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Abstract. In this article, the modeling and simulation of material removal
during machining processes with a finite element method is discussed. The

model links a dexel based material removal simulation with a thermomechani-
cal finite element method to forecast thermical and process-related shape errors

during machining processes. It is modeled mathematically by linking heat con-

duction equation with the deformation equation on a time dependent domain
including moving boundaries. We present here details from the finite element

implementation. The project is financed by DFG via SPP1480.

1. Introduction

The minimization of shape errors during dry machining processes like milling
and drilling processes is a major challenge to modern production cycles. Consider-
ing these thermomechanical effects in the NC-simulation offers great advantages for
reduction of shape errors during machining processes. To achieve this goal a new
method of material removal simulation in due consideration of thermomechanical
effects is presented. While thermomechanical effects are modeled by a finite element
(FE) simulation, the material removal is done by a dexel model. In combination
with a process model for prediction of cutting forces and heat flux, thermal and
mechanical effects during the process are reproduced realistically on the workpiece.
This creates a closed simulation system that considers thermomechanical interde-
pendencies. We consider here a macroscopic model which includes the microscopic
effects of chip formation and removal only via the process model, [7, 8].

The so called dexel (“depth pixel” or “depth picture element”) model is compa-
rable to a plain grid of parallel nails of different length. Earlier approaches used
elements of only one direction, like for example the graphics rendering in graphics
processor units (z-buffer), [15]. To decrease the dependency between the chosen
dexel direction, the shape of the workpiece and the resulting accuracy, multi-dexel
models have been introduced [4,9,12]. Usually three grids are used oriented to the
main axes of a cartesian coordinate system.

An approach for modeling heat conduction and thermomechanical workpiece
characteristics is the finite element (FE) model. It was used in several investiga-
tions for modeling of machining processes [5, 10]. Especially the mapping of heat
fluxes und process forces during continious (milling) and discontinious (drilling)
processes to boundary conditions on a moving boundary is a challenge. Analyt-
ical and numerical studies of the propagation of discretization errors in adaptive
methods for related problems are presented in [1–3].

The NC-Simulation has to be extended with several properties to emulate ther-
momechanical effects. These extensions can be divided analytically into two compo-
nents, the process model and the workpiece model.The workpiece model describes
the actual state of the workpiece in geometrical and thermomechanical aspects
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Figure 1.1. Detailed simulation cyrcle of data flow.

(Fig. 1.1 left). Additional material removal algorithms allow changing the geomet-
rical representation of the workpiece, while thermal conduction algorithms allocate
modify the thermal condition of the workpiece.

The material removal process is controlled by a classical NC-Simulation, with
kinematics and NC-Controller (Fig. 1.1 top) [6], for a realistic thermomechanical
simulation the boundary conditions of the workpiece have to be changed by a pro-
cess model. This process model has several sequences (Fig. 1.1 right). The local
cutting conditions are calculated from the material removal process. With this data
a cutting force and heat flux prediction is triggered that calculates the mechanical
and thermal load. This changes the boundary conditions of the workpiece model,
especially in the FE simulation.

The major aspect of this paper is the modeling of the workpiece model in his
mathematical representation in the FE model with its input and output parameters
(Fig. 1.1 left). The contact zone analysis and cutting force had been shown in [14].
Linking the FE model for the heat conduction analysis and deformation behaviour
to a dexel model for the material removal process allows considering both, volumet-
ric changes and thermomechanical deformation, in the NC-Simulation, [8]. Thereby
these components are considering the information of each other, so that the result-
ing effects can be modeled. Here, the volume changes described by the material
removal process is taken into account in the FE simulation for a more realistic heat
conduction and workpiece deformation simulation. As input parameters for the FE
simulation, moving heat sources and process forces has to be extracted from the
material removal process and could only consider over the boundary conditions in
the FE model. Moreover the surface of the workpiece and the boundary condi-
tions of the process model changed in the dexel model by the current mechanical
deformations and temperature distributions determinded by the FE simulation.

