% 2 (bv + dw) — y(av + cw)

Hence,
tr(q-g-¢~") = (a + d)(wz — vy) = tr(g),

which means that conjugation in SLo(R) preserves traces. On the one hand, this
implies that conjugation in PSLy(R) preserves unsigned traces. On the other
hand it follows that, in general, the matrices g and —g are not mutually conjugate
in SLy(R). This necessitates caution when handling conjugacy in PSLy(R).
Furthermore, one has to be careful when applying results which are stated
for SLa(C) or PSLy(C). Conjugation in these groups chooses from a larger pool
of matrices and thereby enjoys stronger properties. Consider, for instance, [6,
Theorem 4.3.1], which states that two elements g,h € PSLy(C) are mutually
conjugate if and only if tr(g)2 = tr(h)2. This statement is false in PSLy(R),
as [ 1] [67']
Lemma 1.1. Let g € PSLy(R), g # id.

(i) We have |tr(g)| > 2 if and only if there exists { € R, such that g is
conjugate within PSLa(R) to

e 0
h, = [0 6_4 . (1.6)

The number { is then uniquely determined.

s
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(ii) We have |tr(g)| = 2 if and only if there exists k € R\ {0} such that g is
conjugate within PSLa(R) to

1 kK
ty = [0 1] . (1.7)

(iii) We have |tr(g)| < 2 if and only if there exists 0 € (0,27) such that g is
conjugate within PSLa(R) to

cosf —sind
S0 = [sin& cos 0 ] ' (1.8)

If this is the case, then there exists exactly one 6 € (0, ) with that property.

Proof. In each of the statements (i), (ii), and (iii) the converse implication follows
immediately from the fact that conjugation in PSLy(R) preserves unsigned traces.
Hence, it remains to prove the conjugacy identities given the respective trace
relation.
If [tr(g)| > 2 we find a representative g € SLa(R) of g whose eigenvalues
fulfill the relations
O< <l

Hence, § is diagonalizable over R, meaning there exists a regular matrix a € R2*?
such that
g =a-diag(A;,\2) - a"t.

Since a is given by eigenvectors of g to the eigenvalues A /5, it can be normalized
in order to obtain det a = 1, i.e., a € SLo(R). Thus, the claim follows with

£:=2log A1 . (1.9)

The only alternative would be to conjugate g to diag(A2, A1) instead. But this
leads to ¢ < 0, proving that (1.9) yields the only choice of £ in the required interval.
Hence, (i) follows.

Now assume |tr(g)| = 2 andlet g = (2%) € SLy(RR) be the representative
of ¢ fulfilling tr(g) = a + d = 2. If ¢ = 0, then, by virtue of the determinant
condition, we obtain @ = d = 1. Since g was assumed not to be the identity, we
further have b # 0. Then,

0] (1) .1sgn(b).ﬁ 0\ (1
0 w) \o 1 o P[] \o 1)’

If c #£ 0, let
(0 %
9= <—20 a—d> '

17
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Then we have

~ 1_ (0 % 'ab.a—d—%_l—ﬁ
794 _(—20 a—d c d 2¢ o/ \o 1 /)

Hence, in either case (ii) follows.

Finally, assume |tr(g)| < 2andletagaing = (¢Y) € SLa(RR) be arepresenta-
tive of g. Then ¢ # 0 and we can choose g so that ¢ > 0. We set D := /4 — tr(g)?
and define

With that we obtain

=

=N

2c d—a\ [, /D ola—d)i2be

c
D 2c¢D
0 2c

_ L (te(g) -D
2\ D t(g)) "
Since cos([0, 27]) = [—1,1] and [tr(g)| < 2 we find § € (0, 27) such that

tr(g)
2

D tr(g)?
2:\/1—“4“(7):\/1—(:032 = |sin 6] .

This shows the existence statement in (iii). Uniqueness of § € (0, ) follows
by observing that the above two equations have exactly two solutions 61,62 €
(0,27) and we have |6; — 02| = 7. O

= cosf.

Furthermore,

Lemma 1.1 provides a complete classification of the elements of PSLy(R).
Let g € PSLa(R), g # id. We call ¢
e hyperbolic if [tr(g)] > 2,
e parabolic if |tr(g)|=2, and
e elliptic if Jtr(g)| < 2.

The identity constitutes its own class. Note that the number « from (ii) not unique.
In particular, « can always be chosen to be either 1 or —1, depending on g.
For g € PSLy(R) hyperbolic the number ¢ from part (i) of Lemma 1.1 can be

18
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calculated as
¢ =2log (|tr(g)| +/|tr(9)|? — 4) —2log2.

It is called the displacement length of g and we denote it by £(g). In Section 1.7 we
will recall its relation to periodic geodesics.

We end this section with a characterization of the involutions in PSLy(R). As
usual, a transformation g is called an involution, if g~

is well-known.

= g. The following result

Lemma 1.2. The non-identity involutions in PSLa(R) are exactly the elliptic ele-
ments g with |tr(g)| = 0.

Proof. Let g = [% g] Assume first that a + d = 0. Then

s [a*+be bla+d)]  [a®+be 0
I Zle(a+d) @+bc| | 0 &+be|

Hence,
|tr(92)| = }a2+21)0+d2’ = }(a+d)2 —2‘ =2.

Together with the determinant condition it follows that g> = id. Now assume
that ¢ is an involution. Then b|tr(g)| = c|tr(g)| = 0 by the calculation above.
Setting b = ¢ = 0 leads to a> = d*> = 1 and thus a,d € {#1}. The determinant
condition then assures a = d and thus g = id. The only alternative is |tr(g)| = 0,
which yields the assertion. O

1.3 Riemannian Isometries on H

It is well known (see, e. g., [33, Theorems 1.1.2 and 1.3.1] or [10, Proposition 2.2])
that Isom'(H), the group of orientation preserving Riemannian isometries of H, is
isomorphic to PSLa(RR), considered as acting on H from the left by linear frac-
tional transformations (Mdbius transformations). For that reason we usually refer
to the elements of PSLo(IR) as transformations. With respect to this identification
and the above notation, the action of PSLs(R) on H is given by

a b Z__az+b
c d|”77 cz+d

for any g = [‘é 2] € PSLy(R) and z € H. Note that the determinant condition
assures that cz + d # 0 for any z € H. The action of PSLy(R) on H is tran-
sitive and faithful and every g € PSLa(R) is conformal and maps circles onto
circles’. Here by circles we mean generalized circles in the Riemann sphere C.

®Note that the hyperbolic centers of circles do not match their Euclidean ones. Therefore, even
though circles are preserved by Mobius transformations, in general their Euclidean centers are not.
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Each transformation g € PSLy(R) extends smoothly to an action on H?. For
every transformation g = [ ] € PSLy(R) and z € H? we have

‘CL if z=o00 (1.10)
g.z = ) 1.10
% otherwise

where g.z := 0o whenever the denominator on the right hand side of (1.10) van-
ishes. As for Hi, the action of PSLa(R) restricted to 04 H is transitive and faithful.
In particular, g.04,H = 04 H for every g € PSLy(R). Throughout we will identify

the elements in PSLy(R) with their action on H?.
For the action of g = [2 5] € PSLy(R) on H* we have

1

9'(z) = i de

This is not a linear fractional transformation anymore, which is reflected in the
different choice of notation. Since (¢, d) # (0,0), ¢’ is meromorphic (on C) with
a single pole in zg = —g of order 2 and residue 0.

The classes of transformations in PSLg (R) identified in Section 1.2 can further
be characterized via the number and location of their fixed points. Each element
in PSLy(R) has at least one fixed point in H”. The identity element

. 10
id = [O J € PSLs(R)
is the unique linear fractional transformation that fixes (at least) two points in H.
It is also the unique element with three fixed points in H?. Let g = [‘; g] €
PSL2(R), g # id. If ¢ = 0, then, by (1.10), we see that g fixes co. If d — a # 0,
then g has a further fixed point in dfba. If this is the case, then we obtain |a + d| >
2, meaning g is hyperbolic. If d — a = 0, then oo is the sole fixed point of g and g
is parabolic. Assume now that ¢ # 0. Then —% # 0. Therefore, it cannot be a
fixed point of g. For z # —% the fixed point equation g.z = z transforms to

d— b

¢, 2= 0.

C C

22+

This equation has exactly two solutions in R, if and only if tr(g)? — 4 > 0, ex-
actly one solution in R, if and only if tr(g)2 — 4 = 0, and exactly two solutions
in C \ R, if and only if tr(g)? — 4 < 0. In the latter case, the two solutions are
mutually conjugate complex numbers, meaning exactly one of them is contained
in H. Hence, we have proven the following result.

Lemma 1.3. Let g € PSLy(R). If g fixes two distinct points in H or three distinct
points in Hg, then g = id. Furthermore, we have that

(i) g is hyperbolic if and only if it fixes exactly two distinct points in 0gH,
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(ii) g is parabolic if and only if it fixes exactly one point in O4H, and
(iii) g is elliptic if and only if it fixes exactly one point in H.

The fixed points of hyperbolic and parabolic transformations can further be
characterized as limit points for PSLo(IR)-orbits, that are sequences of the form
(gn-2)nen for g, € PSLy(R) and z € H. With a little caution, this characteriza-
tion extends to H?.

Lemma 1.4. Let g € PSLy(R) be hyperbolic.

(i) Forany z € H, the limit of (§™.2)nen in H* exists and is independent of the
choice of z. We denote this limit point by £ (g).

(ii) For any z € H, the limit of (9".2)nen in H* exists and is independent of
the choice of z. We denote this limit point by f_(g).

(i) For all z € H* we have

o f-(9) if z=1(9)
lim g¢g".z =
n—+00 fi(g) otherwise
and
. n fi(9) if z=1(9)
lim g".z =
n——00 f_(g) otherwise

Lemma 1.5. Let g = [ Y] € PSLy(R) be parabolic. For any choice of z € H*
the limits of the sequences (¢".z)nen and (9~ ".2)nen exist and are independent of
the choice of z. We have

-— 3 n _ 3 n
f(g) o ngrfoog T nEIng e

The statements of Lemma 1.4 resp. Lemma 1.5 are easily verified for trans-
formations of the form hy resp. t,; from (1.6) resp. (1.7) and remain valid under
conjugation in PSLy(R). Lemma 1.1(i) resp. (ii) then yield validity in the general
case.

Let g = [‘é Z] € PSLy(R) be hyperbolic. From continuity of the transfor-
mations g and g~! we see that f{ (¢g) and f_(g) from Lemma 1.4 are exactly the
fixed points of g and g~! alike. The limit point f | (g) is called the attracting fixed
point or attractor of g. The limit point f_(g) we call the repelling fixed point or the
repeller of g. By solving the fixed point equation and comparing parts (i) and (ii)
of Lemma 1.4 one derives

a—d 1

fr(g ") =f(9) = T2 20 ltr(g)[* — 4, (1.11)
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and

(07) = £1(0) = 5 + VIR =4, (112)

independently of the choice of representative of g. Analogously, if g is parabolic,
then f(g) from Lemma 1.5 is the fixed point of g. We have

{g—cd if ¢#0

£(g) = (1.13)

oo ife=0

which again is obviously independent of the choice of representative.
Let g = [2%] € PSLy(R) be elliptic. Then ¢ # 0 and again from the fixed
point equation one easily derives

f(g) = ﬂ+i\/4— [ tr(g)|?, (1.14)

2¢ 2]c|

where f(g) likewise denotes the (unique) fixed point of g. The fixed point of an
elliptic transformation is also called an elliptic point.

Lemma 1.6 ([33, Theorem 2.3.2]). Two non-identity elements of PSLa(R) com-
mute if and only if they have the same fixed point set.

1.4 Topology of H*

For subgroups I' of PSLy(RR) and subsets M of H? the set
M ={gx|gel,ze M}
is called the I"-orbit of M. For M a singleton, say M = {z}, we abbreviate to
Fz=T{z}={g.2|gel}.
Taking advantage of the action of PSLy(R) on H?, we can conveniently pro-
vide an intrinsic characterization of the topology of H?. On the subset H of H*
the topology is given by the Euclidean topology of C. A neighborhood basis at co

is given by the family
Uso ={U: | € >0}

consisting of the open sets
U. = {z € H| Im(2) >etu{c}, €>0.

Finally, since PSLo(R) acts transitively on 0, H, the images PSLa(R). Us of this
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neighborhood basis at co yield neighborhood bases at any point of 9, H, each one
consisting of open sets. Let g € PSLy(R) be such that g.co # oo and let € > 0.
Then g.U; is an open disk in H fulfilling

distg(R, g.Uc) = distg(g.00, 9.U:) =0,

where distg denotes the Euclidean distance function in C. Such disks are called
horoballs.
For € > 0 and z € H we write

Be(z) = {w € H | distg(z,w) < e}. (1.15)

for the open (hyperbolic) ball of radius € around z. In contrast, for z € 0, H the
ball of radius € around z in the metric of R is denoted by

(z)—{ (z—¢e,z4¢) ifzeR | (116)

R\ (=11 ifz=00

el e

or by Br.(2) if z € R.

1.5 Geodesics on the Hyperbolic Plane

A smooth curve v: I € R — M, s — (21(s),z2(s)), on a two-dimensional
manifold M and parameterized by arc length is a geodesic if and only if it satisfies
the geodesic equations

d%zy, 2 i dz; dz;
pk i dzj k=12
ds? + Z 7 ds ds 0, B

i,5=1

where Ffj denote the Christoffel symbols (see, e. g., [34, Section 4B]). In the upper
half-plane model H of the hyperbolic plane we find

Pl =Th =T = Th=--, and T} =T% =T} =T} -0,
which leads to the differential equations
rimy — 2002 = 2wy + (:c'l)z — (3:’2)2 =0, (1.17)
where (. )’ denotes the derivative with respect to s. Let

. { R — H
v s — (w(s),y(s))
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be a solution of (1.17). If ' = 0, then v(R) is a vertical line in H. If 2/ # 0, then
there exist constants a, b € R such that

22 —ar+y2=b.

Hence, 7(R) is a circle with center at the line y = 0. This means a mapping
v € C®(R; H) is a geodesic on H if and only if 7 is injective and y(R) is a (gener-
alized) semicircle perpendicular to 9, H (we refer also to [10, Proposition 2.3]). We
assume all geodesics on H to be parameterized by arc length (unit speed geodesics).
Despite that, we differ from tradition by denoting the parameter by ¢ (“time”) in-
stead of the arc length s.

Convention
Forv: I C R — M, ¢t — (x(t),y(t)), a smooth curve on a two-
dimensional manifold or orbifold M we write

310 = (50, 0) e

for the derivative of y with respect to t. We further set

7 (t) = (7(£),4(t)) € M x RZ.

We distinguish between geodesics, that are smooth curves v: R — H, and
geodesic arcs, segments, and rays, that are subsets of y(R) C H for some geodesic
v. A geodesic segment is any connected subset of v(R) for any geodesic 7. A
geodesic segment is called complete or a geodesic arcif it equals y(R). Accordingly,
for v a geodesic on H the subset (RR) is called the arc of . A geodesic ray is a
geodesic segment of the form v((—o0,r)) or y((r, +00)) with r € R. For v a
geodesic on H we denote by

v(£o0) = lim ~(r)

r—=4oo

the endpoints of vy in 04 H. For any 1,70 € RU {£o00}, 1 < 19, we call

(21, z2]m = Y([r1,72])

the closed geodesic segment or closed hyperbolic interval from z; = 7(r1) to 29 =
v(r2). Analogously, we define the open or semi-open geodesic segments/hyperbolic
intervals (21, z2)m, [21, 22)m, and (21, z2]g. We note that for any two distinct
points z1, zp € H” the definition of these hyperbolic intervals does not depend on
the choice of the geodesic v as long as y(71) = 21, 7(r2) = 22 for some r; < 7.
The subscript H for hyperbolic intervals will be maintained throughout. To the
contrary, intervals in R will be denoted by [r1,72] or by [r1, 72]r (and analogous)

whenever we deem it appropriate to emphasize the distinction between them and
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1.5. GEODESICS ON THE HYPERBOLIC PLANE

their hyperbolic counterparts or tuples. A geodesic segment 3 is called vertical,
if Re(p) is a singleton in R, and non-vertical otherwise. Hence, a geodesic seg-
ment is vertical if and only if it is contained in « + iR > for some z € R.

A subset M of H is called (hyperbolically) convex if for all z, w € M we also
have [z, w]lg C M. We denote by conv(M) = U, ,,cps[2; wlm the convex hull
of M in H. Occasionally we will require the convex hull in the Euclidean sense
as well. We denote it by convg (M) in order to avoid confusion.

We denote the unit tangent bundle of H by SH,, i. e.,

SH = | J{z} x T1.H, (1.18)
zeH

where T ,H denotes the unit sphere in the tangent space at z € H. We further
denote by
bp: SH — H (1.19)

the projection onto base points, that is the first component in the tuple v € SH.
This map is obviously well-defined by virtue of the structure of SH. We will often
apply it to subsets of SH in order to effectively characterize them by means of the
set of base points of their members. The component of v in T’ y,;,,,)H we denote
by 7, thus in total for v € SH we have

V= (bp(l/), D’) .

Each unit tangent vector v € SH uniquely determines a geodesic 7, on H via
the rule

7, 0)=v. (1.20)

Le., 7, is the unique geodesic passing through bp(v) with derivative equal to
at time 0. For instance, the geodesic determined by the unit tangent vector 9, |; is

R — H
Vs = Va,); ¢ { b et (1.21)

the standard geodesic on H. Since the action of PSL2(R) on H is by Riemannian
isometries, it induces an action of PSLy(R) on SH, which is simply transitive.
Therefore, PSLy(R) also acts simply transitive on the set of all geodesics on H,
and hence any geodesic on H is a (unique) PSLy(R)-translate of the standard
geodesic 5 from (1.21).

Situated on SH is the (unit speed) geodesic flow on H, which is the dynamical
system

, (1.22)

. RxSH — SH
' (t,v) +— ()
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where 7, is the geodesic on H uniquely induced by v (see (1.20)).

We end this section by defining an equivalence relation on the set of geodesics
on H. Two geodesics v; and 2 on H are considered equivalent if they differ only
by a parameter change, i. e., if there exists ¢ty € R such that

Y1(t) = 72(t + to)

for all t € R. We denote the equivalence class of a geodesic -y associated to that
relation by [v] and set

G(H) == {[7] | v a geodesic on H} . (1.23)

Since every representative of [y] € €(H) traces out the same geodesic arc in H,
we may denote this arc by [7](R). Two geodesics on 71,2 on H are equivalent
w.r. t. this equivalence relation if and only if they have the same arc and orienta-
tion, or, equivalently, if

~v1(£00) = v2(£00) .

In other words, an equivalence class [y] € 6(H) is uniquely determined by the
points
[Y](#00) = y(F00), (1.24)

for any choice of representative. The action of I" on the set of geodesics descends
to an action on 6¢(H) by
9-) = lg-7]

for all g € T and all geodesics «v on H. Hence, for all v € SH and all g € T" we
have

g-[v] = gl -

For M a subset of SH, « a (unit speed) geodesic on H, and ¢ € R we say that
v intersects M at time t, if
V(t)e M. (1.25)

Accordingly, for [y] € 6(H) we say that [] intersects M, if some (and hence any)
representative of [y] intersects M at some time ¢ € R.

1.6 Fuchsian Groups and Developable Hyper-
bolic Orbisurfaces

Endow PSLy(RR) with the quotient topology (see (1.4)). A subgroup I" of PSLo(RR)
which is discrete with respect to that topology is called a Fuchsian group. For any
subgroup I' of PSLy(R), being Fuchsian is equivalent to any of the following
(equivalent) properties (see, e. g., [33, Section 2.2]):
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(a) T acts properly discontinuously on H, that is, any compact subset of H con-
tains only finitely many points of each I'-orbit.

(b) Each I'-orbit is a discrete subset of H.
(c) The identity element id = [} 9] is isolated in T

Let I" be a Fuchsian group. We denote by
X:=IMH
the orbit space of the action of I' on H and by
m=7p: H—X (1.26)

the canonical quotient map, where we drop the subscript I' whenever the choice
of Fuchsian group is clear from the context. Since I acts properly discontinuously,
the space X naturally carries the structure of a (2-dimensional) good hyperbolic
Riemannian orbifold, also called a hyperbolic orbisurface. It inherits a hyperbolic
Riemannian metric via the projection map 7. For X a hyperbolic orbisurface,
every group I' with X = I'\ H is called a fundamental group for X. A hyperbolic
orbisurface with a fundamental group is called developable. If I" has torsion, that
is if it contains elliptic elements, then X has conical singularities, and hence it is
not a manifold but a genuine orbifold. If I" does not contain elliptic elements, then
we call it torsion-free.

Convention

In this thesis we restrict our considerations to hyperbolic orbisur-
faces that are developable. We will therefore speak only of “hyper-
bolic orbisurfaces” and always assume, sometimes implicitly, that a

fundamental group exists.

From the characterizations above it follows immediately that for any Fuchsian
group I' and any point z € H, the order of the stabilizer subgroup

Stabr(z) ={g €T | g.z =z} (1.27)

of I' is finite. This is no longer true for z € d,H. For such a point z the stabilizer
subgroup Stabr(z) is either trivial or cyclic, i. e., isomorphic to Z, as the following
result implies.

Lemma 1.7 ([33, Theorem 2.3.5]). Let " be a Fuchsian group all whose non-identity
elements have the same fixed-point set. Then I is cyclic.

The upper half-plane model demands special attention to the point at infin-
ity. For instance, it will be necessary to exclude group elements that stabilize co
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from certain definitions. For this reason it will prove convenient to introduce the
shorthand notation
' == Stabp(oc0) (1.28)

for the stabilizer subgroup of co in I'. Further we will often conjugate the group I
so that oo is either contained in a funnel representative or is itself a representative
of a cusp of X (see Section 1.8 below), which will make it more convenient to ver-
bally describe certain structures. On the other hand, this leads to notions which
are not invariant under conjugation. For this reason we consider every Fuchsian
group to be implicitly given by a set of generators and their mutual relations. In
particular, we refrain from identifying mutually conjugate Fuchsian groups with
each other, even though they produce the same orbisurface.

The discreteness of a subgroup of isometries has profound consequences for
the interrelation of the fixed points of its hyperbolic and parabolic elements. The
following result is well-known; we provide a short proof for the convenience of
the reader.

Lemma 1.8. Let I' be a Fuchsian group. Then the set of fixed points of its hyperbolic
elements is disjoint from the set of fixed points of its parabolic elements.

Proof. Assume that I' contains a hyperbolic element & as well as parabolic ele-
ment p, for otherwise there is nothing to show. Assume f(p) = f(h), which,
because of (1.11) and (1.12), entails no loss of generality. By Lemma 1.1(i) there
exists a € PSLy(R) such that

a-h-a ! :hg(h)

and since discreteness is preserved by conjugation, we may consider the sub-
group al'a™! instead of . Let p := a-p-a~"'. Then

f(p) = a.f(p) = a.f4(h) = f1(hyp)) = o0,

hence, p = [} ;] for some x € R\ {0}. Then, for n € N,

n o~ 1 ke ™M) 1 0

hg(z)~p-h2‘(h): [O ] — 0 1 as n — +o0o,

since £(h) > 0. Hence, the identity is not isolated in al'a™! which is equivalent
to the group being non-discrete (see (c) above). O

Let g € PSLy(R). If there exists 0 € N such that g¢° = id, then we say
that g is of finite order. If g is of finite order and o is the smallest positive integer
such that ¢ = id, then we call o(g) := o the order of g. If no such o exists,
we say that g is of infinite order. Obviously, the identity is the unique element of
order 1. The elements in PSLy(R) of order 2, that are the involutions, are exactly
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the elliptic elements with vanishing trace (see Lemma 1.2). Note that, if g is of
(finite) order o, then
gkUJrZ.Z — (go)kgé.z — gZ.Z

forallk € Z,¢ € N,and z € Eg, hence, every sequence of the form (¢".2),¢cz
is periodic with minimal period o. Therefore, Lemma 1.4 resp. Lemma 1.5 imply
that every hyperbolic resp. parabolic element in PSLy(R) is of infinite order and
for every z € H the subgroup Stabr(z) is either trivial or all its non-identity
elements are elliptic.

Lemma 1.9 ([33, Theorem 2.2.3]). Let I' be a Fuchsian group. Then every elliptic
element in I is of finite order.

Remark 1.10. Let g € T be elliptic of order 0 = o(g). By Lemma 1.1(iii) there
exists’ § = 6(g) € (0,7/2) U (37/2,2) such that g is conjugate in PSLy(R)
to sg. Since the order is preserved under conjugation, we obtain

sin@ cosf

R S v S i i

Hence, 60 = gw, for some k € ((O7 %) U (37‘7, 20)) N Z. From the proof of
Lemma 1.1(iii) we can therefore read off a formula for the order of g:

o(g) =km (arccos(%))i1 , (1.29)

where k is the smallest positive integer for which the right hand side becomes
a positive integer. Or in other words, o(g) equals the denominator of the fully
reduced fraction k/s representing ! arccos(|tr(g)|/2). Thus, the integer k is
uniquely determined and we denote it by k(g) for later use. Note that, since we
have |tr(g)| < 2 and arccos([0,1)) = (0, 7/2], we also have k(g) < 0(g)/2 with
equality only if o(g) = 2.

1.7 Geodesics on Hyperbolic Orbisurfaces

Let I" be a Fuchsian group and let X = I"™\ H be the associated hyperbolic orbisur-
face. The (unit speed) geodesics on X are the images of the geodesics on H under
the canonical quotient map 7 from (1.26). Thus, if 7y is a geodesic on H, then

R — X

Ni=monx: { Lo r(y() (1.30)

is the induced geodesic on X. In this case, we say that -y is a representative or a lift
of 7 to H. We emphasize that all geodesics on X arise in this way:.

3The constraint on the set from which 6 is chosen corresponds to selecting the representative
of g with positive trace.

29



1.7. GEODESICS ON HYPERBOLIC ORBISURFACES

As for H, geodesics on X are determined by any of their tangent vectors.

To simplify the further exposition, we recall from Section 1.5 that PSL2(RR), and

hence I', act on SH and we identify the unit tangent bundle SX of X with the
I"-orbit space of SH:

SX =TI\ SH. (1.31)

We let
m: SH — SX (1.32)

denote the canonical quotient map, which is indeed the tangent map of the quo-
tient map from (1.26). The context will always clarify whether 7 refers to the
map in (1.26) or (1.32). If an object on X (or related to X) is defined as the m-image
of a corresponding object of Hl, then we usually denote the object on X by the
name of the object on H decorated with ~. One example for that is the notation
in (1.30) for geodesics on X. Analogously, we denote an element in SX by v if it
is represented by v € SH, thus

v=m(v).
Each unit tangent vector ¥ € SX uniquely determines a geodesic 75 on X via

Vo=m(w), w)=v,

which is independent of the choice of the representative v € SH and thus well-
defined. For that reason we will omit from the notation the ~ in the index. Also
the geodesic flow on X, denoted ®, is the m-image of the geodesic flow ® on H
(see (1.22)). Thus,

=~ {RXSX —  SX 7 (133)

— : -1\ .
CI’.—WOCI)O(ldXWO ) (t,ﬁ) N aly(t)

where 7, !is an arbitrary section of 7. (It is straightforward to check that ® does
not depend on the choice of the section 7, '.)

Whereas the arcs of geodesics on H are always generalized semicircles, the
arcs of geodesics on X enjoy a greater variety of forms. Of particular interest for
us are the periodic geodesics, which we will discuss now. We say that a geodesic y
on X is periodic if there exists § > 0 such that

V(i +0) =7()

for all ¢t € R. Any such ¢ is called a period for 7.

Analogous to the situation on H, we call any two geodesics 71, 72 on X equiv-
alent if they differ only by a parameter change. One immediately observes that
the two geodesics 71 and 79 are equivalent if and only if I'.[y;] = I'.[72] for any
choice of representatives 1 of 77 and 2 on 7,. Further, periodicity and peri-
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ods of geodesics on X are stable under descend to equivalence classes. For the
equivalence classes we have

We denote by 6(X) the set of all equivalence classes of geodesics on X, and
by €pe;r(X) the subset of the equivalence classes of periodic geodesics. Further,
we denote by

Gper,p(H) == {[] € $(H) | mr([7]) € Gper(X)} (1.34)

the subset of equivalence classes of lifts of periodic geodesics from X into H.
From the properties of Mébius transformations we infer that the sets 6(H) and
Gper,r (H) are invariant under I'-actions.

Periodic geodesics (or, more precisely, equivalence classes thereof) are closely
related to hyperbolic elements in I in a way that we recall now. Let h € PSLo(RR)
be hyperbolic. By the discussion at the end of Section 1.5 there exists exactly
one [y] € €(H) such that

Ml(too) =f4(h)  and  hl(coo)=f(R), (139
where the points [y](£00) are as in (1.24). We call

a(h) =[] (1.36)

the axis of h. From (1.11) and (1.12) it follows that au(h~!) consists exactly of the
representatives of a(h) with their orientations reversed. Hence, in particular

a(h)(R) = a(h " H(R). (1.37)

With the following lemma we recall a well-known first observation on the relation
between periodic geodesics on X and hyperbolic elements in I" as well as between
axes and displacement lengths of different hyperbolic elements. A proof can be
deduced, e. g., from [2, Observations 3.28, 3.29].

Lemma 1.11. Leth € I" be hyperbolic with displacement length {(h) and axis a(h).
Then the following statements hold true.

(i) The geodesics in the equivalence class w(c(h)) are periodic with period ¢(h).

(ii) Forall g € T the element ghg™!
and axis g.a(h).

(iii) Foralln € N we have a(h") = a(h) and ((h™) = nl(h).

Remark 1.12. Recall the standard hyperbolic element hy, £ > 0 from Lemma 1.1(i).
We have

is hyperbolic with displacement length ¢(h)

a(hg) = [y,
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where 75 denotes the standard geodesic from (1.21). Let z € [y,](R), i.e., z =iy
for some y > 0. Then hy.z = ie’y and thus

. - 012
. iy — ie‘y|
distg (2, hy.2) = arcosh [ 1 Jiy — iey|”
isty(z, hy.z) = arcos ( + 52! )

_ 910g [ Yy 9P+ Vel +y)?
2 /€€y2

= 210ge§ =/.

This justifies the notion “displacement length”: Let g € PSLy(R) be hyperbolic.
Then, by Lemma 1.1(i), g = ¢-hy(y) -q~! for some ¢ € PSLy(R). By Lemma 1.11(ii)
we have o(g) = ¢.[ys]. Since Mobius transformations are isometries it follows
that

distm (2, 9.2) = £(9) (1.38)
for all z € a(g)(R).

We denote by [[']}, the set of all I'-conjugacy classes of hyperbolic elements
inT". Lemma 1.11 yields that all representatives of [g] € [[']}, give rise to the same
equivalence class of geodesics in Gpe; (X). Thus, this relation gives rise to the map

0 { [F]h — CgPer(}g) (1.39)

(] — m(a(h))

Lemma 1.11 further shows that for each hyperbolic A € I, the displacement
length is constant in [h] and is one of the possible periods of the geodesics repre-
senting o([h]). However, since the displacement length scales with powers of h
but the image of ¢ remains unchanged, g is not a bijection, but an infinite covering,.
For each hyperbolic element i € I there exists a unique pair (hg,n) € I' x N
such that hg is hyperbolic and n is maximal with the property that A = h{j. The
displacement length of hg as well as the value of n are invariants of the equiva-

lence class [h]. We set
ct([h]) ==n (1.40)

and
Co([R]) = L(ho) -

Further, we call the element h the primitive of h.

Proposition 1.13 (Theorem 3.30 in [2]). The map

pxer: [ = () xN
B = (w(a(h),ct([h))

is a bijection.

32



1.8. GEOMETRY AT INFINITY

If 7 is a periodic geodesic on X and dy is its minimal period, then for any
n € N, also ndy is a period of 7. In view of Proposition 1.13, we may understand
([7],n) € Gper(X) x N as the equivalence class [7] of periodic geodesics endowed
with a fixed choice of period, namely ndy. We may further define the length of
(7,n) € Eper(X) x Nas

(¥, n) = £([h])
for any h € I such that
(e xct)([h]) = (7, n).

If n = 1 then we call ([7],n) prime or primitive. Likewise, we call h and [h]
primitive if ct([h]) = 1.

Convention

Up until now we have considered €(X) and 6pe,(X) as sets. For
convenience, in what follows, we will often consider them as multi-
sets and we will refer to their elements as geodesics. Thus, by
slight abuse of notion, we identify geodesics with their equivalence
classes, and we will often indicate the choice of period only im-
plicitly. In particular, in order to ease notation, we will denote the

elements of €(X) and €pe, (X) by 7 instead of [7].

Corollary 1.14. The conjugacy classes of primitive hyperbolic elements in 1" are in
bijection with the prime periodic geodesics on X.

1.8 Geometry at Infinity

Let I' be a Fuchsian group and let X = I"™\ H be the associated (hyperbolic devel-
opable) orbisurface. The geometry of X allows us to find a (large) compact sub-
set K of X such that, for all compact subsets K with K - K , the spaces X \ K
and X \ K have the same number of connected components. For definiteness we
may take for K the compact core of X. As we will not use any further properties
of the compact core other than this separation property, we refer to [10] for a
definition. The connected components of X \ K are the (hyperbolic) ends of X.
(We ignore here the slight inexactness in that this notion of ends depends on the
choice of K if we do not pick the compact core, as we will need only the general
concept.) The geometric finiteness of I yields that X has only a finite number of
ends.

The hyperbolic orbisurface X has at least one periodic geodesic if I' contains
a hyperbolic element (see Proposition 1.13). Therefore, X admits only two types
of ends:
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(a) Ends of finite hyperbolic area are called cusps. Via the canonical quotient
map 7 from (1.26), each cusp of X can be identified with the I'-orbit of
the fixed point ¢ of some parabolic transformation in I'. The stabilizer
group Stabr(c) of ¢ is a cyclic subgroup of I'. In particular, there exists
g € PSLy(R) and a unique A > 0 such that Stabr(c) is generated by

g tr-g,
with t) as in (1.7). We call ¢ a cusp representative or a cuspidal point and
denote the corresponding cusp by ¢ (see also Section 1.7). Further, we call A
the cusp width of ¢.

(b) Ends of infinite area are called funnels. Funnels can be identified with cer-
tain subsets of the geodesic boundary of a fundamental domain for I" (see
Section 1.10). Further below, after the introduction of the limit set of I, we
will give a second characterization.

Each funnel is characterized by a funnel bounding geodesic. That is the
equivalence class of a periodic geodesic v on X that is furthest into the fun-
nel, in the sense that every geodesic that intersects v cannot be periodic.
The funnel bounding geodesic of a given funnel is unique up to orientation.

The hyperbolic orbisurface X is compact if and only if it has neither cusps nor
funnels. In this case, I is called cocompact or uniform. If X is not compact, then I
is called non-cocompact or non-uniform. If X has no cusps, but probably funnels,
and is a proper surface (i.e., I' has no elliptic elements), then I is called convex
cocompact. (The naming originates from the fact that the convex core of X is
compact in this case. We refer to [10] for the definition of the convex core.) Fur-
thermore, the area of X is called the covolume of I'. If X has finite area—which is
the case if and only if it has no funnel ends—then I" is said to be cofinite.

A hyperbolic orbisurface X is called geometrically finite, if it has no more than
finitely many hyperbolic ends and conical singularities and is of finite genus.

Crucial for our investigations will be the fact that the periodic geodesics on X
lie dense in the set of all geodesics on X in a certain sense which we describe in
the following. Since I' is discrete, I"-orbits do not accumulate in H. But they may
do in HY. We denote by A(T") the set of all limit points (accumulation points) of
T-orbits in H?, the limit set of . The set A(T") equals the set of all limit points of
the single orbit I'.z for any z € H with trivial stabilizer subgroup in I'. Since I
acts properly discontinuously on H and transitively on H?, this implies that A(T")
is a I'-invariant subset of 0, H. Because of Lemma 1.4 and Lemma 1.5 the limit set
contains in particular all hyperbolic and parabolic fixed points. The complement
of the limit set

Q) =0, H\ A(T")

is called the ordinary set of T".
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The Fuchsian group I' is called elementary if A(T") is finite, and non-elementary
otherwise. The elementary Fuchsian groups are completely understood: If I' is
elementary, then it is either cyclic, or there exists A > 1 such that I is conjugate
in PSL2(R) to the group generated by the two transformations

A
0 -1 ez 0
_[1 0] and hA—lo e_]
(see [33, Theorem 2.4.3]). The cyclic elementary groups generated by a hyper-
bolic/parabolic element are also called hyperbolic/parabolic cylinders. If I is non-

S

[ME]
o[>

elementary, then it necessarily contains hyperbolic elements [33, Theorem 2.4.4]
and the limit set A(I") is either all of O4H or a perfect, nowhere dense subset
of 9, H 33, Theorem 3.4.6].

Consider the set

= {(7(+OO)77(_OO)) ‘ v E CgPer,F(H)} s (1.41)

where €pc, r(H) is as in (1.34). By Proposition 1.13, this set can also be charac-

terized as
E(X) = {(f+(h),f-(h)) | [h] € TTn} -

In particular, £ (X) is a subset of A(T" ) A(T). The following result now estab-
lishes the density of periodic geodesics.

Proposition 1.15 ([20], [33, Theorem 3.4.4]). For any geometrically finite Fuchsian
group I' with hyperbolic elements the set E(X) is dense in A(T") x A(T).

The limit set A(I") allows for another interpretation of funnels as follows. The
set

R\ A(T)

decomposes into countably many connected (open) components. Each such com-
ponent we call a funnel interval. Further, we call each interval that is contained
in a funnel interval consisting of points that are pairwise non-equivalent under
the I'-action and that is maximal with these properties a funnel representative. One
easily sees that each funnel interval is the union of several funnel representatives.
The I"-orbits of funnel intervals coincide with the I'-orbits of funnel representa-
tives (as sets or as equivalence classes), and each such I'-orbit corresponds to a
unique funnel of X. We may identify each funnel of X with such a I'-orbit (un-
derstood as an equivalence class) or with a funnel representative.

Finally, we introduce a few more definitions that are not classical but will be
used extensively throughout. As before, for any parabolic element p € I' we
denote its fixed point by f(p). We set

R == A(D) \ {£(p) | p € T parabolic} . (1.42)
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Lemma 1.16. The set I@St is I'-invariant and E(X) C I@St X I@St.

Proof. Let g,p € I'. Since conjugation preserves traces, if p is parabolic, so is
g-p-g— ', and we have

(g-p-9")(g-£(p) = (9-p)-f(p) = g-£(p).

Hence, the set {f(p) | p € I parabolic} is I'-invariant. Since the limit set is I'-
invariant as well, this yields the first claim. The second claim is now immediate
from Lemma 1.8. O

For every subset M C R we further set
Mg = M N Iﬁst )
and for elements of some family {A/;}; of subsets of R we abbreviate

Mgt = (Mj)g -

Lemma 1.17. A Fuchsian group I is cocompact if and only lff& = I@St.

Proof. Assume first that I is cocompact, meaning that X has no hyperbolic ends.
By the above this is equivalent to

Q) =g and {f(p) | p € I parabolic} = @ .
These two statements are equivalent to
AT)=R and Ry =A®),
respectively. For the converse implication it now suffices to observe that

Rg¢ CAT) CR. O

1.9 Isometric Spheres

Let I' be a non-cocompact Fuchsian group and denote by ', the stabilizer sub-
group of oo in I (see also (1.28)). As before we denote by X the orbit space of T'.
Recall the limit set A(T") as well as the ordinary set 2(I") of I" from Section 1.8. In
order to avoid dealing with a change of charts, we assume that co is “contained
in a hyperbolic end”. By that we mean that oo is either a representative of a cusp
of X or an inner point of some funnel interval, i.e., ((I") contains an interval of
the form (7, +00) U {oo} U (—00, —7) for some € R. In the latter case we say
that Q(T") contains a neighborhood of 0c. In either case we have oo € R \ Ry and
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(S) Every element of I', is of the form t) = [} 1] with some X € R.

To be more precise, whenever (') contains a neighborhood of oo as above,
then oo is not a fixed point for any non-identity element in I". Hence, I's, = {id}.
If oo is a representative of a cusp, then I contains a parabolic transformation that
fixes co. Every transformation in PSLg(R) with those two properties is necessar-
ily of the form t,, for some x € R\ {0} (see Lemma 1.5). In particular, I'y, is cyclic
and generated by t) for A € R uniquely determined up to sign, only depending
on I'. Hence, the elements of ', are all translations z — z +n\, n € Z, and thus
not only isometries w. r.t. the hyperbolic metric, but also w. r.t. to the Euclidean
metric in C. The elements of ', are the only transformations in I' with that prop-
erty. One may ask on which subsets of H a transformation g = [‘é 3] e\ Iy
behaves as a Euclidean isometry. For z,w € H one calculates

lacwz + adz + bcw + bd — (acwz + adw + bcw + bd)|

l9-2 = g-w| = lcz + d| |cw + d|
B |z — w|
ez +d||jcw+d|
: ol 10N —1 :
Hence, |g.z — g.w| = |z — w| if and only if |¢'(z)| = |¢’(w)|” . Comparison of

three distinct points in H shows that the complete locus of points where g acts as
a Euclidean isometry is given by

Ig)={z€H||g(z)| =1} ={z€H||cz+d| =1}. (1.43)

This is a semicircle of radius 1/|¢| around the center —d/c and thus is called the iso-
metric sphere of g. It is immediately clear that each isometric sphere is a geodesic
arc in H. We denote by

ISOT) =A{I(g) | g € '\ '} (1.44)

the set of all isometric spheres of admissible elements in I'. For I € ISO(T)
and g € I' \ I'c with I = I(g) the element g is called a generator of I. In general,
generators of isometric spheres are not uniquely determined within I' \ T's. In
Lemma 1.20 below we elaborate on this point in more detail.

Every geodesic arc (21, 22)m, 21, 22 € O4H, divides the upper half-plane into
two open half-spaces H;, H so that we have the disjoint decomposition

H=H U (21, ZQ)H U Ho
in which each of the sets involved is convex. In the case of an isometric sphere

those half-spaces can be characterized via the derivative of g. For I € ISO(I")

and g = [[CL 3] a generator of I we call

intI=intl(g) =={z € H||¢(z)| >1} ={z € H| ez +d| <1} (145)
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the interior and
extI=extI(g) ={z€H||d(2)| <1} ={z €H]||cz+d| >1} (1.46)

the exterior of 1(g).

Lemma 1.18 ([55, Lemma 3.11 and Proposition 3.12]). Let M C ISO(T"). Then

we have
ﬂ ext] = ﬂm:H\ U intI.

IeM leM leM

In the remainder of this section we collect several results about isometric
spheres that will be needed on several occasions throughout the upcoming chap-
ters. Most of these results are well-known or straightforward consequences of
well-known properties of Fuchsian groups. Nevertheless, the majority of the
proofs is provided. We start with a set of identifications for the half-spaces in-
troduced above.

Lemma 1.19. Letg € '\ I'w.

(i) The center of I(g~") is given by g.co. Likewise, the center of 1(g) is given
by g~ '.o0.

(ii) Foreveryz € I(g) we haveImg.z = Im z.
(iii) We have the identities
g91(g) =1(g7"),

g-intI(g) = extI(g™!), and
g.extI(g) = intI(g™ ).

Proof. Let (g 3) be a representative of g such that ¢ > 0. Then (_dc _ab) is a
representative of g~!. Hence, g~!.0o0 = —d/c and the center of I(g~!) is given
by a/¢c = g.co. Because of (1.43) this yields (i). Let z € I(g). There exists a
unique ¢ € (0, 7) such that

d elf
z=—— 4 —.
c c
Then
ad  ae? o a ad—bc 5 a )
gz=|—+ +b)le W =—— eV =—4 .
c c c c c c

This yields (ii) as well as the first equation in (iii). The other two equations in (iii)
now follow from (i) and continuity of g. O

Let I € ISO(I"). Because of Lemma 1.19(i) the interior of I can be character-
ized as the half-space H in H induced by I such that the center of I is contained
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in g H. Since the action of PSLy(R) extends smoothly to H?, we obtain from
Lemma 1.19(iii) that

g-gintI(g) = gextI(g™?) and g.-gextI(g) = gintI(g~Y), (1.47)
for every g € ' \ I'w. This implies
o0 ¢ gint 1 (1.48)

for any I € ISO(T").
The following result is an amalgamation of the Lemmas 6.1.2, 6.1.3, and 6.1.28
in [54]. The proves for all statements are straightforward calculations and can be

found ibid.
Lemma 1.20. Let g,h € I'\ I's and let A > 0 be such that t) € I'.
(i) We havel(g) = I(h) if and only ifgh™! € T'w.
(ii) Foralln € Z we haveI(gt}) = t,".1(g).
(iii) Supposel(g) NintI(h) # @. Thenhg=! € '\ 'y, and

g-(I(g) NintI(h)) = (g YH NintI(hg™t).

We define the maps

J T'\I'e — Ryg
R S )
and
'\Ts — R
c: { [ég] —dJe (1.50)

Both maps are obviously well-defined and they give the radius and the center
of I(g), respectively. Since isometric spheres are Euclidean semicircles centered
at R, we have

max{Imz |z € I(g9)} = r(g) (1.51)

and the point z € I(g) attaining this maximum is uniquely given by

s(g) = c(g) +ir(g)- (1.52)

We call s(g) the summit of I(g). From Lemma 1.19(ii) it follows immediately that

s(g7") = g-s(g)- (1.53)
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Lemma 1.20(i) implies that generators of isometric spheres are uniquely deter-
mined up to left multiplication with elements in I', or in other words, there is a

bijection between I'no\ (I' \ I'so) and ISO(T"). Because of (S) and
1 X |a b |a+Ac b+
0 1) |c d] | ¢ d

for all a, b, c,d, A € R, the maps r, ¢, s are constant on cosets ['og, g € I' \ I'c.
Hence, each of the maps , ¢, s induces a map on ISO(T"):

r(I) =r(g), c():=c(g), and s(I):=s(g), (1.54)

where g is any generator of I.

With the concept of isometric spheres at hand we can give another characteri-
zation of the different types of transformations in PSLa(IR). To ease the notation,
for g € I' \ ', we define the open interval

W(g) = (gint1(g))° . (1.55)

Then from (1.47) it follows immediately that

g W(g) = R\ W(g™")° and ¢.(R\W(9)=W(g~1).  (156)
Lemma 1.21. Letg € '\ I'.

(i) The transformation g is elliptic if and only if 1(g) N1(g~') # @, parabolic if
and only if 1(g)N1(g~1) = @ and g1(9) N gl(g~') # 2, and hyperbolic if
and only if 1(g)* NI(g~ 1)’ = 2.

(ii) If g is elliptic, then I(g) = 1(g~') if and only if g is an involution. In this
case, f(g) = s(g). If g is elliptic with [tr(g)| € (0,2), then 1(g) and I(g~ 1)
intersect each other exactly inf(g).

(iii) Ifg is parabolic, then f(g) is the unique point in gI1(g) NgI(g~1).

(iv) If g is hyperbolic, then o(g)(R) is the unique geodesic arc perpendicular to
both1(g) and1(g~1). In particular, f_(g) € W (g) and f1(g) € W(g™1).

Proof. Let a,b,c,d € R be such that [‘CZ 3] = g. By assumption, ¢ # 0, and we
have

a-+d
C

e(g) — elg™)| = ] ~ lix(g)] - ().

Together with Lemma 1.1 this yields (i).

Assume that g is elliptic. Since g fixes some point in H, so does ¢g" for any
integer n € Z, meaning g" is either elliptic or the identity. If I(g) = I(g~!),
then Lemma 1.20(i) implies g € T's.. Since every non-identity element of I's

40



1.9. ISOMETRIC SPHERES

is parabolic, this implies g = ¢g~!. In this case f(g) = s(g) follows immediately

from (1.53). Now assume that |tr(g)| € (0,2),1i.e., g is elliptic but no involution.

From (i) and convexity we obtain that # (I(g) N I(g_l)) = 1. Using (1.14) we

calculate for x € { —%, a1,

1

lc
1

= 11 (B @P +1 -l (@)) = r(0).

w9) 1 A TP

£(g) —al = - [T+

This implies (ii).
Similarly, if g is parabolic, the fixed point of ¢ is
a—d _clg)+clg”)

T e T 2

Combining this with (i) and 7(g) = r(g~!) yields (iii).

In order to verify (iv) we first note that for any two geodesics 71,72 € €(H)
with distg(71(R), v2(R)) > 0 there exists exactly one geodesic arc in H perpen-
dicular to both 1 (R) and 72(R) (see, e. g., [7, Section 1.2]). Let g be hyperbolic.
We transform g into its standard form hy(, given by (1.6) via conjugation by
some g € PSLy(R). Then, by Lemma 1.11(ii),

q-(9)(R) = a(hy(g))(R) = 75(R) = (0, 00)m,

with 7, the standard geodesic given by (1.21) (see also Remark 1.12). In particular,
any suitable transformation ¢ necessarily maps f_(g) to 0 and f (g) to co. From
this we derive a possible choice

— a—d _
T
with D := /tr(g)? — 4. By Lemma 1.1 and since g is hyperbolic, we have D > 0.
Let ¢ == tr(g) + 2 and ¢ := tr(g) — 2. Then ¢y = D? and we calculate

Olo

IS
O v

q. (c(g) +7(9)) +q. (c(g) —(9))

¢ (—d+1 a—d 1 _ ¢ (—=d-1 a—d 1
— D ( c ) + 2D 2 + D ( c ) + 2D 2
- —d+1 | d—a _ D —d—1 | d—a _ D
+ -
c 2c 2c c 2c 2c

¢ (Yv—-D p—D
-5 (575 55)

_ (-9 gD+ D+ D’ —pp+ YD - 9D+ D) _
B D(—4 — D) (~¢ —D) B
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as well as

c(—goz/J—wD—i-ng—i-DQ—ww—i-wD—(pD—i—DQ)

D (¢ — D) (¥ — D)

This means ¢ maps the two points in gI(g) to a pair of points symmetric to the
origin, and the same holds true for the two points in gI(g~!). Since Mébius

transformations map circles onto circles and preserve R, the above calculations
show that q.I(g) and ¢.I(g~!) are semicircles centered at the origin, respectively,
and thus both are orthogonal to a(hy(,))(R). Since Mobius transformations are
also conformal, this orthogonality is preserved under action of ¢~ !. This implies
the first claim of (iv), from which the second claim follows by convexity. O

Lemma 1.22. Letg € I'\I'w; be elliptic of orderc = o(g) > 3 and letk = k(g) be
the unique positive integer from Remark 1.10. Then 1(g) and I(g~') intersect each

other at an angle o zk” , measured above the spheres.

Proof. Since Mobius transformations are conformal, by Lemma 1.1(iii) and Re-
mark 1.10 it suffices to consider the case

B [cos # —sin 9] k

g =98 sinf cosf 07r

Recall from Remark 1.10 that k < § and (k,0) = 1. L e, sinf > 0. By Lemma 1.2
the order of g being larger than 2 is equivalent to [tr(g)| € (0,2). Hence, by
Lemma 1.21(ii) the spheres I(g) and I(g~!) intersect each other in a single point,
which is fixed by g, and we denote the intersection angle by 3. By (1.14) we have

———/4—4|cosb]? = \/ 1—cos?6=1. (1.57)

f(sg) =

2|sn9]

Consider I(g) and I(g~!) as contained in two circles in C, say S1 and S3. More
precisely,

Si2 = (Mg U{=2 ]z € I(g*1)}),

where the closure is taken with respect to the Euclidean topology in C. Those
two circles are of equal radius with centers on the real line which lie symmetric
to the origin. Hence, the angle between the real line and the line connecting f(g)
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with ¢(g) equals the angle between the real line and the line connecting f(g)
with ¢(g~!). Denote this angle by c. Obviously, o € (0, §). We have

Imf(g) asm

sina = inf,
r(9)

which, in the required interval, has the sole solution o« = 6. Finally, by basic
planimetrics we obtain

B:W—Q(g—a):20:2k7r. t

For the following statements we need to impose additional structure on the
subgroup, namely that it is finitely generated. By [68, Theorem 6.6.3] the group I
being finitely generated is sufficient for it to be Fuchsian. In the next section we
will give a geometric characterization of finitely generated Fuchsian groups.

