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Abstract

During heat treatment and other production prosgesgmdients of temperature and other observabégsvary

rapidly in narrow regions, while in other partsté workpiece the behaviour of these quantitieuite smooth.
Nevertheless, it is important to capture these stngctures during numerical simulations. Local Imesinement in
these regions is needed in order to resolve thaviomlr in a sufficient way. On the other hand, ¢hesgions of
special interest are changing during the proces&jnm it necessary to move also the regions ohedfimeshes.
Adaptive finite element methods present a tooluimmatically give criteria for a local mesh refiremhy based on
the computed solution (and not only on a prioriwlealge of an expected behaviour).

We present examples from heat treatment of stezljding phase transitions with transformation oetliplasticity
and stress dependent phase transformations. Onsescopic scale of grains, similar methods can legl tis
efficiently and accurately compute phase field ni®éte phase transformations.
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1 Need for local mesh refinement - adaptive fielmment methods

During production processes like heat treatment, fnvetsires like narrow regions (boundary or
interior layers, e.g.) with high (and rapidly varg) gradients of temperature, concentration, or
phase fraction fields appear, while in other parts of th&piece the behaviour of these fields is
quite smooth. It is important to capture thesecttines during numerical simulations, as they
influence the local or global material propertiesing and after the process. So, a fine mesh is
essential, but using a globally fine mesh can béipitively expensive, especially in 3Docal
mesh refinement in these regions is needed in todesolve the behaviour in a sufficient way,
while keeping the overall calculation feasible.

Adaptive finite element methods present a toolutmatically give criteria for a local mesh
refinement, based on the computed solution (ane@mgton a priori knowledge of an expected
behaviour). These method were introduced and stingietigineers and mathematicians starting
in the late 1970s (see [Babuska, 1987], [Zienkiewl®78], e.g., and [Ainsworth, 2000] for an
overview). For model problems, mathematical bouiedghe error between approximate and
true solution can be shown, as well as quasi-ofitynef the meshes generated by the adapive
method. In adaptive methods, regions for localnegfient are selected based on larabr
indicators which estimate the error contribution of singlesim elements. They are computed
from the discrete solution on the current mesh lamalvn data of the problem (like material
parameters and boundary values). All mesh elenveimése these indicators are large must be
refined, while elements with very small indicatonsly be coarsened. The latter is important
especially in time dependent simulations, whenlletactures may move or even vanish after
some time. We show here the application of adapihite element methods to both macro-
scopic and mesoscopic models for phenomena duminhdat treatment of steel.



2 Macroscopic model: Thermo-elasticity with phalsarges

The linearized model of thermo-elasticity with phasnsformations (for small and quasi-static
deformations) including temperatufe deformationu, and phase fractionp, is given by the

following differential equations.
pCT —div(kVT) = pz L p
(1) —div(c) =0
p = fi(p’T)
with stress
@ o=atr(e)l +2ue— B2+ 2ufa(T-T,) + (pyp)/3p} |

and straine =< (Vu+Vvu'"). f;is the law of phase change, ap¢t,k,L;, 4, 1,2, T, p, denote

material parameters, most of them depending ondgatyre and/or phase. Initial and boundary
conditions are defined for this system. The paditierential equations are numerically solved
by a finite element method. As we want to focughis article on aspects of theimerical
methods, the model is kept simple here; for moabahte models see, for example, [Wolff,
2005b]. In the remainder of this section, we shbes advantages of adaptive methods in two
different situations.

2.1 Boundary layers during heat treatment

We consider the temperature boundary layer dumadjreg of a rectangular steel workpiece in
2D. A steel model from [Wolff, 2000] was used. Bginitially at a constant high temperature,
the sample is cooled from outside, where one sideeorectangle is cooled stronger than the
others. Figure 1 shows temperature graphs andspameding meshes from two different times.
In the beginning, the temperature is lowered manelgr the edges, leading to boundary layers.
The temperature reduction near the stronger caifledis much stronger than near the others. A
good resolution of the temperature profile is regpiifor example in order to approximate a
temperature-dependent phase transformation witeasppce of different constituents (pearlite,
bainite, martensite, e.g.) and predict local makgnioperties after the heat treatment. In order to
numerically resolve the temperature profiles wile mesh has to be quite fine near the
boundary layers. An adaptive method based on larcal indicators automatically refines the
mesh where it is needed.

Figure 1: Quenching of a hot steel workpiece (ZE¥aphs of temperature and corresponding adaptive
meshes at two different times



After some time, heat diffusion leads to much steotemperature profiles, and thus coarser
meshes are sufficient to resolve the temperatuae the boundary. But now a finer mesh is
needed also in the interior, as temperature i®mgdr nearly constant there.

Naturally, similar effects occur during heat treatrnof more complicated workpieces. Figure 2
shows a simple 2D and 3D geometry of a cog whéw.simulation assumes a stronger cooling
rate at the cog tips. Again, a finer mesh is esaegt these places in order to approximate the
temperature boundary layer and stronger deformatifficiently well.
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Figure 2: Heat treatment of a (simple) cogwhe@0Drand 3D, with stronger cooling of the cog tips:
Adaptive meshes with emphasized deformations.