For the linking of all components a XML based communication system was
implemented that is characterized by high flexibility and fault tolerance as shown
in [13]. Thereby the pure thermoelastical simulation and the NC-Simulation run
and communicate in synchronized unequal time steps.
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2. Mathematical model

The model of thermomechanical effects during machining processes includes the
classical formulations of the heat equation and the quasi-stationary deformation
equation on time dependent domains with moving boundary conditions.

We assume that the time dependent domain is a subset of a fixed Ω ⊂ Rd with
d = 3. A corresponding model could also be applied in dimensions d < 3.

2.1. Heat equation. Let Ω = Ωs(t)∪Ωm(t)∪ ΓN (t) ⊂ Rd be the time dependent
partition of the domain Ω for t ∈ [t0, t1], consisting of a solid subdomain Ωs(t) and a
removed subdomain Ωm(t) with Ωs∩Ωm = ∅. The domain boundary ∂Ωs(t) is sub-
divided in parts with different boundary conditions, ΓN (t) and ΓR(t). Here, ΓN (t)
denotes the moving boundary between the solid and the removed subdomain. A
sketch of the different domains and their boundaries is given in Figure 2.1. Initially,
we start with Ωm(0) = ∅, ΓN (0) = ∅ and ∂Ωs(0) = ΓR(0) = ∂Ω.

Figure 2.1. 2D sketch of a time-dependent moving boundary
problem on domain Ω = Ωs(t) ∪ Ωm(t).

The process is modeled by the heat equation only on Ωs(t) for the temperature
θ : Ωs(t)→ Rd with temperature dependent material properties of the density ρ(θ),
the specific heat capacity ce(θ) and the heat conductivity κ(θ).

The heat equation is given by the PDE-System

ρce
∂

∂t
θ − div (κ∇θ) = 0 in Ωs(t),(2.1)

where we assume the absence of interior heat sources. To complete the problem,
we add conditions on the boundary. To model thermal radiation and convection
cooling, we choose a Robin boundary condition on ΓR(t). In this case the heat flux
over the boundary is proportional to the temperature between the interior and the
external temperature θext. We obtain the following equation, where α is the heat
transfer coefficient and n the outer normal vector.

−κ∇θ·n = α(θ − θext) on ΓR(t).(2.2)

A Neumann boundary condition ΓN (t) is used for the moving boundary part. In
this case the heat flux over the boundary would be described by a time and space
dependent function g1(x, t) for the incomming flux generated by the machining
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process.

−κ∇θ·n = g1(x, t) on ΓN (t).(2.3)

In this way, equations (2.1), (2.2) and (2.3) give us the complete inital boundary
value problem for heat conduction on time dependent domains.

2.2. Deformation behaviour. In this section we introduce the model for defor-
mation behaviour. We consider infinitesimal strain which means that the occurring
deformations are ”small”. The assumption of small strains is valid for the settings
of heat treatment with moderate external forces, we are dealing with. We introduce
the balance of momentum which is fundamental in continuum mechanics.

Let Ωs(t) be the reference configuration for t ∈ [t0, t1]. The displacement vector
is defined as u : Ω̄s(t) → Rd. We consider here a linear elasticity model for an
isotropic material, where the stress tensor σ(u) ∈ Rd×d is given by

σ(u) = λtr(ε(u))I + 2µε(u)(2.4)

with Lamé coefficients λ, µ and the linearized strain tensor

ε(u) :=
1

2

(
∇u + (∇u)T

)
.(2.5)

As the time scale for heat conduction is much slower than that for mechanical
wave equation, we use here the elliptic quasi-stationary deformation equation on the
time dependent domain with forces f from thermal expansion and maybe gravitation
on the right hand side,

− div (σ(u)) = f in Ωs(t),(2.6a)

u = gfix on Γfix(t),(2.6b)

−σ(u) · n = g2(x, t) on Γfree(t)(2.6c)

or, expressing the stress tensor via the strain tensor,

−µ∆u− (µ+ λ) grad div u = f in Ωs(t),(2.7a)

u = gfix on Γfix(t),(2.7b)

− (λ(tr(ε(u)))I + 2µε(u)) · n = g2(x, t) on Γfree(t).(2.7c)

Here we chose Dirichlet boundary conditions to prescribe the displacement gfix on
a boundary part Γfix(t) and Neumann boundary condition to apply external forces
via a time and space dependent function g2(x, t) on Γfree(t), where the domain
boundary is devided into

∂Ωs(t) = Γfix(t) ∪ Γfree(t).