A family {M;}c s of subsets of H to an arbitrary index set J is called locally
finite if for each z € H there exists a neighborhood U of z in H such that

#{jeJ|MjnU} < +oo.

Proposition 1.23. The sets ISO(T") and {intI | I € ISO(T")} are locally finite, re-
spectively.

We refer the reader to [54, Proposition 6.1.5 and Lemma 6.1.11] for a proof of
Proposition 1.23.

Proposition 1.24. Theset {r(g) | g € I' \ '} attains its maximum.

Proof. First assume that oo represents a cusp of X. Lemma 3.7 in [8] implies that
for every R > 0 there exist only finitely many g € T \ ' for which r(g) > R.
This yields the assertion in this case.

Now assume that 2(T") contains a neighborhood of co. By [35, IV.1D.5] the
set {r(g) | g € '\ I'o} is bounded from above, say by Ry > 0. Furthermore,
by [35,1V.1D.3], all centers of isometric spheres lie within a bounded distance from
the origin. Combining those two statements yields the existence of Rz € R~
such that

|JISO(I') € Rely' ((—R2, R2)) -

Consider the set M, = (—Rg, R2) + i(r, Ry + ¢) for r € (0, R;) and some
arbitrary ¢ > 0. Proposition 1.23 implies that for every z € M, there exists

an open neighborhood U, which intersects only finitely many members of the
family .5 := {intI ’ I €ISO(T')}. Since M, is compact, we find finitely many
points z1, ..., 2, € M, such that

n

M. | Ju.,.
k=1
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Since each of the sets U, intersects only finitely many members of .7, so does M,..
Hence, only finitely many isometric spheres exceed a height of r, for any r > 0.
By (1.51), this finishes the proof. O

We conclude this section with two more observations about isometric spheres,
which, to our knowledge, are not yet to be found in the literature.

Proposition 1.25. Let1,J € ISO(T") be concentric, i.e., ¢(I) = ¢(J). Then1 = J.

Proof. Let g = [‘; 3] € I' \ ', be a generator of I. Without loss of generality
we assume ¢ > (. By Lemma 1.19(i) the center of I is then given by —d/¢ and its
radius by 1/c. By assumption, a generator of J must be of the form h == [ Y]
with z,y € Rand r € R\ {0}. The determinant condition on h yields

1
der —cy=—,
r

with which we calculate

gh~l = a b |rd -y _ adr — ber  br — ay _ | bx — ay
c d| |-rc = 0 dx — cy 0 1 '

'
Hence, gh~! € ', and from (S) we obtain 7 = 1. This yields the assertion. []

The final result of this section studies the relationship between the sets W/ (g)
from (1.55) and the limit set A(I"). It will later be applied to locate limit points in
certain regions of 9, H.

Proposition 1.26. Assume that [ is either non-elementary or a hyperbolic cylinder.
Then for every g € I' \ I'sc we have

W(g)NAT) # 2. (1.58)
Additionally, if g is elliptic of order o > 3 and c(g) & W (g~ "), then

(W) \ W) NAT) # 2.

The demand that c(g) ¢ W(g~!) for g € T \ I'y elliptic is equivalent
to k(g) < 0(g)/3, with k(g) as in Remark 1.10 (see also Lemma 1.22). For the
proof of Proposition 1.26 we require the following auxiliary result.

Lemma 1.27. Letg € I'\I'y, be hyperbolic or parabolic. Then 1(g"*!) C int I(g")
and 1(g~" 1) CintI(g~™) for alln € N. The sequence of radii, (r(g"))nen, tends
to zero.

Proof. Let m,n € Z be such that I(¢”) = I(¢""). By Lemma 1.20(i) it follows
that g™~ "™ € I'y, which, since g is of infinite order, contradicts the choice of g
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unless m = n. Hence, no two of the isometric spheres I(¢"), n € Z\ {0}, coincide.
Therefore, [33, Theorem 3.3.7] implies that the sequence (7(¢g"))nen tends to zero.

If g is hyperbolic, then from Lemma 1.11(iii) we obtain a(¢") = a(g). Hence,
Lemma 1.21(iv) implies that, for every n € N, the geodesic arc «(g)(R) intersects
both I(¢™) and I(¢~™). Denote by &,, the intersection point of a(g)(R) with I(g"),
forn € Z\ {0}. Since g" stabilizes a(g)(R), we deduce from Lemma 1.19(iii)
that ¢g".&, = {_,, for alln € Z \ {0}. Hence, in particular, Im¢,, = Im¢_,
(Lemma 1.19(ii)) and by (1.38) and Lemma 1.11(iii),

disty(§n, §-n) = £(g") = nl(g) = ndistu(&1,€-1)

for all n € N. Hence, the geodesic segment [£1,{_1]i lies symmetric in each
segment [&,,, E_p]m, n € N. This together with (f1(g9),f_(g9)) = (f+(¢™),f-(g™))
for all n € N and again Lemma 1.21(iv) shows the assertion in the case that g is
hyperbolic.

Now assume that g is parabolic and let ¢ € SLs(R) be the representative
of g fulfilling tr(g) = 2. By virtue of the determinant condition g admits the

representation
= a —1(a-1)? .
c 2—a

Note that ¢ # 0 by assumption. One shows by induction that

ke (<“—1>"+1 —Z(a—1>2> |

- cn —an+n+1

Indeed,

(e S )

_(a(a—l)n+a—(a—1)2n —@((a—l)n—i—l—k@—a)n) >

en+c —(a—1?*n+2—-a)n—an)+2—a
(D41 —mg1p
N c(n+1) —a(n+1)+(n+1)+1)"°
Therefore, the radius of I(¢") for n € Z \ {0} is given by
wy_ L _79)
T(g ) - TL|C‘ - n ’

which means the sequence (7(g™))nen is strictly decreasing. Combining this with
Lemma 1.21(iii) and f(¢") = f(g) for all n € N, implies that

I(g"*!) CintI(g") UintI(g ™),
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for all n € Z\ {0}. Assume for contradiction that I(g") C intI(g~!) for some
n € N. From Lemma 1.20(iii) we then obtain

I(g™") C intI(g~ "),

in contradiction to the relation of the radii. Hence, the assertion follows in the
parabolic case as well. O

Proof of Proposition 1.26. For g € I'\I's, hyperbolic (1.58) is a direct consequence
of Lemma 1.21(iv).

Let g be parabolic. Since I' is not a parabolic cylinder, there exist further limit
points which are no I'-translates of f(¢g), and we choose z to be such. Then

If(g) —x|=1e>0.

By Lemma 1.27 there exists N € N such that r(g") < § forall n > N. From

Lemma 1.21(iii) and f(¢") = f(g) for all n € N we deduce = ¢ W (g—"). There-
fore, (1.56) and again Lemma 1.27 imply that

g " eW(g") SW(g).

Since A(I") is I'-invariant, this implies (1.58) for g parabolic.

Now assume that ¢ is elliptic and denote by 0 = o(g) the order of g, which
is finite by Lemma 1.9. Further, I' is not a hyperbolic cylinder and thus non-
elementary by assumption, meaning A(I") is of infinite cardinality. If o = 2,
i.e., g is an involution, then I(g) = I(¢~'). Hence, W (g) U (I@ \W(g ")) = R
and application of (1.56) if necessary yields (1.58). Thus, assume ¢ > 2. Then, by
Lemma 1.21(ii), I(g) and I(g~!) intersect each other in exactly one point, f(g). By
convexity,

gl \W(g™") ={&g)} and  glg)NW(g~") ={E(9)},

for two points £(g),£'(g) € R only depending on g. By renaming g to g~ ! if
necessary we may assume the ordering

Eg) <€) <€) <&g™). (1.59)

From Lemma 1.19(iii) and (1.56) we obtain

9:&(g)=¢€g™") and  g.&(g)=E&"). (1.60)

The orbit (¢".£(g) )nen is periodic with minimal period o (see the discussion right
before Lemma 1.9). Hence, U?:_ll {g°.£(g)} dissects R into o intervals, whose
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structure we study now. Define

V= R\ (W) U (g7T)) = (¢(g7"), +00) U {0} U (—00,£(9)) -
Then, by (1.56), g.% C W (g~'), and thus g.% NV = @. But (1.60) implies that

9.7 = (9:£(g7"). (g7 ")),

which in turn shows that g.% U {£(¢g~!)} U is an interval in R. The struc-
ture of ¢g.7 immediately implies that this argument applies iteratively, mean-
ing 2. U {g.£(g7 1)} U g.¥ is again an interval in R and so on. Continuing in
this way yields the decomposition

o—1 o—1
R=JgvulJlg <)}
i=1 i=1

Note that this decomposition is not necessarily disjoint, but rather covers R ex-
actly k(g)-times, with k(g) as in Remark 1.10. Since I' is non-elementary and
thus contains infinitely many non-conjugate hyperbolic elements (see [33, Theo-
rem 2.4.4]), we have

AM)\T{E(9),E(9)} # 2. (1.61)

Hence, in particular, for
0—1'
re A\ (g {49)}
i=1

we have z € ¢°.% for at least one i € {1,...,0} according to the above decom-
position. By construction there exists j € N, j < o, such that gj.:c € YV, and
thus, ¢/ t1.x € W (g~'). By symmetry, this yields (1.58) in the elliptic case.

Finally, assume that g is elliptic of order o > 3 and that ¢(g) ¢ W (g). Because
of (1.59) this means that

E=W(g)NW(g~) =[(g7).€(9)] C [elg),clg™)]
Consider further the intervals
0= (£(9),c(g)]  and W= (c(g),€' (7))

Then © U T = (W(g) \ W(g~'))° and the union © U ¥ U = is disjoint and
constitutes an interval in R, where ¥ might be the empty set. By the above it
follows that A(I') N (g) # &. Hence, it remains to show that A(T)NW (g) € E.
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Because of (1.60) and Lemma 1.19(i) we have
R=(ZUV)Ug(EUP)UF(ZUT) U ((g),c(g )], (1.62)
where the union on the right hand side is disjoint. Furthermore,
0= (9.(ZUW))NW(g)
and hence, by (1.56),
-0 = (§(g7"), +o0] = (¢*.(EUL)\ W (g7T).
From the disjointness of the union in (1.62) we therefore obtain
(*-EU¥)\g.0 CW(gH\W(g).

Because of (1.61) this implies A(T') N (W (g~) \ W (g))° # @, and switching the
roles of g and g~ ! yields the assertion. O

1.10 Fundamental Domains

Let I" be a Fuchsian group. A subset F of H is called a fundamental region for (the
action of) I' in H if F is an open set such that

(F1) any two I'-translates of F are disjoint, i.e., forall g € "\ {id},

g FNF =0,
(F2) the I'-translates of F cover all of H:

H = Ug..f.

gel’

Property (F'2) is called the tessellation property. Every set M C H for which the
union | JT'.M covers H is said to tessellate H under I'. Property (F'1) implies that
the union in (F'2) is essentially disjoint for every fundamental region F. A family
of subsets M of some finite dimensional vector space V/, or the union thereof,
with j in some index set J, is called essentially disjoint, if, for all j, k € J, j # k,
the intersection M; N Mj, is of dimension at most dim V' — 1.

The following observation is immediate.

Lemma 1.28. Letn € N and let My, ..., M, be mutually disjoint, open subsets
of H such that | J,,_, M}, is a fundamental region for some Fuchsian group I'. Fur-
ther let g1, ..., gn € I'. Then \J;_, gx-My, is again a fundamental region forT.
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A connected fundamental region is called a fundamental domain. Each Fuch-
sian group admits a fundamental domain (see [33, Theorem 3.2.2]). Standard
choices are Dirichlet or Ford fundamental domains, of which we will use the lat-
ter and which are examples of fundamental domains in the shape of (interiors of)
exact, convex polygons (in the sense of [68, §6.3]). We assemble the necessary
notions.

Definition 1.29. Let F be a convex, open, nonempty subset of H and let I be a
Fuchsian group.

(a) A side of F is a maximally convex subset of F of positive length.

(b) Fiscalled a convex polygon in H if the set of sides of F is locally finite in H.
(See the exposition right before Proposition 1.23 in Section 1.9.)

(c) F is called geometrically finite or a geometrically finite polygon in H if the
set of its sides is finite.

(d) Let F be a convex polygon and assume that F is a fundamental domain
for I'. Then F is called a convex fundamental polygon for I.

(e) Assume that F is a convex fundamental polygon for I". Then F is called
exact, if for each side 3 of F there exists g € I" such that 3 = F N g.F.

For F a convex polygon in H we denote by Sr the set of its sides.

Definition 1.30. Let F be a convex polygon in H. A subset G of PSLy(R) is
called a side-pairing for F, if there exists a surjective map p: Sr — G such that
forall B € Sr

(I) we have
p(B)-B€Sr and  p(p(B).8) =p(B)",
(IT) there exists a neighborhood U/ of 8 in H* such that

FnpB).UNF)=2.

If GG is a side-pairing for F then each element of G is called a side-pairing trans-
formation of F.

Let F, S, G, and p be as in Definition 1.30. Property (I) induces an involution
on Sr: every side 3 of F is paired with exactly one side 5’ = p(3).5. A side
being paired to itself is not prohibited; however (II) prevents G from containing
the identity. Hence, no side of F is fixed by a side-pairing transformation (Sr is
locally finite by assumption). The surjectivity of p assures that G is minimal for
its purpose. In particular, if F is geometrically finite, then

#G < #SF < +00.
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Lemma 1.31 ([68, Theorem 6.7.5]). A convex fundamental polygon F forI is exact
if and only if there exists a side-pairing of F inT'.

The Fuchsian group I is called geometrically finite if it admits a geometrically
finite fundamental domain. This fundamental domain is then automatically in the
form of a convex fundamental polygon. In particular, every 8 € Sr is a geodesic
segment, and is closed if and only if both its endpoints are contained in H.

Lemma 1.32 ([68, Theorem 12.4.5]). Let " be a geometrically finite Fuchsian group.
Then every exact convex fundamental polygon for ' is geometrically finite.

Corollary 1.33. A Fuchsian group is geometrically finite if and only if its orbit
space is geometrically finite.

For geometrically finite Fuchsian groups a full set of generators and their rela-
tions can be re-obtained from the fundamental polygon and its side-pairing in I'.
This is the quintessence of Poincaré’s fundamental polygon theorem, which we
tend to formulate in the following. In order to do so, the concept of vertex cycles
is required, which we recall now.

Let F be a geometrically finite polygon in H with side-pairing G. A (finite)
vertex of F is a point v € H that is the common endpoint of two distinct sides
of F. Equivalently, a vertex is every point v € H for which there exist g,h € T,
g # h, such that

{w}=FngFNnhF

(see also [6, Definition 9.3.2]). Assume that Sz contains two elements of the
form [z1, x)w, [22, 2)m with some z € O4H. Then x is called an infinite vertex
of F. We denote by V7 the set of finite and by V£ the set of infinite vertices of F.
Forv e Vr U V}g we define its vertex cycle as

Clv)=F'NnGw.

Since PSLy(R).H = H and PSLy(R).0,H = 0,H, the set C(v) consists solely
of finite vertices of F if v is finite, and solely of infinite vertices if v is infinite.
Since F is geometrically finite and thus #G < +oo, we have #C(v) < +oo for
every vertex v € Vr U V£. For each finite vertex v € Vr we denote by 6(v) the
angle F subtends at v. We define the angle sum of C'(v) for v € Vr to be

H(C(w) = > Ow). (1.63)

weC(v)

Lemma 1.34 ([6, Theorem 9.3.5]). For every geometrically finite Fuchsian group T,
every geometrically finite fundamental domain F of I, and every v € Vr there
exists w € N such that
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Letv € Vr U V]le, Further let 81, 82 be the two distinct sides of F such
that v is the common endpoint of 5; and 5. Recall the map p: S — G from
Definition 1.30. By construction, p(f1).v € C(v), and we set g1 = p(S1).
Let (33, 84 be the two sides whose common endpoint is ¢;.v. Then one of them,
say f4, is equal to g1.531 By the second condition in Definition 1.30(I) this im-
plies p(B4) = p(B1) L. We set g2 := p(B3)g1. Again, go.v € C(v). Proceeding
in this manner successively generates every element of C'(v). We stop once we
obtain g,,.v = v for n € N. We call

Cy = Gn

cycle transformation of v. Another cycle transformation ¢/, is obtained by starting
with g1 = p(52) instead. Applying the second condition in Definition 1.30(I)
for every w € C(v) yields ¢, = c, . Because of Lemma 1.34 for v € Vz the
associated cycle transformations are of finite order, hence either elliptic or the
identity (Lemma 1.9; see also [38]). In particular, one obtains ¢ = id witho € N.
These relations for all v € Vr, where o is chosen minimal respectively, are called
the cycle relations for F.

Remark 1.35. The above treatment of angle sums and cycle transformations cuts
short in various regards, most profoundly in terms of justifications. This curtail-
ment was deemed appropriate, for in the analysis that follows those objects are
not applied beyond their mere concepts, which are required for the formulation
of the Poincaré theorem (Proposition 1.36 below) and its application (Section 7.2).
We refer the reader to [6, §9.3] for an in-depth discussion of all these objects.

Furthermore, some of our notions here differ from what is usually encoun-
tered in the literature. For instance, a convex polygon F is usually defined as a
closed subset of H whose interior might be a fundamental domain for some Fuch-
sian group. We omitted that distinction here for we do not require it. Moreover,
infinite vertices in the literature refer to a larger class of ideal points than they do
here. Usually a distinction is made between two-sided (or proper) and one-sided
(or improper) infinite vertices, of which only the former are infinite vertices in our
sense. One-sided infinite vertices do not demand any special treatment in light of
Poincaré’s theorem and thus are omitted here.

Proposition 1.36 (Poincaré’s theorem on fundamental polygons, [38]). Let F be
a convex polygon in H for which there exists a side-pairing G fulfilling the following
conditions:

(I) For everyv € Vr there existsw € N such that wf(C(v)) = 2.
(II) Foreveryv € V£ its cycle transformations are parabolic.

Then (G) is Fuchsian, F is a convex fundamental polygon for (G), and the cycle
relations for F form a full set of relations for (G).
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From Proposition 1.36 we infer that every geometrically finite Fuchsian group
is finitely generated. The converse is also true (see [6, Theorem 10.1.2]), meaning
a Fuchsian group is finitely generated if and only if it possesses a geometrically
finite fundamental polygon.

In what follows we will exclusively consider geometrically finite Fuchsian
groups (of finite or infinite covolume) that contain hyperbolic elements (and pos-
sibly elliptic and parabolic ones as well). For these groups geometrically finite
fundamental polygons can be constructed rather easily, in form of Dirichlet or
Ford fundamental domains. Here we will work with the latter. The remainder of
this section is dedicated to a study of these domains. To that end we adopt the
concept of the common exterior and relevant isometric spheres from [54]. We
recall these objects in the following.

Let I' be Fuchsian. As before, denote by ', the stabilizer of oo in I'. Then I' o
is again Fuchsian. As in Section 1.9, we assume that oo is contained in a hyper-
bolic end, that is, co ¢ @st and, consequentially, condition (S) holds true. We
additionally assume that, if X has cusps, then oo does indeed represent a cusp
of X. In this case let A > 0 be its cusp width, that is,

<t)\> =T'w,
with t as in (1.7).

Lemma 1.37. Assume that X has cusps and that oo represents a cusp of X. For
everyr € R the set
Foolr) = Relg ((r,r + N)) (1.64)

is a fundamental domain for I" .
Proof. For z € H and n € Z we have
Reth.z = Rez 4+ nA =th.(Rez).
With that one immediately verifies (F'1) and (F'2). O

Remark 1.38. If I" has no cusps and thus a neighborhood of o is contained in Q(T"),
then the stabilizer subgroup I' is trivial. In this case

Foo = H (1.65)

trivially fulfills (F1) and (F'2), and thus is a fundamental domain for I's, = {id}.
Recall the set ISO(I") from (1.44). The set

K=Kr= [) extl (1.66)
I1€ISO(T)
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is called the common exterior of ISO(T"). We drop the index I" whenever the as-
sociated Fuchsian group is clear from the context. One shows (see [54, Proposi-
tion 6.1.12]) that
okc |J g (1.67)
g€M oo

Hence, the boundary of K in H is piece-wise given by geodesic segments. Since
the set extI is convex for every I € ISO(T'), so is K. In particular, because
of (1.48), the geodesic ray (z, 0o)p is contained in K for every z € KC, or in other
words, oo € g /. Further, as a consequence of the following observation, K is
open.

Lemma 1.39. Let {M;}c; be a family of open sets in a path-connected metric
space (X, d) such that the family of their boundaries {OM;};c s is locally finite.
Then (\;c; M is open.
Proof. Since X is path-connected, it is connected. Hence, a set M}, being closed
(as well as open by assumption) for some k € J implies M}, € {&, X}, Hence,
for all j € J with M; ¢ {&, X} we therefore have 0M; # @. Without loss of
generality we may assume M, # @ for all j € J, for otherwise the assertion is
obvious. For the same reason we may assume that () jeg M; # 2.

Letx € () ;e M;. By assumption there exists an open neighborhood U of =
in X such that

#Jy < +o0, where Jy ={j e J|UNIM; # o} .

Without loss of generality we may assume that U/ is path-connected, for otherwise
we may pass to the path-connected component of I/ containing x. (Note that,
since X is path-connected by assumption, every connected component of every
open subset of X is again open.) First consider the case that J;; = &. Assume that
there exists y € U such that y ¢ ey M;. This means there exists j' € J such
that y ¢ Mj. Clearly, y ¢ OM;, for then U N OM;» # @, contradicting Jiy = @.
Hence, y is contained in the open set X \ M. By assumption, there exists a path
from x to y in U, i.e., a continuous function f: [0,1] — U fulfilling f(0) = =
and f(1) = y. Since x € M;/, M and X \ M are both open, and f is continuous,
there exists € (0, 1) such that

Ba(f(r)NMy#@  and  Ba.(f(r)NX\My # o,

for every choice of € > 0, where B;.(z) denotes the open e-ball centered at z
with respect to the metric d. Hence, f(r) € OM;:. But since f([0,1]) C U, this
contradicts Jyy = &. In turn, 4 C ey M;. Since z has been chosen arbitrarily,
this yields the assertion in this case.

Now assume that J;; # @ and denote its elements by ji, ..., j, (recall from

before that #.J;; < +00 by assumption). Then, in particular, z € (;__; Mj,. Since
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each of the sets M is open, we find d(z,dM;j,) > 0 for everyi = 1,...,n. We
now set

5::%min{d(ﬂs,Mji) ‘ie{l,...,n}} .

Then By (z) € (i, Mj, and as in the proof in the case J; = @ we conclude
that By . () cannot contain any points exterior to M;, for any j € J. This yields
the assertion in this case and thereby finishes the proof. O

By convexity, every isometric sphere induces at most one maximally convex
component of K. An isometric sphere I € ISO(T") that does so, that is, if INAK
consists of more than one point, is called relevant. In this case we also say that I
contributes non-trivially to OK. We denote by REL(I") the subset of ISO(I") of
all relevant isometric spheres. Because of Proposition 1.23 we have REL(T") # &
whenever ISO(T") # @. For each I € REL(T") the set

81 =1noK (1.68)

is a geodesic segment in H, which we call the relevant part of 1.
The proofs of the following two results are the same as for [54, Proposi-
tion 6.1.26] resp. [54, Proposition 6.1.29].

Proposition 1.40. Suppose ISO(T") # &. Then

ok= U »n

IEREL(T)

and for each choice of 1,J € REL(T"), I # J, the intersection 31N By is either empty
or a singleton in H.

Recall the notion of generators of isometric spheres from (1.43). We denote
by I'rir the subset of I' \ I', of all generators of relevant isometric spheres.

Proposition 1.41. With g € I'rgy, we also have g*1 € I'rgy,. Furthermore,

Br(g-1) = 9-bu(g) -

The common exterior = Kt naturally contains fundamental domains for I'.
Consider the decomposition of JIC from Proposition 1.40 and denote by Sk the
full set of relevant parts of relevant isometric spheres, i.e.,

Sk = {B;|1€ REL(I")} . (1.69)

We also call the elements of Sk sides of K, which is justified by the boundary
structure of K and Proposition 1.40. Denote further by Wi the set of endpoints
of the elements of S in HY.
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Proposition 1.42. Let
r € Re|ge (W) U (g \ {oc}) € R

and let Foo = Foo(r) be as in (1.64), if X has cusps, or as in (1.65), if X has no
cusps. Then
F=FsNK (1.70)

is an exact convex fundamental polygon forI'. If I is geometrically finite, then F is
geometrically finite.

Proof. In the case that X has cusps, all claims follow from [54, Proposition 6.1.36]
and [54, Theorem 6.1.38]. Thus, assume that X has no cusps and that I' is triv-
ial. A combination of Propositions 1.23 and 1.24 with [55, Corollary 3.20] shows
that 7 = K is a fundamental region for I". Since K is convex and open, Propo-
sition 1.23 further shows that it is a convex fundamental polygon for I'. Further,
Lemma 1.20(i) implies that

I'ker,. — REL(D)

r — 1ISO(I)
{ g N () (1.71)

and thus
g — g {

are both bijections. Hence, the Propositions 1.40 and 1.41 yield a unique side-
pairing for IC in I', which means that /C is also exact. The last claim now follows
from Lemma 1.32. O

The domain F from Proposition 1.42 is called a Ford fundamental domain or
a fundamental domain of the Ford type for I'. This type will constitute the funda-
mental domains of choice in this thesis. We will often choose a Ford fundamental
domain F = F(r) and will indicate the choice of r only implicitly.

From Proposition 1.42 we read off the structure of the boundary of a Ford
fundamental domain in H and in 0,H. With F as in (1.70) and F as in (1.64)
resp. (1.65) we find (see [54, Theorem 6.1.15]) that 0F decomposes disjointly as

OF = (0F NK) U (Fuo NOK) . (1.72)
Concerning vertices and the boundary of 7 in 0, H we have the following result.

Proposition 1.43. Let F be a Ford fundamental domain for a geometrically finite
Fuchsian group I'. Then the following statements hold true.

(i) Everyv € Vi is a fixed point of some elliptic element in T'. For every elliptic
fixed point & of I there exists g € I" such that g.£ € Vr.

(ii) Every v € V£ is a fixed point of some parabolic element in T'. For every
parabolic fixed point x of I there exists h € I' such that h.x € V]{f—l. None of
the elements of V2 is fixed by a hyperbolic element in T
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(ili) Assume that gF N OyH contains an interval I C R of positive length.
Then I C Q(T). In particular, X has funnels and I intersects a funnel repre-
sentative. The boundary points of I in R are no parabolic fixed points and for
every funnel of X the set g F N Oy H contains a representative of it.

Proof. In the proof of [33, Theorem 3.3.5] it is shown that every Ford fundamental
domain is a Dirichlet fundamental domain. Hence, all statements about Dirichlet
fundamental domains can be applied here as well. Statement (i) therefore follows
from the discussion after [33, Theorem 3.5.1], while the first two statements of (ii)
are shown in [33, Theorem 4.2.5]. The final statement of (ii) is thus a consequence
of Lemma 1.8. Statement (iii) then follows from the combination of statement (ii)
with [6, Theorems 10.2.3 and 10.2.5] and [35, IV.7E and IV.7G]. O

Proposition 1.42 further has profound implications for the structure of C for
geometrically finite Fuchsian groups I': If X is void of cusps, then K itself is a
fundamental domain for I', and thus geometrically finite, i. e., finite-sided. Hence,

#REL(T) < +00

and thus, by the second map in (1.71) being bijective, #I'rgr, < +o00. In particular,
there exist a,b € R, a < b, such that

K= |J Big CRelg' ([a,b]). (1.73)

9€EREL

If T has cusps and oo represents a cusp of I' with cusp width A, then, by (F2), K
is invariant under transformations in I's,, meaning

K =K, (1.74)

for all n € Z. Because of that and Proposition 1.42, the statements of Proposi-
tion 1.43 also apply, mutatis mutandis, to K instead of F.

Ford fundamental domains provide models for the orbisurface X for which,
in a sense, scaling distortions alongside the virtual boundary are minimized. The
following result refines this statement.

Lemma 1.44. Let F be a Ford fundamental domain for I' and let z € 04 F. Then
forallw € I'.z N 0y F we have

Imw=Imz.

Proof. Since I''H C HandI'.0,H C 0,4 H, it suffices to consider z € OF. Assume
first that z ¢ OK. By (1.72) this is only possible if X has cusps and z € 0F, N K.
From (1.66), Lemma 1.18, and Lemma 1.19(iii) we obtain

h.z € U intl(g) CH\ K,
gEF\Foo
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forallh € '\ T'w. Since Im th.z = Im z for all n € Z, the claim follows in this
case. Hence, assume z € OK and let h € I'. There are three possible scenarios for
the interrelation of z and h: either h € I'o, h € Trpr, and z € I(h),orh € T\T'«
and z ¢ I(h). In the first case we may argue as before, while in the second case the
claim follows from Lemma 1.19(ii). This leaves the third case. Observe that (1.66)
and Lemma 1.18 imply that

oK C () extI(g).

gGF\Foo

Hence, in particular z € extI(h). Again by Lemma 1.19(iii) and Lemma 1.18 we
therefore obtain

hezeintI(h™) € | ) intI(g) =H\ ( N extI(g)) —H\K.
g€\l g€\ oo
Hence, h.z ¢ OF by (1.72) and the assertion follows. O

Suppose that I is geometrically finite and such that X has no cusps. Suppose
further that a neighborhood of oo is contained in (I"). Let a* be the maximum
of all @ and b* be the minimum of all b for which (1.73) holds, meaning for any
choice of €1, €2 > 0, not both equal to zero, we have

OK ¢ Rely!' ([a* +1,b" —e1]) .

Since I'rgr, and REL(T) are in bijection, there then exist exactly one g1 € I'rgr,
and exactly one g9 € I'rgy, such that

a* € gl(g) and b* € gl(g2) . (1.75)

In the case that g1 = g5 ! we can infer further information about the boundary
structure of K. To that end recall the notion of the summit of an isometric sphere
from (1.52) and (1.54). For f: R © I — R continuous we call zo € I a strict local
maximum, if there exists € > 0 such that

f(xo) > f(z)  forall =€ ((xo—e,z0+¢)\{zo})NI.

Every local maximum of f that is not strict is called non-strict.

Lemma 1.45. Let g € T'. Further let 11,1 € REL(T') be such that a* € g1
and b* € g I and suppose Iy = 1(g) and Iy = I(g~'). Then eitherT' = (g), or
there exists I3 € REL(I") \ {11, Io} such that s(I3) € OK. In the latter case we have

Res(I1) < Res(Is) < Res(Ia). (1.76)

Proof. IfT is cyclic, then REL(T') = {I(h),I(h~!)}, where h is such that (h) =T,
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The converse is also true. By assumption a* € ¢I(g) and b* € gI(g~?), the
definition of ¢* and b*, and the bijection between REL(I") and I'ggy, it follows
that g = h.

Thus, assume that I is non-cyclic. Let § be a curve in C that traces out the
boundary of K in HY between a* and b*, i.e., let to,t1 € R, tg < t1, and let

0: 1 := [to,tl] —C

be a continuous map such that 6(tg) = a*, 6(t1) = b*, and 6(I) C 04K. In
particular, the boundary structure of IC allows ¢ to be chosen as an injective map,
for instance by imposing & to be piece-wise parameterized by arc length (with
respect to the Euclidean metric in C). Then §(/) is piece-wise given by either
intervals in R or geodesic segments in H. The function

f:{l—> R

x +— Imé(x)

is continuous and for every strict local maximum of f the point (x) coincides
with the summit of some relevant isometric sphere. Furthermore, all non-strict
local maxima of f are likewise zeros of it.

We start by considering the case I; C OK. Proposition 1.41 then implies
that Is C K. Since I is non-cyclic, REL(I") consists of further spheres besides Iy
and Io. By construction, we find x1, x2 € (¢, 1) such that

ghi\{a"} ={0(z1)}  and gL\ {b"} = {0(z2)}.

Define A to be the (Euclidean) line segment in C connecting 0(x1) and §(z2),
ie.,

A={1-7)d(z1)+7(x2) | T € (0,1)} . (1.77)
Then A = [§(21),d(x2)] € R and, by assumption,
JREL(T) NRelz"(A) # 2.

Thus, there exists 3 € (x1,x2) such that f(x3) > 0. Since f is continuous,
it assumes its maximum in the compact interval [x1,z2], say x4, and we have
that f(x4) > f(x3) > 0. Hence, x4 is strict, and by the above this implies the
existence of I3 € REL(I") such that

5(z4) = s(I3) € 9K N Relz' (A).

This yields the claim in the case I} C OK.
Assume now that Iy ¢ OK. In this case we find z1,22 € (to,t1) such
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that 0(z1) € I; and §(x2) € Iy, but
5((:61,561 —|—E)) NI = 5((352,1’2 +€)) N =9,

for any choice of ¢ > 0. Since I is non-cyclic and thus REL(T") \ {I;, I} # @,
we have 0(z1) # 0(z2) and hence z1 < 2. But because of Proposition 1.41 and
Lemma 1.19(ii), we have

f(z1) =Imd(x1) = Imd(x2) = f(x2).

Thus, if we again define A as in (1.77), this time A is a horizontal line segment
in the upper half-plane. We obtain another continuous path in C by connecting
the segments 0 ((to, 1)), A, and 6((x2,¢1)). The angles this path assumes at
the points (x1) and J(z2) (measured above the curve) are equal by virtue of
Lemma 1.19(ii), and we denote this angle by ¢. Necessarily,

g <P <. (1.78)

By assumption, there exists I3 € REL(T") \ {I1, I2} such that
(5([x1,x1 + 5)) els,

for € > 0 sufficiently small. The points v; := §(z1) and vy := §(x2) are finite
vertices of KC and vo € C(v1) by assumption. Clearly

O(v,) <7, (1.79)

for . € {1,2}. If O(v1) < ¥, then §((z1,21 + €)) lies above A. This allows
us to proceed as above in order to find a strict local maximum of f in the inter-
val [x1,x2] and thereby a summit of some relevant isometric sphere contained
in 9K N Re|' (Re(A)). If §(v1) = 6, then A is contained in a line tangent to T5.
Since A is horizontal, this means §(z1) is the summit of I3 and thus fulfills the
assertion. The same arguments apply if #(v2) either falls below or equals 9. This
leaves only the case of both these angles exceeding ¥, which, because of (1.78)
and (1.79), implies

T <6(v1) +0(va) <27 (1.80)

Since I" is geometrically finite, Lemma 1.34 implies that §(C(v1)) = 2 for some
w € N. Because of (1.80) this equation can only hold for w = 1 and C(v;)
consisting of further vertices besides v; and vy. Thus, let v3 € C(v1) \ {v1,v2}.
Then, by (1.80),

O(v3) <2m —O(v1) — O(v2) < . (1.81)

We further find 3 € (21, 22) such that §(z3) = v3. Lemma 1.19(ii) now im-
plies f(z3) = f(z1), or in other words, v3 € A. But now, because of (1.81),
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we find some small &’ > 0 such at least one of the segments (5((303 -, ajg))
] ((353, xg + &’ )) lies above A. Hence, the same argument as before allows us to
deduce the existence of a strict local maximum of f, eitherin [x1, 3], orin [x3, z2].
This yields the assertion in the case I; ¢ OK.

In order to verify (1.76), we argue indirectly and assume that it is not the
case. Because of symmetry it suffices to consider the case Re s(I3) < Res(Iy).
Since s(I3) € OK, in particular s(I3) ¢ intI;. But since isometric spheres are
geodesic arcs, by convexity it follows that g I3 N(—o0, a*) # @. This contradicts
the choice of I; and thereby finishes the proof. O

We close this section with an example that introduces a family of Fuchsian
groups to which we will return several times in examples throughout this thesis.
It constitutes a—in some sense—minimal example of Fuchsian groups for which
the associated orbisurface exhibits all three types of pertinent features: it has
one funnel, one cusp, and one conical singularity of arbitrary order o > 2. The
order of the conical singularity implies that only those members of the family
with parameter o = 2 are Hecke triangle group (of infinite covolume).

Example 1.46. Let 0 € N\ {1} and consider

o cos(g) cos(g) -1
o = cos(g) +1 cos(g)

Then
det(go) = cos®(Z) — (cos®(Z) — 1) = 1.
Hence, for all o we have g, € PSLy(R). Further,

ltr(g0)| = 2cos(Z) € [0,2)

for all 0 € N\ {1}. Thus, g, is elliptic and is an involution if and only if o = 2.
For o0 > 3 we further calculate

1 1 1
— arccos (L(g")‘) =T —.
s To O

Note that 0 > 3 implies /o € [0, 7], where the cosine is bijective. Hence,
by (1.29), the order of g, equals o and k(g) = 1, where k(g) is as in Remark 1.10.
Hence, by Lemma 1.22, the isometric spheres I(g,) and (g, !) intersect each other
at an angle of 27/¢. The fixed point of g, we obtain by applying formula (1.14):

f(g0) = 2(008(%)—!—1) 4—4cos?(Z) =i-tan(L).
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Furthermore,

C(ga) - T(ga) = - p - =-1,

and analogously it follows that

(g, ") +71(9s) =1.

Hence, 1(g,) UI(g; 1) € Re|g' ([—1,1]) for any o. Further consider the parabolic
transformation t) = [(1] i‘] with A > 2 and define the family of groups

{Tontoem(i}, a2,  where Ty = (go,tx|gg = id) . (1.82)

The associated orbisurfaces we denote by X, ). Each of these orbisurfaces has
a cusp, represented by co. We assign to each group I', ) the Ford fundamental
domain F, ) given by

For = Foo(—%) NextI(gy) NextI(g; ), (1.83)

where Foo (1), r € R, is as in (1.64). From the above it follows that 7, ) is a Ford
fundamental domain and thus, in particular, a geometrically finite fundamental
polygon for I'; y. By Proposition 1.43 we read off from 7, ) that X has exactly one
cusp (represented by 0o), exactly one conical singularity (represented by f(g,)),
and exactly one funnel. Two examples of fundamental domains are depicted in
Figures 2 and 3. Note that, for o = 2, the group I'; ) is a (non-cofinite) Hecke
triangle group. For all other choices of ¢ it is not.

F33

\
ol
I

Figure 2: The Ford fundamental domain F3 3 for I's 3.
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=
w

Figure 3: The Ford fundamental domain F 3 for I'; 3.

1.11 Cross Sections and Transfer Operators

Let I' be a geometrically finite, non-cocompact Fuchsian group with hyperbolic
elements and denote by X the associated hyperbolic orbisurface. Recall the sets
of geodesics G(X) and Gpe, (X) from Section 1.7 as well as the unit tangent bun-
dle SX of X from (1.31). Let M C SX, 7 € ¢(X), and t € R. We say that ¥
intersects M at timet if

y(t)e M. (1.84)

We say that 7 intersects M transversally at time t if there exists € > 0 such that
{F(r)|ret—et+e)}nM={F()}. (1.85)

Further recall the (unit speed) geodesic flow on X,

3:

)

RxSX — SX
t,v) — ()

from (1.33). This is a time-continuous flow on X with phase space equal to SX. For
many applications (of which the constructions in this thesis are one example) a
time-discrete counterpart of P is required. Such can be obtained via introduction
of a Poincaré cross section, a certain submanifold of SX together with a discrete
dynamics induced by ®. This approach is called a discretization of the geodesic
flow ®.

Usually, for a Poincaré cross section C one demands that every geodesic on X
intersects C transversally infinitely often in past and future (i. e., infinitely often
with ¢ > 0 and infinitely often with ¢ < 0). Because of X bearing hyperbolic
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ends, this framework is not fully suitable in our case. For this reason we instead
borrow, and use throughout, the concept of cross sections from [54], which pre-
sumes a measure 1 on §(X) in order to single out those geodesics whose behavior
is essential for the applications in mind. For the general statement of the defini-
tion of a cross section, we neither require the measure p to be finite or even a
probability measure, nor do we ask for any specific properties of the implicitly
fixed o-algebra on €(X). We refer to the discussion below Definition 1.47 and to
Section 4.6 for the class of measures relevant for our applications.

Definition 1.47. A subset C of SX is called a cross section for ® with respect to [
if

(CS1) p-almost every geodesic 7 on X intersects C infinitely often in past and
future, i. e., there exists a two-sided sequence (t,,),cz with

lim ¢, = +o0
n—+oo

such that for each n € Z the geodesic 7 intersects C at time ty,, and
(CS2) each intersection of any geodesic 4 on X and C is transversal.
A cross section C for ® is called strong if it additionally satisfies that

(CS3) every geodesic on X that intersects C at all, intersects C infinitely often
both in past and future.

We emphasize that this notion of a cross section deviates from the classical
notion of Poincaré cross sections in that it does not require that every geodesic
intersects the set C. For the applications that motivate this thesis we may restrict
to certain measures whose support contains Gpe, (X), and we may relax (CS1) to

(CSY’) Every periodic geodesic 74 on X intersects C.

In [58, 44, 57, 56, 15] it has been seen that cross sections of this kind capture just
the right amount of geometry and simultaneously allow for sufficient freedom
to construct discretizations of the geodesic flow for which the associated transfer
operators mediate between the geodesic flow and the Laplace eigenfunctions of X.

Substituting (CS1) by (CS1’) would allow us to omit the choice of a measure
from the definition of cross sections. However, to achieve greater flexibility in
view of potential further applications, we will work with a larger class of mea-
sures. Starting with Section 4.6, we will consider all those measures that do not
assign positive mass to the geodesics that “vanish” into a hyperbolic end of X.
We refer to Proposition 4.36 for a precise statement. In what follows we will of-
ten suppress the choice of the measure p from the notation.
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Suppose that Cisa strong cross section for ®. An immediate consequence
of (CS3) is that for any v € C, the first return time of U with respect to C,

tér(y) ‘= min {t >0 ‘ y,(t) € 6} , (1.86)
exists. Hence, the first return map

|

is well-defined. The dynamical system

ZxC — C
(n,v) — R"(V) ’

for short (6‘, g%) constitutes the discretization of the geodesic flow ® on X men-

) QD

- EA (1.87)
— V(t(’j(y>)

tioned above. We will apply the notions of first return time and first return map
also to cross sections C that are not necessarily strong. In this case, the first return
time and the first return map might be defined only on a subset of C, resulting in
partial maps.

Let C now be a cross section that may not be strong. Recall the quotient
map 7: SH — SX from (1.32). We call a subset C of SH a set of representatives
for C if C and C are bijective via 7, i.e., 7(C) = C and the restricted map

mlo: ¢ — C

is a bijection. For any set of representatives C, the first return map % induces a
first return map R on C via

R=nlgtoRor. (1.88)

In other words, the diagram
C——

commutes. If C is not strong and hence % is only partially defined, then R is

Q><;O

9

_

also only partially defined. Sometimes it is possible to find a partition of C into
(finitely or infinitely) many subsets, say

c=JCa, (1.89)

a€A
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such that for each a € A, the map

- { C, — R
' v o +— vy (+00)

is injective. In this case, we set
Do = {(7(+00),a) | v € Ca}

and
D = U D,. (1.90)
acA
We emphasize that the union in (1.90) is disjoint. Then & induces a (well-defined,
unique) map
F:D—D

that makes the diagram
c—%.¢C (1.91)

g

D-Y.D

commutative. In the first component, the map F' is piece-wise given by the action
of certain elements of I' on H. In the second component, F' is a certain symbol
transformation. We call (D, F') the discrete dynamical system induced by C.

A standard tool for the study of time-discrete dynamical systems like (D, F')
from statistical mechanics is the transfer operator: Let V' be a finite-dimensional
complex vector space and denote by GL(V') the group of automorphisms of V.
Let p: D — C and w: D — GL(V) be some functions. The transfer operator
of (D, F') with potential o and weight w is the operator defined by

Lix)= Y wye™f(y) (1.92)

yeF~1(z)

on some Banach space of functions f: D — V. In this thesis we will focus on
families of weighted transfer operators { L} scc characterized by the potentials

o(y) = —slog |F'(y)|

and weights w given by representations of elements of I" in GL(V'). We refer to
Section 4.7 for an exact definition.

Transfer operators are widely applied in order to find invariant measures.
However, as described in the introduction, we are mostly interested in the rep-
resentation of the Selberg zeta function associated to X by means of Fredholm
determinants for the operators in { L} scc. Hence, we require this operator fam-
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ily to fulfill a certain set of properties (see Section 3.1) that guarantee the existence
of these determinants. The above suggests that the endeavor to fulfill these prop-
erties translates to the search for a suitable cross section or a set of representatives
thereof. This constitutes the main objective of this thesis.

1.12 Selberg Zeta Function and Resonances

In this section we briefly recall the (twisted) Selberg zeta function for a given
hyperbolic orbisurface with fundamental group I' C PSLy(R), and its relation to
the resonances and resonance states of the Laplacian. So let X and I" be as such and
denote, as before, by [I']}, the set of conjugacy classes of hyperbolic elements in I"
and by ¢([h]) the displacement length of [h] € [I'];,. Recall the map ct: [I'];, = N
from (1.40) and let

[Clp = {[h] € [Tl [ ct([n]) = 1} ,

that is the subset of primitive elements in [I'],. Denote by ¢ the Hausdorff dimen-
sion of the limit set A(T") of T".

Proposition 1.48 ([10, Section 2.5.2]). The infinite product

Ze(s) =TT TL(1-e ) (193

[h]el']p k=0
converges absolutely for Re s > 6.

From Corollary 1.14 we know that [[']}, is in bijection with the set of prime
geodesics on X. This justifies the notation Zx(s), as the value of the product
in (1.93) does not depend on the choice of the fundamental group I'.

Proposition 1.49 ([27]). Let I" be geometrically finite. Then the product Zx(s)
from (1.93) admits an analytic continuation to a meromorphic function on C.

The meromorphic continuation of Zx(s) to C, which we denote by the same
symbol, is called the Selberg zeta function on X. It has been introduced by Atle
Selberg [74] as an analogue to zeta- and L-functions in analytic number theory,
in particular the famous Riemann zeta function (. In fact, since [I'];, is in bijec-
tion with the prime periodic geodesics on X, Zx(s) is defined purely in terms of
the prime geodesic length spectrum, that is the multiset of the lengths of prime
geodesics, which hence can be viewed as playing the role of the prime numbers
in the Euler product for (.

The outstanding significance of the Selberg zeta function stems from its set
of zeros, as it is known to contain the resonances of the Laplacian ([74, 52, 11],
see also Theorem 1.50 below). For a more detailed exposition, we denote by Ay
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the (positive) Laplacian on H, or more precisely, the Laplace—Beltrami operator,
defined as (minus) the divergence of the gradient. With respect to the hyperbolic
metric (see Section 1.1) and in the coordinates z = x + iy it takes the form

Ag=—y*(03+0}),

defined on C*°(H) and thus, by extension, on L?(H) (the space of equivalence
classes of square-Lebesgue-integrable functions). The Laplacian is intrinsic to the
Riemannian metric, i. e., invariant under the action of isometries. This means that,
for every g € PSLy(R) and 7, the operator on Fct(H) defined by

Tof(2) = flg72),
whenever this makes sense, we have
TgAH = AHTQ . (1.94)

This property, in a sense, characterizes the Laplacian: The differential operators
which commute with all operators 7,5, g € PSLy(R), form a polynomial algebra
in Ag [7, 30]. The identity (1.94) further induces differential operators on (de-
velopable) hyperbolic orbisurfaces: For every C*°-function f on X = I'\H, if
viewed as a ['-periodic C*°-function on H (i.e., f(g.2) = f(z) forallg € T
and z € Hi), the function Ay f is again I'-periodic on H by virtue of (1.94), and
thus can be viewed as an element of C*°(X). Hence, we obtain a differential oper-
ator on C*°(X), which we denote by Ax. Again, by extension, Ax can be defined
for all L2-functions [7], where it becomes an unbounded positive self-adjoint op-
erator.

Now denote by H?(X) the Sobolev space for p = 2 on X and consider the
resolvent of Ax, that is

Rx(s) = (Ax — s(1 —5)) "+ L*(X) — H2(X),

defined for all s € C, Res > 1/2, for which s(1 — s) is not an L?-eigenvalue
of Ax. For Res > 1 the range of the restricted operators Rx(s)|ce(x) is con-
tained in C°°(X). These restricted operators extend to a meromorphic family of
operators

Ri(s): LE(X) — Hige(X)

for all s € C, where L?(X) denotes the space of the compactly supported ele-
ments of L?(X), and HZ (X) is the space of functions that are locally in H?(X)
[43, 29]. The poles of the map s — Rx(s) are called the resonances of X and the
generalized eigenfunctions of Ax at a resonance s are called the resonant states
with spectral parameter s. We denote by Rx the multiset of the resonances of X,
that is, the set of resonances with multiplicities. The following result establishes

the relation between the Selberg zeta function Zx and the resonances of X in the
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case that X is a proper geometrically finite surface (i. e., free of conical singulari-
ties) for which its fundamental group I is non-elementary and non-cofinite [11],
or convex cocompact [52], or cocompact [74]. Note that, in the cocompact case
all resonances are L?-eigenvalues of Ax.

Theorem 1.50 ([11, Theorem 1.1],[52, Theorem 1.9], [74]). Let X and ' be either
of the above and denote by Xg)p(X) the topological Euler characteristic of X. For
every s € Rx we have Zx(s) = 0, and the multiplicity of s as a resonance of X
matches its order as a zero of Zx for all up to finitely many s. Furthermore, Zx
vanishes on every k € —Nj to the order —xp"(X) - (2k + 1). Besides those, Zx has

no further zeros.

The finitely many resonances for which equality of multiplicities fails are well
understood. They stem from the collision of certain zeros and poles in the fac-
torization of Zx, in the cases where such a factorization is available (see also
Remark 1.53 below).

In the study of resonances and related applications often a twisted variant
of the Selberg zeta function appears. For its definition let I' be geometrically
finite, V be a finite-dimensional Hermitian vector space, GL(V") be the group of
automorphisms on V, and

x: I'— GL(V)

be a linear representation (i. e., for all g, h € I we have x(g) o x(h) = x(gh)). We
say that x has non-expanding cusp monodromy, if for each parabolic elementp € I'
the endomorphism x(p) has only eigenvalues with absolute value 1. (We refer
to [21] and [22] for an extended discussion of this property.) Every unitary rep-
resentation has non-expanding cusp monodromy.

The infinite Euler product

Zuy(s)= [ TJdet (Idv - X([h])e—<s+’f)“[hl>) (1.95)
[H]elr]p k=0

converges for Re s > ¢ if and only if x has non-expanding cusp monodromy [22,
Proposition 6.1]. In this case, Zx , is known to continue analytically to a mero-
morphic function on C for various combinations of I' and x [74, 78, 27, 22]. This
continuation of the product in (1.95), which we again denote by Zx , (s), is called
the x-twisted Selberg zeta function. One immediately sees that (1.93) emerges
from (1.95) for x the trivial one-dimensional representation.

As for the zeta function, also twisted versions of the Laplacian and its resol-
vent can be considered. Let x be a unitary representation of I' on V. Then y
induces a Hermitian vector orbibundle F, with typical fiber V, that is,

E,:=T\(HxV),

where the action of I' extends from H to H x V by virtue of x: Forall g € T"
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and (z,v) € H x V we set

g.(z,v) = (g.z,x(g)v) )

To each function f € C°°(H; V') one then associates functions f;: H — V,
7 =1,...,dimV, such that, for z € H,

dim V'

)= 1w,
Jj=1

for a given basis (vj)?i:“iv of V. The operator A given by
dim V
Af(2)= 3 (Aufi(2)v;
j=1

is then independent of the basis and induces a self-adjoint operator
Agy: CE(X By) — L (X By),

which we call the Laplacian on F,. It again extends to an unbounded positive
self-adjoint operator on L?(X; E, ), and its resolvent

Ry (s) = (Axy —s(1 = 9)) " LX(X5 By) — L2(X: By)

is well-defined for Re s > 1/2 and s(1 — s) not in the spectrum of Ax ,,andis a
bounded operator. We refer to [18] for the details.

Proposition 1.51 ([ 18, Theorem A]). The resolvent Rx ..(s) admits a meromorphic
continuation to s € C with poles of finite multiplicity as an operator

RXvX(S): Lz(xﬂ EX) — LIQOC(X; EX) )
where L2(X; E, ) is the subspace of L*(X; E,) of compactly supported functions
and L2 (X; E,) is the space of functions that are locally in L*(X; E, ).

loc

Again, we denote the multiset of resonances, i.e., the poles of the function
s = Rx (), by Rx . The following very recent result of Doll and Pohl con-
stitutes a version of Theorem 1.50 taking non-trivial finite-dimensional unitary
representations into account. But even for x the trivial one-dimensional repre-
sentation, it provides a proper generalization of Theorem 1.50, for we may now
drop the assumption that I' is torsion-free.

Theorem 1.52 ([19]). Forall s € Rx , we have Zx ,(s) = 0, and the multiplicity
of s as a resonance matches its order as a zero of Zx ., except for finitely many s.
Furthermore, Zx , vanishes on —Ng. Besides those, Zx , has no further zeros.
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Remark 1.53. Both Theorems 1.50 and 1.52 are proven by a factorization of the
zeta function. For instance, in the latter case we have

top

Zx 1 (5) = ) - G () - Goo(s)”ImVIXE"E) . (s — 1y Py (s5), (1.96)
where
« pis a polynomial of degree < 2,

« G (s) is an entire function with zeros in —Ny whose order depend on x
and the elliptic elements in I" (for I" without torsion and y the trivial one-
dimensional representation one has G, = 1),

« G (8) is a meromorphic function without zeros,

« I'(s) denotes the (meromorphic continuation of the) gamma function,

« np is an integer depending on the parabolic elements in I', and

+ Px y(s) is the Weierstraf3 product over the resonances (with multiplicities).

Each of the objects, G (s), G (), np, is explicitly known. Hence, (1.96) not only
yields information about the zeros of Zx , (s) and their orders, but also about its
poles, including residues. We omit this here for we do not require it, and refer
the reader to [11] and [19] for the details. The finitely many zeros s for which
equality of multiplicities fails stem from the poles of the factor G (s) colliding
with certain zeros of Px , (s).
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Chapter 2

The Cusp Expansion Algorithm

Let I' be a geometrically finite, non-cocompact Fuchsian group containing hyper-
bolic elements and let X be the associated hyperbolic orbisurface. This chapter
is dedicated to a brief review of the cusp expansion algorithm developed in [54].
This algorithm offers a geometrical approach for the construction of cross sec-
tions for the geodesic flow together with suitable representatives of them in SH
(see Section 1.11). It does so by identifying a finite set of vertical' geodesic arcs,
each endowed with a sense of direction. The unit tangent vectors based on these
arcs and pointing into the respective direction then constitute a cross section for
the geodesic flow. The cross sections arising in this way in turn give rise to dis-
crete dynamics on subsets of R and associated families of transfer operators.

This chapter does not trace out the actual constructions undertaken in [54],
but rather collects properties of the cross section and its representatives obtained
by a cusp expansion procedure. Some of these are statements which were included
in [54] already, for others a reformulation or extraction is required in order to fit
our needs. However, all arguments are based on investigations from [54], for
the most part from Sections 6.2, 6.4, 6.6, and 6.7 ibid.® Evidently, we refer the
reader to [54] for the actual constructions of the objects discussed. Our proofs
will include more precise references.

The cusp expansion algorithm constituted the starting point of our studies.
The notion of sets of branches introduced in Chapter 4 below emerged as a collec-
tion of conditions one needs to impose upon the cross section representatives. It
identifies the key aspects necessary for the approach outlined in the introduction
and in Section 1.11. Thereby, it enables us to prove that cross sections emerging
from a cusp expansion procedure bear the structure required for a strict transfer
operator approach (see Chapter 3).

As the name suggests, the cusp expansion algorithm presumes the orbisur-

'Recall that a geodesic segment 3 is called vertical if Re(f) is a singleton in R, and non-vertical
otherwise.

®The necessary background information from [54, Section 6.1] has already been included in
Section 1.9.
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face X to have cusps. Hence, for the duration of this chapter we assume that I" con-
tains parabolic elements. We further assume that oo represents a cusp of X, which
can always be achieved by conjugation of I' with a suitable element in PSLy(R).
However, later on (see Section 7.2) we will demonstrate how to apply the algo-
rithm for non-cocompact Fuchsian groups without parabolic elements, thereby
establishing strict transfer operator approaches for a large class of isometry sub-
groups.

2.1 Construction of the Cross Section

Let I and X be as before. Since oo represents a cusp of X, by (S), there exists a
unique A > 0 such that

I'so = Stabp(oo) = <t)\> ,

with t) as in (1.7). The starting point of the cusp expansion algorithm is the
set K = Kr from (1.66),

K= ﬂ extl = ﬂ extl,

IeISO(T) IeREL(T)

with ISO(T") and REL(T") as in Section 1.10. Recall further the relevant part [
of a relevant isometric sphere I € REL(T") from (1.68) as well as the summit s(I)
of an isometric sphere I from (1.52). We need to impose the following restriction:

(A) For every I € REL(I") there exists € > 0 such that

Be(s(I)) NI C fr.

Remark 2.1. In [54, Section 6.3] an example is given for a group that does not
satisfy (A). Hence, it is a proper restriction. As of now, the cusp expansion al-
gorithm requires this assumption. However, it is conjectured that it is not neces-
sary for the construction of cross sections. For the group from [54, Section 6.3]
for instance it has been shown in [53] how to circumvent this issue by a cut-and-
project deformation of the considered fundamental domain. Furthermore, beyond
application of the cusp expansion algorithm, we will not make further use of con-
dition (A) here. In fact, we go to some lengths in order to avoid additional use
of (A). Lemma 1.45 is required solely for that purpose. This means that, once the
cusp expansion algorithm (or an equivalent approach) has been shown to work
regardless of condition (A), it may be safely removed from here as well and all
subsequent constructions apply without changes.

Recall S, the set of sides of K, from (1.69), as well as the set Wi of endpoints
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of sides of K. We construct a new set
Wy = (Wi \ {f(g) | g € T elliptic}) U {c(I) |I € REL(T)}, (2.1)

which, because of Proposition 1.43(i), is a discrete subset of R. By fixing z € W;c
one may write Wi = {z; | j € Z}, where zj, j € Z\ {0}, is inductively defined
by

Tjy1 = min{xew;c ) :c>acj} for 7>0 and
xj,l::max{xew;c)x<xj} for 7 <0.
Since oo represents a cusp of X, (1.74) implies that
U Relg' (25, 2j11]) = H,
JEL

where the union on the left is disjoint. We use this to slice up the common exterior:
We call

A= {]C N Re‘ﬂjﬂl ([Iﬁj, :L‘j+1]) ’ J e Z} (2.2)

the set of precells of I and each element of A a precell of I'. Obviously, the set A
is independent of the particular choice of xg. Proposition 1.42 and Lemma 1.28
imply that there exists a subset A of A such that (| J A)° is a fundamental region
for I' (see also [54, Theorem 6.2.20]). Every such set A is called a basal family of
precells of T'. Since I is geometrically finite, each basal family of precells is of the
same finite cardinality.

Lemma and Definition 2.2 ([54, Propositions 6.4.11 — 6.4.13]). Let A be a basal
family of precells of I and let Ag € A. Then there exist Ay,..., A, € A and
91, ---,9n € I', withn € N only depending on Ay, such that

B(Ao) = A() U U gj'Aj (2.3)
7=1

is the closure of a convex polygon in H every side of which is a geodesic arc, the union
on the right hand side of (2.3) is essentially disjoint, and

B(Ap) C Relg' (Re(Ap)) -
The set B(Ay) is called the cell induced by Ay and we denote

B =B(A) = {B(A) | Ac A} . (2.4)
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Let B= B(A) € B and let z,y € R be such that
A=KnNRelg ([z,9])

(cf- (2.2)). Then either
B = Relg' (Re(4)),

B is the hyperbolic triangle with the vertices x,y, 0o, or the vertices of B are given
by
§.00, g2.00, ..., g% .00

1

for some elliptic g € I" of order 0. In the latter case, {z,y} = {g.00, g~ .00}.

Remark 2.3. The definition of cells in that way is what requires the assumption of
condition (A). By construction, every precell A € A thatisnotastripinH (i. e., of
the form Re|;' () for some interval I in R) has at least one side that can be writ-
ten as [s(I), co)g, for some I € REL(T"), where s(I) denotes the summit of I as
in (1.54). Another side 3 of A is then contained in 1, with endpoint s(I). Hence,
in order for K to be decomposable into an essentially disjoint union of subsets
of this kind, for every relevant isometric sphere its summit must be contained in
its relevant part without being an endpoint of it, which is exactly what (A) de-
mands. Furthermore, because of Proposition 1.41, there then exists a generator g
of I and exactly one precell A’ € A with sides [s(I(g7!)),00)n and g~1.5. By
Lemma 1.19(i) and (1.53) we find

[5(1(9)), 00)m U g.[s(I(g ™)), 00)m = [s(1(9)), 00)m U (c(I(g)), s(1(9))]m
= (c(I(9)), o0)m ,

and since g.(¢g~'.) = B, the union A U g.A’ is thus connected with at least
one side given by a geodesic arc. This way the claimed properties of cells are
assured (for a complete discussion we refer the reader to the proofs of [54, Propo-
sitions 6.4.11 — 6.4.13]).
Let A be a basal family of precells and denote by B the set of cells it induces.
Then the map
A — B(A)
{ A +— B(A)

is a bijection ([54, Corollary 6.4.14]). Hence, in particular
#B(A) = #A < +0. (2.5)

Since A tessellates H under I, the set of I'-translates of B covers H. However,
the union of these translates does not need to be essentially disjoint anymore.
Denote by Sp the set of sides of cells in B. By Lemma 2.2, for every 3 € Sp there
exists 7 € €(H) such that

B=R).
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2.1. CONSTRUCTION OF THE CROSS SECTION

Lemma 2.4 ([54, Proposition 6.4.15]). Let B1,Bs € Bandg € I'. If By # ¢.B>
and B1Ng.By # @, then By and g. B3 coincide in exactly one side of By. In particu-
lar, if the intersection of By and g. Bo contains an inner point of By, then B; = g.Bs.

The sides of cells will give rise to the cross section we are seeking. Hence,
further study of the structure of cells and their boundary is appropriate. To that
end we define

Q:=gKkU{c()|T€RELT)} CR\R. (2.6)

Lemma 2.5. We haveT.Q = R \ ]I/ést.

Proof. Since f&st is I'-invariant, so is R \ @St. Hence, I'.Q C R \ I@st. The converse
inclusion follows from the Propositions 1.42 and 1.43. O

Let Sp be the subset of Sp of vertical arcs. The following observation is im-
mediate from Lemma 2.2, Lemma 2.5, and the constructions above.

Corollary 2.6. The set Sg is finite. We further have

Re(USﬁ) caQ and g(F.UB) g@\l@st.

The orbits of the members of Sy generate all sides of cells in the following
sense.

Lemma 2.7 ([54, Corollary 6.4.18]). Let 5 € Sp be a side of B € B. Then there
exists (8, B, g) € Sy, x B x I such that ' is a side of B’ and

B=g.p and Bng.B =8.

Proposition 2.8 ([54, Propositions 6.5.2 and 6.5.3]). The I'-orbit of | JSp equals
the I'-orbit of | JSy, and is a totally geodesic submanifold of H of codimension 1 and
independent of the choice of the basal family A.

Recall the map bp: SH — H from (1.19). Let M C H be open and let v € SH
be such that bp(v) € OM. Recall further the unique geodesic 7, on H determined
by v as in (1.20). We say that v points into M, if for € > 0 sufficiently small we
have

w((0,6)) S M.

We are now ready to derive a cross section via a set of representatives in SH. Let A
be a basal family of precells of I and let B = B(A) be as in (2.4). For each B € B
denote its two vertical sides by 8p, 8 € Sj and let

BM = | J {(B.Bg), (B,5p)}. (27)

BeB
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2.1. CONSTRUCTION OF THE CROSS SECTION

For any choice of tuple b = (B, ) € BM we define
Cp(b) :== {v € SH | bp(v) € S and v points into B°} .
Let C(BM) := {Cp(b) | b € BM}. By Lemma 2.7 there exists a minimal subset
Cp C C(BM) (2.8)

such that the I'-orbit of

contains all of | JC(BM). Here by “minimal” we mean that any proper subset
of Cp does not have this property. Or in other words, Cp is a representative
of 7T(C (BM)) in H, where 7 denotes the canonical quotient map from (1.32).
Because of (2.5) the set BM is of finite cardinality, and subsequently so are the
sets C(BM) and Cp. Hence, we may enumerate

Cp = {Cp,l,...,CP,N}, (2.10)

with some N € N which does not depend on the choice of Cp.

Remark 2.9. In the notation of [54] we have
Cp = {CS’(Z?) ‘ EE IE%SJ‘} , (2.11)

where the subscript S fixes a sequence of choices to be made during the construc-
tion of these sets (which translate to the choice of the basal family A and the
representative Cp), and the subscript T indicates that arbitrary translations of the
sets Cp j by elements of I', are permitted and a collection of such translations is
chosen and applied. The statements that follow are meant to be understood “for

all possible choices of S and T”.

We now write

ap = F(Cp) g SX.

This constitutes our cross section. However, it is not a cross section in the tradi-
tional sense (a Poincaré cross section), for the first return map is not well-defined
for all tangent vectors U € Cp. More precisely, the issue is with vectors v for
which L

w(too) € g (T.| JS§) CT.@ =R\ Ry,

for some (and hence any) representative v of v in SHL. Therefore, by a slight abuse
of notation we define

SHSt = {I/ € SH ’ ('}/y(—FOO),’}’V(—OO)) € I@st X I@St} . (212)

By definition of R, we have {v € SH | (7,,(+00),7,(—00)) € E(X)} C SH,
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2.1. CONSTRUCTION OF THE CROSS SECTION

with E(X) as in (1.41). Or in other words, for every geodesic v € €pe, 1 (H) we
have+/(t) € SH; for any time ¢ € R, with €pe, 1 (H) the set of all representatives
on H of periodic geodesics on X (cf. (1.34)). Finally, set

Cpst =CpNSHy  and  Cpg = 7(Cps),

and recall the notion of a (strong) cross section for ® from Definition 1.47.

Proposition 2.10 ([54, Theorem 6.7.17 and Corollary 6.7.18]). Let i1 be a measure
on 6(X) such that

u({A, | v € SH\ SHy}) = 0.

Then Cp is a cross section for ® with respect to pi. Moreover, Cp g is a strong cross
section for ® with respect to .

Example 2.11. Recall the family of Fuchsian groups {I's » } e {13,152 from Ex-
ample 1.46. We infer the set WK to be given by

WIC = U tﬁ.{—l, 6(90)7 _C(go)a 1} >

neL
where ( )
cos(Z
(90) = _cos(g) +1
This yields the four precells
A= Rehﬁl([‘c;l.l, -1]), A =KnN Rehﬁll([—l, c(g90)])

Az =Kn Re|ﬁ1([c(gg), —c(95)]), and As=KnN Re|ﬁ1([—c(gg), 1]).

We dissect the precell A’ into the essentially disjoint union Re|;' ([t} .1, —A/2])U
Re|i ((—*/2, —1]) and translate the left half of it by t in order to obtain the two
further precells

Ay = Re|ﬁ1([—%, —1]) and As = Re|ﬁ1([1, —%]) .

This has the advantage that, by comparing to (1.83), we immediately see that the
set {A1,..., As} constitutes a basal family of precells. Furthermore, we retain a
certain symmetry in the sketches below. We excluded the fact that we are allowed
to do this from the discussion above in order to cut short on exposition. The
arising cells are

By = Ay, By = Ay U g;l.A4 , B3 = U g];.A3 ,
k=1

By =A4Ug,.As, and Bs = As.
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2.2. PROPERTIES OF THE REPRESENTATIVE

From these we can now define the representative. To that end let

g5 LAy g5-Aa

I
- [0\ !
g5.As3 gs. Az g2.As g5-As

|
poICo
poICo

Figure 4: The basal family of precells for I'5 3 and the translates forming the as-

sociated set of cells.

61 = (_%7 OO)H7 /82 = BS = (_17 OO)H, /83 = (C(go)a OO)H7
By = (—c(9s),00)m, fB5:=PFr:=(1,00)m, B = (3,00)m ,

and
I = (=3, +00), L= (=1400),  Iyi=(clgs)+00),
Iy = (—c(go), +0) Is = (1,+00), Is = (—o0, %)7
I7 = (—OO7 1) 5 Ig = (—OO7 —1) .

With those we define for every j € {1,...,8},

CP,j = {V € SH | bp(V) € /8]7 ’)/V(+OO) S I]} .

Then Cp = U§:1 Cp,j is a representative in SH for a cross section for the

geodesic flow ® on [y \\H (see also Figure 5).

2.2 Properties of the Representative

In this section we collect a few further properties of the cross section representa-

tive yielded by the cusp expansion algorithm which we will require for arguments
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2.2. PROPERTIES OF THE REPRESENTATIVE

Cp,1 Cp2 Cp3 Cp 4 Cps
—1
Cpg| 95 -Cpy 95-Cp3 Cp1 Cpe
95 .Cpy g2.Cp 3 95.-Cp 2

g?,‘-CP,3 g§°CP¢3
/ \

tg_l-CP,ﬁ 95_1.(]1:5 g3.Cpy ¢2.Cpy 95:Cpa 95-Cp s t3.Cp,1

Figure 5: The representative of the cross section yielded by the cusp expansion
algorithm for I'5 3. The gray stripes indicate that the respective set consists of unit
tangent vectors based on the adjacent geodesic and pointing into the indicated
half-space. The components of the cross section representative are colored in
dark gray, their translates in light gray.

later on. We thus let I be a Fuchsian groups with cusps as before, assume that co
represents a cusp of I'' with cusp width A > 0, define

A={1,...,N},

and let Cp, Cp and Cp j, j € A, be asin (2.8), (2.9), and (2.10), respectively. Then,
by construction, for every j € A there exists z; € Q such that

bp(Cp,;) = (xj,00)u, (2.13)

and all vectors of Cp ; point into the same open half-space relative to (z;, 00)m,

which we denote by HY, (). We further set H () := H\HY (j) and denote by Ip ;
and Jp ; the largest open interval contained in g HY (5) and g HY (§), respectively.

Furthermore, for j € A we set
Cp st == Cp,j N SHg ,

with SHl as in (2.12).
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2.2. PROPERTIES OF THE REPRESENTATIVE

Lemma 2.12. For every j € A the map

¢ { Crj — Ipg X Joj (2.14)

v — (’71/('}‘00)’ ’YV(_OO))
is a bijection. Furthermore, $;(Cp jst) = Ip jst X Jp jst-

Proof. That ¢; is surjective is clear from the definition of the sets involved. In-
jectivity is immediate from the uniqueness of v, for v € SH and geodesics in H
being uniquely given by their endpoints. The last statement is again clear from
the definition of the sets under consideration. O

Lemma 2.13. Let j € A. Then there exists a unique pair (k, g) € A x I such that
Ip ;= g.Jpk and Jpj=g.dpy .

Proof. Let b; = (Bj, 3;) € BM be such that Cp ; = Cp(b;). By Lemma 2.7 there
exists (B, h1) € B x I such that

B;Nhi.B = Bj

and hfl.Bj is a vertical side of B. Then, by definition, there exists exactly one

pair (k, ha) € A x I" such that
Cpx = hy'.Cp((B,hi'.5))).
Define g := hihs. Then
9-Cpr = {v € SH | bp(v) € B, (n(—00),m(+0)) € 9;(Cp;)} ,

implying the asserted identities by Lemma 2.12. Since Cp was chosen minimal,
the pair (k, g) is unique with that property. O

The following result is immediate from Proposition 2.10. See also [54, Propo-
sition 6.7.12].

Lemma 2.14. Let v € Cp . Then both the values
th(v) =min{t >0]|~,(t) eT.Cp} (2.15)

and
tp(v) =max {t <0 |7, (t) €T.Cp} (2.16)

are finite, and {7, (t;(l/)) Y, (t;(y))} CTI'.Cpgt.

We will require the following observations, which relate the geodesics on
which the sets Cp ; are based to the relevant isometric spheres. Hence, recall
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2.2. PROPERTIES OF THE REPRESENTATIVE

the sets REL(I") and I'rgr, from Section 1.10 as well as the relevant part [;
of I € REL(I") from (1.68). Further recall the point z; from (2.13), for j € A.

Lemma 2.15. Let j € A. Then forevery g € I' with g.x; = oo we have g € I'rgL..

Proof. Since z; € @ C R for every j € A, we have g € I' \ I'sc. Hence, the
isometric sphere I(g) is well-defined with center g~!.0o = ;. Since g K does
not contain centers of isometric spheres, (2.6) implies that the point x; is also
the center of some relevant isometric sphere. Proposition 1.25 now yields the
assertion. O

Lemma 2.16. For everyl € REL(T) for which its summit s(1) is contained in (3
but is not an endpoint of it, there exists a pair (j, g) € A x T such that

g-bp(Cp ;) = (Re s(1), OO)H .
We further have g € I'og U I' o I'REL.

Proof. From the assumption it follows that Re s(I) = ¢(I) € Wic. Hence, there ex-
ist precells A1, A of the form KNRe|g" ([z, Re s(I)]) and KNRelg' ([Re s(I),y)),
respectively, with some x, y € R. From this and (1.74) we derive

(Res(I),00) 5 € Toc. S -

Hence, there exists 3 € Sy such that t}.8 = (Res(I),00)y for some n € Z,
and thus the first statement follows from Lemma 2.7. Let ¢ € I be such that
g-bp(C;) = (Re s(I), 00)y for some j € A. By the above we may write

g=t\h,

with h € T" such that h.bp(C;) = 3. It suffices to show that h € I'oc U I'rEL.
If 5 = bp(Cj), then obviously h = id. So assume that this is not the case.
Since h.bp(C;) = [ and both geodesics are vertical, either h.x; = Re(3),
or h.xj = oo. In the former case we further have h.co = 0o and hence, i € I'.
In the latter case h € I'rgy, follows from Lemma 2.15. O

Lemma 2.17. For everyr € R there exist iy, ...,iN € Z such that
n .
LJ t7.1p(C;) € Relg" ([r,r + Al) -
j=1

Proof. By Lemma 1.37 the set Rely" ([r,r + A]) is the closure of a fundamental
domain for the stabilizer subgroup ', of co in I'. Therefore, the assertion follows
from (F'2) (the tessellation property of fundamental domains). O
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Chapter 3

Strict Transfer Operator
Approaches and Fast Transfer
Operators

This chapter serves to recall, in Section 3.1, the concept of strict transfer operator
approaches from [22]. We further recall, in Section 3.3, the main result of [22],
for it is of utmost importance to our proof of Theorem A, as described in the
introduction. As already stated in the introduction, the aim of this thesis is to
construct strict transfer operator approaches for a large class of Fuchsian groups.
Hence, the list of properties constituting such an approach preempts the structure
of our argumentation. Throughout this chapter let I' be a geometrically finite
Fuchsian group and denote by X = I'™\ H its orbit space.

3.1 Strict Transfer Operator Approaches

We say that I' admits a strict transfer operator approach if there exists a structure

tuple

S = (A\’ {fa}aeﬁ’ {Pﬂhb}a,beﬁv {Cﬂvb}a,beﬁ’ {{gp}pePa,b}a,beﬁ)
consisting of
« a finite set f/l\,
« afamily {IAa}a ¢ 4 of (not necessarily disjoint) intervals in R,

« a family { P}, pei of finite (possibly empty) sets of parabolic elements
inT,

« afamily {Cyp}, 7 of finite (possibly empty) subsets of I, and
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3.1. STrIiCT TRANSFER OPERATOR APPROACHES

« afamily {{g,}pep, ,}, e 1 Of elements of I (which may be the identity),
which satisfies the following five properties.
Property 1. Foralla,b € A

(I) we have p_”gp_l.fa,st C fbﬁt forallp € P,y andn € N, and p"™ ¢ P, for
n> 2,

(IT) we have g_lj;st C fb,St forallg € Cyp,

(III) the sets in the family

~

JEAgE Cj,b} U {pingpil'Ij,st

{gil'lj,st

jeg,pervb,neN}

are pairwise disjoint and

o0
IAb,st = U < U gfl-fj,st U U U pngpl‘j\j,st> .
pEP,

jeA \g€Cjp €Pjp n=1

Property 1 induces a discrete dynamical system (D, F'), where
D= Ins x {a},
acA
and F splits into the submaps (bijections, that are local parts of the map F')
gV Tase x {0} — Tase % {a}
(x,b) — (g-x,0a)

and R N
{ gy L lase x {b} — Tast x {a}
(z,b) — (gpp"-2, q)

foralla,b € ﬁ, g € Cup,p € Pypandn € N, which completely determine F'.

Property 2. Forn € N denote by Per,, the subset of I' of all g for which there exists
a € A such that

g Mg x {a} — Ing x {a}
(x,a) —  (g.x,aq)

is a submap of F". Then the union

o
Per = U Per,,

n=1
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is disjoint.
As before (see Section 1.7), we denote by [I'];, the set of all I'-conjugacy classes
of hyperbolic elements in I.

Property 3. Let Per be as in Property 2. Then
(I) all elements of Per are hyperbolic,

(IT) for each h € Per also its primitive hg is contained in Per,

(III) for each [g] € [I'|n there exists a unique element n € N such that Pery,
contains an element that represents [g].

Suppose that [g] € [I'], is represented by h € Per,, n € N. Because of
Property 2 we shall define the word length of h as
w(h)=n. (3.1)

We denote by m = m(h) € N the unique number such that h = h{" for a
primitive hyperbolic element hy € I', and we set

Further we set w(g) = w(h) as well as m(g) = m(h) and p(g) := p(h). By
Property 3 these values are well-defined.

Property 4. For each element [g] € [I'],, there are exactly p(g) distinct elements
h € Per,g) such that h € [g].
Property 5. There exists a family {ga}aeﬁ of open, bounded, connected and simply

connected sets in C such that

(1) foralla € A we have

=~

Ia,st g 60,7

(II) there exists ¢ € PSLa(R) such that for alla € A we have q.€, C C, and for
allb € A and all g € C,j, we have

9q oo ¢ &,

(II1) foralla,b € A andall g Cap we have

™

9_1'7 C gba

(IV) foralla,b € A and allp € P, there exists a compact subset K, , of@ such
that for alln € N we have

p_nggl'?a - Ka,b,p - gb,
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(V) foralla,b € A and allp € Py the set g;l.?a does not contain the fixed
point of p.

3.2 Nuclear Operators

In this section we briefly recall an object crucial for the understanding of Theo-
rem 3.1 presented in the next section, namely nuclear operators on Banach spaces.
We refer the reader to [26, 25, 45, 72] for more extensive treatises of this subject.

Nuclear operators have been introduced by Alexander Grothendieck in his
dissertation thesis (see [26]) as a generalization of trace-class operators to Ba-
nach spaces. Let B be an arbitrary Banach space equipped with some norm || . ||
and denote by B* its dual, that is the space of bounded linear functionals on B,
equipped with the usual dual norm

[f[l+ = sup{[f(2)[ |z € B, |lz|| <1},

for f € B*. The tensor product B*® B has a completion under the norm
1]l = inf > [l filllle:ll,
i

where the infimum is taken over all finite representations

FZZfi@&‘GB*@B-
i

This completion is called the projective topological tensor product of B and its el-
ements are called Fredholm kernels on B. Every Fredholm kernel admits a repre-
sentation

oo
F=Y \Nfi®ei,
i=1

with e; € B, f; € B,
quence (\;);en of complex numbers. Assigned to each Fredholm kernel is a trace

eill = |lfill« = 1, and an absolutely summable se-

tr(F) = Aifi(e:)
i=1

and an order
ord(F) =inf{0 < ¢ <1]|>,[N]? <400},

which are both independent of the representation. Furthermore, associated to
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each Fredholm kernel F' = ), \; fi ® e; is a compact linear operator
oo
EF: B—)B, ACF(P:Z)\ifi((P)ei-
i=1

Linear operators arising in this way are called nuclear operators. These opera-
tors may inherit order and trace from the Fredholm kernel. But in general, for
a given nuclear operator £ there might be more than one Fredholm kernel F'
such that £ = Lp, and thus the trace need not be unique. However, in [26]
Grothendieck showed that if £ = Lp with ord(F") < 2/3, then the trace is unique.
This includes nuclear operators of order zero, that is

o0
Z |)\Z|q < 400
=1
for all ¢ > 0. Given a unique trace, which we denote by Tr £, we have
Trf = Z Pi s
i

where p; are the eigenvalues of £ counted with multiplicities. Then the Fredholm
determinant of £ can be defined as

)

det(1 —zL) = H(l — piz) = exp (— Z % Tr£n> ’ (3.3)

n=1

with z € C. This is an entire function in z. Furthermore, for a family of nu-
clear operators {Ls}s for which the parameterization s — L; is holomorphic
(meromorphic) on some domain, the Fredholm determinants det(1 — zL) are
holomorphic (meromorphic) in s from the same domain, for every z € C.

3.3 Fast Transfer Operators, Representation
and Meromorphic Continuation of the
Selberg Zeta Function

In this section we explain the use of strict transfer operator approaches for Selberg
zeta functions and, for this purpose, introduce the notion of fast transfer opera-
tors. To that end we suppose that the Fuchsian group I' admits a strict transfer
operator approach with structure tuple

S = (A {ILa} yeq {Pas}ope o {Catope s HIptperisape) »
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as defined in Section 3.1. We let V' be a finite-dimensional vector space and let
x: I'— GL(V)

be a representation of I on V. Recall from Section 1.12 that  is said to have non-
expanding cusp monodromy, if for each parabolic element p € I all eigenvalues
of the endomorphism x(p) are of modulus 1. We assume that x has this property.

Let C be as in (1.3). For U C C denote by Fct(U; V') the space of func-
tions f: U — V and by C(U; V) its subspace of continuous functions. For any
choice of s € C,U C @, feFet(U;V),g €T, and z € U we set

as(g7 ) f(2) = (d'(2))°x(9) f(g-2), (3.4)

whenever this is well-defined. (We note that «; is typically not a representa-
tion of I" on Fct (U; V'), but it satisfies some restricted homomorphism properties,
which motivated the notation. We refer to the discussion in [15, Section 6.3] for
details.) For any open set U C C we set

B(U;V) = {f e C(U;V)| flv holomorphic} .
Then B(U; V'), endowed with the supremum norm, is a Banach space. We write

By V) =P BE;V)

a€A

for the product space, where €3 = {&,} . 7 is a family of open sets as provided
by Property 5. We identify the elements f € B(E3; V') with the function vectors
f = (fa) e3> Where

fa: fa,st —V
for a € A. Then we define the (fast) transfer operator L, with parameter s
associated to S and x by

Ly, = < S oag+ Y Zas(gpp")>a?beg.

9€Ca b pEP, , neEN

We call {L;, }s the fast transfer operator family for I" associated to S.

We are now ready to formulate the main result of [22]. It shows that (fast)
transfer operator families arising from strict transfer operator approaches provide
Fredholm determinant representations of Selberg zeta functions.

Theorem 3.1 ([22, Theorem 4.2]). LetI' be a geometrically finite Fuchsian group
which admits a strict transfer operator approach, and let x : I' — GL(V') be a finite-
dimensional representation of I' on the finite-dimensional vector space V having
non-expanding cusp monodromy. Let S be a structure tuple for I' with associated
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fast transfer operator family {L , }s. Then we have:

(i) There exists 6 > 0, only depending on T and (V,x), such that for s € C
withRe s > § the operator L, on B(3; V') is bounded and nuclear of order
zero, independently of the choice of the family £ ;.

(ii) The map s — L, extends meromorphically to all of C with values in nuclear
operators of order zero on B(E 3; V). All poles are simple. There existsd € N
such that each pole is contained in 3(d — Np).

(iii) For Res > 1, we have

Zx(5) = det(1 — L) .

(iv) The Selberg zeta function Zx  extends to a meromorphic function on C with
poles contained in 1(d — No) and the identity in (iii) extends to all of C.

We reduced the statement of Theorem 3.1 to match our needs here. Theo-
rem 4.2 in [22] contains further information about the rank of the operators £,
as well as the order of the poles of Zx . In particular, explicit values for § and
d are given. However, all of these additional informations are not needed for our
purposes here.
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Chapter 4

Sets of Branches

Throughout this chapter let I" be a geometrically finite, non-cocompact Fuchsian
group containing hyperbolic elements, and denote by X the associated hyperbolic
orbisurface with geodesic flow . In this chapter we present the starting point of
our constructions, the so-called sets of branches, and prove various crucial prop-
erties of these seminal objects.

These sets of branches will be seen to give rise to a cross section for d as
presented in Section 1.11 (see Definition 1.47 in particular). We will define any
cross section by choosing a set of representatives for it, i. e., a subset of the unit
tangent bundle SH that is bijective to the cross section. More precisely, we may
and will consider the set of representatives as the primary object and the cross
section as a consequential object that inherits all its properties from the set of
representatives. The starting point of our constructions are well-structured sets
of representatives—the aforementioned sets of branches—which we introduce in
Section 4.1 and whose first essential properties we discuss in Sections 4.2-4.7.

In a nutshell, the notion of sets of branches constitutes an equilibrium between
our wish to keep the framework as general as possible and the requirements of a
descent algorithm of cuspidal acceleration and a nicely structured passage from
slow to fast transfer operators. In Chapter 7 we show that cross sections yielded
by the cusp expansion algorithm do indeed come from sets of branches. More
precisely, the set Cp as given in (2.8) and (2.10) is a set of branches. Therefore, all
sets of representatives for cross sections in [58, 15, 54] decompose, in a straight-
forward way, into sets of branches. Moreover, also many more choices of sets of
branches with much different properties are possible. A first indication of this is
provided in Example 4.21. On the other hand, the notion of a set of branches is
sufficiently rigid to give rise to well-structured families of slow transfer operators,
as we show in Section 4.7. Further, it allows for an acceleration/induction algo-
rithm that will enable us to set up a strict transfer operator approach as defined
in Section 3.1. Given Theorem B (see Theorem 6.1 below), this reduces the proof
of Theorem A to the (purely geometric) task of constructing sets of branches.
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4.1. DEFINITION AND FIRST OBSERVATIONS

4.1 Definition and First Observations

In order to elaborate further on the intended setup of cross sections, let C be a
set of representatives for a cross section C in the sense of Definition 1.47. Then C
completely determines C. For that reason, we may turn around the order of defini-
tions. That means, for defining a cross section, we may start by picking a subset C
of SH such that the quotient map 7|c: C — =(C) is bijective and the image
set 7|c(C) is a cross section. Then all properties of C = 7(C) are controlled
by the properties of C, and specific requirements on a set of representatives can
sometimes be guaranteed by a suitable choice of C.

The concept of sets of branches, which we will introduce in this section, im-
plements this idea. A set of branches is a family of subsets of SH that serves as a
set of representatives with a decomposition as in (1.89), namely the elements of
this family, and which induces a nicely structured discrete dynamical system as
in (1.91). This concept takes advantage of points in R \ R, whose existence is
equivalent to the non-cocompactness of I' by Lemma 1.17. This also explains why
we restrict our considerations to non-cocompact Fuchsian groups.

Recall the projection onto base points, bp: SH — H, from (1.19), as well as
the definition of intersections between subsets of SH (or SX) and (equivalence
classes of) geodesics on H (or X) from (1.25) (or (1.84)). Finally, denote by I'* the
subset of all non-identity elements of I" as in (1.1).

Definition 4.1. Let N € N and let Cy,...,Cy be subsets of SH. Set A =
{1,...,N},
C={C;|je A} and C::UC.

We call C a set of branches for the geodesic flow on X if it satisfies the following
properties:

B1) Foreach j € A there exists v € C, such that 7, is a periodic geodesic on X.
J P g

(B2) Foreach j € A, the set bp(Cj) is a complete geodesic segment in H and its

endpoints are in R \ Rg. In particular, for each j € A, the set H \ bp(C;)
decomposes uniquely into two (geodesically) convex open half-spaces.

(B3) For each j € A, all elements of C; point into the same open half-space
relative to bp(C;). We denote this half-space by H, (j) and set

H_(j) =H\ (bp(C;) UHL(j)) -

Further, we denote by I; the largest open subset of R that is contained
in gH, (j), and by J; the largest open subset of R contained in g H_(j).

90



4.1. DEFINITION AND FIRST OBSERVATIONS

(B4) The I'-orbit of {I; | j € A} covers the set Ry, i.e.,

I@st c U Ug'Ij-

JEA geT

(B5) For each j € A and each pair (z,y) € I X Jjs there exists a (unique)
vector v € C; such that

(2,y) = (Y (+00), 1 (=0)) -

(B6) If bp(C;) N g.bp(Cy) # @ for some j, k € Aand g € I', then either j = k
and g = id, or H4 (j) = ¢g.H= (k).

(B7) For each pair (a,b) € A x A there exists a (possibly empty) subset G(a, b)
of I' such that

(a) forall j € A we have

U U g.-Ix C I;

k€A gegG(j,k)

and

U U 9-Tist = ILjst s

keA geG(j k)

and these unions are disjoint,

(b) for each pair (j,k) € A x A, each g € G(j,k) and each pair of
points (z,w) € bp(C;) x g.bp(Cy), the geodesic segment (2, w)y
is nonempty, is contained in H, (j) and does not intersect I'.C,

(c) forall j € A we have

Jis € U P kst

keA heG(k.j)

We call the sets C;, j € A, the branches of C, and C the branch union. Further,
we call the sets G(J, k), j, k € A, from (B7) the (forward) transition sets of C, with
G (4, k) being the (forward) transition set from C; to Cy,.

A set of branches is called admissible if it satisfies the following property:

(B8) There exist a point ¢ € R and an open neighborhood ¢/ of ¢ in R such that
Un|JLsw=2 and q¢I;,

jeEA
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4.1. DEFINITION AND FIRST OBSERVATIONS

for every j € A.

A set of branches C is called non-collapsing if it satisfies

(B9)

For all n € N, every choice of ji, ..., jnt1 € A such that G(j;, jiy1) # @
foralli € {1,...,n}, and every choice of elements g; € G(j;, ji+1) fori €
{1,...,n}, we have

g1 Ggn 7& id .

If C does not satisty (B9), then it is called collapsing.

Remark 4.2. We comment on some properties of a set of branches that will be used

throughout and that are immediate by its definition. We resume the notation from
Definition 4.1.

(a)

A close relationship between the set of branches C and periodic geodesics
on X is guaranteed by (B1) and, in fact, (B4). The property (B1) assures
that every branch contributes in a meaningful way to the complete collec-
tion of branches by detecting at least one periodic geodesic on X or, more
precisely, a lift to H of a periodic geodesic on X. In particular, it implies
that each branch is a nonempty set. Therefore, for orbifolds without peri-
odic geodesics (e. g., a parabolic cylinder, see [10]) a set of branches in the
sense of Definition 4.1 does not exist. On the contrary, property (B4) has
the consequence that every periodic geodesic on X is detected by C. See
Proposition 4.8 below.

The emphasis on periodic geodesics is due to our applications. For a strict
transfer operator approach and hence a representation of the Selberg zeta
function as a Fredholm determinant of a transfer operator family, we need
to provide a certain symbolic presentation of each periodic geodesic on X
by means of iterated intersections with a cross section. For more details we
refer to the brief discussion in Section 1.11 as well as to [44, 61, 22].

Properties (B2)-(B5) determine the structure of branches. Each branch par-
titions the hyperbolic plane into two geodesically convex half-spaces and
a complete geodesic segment. The requirement that, for each j € A, the

endpoints of bp(C;) are in R \ Rt implies that geodesics v on H with
7(R) = bp(C;) do not represent any periodic geodesic on X. This condi-
tion further implies that I s N J; s = @.

For each j € A, the requirements of (B3)—(B5) yield that the union
I;UJ;Ug bp(Cj)

is disjoint and equals R. The set bp(C;) is the complete geodesic segment
in [ that connects the two endpoints of I; or, equivalently, of J;. The
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4.1. DEFINITION AND FIRST OBSERVATIONS

boundary of the half-spaces H, (j) and H_(j) in HU 0, H is

9404 (j) =bp(C;)UL* and 9,H_(j) =bp(C;) U J;*,

respectively. It will be useful to fix the following notation for the endpoints
of bp(Cj): let X, Y; be the elements in R such that

{X;,Y;} = gbp(Cy)

and that, when traveling along the geodesic segment bp(C;) from X; to Y,
the half-space H, (j) lies to the right of the path of travel. See Figure 6.

Property (B5) further has the following consequence for all j € A: Let
(x,y) € Ijs % Jje and let v be a geodesic on H from « to y. The unique
vector v € C; with (7, (400),7,(—00)) = (z,y) is then

v="(2),

where t € R is the unique time such that v(¢) = bp(v) € bp(C;). We em-
phasize that (B5) does not prevent the branches from containing vectors v
such that (7, (+00), 7, (—0)) & Ret X Rt

Properties (B6) and (B7) describe the mutual interplay of the branches.
Property (B6) implies that a set of branches {Cy, ..., C,} is pairwise dis-
joint, which will be crucial for the well-definedness of the intersection se-
quences in Section 4.3 below. A stronger statement is shown in Proposi-
tion 4.9(i). Property (B7) uses the close relation between each branch Cj,
J € A, and its associated sets I; and J; in R in order to provide the tools
necessary to track the behavior of geodesics which intersect C; in future
and past time directions. As we will see in Sections 4.3 and 4.7, the rather
precise tracking makes it possible to deduce an explicit discrete model of
the geodesic flow, or in other words, of the arising symbolic dynamics or
intersection sequences.

In the situation of (B6) we always have bp(C;) = g.bp(Cy,). However, it
does not necessarily follow that bp(C;) = g. bp(Cy,). This subtle difference
makes it necessary to be rather careful with choices and argumentation at
some places.

We emphasize that the uniqueness or non-uniqueness of the forward tran-
sition sets is not part of the requirements in (B7). For the moment and
in particular in isolated consideration of (B7) it may well be that differ-
ent choices for the families of forward transition sets (G(j, k)); rca can be
made. However, in Proposition 4.15 we will see that the interplay of all
properties of a set of branches enforces uniqueness of these sets.
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4.1. DEFINITION AND FIRST OBSERVATIONS

We further emphasize that the transition sets G(7j, k), j, k € A, are allowed
to be infinite. In Example 4.21 we show that there are sets of branches with
finite as well as with infinite transition sets. In Section 4.4 we provide a
characterization of sets of branches with infinite transition sets.

Property (B8) allows us to suppose that for all j € A, the intervals I; are
contained in R. For this we possibly need to conjugate I' by some ele-
ment g € PSLy(R), translate C by g and consider a set of branches for
gl'g™L. In other words, (B8) allows us to suppose without loss of general-
ity that the discrete dynamical system induced by C is completely defined
within R and any handling of a second manifold chart to investigate neigh-
borhoods of oo can be avoided. This often simplifies the discussion, in par-
ticular in Section 6.1.

It is immediately clear that a sufficient (but not necessary) condition for (B8)
is that R \ Ugil I}, contains an open interval. Let j € A. Property (B1)
is equivalent to the existence of an equivalence class of geodesics [y] €
Gper,r (H) such that

(7(+OO>77(_OO)) € Ij,st X Jj,st C Ij X Jja

for every representative vy of [y]. The class [7] is then the axis of some hy-
perbolic transformation A € I', which, because of Lemma 1.11, contracts
the interval I; towards f (h) = y(+00). For every j € A a hyperbolic
transformation h; € I' can be found in this way, and the contracting be-
havior assures that we find i1, ...,75 € N such that

N
s i
R\ U hik I
k=1
contains an open interval. Lemma 4.10 below implies that

{hi1.Cy,..., WY .CN}

is again a set of branches for the geodesic flow on X. For orbisurfaces with
cusps it is often possible and appropriate to work with parabolic instead
of hyperbolic transformations. We refer to Proposition 4.35 below for a
rigorous treatment of this aspect.

Indispensable for our approach is a unique coding of periodic geodesics in
terms of the chosen generators of the Fuchsian group. This requires in par-
ticular that the identity transformation will not be encountered during the
tracking of geodesics. This property is formulated as (B9). Even though
(B9) will eventually be fundamental, this property need not be guaranteed
immediately during the construction of a set of branches. Indeed, as we will
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4.1. DEFINITION AND FIRST OBSERVATIONS

see, every set that fulfills (B1)-(B7) can be transformed into one that ful-
fills (B9) (at the tolerable cost of weakening others, most profoundly (B5)).
This is done by means of a reduction procedure, which we call identity elim-
ination. It is discussed in Section 5.2 below.

bp(C;)

5o % 1 i

Figure 6: The relationship between the sets bp(C;), Hy (5), H_(4), I, J; and the
points X; and Y for a branch C;, j € A.

Examples for sets of branches can be found in [58, 61, 54, 63, 79]. Indeed, all
cross sections constructed there arise from sets of branches. We end this section
with two examples of sets of branches, one of them for Schottky surfaces.

Example 4.3. Let I's be a Schottky group, that is, a geometrically finite, non-
cofinite Fuchsian group consisting solely of hyperbolic elements and the identity.
By [16], we may associate to g a choice of Schottky data, that is a tuple

(T, {D], D—j};:l ) {8j7 S—j};:1)7

where r € N, {s1,...,s.} € PSLy(R) is a set of generators of I's, s_; := s;
forj € {1,...,r}, and Dy,...,D,,D_4,...,D_, are mutually disjoint open

Euclidean disks in C centered on R such that for each j = 1,. .., 7, the element s;

1

maps the exterior of D; to the interior of D_;, and such that

H\U ;UD;)

is a fundamental domain for I's. For j € {+£1,...,£r} we let C; be the set of
unit tangent vectors v € SHI that are based on the boundary 0D, of D; and that
point into Dj (thus, v, (+00) € Re (D;)). Then

{Cy,...,Cr,Cq,...,C_}

95
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is a set of branches for the geodesic flow on the hyperbolic surface I'g\ H.

Example 4.4. Recall the family of Fuchsian groups {I's x }sem {1},1>2 from Ex-
ample 1.46 and the set
CP = {CPJ, . ,Cp,g}

from Example 2.11. One shows that Cp is a set of branches for the geodesic flow
on X, », the orbit space of I, y, for every choice of o and \. We omit the proof
here, for later on in Chapter 7 we will show that, in fact, each set Cp constructed
by the cusp expansion algorithm as described in Section 2.1 is a set of branches.

4.2 Elementary Properties of Sets of Branches

Throughout this section let
C={Cy,...,Cn}

be a set of branches for the geodesic flow on X, set A := {1,..., N}, and let
C = |JC denote the branch union of C. In the course of this section and the
following two sections we will show that

C = x(C)

is a cross section with respect to any measure in a certain class and also in the
sense of (CS1") and (CS2). See Proposition 4.36. We will further find a subset of C
that is a strong cross section (Corollary 4.37).

For any j € A, we resume the notation for the sets I;, J;, Hy (j) and H_(j)
from (B3). We fix a family of forward transition sets {G(j,k)};rca as given
by (B7). Further, for j, k € A we set

V(k,j) =Gk, j) " = {97 [ g€ G(k. )}, (4.1)
which we call the backward transition set from Cy, to C;.

Proposition 4.5. The backward transition sets satisfy the properties dual to (BT).
That is, (B7) holds also for {V(k,j)}; ke in place of {G(J, k)};jxca and the roles
of {I;}jca and {J;};jca as well as {H,(j)}jca and {H_(j)}jca interchanged.
More precisely:

(i) Forallj € A we have

U U g-Ji € J;

keA geV(k,j)
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and

U U g'Jk,st = Jj,sta

keA geV(k,j)
and these unions are disjoint,

(ii) for each pair (j,k) € A x A, each g € V(k,j) and each pair of points
(v,2) € g.bp(Ck) x bp(C;), the geodesic segment (v,z)y is nonempty,
contained in H_(j), and does not intersect I".C.

Proof. We first establish (i). Let j € A. Forany k € Aand g € V(k,j) =
G(k,7)~! we have
g "I C I

by (B7a). Therefore g_l.Jj DO Ji and hence
g.Jk - Jj .

It follows that

U U g-Ji € Jj (4.2)

k€A geV(k,j)

U U g'Jk,st c Jj,st-

k€A geV(k,j)

and further

Combining the latter with (B7c) shows the claimed equality of sets. It remains
to show that the unions in (4.2) are disjoint. To that end let k1,k2 € A and
g1 € V(k1,7), g2 € V(ka, j) such that

gl.Jkl mgg.Jk2 75 .

If we assume that
gl-Jkl 7'é gg.Jk2 y

then
gQ'IkQ mgl'J/ﬂ ?é ) and gZ'IkJQ N gl'Ik1 ?é g,
from which we obtain

g2-Hy(k2) Ng1.H (k1) # &,
go-Hy (ko) Ng1.Hy (k1) # @,

and

gg.bp(ck2> N gl.bp(Ckl) 7é [
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Property (B6) implies that this constellation is impossible. In turn,

gl.Jkl = gz.Jk2 .

It follows that g;.I, = g2.1), and further

gl'bp(ckl) = 92-bp(ck2) )

as well as

g1-Hy (k1) = g2.Hy (k2) .

Thus, k1 = kg and g1 = g2 by (B6), which shows that the unions in (4.2) are
disjoint.

We now show (ii). To that end let j,k € A, g € V(k,j) and (v,2) €
g-bp(Cy) x bp(C;). Then, since

g (v,2) = (g7 v, g7 z) € bp(Cy) x g~ L. bp(C;)

and g~ € G(k, 7), (B7b) shows that g~ '.(v, z) (and hence (v, z)p) is nonempty
and does not intersect I.C. By (B7a), g~ '.I; C Ij and therefore Hy(j) C
g.H (k). Combination with (B7b) yields

(v, 2)m € g-Hy (k) \ Hy(7) S H-(j).
This completes the proof. O

We recall from Section 1.9 that a family ‘B of subsets of H is called locally
finite in H if for each z € H there exists an open neighborhood U of z in H such
that at most finitely many members of ‘B intersect U{.

Proposition 4.6. The family

‘B::{Q.W‘gef,jeA}

of I'-translates of the closures of the base sets of the branches in C is locally finite
in HL.
Proof. Let o C H be a geodesic arc with both its endpoints in R \ Rg;. In what
follows we show that the family of I'-translates of ¢ is locally finite in H. Since the
family of the closures of the base sets of the branches C consists of finitely many
of such geodesic arcs, the statement of the proposition follows then immediately.
Let F be a Ford fundemental domain for I' in H as defined in Section 1.10 (see
(1.70)). By Proposition 1.43(ii), each cusp ¢ of X is represented by a point, say c,
in g F. By construction, the part of F near c is of the form

g.{z€H||Rez| <w, Imz > h},
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for some g = g(c) € PSLy(R) fulfilling g~ t.c = oo, w = w(c) > 0 and h =
h(c) > 0. The neighboring translates of F at c are given by p.F and p~!.F,
where p € T is a generator of Stabr(c). By Proposition 1.43(iii), each funnel of X
is represented by a funnel representative, say I, in g F, and the part of F near 1
is bounded by two geodesic segments, each one having one of the two boundary
points of I as an endpoint. The neighboring translates of F at this part are of
the form b.F and b~1.F, where b is a primitive hyperbolic element of I" whose
axis represents a funnel bounding geodesic (see [24] for cofinite Fuchsian groups
and [6, Section 10] for general, geometrically finite Fuchsian groups).

Since each endpoint of ¢ is either cuspidal or contained in a funnel represen-
tative, the shape of F implies that we find g1, g2 € I" such that ¢;.FUgs.F covers
“most” of o. In other words,

B=0\(g1.F Uga.F)

is a geodesic segment of finite hyperbolic length. Again, the shape of F implies
that 3 can be covered by finitely many I'-translates of F. In total, the geodesic
arc o intersects only finitely many I'-translates of F. Equivalently, F contains
only finitely many I'-translates of o. Since o, and each of its ['-translates, is a
geodesic segment, it immediately follows that the family I'.o is locally finite in F,
and hence in all of H by the tessellation property. This completes the proof. [

We now aim to prove that the set of branches C accounts for all periodic
geodesics on X, in the sense that every 7 € 6pe;(X) has a representative vy €
6(H) that intersects C. For this we take advantage of the following equivalent for-
mulation of (B4). Recall the subset Gpe, 1 (H) of geodesics on H which, through T,
are lifts of periodic geodesics on X (see (1.34)).