2.3. Coupled Problem. In this section we want to present the fully coupled ther-
momechanical problem. So mainly we gather the above presented equations but
we also introduce the coupling therms. We present the equations with emphasis on
the dependencies between the different quantities.

Due to the slow time scale of heat conduction, we ignore effects of dissipation.
Thus, only the mechanical effect of domain deformation enters the heat equation.
For small deformations, this is typically ignored.

The coupling between temperature and deformation is due to thermoelastic-
ity. The Lamé coefficients can be considered to be temperature dependent, and
the stress tensor is augmented by a term for thermal expansion reflecting density
changes due to heating and cooling,

σ(u) = 2µ(θ)(ε(u) + (λ(θ)tr(ε(u))− 3α(θ − θ0)) I,(2.8)

with the thermal expansion coefficient α and initial temperature θ0.
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Figure 3.1. 2D-Boolean-Dexel-Operations

3. Thermomechanical Dexel model

The simulation of material removal processes can be done by the so called dexel
(“depth pixel” or “depth picture element”) model [4, 9, 12, 15]. For the modelling
of the material removal process during the simulation of cutting processes, three
Boolean-Operations are used, see (Fig. 3.1). Due to the method of machining the
most used operation is shorten, where the dexel-end- or startpoint is shifted. In
the case of undercut operations the dexel is divided. If a dexel has to be divided
an additional dexel has to be included in the raster of the model on same position
and both dexel are shortened. The last Boolean-Operation is the deletion, which
has to be called when all material in one field of the model is machined. In this
case the dexel is set to an invalid status and no start- or endpoint exist.

To consider the thermomechanical effects in the material removal simulation, the
dexel model has to be extended by thermomechanical information. Temperature
and deformation of the workpiece are specific data that have to be known and
transfered into the dexel model.

The data structure of the dexel model enables a geometric representation of
the workpiece surface by discrete start and endpoints of the dexels (Fig. 3.3). In
cutting operations only near-surface areas are machined. Caused by this fact, only
information in these areas of the workpiece is relevant for the material removal
simulation. Therefore, an extension of the existing structure is only necessary in
the start and endpoints of the dexels. To consider temperature and deformation, a
dexel point was extended by a temperature value and a deformation vector. Using a
deformation vector instead of alternative methods, like shortening and lengthening
of the dexel or shifting of dexel points, gives essential advances. These are:

• keeping the consistency of the workpiece model,
• easier linking to the FE model structure,
• parallel representation of the chilled workpiece by the basic dexel structure.

Current thermomechanical data, continuously imported from the FE model into
the dexel structure, now allows considering the thermomechanical effects in the
NC-Simulation. These effects are caused by the local temperature and the local
deformation of the workpiece in the cutting zone, see Fig. 3.2.

The actual temperature of the workpiece has a major influence on the specific
characteristics of the material like shear yield stress and therefore on the resulting
cutting forces.

The deformation of the workpiece globally influences the dimension of depth ap
and width ae of cut and the geometric representation of the workpiece. Therefore,
the deformation determined by analyzing the sweep-surface DCPs is inversely pro-
jected onto the cutting tool (Fig. 3.3). By this method, the thermomechanical
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Figure 3.2. Thermomeachanical extended Dexel-Structure

Figure 3.3. Considering thermomechanical Deformation

deformation of the workpiece can be considered and the resulting shape errors can
be predicted.

4. Numerical approach

Numerical implementations of the thermoelastic model and the linking to the
dexel model have been integrated via the finite element toolbox ALBERTA. How
to handle the communication between the two models, to simulate the material
removal, and to implement the boundary conditions for the PDE system is shown
in this section.

4.1. ALBERTA. To compute heat conduction as well as thermomechanical elas-
tic (and maybe plastic) deformation of the workpiece, the equations are discretized
and simulated by a FE simulation. We are using a FE model that is based on the
adaptive finite element toolbox ALBERTA, [11]. This Toolbox is using unstruc-
tured simplicial meshes, like tetrahedrons in 3D, together with local adaptive mesh
refinement and coarsening for appropriate approximation of domain and solutions,
which is crucial for the simulation of machining processes.