Lemma 4.7. Property (B4) is equivalent to the following statement:

(B4*) Forally € Gper,r(H) we have y(+00) € I'. (U, 4 ;-
Proof. Recall from (1.41) the set

E(X) = {(v(+00),7(=20)) [ 7 € Gper,r(H)} -

The obvious inclusion relation F(X) C @St X I@St immediately shows that (B4)
implies (B4%). Since the set E(X) is dense in A(I') x A(T") by Proposition 1.15
and Ry, C A(T), also Ry x Ry is dense in A(T) x A(T"). Thus, the openness of
the sets I}, j € A, yields that (B4") implies (B4). O

Proposition 4.8. Under the assumption of (B5) and (B7), property (B4) is equiv-
alent to the following statement:

(Bper) For ally € 6pey(X) there exists v € €(H) such that w(y) = 7 and
intersects C.
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Proof. Let v € Gper r(H) and set 5 := 7(y) € Gper(X). By combining Propo-
sition 1.13 and Lemma 1.11(ii) one sees that the set of all representatives of 7 is
given by I'.y. Hence, if one representative of 7 intersects C, then all its represen-
tatives intersect I'.C. Hence, given (Bpe,), there exists (j, g) € A x I such that v
intersects g. Cj, i.e.,

(v(+00),7(—00)) € g-Ljst X g-Tjst C g.Ij X g.Jj .

Thus, (Bpe,) implies (B4*). For the converse implication we suppose that (B4*)
is satisfies and let 7 € Gpe;(X). As discussed above, it suffices to find a rep-
resentative of 7 that intersects I'.C. Let v € €(H) be any representative of 7.
Then v € Gper,r (H). Further, (B4") yields the existence of a pair (k1,91) € AxT
such that y(4+00) € g1.1x,. By (B5), for a geodesic n € G(H) to intersect g. Ck,
(k,g) € A x T, it suffices to have

(77(+00)a 77(_00)) € g'Ik,St X g-Jk,st .

Since E(X) C Ry x Ry we immediately have (v(+00), 7(—00)) € Ry x R
Therefore, if y(—o0) € g1.Jk,, the statement of (Bp,,) follows. In order to seek
a contradiction, we assume that this is not the case. Since X;,Y; € R \ ]Est, it
follows that y(—o0) € g1.1k,. By (B7a) we find (k2,¢92) € (A xT')\ {(k1,91)}
such that

9192 € Gk, ko) and  y(400) € ga.1y, -

Now the same argumentation as before applies: If v(—00) € ga.Jk,, then (Bpe;)
follows. If this is not the case, then necessarily y(—o0) € g¢2.Ik, and we ap-

ply (B7a) to find (k3, g3) € (A x ') \ {(k1,91), (k2,g2)} such that
9195 " g3 € G(ka, ks) and  y(+00) € g3.1p, -

We now show that iteration of this procedure must terminate after finitely many
steps by finding y(—00) € g;.Ji, for some ¢ € N. Assume for contradiction that
this is not the case. Thus, the above procedure yields a sequence ((ky, gn))nen
in A x I" such that

[3(+00),7(=00)} € () gn-Ii -
neN

Then Proposition 1.13 provides a hyperbolic element & € I' such that

V(+00) = f1(h) # £ (h) = 7(=0),

meaning the geodesic arc (R) is non-degenerate. Further, from the construction
it is clear that

gi+1 -Iki+1 c gi'-[ki
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for all i € N. Hence, the sequence ((gn.Xk, , gn- Yk, ) )neN converges to some pair
(z,y) € R x Rwithz,y € (g1.I4, ) \ Re (y(R)). But this entails the convergence
of the sequence (g, .bp(Cy,, ) )nen to the geodesic arc (x, y)g. Any neighborhood
of any point z € (z,y)y therefore intersects infinitely many members of the
family {g,.bp(Cr, ) }nen, which contradicts the local finiteness of its superset B
ensured by Proposition 4.6. In turn, the above procedure must terminate after
finitely many steps, thereby showing that ~y intersects I'.C. Combining this with

Lemma 4.7 finishes the proof. O

The following proposition is the first immediate step towards proving that Cis
a cross section with C as set of representatives. We show that the intersections of
geodesics on X with C are bijective to the intersections of geodesics on H with C.
This observation will be crucial for establishing discreteness of intersections. We
show further that the map

mlc: { c — C (4.3)

is a bijection. Hence, as soon as C is known to be a cross section, C constitutes
a representative for it. To simplify the exposition, we will already call C a set of
representatives, thereby refering to (4.3).

Proposition 4.9. The set C, the family of the I'-translates of its elements, and its
image C under 7 satisfy the following properties:

(i) The members of the family {g.v | g €T, j € A, v € C;} are pairwise dis-
tinct. In particular, C is a set of representatives for C.

(ii) Let¥ be a geodesic on X that intersects C at time't. Then there exists a unique
geodesic vy on H such that w(y) = 7 and y intersects C at time t.

Proof. In order to prove (i), let j,k € A, v € Cj,n € C; and g € I' such that
v = g.n. Thus bp(C;) Ng. bp(Cy) # @. Then (B6) implies bp(C;) = g. bp(Cy).
Since v = g.n, we have H, (j) N g.H{ (k) # @ by (B3). Using again (B6), we
obtain j = k and g = id. This shows (i).

In order to prove (ii) let 5 be a geodesic on X that intersects C att. Without loss
of generality, we may suppose that ¢ = 0 (otherwise we apply a reparametrization
of 9). Let 7 := 7/(0). Since C is a set of representatives for C by (i), there exists a
unique element v € C such that 7(v) = . Thus, ~, is the unique lift of 7 to H
that intersects C at ¢ = 0. This completes the proof. O

The final result of this section shows that there is no unique choice of a set of
branches for a given set C = 7(C).

Lemma 4.10. Let g1,...,gy € I. ThenC' := {¢1.C1,...,gn.Cn} is a set of
branches for ®, and 71'(U§V:1 g5-Cj) = C.
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Proof. The second statement is clear. Thus it suffices to check validity of the prop-

erties (B1)-(B7). In order to distinguish the properties fulfilled by C from those

we aim to prove for C’, we denote the latter ones by (B1’)-(B7’), respectively.
Let j € Aand v € C;. Then

ng.u = W(ng-u) = W(gj'%/) =7(%) = -

Therefore, (B1’) follows from (B1). The properties (B2'), (B3'), (B5'), and (B6') are
immediate from (B2), (B3), (B5), and (B6), respectively, combined with the con-
formity of Mébius transformations. Property (B4’) follows from (B4) and the T'-
invariance of the set Ry (see Lemma 1.16). Finally, let I J/ = gj.Ij forall j € A.
Then (B7a) yields

pj-Ij,st = pj-<U U g'Ik,st> = U U pjgplzl'lllﬁ,st ’

keA geG(j k) keA geg(j.k)

for all j, k € A. From that we obtain the updated transition sets
g/(ja k) =gy g(]> k) ’ g];1 )

for all j, k € A, with whom (B7’) is easily derived from (B7). O

4.3 Strong Sets of Representatives and
Iterated Intersections

Throughout this section we continue toletC = {C; | j € A} be a set of branches,
where A :={1,..., N}, and let C = | JC denote the branch union of C. We pick
again a family of forward transition sets (G(j, k)); ke and denote the family of
backward transition sets by (V(k,j)); ke (cf. (4.1)). For any j € A, we resume
the notation for the sets /;, J;, H4.(j) and H_(j) from (B3).

In this section we show that the transition sets are indeed unique, and we
provide an alternative characterization of them. See Proposition 4.15. Moreover,
we prepare the ground for showing that C = 7(C) is intersected by almost all
geodesics infinitely often in future and past, for finding a strong cross section
as a subset of C, and for determining the induced discrete dynamical system on
subsets of R.

Recall the subset SHy; of the unit tangent bundle SH from (2.12). A branch
Cj, j € A, is called a strong branch, if C; C SH, and we define

Cj,st = Cj mS]I']Ist = {V S Cj ‘ (’Yu(+oo)7fyy(_oo>) € ]@st X @st} ’ (4-4)
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We call
Cst = U Cj,st (4-5)
JEA

the strong set of representatives.

Our first goal is to show that for each vector v € Cg, the geodesic vy, on H has
a (well-defined) minimal intersection time t* > 0 with I".Cgy, the next intersection
time, as well as a maximal intersection time ¢t~ < 0 with I".Cg, the previous
intersection time. We start with a remark and some preparatory lemmas.

Remark 4.11. After the restriction to strong sets and branches, we observe the
following relations:

(i) For each j € A, property (B1) implies that I 4 # @ and J; & # @.

(ii) For each j € A and each pair (x,y) € Ij X Jjg, there exists a unique
vector v € C; such that

(’71,(+OO), 71/(_00)) = (z,y)
by (B5). Clearly, v € Cj 4.

(ili) Let j € Aand v € C;. If the geodesic v, represents a periodic geodesic
on X, then v € C; s (see Proposition 1.15 and (1.42)).

From the definition of the transition sets G(j, k) it is obvious that the asso-
ciated half-spaces fulfill g.H; (k) C Hy(j), for all ¢ € G(j, k). The following
lemma shows that this inclusion is indeed proper, and that also the dual property
holds with the backwards transition sets.

Lemma 4.12. Let j, k € A.
(i) Forallg € G(j,k) we have g.Hy (k) & Hy(j).
(ii) Forallg € V(k,j) we have g.H_(k) & H_(j).

Proof. Tt suffices to establish (i) as the proof of (ii) is analogous. Let g € G(j, k).
Then (B7a) shows that g.I;; C I;. Remark 4.2(d) and the convexity of the half-
spaces H, (.) imply that

g-Hy (k) CHL(G).

We now assume that g.H (k) = H4.(j), in order to seek a contradiction. Then
g-bp(Cr) U g.I;* = g.0,Hy (k) = 04H 1 (j) = bp(C;) U T;*

by Remark 4.2(d) and the continuity of the action of g. Since H and d,H are both
stable under the action of PSLy(R), it follows that g.bp(Cy) = bp(C;). Thus,
for any z € bp(C;) we have z € g.bp(Cy) and (z,2)m = @, in contradiction
to (B7b). In turn, g.H (k) € H (5). O

103



4.3. STRONG SETS OF REPRESENTATIVES AND ITERATED INTERSECTIONS

The following two lemmas allow us to establish next and previous intersec-
tions and to narrow down their locations by coarse-locating the endpoints of
geodesics. We emphasize that in those two lemmas, g is not required to be an
element of G(j, k) or V(k, j), respectively.

Lemma 4.13. Let j,k € A and let g € I' be such that g.1; C I;. Then we have
(i) g-Hy (k) € Hi(9).

(i) Forallv € Cjg withy,(+00) € g.I}, there existst > 0 such that
Y(t) € g-Cy, -

(iii) Ifg.Ix G I, then g.H, (k) G H (j) and, in (i), t > 0.

Proof. For the proof of (i) and the first part of (iii) we use the characterization of
the half-space H, (j) from Remark 4.2(d). The continuity of g implies
gL' =g, CT,%.

We denote the two endpoints of I by x and y. From (x,y)gy = bp(Cy) and
g-x, g.y € Tjg we obtain ¢g.bp(Cy) C H+(j)g. Thus, g.H (k) € Hi(j). If
9.1, # I;, then g.(x,y)n passes through (the interior) of H, (j). Further, at least

one of the points g.x and g.y is in I;. Thus, in this case, g.H (k) & H (j).
For the proof of (ii) and the second part of (iii) let v € C;« be such that
Yv(400) € g.I).. The hypothesis g.I}, C I; implies

9list € List, g-Jp 2 J5, and  g.Jpsp 2 Jjst-
Since (77, (+00), 7, (—00)) € Ijst X Jjst as v € Cj g, it follows that
Y (+00) € ]Iist Ngdy =gy
Therefore, (7, (+00), v, (—00)) € g.Ik & X g.Jk st Or, equivalently,
9" (w(+00), 1 (=00)) € st X st -
By (B5) there exists a (unique) vector 17 € Cy, such that
(9 (+00), 7 (=00)) = g™ (W (+00), 1(—00)) .

The uniqueness of geodesics connecting two points in H? implies that there ex-
ists t € R such that 7/,(t) = g.n. The combination of (B3), (i), and the first part
of (iii) yield that ¢ > 0 and, in case of g.I}, & I, t > 0. O

The proof of the following result is analogous to that of Lemma 4.13, for which
reason we omit it.
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Lemma 4.14. Let j,k € A and let g € I be such that g.J;, C J;. Then we have
(i) g-H_(k) C H_(j)
(ii) forallv € C;g with~,(—o0) € g.J), there existst < 0 such that
%(t) € 9-Cr,
(iii) ifg.Jr & Jj, then g. H_(k) & H_(j) and, in (ii), t < 0.
For each j € Aand v € C; we set
t&(v) =min{t > 0] ~,(t) e T.C} (4.6)
and
to(v) =max {t <0 |~ (t) e I.C} (4.7)

whenever the respective element exists. In this case, we call té(u) the next inter-
section time of v in SH with respect to C, and ¢ () the previous intersection time
of v in SH. with respect to C.

With these preparations we can now establish the existence of next and pre-
vious intersection times. That also allows us to present a characterization of the
transition sets, which in turn implies their uniqueness.

Proposition 4.15. Let j € A.
(i) We have
Iist = {nw(+o0) | v € Cjst}
and
Jist ={mw(=00) [ v € Cjst} .

(ii) For each v € C;g, the next intersection time t(;(v), as well as the previous
intersection time t,(v), exists.

(iii) Foreachk € A we have

Gj. k) ={g €T |3ve Cje: 1, {tE()) € g.C}

and

V(k,j) = {g el ‘ JveCjg: 'y,’j(ta(l/)) € g. Ck} .
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Proof. For the proof of (i), we recall from Remark 4.11 that J; o # @ and fix any
Yo € Jjst. For each x € I, the combination of (B5) and Remark 4.11 implies
the existence of v € Cj 4 such that

(z,50) = (w(+00), 7 (—00)) .
Thus,
z € {y(+0) |veCjut,
and hence
st © {w(+00) [ v € Cjst} -
Conversely, since {7, (+00) | v € C;} C I; by (B3),

{w(+00) | v € Cya} C L NRyy = L -

This shows the first part of (i). The second part follows analogously.
For the proof of (ii) we fix v € Cj . Then 7, (+00) € I by (i), and (B7a)
shows the existence of unique elements k € A and g € G(j, k) such that

Yo (+00) € g0 .

From Lemma 4.12(i) we obtain g.H, (k) & Hy (j) and hence g.I; & I;. Therefore
we find ¢ > 0 such that 7/,(t) € g. Cg, as proven in Lemma 4.13. Thus,

te{s>0]9(s)el.C}. (4.8)

In order to show that the minimum of this set exists and is assumed by ¢, we set
z = 7,(0) and w := v, (t) and observe that

(z,w)gNT.C=g

by using (B7b) and the fact that g € G(j, k). Thus, there is no “earlier” intersec-
tion between 7y, and I'.C, and hence té(y) exists and equals ¢. The existence of
te (v) follows analogously by taking advantage of Proposition 4.5, Lemma 4.12(ii)
and Lemma 4.14.

In order to establish (iii) we fix k € A and set

Gng = {g el ’ dv e Cj,st: ’yl/,(tJCr(V)) c ng} .

We first aim at showing that G, = G(j,k). Let g € G, and v € Cj4 be
such that 7/, (t5(v)) € g.Cy. As in the proof of (i) we obtain the existence
and uniqueness of ¢ € A and h € G(j,¢) such that v, (t/;(v)) € h.Cy. Thus,
g.CrNh.Cy # @, which yields g = h and k = ¢ by (B6). In turn, g € G(j, k),
and hence

Gjk G0, k).
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For the converse inclusion relation, we pick g € G(j, k). From (B7), in combina-
tion with (B6), we get
g'Ik:,st Q Ij,st .

We pick any (z,y) € g.1p st X Jjst. Then (x,y) € I X Jj e, and hence, by (B5)
there exists a unique vector v € Cj 4 such that

(W (+00), Ww(=00)) = (z,y).

By Lemma 4.13 there exists t > 0 such that 7/,(¢) € g. Ck. As in the proof of (ii)
we obtain ¢ = t{,(v). Therefore, g € G, and hence

G0, k) € Gjk -
This proves the first part of (iii). For the second part we observe that
JveCj:v,(tg(v)) €9.C, < 3IneCy: ’y;,(tJCr(n)) cgl.C;.
The equality V(k, j) = G(k, 7) ~! now completes the proof. O

Remark 4.16. Let j, k € A. We note that for the characterization of the transition
sets G(j,k) and V(k, j) in Proposition 4.15(iii) we used the strong branch C;
instead of the orginal branch C;. This is necessary due to the possibility that
branches are not full, i.e., there might exist £ € A and a geodesic v on H with
v(4+00) € I and y(—o0) € Ji that does not intersect Cy. In other words,
the geodesic 7 is passing through the geodesic segment bp(Cy,) from the half-
space H_(k) into H, (k) and hence has the potential to intersect Cy, but the

necessary vector at the intersection point with bp(Cy) is not contained in Cy,. If

we now have a vector v € C; \ Cj 4 such that the next intersection time £, (1)
exists but the next intersection between +y,, and I'.bp(C) is at an earlier time (due
to a “missing” vector in C as above), then

7,(tE (V) € h. Gy

for some k € Aand h € I" with h typically not in G(7j, k). However, if all branches
are full, then

G(j, k) ={g el | 3veC;: t{(v)existsand v, (t;(v)) € g.Cy}
and
V(k,j) ={g €T | 3v e C;: t5(v) exists and v, (t;(v)) € 9. Ci } -
The next observation follows immediately from Proposition 4.15.

Corollary 4.17. Letj,k € A,v € Cjs and g € I'. Then
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(1) 7 (t&(v)) € 9. Cr if and only if g € G(j, k) and ~,(+00) € g.Iy.
(ii) v,(to(v)) € g.Cy ifand only if g € V(k, j) and v, (—00) € g.Jy.

We now associate to each element v € Cg; three sequences, which completely
characterize the geodesic 7, in terms of the strong branches C 4, ..., Cn . The
combination of the Propositions 4.9 and 4.15, Corollary 4.17, and Remark 4.11
shows their existence, well-definedness and the claimed properties.

We define the sequence (tc ,(v))nez of iterated intersection times of v with
respect to C by

tqo(u) =0 (4.9)
and

min {t > tcn—1(v) | 7, (t) € .C} forn>1,
ten(v) = (4.10)
max {t < tcn11(v) | 7, (t) € .C} forn < —1.

This sequence is strictly increasing. For each n € Z we have
sgn(tc,n(v)) = sgn(n)

and
ton(v) = t& (1 (ten-1(1)) = to (w(tenr1(v)) - (4.11)
(

Given the sequence (tc ,(v))nez, for each n € Z the branch translate g. Cy, con-
taining the vector 7, (tc,n(v)) is uniquely determined. This allows us to define
the sequence (kc (V) )nez of iterated intersection branches of v with respect to C as
the sequence in A given by

kon(v) =k = Jg €T, (tca(v)) € g.Ck (4.12)

for all n € Z. The sequence (gc (V))nez of iterated intersection transformations
of v with respect to C is a sequence in I' that is given by

gco(v) =1id (4.13)
and forn € Z,n # 0, by

gen(v) =g (4.14)

Y (ten(v)) € gea(v) - gom1(¥)g- Cug vy forn>1,
e
Y (ten(v)) € go-1(V) - gem+1(¥)g- Cre o) forn < —1.
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For each n € N we then have

gC,n(V) € g(ka,—l(V)a kC,n(V))

and for each n € —N we have

gC,n(V)_l € g(kC,n(V)’ kC,nJrl(V)) .

We call the ordered set

[(tcn (), (ken (¥)n, (8en (¥))n] (4.15)

the system of iterated sequences of v with respect to C.

Lemma 4.18. For each v € Cg; we have

ngrzltloo ton(v) = o0,

Proof. We establish the claims via a proof by contradiction. Let v € Cg and
consider the system

[(tC,n(V))m (kC,n(V))n; (gC,n(V))n]

of iterated sequences of v from (4.15). For n € N set
tn = ton(v)

and recall that (¢y,),en is strictly increasing. We assume that (¢,),, converges
in R, say

lim t, =7 €R.
n—-+0o

Since the map
R — H
t — (b

is an isometric embedding, it follows that the sequence (7, (,,))n converges in H,
namely

im %, (tn) = 7(7),

n—-+0o00

and the elements of the sequence (7, (,)), are pairwise distinct. For n € N let
kn = kcn(v)

and
hn = gC,l(V) o 'gC,n(V) .
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Then

Yo (tn) € hy.bp(Cy,)

for each n € N (see (4.13)—(4.14)). Further, the shape of geodesics in H implies
that the tuples (ky, hy,), n € N, are pairwise distinct. Hence, each neighborhood
of 7, (7) in H intersects infinitely many members of the family

{hn.bp(Ckn) ’ ne N} .
This contradicts Proposition 4.6. In turn,

lim ¢, = +o00.
n—-+4o0o

The statement for n — —oo follows analogously. O

The following proposition shows that each intersection between I'.Cg; and
a geodesic determined by an element of Cg; is indeed (uniquely) detected by the
iterated sequences. This observation will be crucial for establishing that Cisa
cross section for the geodesic flow on X.

Proposition 4.19. Letv € Cy, k € A,t € R, and g € " be such that

7, (t) € g.Cp .

Then there exists a unique element n € Z such that sgn(n) = sgn(t) and

k= kC,n(V) , t= tC,n(V) ) and g = gC,sgn(t)(V)gC,Q sgn(t)(’/) to gC,n(V) :

Proof. Tt suffices to show the uniqueness of n € Z with t = t¢ ,,(v). The remain-
ing statements are then immediate from the definitions. By the strict monotony
of the sequence (tc ,())nez and Lemma 4.18 we find exactly one n € Z such
that

tcjn_l(v) <t< tc,n(lj) .

Ift < tc,(v), then the hypothesis 7, () € I'.C implies

tC,n(V) 7é téjr(%/x(tC,nfl(V))) :

This contradicts (4.11). Hence, t = tc (V). O

4.4 Ramification of Branches
Let C := {C; | j € A} be a set of branches for the geodesic flow on X and let

G(.,.) denote the forward transition sets. Example 4.21 below shows that it is
possible for transition sets to be infinite. Those situations cause issues in terms
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of convergence of the arising transfer operators (see the discussion before Exam-
ple 4.38 in Section 4.7). Therefore, for our constructions of strict transfer operator
approaches further below, we will suppose that all transition sets are finite.

The purpose of this section is twofold. We first present a simple-to-check
criterium that allows us to distinguish sets of branches with infinite transition
sets from those for which all transition sets are finite. Subsequently, we provide
an algorithm that turns each set of branches with infinite transition sets into one
with only finite transition sets by adding a limited number of specific branches.
This shows that the assumption that all transition sets are finite does not limit the
scope of Fuchsian groups to which our results apply.

Definition 4.20. For j € A we define its ramification number by
ram(j) == Y #G(j, k)
keA

and the ramification inC = {C; | j € A} by

Ramg¢ := supram(j) .
JjeEA
A set of branches C is called infinitely ramified if Ram¢ = 400, and finitely rami-

fied otherwise. If we need to emphasize the choice of the Fuchsian group I" for the
ramification (as in Example 4.21, for instance), then we write Ram¢ 1 for Rame.

Let j € A. Starting on the branch C; the number ram(j) encodes the number
of distinct directions in which one can travel with regard to the next intersection
branches. Or in other words,

ram(j) =# {(kCJ(V),gC,l(V)) cAxT | IS Cj} R

where k¢ ,,(v) and gc 5, (v) are as in (4.12)—-(4.14) for n € Z.

With the following example we illustrate that the ramification heavily de-
pends on the combination of Fuchsian group and set of branches. We provide
two Fuchsian groups that admit the same set of branches, but the ramification is
finite only for one of them. We also show that a different choice of set of branches
may yield a finite ramification.

Example 4.21. We consider the modular group
Fl = PSL2 (Z)
and the projective Hecke congruence group of level 2

Ty = PLy(2) = {[Z Z] € PSLy(Z)

c=0 m0d2}.
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NI—= 4+
= 4+

Figure 7: Examples of fundamental domains for I'; and I', respectively.

These groups are well-known to be discrete and geometrically finite. Fundamental
domains for them are indicated in Figure 7. We fix the elements

0 1 1 -1 11

of PSLa(R). Then
Fl = <81,t> and FQ = <82,t> .
(i) Welet~y := (0, 1)g be the geodesic segment from 0 to 1 and define C; C SH

to be the set of all vectors based on 7 and pointing into the half-space to
the right of it. Thus,

I ={n(+00) v € Ci} = (0,1)

and
Ji ={nw(—0)|veCi} = (—00,0)U(1,+00)

(see also Figures 8 and 9). Then {C; } is a set of branches for both groups,
I'; and I's. However,

Ram{cl}7F1 = 27 Whlle Ram{clkm = —{—oo’
as indicated in Figures 8 and 9.

(ii) We now let  := (0, 1/2)p be the geodesic segment from 0 to 1/2, and let
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Figure 8: The set of branches {C; } for I'; and its successors.

Cq

0 s9t. C1 got2. Cy -

|
I I
"'52t72.cl Sgtil.cl 1

Nl— ——

Figure 9: The set of branches {C; } for I'; and its successors.

$9.Cq

Figure 10: The set of branches C = {Cy, Cg, C3} for I'y and its successors.
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Csq and Cs be the set of unit tangent vectors based on 7 that point into the
half-space to the right or left of 7, respectively. Then C = {C;, Cy, C3} is
a set of branches for I'y, and Rame 1, = 2 (see Figure 10).

The following result shows that ramification is invariant under the action of I'.
It follows immediately from the representation of the (updated) transition sets in
the proof of Lemma 4.10.

Lemma 4.22. Let {p; | j € A} C I'. Then the ramification of the set of branches
C' = {p;.C; | j € A} equals the one of C, i. e,

Ramer = Ramg .

In what follows, we determine the geometric structure of finitely and infinitely
ramified sets of branches and find that the cusps of X play a central role. It is
therefore convenient to first study the case that X has no cusps.

Lemma 4.23. Let I' be a geometrically finite Fuchsian group without parabolic
elements. Then every set of branches for the geodesic flow on X is finitely ramified.

Proof. LetC = {Cq,...,Cn} be a set of branches for the geodesic flow on X and
adopt the standard notation from the beginning of this section. In order to seek a
contradiction, we assume that Ramg = 4o00. Then we find and fix j, k € A such
that #G(j, k) = +o0.

In what follows, we will take advantage of the Euclidean structure and the
standard ordering of R to simplify the argumentation. To that end, we may
suppose without loss of generality that the interval I; is contained in R and
bounded (if necessary, we conjugate I' and the set of branches by a suitable ele-
ment g € PSL(2,R)).

From (B7) we obtain that the open, nonempty intervals

g°Ik ) for g e g(]v k) ’ (416)

are pairwise disjoint and all contained in [;. In particular, for all ¢ € G(j, k)
the two boundary points g.Xj, g.Y}, of g.I; are contained in I;. These proper-
ties, together with the boundedness of I;, allow us to find a strictly increasing,
convergent sequence in {g.Xy | g € G(4,k)}, say (gn.Xk)nen with
ngrfoo In- X = a.

We note that a € I;. Further, the disjointness and convexity of the intervals
in (4.16) and the strict monotony of the sequence (g,.Xx)nen imply that, for
each index n € N, the point g,,. Y, is contained in the interval (g,,. Xk, gn+1.Xk).
Therefore

lim gp,.Yp=a.
n—-+00
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We fix a point on the geodesic segment bp(Cy), say zg € H. Then (gy,.20)nen is
a sequence in H with
nll}gl_loo Jne20 = G .
Thus, a € A(T"). Since I" contains no parabolic elements, we have A(I") = Ry
(see (1.42)) and hence R
ac Rstmfj: Ij,st‘

By (B7) we find a (unique) pair (¢, h) € A x G(j,¢) such that a € h.lpg C h.I,.
Since h.I; is open and a is the limit of the sequences from above, we find n € N
such that g,,. Xk, gn. Y € h.1y. Thus,

gndp N hdy #+ .

This contradicts the disjointness of the unions in (B7). In turn, C is finitely rami-
fied. ]

We now consider the case where X is allowed to have cusps. In Proposi-
tion 4.26 we will see that the ramification with respect to a given set of branches C
depends on how thoroughly C accounts for the cusps of X. To make this statement
rigorous we require the following notion regarding the local structure of sets of
branches in the vicinity of cusps.

Definition 4.24. Let ¢ be a cusp of X, let ¢ € Rbea representative of ¢, and let
Atte(c) == {(j, h)e AxT ‘ ce h.gbp(Cj)} .

We say that € is attached to the set of branches C if the interval

I(Atte(c) = |J  h
(j,h)EAttc(c)

contains a full neighborhood of ¢ in R.

Obviously, the definition of Attc is independent of the choice of the represen-
tative ¢ of ¢ and the notion of attachedness is well-defined. If ¢ is attached to C,
then #Attc(c) > 2, because for each j € A the set gbp(C;) consists of exactly
the two boundary points of the interval I;.

The following result is a technical observation that comes in handy for the

remaining proofs of this section.

Lemma 4.25. Suppose that the hyperbolic orbisurface X has cusps and that one
of them, say ¢, is represented by co. Denote by \ the cusp width of ¢. Suppose
further that the set of branches C = {C; | j € A} satisfies Attc(oco) = &. Then,
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for each j € A, the maximum
te(j) = max{Imz ‘ z € F.bp(Cj)}

exists and is bounded from above by \/2.

Proof. Let j € A. For each g € T, the hypothesis Att¢(c0) = & implies that the
set g.bp(C;) is a Euclidean semicircle. Hence, the maximum of the set

{Imz ‘ z € QW}

exists and equals the radius of g.bp(Cj;). Let 4, y4 € R, 24 < yg4, denote the two
endpoints of g.bp(C;), i.e.,

(zg,Yg)m = g-bp(C;y) .

By assumption, the cyclic subgroup ', is generated by t), with ', as in (1.28)
and t) as in (1.7). Then the set {Imz ’ z € F.bp(Cj)} is bounded from above
by A/2, because otherwise we would find h € T such that y;, — x, > X and then

Thp < Tp+A=1ty.xp = Tish < Yn < ExYh = Yish -

Hence, the geodesic segments ¢g.bp(C;) and £5g.bp(C;) would intersects without
coinciding, contradicting (B6).

Now consider the strip S == Re|;;'((—A,\)). Let A C T be the set of ele-
ments g € I such that

g9-bp(C;) € S.

For each g € A set
fug = max {Imz ’ z € g.bp(Cj)} .

In order to seek a contradiction, we suppose that there exists a sequence (g, )men
in A such that the sequence of maxima (%, )men is strictly increasing. By the
previous considerations, (%, )men is bounded from above by A/2 and hence con-
vergent. Further, g, > 0 for all m € N. Since the union (J,¢, 9-bp(C;) is
disjoint by (B6) and contained in the strip S of finite width, we find a subse-
quence (gm, )ken of (gm)men such that for all k € N,

9gm,.-bp(C;) C convg (gmHl.bp(Cj)) )

where convg(M) denotes the convex hull of the set M in C with respect to

the Euclidean metric. Since (g, )ren converges, the family {gnm, .bp(C;)}y is
not locally finite in H, which contradicts Proposition 4.6. Therefore, such a se-
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quence (g )meN cannot exist. In turn, there exists an element g* € A such that

fgr = maxhy, .
g P

The same argument applies to all strips of the form
Re|ﬁ1((n — DA (n+ 1)) =11.S

with n € Z and A replaced by t}.A. The ty-invariance of # yields #, = #, , for
all g € I', wherefore
fbg* - grer%t%}.)(A ﬁ/g

for alln € Z. Since I' = |, tY.A, the existence of 7z(j) is shown. O

Proposition 4.26. The set of branches C is finitely ramified if and only if all cusps
of X are attached to C.

Proof. We suppose first that C is finitely ramified. In order to seek a contradiction
we assume that there exists a cusp of X that is not attached to C. Without loss of
generality we may suppose that this cusp is represented by co. Then co € A(T).
Moreover, oo is approximated from both sides by suitable sequences in Ry, as
can be seen by taking any element w € ]l/ést (which is necessarily not co), any
element ¢ in ', and considering the two sequences (¢".w),en and (¢~ ".w) e,
which both converge to oo but from different sides.
We now claim that there exists a pair (j,g) € A x I such that

oo € g.dj. (4.17)

In order to see this, we pick a periodic geodesic 7 on X. By (Bp.,) we find a
geodesic v on H representing 4 and a pair (j,p) € A x I' such that ~ inter-
sects p. Cjst. Then y(400) € p.lj and y(—00) € p.Jje. Further we find
a hyperbolic element h € I' such that f1(h) = 7(£o0). In other words, the
geodesic 7 represents the axis a(h) of h. Under the iterated action of h~!, the
two endpoints p.X; and p.Y; of p.J; tend to f_(h) = y(—00). More precisely,

h_(n+1)p.Jj g h_np.Jj,

foralln € N, and
() 2 "p-J; = {y(~o0)}
neN

(see Lemma 1.4). Since 7 is periodic, y(—0o0) is a hyperbolic fixed point and hence
cannot coincide with the cuspidal point co by Lemma 1.8. Therefore, for some
sufficiently large N € N, the interval h~Np.J; = (h"Vp.Y;, h~Vp.X;). is the
real interval (h~"p.Y;,h~Np.X;). Thus, h " Vp.I; = (h"Vp.X;,h " Vp.Y;),
contains co. This establishes the existence of a pair (j, g) € A XTI satisfying (4.17).
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We now fix such a pair (7, g). Without loss of generality (using Lemma 4.22),
we may suppose that g = id. Since Rg; lies dense in small neighborhoods of oo,
we obtain that co € I . Since C is finitely ramified, (B7a) implies that

La=U U nles.

k€A heg(j,k)

Thus, we find k € A and h € G(j, k) such that co € h.dj.
We suppose first that co is an endpoint, hence a boundary point, of the inter-
val h.I. Without loss of generality, we may suppose that co = h.Y}. Then

h.Tkﬁ Ij - (Xj,oo]c.

Since oo is contained in the open interval /; and is approximated within I@St from
both sides, we see that

(OO7 Yj)c N Ij,st 75 %)

(the part of I; at the other side of o) and we find £ € A and p € G(j, () with
(¢,p) # (k,h) such that oo € p.I;. Since p.I; and h.I}, are disjoint by (B7a), we
obtain that oo is a boundary point of p.I; and further that (k, h), (¢, p) € Atte(o0)
and p.I,Uh.I} is a neighborhood of oo in R. This contradicts our hypothesis that
m(00) is not attached to C. Thus, oo must be an inner point of the interval h.lj.

In turn, since h.l} is open, co € h.lj (and hence (k,h) is uniquely deter-
mined). The combination of (B7b) and (B6) implies that

holp G 1.
Inductively we obtain a sequence ((ky,, gn))nen in A X I such that for eachn € N,
o0 € gn.l kn

and
In+1+-Iip iy & Gnedi, -

Since the family of the geodesic segments g,,.bp(Cy,, ), n € N, is locally finite by
Proposition 4.6, the intervals g,.Iy, , n € N, zero in on oco. But this implies that
the family of maxima

Fokyy gn = MAX {Imz ‘ z € gn.bp(Ckn)} , neN,

is unbounded, which contradicts Lemma 4.25. Thus, the assumption that 7(c0)
is not attached to C fails. This completes the proof that C being finitely ramified
implies that all cusps of X are attached to C.

In the case that X does not have cusps, the converse implication (i. e., if all
cusps are attached to C, then C is finitely ramified) has already been established

118



4.4. RAMIFICATION OF BRANCHES

in Lemma 4.23. For its proof in the general case we suppose that X has cusps and
that every cusp of X is attached to C = {Cy,...,Cxn}. We aim to show that C
is finitely ramified. However, in order to seek a contradiction we assume that C
is infinitely ramified. As in the proof of Lemma 4.23 we find and fix j,k € A
such that #G(j, k) = +o00, we may suppose that the interval I, is contained in R
and bounded, and we find a sequence (g )nen in G(j, k) such that the endpoint
sequences (gn-Xj)nen and (gn. Yk )nen are contained in /; and converge to an
element

ae AD)NI;.

From the proof of Lemma 4.23 we obtain further that a ¢ ]IA%St. Thus, it remains to
consider the case that a is a parabolic fixed point (cf. (1.42)). By hypothesis, the
cusp a of X is attached to C. In preparation for the following considerations, we
now pick (i, h) € Atte(a) such that I; C h.l; (if such a pair exists, otherwise we
omit this step) and show that we also find (¢, g) € Attc(a) such that g.I, C I;.
To that end we note that, since a € E and a is an endpoint of the interval h.l;,
the point a is also an endpoint of I;. Let p € I be a parabolic element that fixes a.
Then the pairs (4, p) and (7,p~!) belong to Attc(a) and either

p.Ij gI] or p_l..[j ng,

which shows the existence of such a pair (¢, g).

From the attachment property of the cusp @ it follows that we find two dis-
tinct pairs (1, h1), (¢2,hy) € A x I such that a is a joint endpoint of the inter-
vals hi.1y, and ho.1y,, and

hi.dp, U ha.dy,

is a neighborhood of @ in R. By the previous argument we may further suppose
that at least one of these intervals intersects I; but does not cover I;. Without
loss of generality, we suppose it to be h1.1,.

We suppose first that h1.1y, C I and fix n € N such that g,.1; & hi.1p, (the
existence of n follows directly from the properties of the two sequences (g,. X )n
and (gn.Yk)n). By the density of E(X) in A(T") x A(T") (see Proposition 1.15) we
find

(J;,y) S E(X) N (gn.Ik X J]) .

Then (B5) implies that the geodesic segment (x,y)p intersects bp(C;) in some
point, say z, and further intersects g,,. bp(Cy) in some point, say w, and inter-
sects h1. bp(Cy, ) in some point, say u, with u € (z,w)y. This contradicts (B7).
Inturn, hy.Iy; & I;. Then one endpoint of /1.1, , namely a, is contained in I},
while the other endpoint is not. Convexity implies that bp(C;)Nhi.bp(Cy,) # @

but bp(C;) # h1.bp(Cy, ). But this contradicts (B6). It follows that C is finitely
ramified. m

Proposition 4.26 indicates how we could turn an infinitely ramified set of
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branches into a finitely ramified one: if we find a way to augment the initial (in-
finitely ramified) set of branches with further branches such that all cusps of X
are attached to the enlarged family of branches, then the ramification becomes
finite. By comparing Figure 9 to Figure 10 in Example 4.21 above, one sees that
this approach has been carried out successfully for the group I's. Proposition 4.28
below states that this can always be done. We emphasize that its proof is con-
structive and provides an algorithm for the enlargement procedure of the set of
branches.

For the proof of Proposition 4.28 we will take advantage of Ford fundamental
domains and some of their specific properties, which the reader is therefore ad-
vised to recall from Section 1.10, in particular Lemma 1.37 and all the subsequent
discussions, definitions, and results.

Lemma 4.27. Suppose that w(c0) is a cusp of X and that the set of branches C
satisfies Attc(oo) = @. Let (j,9) € A x T be such that

max {Im z

z € FW} = maX{Imz

z€ g~m}

(the existence of the pair (j, g) is guaranteed by Lemma 4.25). Pick x € R such that
(9.X;,00) € Foo(x). Then the following statements hold true.

(i) We have g.bp(C;) N K # @. More precisely, the point of maximal height
of 9.bp(C;) is contained in K.

(ii) There existse > 0 such that
(9.Xj —£,9.Y; — ) C Re(Fus())

or
(9-Y; 4+ ¢€,9.Xj +¢) CRe(Fu()).

(iii) Thereexistsxz € R such that(g.X;, 00)NF(x) # @ and the point of maximal
height of g.bp(C;) is contained in F(x), where F(x) = Foo(x) N K.

Proof. Let 2 denote the (unique) point of maximal height of g.bp(C;). By the
choice of (j, g), we have

Imzy = max{Imz ‘ z € FW} . (4.18)

In order to show (i), we assume for contradiction that g.bp(C;) N K = @. Then

g.bp(C;j) C U intI(h) .
hel\l'oo

We fix p = [25] € T'\ I'sg such that zy € int I(p). Thus,

czp+d| < 1, and it
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follows that

I
Im(p.z9) = | =20 S m 20,

czo + d|?
which contradicts the choice of (j, g) and zg (see (4.18)). In turn,

g-bp(C;)NK # 2.

For (ii), let A > 0 be the cusp width of 77(c0). Lemma 4.25 shows that the height

of g.bp(C;) is bounded from above by A/2. Thus,
19X —g-Y;[ <A

Since Foo () = Re|g' ((z,2 + \)) and (9.X;, 00) € Fuo(z), the statement of (ii)
follows immediately. Statement (iii) is an immediate consequence of (i) and (ii).

O]

With these preparations we can now provide and prove the enlargement pro-
cedure, in the proof of the following proposition.

Proposition 4.28. Suppose thatC = {Cy, ..., Cy} isinfinitely ramified and let m
be the number of cusps of X not attached to C. Then there exists a finitely ramified
set of branches for ® of the form

C/ = {Cl,...,CN7CN+17"'7CN+k}
for somek € N, k < 2m.

Proof. By Proposition 4.26, the hyperbolic orbisurface X has at least one cusp that
is not attached to C, say ¢. We will enlarge C to a set of branches C’ to which ¢
is attached and which contains at most two branches more than C. Since X has
only finitely many cusps as a geometrically finite orbifold, a finite induction then
yields the statement, including the counting bound.

Without loss of generality, we may suppose that ¢ is represented by oco. If
this is not the case, then we pick any representative of ¢, say ¢, and any ¢ €
PSLs(RR) such that g.c = oo, consider {q. C; | j € A} instead of C, gI'¢ ! instead
of I', perform the enlargement as described in what follows and finally undo the
transformation by applying ¢~!. We distinguish the following two cases:

Atte(oc) # & 0
and

Atte(c0) = @ D)
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In Case (I) we pick (j, g) € Atte(oo) and let

Cpa1 = {v € SH ‘ bp(v) € g.bp(C;), Y (+0) € g.Jj}

be the set of unit tangent vectors that are based at g.bp(Cj;) but point into the
opposite direction as g. C;. We emphasize that we allow the whole set g.bp(C;)

as base points and do not restrict to those that lie on a geodesic connecting points
in Ry:. We set

C'=CuU{Cps1} and A" =AU{n+1}.
In Case (II), Lemma 4.25 shows the existence of (j,g) € A x I such that
max {Imz ‘ z € QW} = rl?gz‘cfug(k)
We let
Cny1 = {v e SH | bp(v) € (9.X;,00)m, Yo(+0) € (¢.X;,+00)}
and
Cr2 = {v € SH | bp(v) € (9.Xj,00)m, 1w(+00) € (—00,9.X;)}

be the sets of unit tangent vectors based on the geodesic segment (g.X, 00) and
pointing into one or the other of the associated half-spaces. We set

C, =CU {Cn+1, Cn+2}
and
A =AUu{n+1,n+2}.

In both cases we set
C/ = U Cj .
JEA
To show (Bpe;) for C’, we note that C’ is a superset of C. Since C satisfies (Bp.;),
C’ does so as well. This yields (B4) by virtue of Proposition 4.8.

The validity of (B2), (B3), and (B5) for C’ is obvious from the construction
of the additional branches. For each j € A’ we define the sets I;, J;, Hy(j)
and H_(j) as in (B3). For j € A these sets obviously coincide with those related
to C. In Case (I) we have

Inyi=g9.Jj, Jnt1=g.1; and Hi(n+1)=g.H:(j).
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In Case (II) we have
Inyi = Jpyo = (9.X,4+00),  Jng1 = Ing2 = (=00, g.X;)
and

Hi(n+1)=H_(n+2)={2z € H|Rez > ¢g.X;}
H. (n+1)=Hi(n+2)={2z€H|Rez < g.X;}.

We now prove (B1) for C'. For j € A"\ A we pick (z,y) € Ijs X Jjs
and fix € > 0 such that Br .(z) C I; and Br.(y) C J;. (Note that co ¢ Ras.)
Then (z,y) € A(T") x A(T"). By Proposition 1.15 we find a geodesic -y on H that
represents a periodic geodesic on X and satisfies

Y(400) € Bre(x) and ¥(—00) € Bre(y) -

The geodesic intersects C; as can be seen directly from the definition of this set.
This shows (B1).
In Case (1) property (B6) for C’ follows immediately from

bp(Cp41) = g.bp(C;) and Hi(n+1)=g.H<(j).

In order to establish (B6) for C’ in Case (II), we let a,b € A’, h € T be such that

bp(Ca) N h.bp(Cp) # @ .

We consider first the case that a = n + 1, b = n + 2 and bp(C,) = h.bp(Cy).
Recall that

bp(Cry1) = bp(Cry2) = (9.X;,00)m -

From Attc(oo) = @ it follows that 7(g.X;) # m(oco) (because otherwise we
would have (j,g) € Attc(c0), contradicting the assumption). Thus, h fixes both
endpoints of bp(C,,+1). Since co is cuspidal, h = id. Further, by construction,
Hi(n+ 1) = Hx(n + 2). Hence, (B6) is satisfied in this case.

The previous case in combination with the fact that (B6) is satisfied for C
allows us to restrict all further considerations to the case that a = n 4+ 1 and
b € AU{n + 1}. We show first that necessarily b = n + 1. To that end, in
order to seek a contradiction, we assume that b € A. Then bp(C,) # h.bp(Cy)
as Atte(oco) = @, and hence the geodesic segments bp(C,) and h.bp(Cy) inter-
sect transversally. We recall the tuple (j,g) € A x T from the construction of C'.
Since the geodesic segment g.bp(C;) has maximal radius among all semi-circles
inI".bp(Cy) with k£ € A, and ¢.X is a joint endpoint of g.bp(C;) and bp(Cy41),
the geodesic segment h.bp(Cy) intersects g.bp(C;). Since C satisfies (B6), it fol-
lows that h.bp(C;) = g.bp(C;). But then h.bp(Cy) does not intersect bp(Cy,41).
In turn, this case is impossible.
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It remains to consider the case thata = b =n + 1 and

bp(Cpt1) N h.bp(Cpin) # @

but

bp(cn+1) 7£ h'bp<cn+1) .

We let 8 := bp(C,,+1) and suppose without loss of generality that the endpoints
of g.bp(C;) satisfy

g.X]‘ < g.Yj .

(If g.X; > g.Y;, the argumentation in what follows applies with some changes
of orderings.) Since h.( is a non-vertical geodesic arc such that the real interval
enclosed between its two endpoints contains g.X;, which is the common endpoint
of 3 and g.bp(C;), the argumentation in the previous paragraph yields that

g.bp(C;) C convg(h.B) \ Oconvg(h.5), (4.19)

where, as in the proof of Lemma 4.25, convg (M) denotes the convex hull of the
set M in C with respect to the Euclidean metric.

We now fix x € R such that 5 C Fo(x) and such that the point zp of maxi-
mal height of g.bp(C,) is contained in F(z) and hence in K. The choice of z is
possible by Lemma 4.27. With (4.19), we obtain that

29 € convg(h.3) N F(x). (4.20)

We consider the strip-shaped set

S = {w—l—it

w € g.bp(C;) NK, Rew € Re(Fuo(z)), t > ()} )

The set S is convex due to the convexity of K and Fo.(x) and the boundary
structure of K. Further,
S C F(x) (4.21)

and (zp, 00)m C S. The latter implies that .5 N S # &. We now define the two
domains

L= (H \ conVE(g.bp(Cj))> N {z cH ’ Rez < ingRew}
we

and

R = <H \ ConvE(g.bp(Cj))> N {z ceH ‘ Rez > sup Rew} .
weS

Because the sets L, R and L U R U S are convex, and h./3 intersects S, for the
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pair (h.co, hg.X;) of the two endpoints of .3 we obtain
(h.oo,hg.X;) € (gL x gR)U (gR x gL) . (4.22)

Since 8 N F(z) is of the form (b, 0o)y for some point b € H, and F(z) contains
all subsets of the form {z € H | Rez € (b —¢,b+¢), Imz > yo} for sufficiently
small € > 0 and sufficiently large yg > 0, (4.22) and the convexity of the sets L, R
imply that we have

hF(z)NL#@ if hooe€ gL (4.23)
and
hF(z)NR#@ if h.oo € gR. (4.24)

We now aim to show that h.F (x) indeed intersects L and R. To that end we recall
that we suppose that g.X; < ¢g.Y;. If h.oo € gL, then hg.X; € g R and

Re (hg.bp(C;)) C [hg.X;, +00) .

It follows that h.zg € h.F(x) N R. If h.co € g R, then hg.X; € gL and, taking
advantage of (B6) for C, we find

Re (hg.bp(Cj)) C [hg.Xj, 9-X;]

and hence h.zg € h.F(x)N L. Combining this with (4.23) and (4.24), respectively,
we find
hFx)NL+#o and hJF(x)NR#+ .

From the convexity of h.F(x) and the definitions of the sets L, R, and S it now
follows that
hF(z)NS #o.

In combination with (4.21) this yields a contradiction. In turn, (B6) is valid for C’.

In order to establish (B7) for C’, we first show that the next and previous
intersection times exist for all elements in CJ;. Thus, let j € A’ andlet v € Cj .
Using that I'. C’ is locally finite by Proposition 4.6, we see that if there exists any
intersection between the geodesic 7, and I'.C’ at some time ¢ > 0, then there
exists a time-minimal one and hence t, (v) exists.

We suppose first that j € A. Then té(y) exists by Proposition 4.15(ii). Thus,
t&(v) exists as well. We suppose now that j € A"\ A. Then

(’YV(—FOO)v’YV(_OO)) € @st X @st .

AsRy C A(T), Proposition 1.15 shows that for each ¢ > 0 we find a geodesic 7.
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on H that represents a periodic geodesic on X and whose endpoints satisfy

na(ioo) € BR,E(’)’I/(:EOO)) .

Since (Bpe,) is valid for C, we find (k., g-) € A xI" such that 7. intersects g.. Cy,_.
Thus,

(775(+OO),7]€(*OO)) € gs'Iks,st X gE'JkE,st .

Since ge.Iy, and g..Jy, are open and Xy_, Y. ¢ I@St, we can choose ¢ so small
that

(71,(4—00),%(—00)) € ge Iy, X ge.Jy. .
We fix such an € and set g := g., k .= k.. Now
(’YV(_FOO)?’YV(_OO)) € g'-[k,st X g-Jk,st

and (B5) for C show that g—'.~, intersects Crst, say in n € Cp g at time 2.
We consider the system of iterated sequences of 1 with respect to C, as defined
in (4.9)-(4.15). Lemma 4.18 shows the existence of n € Z such that

tc’n(V) >to,

which means that g~ 1.7, intersects gc . Ckcyn(y) at a time larger than ¢y. Thus,
there exists an intersection between 7, and C’ at a positive time, and hence t, (v)
exists. Analogously, we can show the existence of ¢, () in both cases.

For j, k € A’ we set, motivated by Proposition 4.15(iii),

G'(j, k) = {g el ‘ Jv e Cjg: fy,//(té,(y)) € g. Ck} )

We now show that C’ satisfies (B7a) with the family {G'(j,k)}; rea’ in place
of {G(a,b)}apcar. Let j,k € A’ and g € G'(j, k). Thus, we find v € C; 4 such
that v, (t&,(v)) € g. Ci, and hence

Yo (F00) € It N g1y .

(B6) implies that g.1, C I;. It follows that

U U g1y C I; (4.25)

keA’ geG’(j,k)

and

U U g'Ik,st c Ij,st . (4.26)

keA’ geg' (k)

The disjointness of these unions follows immediately from (B6). Further, for
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any v € I we choose y € Jjs. By (B5), the geodesic v from y to x inter-
sects Cj g, say in v. Now tJCr, (v) exists as we have seen above. Thus,

’Y”(tg’(y)) € gc',l(y)' Ckcxyl(u),st
and hence gor 1 (v) € G'(j, ke 1(v)). Therefore

T =(+00) € g1 (V) Jicg, , (v),st -

It follows that the inclusion in (4.26) is indeed an equality. This completes the
proof of (B7a). The proof of (B7c) is analogous, using the existence of ¢, (v)
for all v € CL. (B7b) follows immediately from (B6) and the definition of the
sets G'(j, k) for j, k € A O

4.5 Admissible Sets of Branches

This section is devoted to the proof that every set of branches can be rearranged
into an admissible one (see (B8)). We further introduce an additional property
of sets of branches, which will be needed later on (see Proposition 5.19 below) as
a prerequisite in order to assure a non-collapsing behavior in the sense of (B9).
Again, every set of branches can be rearranged to one with that property, and so
that, simultaneously, admissibility is assured.