4.2. Communication between FE and Dexel model. To consider the material
removal of the dexel model also in the FE simulation, the two models are linked.
This linking of the models is based on the interchange of parameters and values
such as the geometry of the workpiece, the thermomechanical displacements of the
workpiece as well as heat flux and process forces produced by the cutting process.

To realize the interchange of information between the two models, an XML
based communication system was implemented, which is used at a given timestep,
[13]. In this system the geometrical information of the workpiece surface and other
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(a) Dexel representation in one

direction

(b) Interpolation of domain

boundary with graph G

(c) Dexel – FE-mesh overlay

Figure 4.1. Sketch of virtual-domain approach

information given at the dexel points described by the dexel fields in different
directions (x-, y- and z-direction) is provided to the FE model. The FE model uses
the information of the workpiece surface to determine Ωs(t). Then the information
of heat fluxes and process forces are projected on the boundary surface of ∂Ωs(t)
(see Section 4.4) and the linear systems of heat conduction and deformation are
solved. At last the numerical results of temperature and deformation are given
back to the dexel model via the communication system. This enables the use of
thermomechanical information in the material removal and process models.

A more detailed description, how to include geometrical data as well as local
heat fluxes and process forces into the FE model is given in the next sections.

4.3. Discretization of material removal in finite element method. The ma-
terial removal simulation and thus time dependent domain is realized in the FE
model by using a time dependent subdomain Ωs(t), which was considered first in
Section 2.1.

Another approach to handle a time dependent domain might be a moving mesh
approach, where the nodes are moved in every timestep in order to represent the cur-
rent geometry. Due to large deformations by material removal, a frequent remeshing
would be necessary in order to prevent distorted elements. Thus, the moving mesh
approach is not used here.

We use a discrete approach on a fixed domain Ω = Ωs,h(t) ∪ Ωm,h(t) with an
admissible triangulation

Ω =
⋃
S∈S

S ⊂ Rd.

The mesh represents the full initial workpiece from which the finished workpiece
is made. To implement material removal, appropriate simplizes S are ‘removed’
respectively blinded out.

Determined by the current coordinates of the dexel endpoints from the dexel
model (Fig. 4.1(a)), an interpolated piecewise bilinear surface G defines the current
boundary surface of the time dependent domain, see Fig. 4.1(b). For each element
of the triangulation, it is then easy to decide whether the element is fully outside
of the current domain or not, Fig. 4.1(c). Such fully outside elements will not be
considered anymore in the calculation and will thus be ignored during all following
time steps of the simulation. The algorithm to set the discrete subdomain Ωs,h(t)
respectively the removed subdomain Ωm,h(t) is as follows:

4.1. Algorithm (Set subdomain).

subroutine set subdomain(S)
Ωs,h(t) = Ωm,h(t) = ∅
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for all S ∈ S do

get world coordinates of vertices n
for all n ∈ S do

loop over all dexelfields

find supporting points for n in the dexelfield

interpolate graph G over supporting points

if n below interpolated graph G
mark n as in subdomain

else

mark n as outside

end if

end loop

end for

if one or more vertices n marked as in subdomain

Ωs,h(t) = Ωs,h(t) ∪ S
else

Ωm,h(t) = Ωm,h(t) ∪ S
end if

end do

To get a sufficiently good approximation of the current workpiece, a specific al-
gorithm for control of the adaptive local mesh refinement is implemented. In order
to have an accurate approximation of the workpiece surface with simplizes S, ap-
propriate local refinement and coarsening operations are used. First, we introduce a
specific refinement marking strategy in the local region near the moving workpiece
surface ΓN,h(t).

4.2. Algorithm (Marking simplex near the workpiece boundary for refinement).

subroutine refine subdomain(S)
do for S ∈ S

get world coordinates of vertices n
for all n ∈ S do

loop over all dexelfields

find supporting points in the dexelfield

interpolate graph G over supporting points

if graph G intersects simplex S and refine level < limit

mark S for refinement

end if

end loop

end for

end do

refine mesh(S)

Here, we use again the bilinear interpolation of the dexel endpoint coordinates
over each dexel field to define the surface graph G. Then we check whether G
intersects the simplex S and whether the refinement level of this simplex is smaller
than a given limit, which might be chosen before the simulation starts, or computed
from approximation estimates for ΓN (t).