We retain all assumptions and notations from Section 4.3.

Definition 4.29. A set of branches C = {C; | j € A} is called weakly non-
collapsing if

(Bco1) Forevery pair (j, k) € Ax A, for every v € C; such that v, intersects Cy, at
some time t* > 0, the geodesic segment 7, ((0,¢*)) does not intersect g.C
for any g € I'*.

Remark 4.30. Via contraposition it is easy to see that (B9) implies (B..1): Assume
that a given set of branches C = {C; | j € A} is not weakly non-collapsing. Then
we find j, k,/ € A, g € I'*, 0 < t; < t9, and v € SH such that

7,(0) € Cj, ~,(t1) €9.Cp, and ~,(t2) € Ck .

Consider the system of iterated sequences [(tc ,(¥))n, (kcn(¥))n, (8cn(V))n]
associated to v by (4.15). By Proposition 4.19 there exist n1,no € N such that

ton (V) =t and tom, (V) =t2.

The above then implies
gci(v)goa(v) -+ 8o, (V) =id .
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Hence, C does not fulfill (B9). However, the properties (B9) and (B..1) are not
equivalent, since (B.,) allows for elements v € C whose induced geodesics have
future intersections with C that are not immediate, while (B9) does not.

Property (B.o)) demands that the set of branches is structured in a specific
way, relative to the non-trivial I'-translates of itself. Lemma 4.10 allows us to
exchange branches with I'-translates of themselves. In what follows, we describe
a sorting algorithm which is based on that principle and which transforms any
given set of branches into a weakly non-collapsing one.

For reasons of effectivity, we introduce so-called branch trees: Let j € A. The
root node (level 0) of the branch tree relative to j is (j,id) € A x I'. The nodes
at level 1 are all tuples of the form (k¢ 1(v),gc,1(v)) € A X T, forv € Cjg.
By virtue of (B7), the finiteness of A and the discreteness of ', there are at most
countably many such tuples in level 1. The nodes at level r, for r € N, are all
tuples of the form (kg ,(v),gc1(v) - gcr(v)) € A X T, forv € Cjg. Two
nodes are linked by an edge if and only if they are of the form

(kC,r(V)7 gC,l(V) T gC,T<V>) and (kC,r+1(V)7 gC,l(V) T gC,T(V)gC,T—f—l(V))

for the same v € C; <. Hence, every path in the branch tree is of the form

(4,id) — (kc1(v),g0,1(v)) —» (kc2(v),g0,1(V)gc2(v)) — ... (4.27)

for the same v € Cj g in each tuple, where (k1, h1) — (k2, h2) denotes an edge
in the tree, for k1, ko € A, h1, hy € T'. Hence, a path in a branch tree corresponds
to the existence of a geodesic on H intersecting h. Cy, for every node (k, k) on
that path. We denote the branch tree with the root (j,id) by B;. The collection
of one or more branch trees is called a branch forest. In what follows we adopt
a straightforward terminology of sub- and super-trees as sub- and super-graphs
of trees. A sub- or super-tree is called complete if it contains all child nodes of its
root node. The level of a node in a tree is the number of edges in the unique path
joining the root node to it. Furthermore, we consider trees as directed graphs,
with direction towards increasing level.

We define a left multiplication of elements g € I" on the set {B; | j € A} by
defining gB; to be the tree that arises from B; by exchanging every node (k, h)
in B; for (k,gh). We emphasize that we construct further trees in this way.
Then the complete sub-tree with the root (k¢ (v), gc,1(v) -+ - gcr(¥)) is given
by gc,1(v) - gcr (V) Bie, (), at every level r € N. Conversely, every complete
sub-tree of B;, j € A, is of the form gBy, for some k € Aand g € I'. Every
node (k,h), with k € A and h € T, is unique within a branch tree B; (but not
necessarily within a branch forest). A complete sub-tree of some tree Bj, j € A,
is called I'-trivial if it is of the form id By, for some k € A. This is obviously
the case if and only if g 1(v) -+ - gcr(v) = id, with r € Nand v € Cj such
that & = kg ,(v). This fact implies the following characterization.
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(1,id)
(2,id) (3,93)
; \
92-02 (Lgl) (2792) (47 ld)

Figure 11: A schematic example of a local relationship in a set of branches and
one of the branch trees emerging from it, up to level 2.

Lemma 4.31. The set of branches C = {C; | j € A} is weakly non-collapsing if
and only if, for every j € A, every complete super-tree of any I'-trivial sub-tree
of Bj is itself I'-trivial.

Using this characterization we can implement an algorithm to rearrange a
set of branches in order to obtain a weakly non-collapsing structure. To that
end, we first fix a convenient choice of root nodes given by initial branches: A
branch Cj, j € A, is called initial if

Vke A\{j}: H_(k) L H_(j). (4.28)
In particular this implies that

go—1(v) 7 gea(v) T £1d

for every v € C; and every n € N. Hence, a branch C; is initial if and only if B;
does not appear as a I'-trivial sub-tree in any branch tree other than B;. We set

Dini :={j € A| Cj is initial} . (4.29)

Since A is finite, the set Djy; is nonempty. For every k € A there exists j € Diy;
such that either & = j, or Hy (k) € H{(j). In the latter case there exists v € C;
and n € N such that

(kcn(v),g0,1(v) - gon—1(v)) = (k,id) .

Hence, every branch tree By, k € A, is contained as a I'-trivial sub-tree in some
member of the branch forest Fiyi := {B; | j € Dini}.

The following algorithm defines transformations ¢; € I for every j € A.
In it we apply a notion of cutting off nodes (k,h) from the branch forest Fiy;.
By that we mean that, for the remainder of the algorithm, one is restricted from
considering the complete sub-tree h By in any branch tree B;, j € Diy. The
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remaining nodes are all nodes not contained in a cut off sub-tree. For r € N
and k € A we define L, (k) to be the set of all nodes of the form (k,h), h € T', at

level r, anywhere in the branch forest Fiy;.

Algorithm 4.32. The index r below starts at 1.

Step 0. Set g; := id for every j € Djp;.
Cut off all nodes from Fj,; for which the complete sub-tree with this node
as root node does not contain a I'-trivial sub-tree.
Carry out Step 1.

Stepr. If no nodes remain at level r, the algorithm terminates.
Otherwise, cut off all nodes (7, g) from Fj,; in level r with j € A for
which ¢; has already been defined.
For all k € A\ Diyi for which L, (k) contains remaining nodes, choose

such a node (k, h), set g := h, and cut off all the remaining nodes in
L, (k) \ {(k,h)} from Fip;.
Carry out Step r+1. &

Lemma 4.33. Algorithm 4.32 defines for every j € A a transformation q; € T,
before terminating after at most N + 2 steps. (Recall that # A = N.) The arising
setC' .= {q;.C;j | j € A} is a weakly non-collapsing set of branches for the geodesic
flow on X.

Proof. Since #A = N < 400, the level at which nodes of the form (k,id), k € A,
may appear is bounded from above. Hence, from the cutting off of sub-trees that
do not contain I'-trivial sub-trees in Step 0 onward, the (non-complete) sub-trees
of remaining nodes are all finite. Thus, Algorithm 4.32 will eventually fail to en-
counter remaining nodes and will thus terminate after finitely many steps. Since
in every step the algorithm either terminates or defines at least one transforma-
tion ¢; which has not yet been defined, the number of steps is bounded by IV + 2.

Let r € N and k € A, and assume that g; has not yet been defined at the
start of Step r. Since the branch tree By, is contained in some member of Fi,j, we
find j € Aand g € I" such that ¢; has been defined at Step r—1and gB; contains
the node (k,id). But then the sub-tree ¢; B; contains the node (k, ¢;g '), which is
remaining at the start of Step r. Since this argument applies for every r for which
Algorithm 4.32 does not terminate in Step r, and since no sub-tree containing By, is
cut off in Step 0, the algorithm must eventually encounter a node of the form (k, h)
and thus define the transformation g;.

Finally, the set C’ is a set of branches for the geodesic flow on X by virtue of
Lemma 4.10. After termination of Algorithm 4.32, every path in the sub-tree of
remaining nodes in any member of Fj,; is of the form

(klanl) - (kQ;ng) —> ... (kn7an)7
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for some n € Nand k1,...,k, € A. Since the branch forest of all branch trees
with respect to the set of branches C’ is given by {qj_lBj ‘ J € A}, this path then

reads as

(k1,id) — (ko,id) — ... — (kp,id).
By Lemma 4.31, this implies that C’ is weakly non-collapsing. O

Example 4.34. Recall the family of Fuchsian groups {I's » } e {13,152 from Ex-
ample 1.46 and its set of branches Cp = {Cp 1,...,Cp g} from Example 2.11 (see
also Example 4.4). The set of transformations defined by Algorithm 4.32 for Cp is
given by

G=q=...=q=id and g5 = ¢go,

meaning the only branch that gets swapped with one of its translates in order to
obtain a weakly non-collapsing set of branches Cj, is Cs.

We now tend to show that each set of branches can be turned into one that
is simultaneously weakly non-collapsing and admissible. To that end a sorting of
branches more restricted than what is provided by the branch trees is needed. To
be more precise, we suppose that C = {C; | j € A} is weakly non-collapsing and
let £ € A\ Dip;. Then there might be more than one ¢ € Djy; for which (k,id)
is a node in B;. To overcome this issue, we define inductively for every node an
associated initial node. For ¢ € Dip; we set j (i) = 4. For (k,id) a node at level 1
we pick one i € Djy,; with (k,id) € B; and set j(k) := i. Now let r € N and
assume that for all nodes (k,id) up to level r the index j(k) has already been
defined. Then, for (k,id) a node at level r + 1, we pick one i € A with (4,id) a
node at level r and (k,id) a node in B;, and set j (k) := j(i). That way we obtain
amap j: A — Diyy. For i € Dyy; we define

D;={ke Al jk)=i}. (4.30)
Then
A= |J D (4.31)
1€ Dinj

and the union on the right hand side is disjoint.
Finally, recall the notion of (finite and infinite) branch ramification from Def-
inition 4.20.

Proposition 4.35. For every set of branches C = {Cy, ..., Cn} there exist trans-
formations g1, ..., gn € I such thatC == {g1.Cy,... ;N - Cn} is admissible and
weakly non-collapsing. If C is finitely ramified, then so is C.

Proof. Because of Lemma 4.33 we may assume that C is weakly non-collapsing.
Let i € Diyi and let k € D; be of maximal level in B;, that is, id ¢ (J,c 4 G(k, £).
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Then, whenever k # 1,
I G I; and J; & Ji .

Since Ij; and J; are both open and contain elements of A(I") by virtue of (B1),
Proposition 1.15 yields a hyperbolic transformation h; € I' such that

(f+(hi),f_(hi>) el x J;.

Then, because of (B5), the axis of h; intersects each branch C, with ¢ € D;. Thus,
for every ¢ € D; we have

(£ (hj)s E—(hyp)) € Io x Je C R\ {Xe, Yo} x R\ {X¢, Yo}
By Lemma 1.4 we therefore find

n—+oco 4

meaning h ) contracts the interval I, towards f(h;(). Hence, for n € N
sufficiently large,
R\ | 250 Ie
leA

contains an open interval. In turn,
o n
Ci={nly-Cs ‘ vy

is an admissible set of branches (see also Lemma 4.10). L
Now let k € A and denote the branch tree of k with respect to C by Bj.
Let y(k) = i. Then B; contains the path

(i,id) — (k1,h1) — ... — (kp, hy) — (k,id), (4.32)

with kq,...,k, € Aand hq,...,h, € T, n € N. Since j(k) = i, by construction
we have j(k,) = iforall. = 1,..., n. Therefore, the branch tree B; in the branch
forest of C contains the path (4.32) as well. Since C is weakly non-collapsing, we
have h; = --- = h,, = id. This shows that C is also weakly non-collapsing. This
finishes the proof of the first statement.

Finally, assume that C is finitely ramified. Then, by Proposition 4.26, every
cusp of X is attached to C, in the sense that for every cuspidal point c,

I(Atte(e)) = | R

(j,h)eAtte(c)

contains a full neighborhood of ¢ in R (see Definition 4.24). But since the associ-
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ated intervals transform as
I . .
I = gj-1;,

for j € A, we obtain

h.I; = hg t.I.
U J U J J

(4,h)EAttc(c) (4,h)EAtte(c)

Hence, if we set
’ o . ~1 .
Atte(e) = { (G, hgy ") | (G,h) € Atte()

then again I(Att;(c)) contains a full neighborhood of ¢. Applying again Propo-
sition 4.26, this implies that C’ is finitely ramified. O]

4.6 Cross Sections From Sets of Branches

Throughout this section, let C = {C1,...,Cn} be a set of branches for the
geodesic flow @ on X let C := | JC denote the branch union, and set

C:=n(C).

We now show that C is indeed a cross section for ® with respect to certain mea-
sures and that the strong branch union Cg; induces a strong cross section.

To that end let Van(X) denote the subset of €(X) of all geodesics for which
there exists a lift on H having at least one endpoint in @\@st (and thus all of its lifts
on H have this property). We note that Gp,(X) C €(X) \ Van(X). We denote
by Myan(x) the set of measures p on (a o-algebra on) 6(X) with the property
that p(Van(X)) = 0. In particular, the counting measure of periodic geodesics
belongs to My, (x)- Throughout we use the standard notation from the previous
sections. In particular, we set A = {1,..., N} and define I, J;, etc. as in (B3).
Recall the properties (CS1)-(CS3) from Definition 1.47.

Proposition 4.36. Foreach ji € My, (x) the setC is a cross section for the geodesic

flow ® on X with respect to u. In particular, each geodesic in 6(X) \ Van(X) inter-
sects C infinitely often in past and future.

Proof. We start by establishing (CS1). To that end let 7 € €¢(X) \ Van(X) and
let v be any lift of 7 to H. We first need to show that 7 intersects C or, equiv-
alently, that v intersects I'.C. Without loss of generality we may suppose that
v(£00) # oo (otherwise, we pick another representing geodesic for 7). Thus,
the two endpoints y(+00) of 7y are in Rg. In what follows we show (via proof
by contradiction) that there exist g € I" and j € A such that y(+oc0) € g.I; and
y(—00) € g.J;. Then 7 intersects g. C; by (B5), and hence 7 intersects C.
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In order to seek a contradiction to the existence of such elements in I" and A,
we assume that for all ¢ € I"and all j € A the two endpoints y(%00) of 7 are
either both in g.I; or both in g.J;. Since y(+00) € Ry and Ry is contained in
the limit set A(T") of I', Proposition 1.15 implies that for each ¢ > 0 we find a
geodesic 7. on H such that 7(7.) € €pe;(X) and the endpoints

(#(e),y(e)) = (ne(+00),me(—00))
of 7). are e-near to y(+00), respectively, i. e.,
|z(e) — y(+00)| <& and |y(e) —y(—o0)| < €. (4.33)

Again using Proposition 1.15, we may and shall suppose that x(¢) and y(¢) are
exterior to the interval in R that is spanned by y(+00) and 7y(—00). By (Bpe,) we
find h. € I' and j. € A such that h..n. intersects C;_. Thus,

({IJ(E),y(E)) S h;l..[js X h;l.JjE .
By the assumption, either

v(£oo) € hZNI; or y(£oo) € AT (4.34)

€

We consider h. and j. to be fixed once and for all for each € > 0 separately.

We now construct inductively a sequence of “nested” translates of a com-
plete geodesic segment as follows. Without loss of generality we suppose that
v¥(4+00) < y(—00). We pick a (small) e; > 0 and fix a geodesic 7., on H with
the properties as above with €1 in place of . We let a1, b; € R be the endpoints

of h;l.bp(stl ), ordered such that
a; < y(400) < y(—o0) < by .

If a; = 0o € R, then the left hand part of this inequality is understood as —oo <
7(+00) in R; analogously for the right hand part if b = co. This configuration is
the only one feasible under the condition that (4.33) and (4.34) remain both valid
for a sufficiently small ¢7.

We set )
i f I =100 = (=oa))
2 2
Then g1 > €2, and we repeat with €5 in place of £1. We emphasize that the chosen
geodesic 7)., does not intersect hs_ll. C,., asitis contained in either h;ll.HJr (Jey)

or h; ' .H_(j, ). Further, the endpoints (as, bs) do not coincide with (a1, b;), and

since h;QI.bp(CjEQ) may not intersect h;ll.bp(stl) by (B6), we have a; < as
and by < by with at least one of the inequalities being strict.
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We repeat inductively and obtain a sequence

—1 -1 —1
h. .C h52.CJS2, hES.CJE3,

jsl ’
of certain I'-translates of elements of the set of branches, and sequences

(an)neN and (bn)neN

of the endpoints of the elements of the sequence (h_'.bp(Cj,, ))n. Then the se-
quence (ay,)y, is monotonically increasing and bounded from above by 7(+00),
and (by,),, is monotonically decreasing and bounded from below by v(—oc0). Let

a = lim a, and b:= lim b, .
n—oo n—oo
We fix a point on the geodesic segment (a, b)g, say z. Then each neighborhood
of z intersects infinitely many members of the family

{h;ﬂl.bp(stn) ‘ n e N} ,

which are pairwise disjoint. This contradicts Proposition 4.6. In turn, 7 inter-
sects 6

Without loss of generality we may suppose that 7 intersects C at time t = 0.
By Proposition 4.9(ii) there exists a unique lift 7 of 7 that intersects C at ¢ = 0.
Let v := 1/(0). Since 5 ¢ Van(X), we have {r(+00)} C Ry, and hence v € C;.
Using Lemma 4.18 we now obtain (CS1) with (¢, )nez = (ton(V))nez.

In order to establish (CS2) we let 4 be any geodesic on X and pick any repre-
senting geodesic v on H. We note that the intersection times of 7 with C and of y
with I'.C coincide (we picked geodesics with coinciding time parametrizations).
The local finiteness of I'.C, as guaranteed by Proposition 4.6, immediately implies
that the intersection times form a discrete subset of R. O

Corollary 4.37. For each p1 € My, x) the set Cy = 7w (Cst) is a strong cross

section for the geodesic flow ® on X with respect to j. Each geodesic in €(X) \
Van(X) intersects Cg; infinitely often in past and future.

Proof. The proof of Proposition 4.36 already establishes (CS1) for (Ajst since it
shows that any 7 € 6(X) \ Van(X) intersects Cg, not only C, at least once
and then infinitely often in past and future. Also the proof of (CS2) for ést can
be taken directly from the proof of Proposition 4.36. For (CS3) we let 7 be any
geodesic on X that intersects C at least once. Then 5 € %(X) \ Van(X) and
it can be seen as in the proof of Proposition 4.36 that 7 intersects ést infinitely
often in past and future. t

135



4.7. SLow TRANSFER OPERATORS

4.7 Slow Transfer Operators

Let A :== {1,...,N} and let C := {C; | j € A} be a set of branches for the
geodesic flow on X. Because of Proposition 4.28 we may assume that C is finitely
ramified. In this section we present the discrete dynamical system induced by C
and the associated family of transfer operators. These transfer operators are the
so-called slow transfer operators. The notion of fast transfer operators has been
discussed in Section 3.3. We refer to Section 1.11 for the general notion of transfer
operators we use.

As before we let C := [ JC denote the branch union and resume the notation
from (B3), (B7), and (4.4)-(4.5). For v € Cg we recall from (4.9)—(4.14) its system
of iterated sequences

[(tc,n())ns (ke (V))ns (8n (V)] -

The first return map R : Cgy — Cg (cf. (1.88)) is given by

{ Cj,St Ckc,l(y)75t
,st

gi‘c. —1 A7
v — gealv) y(tea(v))

J

for any j € A. In order to present the discrete dynamical system induced by C, as
defined at the end of Section 1.11, we set for any j,k € Aand g € G(j, k),

Dj,k,g = g°Ik:,st X {j} .

By (B7),

U U Djgg= U Tise x {5}

J,k€A geG(4,k) JEA
Then

D= Lis x {4}

jeA
is the domain of the induced discrete dynamical system (D, F'), where the map
F: D — D decomposes into the submaps (local bijections)

. { g‘Ik,st X {j} — Ik,st X {k}
kg "

Flp.
» (2,5)  — (g7 lak)

J

for j,k € Aand g € G(j, k). One easily checks that the diagram

R
Cst — Cst

Pl

LD
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indeed commutes, where the surjection ¢: Cg — D is piecewise defined by
L]C]._’St: v (fyy(—l—oo),j) ,

with j € A.
Let V be a finite-dimensional complex vector space and let

Fet(D; V) = {f: D — V| f function}

denote the space of V-valued functions on D. Further let x: I' — GL(V) be a
representation of I' on V. We define an associated weight function w on D by

W|Dj’k7g: (.’E,]) — X(g_l) )

forany j,k € A and g € G(j, k). The (slow) transfer operator L4 with parameter
s € C and weight w associated to the map F is (initially only formally) defined
as an operator on Fct(D; V') by

Lsf((z,k)) = Yo Wl |F i) f(y.5),

() eF 1 ((2,k))

for any (z,k) € D and f € Fct(D; V). The space of functions which is used as
domain of the transfer operator and on which it then defines an actual operator
depends a lot on the intended application. It typically is a subset of Fct(D; V)
or a closely related space of functions with complex domains. For the transfer-
operator based interpretations of Laplace eigenfunctions, which motivate the re-
search culminating in this thesis and which we briefly surveyed in Section 1.12,
the function spaces of choice are subspaces of Fct(V'; D) consisting of highly reg-
ular functions. We omit any further discussion and refer to [44, 57, 56, 60, 15, 64]
for details. However, we note that if all transition sets G(j,k), j,k € A, are
finite, which we may assume by virtue of Proposition 4.28, then L, is already
well-defined as an operator on Fct(D; V). For infinite transition sets, questions
of convergence would need to be considered.

We end this section with two examples, the first of which illustrating the struc-
ture of the slow transfer operators in the case of Schottky surfaces. For other
Fuchsian groups, the structure is similar. For Schottky surfaces, transfer opera-
tors are classically defined using a Koebe—Morse coding for the geodesic flow (see,
e.g., [10]). This example also shows that the approach via sets of branches repro-
duces the classical transfer operators and generalizes the classical construction.

Example 4.38. Let I's be a Schottky group with Schottky data
(r,{D+;};—1, {s+;}j=1), and recall the set of branches {Cii,...,Cyr}
from Example 4.3. Let
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For j € {%1,...,4r} consider the subspace A%(D;) of L?(D;) of holomorphic
functions (Bergman space with p = 2). Then the direct sum

T s
1 @ AD) & D (D
j=1 k=1
is a Hilbert space. If we identify functions f € H with the function vectors

PBriePre, with fie AD), le{£l,...,+r},

j=1 k=1

then the slow transfer operator for Cg with parameter s € C and constant
weight w = 1 (trivial representation) takes the form

Ts(s1) Ts(s2) Ts(8r) 0 Ts(5-2) Ts(S—r)
Ts<31) 78(52) Ts(sr) 7-5(5—1) 0 TS(S—T‘)
o TS('Sl) 75(192) Ts(sr) Ts(s—1) Ts(s—2) 0
s 0 7s(s2) Ts(sr) Ts(s—1) Ts(5-2) Ts(s_p) |’
Ts(s1) 0 To(sr) To(s—1) Te(s_2) 7s(5-r)
n(s1) To(s) o 0 m(sa) me(sa) ... a(s)
where

(g7 f (@) = (¢'(2))" f(g-x)
for f:U—>C,xelU,gels.

Example 4.39. Recall the family of Fuchsian groups {I's » } e {1},1>2 from Ex-
ample 1.46 and the two sets of branches Cp and Cp, from Example 2.11 and Ex-
ample 4.34. As in Example 4.38 above, we use the trivial representation realized
by the constant weight w = 1, and the left action of I, y on Fct(D; V) realized
by 7s. Note that 75(id) = id. For i = 1, ..., 8 we write

fi::fO:H-Di7

where D; := I; o x {i}, with I1, ..., Iy as in Example 2.11, and where 1;; denotes
the characteristic function of a set M. Then the map

{Fct(D;V) — @° | Fct(D;; V)
f — (fr fe) T

is an isomorphism. Utilizing this, the transfer operators L for Cp and L/, for Cp,
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with parameter s € C, Re s >> 1, admit the matrix representations

and

O = O o O O O o = O

o O O O

@)

_ o O =

)
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Ts(t5 )

0
0

o O O O

o O O

o = O O

0
0
0

[an}

O = O O

7s(

0 0
0 0
9% 0
0 0
0 0
0 Ts(t)\)
0 0
95 0

0

0

0

0

0
Ts(tkga_l)

0

0




Chapter 5

Algorithms for Branch
Reduction

Let I' be a geometrically finite Fuchsian group containing hyperbolic elements.
Denote by X = I'N\H the associated hyperbolic orbisurface and assume that X
has hyperbolic ends. Let N € N, A == {1,..., N}, and let

C={C;jlje A}

be a set of branches for the geodesic flow on X in the sense of Definition 4.1. Be-
cause of the Propositions 4.28 and 4.35 we may assume that C is finitely ramified,
admissible, and weakly non-collapsing. Denote by C = | J C the branch union and
let C := 7(C), where m: SH — SX is the canonical quotient map from (1.32).

In general, the cross section C and the set of branches C do not yet give rise to
a strict transfer operator approach. More precisely, using the notation from Sec-
tion 3.1, if we attempt to use the family of intervals {I,, },c 4 as part of a structure
tuple and form, for a,b € A, the sets Py, Cyp and {gp}pep, , of elements of I
such that the associated discrete dynamical system (D, F') (see the discussion
right after Property 1) coincides with the discrete dynamical system associated
to C (see Section 4.7), then Properties 1-5 from Section 3.1 are typically not satis-
fied. For the associated transfer operators that means that we typically cannot find
a Banach space on which they act as nuclear operators of order 0 and have a well-
defined Fredholm determinant (even ignoring the requirement that it should be
related to the Selberg zeta function). This issue, if present, originates from (D, F")
not being uniformly expanding. The non-uniform expansiveness of (D, F') can
have the following two reasons:

(a) The identity element of I" is among the action elements of F" for some
n € N. That is, some iterate of the map F" has a submap of the form

{ Tost x {b} — T x {a}
(z,b) — (z,a) ’
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for some subinterval I, ¢ of I, st.

(b) Some iterate of the map F" has a submap expressing the action of a parabolic
element of I, and the fixed point of this element is an inexhaustible source
for iterations. That is, there exists n € N such that /'™ has a submap con-
jugate to

{ (1,00)g x {a} — (0,00)¢ x {a}

(z,a) — (x—1,a)

Then any iterate of F'"* has a submap of this form, and hence a “big part” in
which no expansion takes place.

For the set of branches C, issue (a) means that C contains a branch which con-
tains an element, say v, such that the associated geodesic v, intersects another
branch in C. Issue (b) is present if X has cusps. The cross section C detects ev-
ery winding of a geodesic around a cusp as a separate event, and hence the set
of branches C and the associated discrete dynamical system (D, F') encode each
single one of them separately.

To overcome these issues, we require an appropriate acceleration of the dy-
namics, which translates to a reduction procedure of the branches. This will be
done in three separate steps, which we call branch reduction, identity elimination
and cuspidal acceleration. We start with the branch reduction in Section 5.1. The
identity elimination is discussed in Section 5.2, the cuspidal acceleration in Sec-
tion 5.3. In Section 5.4 we will then study the structure of the so called accelerated
system that emerges, and thereby lay the groundwork for the explicit definition
of the structure tuple for the strict transfer operator approach.

5.1 Branch Reduction

The branch reduction, which we present in this section (Algorithms 5.4 and 5.5),
aims at simplifying the constructions by reducing the number of branches to a
“minimum.” Albeit not being absolutely necessary, in many cases the branch re-
duction considerably reduces the complexity of the situation. In addition, it pro-
vides several intermediate “reduced slow transfer operator families,” which are
typically useful for other applications as well.

5.1.1 Return Graphs

We associate to the set of branches C a directed graph RG with weighted edges,
called return graph, which encodes the next intersection properties among the
branches in C in just the right way for an efficient presentation and discussion of
the branch reduction algorithm. In contrast to the branch trees from Section 4.5,
the return graph is a weighted, directed graph with nodes in A. Hence, we obtain
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5.1. BrRaNncH REDUCTION

one graph encapsulating the whole dynamic of transition within a given set of
branches.
The return graph RG associated to C is defined as follows:

« The set of nodes or vertices of RG is A.

+ The set of edges of RG from the node j to the node k£ is bijective to the
forward transition set G(j, k). For each g € G(7, k), the graph RG contains
an edge from j to k with weight g.

Let j, k be nodes of RG. We call k a successor of j if RG has an edge from j

to k, and a predecessor of j if RG has an edge from k to j. For an edge from j to k
weighted by g we will often write j %k A path in RG of length m € Nis a
sequence of consecutive edges of the form

.9 g gm .

o = j1 > o (5.1)
If j = jo, then we also call this path a cycle. See Example 5.3 and the Figures 12
and 13 below for an example of a return graph.

We recall from Proposition 4.15(iii) that for any j, k € A, the forward transi-
tion set is

G(j.k)={geTl ‘ v € Cj: v, (tE(v)) € g.C} .

Its elements determine exactly the translates of the branch Cy on which the next
intersections of geodesics starting on C; are located (see Section 4.3). We consider
weights of paths as multiplicative. In other words, the path

j—=k— (5.2)

gives rise to the total weight gh. Any path in RG of the form as in (5.2) indicates
that there is (at least) one geodesic starting on the branch Cj, traversing g. Cy,
and then intersecting gh. Cy, and not intersecting any other translates of branches
inbetween. The following lemma shows that this interpretation of paths is indeed
correct, and that all paths in RG arise in this way. We emphasize that the vector v
in the second part of the following lemma is not necessarily unique.

Lemma 5.1. The paths in RG are fully characterized by the systems of iterated
sequences from Section 4.3 of the elements in C. More precisely:

(i) Forallv € Cg and alln € N, the return graph RG contains the path

gca(v) gc,2(v) gc,n (V)
keo(v) —— ke (v) —— .. " ke (V).

(ii) Letm € N and suppose that

g1 g2 gm—1 gm
ko — ki — ... — kp1—> km
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is a path in the return graph RG. Then there exists v € Cy,  such that

ki =kc,;(v)  for j€{0,...,m}

and
9j = gc;(v) for je{1,...,m}.

Proof. To prove (i) let v € Cg; and set vy, == 7, (tc,m(v)) for all m € Ny (recall
from Section 4.3 that tc ,,, () is well-defined for all m € Ny). For each m € Ny we
have gc 1 (vm) € G(kc,o(Vm), kc,1(vm)). Hence, the return graph RG contains
the edge

gc,1(Vm)
ke,0(Vm) ———> k1 (Vi) - (5.3)

Since
gC,l(Vm) = gC,m-i—l(V) , and kC,L(Vm) = kC,m+L(V) ,

for . € {0,1}, the edge in (5.3) equals

gc,m+1(V)
ke (1Y)~ ka1 (V).

Letting m run through {0,...,n — 1}, we now obtain that the path

gc,1(v) gc,2(v) gen(v)
kc,o(v) LA ci(v) L cn(v)

is contained in RG. This proves (i).
We now show (ii). Let j € {1,...,m}. Since

95
kj—1 = k;

is an edge in RG by hypothesis, we have g; € G(kj_1, k). Lemma 4.12 shows
g95-Hy(kj) & Hy (k1)

and hence
gj’ij,St g ij_l,st . (54)

Set g == g1 - - - gm- Applying repeatedly these inclusion considerations we obtain

g'Ikm,st C Ik:g,st .

We pick
(x,y) € g'Ikm,st X Jko,st-
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By (B5) and Remark 4.11 we find (a unique) v € Cy, & such that

(z,9) = (T(+00), 7 (—00)) .

In order to show that v satisfies the claimed properties we proceed inductively.
From g.Iy, st € g1-Ik, st (Which is seen by iteration of (5.4)), we obtain that
Y (400) € g1.1), . From this and g1 € G(ko, k1) it follows that

Y (tE 1)) € 1-Chy st
by Corollary 4.17 and Remark 4.11. Then, by definition,
ko =kco(v), ki=kci(v) and g1 =gc1(v).
Suppose now that for some jy € {2,...,m — 1} we have already established that

'yl’,(taj(u)) € 9gj- 91-Chy st forj e {1,...,j0— 1}

as well as

kj =kc;(v) forj € {0,...,50 — 1}
and

9 =gc,;(v) forje{l,...,50 — 1}.
Then

vi=gyle '9;)171"}’1//(155]'0_1(’/)) € Chyy 1 st
and the associated geodesic 7 is given by
ol(t) =g7 "' -g]-_ol,l-%(t + tajofl(y)) forallt € R.
Since

Y (+00) € g1+ Gjo-Ik;, st 5

90
we have

Yo(400) = g1+ gty (+00) € o st
Together with g;, € G(kj,—1, kj,) this yields that

V5(tE1 (7)) € 5" Ciryg st »
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using Corollary 4.17 and Remark 4.11. Therefore,

kjo—1 = kco(V) = ke jo-1(v),
kj, = ke (V) = ke (v),
= gc

9jo = 8c,1(V) Jo()
as well as
Vo (tE @) = 7,5, ) -
This completes the proof of (ii). O

The return graph RG is highly connected and weighted paths are essentially
unique as the following proposition proves. These properties are crucial for the
proof of the correctness of the branch reduction algorithm presented below (Al-
gorithms 5.4 and 5.5). See Proposition 5.7.

Proposition 5.2. The paths in the return graph RG obey the following structures:
(i) Every node in RG is contained in a cycle.

(ii) Let j,k € A and suppose that

.91 g2 Im—1 9gm

J—=pL—= ... —>pp-1—>k
and

. h1 h2 hnfl ]‘Ln

J—q —...—>qp1 —k

are paths in RG such that g192 - - - gm = h1ha--- hy,. Then m = n and for
allie{l,....m—1}andl € {1,...,m} we havep; = g; and go = hy.

(iii) Let j,k € A. IfRG contains a path from j to k, then it also contains a path
fromk toj.

Proof. In order to prove (i) we fix j € A. Because of (B1) and Remark 4.11 we
find v € C;« such that 7, := 7(y,) is a periodic geodesic on X. Thus, we find
to € (0,00) such that 4],(t9) = 7,,(0). Consequently, n := 7, (t9) € g.C; for
some g € I', by Proposition 4.9. Proposition 4.19 now shows that there exists a
unique n € N (we note that ¢y > 0) such that ¢y = tc,(v), j = kcn(v) and
g=2gc1(v)---gcn(v). By Lemma 5.1(i), RG contains the path

, 801 (V) gc2()  gon®) ,
j=keov) ——s kea(v) —— ... e ke (v) =4

Hence, j is contained in a cycle of RG, which establishes (i).
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For the proof of (ii) we pick, as seen to be possible by Lemma 5.1(ii), elements
v1,v9 € Cjg such that the path generated by v is

. g1 g2 gm—1 9m
Jj—p—>...——>py_1—k

and the path generated by v is

‘hl hg hn—l hn
Joeq = = g1 k.

This means that
J =kco(v1) = kco(v2)

and
pe =kcy(v1) forle{l,...,m—1}
ge =gce(v1) forle{l,...,m}
@ =kcy(rn) forlte{l,...,n—1}
he =gcu(va) forle{l,...,n}.
Let

g::gl"'gm:hl"'hn-

By combining Lemma 5.1, Corollary 4.17 (recall (4.12)), and (B7) we find, consid-
ering v,

g Iy =91 gm I S g1...gm-1-Ip,,_, € ... € g192.1p, € g1.1, C I;.
Considering 15, we obtain
gl =h1--hpdy Chy--hp_1dy, | C...C hihody, C hidy CI;.

The disjointness of the unions in (B7) yields that g1.1,, N h1.1;, = @ whenever
(91,p1) # (h1,q1). However, since g;.1p, and hq.I,, both contain g.Ij (which is
nonempty), we obtain (g1,p1) = (h1,q1). Applying this argument iteratively,
we find n = m, as well as gy = hy, pi = ¢; forall £ € {1,...,n} and all
ie{l,...,n—1}

In order to prove (iii) let

.91 92 Im—1 9m
J—>p1—>...—>pm-1—>k (5.5)

be a path in the return graph RG of length m € N. Lemma 5.1(ii) shows that there
exists v € Cj g such that the first m elements of the system of iterated sequences
of v produce the path (5.5). The choice of v is not unique. In what follows, we
show that v can be chosen such that 7, is a periodic geodesic on X.
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As in the proof of (ii) we see that

g1 gm'Ik Cg1-- ‘gm—l'—[pm,1 c...C gng'Ipz - gl‘Ipl - I] . (56)

Using Remark 4.2(d), we then obtain

91 Gmede 291 Gm—1+dpy 1 2 - 2 G1G2-Ipy 2 g1+dp, 2 i (5.7)

Let g := g1+ gm and recall from (1.41) the set F(X) of endpoint pairs of rep-
resentatives of periodic geodesics on X. Since F/(X) is dense in A(I') x A(T") by
virtue of Proposition (1.15) and Ry, € A(T"), we find

(:L',y) € g'Ik,st X Jj,st-

Let v be a geodesic on H with (y(4+00),v(—00)) = (x,y). By (B5) and Re-
mark 4.11, y intersects C s, say in v. Iterated application of Corollary 4.17 shows
that v produces the path (5.5), i.e.,

. g1=gc,1(v) g2=gc,2(vV)
J=kcov) ———p=gcalv) — ...

Im—1=8C,m— (v) nggC,m(V)
e Pt = ket (V) —" k= kem(v) -

Since 7, represents a periodic geodesic on X as being a reparametrization of y, the
system of iterated sequences of v is periodic and hence the (infinite) path in RG
determined by v (see Lemma 5.1) contains a subpath from & to j. This completes
the proof. O

Example 5.3. Recall the family of Fuchsian groups {I'; » } ;e {1},1>2 from Ex-
ample 1.46 and its sets of branches Cp from Example 2.11 and Cj, from Exam-
ple 4.34. The return graphs associated to Cp and to Cp, can easily be read off from
Figure 5 and are given in Figures 12 and 13, respectively. In either graph the “dou-
ble edge” from 3 to 4 is supposed to indicate a multitude of edges weighted by g7,
forn =0,...,0 — 2, respectively.

5.1.2 Algorithms for Branch Reduction

We recall that C = {Cy,...,Cy} is a (fixed, given) set of branches for the
geodesic flow on X, and that C = | JC denotes its branch union and C = (C).
We set

Ag=A={1,...,N}, Go(j,k) =G(j,k)

forall j, k € Ag, and

Ho(@ = {k € Ag ‘ gg(ﬁ, k) 7& @}
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Figure 12: The return graph RG for the set of branches Cp for I'; ).

for all ¢ € Ap. In what follows, we present the branch reduction algorithm, split
into the two Algorithms 5.4 and 5.5, that reduces the return graph by construct-
ing a (finite) cascade of subsets A, of A and related sets H,(j) and G, (3, k), for
r = 1,2,..., until we have achieved that j € H,(j) for all j € A,. The al-
gorithm includes choices and, depending on the group I, the cardinality of the
set of remaining nodes might vary for different choices. (We refrain from fixing
these choices in any artificial way and hence slightly abuse the notion of “algo-
rithm” here.) This phenomenon potentially leads to different families of transfer
operators, reflecting the inherent ambiguity of discretization of flows on quotient
spaces. Fast transfer operators with the same spectral parameter arising from dif-
ferent such choices need not be mutually conjugate. However, their Fredholm de-
terminants will coincide, as is guaranteed by the combination of the Theorems 3.1
and 6.1 below, and hence the 1-eigenfunctions of the two families of fast transfer
operators are closely linked. Therefore, we observe independence of these choices
in this aspect.

As mentioned, the branch reduction algorithm naturally splits into two stand-
alone parts, each of which we present below as separate procedures. The first
part, presented as Algorithm 5.4, removes those nodes of the return graph that
only have a single outgoing edge and the edge does not loop back to the same
node. The second part, presented as Algorithm 5.5, successively deletes nodes
which are not among their own successors.

Algorithm 5.4 (Branch reduction, part I). The index r starts at 1.
Stepr. Set

Ry ={j€ Ar1| #H,-1(j) = LA Hy—1(§) # {5} AN #Gr—1(4, ) = 1}
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Figure 13: The return graph RGy for the set of branches C}, for T'; .

If R, = &, then the algorithm terminates. Otherwise choose j € R, set

Ar = Arfl \ {]} ’

and define for all i, k € A,

Go(ik) =G, )U | U {99}

91€Gr—1(4,5) 92€Gr—-1(j,k)

and

H, (i) ={le A |G-(i,0) # @} .
Carry out Step r+1. &

In each step of Algorithm 5.4 a node, say j, is chosen and deleted (in the sense
that j € A,_1 but j ¢ A,). Subsequently, each pair of an incoming edge and an
outgoing edge of j is combined to a new edge, thereby “bridging” above j. More
precisely, suppose that there is an edge from i to j weighted by g; and an edge
from j to k weighted by g2 for some i,k € A,_1 \ {j} and g1,¢92 € T, then
we combine these to an edge from ¢ to k& weighted by g1g2. We note that if, for
Jk € Ar_1, wehave k ¢ H,_1(j), then G,_1(j, k) = @ and hence G, (i, k) =
Gr—1(i, k) foralli € A,.

Let k1 € Ng be the unique number for which R, # @ but R,;,11 = @. In
other words, k1 + 1 is the step in which Algorithm 5.4 terminates. (See Propo-
sition 5.7 for its existence.) Then Algorithm 5.4 constructed the sets A,, H,(j),
and G,(j, k) forall r € {1,...,Kk1} and j,k € A,. (We emphasize that in the
case k1 = 0, Algorithm 5.4 is void and does not construct any new sets.)

The second part of the branch reduction algorithm, Algorithm 5.5 below, now
aims at reducing the number of branches even further, by successively deleting
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all nodes that are not themselves among their respective successors. In form, it is
almost identical to Algorithm 5.4. The only but crucial difference is the base set
from which the nodes are chosen in each step.

Algorithm 5.5 (Branch reduction, part I). The index r starts at k.
Stepr. Define P, .= {j € A,_1 | j ¢ Hy—1(j)}. If P, = &, the algorithm termi-
nates. Otherwise choose j € P,, set

A=A 1\ {J},

and define for all i, k € A,

G(i,k) = Gra(ik)u | U {99}

91€Gr—1(1,5) 92€Gr—1(j,k)

and

H (i) ={te€ A, | G-(i,0) # &} .
Carry out Step r+1. &

Let ko € Ng be defined analogously to x; but with respect to Algorithm 5.5.
That is, k2 + 1 shall be the step in which Algorithm 5.5 terminates. In other
words, k2 is the unique number larger than or equal to x; such that P, # @ but
P,.,+1 = <. In Proposition 5.7 we will show that x is indeed well-defined.

For each r € {1,..., Ko} we define the return graph of level r, RG,, analo-
gously to RGy = RG, with A, being the set of nodes, and edges and edge weights
resulting from the transition sets G, (j, k), j, k € A,. We emphasize that it may
happen that Algorithm 5.4 or 5.5 is void, or even both, and consequently k1 = 0
or Ko = K1, or both. See Example 5.6.

Example 5.6. Consider the modular group I' = PSLy(Z). The two elements

0 1 11
5::Ssﬂ:[_1 0] and t::tlz[o 1]

2

form a complete set of generators for I'. A well-known cross section for the
geodesic flow on the modular surface '\ H is given by the representative

Cy1 = {v € SH | bp(v) € (0,00)m, 7 (+0) € (0, +o0)r}

(see Figure 14). The set {C; } has the structure of a set of branches. From Figure 14
we read off that the return graph RG of I' w.r.t. {C;} consists solely of the two
loops

-1
151 and 12551,

150



5.1. BrRaNncH REDUCTION

Therefore, Hy(1) = {1} and the sets R; and P, from the Algorithms 5.4 and 5.5
are empty. Consequently, we find 0 = k1 = ka.

Cq t.Cq

Figure 14: A fundamental domain for the modular group alongside the represen-
tative C; for a cross section on the modular surface PSLy(Z)\ H.

With these preparations we can now show that Algorithms 5.4 and 5.5 are
indeed correct and provide sets of branches. For any r € {0,...,k2} we set

Cr={Cjlje A}

and
o =Je=J G-
JEA,

Proposition 5.7. Algorithms 5.4 and 5.5 terminate after finitely many steps with-
out reducing the set of nodes to the empty set. Further, for eachr € {0, ..., ka} the
familyC, is a set of branches for the geodesic flow on X. The family {G,(j,k)}; kea,
is the family of forward transition sets in (B7). IfCy is admissible, then C, is admis-
sible as well.

Proof. In each step of Algorithms 5.4 and 5.5, one element of the set Ag gets elim-
inated, resulting in the decreasing cascade of subsets

.G A3C Ay G A G A

Therefore, the number of steps in both algorithms is bounded from above by
#Ap < +o00. In turn, both algorithms terminate (after finitely many steps) and
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hence x1 and k9 are well-defined. We first show that A, # @. If k1 = 0, then
Ax, = Ay # 2. Thus, suppose now that x; > 1. To seek a contradiction, we
assume that A, = @. Thus A, _; contains exactly one elements, say jo. Then
either #H,, _1(jo) = 1 and hence Hy, _1(jo) = {jo}, or #Hy,—1(jo) = 0 and
hence #G,—1(Jjo, jo) = 0. In either case, R, = &. This contradicts the defini-
tion of k1, and hence A, # @. We now show that A,, # @. If ko = Ky, then
Ay, = Ay, # 9. Thus, we suppose now that k2 > k1. As before, to seek a con-
tradiction, we assume that A, = @. Again, A,,_1 contains exactly one element,
say kg. By Proposition 5.2 we find a cycle of RGq that contains k. In each step
of the node-elimination-processes of Algorithms 5.4 and 5.5, at most one node
(other than ko) of this cycle gets eliminated. If an elimination of a node in the
cycle happens, then the two adjacent nodes of the eliminated node in the cycle
get connected by a new edge that combines the two old ones. Thus, the cycle is
“preserved” but shortened and has changed weights. Thus, after the step k2 — 1,
the node ky is contained in a cycle, which is just a loop at kg. In turn, P, = .
This contradicts the definition of k9. Hence, A,, # @.

We now show that the families C, are sets of branches, for any choice of r €
{0,...,ka}. Letr € {0, ..., ka}. Then the family C, = {C; | j € A,} is a sub-
set of the original set of branches C = Cy = {Cy,...,Cxn}. Hence most of the
properties that we impose for a set of branches are immediate from those of C.
Indeed, the only properties which remain to be proven for C, are (B4) and (B7),
where for the former we take advantage of Proposition 4.8 and prove (Bpe,) in-
stead. For both properties we proceed by an inductive argument and note that
they are already known to be valid for Cy = C.

Let 7 € {0,...,k2 — 1} be such that (B7) is already established for C, by
using, for all j, k € A,, the set G,.(j, k) for the forward transition set in (B7). Let
J € Ar+1 and suppose that A, \ A,4+1 = {p}. If p ¢ H,(j), then

gr—‘rl(j’ k) = gr(j7 k)

for all k € H,1(j). In this case, (B7a) for r and r + 1 are identical statements
for the considered index j and hence, (B7a) holds for r + 1. If p € H,.(j), then

Hr1(j) = (Hr(5) \ {p}) U H:(p),

where necessarily p ¢ H,(p). Taking advantage of the inductive hypothesis for
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the first equality below, we find

La= U U 9«

keH, () g€Gr(4,k)

= U U g-Ik,st U U h.n ,st

keHr(5)\{p} 9€G-(4:k) he€Gr(5,p)

- U U snsv U U U hwl

keH-(5)\{p} 9€Gr(5,k) hegr(4,p) ¢€Hr(p) wEGr(p,q)

= U U Q'Ik,st U U U U hw-Iq,st

ke Hr(5)\{r} 9€G-(j,k) q€H,(p) RE€Gr(4,p) wEG(p,q)

= U U g°Ik:,st .

k€Hr41(5) 9€Gr+1(5,k)

Since C, is known to satisfy (B7), the unions in all steps are disjoint. This estab-
lishes the second part of (B7a) for C,;. The first part as well as (B7c) follow
analogously. Further, (B7b) is immediate by the construction of C, 1.

Now letr € {0,..., k2 —1} be such that (Bp,,) is established for C,. Together
with the previous discussion this then already shows that C, is a set of branches.
Suppose that 7 is a periodic geodesic on X. By hypothesis, 7 has a lift to H which
intersects C("). In order to show (Bper) for Cy41, it remains to show that there
is also such a lift that intersects C(" 1), To seek a contradiction, we assume that
all lifts of 7 intersect I'.C(") only on I'. C,. Then Proposition 4.9 implies that
p € H,(p), which contradicts p € A, \ 4,41 (note that C, is already known to be
a set of branches). In turn, C, 1 satisfies (Bpe;).

Finally, the claim that the set of branches C, retains admissibility from Cy for
all r € {0,..., Ko} follows immediately from A, C A, for this implies

U L € U List- O

JEA, JEA

Example 5.8. Recall the family of Fuchsian groups {I's x }sem {13,152 from Ex-
ample 1.46 and its sets of branches Cp from Example 2.11 and Cp from Exam-
ple 4.34. A complete reduction procedure for I'; ) takes 6 steps in total and leads
to the return graph RGg depicted in Figure 15. In this example, it so happens that
every possible sequence of choices for the Algorithms 5.4 and 5.5 leads to the same
return graph RGg, regardless of whether one starts out with Cp or with C,. The
arising set of branches {Cp 2, Cp 7} is easily seen to be non-collapsing in either
case, for {2, 7} = Diy;.

Example 5.8 shows that, for some configurations, a (complete) branch reduc-
tion renders a formerly not weakly non-collapsing set of branches into a weakly
non-collapsing one. However, this is not always the case. Conversely, the weakly
non-collapsing property is retained via branch reduction, as the following result
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—1 _
T 9oty ggtAl

9o tA gty ty !

Figure 15: The maximally reduced return graph RGg for Cp. The double edges
indicate multiple edges forn = 1,...,0 — 1, respectively.

shows. It further shows that finiteness of ramification is preserved.
Proposition 5.9. Letr € {0,...,r2}.

(i) If the set of branches C is weakly non-collapsing, then C, is weakly non-
collapsing.

(ii) If the set of branches C is finitely ramified, then C, is finitely ramified.
Proof. Letr € {0,...,ko} andlet j € A, \ A,q1. Let i,k € Arp1, g1 € Gr(4,9),
and g2 € G,(J, k), 1. e., the return graph RG,. contains the path

.9 92
i— ] — k.

By construction, the return graph RG, 1 contains the path

. 9192
1 — k.

Now, if C, is weakly non-collapsing, then g; g2 cannot be the identity, unless g; =
g2 = id. But this already implies that C, is weakly non-collapsing, for all paths
not containing j are unaffected. This yields (i).

If X has a no cusps, then (ii) holds by Lemma 4.23. We now suppose that X
has cusps, that C = Cj is finitely ramified and that k3 > 1. It suffices to show that
C; is finitely ramified as the remaining claims then follow immediately by finite
induction. By Proposition 4.26 it further suffices to show that each cusp of X is
attached to C;.

Let cbe a cusp of X, represented by ¢ € R. By hypothesis and Proposition 4.26,
¢ is attached to Cy. Thus,

I(Attey(c) = |J I,
(4:h)EAttcy ()

where Atte,(c) == {(j,h) € A9 x T'| ¢ € h.gbp(Cj;)}, is a neighborhood of ¢
in R. If Atte, (¢) = Atte,(c), then € is also attached to C;. It remains to consider
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the case that Atte, (¢) # Attc,(c). Then there exists (jo, h) € Atte,(c) that is
not contained in Attc, (¢). The index jj is the (unique) node of RGq that gets
eliminated in Algorithm 5.4 or 5.5. Let 2 be the unique endpoint of bp(Cj, ), and
hence of I,, such that h.zg = c. Since each cusp representative is an accumu-

lation point of R, xq is also an endpoint of [}, 4. By (B7a) we find a (unique)
pair (k, g) € Ao x Go(jo, k) such that hg.Ij s C h.lj, & and c is an endpoint of
both, hg.I} g and hg.bp(Cy). It follows that

((Atte, () \ ITy) U g Ty

is also a neighborhood of ¢ in R. Further, k # jo because Algorithms 5.4 and 5.5
require jo ¢ Ho(jo) for elimination of jy. Therefore, (k, hg) € Attc, (c). Sub-
stituting each appearance of jj in Attc,(c) in this way we obtain Attc, (¢) and
find that I(Attc, (c)) is a neighborhood of ¢ in R. Thus, ¢ is attached to C;. This
shows (ii). O

Example 5.10. The branch reduction algorithm facilitates a simple case study
about how perturbations by elliptic transformations affect transfer operators.
Recall the Schottky group I's and its Schottky data and set of branches,

(7’, {D;, D_;}i_; {55, s,j}gzl) and Cs:={Ciy,...,Cyp},

from Example 4.3. Recall further its family of transfer operators {L;}scc from
Example 4.38. From this family it can be seen that the set of branches Cg is al-
ready minimal in terms of the branch reduction algorithm, for every entry on the
diagonal of the transfer operator £, is non-zero (i. e., not the operator mapping to
the zero function) for every s € C, implying that every node in the return graph
is its own successor.

We construct a new group I's , from I'g by introducing a single elliptic point.
This results in a single conical singularity in the orbit space, thus rendering it a
orbisurface rather than a proper hyperbolic surface. We do so by expanding the
set of generators {s; }7]7:1 by an elliptic transformation sy chosen as follows: By
assumption, the sets D; are mutually disjoint open Euclidean disks in C. Choose
indices j, k € {£1,...,£r} so that D, and Dy, are adjacent, that is, for x; € D;
and x), € Dy such that |z — xx| equals the (Euclidean) distance of D; and Dy,
(then, necessarily, z;, 2, € R) the interval (min{z;, 21}, max{z;, z}}) does not
intersect any disk D;, i € {£1,...,£r}. Without loss of generality we may as-
sume z; < x). Letoc € N\{1} andlet s € PSLy(RR) be an elliptic transformation
of order o such that

Re(I(s0)) URe(I(sq ")) (2, 7).
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This is always feasible. For instance, let

VTk—Tj Titx
¢ = 2 V kT

0 2
A/ Tk—Tj

and let g, be as in Example 1.46. Then
_ -1
S0=0 go ¢

fulfills these conditions. Let

Fso =H\ ( J(D; uDZ;) uintI(sp) U int 1(301)) :
j=1

Then Fs , is a convex polygon in H with side-pairing {s_,, ..., s, } C PSLy(R)
fulfilling all demands of the Poincaré theorem (Proposition 1.36). Hence,

FS,O’ = (So, ey Sy ‘sg = 1d>

is a geometrically finite Fuchsian group. We call I's , a perturbed Schottky group
of order o.

We can further augment the set of branches Cg for I's in order to obtain a set of
branches for I's . To that end, recall that Iy := Re(I(so))URe(I(s0) ') is an open
interval in R by virtue of Lemma 1.21(ii), let ,y € R be such that (z,y) = I,
set By = (z,y)m, and define

Co = {I/ € SH ‘ bp(l/) € fo, ’7y(+OO) S Io} .

Then one checks that Cs , .= {C_,, ..., C,} is a set of branches for the geodesic
flow on the orbit space of I's . Indeed, one finds

_]_ ].—U . .
Go(0,7) = { {5 ’”@"SO } gj ig and  Go(j,0) = {Sj_l}a
forall j € {£1,...,£r}. Therefore, contrary to the set of branches Cg, the set of
branches Cs , can be reduced, for Cg turns out to be dispensable. Algorithm 5.5
reduces Cs , back down to Cs, which, because of Proposition 5.7, is thus a set of
branches for I's , as well, albeit with a different family of transition sets. These
transition sets now take the form

—-1_—n
{Sj 80

{sj_lsam’mzl,...,a—l} ifk=—j

n:(),...,a—l} ik —j
gl(]ak):
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Hence, with the same setup and notations as in Example 4.38, the transfer operator
with parameter s € C for I's , now takes the form

Ss(s1) Ss(s2) ... Ss(sr) Ts(s—1) Ss(s—2) ... Ss(s—y)
Ss(s1) Ss(s2) ... Ss(sr) Ss(s—1) Ts(s—2) ... Ss(s—y)
o Ss(s1)  Ss(s2) Ss(sr) Ss(s—1) Ss(s—2) Ts(s—p)
B Ts(sl) 55(52) SS(ST) Ss(s—l) 55(5—2) Ss(s—r) ’
Ss(s1) Ts(s2) Ss(sr) Ss(s—1) Ss(s-2) Ss(s-r)
Ss(s1)  Ss(s2) To(sr) Ss(s—1) Ss(s—2) Ss(s—r)
where
o—1 o—1
Ss(sj) = Z Ts(sp'sj) and Ty(sj) = Ts(5055)
m=0 n=1

forje{£1,...,£r}.

5.2 Identity Elimination and Reduced Sets of
Branches

In order to fulfill all requirements of a strict transfer operator approach, it is es-
sential to ensure a unique coding of periodic geodesics in terms of the chosen set
of generators for the underlying Fuchsian group. This property, which we call
the non-collapsing property, is codified in (B9). In terms of the return graph of the
considered set of branches, it states that the weights along edge sequences never
combine to the identity. Sets of branches that initially do not satisfy (B9) can be
remodeled via a reduction procedure that removes such identity transformations
from the system. In this section we present, discuss, and prove such a procedure,
which we call identity elimination.

Let C = {Cy,...,Cn} be a set of branches for the geodesic flow on X. The
Propositions 4.35 and 5.9(i) allow us to suppose C to be weakly non-collapsing
(see (Bco1)) without shrinking the realm of applicability of the identity elimina-
tion algorithm. This additional hypothesis eliminates some technical subleties. It
assures that all identity transformations present in the system are visible to the
algorithm as no identities are concealed by I'-copies of C.

Let ko, Ar, Hr(j), and G, (j, k) for j,k € Ay and r € {1,...,K2} be as in
Section 5.1. The procedure discussed in this section is uniform in the “level of
reduction,” meaning uniform with respect to r € {0,..., k2}. For that reason we
omit the subscript  throughout. However, we remark that a sufficient level of
reduction might already render the emerging set of branches non-collapsing, as
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can be observed, e.g., in Example 5.8. However, this is not always the case, not
even in the weakly non-collapsing case.

Recall the subset Djy; of A of indices of initial branches from (4.29). Recall fur-
ther the branch trees B}, j € A, and the branch forest F},; for C from Section 4.3.
For every i € Djy; consider all nodes in B; of the form (x,id). Since C is weakly
non-collapsing, these nodes (and their connecting edges) form a sub-tree B, of B;
of finite depth. Furthermore, for the same reason, for every k € A there ex-
ists 7 € Djy; such that Bg» contains the node (k,id). Denote by F!, the forest
of sub-trees B}, i € Djp;. The forest F} . can be seen as a disconnected, directed
graph of which each connected component is a tree of nodes of the form (x,1id).
Therefore, each (directed) path in F! ; can be indexed by a tuple consisting of the
index (the element in A) of the root node of its super-tree and the index of its end
node. (It is necessary to consider the root node in this indexing as well, because
end nodes for different paths in F} . may coincide.) We denote by Aip; C Dip; x A
the set of these indices. By construction, #A;,; < +00 and for every i € Diy;
the set Ajp; contains an element of the form (i, ). To each path (i, k) € Ajy; we
assign its length £(; ;) € N, that is the level of (k,id) in Bj. Then £(; ; is the
unique integer for which there exists v € C; such that

(kc>e(i,k) (V)a &C, ¢ 1) (V)) = (k, ld) R

with k¢ «(v) as in (4.12) and gc «(v) as in (4.13) and (4.14). We further assign a
‘s in Atoeachd = (i, k) € Ap by imposing that (i, k) indexes

sequence (a?),2_,

the path

(ivid) = (ay ™ id) —(ai")  id) — ...
= (@i id) — (al"™)id) = (k,id) .

The following algorithm (Algorithm (5.11) below) will traverse paths in backwards
direction. That is what motivates the counter-intuitive numbering of the members
of the (finite) sequence (a’). The possibility of multiple occurrences of a single
node (k,id) in F} . necessitates an iterative approach, where certain branches
and transition sets might be redefined several times. We therefore initialize the
procedure by setting

0), . . 0,0) .
ls, =10, géé(? (4,k) = G(j, k) and CE. ) = C;
for all j, k € A. Further, we fix an (arbitrary) enumeration of A;,; and write
Aini = {617 s 7677} ) (58)

with n = F#Ajni.
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Algorithm 5.11 (Identity elimination). The index r runs from 1 to 7.
Stepr. Set

r r— T =10,
Q(() )()\, K) = g,§6 _11)()\, K) and C(A 0 = C(A )

for all A\, k € A. The index s, runs from 1 to /s, .
Substep s,. Forall j € A define
G0 al_) =G0 (el )\ i} UGLL, (),
for/{=1,...,s,,aswell as
G4 () = Gy (G.r)

forallk € A\ {a, ..., ai;_l}. Further set

Vs(:) = {1/ € CiZfT_l) ‘ (kcyl(y),gql(z/)) = (ai:_l,id)}

Sr

and define
clrer) = glrer =D\ y ), &

Letr,7" € {1,...,n}and s, € {1,...,45.}, 5 € {1,...,4s,}. We define a
relation “<” on the set of pairs (r, s,-) by setting

(rosp) <(r',sp) = r<r’'V (r=1"ANs <sy). (5.9)
Then “<” is a total order.

Lemma 5.12. Forj € A, r,v’ € {1,...,n} and s, € {1,...,05.} and s,» €
{1,..., 45 ,} we have

(i) V&) v £ @ ifand only if VT = VT,

r— 1£5 Sr
(i) ) = ¢, \( UuUv?ul) v}”),
p=10=1 i=1

(iii) Cy/’s"') - C;T’Sr) C C; ifand only if (r,s;) < (1, s,7).

Proof. Statement (i) is immediate from the definition of the sets Vs(:) in Algo-
rithm 5.11 and the uniqueness of the system of iterated sequences from (4.15) for
any given v € C. Statement (ii) follows by straightforward, recursive application

of the definition of C( ") in Algorithm 5.11. From this presentation of C(T ) we
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obtain that, if » < 7/,

T—lzfsp
C\ Oy = U1 Hv@)uuv(r
p
r—1 Ysp -1 fsp
—UUV uUV”u U IARE U UV UUV
p=1/=1 1=s,+1 p=r+1¢=1

2 C] \ erzsr) )

and, if r = r’ and s, < s,

—1sp
c\ ey = U Uv(f’)qu(’“ u U v o gnel)
p=1 /=1 i=sr+1
This immediately yields (iii). O

From Lemma 5.12(ii) we obtain that, for every j € A, Algorithm 5.11 ulti-
mately defines the set of unit tangent vectors

P n Loy
C;=C "’ ) =c\J . (5.10)
r=1s=1
Accordingly, we set
n oy
7 =5\J U {’}’V(-i-OO) ) ve VS(T)} : (5.11)
r=1s=1

Depending on the initial set of branches C and the level of reduction, Algo-
rithm 5.11 might render branches essentially empty, in the sense that C;; = @.
We account for this possibility by updating the index set to be

A= {k €A ‘ Chst 7 @} . (5.12)
From (5.10) and the definition of the sets V*(*) we read off that the branch C; can

only be rendered essentially empty by Algorithm 5.11 if | J,. , G(j, k) = {id}.
This implies in particular that

{(jeAl(xj)€Am}CA.
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Hence, A # &. We further define
G(j. k) =G\ (4, k) (5.13)
(]5 567, ]7 ’ .
for j, k € Z as well as
c={¢ e} wa C=Je-UG. G
jEA

From (5.11) it is apparent that the sets éj, j € A, are not necessarily branches in
the sense of Definition 4.1 anymore, due to possible violation of (B5). We account
for that by introducing the notion of a reduced set of branches in Definition 5.17
below.

We now analyze the structure and interrelation of the sets of unit tangent
vectors and transformations successively defined by Algorithm 5.11. To that end,
weletr € {0,...,n}, s, €{0,...,05, }, and set

= {e|sea) o=

Then, obviously,
) =c \V (5.15)

Spr—

Forv € Cg:) we define a system of sequences
[(tee) ) (ke , (), (8, (1)),,] (5.16)

as in (4.15), with Cg) in place of C.

Lemma 5.13. Letr € {0,...,n} and s, € {0,...,¢s.}. Forv € Cg:) the system
of sequences in (5.16) is well-defined. Furthermore, the set {ggj) (7, k) ‘ J, ke Z}

is a full set of transition sets for Cé:) up to identities, in the sense that

(i) Vi k€ AVv € T koo () = ki geon | (v) € G (3, k) U {id)

(ii) Vi, k€ AVge Gl (k) Ive ). (ke (V)80 , (W) = (K 9).

Proof. We argue by induction over the totally ordered set of pairs (r,s,), r €
{1,...,n}, sr € {1,...,45.}. Forr = s, = 0 there is nothing to show. We
suppose that all claims have already been proven for (7, s, — 1) for some r > 0.
Let v € Cg). From (5.15) we read off that

b o) =t o ) ke () =k (),

srl
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and

W) e . V), (5.17)

sp—1

gcgr),n(V) = 8n

sr—17n

mn

where, a priori, mg == 0 and

min {m >n|9, (tcm m(u)) ¢ F,VS(TT)} forn >0,
mn sp—17
max {m <nl|~, (tc(r) (v)) ¢ F-Vs(f)} forn < 0.
sr—17m

But since each node (j,id) appears at most once in the path ¢,, we have ag: #

ag:fl and hence
n ifxy, (tc(rll’m(y)) ¢ F'Vs(:) :
mp, =< n+1 if~y] (tc(r) m(y)) € F.VS(:) andn >0, (5.18)
sp—17
n—1 if'y,’/(tc(r) m(u)) € F.VS(TT) andn <0,
sp—1

Since all objects exist by hypothesis, the system of sequences from (5.16) is well-
defined. We set

J=kom o), k=kyo (), and g=gqm ().
Concerning statement (i) we have to show that
g €6, k)u{id}. (5.19)
To that end note that
Gy 1(3.k) € G877, k) U fid)
If k # a‘;:, then

Wt @) e\l el \ v

sr—1

Hence, by the discussion above and the hypothesis,

9= 800, =ge (1) €GULL (k) € G (G k) U {id).

sp—1

Now let k = alr. If Nt (V) ¢ F.V;(:), then we may argue as before. It
sp—1°

thus remains to consider the case that

W(teo () €TV

sp—1
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Then, from the definition of VS(:) one obtains

sr—17

From that, (5.17), (5.18), and the hypothesis we obtain that

9=8am (V) =8con (V) -geo L)

sp—1 sr—l’

=g ()€ (k) CGDG. k).

sp—1

This yields (i).
Concerning (i) let j € A and k € {agr, e ,ai:fl}, for in all other cases
the claim is immediate from the hypothesis. Let s € {0,...,s, — 1} be such

that k = a?r. If gﬁf) (j, k) = @, then there is nothing to show. Thus, we consider
the case that

GG k) # 2.

For g € g(” 1(4, k) the claim is immediate from the hypothesis. If we have
g\ (4,al ay’) = 9, then we are finished. Thus, we suppose that

Sr—1

gs —1(]7 s,«) 75 %]

and pick g € Qi:ll(], ag). We show that there exists v € C(T *) such that

Y (tcs—st1(1) € CYand A(te ) eV (5.20)
for all E e {1,...,s, — s}. First note that, by definition of the path J,, we
have V 75 & for all i€ {l,...,45 }, and because of k € A and Lemma 5. 12(iii)

(r,s)

we have Ck + 7 9. Because ofg € QS _1(j, a2 ), the hypothesis, and the struc-
ture of the path 0, we have

g-Hi(a)) G g.Hy(ad) € Hy(h),

forall £ € {0,...,s, — 1}. Hence, in particular there exists v € CY’ST_I)

that

such

(71/("‘00)’%/(_00)) € g°Ik,st X Jj,st .

(r,sr)

Then also v € Cj , for otherwise j = ag: and v € V;(TT). But then g = id

and angl = ag: by the definition of VS(TT), which contradicts the structure of the
path §,. Lemma 5.12(iii) now implies that

Yo (+00) € 9Ly st < g- {’7#(‘1‘00) ’ pe Ci(:’si)} :
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Since Jjj st € Jist, this together with (B5) and again Lemma 5.12(iii) imply that
7,(0,+00) NCV™) £ & (5.21)

and by counting intersections with the initial set of branches we see that v ful-

fills (5.20). From Algorithm 5.11 we now see that, at Substep s,, all sets Vg(r)
for ¢ € {1,...,s,} have already been removed from their respective branch.
Hence, while ~,, does intersect each of the branches g. Ca5T , it does not inter-

i@jﬁl for ¢ € {0,...,s, — s}. From this and (5.21) we conclude

sect g. C

kCg:),l(y> = k
and
8w (V) =g (V) gos,—sr1(v) = g-id---id = g.
This shows (ii) and thereby finishes the proof. O

Remark 5.14. In part (i) of Lemma 5.13 it is indeed necessary to include the iden-
tity transformation, for, depending on the enumeration of A;;; and whether or
not gi:)_l (4, ad") contains the identity, g§f) (j, k) might end up differing from the
actual transition set for j, k € A with respect to Cg’;) by lacking exactly the iden-
tity transformation. This is due to a slight imprecision in Algorithm 5.11 in the
handling of such situations, which we accepted in favor of clarity. Simply put,
Algorithm 5.11 might remove certain identities “too soon.” But since all identity
transformations are removed in the end (see Proposition 5.19 below), this devia-
tion does not affect the final transition sets.

Proposition 5.15. The sets éj and G(j, k), j, k € A, are independent of the enu-
meration chosen in (5.8), and we have

U GGk cT.

jkeA

Proof. Letj € A Ifid & Uiea 9(4, k), then there is nothing to show, since every
set gé:) (7, *) emerges as the union of two sets of the form gg:ll(j, %), for all r
and all s,, and hence cannot introduce identity transformations. Thus, suppose
that id € (J,c4 G(J, k). For every k € A for which id € G(j, k) there exists

r € {1,...,n} such that (j,id) — (k,id) is a sub-path of d,. This means there

exists s € {1,...,05 } such that j = ar and k = @’ . We set a = aggr.

S
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Recursive application of the definition of the sets gi’“) (7, %) yields

ls,.—1

67 (5,k) = 67, G\ Gy U 600G el \ lidy UG (0.

l=s—1

Hence in order to conclude that id ¢ Q(T)( k) it suffices to show that id ¢

g\ 45, —1(J, a). Assume for contradiction that
i 05 —1(d:a) -

—1)

By Lemma 5.13(ii) we find v € Cgr’z‘” such that

(ketr )8 (¥) = (a,id).

Z& —1 L5, —1

By Lemma 5.12(iii) also v € C; and thus there exists n € N such that

(kC;”(V% gC,n(V)) = ((I, ld) .

This means that the return graph RGq contains a non-degenerate path from j
to a with accumulated weight id. By choice of j, the tuple (j,id) is a node in
the tree B!, which means either j = a, or RG( contains a non-degenerate path
from a to j with accumulated weight id. In either case we obtain a proper loop
in RGo with weight id, which is contradictory. Hence, id ¢ gégj_l( Jj,a), and

therefore id ¢ QZ) (4, k). Since this argument applies for all » € {1,...,n} for
which (j,1d) is contained in the path §,, we conclude

id¢ (G0, k),

k€A

which yields the second claim.

From (5.10) it is immediately clear that éj does not depend on the enumera-
tion of Ajn;. (We emphasize that the definition of the sets V;(TT) forre{1,...,n}
does not depend on the specific enumeration.) Lemma 5.13 implies that

G k) = G, (5, k)

is a full transition set for j, k € A up to identities, which in turn necessitates
that G (4,k) U {id} also does not depend on the enumeration of Ajy;. Since we
have id ¢ G(j, k) by the first part of the proof, this implies that G(j, k) itself is
independent of the enumeration of A;,;. Hence, the first claim follows and the

proof is finished. O
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Corollary 5.16. Forall j € A we have

éj = CJ\ U {V c Cj ‘ "}/,/j(t(j,l(l/)) c Ck} .
keA

Definition 5.17. A setC = {éj ) je A} of subsets of SH is called a reduced set

of branches for the geodesic flow on X if it satisfies the properties (B1), (B2), (B3),
and (B6) from Definition 4.1, the property (Bpe,) from Proposition 4.8, as well as
the following three properties:

(Bb5yeql) Foreachj € A and each pair (x,y) € Z; 4 x J; & there exists a (unique)

vector v € C; such that

(2,y) = (Y (+00), 7 (=00)) .

(B5yeqll) Foreachj € A and each pair (z,y) € ;s X Jjs there exist k € Aand
a (unique) vector v € Cy, such that

(2,y) = (Y (+00), 7 (=00)) .

(B7rea) For each pair (a,b) € A x A there exists a (possibly empty) subset
G(a,b) of I" such that

(a) forall j € A we have
U U 9-Zx C IZ;
keA geG(j,k)
and
U U 9-Lkst = Tjst
keA geG(j.k)

and these unions are disjoint,
(b) for each pair (j,k) € A x A, each g € G(j, k), and each pair of

points (z, w) € bp(C;)xg.bp(Cy), the geodesic segment (z, w)g

is nonempty, is contained in H4 (j) and does not intersect I".C,

6:2 Uéj,

jeA

where
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5.2. IDENTITY ELIMINATION AND REDUCED SETS OF BRANCHES

(c) forall j € A we have

Jj,st - U U h_l'Jk,st .

A reduced set of branches is called admissible if it satisfies property (B8), and it
is called non-collapsing if it satisfies property (B9) from Definition 4.1.

Remark 5.18. Depending on the underlying Fuchsian group, a non-collapsing be-
havior and (B5) are often incompatible to each other for the explicit algorithmic
construction procedures of sets of branches we use (namely, the cusp expansion
algorithm from Chapter 2). But non-collapsing reduced sets of branches will suf-
fice for the purpose of all the following discussions and constructions. The ap-
proach via sets of branches that get adequately reduced to ensure non-collapsing
behavior at the cost of the strong property (B5) has been chosen over an ax-
iomatic approach in order to mimic the algorithmic process of constructing these
sets, and to simplify the verification whether a given family of subsets of SH is
a set of branches or not. Consistently, Proposition 5.19 below shows that for ev-
ery Fuchsian group for which a set of branches exists, we obtain a non-collapsing
reduced set of branches via the above procedure.

Proposition 5.19. The set Cisa non-collapsing reduced set of branches for the
geodesic flow on X with associated forward transition sets given by G(j, k) for any
choice of j, k € A. IfC is admissible, then so is C.

Proof. In order to distinguish the application of the defining properties (B1)-(B8)
for C from those for C we aim to prove, we denote the latter ones by (B1,cq4)—
(B3,cq) and (B6,cq)—(B8,cq), respectively. We emphasize again that C is not re-
quired to satisfy (B5).

Property (Bl,cq) is immediate from (B1) and the definition of A. Further,
Property (B2,.q) is immediate from (B2) and the fact that Algorithm 5.11 does
not interfere with the sets J; and J; ¢ for j € A. Since A C A and éj -
C; for every j € A, the properties (B3,.q) and (B6,.q) are direct consequences
of (B3) and (B6), respectively. And since Z; C I; forall j € A by virtue of (5.11),
property (B8,cq) is immediate from (BS).

Let j € Aandv € Cjst. Set  := ,(400) and y := v, (—00). Then we
have (z,y) € IjsxJjs,andv € aj ifand only if z € 7;. This together with (B5)
already yields (B5,eql). Property (B5..q11) follows immediately from (B5,.q1) in
this case. Assume now that v ¢ éj. Then, by (5.11), there exists k1 € H(j)
such that x € Ij,. If x ¢ Zj,, then, again by (5.11), there exists ko € H (k1)
such that x € Ii,. Iterating this argument is equivalent to traveling down a path
in Ajpi. Or in other words, there exist §, € Ajpj and p € {1,..., s, } such that

[

j=ay and k, = a’r

p oo, fore=1,2,....
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Hence, we obtain k), = agT by virtue of Algorithm 5.11, and thus

ékp = Ckp and S Ikp = Ikp .
Since bp(Cy,) € H{(Cj), we find y € J; C Jg,. Since (v,y) € R x R,
by (B5) we find a unique v/ € Cy,, such that (7,/(+00), 7,/(—00)) = (,y). This
yields (B5,cq11).

Let 3 € Gper(X). By Proposition 4.8 there exists v € G(H), w(vy) = 7, such
that + intersects C. Let j € A be such that v/(¢) € C; for some ¢ € R. Because of
Corollary 5.16 we may assume j € A. Then

(’}/(—FOO),’}/(—OO)) € Ij,st X Jj,st-

If y(+00) € Zjg, then 7/(t) € éj by (B5,cql). Otherwise, by (B5,.q11) we
find#' € Rand k € A such that v/ (') € Cy. Hence, in either case ~ intersects C,
which implies that C fulfills (Bpe,).

Letagain j € A. Since (~3j # &, wehave Z; o # . Hence, there exists v € (~3j
such that

(7 (+00), 7 (—20)) € Zjst X Jjst € Rep x Rgy € A(T) x A(T).

In particular, (7, (4+00),7,(—00)) € Z; x Jj, which is an open set in R x R.
Therefore, there exists € > 0 such that

Bg . (w(+00)) x Bg _(1(=00)) CZ; x Jj,

where By _(z) is as in (1.16) for x € R. By Proposition 1.15 we find a representa-
tive v of some periodic geodesic on X such that

(7(+00),7(=00)) € Bg _((+00)) x Bg _(3w(—00)).
By construction,
(’7(4_00)77(_00)) € Ij,st X Jj,st .

Combining this with (B5,.q]) yields (B1,.q). Finally, all statements of (B7;.q)
follow from the combination of (B7) with (5.11), (B5,cq1), and (B5,cq11). O

Let v € C and define the system of iterated sequences of v with respect to C as

[(ta, (") (kg , (¥))n, (8, (¥)n]

where

V), kg,) =kew (),

T VN
o

tnV) = g
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and
8an, (V) =8 , V),
Zén ’
for all n € Z, with [(tcg:)’n(y))n, (kcg:)m(y))n, (gcg:)’n(y))n] as in (5.16) for
r e {l,...,n} and s, € {1,...,4s.}. Because of Proposition 5.19 this system
of sequences is independent of the enumeration of A;,;. We further obtain the
following analogue of Proposition 4.19.

Corollary 5.20. Letv € ést, ke Z, t € R and g € T be such that

7 (t) € g.Cy,.

Then there exists a unique element n. € 7 such that sgn(n) = sgn(t) and
k= ké,n(lj) , t= té,n(y) ) and 9= gé,sgn(t)(y)géﬂ sgn(t)(y) T gé,n(y) :

A reduced set of branches is called finitely ramified if #é(g, k) < +oo for
all j, k € A. The following result shows that Algorithm 5.11 does not negate the
efforts of Section 4.4.

Proposition 5.21. IfC is finitely ramified, then so is C.

Proof. Let j, k € A By hypothesis,
#94,) (. k) = #G(j, k) < +o0.

In every step of Algorithm 5.11, a new transition set gé’") (j, k) emerges as the
union of at most two sets of the type giH) (4, k), which are seen to be of finite
cardinality by recursive application of this argument. Since Algorithm 5.11 ter-
minates after finitely many steps, this yields the set G (J, k) as a finite union of
finite subsets of I'. O

Example 5.22. Recall the family of Fuchsian groups {I's » } e {13,152 from Ex-
ample 1.46 as well as its weakly non-collapsing set of branches Cj, from Exam-
ple 4.34. The completely reduced set of branches {Cp 2, Cp 7} is already non-
collapsing, as has been seen in Example 5.8. So there is no need to apply Algo-
rithm 5.11 in this case. But since branch reduction is optional, we might inves-
tigate the outcome of the identity elimination if applied to Cj,. We immediately
find Din; = {1, 6} and from the forest F} ;, which is depicted in Figure 16, we see
that 7 = 3. Furthermore, from Figure 13 it can be seen that | J,. 4 G(j, k) = {id}
for j = 1,4, 6, wherefore we obtain A= {2,3,5,7,8}. In order to display the
emerging reduced set of branches Cp = {épd ‘ jE j} we provide a “return
graph” (Figure 17), a depiction of the reduced branches themselves (Figure 18), as
well as a list of the sets Z;, j € A: We have
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By B
(1,id) (6,id)
v i
(2,id) (7,id)
v i
(3,id) (8,id)
\Y
(4,id)

Figure 16: The subtrees B} and By, of F}; for the set of branches C}, for ', ).

ini

I = (=1,el90)), Tz = (cgo),clg; ")), Ts = (1,+00),
Ir = (—o0,¢(g, ")), and Zg = (c(g;'),1).

5.3 Cuspidal Acceleration

In this section we present the cuspidal acceleration algorithm, which is the main
step in our construction of strict transfer operator approaches. This algorithm
ultimately yields the passage from a non-uniformly expanding discrete dynamical
system to a uniformly expanding one, which then guarantees nuclearity of the
arising fast transfer operators. As the naming suggests, this algorithm only affects
hyperbolic orbisurfaces with cusps.

As the algorithms of branch reduction and identity elimination, also the cus-
pidal acceleration algorithm works by modifying a given set of representatives
for a cross section. Here, we start with a cross section and a set of representa-
tives for which the induced discrete dynamical system is typically not uniformly
expanding. (If the induced system is already uniformly expanding, then the cus-
pidal acceleration algorithm is void and does not modify the cross section.) The
non-uniformity in the expansion rate originates from the property of the initial
cross section to encode each single winding of a geodesic around a cusp as a sep-
arate intersection event. To achieve uniformity, successive windings around a
cusp should be merged into one (somewhat collective) event. The cuspidal ac-
celeration algorithm achieves exactly this by a careful elimination of certain unit
tangent vectors in the set of representatives for the initial cross section. We re-
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5.3. CUSPIDAL ACCELERATION

Figure 17: A return-style graph for the reduced set of branches Cp for I'; \. Again,
double edges indicate multiple edges, this time forn =1,...,0 — 2.

fer to Remark 5.27 below for a more detailed explanation. The algorithm itself
consists indeed of a single (simultaneous) elimination step, for which reason it
is stated as a definition, namely Definition 5.26, in which the accelerated set of
representatives of the accelerated cross section is defined. The remaining section
is then dedicated to the proof that this set is indeed a cross section. The following
sections mostly discuss how this cross section and the set of representatives give
rise (in a natural way) to a strict transfer operator approach.
Throughout this section let

e = {cl

je A(i)}

be a set of branches with A® = {1,..., N} (with “(i)” indicating initial). We
emphasize that the considerations in what follows do not require that the set of
branches C1 is branch reduced. I e., it is not required that the branch reduction
algorithm from Section 5.1 has been applied to C (). We further let ﬁ, CN, 6, Z;

and G(j, k) for j, k € A, and
[(tg,,("))ns (kg ,, (¥))ns (85, ()]
forv € éj, j € g, be as in Section 5.2. That is, C is a reduced set of branches

(see Definition 5.17). Because of the Propositions 5.19 and 5.21 we may and shall
assume that C is non-collapsing and finitely ramified. For j € A we further define

()= {ke A( G(j.k) # 2}
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Cy Cs Cr | Cs

g5 '.Cs 93.C3

_ | gstyt.Cr
93.Cs  93.C5

93_1'65 68

i | i

-1 _% 0 % ggt;1.1 1
ggt;1.08

Figure 18: The reduced set of branches Cp for I's » emerging from C}, via Algo-
rithm 5.11.

Convention

From now on we omit all tildes (7) from the notation. Thus,
throughout this section, C denotes a reduced set of branches in the
sense of Definition 5.17. We caution that this notation is not fully
consistent with the one of the previous sections but preferred here
in favor of avoiding overloaded notation. We further assume that C
is a strong cross section for o (see Section 1.11).

We will take advantage of a certain cyclic behavior of I'-translates of C at
cusps. By this we refer to the following property: Let j € A and recall the end-

points X; and Y of bp(C;) from Remark 4.2(d). Recall further that
L € i = (X5, Yj)e-
There are two possibilities for Z; € {X;, Y;} in regard to Z;:
(a) either Z; is a boundary point of Z; in the ]l/é-topology, or
(b) there exists € > 0 such that B@’E(Zj) NZ; = o, with B@’E(.) as in (1.16).

We suppose that, say, X, is a boundary point of 7; and represents a cusp of X, say
¢ (see (B2)). Those two assumptions are not mutually exclusive, because, given
the latter, if the former were not the case, by Corollary 5.16 we would find j' € A
such that 7;; C I C I and X is a boundary point of Z;,. Then X;» = X, and
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thus we may proceed with j’ instead of j. Now, due to (B7,.q) we find k € H(j)
and a transformation g € G(j, k) such that X; = ¢.X}, and X}, is an endpoint
of Z. The tuple (k, g) is uniquely determined. Clearly, X}, is again a representa-
tive of ¢. By iterating this argument we are led back, after finitely many steps, to
some ['-translate of X;, from where on the cycle repeats (see Lemma 5.24 below).
This yields the notion of X-cycles, which is made more rigorous by the follow-
ing definition. We may argue analogously if Y; is a boundary point of Z; and
represents a cusp of X.

Definition 5.23. Let Z € {X, Y} and let
Ay :={j € A|Z;jis cuspidal and a boundary point of Z; }

be the subset of elements j € A for which the endpoint Z; of the geodesic seg-
ment bp(C;) represents a cusp of X and coincides with a boundary point of Z;

in the R-topology. By the discussion right before this definition, for each j € Az
there exists a (unique) pair (k;,g;) € H(j) x G(j, k;) that satisfies Z; = g;.Zy,
and k; € Ay. We call the pair (k;, g;) the Z-tuple of j. Further, we define the
maps

Az—>F

w'{AZ—)AZ
z Jor= g

i o— & and gzz{

For each j € Ay, iterated application of 1z leads to the sequence

CyCy (]) = (’lﬁg (j)>T€No )
which we call the Z-cycle of 5.

Lemma 5.24. LetZ € {X,Y} and j € Ay. Then the sequence cycy(j) is periodic
with (minimal) period length

min{n € N|3Jv e C;: ken(v) =jAgca1(v) - 8cn(v).-Zj = Z;} .

Proof. Let F be a Ford fundamental domain for the action of I' on H. Then each
cusp ¢ of X has at least one representative ¢ € R such that c is an infinite ver-
tex of F and each sufficiently small geodesic segment on X with endpoint ¢
(i.e., contained in a sufficiently small horoball centered at ¢) has a represent-
ing geodesic segment on H with endpoint ¢ that is contained in F (see Propo-
sition 1.43 and the proof of Proposition 4.6). Consequently, there exists h € I’

such that Z; is an infinite vertex of h.F and the geodesic segment bp(C;) in-
tersects h.F in any small horoball centered at Z;. By the Poincaré theorem on
fundamental polyhedra (Proposition 1.36), the (conjugate) primitive vertex cycle
transformation of Z;, say p, is parabolic, fixes Z; and is a generator of the stabi-
lizer group of Z; in I'. Thus, either p.Z; s C Z; or p_l.Ij,st C Zj, where
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we may suppose the former without loss of generality. Because of Lemma 1.8, for
all € > 0 we have

Ij,st N B@,E(Zj) + 0. (5.22)

Let v € C; be such that (7, (+00),7v,(—00)) € p.Z;« X Jjs. The combina-
tion of Lemma 4.13(ii) and Proposition 4.19 yields a unique element n € N only
depending on j such that for all 0 < m < n we have

Y (tem(®)) € goa(v) - gom(¥)- Cug,utw)

with gc 1(v) -+ - gcn(v) = p and k¢ (v) = j. Since p fixes Z; and

8Cmt+1 (V) L i ()58 S Licgm(v) st

for all 0 < m < n, (5.22) implies
g1 (V) gom(V) Zig,,(v) = Zj

for all such m. Moreover, since bp(C;) intersects h.F in any small horoball cen-
tered at Z;, the part of bp(C;) sufficiently near Z; is contained in the fundamen-
tal domain h.F or in its boundary. The fundamental domains neighboring h.F
at Z; are ph.F and p~'h.F. In turn, the indices kc,m of the iterated intersec-
tion branches of v are not equal to j for m € {1,...,n — 1}. Further, since
gom (V) € G(kem(v), kems1(v)) forallm € {0, ..., n}, we obtain

cycz(§)m = ¥7'(4) = kem(v) .-

Set v, = p"~L.v for r > 1. Then we find kc , (v) = ko m(v) for every choice
of m € Ny, and the translates gc m (V7). Ty, (1,),s¢ fulfill the same conditions
as before. This yields the periodicity of cycy(j) with period length n, which is
indeed the minimal period length as seen from the generator properties of p. This
completes the proof. O

For any Z € {X,Y}, the set Ay from Definition 5.23 decomposes into finite
cycles under the map 17, as shown in Lemma 5.24. For j € Ay, we denote the
(minimal) period length of the ¥z-cycle of j by o7(j), thus

0z(j) = min{r € N | ¢7(j) = j}
=min{n e N|3Iv € C;: ke, (v) =5 Agc1(v) --gon(v).Z; =75},

and we set ‘
ujz = 9z(3)9z(Vz(j)) - 'gz(lng(j)_l(j)) ; (5.23)

with gz being the map from Definition 5.23. As seen in the proof of Lemma 5.24,
the element u; 7 is a generator of the stabilizer subgroup of Z; in I' and hence
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Figure 19: Branch cycles for a single branch C;. The X-cycles circle clockwise,
Y-cycles circle counterclockwise.

parabolic. In particular, u; 7.Z; = Z;. The latter can also be deduced immediately
from the property that gz (k) ™".Zg = Zy, (k) for all k € Az by observing that

R O I ) e AR U A € e A

wZ(ng<j)7l(j)) w%Z(])(])

For any j € A we set

YC; 7 = .
7 %) otherwise.
Thus, for j € Ay, the set Cyc, ; contains exactly the elements of the Z-cycle
of j. For any k € Cyc, 7, the sequence cycy (k) is a shift of the sequence cycy(j),
the transformation uy 7 is conjugate to u;z, and Cyc, ;, = Cyc; . From an-
other point of view, the sets Cyc; 5, j € Az, are the equivalence classes for the
equivalence relation

j~k = dreN:yy(j)=k
on Ayz. The number of equivalence classes depends on the number of cusps of X.

Example 5.25. Recall the family of Fuchsian groups {I'; » } s {1},>2 from Ex-
ample 1.46 and the return graph for its weakly non-collapsing set of branches C,
(Figure 13) from Example 5.3, as well as its reduced return graph RGg for the
set of branches {Cp 2, Cp 7} from Example 5.8. As we have seen, both sets are
non-collapsing. There is one X-cycle and one Y-cycle in RGg (Figure 15) given
by

tfl
727 and 2t—Au>2,
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respectively. For the reduced set of branches Cp (Figure 17) we retrieve these
cycles as
o o 9572 goty! t
7% 3% 8727 and 555,

respectively. Hence, in the former setting we obtain the sets
Ax = {7} and Ay = {2}

as well as the transformations

1

Ur X = gX(7) = t; and U2y = gy(2) =1).

On the other hand, in the latter setting we obtain
AX = {3, 7, 8} and AY = {5}
and the transformations

9x(3) =977, 9x(1) =90, 9x(8)=goty', and usy =gy(5)=tx.

Hence, we find

urx = gx(7) - 9x(3) - 9x(8) = go - 9772 - gty = gt = 1)1,

and, since gg*1 = g;l,

u3x = gz;lt)_\lga and ug,x = got)_\lgz;l .

We now introduce the acceleration procedure mentioned above. Again, the
process is presented in geometric terms, by a deletion of certain subsets of unit
tangent vectors from the reduced branches. The emerging system gives rise to
a “faster” symbolic dynamics arising from a new cross section for the geodesic
flow (see Proposition 5.31 below). The emphasis lies on branches that, even af-
ter the identity elimination, are still attached to cuspidal points in the sense of
Definition 5.23. We therefore call the procedure cuspidal acceleration or cuspidal
acceleration algorithm.

Definition 5.26 (Cuspidal acceleration). For Z € {X, Y} define the sets

Ky () = {veCjst | Wwl+00) € g2(4)- Ly, )t} ifJ € Az,
ZJ 7 1%} otherwise,

and

My (j) = { v € O

W(=00) € g2 (V7 () Ty gy b 15 € Az,

o) otherwise.
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We call K7(j) the forward and My(j) the backward Z-elimination set of j. For
j € Awecall
Crace =[] Cis\(Kz(j) N Mz(j))
Ze{X,Y}

the acceleration of C; and
Cacc = U Cj,acc
JEA

the acceleration of C.

Remark 5.27. We comment on the motivation for Definition 5.26. Let 7 € 6(X)
and let ¢ be a cusp of X. We say that the set of branches C detects that 7 travels
towards ¢ if there exists a representing geodesic y of y on Hand Z € {X, Y} and
J € Az suchthat Z; represents ¢, the geodesic «y intersects C; at some time, say ¢,
and y(+00) € gz(j)- Ly, (j)- In such a case, the next intersection (after time #o)
between v and I'.C is on g7(j).Cy, (;) at, say, time ¢1. Further next and previous
intersections of v and I'.C might be “near” Z;, thus given by the Z-cycle of j.
More precisely, it might happen that -y intersects gz (1, *(j)) ~*.C vl () 10 which

case the previous intersection of v and T'.C is indeed on gz (¢, (j))_l.Cw;(j),
as can easily be seen from the definition of the Z-cycle of j. Likewise, the next
intersection after time ¢; might be on gz (j)gz(¥z(7)) -Cyz(j)- Letus suppose that
7 intersects

927 () oz G 0a (M ) THC gy s (529)

92(07 (1)) Cy1(5 - Ci v 92(3)-Coy s -

92(3)92(Vz(5)) - - - gz( 'zfrl(j))'cw?(j)

with k1, k2 € Np maximal. Large values for kj, ko indicate that 7 stays “near”
the cusp ¢ for a rather long time, and larger values for k1, ks translate to deeper
cusp excursions. We call the part of 74 corresponding to (5.24) a maximal cusp
excursion into the cusp region of ¢ or a sojourn of 4 near ¢. We emphasize that
7 can experience several disjoint sojourns at the same cusp, each one separated
from the others by some time spend “far away” from the cusp.

Each sojourn of 7 near ¢ typically contains several windings around the cusp
(region of) ¢, expressed by a high power of the parabolic element u; 7 from (5.23),
as explained further below. Using the (reduced) set of branches C for the coding
of the geodesic flow on X, as done for the development of slow transfer operators,
leads to separate coding of each single cusp winding (and also of all the intermedi-
ate intersections). It is exactly this detailed (“slow”) coding of cusp windings that
cause slow transfer operators typically to be non-nuclear. To enforce nuclearity,
the idea is to encode each sojourn by a single step in the coding (“fast” coding) or,
in other words, to induce on the cusp excursions, at the expense of constructing
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an infinitely branched discrete dynamical system (and a symbolic dynamics with
an infinite alphabet). Technically, this acceleration will be achieved by omitting
those tangent vectors from the branches in C that are internal to a Z-cycle.

To be more precise, we now express the intersection properties in (5.24) in
terms of the endpoints of . To facilitate notation, we set, for any k € Cycj’z,

9205, %) = 92(7)92(¥2(5)) - - 92 (b~ () (5.25)
with 7 := min {¢ € N | ¢4 (j) = k}. Then
9z(j;¥z(j)) = 9z(j) and gz(j,7) = ujz.

If Z = X, then the interval gx (j).1y, (j) decomposes as

U U (hxoxC R)gx (k)Y ufxgx(, k)-Ye)
n€Ng k€Cyc; x

and thus the set gx (). Zy, () decomposes as

U U (@xox( k)ax(k)-Yygmy w)xox (G k)-Ye) Nufxgx (i, k)- T
n€Ng kGCycj’X

On the other hand, the interval gx (¢5*(j))~'.J ¥ G) decomposes as
U U (u;)régX(kvj)_l'Yka u;)régX(kvj)_ng(¢;(1(k))_l'Y¢§1(k)) -
n€Ng k€Cyc; x

If Z =Y, then the decomposition is analogous, with the roles of X and Y inter-
changed and the order of the interval boundaries switched. See Figure 20. For any
choice of n € Ng and k € Cyc, 7, Z € {X, Y}, we set

D:;x(j, k) = (u‘% (.]7k) (k) Y'z/)X(k)a ngX ]a ) )
DIY(j7 k) = (u_], (]7 k) Xk) j,YgY(.]a k wa k)) )
Dy (s k) = (w5 ox(k,5) ™! .Yk,u;;;gxw,j)- gx (UK ()™ Y o)

D;Y(j’ k) = (U;?Yl'gY(ka j)_ng(@Z};l(k))_l'X@/);l(k) ’ U;QQY(]‘?, j)_l‘Xk) .
Based on these intervals we further set

D:L_,X(j7 k) = D:L_,X(]7 k) N u?,XgX(ja k)'Ik
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and
Dty (j, k) == D}y (4, k) Nulfygy (4, k)- T -

Then the geodesic 7y (with the properties as in (5.24)) satisfies y(+00) € DZZ (J, k)
ifand only if k» = n+r with r asin (5.25). It satisfies y(—o0) € D, ;(j, k) if and
only if ky = m + s with s = min {¢ € N | ¢4 (k) = j}. The sum of the values
of n for ky and k5 is the number of full windings around the cusp (region of) ¢ of
this sojourn of 7 near ¢.

For the acceleration we now want to eliminate from the branches all those tan-
gent vectors that cause intersections within a sojourn, or, in other words, within
a Z-cycle. This elimination process is of a local nature; we only need to ask for
the nature of the next and the previous intersection, and not of any further in-
tersections. For the branch C; it means that we need to eliminate all those vec-
tors v € C; for which

'YV(""OO) € gZ(j)'IwZ(j),st and ’YV(_OO) € gZ(l/Jz_l(j))il'lez‘l(j),st .

Thus, we need to eliminate from C; exactly the set K7(j) N Myz(j) for the accel-
eration.

In Proposition 5.28(i) below we show that the sets Kx(j) and Ky (j) as well
as Mx(j) and My (j) do not intersect, thus, there is no interference between dif-
ferent cycles during the elimination or acceleration procedure. In the remainder
of this section we show that this heuristics on the necessary modifications of the
set of branches indeed leads to the desired results.

We recall that {C; | j € A} is a reduced set of branches for the geodesic flow
on X. In the case that X does not have cusps, it is consistent with Definition 5.26
to set Cj acc = Cjst forall j € A. For M C SH we define

I(M) = {n(+o0) [v e M} and J(M):={y(-00)[veM}. (5.26)
We set
A" = (€ A| Cjace # D). (5.27)
We further set Cee = 7(Cacc)-

Proposition 5.28. Foranyj € AandZ € {X, Y}, the elimination sets Kz(j) and
Mz,(j) and the acceleration Cj acc of C; satisfy the following properties:

(i) We have Kx(j) N Ky (j) = @ and Mx(j) N My (j) = @.

(i) The set C; acc is empty if and only if there existsZ € {X,Y } such thatj € Ay
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9v (7)-Xapy (5) ujy X Y; u;,\l(Xg gY(w;(l(j))_l'Xw;l(j)
gy (4, k)- Xk gy (4, 7)1 X,

Figure 20: The situation for an X-cycle (above) and a Y-cycle (below).

and
Tjst = 92(0)- Loyt and  Jjse = g2(7 (1) T yo1 () o1 -

(iii) Ifj € Ax N Ay, then Cj,acc #+ @.

Proof. For the proof of (i) we suppose that j € Ax N Ay (because otherwise
there is nothing to show) and assume, in order to seek a contradiction, that the
sets K'x(j) and Ky (j) are not disjoint. Then there exists v € C; g such that

W (+00) € 9x(7)- Lyx ()5t V9 (1) Ly () st

| . (5.28)
C gx(7)- Ly ()t N Y (F)+Lipy (5) st -

For any Z € {X, Y} we have

92(5)- Ly (j) = Zj and  gz(j)-bp(Cy,(j)) # bp(C;). (5.29)
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9x(7)- Cyx ()

ulx gx (5, k) gx (k). Cyx (k)

n+1
ujx - Cj \

Xj : ”,(JFX) |

D« (i, k)

Figure 21: A representative v of a geodesic with sojourn near a cusp detected by
an X-cycle in forward time.

Thus, (5.28) implies
9x(7)-bp(Cyy () Mgy (5)-bp(Cyy () # D -
From (B6) it now follows that

gx(j) =gv(j) =g and  Yx(j) =¢v(j) = k.

With (5.29) we obtain g.Zj;, = Z;, and hence g.bp(Cy,) = bp(C;), which contra-
dicts (5.29). In turn, Kx(j) N Ky (j) = @. The proof of Mx(j) N My (j) = @ is
analogous.

For the proof of (ii) we let Z € {X, Y} and note that the equalities

Ljst = 92(7)+ Ly () st and Jjst = gz("‘pz_l(j))il-t]%*l(j),st

are equivalent to Kz(j) = C; s and Mz(j) = Cj«, respectively. Hence, if these
equalities are satisfied for the considered index j € Ay, then

Cj,acc C Cj,st\(KZ(j) N MZ(])) = Cj,st\ Cj,st =09.

In order to prove the converse implication, we suppose that C; ,.c = &. Then we
find Z € {X, Y} such that j € Az because otherwise C;acc = Cj st # @. Thus,
we know already (see the discussion before this proposition) that

Kz(j) # @ # Mz(j)
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gx(vx'(5) Cozr)

—n 3
uj,X' Cj .

u; %gx (£,5) 71 Cp

Dy, x(4:6)

Figure 22: A representative 7y of a geodesic with sojourn near a cusp detected by
an X-cycle in backward time.

and will now show that K7(j) = C;« = Mz(j). From the definition of C; acc it
follows immediately that

Cjst = (Kx(j) N Mx(j)) U (Ky () N My(j)) -
Let Z' € {X, Y} be such that {Z,Z’'} = {X,Y}. From (i) we obtain the inclusions
Ky(j) € Cjse\Kz(j)  and My (j) € Cjst\Mz(j) -
Thus, K7/ (j) N Mz (j) € Cjst\ (Kz(j) U Mz(j)) and hence
Cjst = (Kz(5) N Mz(5)) U Cjise\ (Kz(5) U Mz(5)) -
It follows that

& = Gy ((K20) N Ma()) U G\ (K2 () U Ma(4))

= ((Cjst\Kz(j)) U(Cjsi\Mz(j))) N (Kz(j) U Mz(j))
= ((Cjst\Kz(5)) N Mz(5)) U ((Cjs6\Mz(4)) N Kz(5)) -

Therefore

(Cjst\Kz(j)) " Mz(j) =@ and (Cjs\Mz(j)) N Kz(j) = @. (5.30)
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In order to seek a contradiction we assume that C; ¢\ K7(j) # @. Then we find
T € Ljst \ gz(j)-I¢Z(j),st andy € gz(¢£1(j))_1-J¢51(j),st- By (B5,cql) there
exists v € Cj g with (v, (+00),7,(—00)) = (z,y). Thus,

ve Mz(j)n (Cj,st\KZ(j)) )

which yields a contradiction to (5.30). In turn, K7(j) = C; s and, by an analogous
argument, also Mz(j) = Cj.
For the proof of (iii) we suppose that j € Ax N Ay. Then we find

v e Kx(j) N My(j),
due to (B5,¢q]) and the nonemptiness of Kx(j) and My (j). Using that
Kx(j) € Cjse\Ky(j)  and  My(j) € Cjs\Mx(j)
by (i), we obtain

@ # Kx(j) N My(j)
C ¢, st\(Ky () U Mx(y
C C;, St\(KY ) U Mx(j
U Cjst\ (Kx(4) U My (5)
= Cjee\ ((Ky(j) U Mx(j)
N (J

))
) UCjst\ (Kv(5) U Kx(3))

)U CJ st\(MX( )UMY( ))
)N

) N (Ky(j) U Kx(j))
)

(Ex (s )UMY (MX( ) U My(5)))
],st\ U m MZ( ))
ze{X, Y}
= Cj,acc .
This completes the proof. O

Remark 5.29. Let Z,7Z' € {X,Y},Z # 7/, and j € Ay. The conditions
Tjst = QZ(j)-IwZ(j),st and  Jjs = gz(@bz_l(j))fl-%z—l(j),st

in Proposition 5.28(ii) imply that Z’; is an inner point of a representative interval of
some funnel of X. In particular, because of (B7,.qa), the structure of Z; ;; implies

H(j) ={¢z(5)} and G(5,¢2(5)) = {92(5)}-

In this case j # 17(j), because otherwise Z; s would be empty. Algorithm 5.4
removes all branches of that type from the set of branches. Hence, if the level of
reduction before applying the cuspidal acceleration is at least k1, with k; as in
Section 5.1, then we have A* = A.
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Proposition 5.30. Let v be a geodesic on H that intersects I'.Cy. Then vy in-
tersects I'.Cycc. More precisely, if v intersects I'.Cgq at time t*, then there exist
th,t" € Rwitht) > t* > t* such that v intersects I'.C,¢c at time t', and at
time t* .