The algorithm of coarsening the mesh is a bit more involved. Here we have to
check whether the simplex is located in the interior of Ωs,h(t), Ωm,h(t) or in the
border zone between the two domains. While the simplizes in Ωm,h(t) might be
coarsened without difficulties, the simplizes in Ωs,h(t) can only be coarsend with
the standard adaptive strategies for FEM. In order to prevent a too coarse mesh in
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the border zone of the two domains, the coarsening is limited here. The algorithm
for one simplex is as follows.

4.3. Algorithm (Marking one simplex for coarsening).

subroutine coarse mark fct(S, S)
do for S ∈ S

if S → in subdomain = 0
mark = number of neighbor elements in subdomain

if mark = 0

mark S for coarsen

end if

else if S → in subdomain = 1
mark = number of neighbor elements in subdomain

if mark = number of neighbours

use FEM coarsen strategie

end if

else

if (refine level > limit)
mark S for coarsen

else

do nothing

end if

end if

end do

coarse mesh(S)

In this way, the heat and deformation equations are solved only on a subset
Ωs,h(t) of the complete domain Ω as described in Section 2. With the given local
adaptive refinement and coarsening algorithms, the time dependent domain and
moving boundary can be approximated by the mesh as accurately as desired.

4.4. Boundary data for the FE model. Boundary conditions are given by the
process model, which is included in the dexel model. Neumann and / or Robin
conditions, like heat flux and process forces, have now to be given on the boundary
of the subdomain Ωs,h(t), which is at least partly composed of interior sides of
elements of the original triangulation of Ω. We explain here in more detail, how to
apply the boundary data on the discrete boundary ∂Ωs,h(t) in the FE simulation.

As known from Section 4.2, boundary data is given by the process model in-
cluded in the dexel model. In the FE simulation, such data is included via the
boundary conditions in heat conduction and deformation equations. During the
approximation of the current workpiece surface ∂Ωs(t) with the refinement and
coarsening algorithms described above, we typically get for the discretized ∂Ωs,h(t)
a larger surface area, than for the relativly smooth surface given by the geometrical
information from the dexel model. Locally, we may get a much larger surface area
(a factor around

√
2 in 2D), see Figure 4.2(a).

Thus, a simple transfer of the boundary data g1,g2 for heat flux and process
force would induce an excessive warming respectively force effect. An adaption
to the boundary discretization is necessary. A suitable scaling factor is given by
the scalar product of the two normal vectors of the discretized and the continuous
boundary which is the cosine of the enclosed angle α. This is given by

(4.1) cosα(nΓ,nΓh
) =

nΓ · nΓh

||nΓ|| · ||nΓh
||

In order to prevent that one of the computed normal vectors does not have the
length 1, we use the above normalized representation.
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(a) Dexel field and FEM mesh overlay (b) Zoomed sketch for one simplex

Figure 4.2. Sketch of boundary attachment at the moving bound-
ary part

Through the different discretizations in FE and dexel models, only information
on a few dexel points could be assigned on the boundary of a simplex S. To com-
pensate for that, supporting points over all dexel fields are used for each quadrature
point x of the suface of simplex S. These supporting points are used again for a
bilinear interpolation of data. For the ith supporting point, i = 1, .., 4, we use heat
flux data

q̃i = qi · cosα(nh,ni)

with heat flux qi given from the process model and normal vectors ni of the continu-
ous surface ΓN (t) and nh of discrete boundary ΓN,h(t). With bilinear interpolation
over each dexel field with interpolation operator Ih, we get finally for the discrete
formulation of the Neumann boundary condition (2.3) the following data at a quad-
rature point x,

(4.2) g1,h(x, t) =
1

d

d∑
k=1

Ih
(
x, q̃k1 , q̃

k
2 , q̃

k
3 , q̃

k
4

)
where d is the number of given dexel fields.