Proof. Without loss of generality we may suppose that the intersection between
the geodesic y and I".Cg; at time t* is on Cy, say at v = +/(t*) € C; 4 with j € A.
We may further suppose that v is an element of

Cj,st\ Cjace = U (KZ(j) N Mz(j)) )
Ze{X,Y}

as otherwise there is nothing to prove. Thus, there is Z € {X,Y} such that
v € Kz(j) N Mz(j) and j € Az, and Z is unique by Proposition 5.28(i). By the
discussion in Remark 5.27, we findn € Ny and k& € Cycjz such that

’Y(+OO) € D:{,Z(]a k)st )

with the set D7, (4, k) as defined in Remark 5.27. Since

gZ(ja k)_lu;gD;ZOa k)st = Ik,st \gZ(k)'Iwz(k),st ) (5-31)

Lemma 4.13 shows that -y intersects u;-L’Z 97.(J, k). Cj, at some time %, > t*. More
precisely, using Remark 4.11 and the full extent of the equality (5.31), we obtain
that

92(5. k) "My (t) € Crse \Kz (k).

By construction, gz(j, k)_lu;g.’y’(t’j_) € My(k). Since Mx (k)N My (k) = @ by
Proposition 5.28(i), it follows that

92, k) i (1) € Ces N | (Kw(k) N My (k) = Crace -
We{X,Y}

Thus, v intersects I'.C, at time ¢ . The proof of the existence of an intersection
time t* < t* is analogous, using the set D;Z (7, k) (from Remark 5.27) for suitable
n € Ny, k& € Cyc;y instead of D;Z(j, k), as well as Lemma 4.14 instead of
Lemma 4.13. O]

Proposition 5.31. For each ji € My x) the set Gacc is a strong cross section for
the geodesic flow on X with respect to ji. Each geodesic in €(X) \ Van(X) inter-
sects Cyec infinitely often in past and future.

Proof. We recall from Corollary 4.37 that Cy is a strong cross section with re-
spect to 1 and that each geodesic in §(X) \ Van(X) intersects Cy; infinitely often
in past and future. Therefore, as Gacc C ést, the validity of (CS2) for éacc is
immediate from its validity for Gst. In order to establish the conditions (CS1)
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and (CS3) for @acc we let 7 be a geodesic on X that intersects Gst (which is true
for all geodesics in €(X) \ Van(X) and hence for p-almost geodesics on X) and
let (t,,)nez be the bi-infinite sequence of intersection times. From Proposition 5.30
it follows that the sequence of intersection times of 7 with ém is a bi-infinite sub-
sequence of (ty)ncz, showing that 7 intersects (A]acc infinitely often in past and
future. This completes the proof. O

5.4 Structure of Accelerated Systems

In this section we discuss the structure of the acceleration of a reduced set of
branches. In particular, we provide a partition of the set of representatives that is
better suited for a coding of geodesics (or, equivalently, the passage to a discrete
dynamical system) than the family immediate from Definition 5.26. These results
will be crucial for the discussion in Chapter 6, where we establish the strict trans-
fer operator approach. We resume the notation from Section 5.3. Thus, C denotes
a reduced set of branches for the geodesic flow on X.

The cuspidal acceleration procedure effectively dissects each branch into up
to three mutually disjoint pieces, as the following lemma shows.

Lemma 5.32. Foreveryj € A we have

Cjace = (Cjst \ (Kx(j) UKy (4))) U (Kx(j) \ Mx(5)) U (Ky(j) \ My (j))

and the union on the right hand side is disjoint.

Proof. Let j € A. For the sake of improved readability we use the abbreviations
C = Cj,st7 KZ = Kz(]), MZ = Mz(])

for Z € {X,Y}. Since Kx N Ky = & by Proposition 5.28(i), the claimed union
is disjoint. In order to show the claimed equality, we recall from Definition 5.26
that

Cj,acc =C \((KX N Mx) U (KY N My)) ,

which clearly contains the set C \ (Kx U Ky ). Using again that Kx N Ky = &,
we see that also Kx \ Mx and Ky \ My are subsets of C; acc. Thus,

(C\(Kx UKy)) U (Kx \ Mx) U (Ky \ My) C Cjace - (532)

It remains to establish the converse inclusion relation. To that end we consider
any element v € Cjacc. If v ¢ Kx U Ky, then v is obviously contained in the
union on the left hand side of (5.32). If v € Kx, then v ¢ Mx since otherwise
we would have v € Kx N My, which contradicts to v € Cj 5¢c. Analogously, for
v € Ky. In turn, the inclusion relation in (5.32) is indeed an equality. O
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Recall the index set A* from (5.27). For Z € {X,Y } we set
7 =A"NAz. (5.33)

The following definition is motivated by Lemma 5.32. We recall from Defini-
tion 5.26 that K(j) = My(j) = @ whenever j € A*\ A}.

Definition 5.33. For j € A* we set
Climy = Cist \(Ex(7) U Ky (7)) ,

and, for Z € {X,Y},
Clizy = Kz(j) \ Mz(j) -
We further set

~

A= {(j, V) e A" x {X,R, Y} \ Cess) # @} .
For a € A we call C2°¢ an accelerated (or induced) branch and denote by

Cace = {c;cc

ac ﬁ}
the set of all accelerated branches or the accelerated system. For any j € A* we set
o { v (5)- Ty (i) if Ve {X,Y},

GV) — , . .

’ i\ (9x(5)- Z() Vv ()-Tyy(s) iV =R,
as well as

J ) Jj \gV(@Z};’l(j))_l'Jw‘;l(j) 5 if Ve {X7Y}a
V) =
U Jj | ifV =R,

where, for j € A*\ A7, we set Z,(;) = & and Jw£1(j) =oforZ e {X,Y}.

We note that for each j € A*, the set C; .. decomposes into the disjoint
union
. _ acc acc acc
Cjace =GRy YU C(5ix) YU CGv)

by Lemma 5.32, an observation that is needed for the proof of the following
lemma.

Lemma 5.34. The accelerated system C,.. satisfies the following properties:

(i) We have

U C;CC = U Cj,acc = Cacc -

a€A jeAx
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(ii) Forallj € A* we haveZ; = I x) U I(;r) U I(;y). This union is disjoint.
(iii) Foralla € A we have Io g = 1(CE).

(iv) Foralla € A none of the boundary points of I, and J, are hyperbolic fixed
points.

Proof. The statement of (i) follows directly from Lemma 5.32. Further, (ii) is ob-
viously true because, for V' € {X, Y}, we have I(;v) = gv(j). Zy, (j)- In order

to establish (iii) we let a := (j, V') € A and suppose first that V € {X,Y}. The
definition of C2°° immediately shows that

I(C;CC) - I(KV(])) = I(j,V),St = Ia,st .
For the converse inclusion relation we pick any point
v € Jist \gv Wy (1)) Ty -

Its existence follows from Ky (j) \ My (j) = C2° # @. By (B5,cql), we find for
each z € I(Ky(j)) an element v € C; such that

(7 (+00), 1 (—00)) = (2,9) -

Each such element v is in Ky () \ My (5) = C2°°. Thus, I(Ky(j)) C I(CZ).
We suppose now that V' = R. Then

I(C3) = Tjs \ (I(Kx(5)) UI(Kv(5)))
= Tjst \ (9x(5)- Ty ()5t Y 9Y (5)+ Ly () st)

= la,st

where we set Z,, () = @ whenever (j,Z) ¢ A, for Z € {X,Y}. This shows (ii).

Finally, we observe that, for every a € A, the boundary points of I, and J,
in the I@—topology emerge as ['-translates of the endpoints of the geodesic seg-
ments bp(C;) for j € A. In other words, they are contained in the set

IAX;, Y55 €A}
Hence, (iv) is a consequence of (B2). O

Our next goal is to “update” the transition sets according to the accelerated
branches. In other words, for a, b € A we search for a characterization of the set

G(a,b) = {geT|3IveCi: v (tace1(v)) € g- C{°} (5.34)

in terms of the transition sets for C, where t,cc,1(7) denotes the first return time
with respect to Cycc. This will enable us to prove that the first return time tace 1 ()
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does indeed exist for all v € Cycc, and thus the sets Gacc(a, b) belonging to the
accelerated system are well-defined (see (5.38) below). Further, it is a crucial step
in the determination of the transformations that constitute the structure tuple for
the strict transfer operator approach.

We start by updating the cycles, cycle transformations, and cycle sets from
Section 5.3 to the situation of the accelerated branches.

Definition 5.35. Let Z € {X, Y} and let j € A be such that (j,Z) € A. We call
the subsequence cycy (j) of cycy () of all k that are elements of A* the induced Z-
cycle of j. We further define the map v : A7 — A7 by

¢§ (CyCE (])n) = CyCE (j)n—i—l

for all n € N. We also define the transformations

9°((4,2)) = 9204, 7))

and set as before

9((3,:2), (k, 2)) = ¢*((5,2)) - " (5,(5), 2)) - -~ g* (3)"**71(5), Z))

where 7, := min {{ € N | (¥3)*(j) = k}, as well as

ugjzy = 9" ((4,2), (4,2)) -

Finally, we define the induced cycle set of (j,Z) to be

Cyef;z = {(G,2), W55),2), .. (5) 71 (4),2)} .

Remark 5.36. Note that the updated transformations ¢g*((j, V')) already make up
for the loss of branches during the acceleration procedure. Thus, the cycle trans-
formation remains unaltered, meaning that

UGvy = Uv, (5.35)

for every (7,V) € A* x {X,Y}. Note further that the induced Z-cycles are al-
lowed to contain members k for which (k,Z) is not an element of A. This is
necessitated by the following eventuality: Let j € A be such that C; s = My(j)
for some Z € {X,Y}, but Cjsc # Kz(j). Then j € A7, but Cf7) = 2,
thus (j,Z) ¢ A. But A will include the index (7,R). This distinction proves
necessary in the following construction of induced transition sets: j must be in-
cluded in the induced cycle in order to allow the other induced branches of that
cycle to “see” (7, R). But (4, Z) is excluded from A and hence we do not construct
transition sets for it. If the level of reduction is at least x1, with k1 as in Section 5.1,
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then this eventuality does not occur and, consequentially, (k,Z) € A for every
member k of any induced Z-cycle.

We are now fully prepared to determine the induced transition sets Gace(a, b)
for a,b € A. Leta = (j,V) € A and suppose first that V' € {X,Y}. In Re-
mark 5.27 we have derived the decomposition

iy =9vi)-Touiy= U U DlyGk)
n€Np kECyc] %

We can now rewrite

Dy (k) = ulfygv (4, k) Ik \ Wy gv (3, k) gv (k) Ly, (k)
= ulyvgv (k) (I \ Tivy) -

Hence,
Dy (4, k) = Dy (4, k) Nl vgv (G, k). Te = wygv (5, k) (Zi \ Lir,yy) -

Therefore, by passing to “st"-sets we obtain

Iivs= U U wvov( k) (Znse \ I(Kv (k)

neNy kECycj v

U U ufygv (G, k) (I ry st U Le,vr) st) »
neNp kECycLV

(5.36)

with V"’ such that {V, V'} = {X, Y} and all unions being disjoint. By taking Re-
mark 5.36 into account, Proposition 5.28(ii) allows us to pass to (k, V') € CyCZ‘j’V)
in the second union. The transformations gy (j, k) then need to be substituted
by ¢*((j, V), (k,V)). Hence we obtain the disjoint union

Iins=U U g (G V), B V) (Tgeryse U gy st)
n€Nop (k, V)eCyc(] V)

(5.37)
Foranybe A, b= (k,W) (anda = (4,V), V € {X, Y}) we therefore define

Upen, {19 (a,b)}  if W # Vand b == (k,V) € Cyc},
gacc(a7 b) = 0 .
%} otherwise.

(5.38)
We suppose now that V' = R, thus a = (j, R). We consider (k,g) € A x T
such that g € G(j, k), pick v € C2° such that

Yo (+00) & gx(7)- Ly ()5t Y 9Y (3) Zipy () st »

and let 1) denote the intersection vector of v, with g. Cy. In what follows we argue
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that 7 is contained in g. C{°° for some b € A of the form b = (k,W). To that
end, we first note that

IRy st = U U 9Tt U U G- Ly () st
keA Gk Gl x (j
ke O (7)) 757 e L
U U 9T
9€G(3,0v (4))
97#9v ()

by (B7,cqa), Definition 5.33, and Lemma 5.34(ii). Therefore the hypotheses on v
imply that g. Z, C I(; r). Then, for any Z € {X, Y}, we have J; # g.J(Mz(k)),
as follows immediately from the definition of Mz(k). Thus,

J; 0 g.J(My(k)) = @

by Proposition 4.5(i). It follows that ) € Cj, acc and, by Lemma 5.32, n € C{ for
some b = (k,W) € A. Therefore, for any b = (k,W) € A (and a = (j,R)) we

define
G, k) \{gx(1)} ifk=vx(j),
Gace(a,b) == ¢ G(J, k) \ {gv(j)} ifk=1v(j), (5.39)
G(j, k) otherwise.

In the following proposition we collect the adapted “set of branches”-style
properties satisfied by Cycc. Each of the statements follows, in a straightforward
way, from its respective counterpart in Definition 5.17, the properties collected
in Lemma 5.34, and the constructions above, for which reason we omit a detailed
proof.

Proposition 5.37. The accelerated system C,cc satisfies the following properties:

(Blaee) Foreacha € A there exists v € C2°¢ such that () € Gper(X).
(B2ucc) Foreacha = (j,V) € A the set bp(CZ) is contained in a complete

geodesic segment b, in H with endpoints in R \ Ry. This segment is given
by

ba = bp(C]) .

(B34cc) Foreacha € A all elements of C2°° point into the same open half-space
relative to b,.

(B4acc) The I-translates of{[a

a € A\} cover I/@St.

(B5acc) Foreacha € A and each pair (x,y) € Igs X Jost there exists a unique
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element v € CJ° such that
(z,y) = (7V(+OO)77V(_OO)) .

(B6acc) Ifbg N g.by # & for somea = (j,V),b = (k,W) € A and someg €T,
then either j = k and g = id, or Hy (j) = ¢g.H+ (k).

(B7acc) Let Gace(a, ) be defined as in (5.38) and (5.39) and let G(a, b) be defined
as in (5.34) fora,b € A.
(i) Foreverya € A we have
Ia,st = U U g-Ib7st .
be A 9€Gacc(a,b)

This union is disjoint.
(ii) Foreverya € A and everyv € C2° there exists t € (0,+00) such
that v, (t) € T'.Cace.

(iii) For every pair (a,b) € A x A we have
Gacc(a,b) = G(a,b).

(B8acc) IfC is admissible, then Cacc is admissii)le in the sense that there exist ¢ € R
and an open neighborhood U of q in R such that

Z/IﬂUIa,stZQ and q¢ 1,
acA
foreverya € A

Remark 5.38. Let a,b € A By combining part (iii) of (B7.c.) with (5.34), the
definition of C2°°, and Algorithm 5.11 we see that every element g € Gucc(a, b)
emerges as the product of transition set elements. This means we find an inte-
ger n € N, indices ki, ..., kn+1 € A, and transformations h; € G(k;, k;11) such
that

g:hlhg-"hn.

Corollary 5.39. Let v € Cycc. Then there exist uniquely determined sequences

(tacc,n(y)>n€Z inR s (kacc,n(l/))nEZ in A\, and (gacc,n(y))neZ inT’ ,

which satisfy the following properties:

(i) The sequence (tace,n(V))nez is a subsequence of (tc.n(V))nez. It satisfies

taCC,O(V) =0
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and

¢ (V) = min {t > tacen—1(v) | 7,(t) € I'.Caee} forn >1,
acc,n max {t < tacent+1() | 7, (t) € ['.Cace} forn < —1.

(ii) Foralln € Z we have
gacc,n(V) € Gace (kacc,n—l (V)a kacc,n(V)) .

(iii) Leta € A, t € R, and g € T be such that v.,(t) € g. C2°. Then there exists
exactly one indexn € Z such that

a = kacc,n(V) s t= tacc,n(”) s

and
g = gacc,sgn(t)(l/) " 8acc,2 sgn(t)(V) e gacc,n(y) :

The following result on the relation between elements of the set of represen-
tatives of the accelerated cross section and finite sequences of transition elements
should be considered an “accelerated variant” of Lemma 5.1.

Corollary 5.40. Let m € N and suppose that ag, . . ., am, € A andgi,...,gm €T
are such that

9j € Gace(aj—1,a;) forje{l,....,m}.
Then there exists v € Cg¢¢ such that
aj = Kacej(v)  forje{0,...,m}
and
9j = 8ace,j (V) forje{l,...,m}.
Furthermore, the subset of C;5° of all vectors with that property is given by

Cap lhm. cacc = {veC| It >0:7(t*) € hpm.CZ}, (5.40)

where Ny, == g1+ - Gm.-

Proof. The assumptions imply that
gj.Iaj - Iaj71 and Ja%1 - gj.Jaj ,
forall j € {1,...,n}. The combination of (B5,..) and (B7,..) therefore implies

acc acc acc
2 7 Cas’ lgrgm.c2ee © Cag® lgrmgmon. 02 S oo © Cag gy coce -
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Hence, we may choose vy € Cg° \hm,ch, with h,,, as above, and consider the

system of sequences [(tace,n (0))ns (Kace,n (10))n, (ace,n(V0))n] associated to it by
Corollary 5.39. Part (iii) of Property (B7...) together with (5.34) and the unique-
ness of the associated sequences immediately implies

a; = kacc,l(VO) and g1 = gacc,l(VO) .

The first assertion now follows inductively by setting v; = fy,’/ji L(bace,1(vj-1))
for j = 1,...,m and repeating this argument.
The second assertion is immediate from Corollary 5.39. O

In the next section we will establish the structure tuple for the strict transfer
operator approach. For that goal, several sets of transformations are needed, all of
which being required to be finite. The following result, which is a straightforward
consequence of (B7,..iii) and (5.39), plays a crucial part in assuring finiteness for
many of these sets.

Corollary 5.41. Suppose that the set of branches C is finitely ramified. Then for
alla,b € A witha = (j,R) for some j € A* we have

#gacc(a7 b) < 400.
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Chapter 6

Existence of Strict Transfer
Operator Approaches

Let I' be a geometrically finite Fuchsian group with hyperbolic elements that ad-
mits the construction of a set of branches. In this section we state and prove that
a set of branches for the geodesic flow on the orbit space of I gives rise to a strict
transfer operator approach (Section 3.1). See Theorem 6.1. In order to do so, we
discuss how any given set of branches defines a structure tuple. This is the objec-
tive of Section 6.1. The proof of Theorem 6.1 is then split into the Sections 6.2-6.6.

6.1 Structure Tuple and First Main Result

By Proposition 4.35, every set of branches for I' (in the sense of Definition 4.1)
can be turned into one that is admissible. By Proposition 4.28, it can further be
extended to one that is finitely ramified, preserving the property of admissibility.
Moreover, Proposition 5.19 guarantees that it can then be reduced to a reduced
set of branches (in the sense of Definition 5.17) that is non-collapsing. Proposi-
tion 5.21 shows that the finite ramification property remains preserved. There-
fore, we may and shall suppose that C = {C; | j € A} is a reduced, admissible,
non-collapsing and finitely ramified set of branches for I'.

We resume the notations from Section 5.4 and recall, in particular, the index
set A as well as the sets Cyc?, I, and J,, and the transformations ¢*(a), uq,
and g*(a, b) for a,b € A. For a = (j, Z) € A we denote by

A — A A — {X,RY}
A ) and by Ty :
a — J a —> Z

the projection onto the first and second component, respectively. Hence, for ev-
ery a € A we have

a= (ma(a),mz(a)).
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For each a,b € E we define

ap = (WA(G),Wz(b)) .

Using that we set

%] otherwise,

P, { {ugl} if mz(a) # mz(b) and a, € Cycy,
ab —

where Cyc’(k_ R) = @. For p € Py, we further define

gp =g (b, Zi)_l . (6.1)
Furthermore, we define

Gace(b,a)™  if mz(b) =R,
Cop =1 {g*(b,a)~'} ifmz(b) ¢ {mz(a),R} and @, € Cyc;,
0] otherwise,

where for G C T we denote G~ = {g*1 ‘ g€ G}. We emphasize that the
requirement “(m4(a), mz(b)) € Cyc;” in the conditions of these definitions is
indeed correct and should not read “(ma(a), 7z(a)) € Cycj;” Further we note
that for a,b € A such that 74(a) = 74(b) and P, # @ we could define g,
in (6.1) (for the unique p € P, ;) to be the identity element in I' and then also
define C, j, to be {id}. However, the chosen definition has a slight advantage in
the proofs of what follows. Finally, since C is admissible, R \U ica 1j has inner
points. Let £ be such an inner point and let g¢ € PSL2(R) be such that g¢.{ = oo.

Hence, for instance, a possible choice is
_ e —1-¢

Then oo is an inner point of q§.(]1A§ \Ujca 1;), meaning that each of the sets g¢.J;
is an interval in R. Since

Ia c Iﬂ’A(a) c I?TA(G)

for every a € A, the convex hull of ge-last in R, which we may denote by
conv(ge.Iq ), is an interval in R as well. Note that

conv(qe.dyst) = conv(ge.ost) - (6.2)

We define for every a € A,

-~

I, = qgl.conv(qg.la7st) i (6.3)
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6.1. STRUCTURE TUPLE AND FIRST MAIN RESULT

Because of (6.2) and the continuity of g¢, this definition is independent of the
choice of £ and ¢.

With these preparations we are now ready to formulate our first main re-
sult, which assures existence of strict transfer operator approaches given a set of
branches.

Theorem 6.1. Let I" be a geometrically finite Fuchsian group that contains hyper-
bolic elements and admits the construction of a set of branches for the geodesic flow
on its orbit space X. Then I admits a strict transfer operator approach with structure
tuple given by

8 = (A (Lo eis (Pas)apei (Casbapers Hophoeras banes) -

Before we discuss a proof of Theorem 6.1, we finish our series of examples
concerning the family {I'; \} e\ {13,352 by providing structure tuples and the
associated transfer operator families (see also Section 3.3).

Example 6.2. Recall the family of Fuchsian groups {I's » } yem {1},1>2 and recall
further its reduced set of branches {Cp 2, Cp 7} from Example 5.8. As discussed
before, this set is non-collapsing. In Example 5.25 we identified the X- and Y-cycle

!
7.7 and 2t—A>2,

from which we obtain the index set
A={(2,R),(2,Y),(7,X),(7,R)},

with
Cycla,y) ={(2,Y)}, Cycrxy = {(7,X)},
and
CYCE‘ZR) = Cycz‘zR) =gJ.

From Figure 15 we read off the transition sets

gacC((2 R), (27R)) = gacc((27R>v (27Y)) = gacc((7v R), (27 R))

= Gace((T,R), (2,Y)) = {ggtr [n=1,...,0 =1},
gacc((2 R), (77X)) = gacc((27R>v (77 R)) - gacc<(77 R)7 (7 X))

= Guec((T,R), (T,R) = {gpt " [n=1,...,0 =1},

as well as
gacc((QvY)v (2>R)) = {t?\ | n e N} ) gacc((7vx)v (77R)) = {t;n ‘ ne N} )

and G,cc(a, b) = @ for all other choices of (a, b) € Ax A. From that we deduce the
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structure tuple for I, ), consisting of the index set A and the following quantities:

« the family of intervals {IAa}a ¢ 7 consisting of

f(2,R) = [_17)‘ - 1] ) j\(2,Y) = [)‘ - ]-’ +OO] )

f(?,x) = [-o0,1 = A], Trry=[1-A1],
« the families of transformation sets consisting of
Par),2Y) = {t3'}, Prryx) = {ta),
and P, ;, = @ for every other choice of (a,b) € A x E and

Cer),2r) = Cer),mr = Cey).er) = Cey)..R)
= {t;\lgg ’ n= 1,...,071} ,

Crx),er =Cuox),mr = Car),eRr) = CrR),(7R)
:{t/\gg ‘ n217"'70_1} )

as well as
Ceoryey) ={ty'} and Crr)mx) ={tr},
and Cy, = @ for all other choices of (a,b) € Ax A,

« and the transformations

gp=t5" for p€ Pur)y),
gp =tx  for p€ PrR)7x) -

The associated (formal) fast transfer operator with parameter s € C, Res > 1,
admits the matrix representation

Yo as(tyler) e as(ty®) 0 Soias(ty an)
o | Zmetle) 0 0 Xihalte)

S0 71 as(tagl) 0 0 Sotas(tagl) |

S0t as(tagh) 0 Sl os(th)  0T] asltagh)

where « is as in (3.4).

Now recall the reduced set of branches Cp from Example 5.22. The structure
tuple for this group and induced cross section is composed of the following quan-
tities:
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« the index set

A={(2,R),(3,X),(3,R),(5.R), (5,Y),(7,X),(T,R), (8,X), (8, R)} ,

« the family of intervals {fa}a ¢ 4 consisting of

Iog) = [-1,¢(g0)],

T3X):[C( o), 99 211, IA3R [9572.1,1],
I5R) [1,A+1], [ =[A+1, -I-OO]
Iz x) = [=o0, ¢(go)] f = [c(g0), (g5 )]
Isx) = [e(g5 1), 9oty "1 fs R) = 90t 1,1],

+ the families of transformation sets and associated transformations g, for
p € Py, consisting of

PRy 5y) = {th '} gp=1t3",
PRy X)) = 195 6200}, 9p = 95 "tAGo
PRy, (7.x) = {ta}, =95,
Par) s.x) = {9otads '} 9p =95 tags "
PRy (3.X) = {95 0290} 9p = t)Jo

P ry,(7.x) = {ta}, gp =tr,
Prrysx) = {90tags '} g =trg, ",
PRr),3x) = {195 6290} 9p =9z,
Psry,rx) = {ta}, 9p = 9o

PRy sx) = {90tags '}, 9p = Gotrg,
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Cor).6r) = Cex),6R) = CaR).6R = C6R),6Y)
= Cix),6R) = C8R),5R) = {t/\ b,
Cer).6R) = C6R),R) = C6,v),6R) = C6,v),(1.R)
= Cx),7RrR) = C@8R),(TR) = {go'm ’ m=1,. - 2} ,

Cisr)e2Rr) = Ce,y),2Rr) = CRr),mx) = {90}
Cisx.6m = Ceryer =19, [m=1,...,0 -3},
Cirry 35 = Csx),6.R) = Car)8R) = {tr95 }
Car)ex) = 19,00}, Caryox) =195}
Ciryex) = {9 00} Caryex) = {tags}
Cury,r,x) = 1tr}, CsRr).(3x) = 192}
CR),8X) = {9ot295 ',

and P, , = Cyp = @ for any other choice of (a,b) € Ax A

The associated fast transfer operator with parameter s € C takes the form
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(126) 0 ((265326) 0 " (W 26)™0 _ ($a26) 0 0 (X (WB) (BB 0
o o o

7—o0 e—o0
=w T=w
(126¥3)*0 0 (w26)0 " 0 0 (X0 (. 6)0 < 0 0
¢—o €¢—o0
I=u I=u I=u
0 (26530 "< 0 (s 0 0 0 (o550 {0
0 0 0 0 0 0 0 0 0
HHE ﬁHE
0 0 (w26)™ < 0 0 0 (ub)™ 0 (°6)*
¢—o 7—o
T=w I=u I=w
0 0 (w26)0 " 0 W0 0 (W) 0 (96)0
¢—o [ee) 7—o
=u o=u I=u
0 (660 0 ($3,26)%0 "¢ 0 (,$3)50 0 (653,260 "0
0 0 0 0 0 (;X9)0 0 0 0
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Remark 6.3. Let a € A. Then
[a,st =I,NRy = qgl-(COHV(Q@Ia,st) N IRst) = qgl'(q5'1a,st> = La,st -

Therefore, we may drop the ~ whenever “st”-sets are concerned. The intervals I,
were introduced solely to fit the needs of a strict transfer operator approach ver-
batim.

As mentioned above, the bulk of the proof of Theorem 6.1 is split into the fol-
lowing five sections. In the remainder of this section we verify the initial require-
ments for a strict transfer operator approach (the list of demands before Property 1
in Section 3.1). Indeed, the finiteness of the set A is obvious from its construc-
tion. Let a,b € A. From Definition 5.35 and Remark 5.38 we see immediately
that each of the sets P, ; and C, ; consists completely of elements of I". Conse-
quentially, g, € I for every p € P, . The finiteness of P, is obvious from its
definition. The same is true for C, ;, whenever 77(b) # R. In the case 77(b) = R,
since C is finitely ramified, we obtain from Corollary 5.41 that

#Ca,b = #gacc(b7 a) < +00.

Finally, since P, , = {u; '} whenever it is non-empty, uj, = u,, (b),72(b) DY (5.35),
and u; 7 is parabolic for every choice of (j,7) € Az x {X, Y} by the discussion
right after (5.23), every set P, ; consists solely of parabolic elements.

6.2 Property1
By a straightforward inspection we observe that
Ca_,; U {pinggl ‘ pe Pa,b7 n e N} = gacc(b, a)

forall a,b € A. This union is disjoint. In the second set of the union on the left
hand side no element gets constructed twice. Therefore, the first part of Prop-
erty 1(I) and all of (II) and of (III) follow immediately from (B7,..i). For the
second part of (I) we let a,b € A be such that P,y # @. Thus, P, = {ub_l}.
Since the element u;l is parabolic (as we showed in Section 5.3), by Lemma 1.1(ii)
we find a transformation ¢ € PSLy(R) such that

ub_lzq'tﬁ'qila

for some x € R\ {0} and t,; as in (1.7) . Thus, u; ™ = u; ' for some n € N would
imply tﬁfl = id, and hence n = 1, since t]" = t,, forallm € Z and k # 0. In
turn, ug" # ugl for n > 2, which establishes the second part of (I).
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6.3 Property 2

For each n € N, the set Per,, with respect to S consists of all ¢ € I" for which
there exists an a € A such that

{ g_l'Ia,St X {a} — Ia,st X {a}
(x,a) —  (g.z,a)

is a submap of F"". These submaps correspond to loops in the “return-style” graph
associated to the accelerated system C,., wherefore id ¢ Per,,. Property 2 asserts
the union

oo
Per = U Per,,
n=1
to be disjoint. In order to prove this assertion we decompose, for each n € N, the
set Per,, into the sets

-1
g -Ia st X {a} — Ia st X {a} . n
= r : g fF" 5.
Pergn {g € ‘ { (2, a) (9.2, a) is a submap o

fora € A. We emphasize that the union Per,, = Ua i Per, ,, is not necessarily
disjoint. Further, for any n,m € N, we have Per,, N Per,, # @ if and only if
there are a,b € A such that Per, , NPery,, # @. Therefore, the assertion of
Property 2 is equivalent to Per,, NPer,, # @ implying n = m for all (not
necessarily distinct) a, b € A

The following result equips us with all the necessary information regarding
the elements of the sets Per, ;.

Proposition 6.4. Leta € AneN, and g € Per, . Then g is hyperbolic. Its
repelling fixed point f_(g) is an inner point of I,,. Its attracting fixed point £ (g) is
an element of Jr., (4)-

Proof. The definitions of the sets P, 3, C, 3, and Per, ,, forany a, b € Aandn € N,
together with Corollary 5.40 imply the existence of v € C2“ such that

g_l = gacc,l(V) : gacc,2(7/) T gacc,n<V> . (6.4)

Therefore,
9 " C g 0y € 1o € Ly - (6.5)

Hence, for all £ € N, we have

g " bp(Cry (@) € 9" Hy(ma(a)).

Since I'-translates of branches do not accumulate in H (see Proposition 4.6), the
“limits” of the set sequences (g~ *.I,)ren and (g_k.IﬂA(a))keN are equal and a
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singleton in ]ﬁ that is, the intersection

m gik'Ta = ﬂ gik'Iﬂ*A(a) (6.6)
keN keN

is a singleton in R, consisting of a fixed point of g~!. Therefore g is either hyper-
bolic or parabolic.

We will now show that g is not parabolic, by means of a proof by contradiction.
To that end we assume that g is parabolic. Then the singleton from (6.6) consists
of the unique fixed point f(g) of g. We recall that in small neighborhoods of f(g)
in R, the action of g, as being a parabolic element, is attracting to f(g) on one of
the sides of f(g) and repelling on the other. Thus, for any interval I in R with
f(g) in the interior of I and I not being all of R, we have g~1.J ¢ I. Therefore
(6.5) implies that f(g) is a boundary point of /, and also of I, (4). This implies
that 7 (a) € {X, Y} and hence, by a slight abuse of notation,

f(g) = 12(a) x4 (a)

(i.e,for a = (j,Z) we have f(g) = Z;). Further we see that for the vector v
from (6.4) we find exactly one pair (b,r) € Cyc} xNjy where b is of the form
(k,mz(a)) € A and such that

Yo (+00) € upg*(a, ). (Limy b))t Y L(ma (b),mz(a) ) sst)

(see (5.37)), where 77 (a)’ is such that {7z (a), 7z(a)'} = {X, Y}. Hence,

Lacc,1 = uzg*(a, b)

and
9 o C Gaee1 9 o C Limy(b),R) Y Lma (8),mna)) - (6.7)

Since b € Cycy, the set I, = I(r, (t),r,(a)) does not vanish and, moreover, f(g)isa
boundary point of [,. Comparing with (6.7), we see that f(g) cannot be contained
in g~1.1,, which is a contradiction to (6.6) being the singleton {f(g)}. In turn, the
element g is not parabolic.

We obtain that the element g is hyperbolic. The singleton (6.6) consists of
the fixed point f; (¢g7!) = f_(g) (attracting for g1, repelling for g), as follows
immediately from its definition (6.6). Further, we clearly have

f,(g) S Ta - Iﬂ'A(a) .
Since, by construction, the boundary points of I, in R are elements of R \ ]l/ist, it
follows that f_(g) is an inner point of I,. Finally, we can apply the same line of
!interchanged to show that f, (¢) = f_(g™1)
is an element of Jr, (o). O

reasoning with the roles of g and g~
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In what follows we extend on the initial argument in the proof of Proposi-
tion 6.4 to find an equivalent description of the set Per, , in terms of iterated

intersections of induced geodesics with I'.C,... Together with an inspection of

the relationship between C2°“ and C;*°“ in view of Proposition 6.4, this will enable

us to effectively compare the quantities m and n.
Forv,w € Aand h € T" we define C° |, cace to be the subset of C;°° of all
vectors v for which v, eventually intersects h. C5°. To be more precise, we set

C2 |p.cace = {v € C| 3t* > 0: 7, (t*) € h.CJ*} (6.8)

(see also (5.40)). Since, for every v € Cj ;. cace, the intersection time t* is
uniquely determined by the quantities v, w, h, and v, the value

(v, w, h,v) = #{t € (0,t] ‘ 7,,(t) € I'.Cacc } (6.9)

is well-defined.

The following result is an immediate consequence of Corollary 5.40.

Lemma 6.5. Letv,w € A and h € T be such that Cy |h.cacc # @. Then for
every choice of v, 1 € CJ°|j,. cace we have

SD(U7 w7 h7 V) = 80(U7 w7 h? 77) *

Because of Lemma 6.5, for every two pairs (v, p), (w, q) € AxT we can define
the intersection count

SD(/U7w7p_1q,V) lfCSJCC |p—1q.cacc 7é @7
= w 6.10
o((v,p), (w,q)) { 0 otherwine (6.10)

with an arbitrary choice of v € CJ“ | -1, gace in the former case.
Lemma 6.6. The intersection count has the following properties:

(i) For all (v,p), (w,q) € A x T the intersection count o((v,p), (w,q)) is in-
variant under I in the sense that

Vh el : (v, hp), (w, hg)) = ¢ ((v,p), (w,q)) .-

(ii) Let (v,p), (w,q), (u,h) € A x T be such that
Colpmrq.cae #@  and  CIm1p cpee # 2.
Then

e((v,p), (u, h)) = ((v,p), (w, ) + ¢((w, q), (u, h)).
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(iii) Forallv € g n € N, and h € Per,,,, we have
o((v,id), (v, ")) =n.

Proof. The statements (i) and (iii) are immediately clear from the definitions of the
intersection count and the sets involved. Regarding statement (ii), the hypotheses
imply that

p-Cylg.cace #2  and  q. Ci[p.cacc # .

Therefore, we have
acc
Co lp-th.cace # D

Hence all intersection counts involved are non-zero. We pick v € CJ | ,-1,. ¢ ace.
Then v is also an element of C“|,-1, cacc and hence there exist uniquely de-
termined ¢, t5 € (0, +00), t] < t3, such that

(1) €p'q.CA°  and  ~(t5) € pTh.CEC .
With that we calculate

o((v,p), (u,h)) = p(v,u,p~"h,v)
=#{t € (0,43] | 7,(t) € T.Cacc }
= #{t € (0,7 7(t) € T.Cacc}
+#{t e (7, 83] | 7 (t) € DeCacc }
= (v, w,p~ q,v) + e(w,u,q ' pp~"h,v)
= o((v,p), (w,q)) + p((w, ), (u, h)). O

Leta,b € A and m,n € N be such that Per, ,, N Pery ,,, # &. Denote
j=ma(a) and k= ma(D).

Further let g € Per,,, N Pery ,,. Because of Proposition 6.4 the transformation g
is hyperbolic with

(f_(9),f+(9)) € (Ia N 1) x (J;NJg).
This implies in particular that
Iost N Ipgy # 9 and Jist N Jpst # 9.
The combination of those two shows that either

Hy(j) SHL (k)  or  Hi(k) CSHL(j),
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where we suppose the former without loss of generality. Furthermore, there ex-
ists N € Ny such that

g NHL(j) CHy (k) C gV FHL()

and
Cl;dcc |gN+2_Cacc ;é %) and C;CC |g—N_Cacc ;’é . (611)

This is due to the fact (see Proposition 6.4) that the set sequences (g".bp(C; bp(Cj))rez
and (¢g".bp(Cy))rez converge to the singleton {f1(g)} for & — oo and that
the fixed points f_(g) and f (g) are inner points of I; N I}, and J; N J, respec-
tively. The 2 in the exponent of g instead of a 1 accounts for the possibility that
k equals v (j) or j equals 7 (k) for either Z € {X,Y}. We note that (6.11) in
combination with

Ca®lg-1.caec # @

(which is due to g € Per, ;) yields that
CgCC |g—(N+2),Cl§*CC 7& %) and Cl?cc |gN.C;CC 75 .

With Lemma 6.6 we now obtain

= ¢((a,id), (a:971) = ¢((a,g"*1), (a, ™))
V), (a, ") + l(a, gV ), (a,gM)))
= S¢((a,g"*?), (a,g™))

M\HM\HM\HL\D\P—‘MM—“G

e((a,9"*2), (b)) + (b, id), (a, ™))
e ((a, "), (b,id)) + (b, 4%), (a, V%))

p((b,g%), (b,id)) = ¢((b,id), (b,g")) = m.

i

This completes the proof of Property 2.

6.4 Property 3

Part (I) of Property 3 has already been shown to hold in Proposition 6.4. For the
proof of the parts (II) and (III) we start with some preparations.

For the first step we recall the set Per, ,, for a € Aand n € N from the proof
of Property 2 (Section 6.3) and further that each element in Per, , is hyperbolic
by Proposition 6.4. Therefore, for any g € Per,, 5, its two fixed points

fr(97) = f=(9)
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are elements of Ry; and each geodesic y on H with v(+00) = f4 (g7!) is a repre-
sentative of the axis a(g!) of g~1. The geodesic on X associated to 7 is periodic
with period length #(g~1). See Section 1.7 and, in particular, Lemma 1.11.

Lemma 6.7. Leta € A,n € N and g € Perg . Lety be a representative of a(g1).
Then y intersects C2.

Proof. By Proposition 6.4,
f+<g_1) € Ll,St and f (g_l) € JﬂA(a),st :

From (B5) and Remark 4.11 we obtain that v intersects Cy, (4) st and hence v
intersects Cr, (4),acc- By combining the Lemmas 5.32, 5.34(ii), and 5.34(iii), we see
that vy intersects C 2. O

Definition 6.8. Leta € A, g € I" be hyperbolic, and suppose that v is a geodesic
on H satisfying v(£o00) = f1(g) and 7/(0) € C2°. We set

v(a,g) =7'(0).

The vector v(a, g) is well-defined whenever (f1(g),f-(g)) € Lust X Jr,(a) st
by virtue of Lemma 6.7, hence, in particular in the case that gt e Per, ,, for
any n € N. The geodesic 7y in Definition 6.8 is then a representative of «(g) and

equals Vo (a,9)-

Lemma 6.9. Leta € A, g € I' be hyperbolic such that

(f-l-(gil)vf—(gil)) € Ia,st X Jﬂ-A(a),st7
and set v == v(a,g~ ).

(i) Foreachm € Z set

hip = Bacc,sgn(m) (;) T gacc,m(;) :

Then we have, for eachm € Z,
V(Kace,m (V) Bngh!) = hot s (tacem (D)) -

(ii) Forallm € N we havev = v(a,g) = v(a,g™).

(iii) The sequences
((kace,n (), Bacen (@) ey and - ((Kace,—n(P); Bace,~n(9))) e
in A x T are periodic with period length
0= ¢((a,id), (a,971)).
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For allm € Ny we have

gacc,merl( ) " Bace,(m+1)¢ ( ) =g -

and

gacc,—mﬁ—l( ) * Bace,—(m+1)¢ (~) =g-

In particular we obtain

gacc,—n(g) = gacc,nﬁ—n-{-l(g)_l

foralln € N.

Proof. Statements (i) and (ii) are straightforward consequences of Lemma 1.11(ii)
and (iii), respectively. In order to verify (iii) consider the geodesic vy := 7. Then
is a representative of a(¢g~!). Thus, 7(R) is fixed by g and g~'. By Lemma 6.7,
7 intersects g™. C2 for every m € Z. Let t; > 0 be such that 7/(¢;) = g~ 1.7
By (6.9) and (6.10), the number of intersections of the geodesic v with I'.Cjcc
at times t € (0,1] is given by ¢((a,id), (a,g~1)). Applying (i) with m = 1
now shows the periodicity of the first sequence ((kace,n(7), Sace,n(?)))n with the
claimed period length, as well as
gacc,m€+1( ) " Bacce,(m+1)¢ (N) =9 -

for every m € N. Because of Lemma 6.6(i) the remaining statements follow anal-
ogously, by considering g instead of g~! and t3 < 0 such that 7/(t3) = g.v. [

Proposition 6.10. Leta € AneN and g € I'. Then g € Per,,, if and only if
there exists v € C2°° and t* > 0 such that

#{t € (0,t"] | 7,(t) €T.Cacc} =n

and
1

W) =g .
In this case, t* is the displacement length ¢(g~1) of g~ 1.

Proof. We suppose first that g € Per, ;. By Lemma 6.6(iii),

go((a,id),(a,g_l)) =n. (6.12)

By (6.10) this implies (since n # 0) that C7°| -1 ¢ace is not empty, and further
that
f(97") € Trn@yst €9 g st
and
fr(g7") €last Ng " Tast -
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Let v denote the unique element of C2° satisfying

(Y(+00),75(—00)) = (4 (g™ "), (g7 ")

and let t* denote the intersection time of v; with g~!. C2°. Then

#{t € (0,t"] | () €T.Cacc} =n

by (6.10) and (6.12). Further let £ := ~%(t*) denote the intersection vector of 75
with g71. C2°, Then g.£ € C2°° and

Vg.e(£00) = goyp(£o0) =fi(g™h).

Hence,
-1 ~
V() =E=9 "D,
This proves the first claimed implication. For the converse implication we suppose
that v € C2°“ and t* > 0 are chosen such that

#{t € (0,t"] |7, (t) €T.Cacc} =n (6.13)

and /,(t*) = g~ l.v. From Corollary 5.39(iii) and (6.13) we obtain that

gil = gacc,l(l/) c gacc,n(V) .
The definition of the map F' now immediately implies that g € Per,,. This
completes the proof of the converse implication. The equality t* = ¢(g~') sub-
sequently follows from the definition of the displacement length and geodesics
being parameterized by arc length. O

The following result implies Property 3(1I).

Proposition 6.11. Leta € A\ n € N, and h € Per, . Let hg € I' be primitive
such that h' = h. Then hg € Pera n.

Proof. Since h € Per,,, we find v € C2° such that, with t* = ((h™!) (the
displacement length of h™!), we have

() =h"tw (6.14)

and
#{t € (0,t"] |, (t) €T.Cacc} =n (6.15)

by Proposition 6.10. From (6.14) it follows that v, is a representative of the axis
of h~! and hence also of hgl (cf. Section 1.7), and further that v = v(a,h™ 1)
and that v(a, hy 1) exists and equals v, the latter by Lemma 6.9(ii). Therefore, for
t = l(hy"') we obtain

(1) = hytw.
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The system of accelerated iterated sequences of any element in C,.. depends only
on this considered element (and of course the choice of Cyc) and it is equivariant
under the action of elements in I', as can be observed from Corollary 5.39. See
also Lemmas 6.6(i) and 6.9(iii). Thus, the accelerated sequence of intersection
times of Ay !.v is only shifted against the accelerated sequence of intersection
times of v, and in particular, the sequence of differences

(tacc,n-i-l(V) - tacc,n(V))n = (tacc,n—l—l(ho_l-y) - tacc,n(hal'y))n (6.16)

is periodic. The relation £/(h™!) = mé(hy') between the displacement lengths
given by Lemma 1.11(iii) implies that m (from hy' = h) is a period length of the
sequence (6.16). From this and (6.15) it follows that

~ 1 . n
#{t € 0.7 7(1) €T Cacc} = #{t € 0,6'] [14(1) € T Cuce} = =
By Proposition 6.10, hg € Per, n. t

In order to establish part (III) of Property 3 we let [g] € [I'];, and consider
the equivalence class of periodic geodesics o([g~!]) on X, where o is the map
from (1.39). The combination of (Bpe,) (see Proposition 4.8) with Proposition 5.31
(or Proposition 5.30) imply that we find a € Aanda geodesic y on H such that v
intersects C2“°. By Lemma 1.11(ii) there exists a representative h of [g] such that
7 represents the axis of h, thus, [y] = a(h™!). Applying Proposition 6.10 with
t* = €(g~1) = £(h™') and v being the intersection vector of y with C2° yields
that h € Per,, for some n € N. Property 2 now shows uniqueness of n, which
completes the proof of (II1).

6.5 Property 4

Let g € Per. Recall the word length w(g) of ¢ from (3.1). Let a € Aandn € Nbe
such that g € Per, ,,. Let go € I be the primitive of g and recall the objects m(g)
and p(g) from (3.2) and before. By applying Proposition 6.11 we observe

~ m(gw(go)  wlg)
w(go) = ) mig) =p(9) - (6.17)

Recall further the vector v/(b, h) from Definition 6.8, which is uniquely determined
forallb € Aand h™! € Pery,,, m € N. We will make extensive use of the
following abbreviation: For b € A, h™! € | ren Perp i, and m € Z we write

gm(bv h) = (gacc,sgn(m) (V(b7 h)) e gacc,m(”(b7 h)))sgn(m) :

210



6.5. PROPERTY 4

Note that, because of Lemma 6.9 and Proposition 6.11, we have

Sk-w(ho) (D h) = hé

for all k£ € Ny, where hy denotes the primitive of & in I'. It is further in line with
this definition to set go(b, k) := id for every possible choice of b and h.

We recall that the reduced set of branches C giving rise to the accelerated
system Cyc. shall be and is assumed to be non-collapsing by virtue of Proposi-
tion 5.19.

Lemma 6.12. Let b and h be as before and let k,{ € N, k # (. Then

i (b, h) " Lg(b,h) #id .

Proof. Without loss of generality, we may suppose that k£ < ¢. By Remark 5.38,
forevery j € {k+1,...,4} wefindm; € N, kjo,...,kjm; € A, and transfor-
mations h;; € G(kji—1,k;;) for every i € {1,...,m;} such that

gacc,j(V(ba h)) = hj71 e hj,mj :

By construction, C£% Jwbh) S Ck; - for all j. Thereby, kj n,; = kj+1,0. From

7,5 4
this we obtain

gk(b7 h)ilgﬂ(ba h) = gaCC,k-‘rl(V(ba h)) e gacc,Z(V(ba h))

= Ngr11 e Pty Pea21

where the final relation is due to (B9) (see also Definition 5.17). O

Lemma 6.13. Let g, a, and n be as before. Let ¢ € T be such that qgq~" € Per,,.
Then there exists exactly one k = k(g,a,n) € N, k < w(go), such that

gu(a.97) q-9=9 gula,g7") q. (6.18)
Or, equivalently, there exists a unique k € {1, ... ,w(go)} such that
1€ Qu={ana,g™) " b | Lz} (619)

where gg denotes the primitive of g in T".

Proof. The equivalence of the relations (6.18) and (6.19) is an immediate conse-
quence of Lemma 1.6.
Let b € A be such that h == qgq~! € Pery, ,,. In the case ¢ = id we have
-1 _ -1
gw(go)(a7 g ) "9 =9 8u(go) (CL, g )

211



6.5. PROPERTY 4

by Lemma 6.9 and Proposition 6.11, because gw(go)(a, gl = go_l. See also the
argumentation right before Lemma 6.12. Therefore, the identity (6.18) is valid
for kK = w(go). It remains to show that (6.18) is not valid for any smaller value
for x in N. To that end we consider (6.18) as the quest for elements commuting
with g, given that ¢ = id. By applying Lemma 1.6 we see that any solution
gx(a,g 1) of (6.18) must be a non-trivial power of go. Within {1,...,w(go)}
only kK = w(gp) yields such an element in T".

We consider now the case that ¢ # id. By Lemma 1.11(ii) the axis of the
transformation h~! = qg~'¢~ ! is given by g.a(g1). All of the representatives
of a(h™1) intersect C2°° by Lemma 6.7. Hence, Yv(a,g—1)> Which is a representative
of a(g™ 1), intersects ¢g~1. C2°°. This implies the existence of r € Z \ {0} such
that

q=gr(a,g7")7 0.

There is a unique way to write
r=Xw(g) +k,
with A € Z and k € (0,w(go)] N Z. Using Lemma 6.9(iii) we calculate for r > 0,

ng_l = g)\w(go)—l—n(avg_l)_l ’ g(T)n(g) ’ g)\w(go)+n(a7g_1)

= ge(a,g ) g g ) gla, g

=g.(a,97") " g-gula,g7t).