Analogous to this, we derive data g2,h for the weak formulation of the Neumann
boundary condition of deformation equation (2.7c). For each supporting point we
get

f̃i = fi · cosα(nh,ni)

with force vector fi and normal vectors as above. By interpolation, this gives for
each quadrature point x on Γfree,h(t)

(4.3) g2,h(x, t) =
1

d

d∑
k=1

Ih

(
x, f̃k1 , f̃

k
2 , f̃

k
3 , f̃

k
4

)
.

Using these modifications of the boundary data from the dexel model, we get a
good approximation of the total fluxes and forces in the FE model.

5. Results

We describe here the algorithm of our coupled dexel – finite element approach
and present results from the simulation of a milling process.

The algorithm for the simulation is based on the interaction between the two
models. After initialization of both models, communication is performed in each
time step, see Algorithm (5.1).
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First, the mapping of the current workpiece surface and the attached boundary
data is transfered from the dexel model to the FE model. After solving the heat
conduction and deformation equations based on these boundary data, the tempera-
ture und deformation values at the dexel endpoints are computed. This information
is transfered back to the dexel model. In the dexel model, the deformation is used
in the next material removal simulation, and temperature values enter the process
model for computation of forces and heat sources generated by the local machin-
ing process. This is repeated for each time step until the final time tend of the
simulation is reached.

5.1. Algorithm (Coupling of dexel and finite element simulation).

initialization of dexel and FE model

do for each timestep

· data exchange from dexel to FE model

· in FE model

· mapping the workpiece surface

· attache boundary information

· solve heat equation

· solve deformation equation

· data exchange from FE to dexel model

· in dexel model

· mapping deformation information in the dexelfields

· do material removal simulation

· compute process forces

· compute heat fluxes

end do

We present now results from the thermomechanical simulation of a milling pro-
cess, which was also done and measured experimentally.

The material of this workpiece is C45EN, original size is 40× 195× 40mm3 . In
the process, a cavity is milled out of the cuboid, leaving a bar of 2mm thickness.
The whole process included 26 rough and 7 fine machining steps.

Measurements included temperature as well as supporting and process forces.
For measuring temperature, five thermoelements of type K (NiCr-Ni) with measure-
ment amplifier SAK12-461-100-10 were inserted at different positions, see Figure
5.1(c). For measuring forces, the workpiece was fixed between two dynamometers
to get the workpiece statically determined. The supporting and process forces were
measured by eddy current sensors from Kistler type 9257B and amplifier 5070A.
The production of the component was done on a HELLER MCi16.

The Figures 5.1(a)-(d) show the subdomain approximation of material removal
and temperature distribution on the surface at different times during roughing. A
snap-shot of temperature distribution during finishing is given by Figure 5.1(e) and
the final (nearly room) temperature distribution at the workpiece surface after fin-
ishing is given in Figure 5.1(f). The figures show clearly that the heat enters in the
current milling zone producing large temperature gradients, while the conduction
of heat into the workpiece goes slowly.

Figure 5.2 depicts the temperature profiles at the five measuring points in ex-
periment (Fig. 5.2(a)) and simulation (Fig. 5.2(b)). The profiles are quite similar
to each other, but show some mismatches in the peaks, expecially for the finish-
ing step. These discrepancies may result from imprecise boundary data and/or
discretization issues and will be adressed in near future.
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(a) t = 3s (b) t = 123s

(c) t = 153s (d) t = 240s

(e) t = 345s (f) t = 550s

Figure 5.1. Simulation of milling process: workpiece with sur-
face temperature at different times

6. Summary

A simulation model for the identification of dimension and shape errors in ma-
chining processes caused by thermomechanical effects has been derived by linking a
thermomechanic finite element method with a dexel based material removal simula-
tion. The coupled model already shows quite good correspondance between results
from simulation and experiments.

Based on this model, we plan to develop a compensation strategy for thermome-
chanically induced manufacturing imprecisions by adjusting in advance the process
parameters and machining tool path plan.
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(a) Temperature in experiment

(b) Temperature in simulation

(c) Measuring points

Figure 5.2. Temperature over time on measuring points
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