For r < 0, we calculate, again by applying Lemma 6.9(iii),

gr(av g_l)_l = 8acc,—1 " " * Bacc,r
= g;clc,w(go)g;:lc,2w(g0)—1 T ggclc,—rw(go)—(r—l)
= (g;ci,w(go)g;ciﬂw(go)—l T ga::%:,l)_kg;cijw(go) T ga_ci,ﬁ-‘rl
: g;clc,n U g;:£71gacc,1 +* Bace,k
= (ga::%:,w(go)g;clcﬂw(go)fl T g‘;clc,l)_)\-i_l

= g5 M gula, g7,

gr(a, g7 ")

where every transformation gacc j, J € Z, is to be understood with respect to the
vector v(a, g~ 1). Thus, we can proceed as in the case > 0 to obtain

990" = gx(a,g7") " g grla,g7).
It remains to show that  is unique in {1, ...,w(go)} with

q=gula,g ) gf
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for some ¢ € 7Z. To that end, we suppose that there exist J € {1,...,w(go)} and

m € Z such that
q=1gola,g ") gl

Then
gu(a,g Dgola,g )t =gb (6.20)

for some p € Z. For p € Ny, this is equivalent to
—p -1 —1\—1 _ -
9o 8x(a,g” gyla, g~ ) =id. (6.21)

From Lemma 6.9(iii) we obtain

gapgﬁ(av g_l) = gpw(go)+n(a)g_1> :

Using this identity in (6.21) and combining with Lemma 6.12 we find
pw(go) + =1,

thus p = 0 and
Kk =1.

For the case that in (6.20), p is a nonpositive integer, we convert (6.20) into

ge(a, g7 gola, g7 ") gp? =id .
Again using Lemma 6.9(iii) we obtain

-1 -1

_ — _ —1 _
go(a, 97 90" = (dheo(a,g7")) " =8 pwig)+0(a 97"

With Lemma 6.12 we find
k= —pw(go) + 7.

Therefore, p = 0 and
k=17.

This completes the proof. O

We are now ready to establish Property 4. Consider the sets () from (6.19)

for k = k(g, a,n) given by Lemma 6.13. Since ggn(g) = g, we have

a9q ' =gula,g )t g gula,gt),

for every q € Qx. Therefore, because of the uniqueness of x from Lemma 6.13,
the number #([g] N Per,,) is bounded from above by

(6.17)

#{1,...,w(g0)} = w(go) = p(9g)-
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Hence, it remains to show that

hi = gu(a,g ") g gula, g ") € Per, (6.22)

forall k € {1,...,w(go)}. This is achieved via the same argument as in the proof
of Lemma 6.13: By Lemma 1.11(ii) we have

a(h') = gela,g7") (g™,

and because of Lemma 6.7 every representative of a(h!) intersects C2°, where
b = Kaces(¥(a, g7 1)). This implies

(£ (") fo(h ")) € Tose X Jost S I5 X Jp.
Thus, g.(a,g71)"t.a(g7!) intersects h 1. C2°° as well, implying h,; € Perp,
for some m € N. Since g € Per,, and h, € [g], part (III) of Property 3 now
yields m = n. This yields (6.22) and thereby finishes the proof of Property 4.

6.6 Property 5

Instead of directly establishing the existence of a family {g‘l}ae 4 of open disks
in C fulfilling the demands of Property 5, we will first provide a family of in-
tervals in R which satisfies a set of properties corresponding to those requested.
Working on the real axis results in a less involved discussion. A first part is pro-
vided by Lemma 6.14 below. We then expand the real intervals to complex disks
with centers in the real line (“complex disk hull”). Since all considered actions are
by Mébius transformations, all inclusion properties are inherited by the complex
disks.

We start with a few preparations. Taking advantage of the admissibility of the
reduced set of branches C, we may suppose that for each a € A the interval I, is a
bounded subset of R. For that we possibly need to conjugate the group I' by some
element in PSLy(R), which, however, does not affect the validity of any results.
Alternatively, we may interpret this step as using a non-standard chart for the
relevant part of R. See Remark 4.2(i). For each a € A let Ta,Ya € R, 4 < Yq,
denote the boundary points of Ia, thus

~

I, = [%a,Ya) - (6.23)
Lemma 6.14. There exists a family {(e},€4)} . 7 in R2 such that for each a € A,
(i) €%, el >0,

and with
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the following statements hold true:

(ii) Foreachb € A and each g € Cop we have

g.oo ¢ E,.

(iii) Foreachb € A and each g € Cqp such thatgfl.fa is contained in the interior
of I, we have
g_l-Ea - Eb .

(iv) Forallb € A and allp € P,y such that ggl.fa is contained in the interior
ofj;, we find a compact interval K, of R such that

p "9, Ba C Kapp C Ey
foralln € N.
(v) Forallb € A and allp € Py, the fixed point of p is not contained in ggl.fa.

Moreover, for any a € 121\ there exist thresholds ) > 0 and ng > 0 such thaAt any
family {(5,€4)} ,c 5 that satisfies ¢, € (0,77) andeg € (0,77) foralla € A, also
satisfies (1)—(v).

Proof. In what follows we will show the existence of the thresholds 1* and 7}
foralla € A by showing that they only need to obey a finite number of positive
upper bounds. These bounds depend on A and a finite number of elements in T,
but they do not have any interdependencies among each other, i. e., the values for
the thresholds are independent of each other.

We start by considering a,b € A and g € Cgyp. Since g te Gacc(b, a) we
have

gil'-[a,st - Ib,st

by (B7acci). Thus, g*I.E C I, by continuity of ¢g. By hypothesis, co ¢ I, and
hence N
g.oo & I,.

Since fa is compact (see (6.3) and (6.23)), we can find an open neighborhood ¢/ (a
“thickening”) of I, in R that does not contain g.00. The open neighborhood U/
can be chosen uniformly for all b € A and all g € Cyp, as A and Cy,p are finite
sets. The first condition on the thresholds 5% and 7 is that (z, — 1%, y, + 75) is
contained in /. This implies a positive upper bound for each of % and 7, which
can obviously be optimized (of which we will not take care here).

We now suppose in addition that gF1 fa - f{; . Again using that fa and hence
g_l.j:l, is compact, we find an open neighborhood U of I, in R such that

g huc

=
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Again taking advantage of the finiteness of A and Cap for each b € A, we can
choose U uniformly for all b € A and all g € Cyp. Our second condition on the
thresholds * and 1 is that (x, —n%, y, +n4) is contained in U. This requirement
can obviously be satisfied.

We now consider a,b = (k, V) € A and p € Py . The fixed point of p is

77(0) rav) = Vi s
which is the unique point contained in
ﬂ pfnj;, .
neNp

From (5.38), (B74cc1), and (5.37) it follows that

gljl-Ia,st - Ib,st \p_l'Ib,st

and hence
gy Lo C L\ p 2.0y,

Therefore, V}, is not contained in 9p 1 fa Our third condition on the thresholds 1%
and 7] is that

9p (T = 15 Yo + 1)
does not contain Vj, for allb € Aandall p € Py . Analogously to above, using the
compactness of I, and the finiteness of A and P, ;, we deduce that such choices

of n%,n4 > 0 are possible.

We now suppose in addition that g, L1, C f,f. By the compactness of 1, we

find an open neighborhood V of 1, such that
9p Ly c f{; .
From (5.37) we obtain that for each subset M of j;j’ we have
pMC Iy
for all n € Ny, and hence in particular
Pt vely.

Thus, for the requested compact set K, ; , we may pick Iy. As before, using the
finiteness of A and P, , we can choose the open neighborhood V uniformly for
allb € A and all p € Pup. The fourth, and final condition on the thresholds 71,
and 7] is

(%a =14 ¥a +118) SV,
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which can obviously be satisfied. We immediately check that the upper bounds
for any of the thresholds n%, n4 for any a € A are independent among each other.
This completes the proof. O

Let {(e%,€4)},c 1 be a family satisfying all properties stated in Lemma 6.14
and set, as in Lemma 6.14,

E, = (aca — €7 Yo + sg)

for all @ € A. In what follows we will show that, by possibly shrinking €% and €
for some a € A and allowing interdependencies among the elements of the fam-

ily {(ef,€4)},c 4> We can guarantee that Lemma 6.14(iii) is also valid in the case

that g_l.IAa g IA;)’ and that Lemma 6.14(iv) is also valid if ggl.fa 4 fg By taking
advantage of the discussion in the proof of Lemma 6.14, we see that both cases
can be subsumed to the situation that there exist a,b € A and 9 € Gacelb, a)_l
such that

g 'L, cl,

and the two sets g~! .I, and I, have a common boundary point. It suffices to show
that we can fix €2, 5, S 5% > 0 such that

9 " (za — b yat+€Y) C (zo— b,y +ep) -
This is clearly possible for any “local” consideration, i. e., for fixed a,b € A and
9 € Gace(b, a)~L. We need to show that global choices are possible.

To that end we note that any such pair of sets g_l.f& and I, has a single
common boundary point, not two common boundary points, by (B6,..). For the
boundary point of 1., say z, for which g~!.z, is contained in the interior of I,
we may and shall suppose that the threshold 1 is chosen sufficiently small such
that g~ 1.(2, & 1?) is also contained in I. (We may restrict here to either + or —
as needed. However, we may also require this property for both signs.) We now
consider the joint boundary point of fb and g_l.fa. Without loss of generality,
we may suppose that it is y,. Since the action of I" preserves orientation, the
corresponding boundary point of ./7:1 is then y,, hence

9 Y=y

Then we need to pick €5 > 0 such that
97 (Yot el) <yptep

Thus, the threshold for admissible choices for &) depends on the value of sg. It
might happen that there is ¢ € A and h € Gy.(a, ¢) ™! such that

hil.:fc - ./T:l and hil.yc =Yg -
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In other words, the dependency situation reappears for fa and we observe a tower
of dependency situations: As the threshold for £/ depends on the choice of €4, and
the threshold for ¢f depends on the choice of €}/, the threshold for ¢ ultimately
depends on the choice of 6%. Aslong as a, b and c are three distinct elements of 21\,
we can easily garantee admissible choices for e}, € and ¢ by picking them in
this very order.

We may organize all occuring dependencies (i.e., considering all elements
of A and all situations of coinciding boundary points simultaneously) as a di-
rected graph with

{ez,et
as set of vertices. As soon as this dependency graph has loops, unsolvable situa-
tions may occur. We will now show that the graph is loop-free.

aeﬁ}

To that end we assume, in order to seek a contradiction, that there exists a
finite sequence
A1, «vn an+1€A

with a1 = a1, and

9j € Gace(aj, aj41) forje{l,...,n}

such that
Ya; = 9j-Yaj forje{l,...,n}.
Then
Ya1 = 91" " In-Yany1 = 4-Yay
with

=01 Gn-

As the boundary points of IAa1 are not hyperbolic fixed points (see Lemma 5.34(iv)),
the element ¢ is parabolic and y,, a parabolic fixed point. In turn, P,, o, # 9,
say Pu,q, = {p}, and y,, is the fixed point of p and g;l = ¢1. However,
9p 1.]':12 = gl.f@ contains y,,, which contradicts Lemma 6.14(v). Thus, the de-
pendency graph has no loops.

Finally, for each a € A, we let &, be the complex Euclidean disk spanned by
the real interval F,, i.e., &, is the unique Euclidean disk in C with center in R
such that RN &, = E,. The family {&,}, ¢ 7 fulfills all requested properties. This

finishes the proof that S fulfills Property 5 and thereby the proof of Theorem 6.1.
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Chapter 7

Sets of Branches for
Non-Compact Hyperbolic
Orbisurfaces

Let I' be a geometrically finite Fuchsian group that contains hyperbolic elements
and is such that its orbit space X = I'\ H has hyperbolic ends (cusps or funnels).
Then X is a non-compact hyperbolic orbisurface as defined in Section 1.6.

In Chapter 4 we introduced and studied the notion of a set of branches C for the
geodesic flow P onX.In Chapter 5 we reduced C through various steps in order
to extract a structure tuple, which, in Chapter 6, was seen to fulfill all demands of
a strict transfer operator approach as defined in Section 3.1. Hence, due to these
efforts and the combination of Theorem 6.1 with Theorem 3.1, we are now in the
position to conclude that every Fuchsian group admitting the construction of a
set of branches also admits the representation of the (meromorphic continuation
of the) Selberg zeta function in terms of Fredholm determinants of a family of
transfer operators, which arises from C (see Sections 3.3 and 6.1). This means the
single remaining puzzle piece for the proof of Theorem A consists of showing that
each of the Fuchsian groups we consider does in fact admit the construction of a
set of branches. This is the objective of this final chapter.

To that end we split the realm of non-cocompact orbisurfaces in those with
and without cusps. In the former case we will see (Section 7.1) that the ground-
work has already been laid by Pohl in [54], as we will show that cross sections
emerging from a cusp expansion algorithm (see Chapter 2) can be seen as emerg-
ing from a set of branches. More precisely, Theorem 7.1 below shows that Cp
from (2.8) is a set of branches. This comes by no surprise, since Pohl’s algorithm
has been the starting point of our studies. The notion of a set of branches has been
introduced in order to identify the key aspects of her approach and subsequently
generalize her results to a broader class of Fuchsian groups as well as a wider va-
riety of suitable cross sections. Chapter 2 contains all the necessary background
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information on the cusp expansion algorithm.

In the case that the orbisurface X does not have cusps (and thus, by assump-
tion, has at least one funnel), we construct an auxiliary orbisurface Xyy that does
so and to which again the cusp expansion algorithm can be applied (Section 7.2).
These constructions are completely geometric and the required background in-
formation has been provided in Chapter 1. Thus, by virtue of Theorem 7.1, we
obtain a set of branches Cyy for the geodesic flow on Xyy. We then proceed to
show, in Theorem 7.16, how Cyy induces a set of branches for the geodesic flow
on the original orbisurface X, which ultimately finishes the proof of Theorem A.
As is integral to this thesis, all arguments are completely constructive. This means
that for every admissible orbisurface with fundamental group given by means of
a full set of generators, a set of branches can be distilled from the discussion in
this chapter.

7.1 Orbisurfaces with Cusps

Let X be a geometrically finite developable hyperbolic orbisurface with cusps.
Then X = I'\H, where I' is a geometrically finite Fuchsian group containing
parabolic elements (see Corollary 1.33). Without loss of generality we assume
that 7(00) is a cusp of X, where 7 denotes the canonical quotient map from (1.26).
We further assume that X bears periodic geodesics, which is equivalent to I' con-
taining hyperbolic elements (see Proposition 1.13). We are indifferent to whether
or not X has conical singularities, or equivalently, whether or not I contains el-
liptic elements. We denote by d the geodesic flow on X (see (1.33)).

Recall from (1.28) that I' denotes the stabilizer subgroup of oo in I" and recall
the sets of isometric spheres ISO(I"), the common exterior K of ISO(T"), and the
subset of relevant isometric spheres REL(T") from the Sections 1.9 and 1.10, as
well as the relevant part 1 of a relevant isometric sphere I from (1.68). As hasbeen
discussed in Section 2.1, we are required to impose that for every I € REL(T') its
summit s(I) is contained in 1 but no endpoint of it (see (A)). We emphasize
again that we do not make any additional use of that restriction here (see also
Remark 2.1). The group I' now fulfills all requirements of the cusp expansion
algorithm outlined in Section 2.1, application of which provides a finite family

Cp ={Cp,1,...,Cpn} (7.1)

of subsets of SH such that
ap = W(U Cp N SHst)
is a cross section for ® with respect to any measure p on 6(X) fulfilling

p({3 [ v € SH\ SHy}) =0,
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where SH and SHy; are as in (1.18) and (2.12), respectively.
We retain all notation from Chapter 2.

Theorem 7.1. The set Cp from (7.1) is a set of branches for d.

Proof. The finiteness of Cp follows immediately from its construction in Sec-
tion 2.1. More precisely, the set BM from (2.7) is finite by virtue of (2.5), the
map
BM — (C(BM)
{ b +— Cp(b)

is a bijection, and Cp C C(BM).
Recall the set E(X) from (1.41) and its density in A(T") x A(T") from Proposi-
tion 1.15. Let j € A. The sets Ip ; and Jp ; are both open, wherefore we find

(z,y) € E(X)N (Ip; x Jp,) -
By Lemma 2.12 there exists v € Cp ; such that

(")/V(+OO)7’yV(—OO)) = (fL’,y),

which yields (B1).

By construction, we have bp(Cp ;) = (xj,00)n with z; € @, forall j € A
(see (2.6) and (2.13), or Corollary 2.6). Since oo represents a cusp of X and is
therefore an element of R \ R, property (B2) follows from Lemma 2.5.

Property (B3) is clear by definition: For every b = (B, /3) € BM the set Cp(b)
is the subset of unit tangent vectors based on the vertical side 5 of B € B and
pointing into B°. By Lemma 2.2, the set B° is completely contained in one of the
two half-spaces H;, Hs relative to 3, say B° C Hj. Hence, every vector of Cp(b)
points into H.

Let again j € A. Then, because of {2, 00} C R\ Ry; and Lemma 2.13, there
exists a pair (k, g) € A x I such that

Ry CR\ {2} =1Ip;UJp;=1Ip;Ug.Ipy.

This yields (B4).
Property (B5) follows immediately from Lemma 2.12 and property (B6) is a
consequence of

I.Cp D C(BM)

and the minimality of Cp.
Finally, in order to verify (B7), let j € A and let v € Cp ;4. Because of
Lemma 2.14, the number

th(v) =min {t > 0 ‘ 7,(t) eT.Cp}
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is well-defined and 7/, (t};(v)) € Cpg. Because of (B6), there exist a unique
index k;, (v) € A and a unique transformation gy () € I such that

Wt (@) € gf (1) Cp iy, -
By construction we have

g5 (v)-HE (K (v)) € HI(5)
hence,

9;5(”)-113,@(”) Clp- (7.2)
For k € A we set
Cpjle={veCp;| ki) =k} .

Then

Cpjst = U (Cp |k N SHg) (7.3)
keA

where the union is clearly disjoint. We further define

GGk = |J {e)}.

veCep jlk

Then the sets Cp ; |, decompose further as

Cojle= |J {reCeilklgiv)=g}. (7.4)
9€G(j4,k)

Again, the union is disjoint. Because of (7.2) we further have
Jpjst © g;(”)'JP,k;(u),st :
By combining this with (B5) and (7.2) we obtain

{7 (+0) | v € Cpjli, g5 (v) = g}, = {vgm(+0) | 1 € Cp i}y -
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Combination of this with (7.3), (7.4), and Lemma 2.12 in turn yields

Tp st = {w(+00) [ v € Cp ity = | {w(+00) [ v € Cpj iy,
keA

_ U U {7 (+o0) ‘ veCpjly, gp(v) = g}st

keA geg(y,k)

=J U g-{m+o)neCrily

keA geg(j.k)

:U U g-Ip st

keA gegG(j.k)

and the union is disjoint since those in (7.3) and (7.4) are. Hence, we obtain the
second relation in (B7a). Combining it with (7.2) also yields the first. The defini-
tions of the indices and transformations involved immediately imply (B7b). And
for (B7c) we argue analogously by using ¢, () from Lemma 2.14 instead of t5; (v).
This completes the proof. O

Since a given set of branches can always be transformed into a simultane-
ously admissible, finitely ramified, and weakly non-collapsing one (see Proposi-
tion 4.35), we do not have to assure those properties here. However, finiteness
of ramification is automatically fulfilled for all sets of branches emerging from a
cusp expansion procedure.

Proposition 7.2. The set of branches Cp is finitely ramified.

Proof. Let j € A andlet b; = (Bj,3;) € BM be such that Cp; = Cp(b;).
Hence, 3; € Sy is a side of B; € B and

Cp, = {v eSH ‘ bp(v) € B; and v points into BJO} .

Let v € Cp jst. By Lemma 2.2 the set B; is a hyperbolic polygon with finitely
many sides. The next intersection time t; (v) exists by Lemma 2.14 and because
of Lemma 2.7 and Lemma 2.4 we have

bp(7,,(t5 (v))) € 9B;.

By Lemma 2.13, (B6), and again Lemma 2.7, for every side 3 of B; we find a unique
pair (k,g) € A x I' such that g.bp(Cp ;) = [ and the vectors of g. Cp  do not
point into Bj. Since this exhausts all possibilities for the location of v, (5 (V).
we have

#{(kf (), g5 (v)) | v € Cp;} = #{sides of B;} — 1 < 400,

with ki (v) and g;> (v) as in the proof of Theorem 7.1. This yields the claim. [
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7.2 Orbisurfaces without Cusps

We retain the notion from Section 7.1, but, for the moment, abandon the orbisur-
faces with cusps to study the situation when only funnels are present. Hence,
we assume that [' is a geometrically finite Fuchsian group that contains hyper-
bolic but no parabolic elements and for which the associated orbisurface X is not
compact. By conjugation in PSLy(RR) we can always achieve that

(%) the ordinary set Q(I') = 04H \ A(I") contains a neighborhood of co.

Therefore, we may assume that this is the case. Then the stabilizer subgroup I's
is trivial and ISO(I") # @. By Proposition 1.42 the common exterior

K= () extI=[)extI(I)

I1€I1SO(T) gel

is a geometrically finite exact convex fundamental polygon for I'.

Our strategy is as follows: We construct a new Fuchsian group I'yy from I'
via a cut-off procedure on the fundamental domain K. The group I'yy then has a
cusp represented by oo and is seen to fulfill all requirements of the cusp expansion
algorithm. Hence, by virtue of Theorem 7.1, we obtain a set of branches Cyy for
the geodesic flow on Xyy = ')y \H. We then return to I" and see that Cyy induces
a set of branches on the orbit space X of I" as well.

Because of (x) there exist a,b € R, a < b, such that

JISO(I') € Rel' ([a,0]) , (7.5)

and we may assume that a and b are chosen optimal for that purpose, i.e., such
that for every choice of £1, 2 > 0, not both equal to 0, the pair (a + £1,b — €3)
does not fulfill (7.5). Then there exist unique spheres I1, I3 € REL(T") such that

acgl and begly.

This implies
(b,a). € QT). (7.6)

Denote by I'rgy, the set of generators of isometric spheres as in Section 1.10. The
following result is immediate from Lemma 1.20(i) and I's, = {id}.

Lemma 7.3. The maps

{I‘\{id} — ISO(I") and {FREL — REL()
g — 1(g) g +— g

are both bijections.
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Corollary 7.4. There exist unique transformations g1, g2 € I'rgr, such that

acgl(g) and  be gl(g).

From Lemma 7.3 we further obtain that I'rgy, is the unique side-pairing for
in I' (see Definition 1.30).

Recall the sets of (finite and infinite) vertices Vr and V}g of a geometrically
finite polygon, the cycle transformations ¢,, and the vertex cycles C'(v) for v € Vi
from Section 1.10, as well as the angle sum #(C(v)) from (1.63). Since K is a
geometrically finite fundamental domain for I', we obtain from Lemma 1.34 that,

for every v € Vi,
2

0(C(v))
Furthermore, V,él = & (see Remark 1.35).

eN. (7.7)

7.2.1 An Auxiliary Group
We now define the group I'yy described above. To that end we fix choices of

a' € (—o0,a)r and v € (b, +oo)r

and set

A=0b —d. (7.8)

The domain
W= KnNRelg'((¢,V)) CH (7.9)

will play the role of a fundamental domain for I'yy. Indeed, it is immediately clear
that )V is again a geometrically finite convex polygon. For Sy denoting the set
of sides of M € {IC, W} we find

Sy = Sk U {(a', o), (V, oo)H} .
Thus, a side-pairing for WV is given by
Gy = Trer U {3},
with ty as in (1.7). We further infer
Vi = Vi and V,f'\ﬁ = {o0}.

Lemma 7.5. The subgroup T'yy = (Gyy) of PSLa(R) is a geometrically finite
Fuchsian group whose orbit space Xyy = I'w\IH bears a single cusp and W is a
convex fundamental polygon for I'yy.

Proof. We want to apply Poincaré’s theorem (Proposition 1.36). We have already
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seen that WV is a convex polygon with a side-pairing. Thus, it remains to check
that Gyy fulfills the conditions (I) and (II) of Proposition 1.36. Condition (I)
immediately follows from V) = Vi and (7.7). The sides of W adjacent to oo
are (a’, 00) and (b, 00), which are paired by t3'. Thus, cs € {ti'}, depending
on choice of sign. Either way, c is parabolic, which, because of VV% = {0},
implies (II). Hence, I}y is a Fuchsian group.

Since #Syy = #Sx +2 < 400, the polygon W is geometrically finite. As we
have already established, it is further convex and exact. Thus, the group I'yy, is ge-
ometrically finite. And since oo is the sole infinite vertex of W, Proposition 1.43(ii)
implies that Xy, has exactly one cusp. O

Denote by ]IAQSmW the set ]@st with respect to I')y, that is

~

Rsw = A(Tw) \ Tw.oco.

Definition 7.5 effectively defines I'yy as the group that emerges from I' via the ad-
dition of t) to the set of generators. Or in other words, I is a non-trivial subgroup
of I'yy. From this the following result is immediate.

Corollary 7.6. We have A(I') C A(T'yy), Ry C @St,w, and E(X) C E(Xy).

In order to apply the cusp expansion algorithm to '}y we require the common
exterior with respect to I'yy, i. e, the set

Kw = Kr,, = ﬂ ext] = ﬂ extI(g), (7.10)
IEISO(Fw) geI‘W\FW,Oo

where I'yy o, denotes the stabilizer of oo in I'yy. If Fyy is a Ford fundamental
domain for I'yy, then we can re-obtain Kyy by means of the I'yy o -invariance
of Kyy (see (1.74)). We show that W is a Ford fundamental domain for I'yy, starting
with the verification that A from (7.8) is the cusp width of the one cusp of Xyy.

Lemma 7.7. The stabilizer I'yy o, of 00 inI'yy is generated by t.

Proof. By construction, t) € I'yy, t) is parabolic and fixes oo, and thus every non-
identity transformation in I'yy fixing oo must be parabolic by virtue of Lemma 1.8.
In particular, every non-identity element in I'yy o, has the same fixed point set,
which, by Lemma 1.7, implies that I'yy  is cyclic and thus generated by some
element t, with || < A\. We suppose for contradiction that |x| < A and we may
assume k > 0 without loss of generality. Because of (7.5) (or by Proposition 1.24)
the set {r(I) | I € ISO(I")} is bounded from above. Since the non-vertical sides
of W coincide with those of IC, there exists M > 0 such that

Wi = {z € Relg' ((d, 1)) |Imz> M} CW.
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Letn := (A —x)/2andy > M. Then n < A/2 and thus, 2* := o/ +n+iy € Wyy,.
But also

te2" =d A+ r+iy=d +X—n+iy=V —n+iy € Wy,

k| = A, which
yields the assertion. O

which contradicts W being a fundamental domain for I'yy. Thus,

Because of Lemma 7.7, the strip
Fw,eo = Relg' ((d,0))

is a fundamental domain for I'yy o, in H. As before, we denote by REL(I")y) the
set of relevant isometric spheres of I')y. In addition, we denote by RELyy the
subset of isometric spheres of I'yy that contribute non-trivially to the boundary
of W.

Lemma 7.8. REL(I") = RELyy .

Proof. By construction we have I'rg;, C I')y. Since the non-vertical sides of W
coincide with those of K, it follows that

REL(T) C RELyy .

For I € RELy the geodesic segment I NOK contains more than one point, im-

plying
REL(I'") D RELyy . O

Proposition 7.9. The fundamental domain VV for I'\y is of the Ford type.

Proof. Because of Lemma 7.7 it remains to show that

W=FnwoeN ﬂ extI(g) = Fw,oo N ﬂ extI.
9EMWA\I'w o0 IEREL(T'yy)

From Lemma 7.8 we obtain

W =TRely' (V) NK=Fpyen []| extl
IEREL(T)

=FweeN (] extI=Fyon [ extl,
IERELyy IEREL(Tyy)

and the claim follows. O

Corollary 7.10. IfT fulfills condition (A), then so does I'yy.
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Assume that I" fulfills condition (A). Then, by Theorem 7.1, Section 2.1 yields
a set of branches for the geodesic flow on Xy, which here we denote by

CW = {CW,la"' >CW,N}7

and by Lemma 2.17 we may assume that
bp(Cyw,;) C Rely* ([a',]) (7.11)

for every j € A :={1,..., N}. We further denote by Gyy(j, k) the transition set
for j,k € A given by (B7) as well as by Iy ; and Jyy ; the intervals associated
to Cyy; by (B3). Because of (2.13), for every j € A the set Re(bp(Cyy;)) is a
singleton in R, and we denote, as before, by x; € R the unique point it contains.

7.2.2 A Set of Branches for I

We now transfer the set of branches Cyy back to the orbit space X of the initial
group I' whose hyperbolic ends are all funnels. We emphasize again that the set
of branches Cyy emerged by a cusp expansion procedure for Iy and therefore
bears additional structure beyond that provided in Definition 4.1, and that we do
exploit this additional structure. Hence, we do not claim that an arbitrary set of
branches for I'yy induces a set of branches for I, neither in the manner presented
in this section, nor anyhow.

Not all of the branches Cyy ; “survive” the transfer to I. We clarify what
we mean by that: Since I' contains no parabolic elements and the ordinary set is
assumed to contain a neighborhood of co, we have

Ry = Ry = A(T).

For j € A define
Cw,jst = Cw,j N SHy

with SH; as in (2.12). Then Cyy ;¢ = @ whenever
IWJ' NRg =@ or JWJ' NRg = 2.

This is the case, for instance, if z; € {a’, b'}. Since the cusp expansion algorithm
for I'yy does indeed establish branches with that property—note that

{d' b/} C Wk, ,

with W;g as in (2.1)—and those branches are not intersected by periodic geodesics
of I, it is necessary to exclude those from the set of branches in order to fulfill the
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demands of (B1). Therefore, we define

A= {j c A ’ CW,j,st 75 @} .

Proposition 7.11. We have A’ # @.

The proof of Proposition 7.11 makes use of Proposition 1.26. There it was
assumed that I is either non-elementary or a hyperbolic cylinder. By the discus-
sion in Section 1.8, the groups which are excluded by that and contain hyperbolic
elements are exactly the groups conjugate in PSL2(R) to

<S1,hg‘s21 :id> s
2 2

for any ¢ > 1, where h, and s, are as in (1.6) and (1.8), respectively. We there-
fore have to treat these groups separately, which is done in the following exam-
ple. This example further serves to illustrate the strategy of the ensuing proof
of Proposition 7.11: Utilizing Proposition 1.26 and the density of the set F/(X)
from (1.41) in A(T") x A(T"), we find interrelated hyperbolic fixed points under-
neath the outermost isometric spheres (more precisely, in the intervals W (g, /2)
from (1.55), for g;/, the unique transformations from Corollary 7.4). We then
identify a branch copy separating the hyperbolic fixed points, which is then seen
to be intersected by the associated hyperbolic axis.

Example 7.12. We consider the conjugation of the aforementioned group by the

transformation —= [17'] € PSL2(R), which leads to the generators

V2
_Jo -1
2 |1 0]’

2 N 2i¢
24+1 0 2417

and s:=58

1 [£+1 6—1}

=T le-1 e+

for / > 1. Then

hel=1, he(—1)=-1 and hpi=1

which, because of ¢ > 1, identifies 1 as the attractor of hy. A fundamental domain
is indicated in Figure 23.

We proceed as described above in order to find a set of branches. Choose, for
instance,

, 0+ 1+3V0 , C+1+3V1
a = —— and b= —«—.
1—-7 (-1

A set of branches as constructed by the cusp expansion algorithm is indicated in
Figure 24. From Figure 24 it already becomes apparent that the axis of hy inter-
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| |

T T

0+14+2V7 41 —1 0 1 ¢+1 041427
1-2¢ 1- = —1

—

Figure 23: A Ford fundamental domain F for (hy, s). Since hy fixes 1 and —1, we
have a(hy)(R) = I(s). Thus, the angle that F subtends at the intersection points
of the isometric spheres is 7/2 each (see Lemma 1.21(iv)), which implies that F
fulfills all requirements of Proposition 1.36.

sects Cyy 4. Indeed,
Cw, = {v € SH| bp(v) € (0,00)u, 7 (+00) € (0,400)}

and thus,
—1€ JW,4,st and 1e IW,4,st .

Hence, by (B5) there exists v € Cyy 4 such that
[y = a(h) .
It follows that 4 € A’. In fact, in this example we find A" = {4}.
We further require the following observation.

Lemma 7.13. Let j € A and g € I'y be such that g.bp(Cyy ;) is vertical and
contained in Re|' ((a/,1')). Theng € T.

Proof. Assume g # id, for otherwise there is nothing to show. Since bp(Cyy ;)
and g. bp(Cyy ;) are both vertical, for y € Re(g. bp(Cyy ;)) either

Yy = g.00 and 00 = §.Tk , or

Y = g.Tk and geEl'w e

Because of (7.11) and g # id the latter case implies that {y, x;.} = {a’, '}, which
contradicts the choice of j and g. Hence, the former must hold, which implies in
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Cl CQ Cg C4 C5 CG C7
Ci1| Cio Co| Cg

|
T
a’ t+1+2V7 41 —1 0
1—¢ 1-£

4142V b
—1

Figure 24: A set of branches obtained by application of the cusp expansion algo-
rithm. As before, the gray stripes indicate that the respective set C; = Cyy ; con-
sists of unit tangent vectors based on the adjacent vertical geodesic and pointing
into the indicated half-space. The subscript “WW” is omitted in favor of readability.

particular that y equals the center of I(g~!) and z}, equals the center of I(g) (see
Lemma 1.19(i)). Because of that, Lemma 2.15 implies

{I(9).1(g~ ")} CREL(T').
Combining this with (7.11) and Lemma 7.8 yields
{I(9),1(g)} € RELyy = REL(T) .

This together with Lemma 7.3 yields a unique h € T'rgy, such that I(h) = I(g).
By Lemma 1.20(i) this implies g = t%h with some n € Z and A as in (7.8). Now
Lemma 1.20(ii) yields

I(h) =T(g~'th) =ty I(g ™).

Because of Proposition 1.41 we also have I(h~!) € RELyy, hence in particu-
lar I(h™') € Rel;'([a’,¥]). This leaves n = 0 as the only possibility, imply-
inggel. U

Recall the set WK for IC the common exterior from (2.1). We write WICW for
this set with respect to the common exterior Kyy of I'yy (see (7.10)).

Proof of Proposition 7.11. Because of Example 7.12 it suffices to consider groups I
non-conjugate in PSLa(R) to (sz, hy), £ > 0.
Since T is geometrically finite, the set REL(T") is finite. By the choice of the
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points a, b € R there exist I, Is € REL(T") such that
aegly and begly. (7.12)

Since I' is assumed to contain hyperbolic elements, REL(I") is not a singleton by
virtue of Proposition 1.41 and hyperbolic elements being of infinite order (see the
discussion before Lemma 1.9), and thus, I; # I5. Because of Corollary 7.4 there
exist uniquely determined g1, g2 € T, g1 # g2, such that I, = I(g,) for ¢ € {1,2}.
Denote by

/BL = BIL = 0w mIL

the relevant part of I,. If 51 N By # &, then I(g1) N 1(g2) # @ and (7.12) implies
REL(D) = {I;, b} .

The combination of Lemma 1.21(i) and Proposition 1.41 implies that g; = g5 !
and both are elliptic. Hence, I' is cyclic, generated by an elliptic transformation,
and thus void of hyperbolic elements. Since this contradicts the assumption, we
conclude

BiNBe=9. (7.13)

From here on we distinguish the cases g1 = g, Land ¢ # 9y L starting
with the latter. Because of (7.12) the geodesic segments 31,32 C 0V have at
least one endpoint in 04 H. Since every element of I' fixes 0, H, the geodesic seg-
ments g1.31 and g2.32 have one endpoint in 9,H as well. Furthermore, because
of Proposition 1.41,

9181, g2.02 C OW.

This implies g (g1.51) C (a,b), and thus g;.(b,a). C (a,b). Hence, there exists
an interval I C (a,b), say I = (g1.a,x) with x > g;.a, such that

Re|g'(I) CW and Re|g'(I) NRelg' (W (g,)) = 2, (7.14)

for v € {1,2} and W (g,) as in (1.55). Hence, g;.a € WICW and Re|;'(I) is
contained in a cell B (see Lemma 2.2). This implies

(B, Re|y' (g1.a)) € BM,
with BM as in (2.7), and thus there exits a tuple (k,h) € A x I'yy such that
h.bp(Cyy k) C Relg'(g1.a) and I Ch.y.
Lemma 7.13 yields h € I' and from (7.14) and the choice of g1, g2 we obtain

°M/(gl) C h.Jy, and OM/(gg) C h.d. (7.15)
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Because of Proposition 1.26 we have A(T') "W (g,) # @, for v € {1,2}. Since the
sets W (g,) are open, we find z1, z2 € A(I') and € > 0 such that

(z,—e, 2. +2) CW(g),
for . € {1,2}. From Proposition 1.15 we obtain y € €pe, r(H) such that
(’y(—i—oo),’y(—oo)) € (xg—e,xa+¢) X (x1 —e,21 +¢). (7.16)
The combination of (7.15) and (7.16) with y(400), y(—00) € A(I") implies
(h" 7 (+00), h7(~00)) € Tiat X s

Because of Corollary 7.6 this remains valid in the context of I'yy, and therefore
Lemma 2.12 yields k € A'.

Now assume that g; = g, '. If T'is cyclic, then REL(T') = {I;,Is}. By
Lemma 1.21(i) we again find an interval I C (a, b) fulfilling (7.14), and from there
on may argue as before.

Now assume that I is non-cyclic. Let &1, & € H? be such that

Bi* = la,&lu and Y = (&, blw.

Because of Proposition 1.41 we have g;.31 = [32. Since 31, 32 C 94 W, the com-
bination of that with Proposition 7.9 and Lemma 1.44 implies

Im& = Imfz . (7.17)

Since I is non-cyclic, the boundary of W consists of further segments besides the
segments /31, 52 (for otherwise I' = (g1, g2) = (g1) by Proposition 1.36). Because
of Lemma 1.45, at least one of these further segments contains the summit of its
associated isometric sphere. More precisely, there exists I3 € REL(T") \ {I;, 12}
such that s(I3) € fr, and

c(I;) =Res(lh) < Res(Iz) = ¢(I3) < Res(lz) = ¢(I2) . (7.18)
By Lemma 2.13 and Lemma 2.16, there exists a pair (k, h) € A x I'yy such that
h.bp(Cyy i) = (c(I3), 00) 4 and (c(Ig),c(1y)) € hody, X hodj.

Again, Lemma 7.13 yields h € I'. By following the structure of the argument
above and taking the I'-invariance of A(I") into account, we see that it suffices
to show that ¢(I3) separates at least some points in W (g;) N A(T") from at least
some points in W (g2) N A(T"), or in other words,

W) NAT)NhJ, # and W(ge) NAT)Nh I #2. (7.19)
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In order to see this we distinguish several cases, starting with the assumption
that g; (and thus also ¢3) is hyperbolic. By Lemma 1.21(i) we have I; NI, = &,
and therefore, W (g1) N W(g2) = @. If c¢(I3) ¢ W(g1) U W(g2), then (7.19)
follows immediately from (7.18). Thus, assume that this is not the case. Without
loss of generality we may assume that ¢(I3) € W (g1). Then W (g2) C h.Ij by
construction, and hence Proposition 1.26 implies that A(T") ¢ h..Jj. Suppose for
contradiction that A(T") C h.Ij. Denote by g3 the generator of I3, which is unique
by Lemma 7.3. By construction we have g3 ¢ {g1, g2}. The transformation g3 can-
not be an involution, for then gsh.I}, = h.J, and since I'-action preserves A(T"),
we would obtain a contradiction to the assumption. Therefore, c(g3) # c(g3 ),
and we show that

clgs") € (clgr),clg2) = 1), (7.20)
with r := r(g1) = r(g2). To that end we first show that

{e(g3),clgz 1)} € (1), elg2)) - (7.21)

Let = € {c(g3), c(g5 1) }. Since 7’ := r(g3) = (g5 ), we then have

x4 ir' € {s(g3),s(g5 ")}

From (1.53), s(I3) € f1,, and Proposition 1.41 we obtain {s(g3), s(g3 ')} C OW.
In particular, neither summit is contained in int I; Uint I. Since I3 ¢ {I;, 1o},
it follows from Lemma 7.3 that neither summit is contained in I; UI5 either. But
then, for z < ¢(g1) we find

r—1r' <clg)—r=a,
while for x > ¢(g2) we find
r4+7" >c(g)+r=>0.

Thus, either case entails a contradiction to (7.12). This yields (7.21). By the as-
sumption c(g3) € W (g1), the geodesic arc bp(Cyy 1) = (c(g3), 00)m intersects I
in exactly one point in H, say &3. Therefore, the geodesic arc g1. bp(Cyy i) inter-
sects Iy = ¢1.1; exactly in g1.£3. Since Re &3 € (¢(g1), ¢(g1) +7) by (7.21), (1.53),

and g1.(c(g1) + 1) = c(g2) — 7, we find Re(g1.83) € (cg2) — 7, ¢(g2)). By
combining this with g1.00 = ¢(g;!) = ¢(g2), we conclude that g;. bp(Cyy ) is
non-vertical and

(c(g2) — 7 c(g2)) & Re(g1-bp(Cwik)) -

Thus, if ¢(g5 ') € (¢(g2) — 7, ¢(g2)), then, because of

g3- bp(CW,kJ) = (93.6(13), OO)H = (007 C(ggl))H ) (7~22)
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the geodesic arcs g3. bp(Cyy i) and g1. bp(Cyy i) intersect each other without
coinciding. Since I' C TI'yy and Cyy is a set of branches for the geodesic flow
on Xjy, this yields a contradiction by violation of (B6). Because of (7.21), this
yields (7.20). Now, by combination of (7.20) with

gsh-Iy = gs.(c(g3), +o0) = (—o0,c(g3 ")),

the assumptions W (g2) C h.Iy, c(g3) € W(g1), and W (g1) N W (g2) = &, and
the identity (7.22), we infer

W(g2) C g3h.Jy .

Hence, the same argument which showed that g3 cannot be an involution again
yields a contradiction. Hence, A(I') C h.lj cannot hold true, which in turn im-
plies (7.19). This yields the assertion in the case g1 = g5 ! and g, being hyperbolic.

Finally, assume that ¢; is elliptic of some order 0 = o(g3). Since I; # I, we
have ¢ > 3. By Lemma 1.22 the angle between I; and Iy at the fixed point f(g;)
exceeds 27/3 (measured above the spheres). Since W is geometrically finite, we
may enumerate its sides as a, . . ., a;, from left to right, i. e., such that

bi=a1, =70, and Oél'ﬂai+17é@,

forv =1,...,m — 1. Analogously, we may enumerate the elements of V3, the
finite vertices of W, by v1, ..., vy,—1 such that {v;} = a; Na;41, for all i. Finally,
denote the angle that VW subtends at v; by 6;. Since we have Iy NI # @ and

Re(a;) € W (g1) UMW (go)

for every i € {2,...,m — 1}, we conclude that INI, # @ for some ¢ € {1,2},
for every I € ISO(T") for which f; = «; for some . Since v; € extI; Next I, for
every 4, this implies

2
?” <0 < (7.23)
for all 7. Consider the vertex cycle C'(v1) = {v;,,...,v;,} with v;;, = v;. Then

g1.V1 = Umpm—1 € C(U1)

and hence ¢ > 1. Because of Lemma 1.34 there exists w € N such that
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which implies fw < 3. Since /,w € N and ¢ > 1, this leaves
(bw) = (2,1)
as the only possible configuration. But this implies
C(v1) =A{v1,vm-1} and 01+ 0,1 =27,

which means that at least one of the two angles equals or exceeds m, in violation
of the second relation in (7.23). Hence, this final case is contradictory and the
proof is finished. O

In the proof of Proposition 7.11, for any given constellation, we identified a
hyperbolic transformation g € I" with fixed points f  (g) and f_ (g) sufficiently far
apart such that there exists k € A and h € I'yy for which h. Cyy , is intersected
by «(g). This then yielded £k € A’, and because (k,h) could be chosen such

that h. bp(Cyy 1) is vertical and, necessarily,
Re(h.bp(Cw)) € (d,0),

Lemma 7.13 yields h € T'. The same argumentation also applies for g~!, with
the roles of g1 and g5 in the proof of Proposition 7.11 interchanged. Hence, we
obtain a second branch copy 1'. Cyy j, (k', ') € A’ x T, pointing in the opposite
direction of h. Cyy 1, i. e,

h.Iy\;JC = (h.xk, +OO) and h/.IWJC/ = (—OO, h/.fL‘k/) .

Therefore, the union h.lyy ; U h'.Iyy i covers R except, perhaps, for a bounded
interval. Since

(f1(9),f=(9)) € Mo x W Iy

iterated application of g contracts h'. bp(Cyy i) towards £ (g). In other words,
there exists n € N such that

6" bp(Cyy ) C hH (k).
This means
hodwg C g"h' Ty ke and g"W Iy C hdyy,
which in turn yields the following result.

Corollary 7.14. There exist (not necessarily distinct) j,k € A’ and g,h € T such
that
R = g.IW,j U ]’L.vak .

Recall the transition sets Gyy(.,.) associated to Cyy by (B7). The following
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lemma is key.
Lemma 7.15. For every choice of j, k € A’ we have Gy (j,k) C T.

Proof. Fix j € A’ and let k € A’ be such that Gy, (j, k) # &. Let g € Gy (J, k)
and consider

B,g) = 9-bp(Cwk) = (9-2k, 9-00)m -

This is a complete geodesic segment contained in the half-space H. (j). A priori,
it might be vertical or non-vertical. Since z; € {a’,V’} implies that one of the
sets Iy st JW kst is empty and thus k ¢ A’ in violation of the assumption, the
assertion in the vertical case has already been shown in Lemma 7.13.

Thus, assume that 31, ;) is non-vertical. Then there exists a cell B € B for I'yy
such that f;, 5) and 3(; ;q) are sides of B (see also the Lemmas 2.4 and 2.7). Because
of Lemma 2.2 and 3 ;) being non-vertical, the cell B is a hyperbolic polygon
with 3(;;4) being one of its two vertical sides. Assume first that B is a hyperbolic
triangle. Then either

Tj = g.00, or Tj = g.T} .

In the former case, application of Lemma 2.15 yields I(¢~!) € REL(T'y), and, by
taking Proposition 1.41 into account, we can proceed as in the proof of Lemma 7.13
to conclude g € I'. In the latter case, consider the other vertical side of B. By the
constructions in Section 2.1 and Lemma 2.13 there exists a pair (j',h) € A x T'yy
such that this side is given by 3 ,y and we have

hlg e Gw(i' k).

Then either
g.00 = h.xj, or g.00 = h.0o.

Since 5(]", h) is vertical, the former case implies h € I')y o, which, with the same
argument as above, can only hold true if 7 = id. Hence, g.oo = z; and we
argue as before with j’ in place of j and thereby obtain ¢ € T'. Because of
Lemma 1.19(i) and Proposition 1.25, the latter case implies I(g) = I(h), which
in turn implies g € T}y o, by Lemma 1.20(i). Hence, by the above,

gW(j/)k) N 11)/\/700 7& .

But because of (7.11), this can only be the case if {z},z;} = {a’,b'}, which, as
we have seen before, leads to Cyy 1. st = @, thereby contradicting the choice of £.
Hence, this case is impossible.

Now assume that B is not a hyperbolic triangle. Then, by Lemma 2.2, every
side of B is of the form (s%.00, s/*1.00)y for some elliptic transformation s € T'yy
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and ¢ € {0,...,0(s) — 1}. Hence, in particular,
g=s
for one ¢/ € {0,...,0(s) — 1}, and furthermore,
B(j,ia) = (s".00,00)m,

for one ¢ € {£1}, meaning s~*.z; = 0o. As before, the latter implies s € I', from
which we obtain g € I'. This finishes the proof. O

We are now ready to prove our third and final main result, identifying a set of
branches for the geodesic flow on X. Evidently, the proof makes use of Cyy being
a set of branches for the geodesic flow on Xyy. In order to distinguish between the
defining properties from Definition 4.1 in the two different contexts, we denote
those fulfilled by Cyy with respect to I'yy by (B1yy)-(B7y), respectively.

Theorem 7.16. Cj,, := {Cyy; | j € A’} is a set of branches for the geodesic flow
on X.

Proof. From Proposition 7.11 and A" C A we see that C},, is a finite and non-
empty set. The definition of A’ combined with (B1)y) further assures validity
of (B1). Let j € A’. Since [o0]r,, is the only cusp of Xy, Corollary 2.6 implies
that the point x; either equals the center of some relevant isometric sphere, or
it is contained in a representative of a funnel of Xyy. Since oo is contained in a
representative of a funnel of X so is every center of an isometric sphere for I,
by virtue of Lemma 1.19(i). Therefore, (B2) follows directly from (B2yy). Prop-
erty (B3) is immediate from (B3yy) and property (B4) follows from Corollary 7.14
and oo being contained in a funnel interval. The properties (B5) and (B6) follow
from (B5yy) and (B6yy), respectively, by taking Corollary 7.6 into account. Fi-
nally, (B7) follows from (B7)y) and Lemma 7.15. O
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In this thesis we have seen that strict transfer operator approaches exist for ev-
ery non-cocompact geometrically finite Fuchsian group with hyperbolic elements
that fulfills Condition (A). Because of Lemma 1.17 and (B2), the approach via sets
of branches cannot easily be extended to include cocompact groups. Since (B6)
is also unfulfillable for cocompact groups due to the density of hyperbolic fixed
points everywhere on the real line, we do not expect that a unified approach for
both types of Fuchsian groups is feasible.

A first immediate open question is concerned with Condition (A): It is a tech-
nical assumption, which, to date, is required for the construction of branches in
the cusp expansion algorithm. But there are no concerns tied to it in terms of geo-
metric or spectral properties of the hyperbolic orbisurface. Hence, we expect this
condition to be completely expendable. For that reason the constructions in this
thesis did not utilize it beyond the application of the cusp expansion algorithm.
This means that, once a modification of this algorithm has been shown to work
regardless of it—and does so in a way such that all statements of Chapter 2 remain
valid—the assumption of Condition (A) may be removed from all statements of
this thesis as well, without the need for further adjustments.

What would require adjustments, namely in the strict transfer operator ap-
proach, is a transfer operator construction for infinitely ramified sets of branches.
We excluded them from our studies in this thesis, since we wanted to avoid the
necessity of modifications to the results of [22], which are central to our approach.
In applications one can easily be faced with infinite ramification. For instance, if
one considers a sequence of hyperbolic orbisurfaces all admitting the same set
of branches, it might happen that, on the “limit surface,” that set of branches be-
comes infinitely ramified. A study of these sets might also prove fruitful, for some
of them appear to not require a cuspidal acceleration, being “fast and slow” at the
same time in that sense (but not in the sense that slow transfer operators are as-
sumed to be free of infinite sums). This might shed new light on the relation be-
tween eigenfunctions of slow and fast transfer operators (see the next paragraph).
But one would have to face questions regarding convergence of the operator it-
self. We do not know whether or not there is any hope that infinitely ramified
sets of branches give rise to nuclear transfer operators.

A further question revolves around the eigenspaces of the (slow and fast)
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transfer operators. In their paper [1] Adam and Pohl showed that, for Hecke
triangle groups and finite-dimensional unitary representations , the eigenfunc-
tions with eigenvalue 1 of the fast transfer operator Zs,x are isomorphic to the
real-analytic eigenfunctions with eigenvalue 1 of the slow transfer operator L
that satisfy a certain growth condition, for every s in the right half-plane. We
expect a similar relationship between the 1-eigenfunctions of the two families of
transfer operators to hold true in the general case.

On a related note, by building on seminal work by Lewis, Bruggeman, Miih-
lenbruch, and Zagier [36, 12, 37, 14, 13], Moéller and Pohl [44] established an (ex-
plicit) isomorphism between Maass cusp forms (certain eigenforms of the Lapla-
cian) and highly regular 1-eigenfunctions of the slow transfer operator family for
cofinite Hecke triangle groups. Recently, Bruggeman and Pohl [15] developed
similar isomorphisms for automorphic forms associated to Hecke surfaces of in-
finite volume. This raises the question to what level of generality such identifi-
cations might be feasible. Together with the relation between the eigenfunctions
of the two transfer operator families, the factorization of Selberg zeta functions
revealing their sets of zeros to contain the resonances of the respective Lapla-
cian (see Section 1.12), and the results presented in this thesis, one would obtain
a bridge from the number theoretical field of automorphic forms to the spectral
theory for hyperbolic orbifolds. For Hecke triangle groups such a bridge now ex-
ists by virtue of the work of Pohl et.al. One would like to have it in the most
general case feasible.

[Automorphic forms] [Resonances of the Laplacian}

1-eigenspaces of Zeros of the
slow/fast transfer operators Selberg zeta function
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