2.2 Interior layers due to phase transition inyaiad material

In dilatometer experiments with heat treatment cyébe a low alloy Mn-Cr steel with banded
chemical inhomogeneities, an anisotropic dilatat@haviour is observed [Hunkel, 2005]. A
possible explanation is given by local effect ohsfarmation induced plasticity (TRIP), due to
internal stresses from different phase transitiovslin different layers.

A common model for TRIP (compare [Mitter, 1987]efilond, 1989], [Fischer, 1996], e.g.) is
given by splitting the total straia into its thermoelastic part and the one producedRIP,
& =&, +&mrp, together with an evolution law for the latterelik

Ermip = %KJ* (PP, emp(0)=0
where ¢ denotes a saturation function aad the stress deviator. In contrast to (2) above, the
stress i NOW o = Atr(e—é&pp) | +2u(e — &mp) — B+ 2u){a(T-T,) + (p—p)/3p}  and
depends only on the thermoelastic straifis a material parameter which can be determined by
simple experiments [Wolff, 2005a]; see [Dalgic, 3)JDalgic, 2004] for data. Again, the
model is kept simple here, see [Wolff, 2004], [Wol2005d] for more complex models,

including back stress e.g., discussion and liteeatihe numerical method used here was
described in [Schmidt, 2003b].

As a model problem, we consider here a small cufeigjth:width:height v/2 :1:1) piece of
material with 3 or 5 equally wide layers of altdmg@ phase transition properties, for an
austenite-pearlite transition during cooling. Theage transition in the even layers occurs at a
higher temperature, and thus earlier during coplihgn in the other layers. Due to different
densities of the constituents, high stresses apgaarthe inner band boundaries during the phase
transitions. This leads to strong TRIP effects. @bealing conditions are uniform over the whole
boundary, so there are no asymmetries due to tivedlaoy conditions.



Figure 3 shows adaptive meshes and deformationgh@sized by factor 100) from a cooling
simulation (from 750°C to 600°C in 50 seconds, epnately). The final triangulation has
approximately 300’000 tetrahedra. In Figure 4,fthal (emphasized) deformed 3D geometry is

shown.
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Figure 3: Simulated heat treatment of layered ristédaptive meshes and deformation (scaled by
factor 100) at times t=25s, 30s (top) and t=35s,(%0ttom).
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Figure 5: Simulated heat treatment of layered rizdidreft: Relative length changes in longitudiaad
transversal directions (for 3 layers). Middle: Camigon of 3 and 5 layers. Right: Experimental data.

The anisotropic length changes during the simulatice presented in Figure 5. The values
shown here express the TRIP effect and are compyted

e =6-(s,+e,+¢,)/3, & =6,-(5+¢,+¢,)/3,



wheree,,¢,,&, are the relative length changesxyy, z directions, evaluated at a vertex of the
geometry. Due to symmetry, = &,. These curves are nearly independent on the axendf

the cuboid, we ran simulations for lengths 8mmpy®B and 0.08mm; the different curves
would not be distinguishable from each other. Forarlayers, the anisotropic TRIP effect gets
stronger, see the middle of Figure 5, which sheyaurves for 3 and 5 layers.

At least qualitatively, these results are quiteilsinio the experiments in [Hunkel, 2005], see
right hand of Figure 5 (due to the layered geomedry y,z directions correspond to the

longitudinal one in the experiment). Thus, TRIPeef§ are a possible explanation for these
anisotropic deformations. For quantitative studidéstther investigations with material
parameters corresponding to the steel consideeee will be done in the future.

3 Mesoscopic modelling of transformation phenomena

As empiric macroscopic models for phase transiiod related effects are still not satisfactory,
the derivation of new macroscopic (or multi-scal@dels from mesoscopic considerations,
models, and simulations may lead to better agreemigh experiments. In the macroscopic
models considered above, mixtures of different ttehts are possible and their relative
amount is given by phase fraction functiopgx,t . Lpoking at the mesoscopic scale of single

or multiple grains, one observes pure phases irs(jod) grains with (relatively) sharp phase
boundaries.

For such phase transitions, sharp-interface oughfinterface models are appropriate. While
sharp-interface models are problematic when therfate changes topology, like in case of
phase nucleations, diffuse-interface models caitydasdle such topology changes. Phase field
models are based on the assumption of a smootle piaasble, which varies rapidly between
nearly constant values, representing pure phasesnarrow transition region of widi®(o) .

This transition region represents a diffuse intafavhich is moving during phase transition.

Here we aim at phase field models for solid-solihge transitions in steel, including the
influence of stress on the phase transformatiothdrphase field model, the ordinary differential
equationp = f (T, p) in (1) is replaced by a partial differential eqoiat

. 1y
o(p—aAp)+ =¥ (p) =T,

whered is a small parameter anflis a potential with two minima at 0 and 1, the ealfor the
pure phases. We use a double obstacle potent@avggl 1993]. Depending on the model, the
right hand sidef may depend on concentration, temperature, andsste strain. For this
example, we consider a simple temperature-drives@lransition with a modification which
allows for a stress-dependent transformation (coenfRaret, 2001], e.g., for a purely stress-
dependent model).

f=yT-co:0o.

For c> 0, the negative sign in front of the stress terndlde® an accelerated phase transition.
Numerical (very preliminary) results show thatsitpossibile to include stress dependent effects
into the mesoscopic transformations by such a simpbdification of the underlying energy
functional. For some (macroscopic) ideas of moabaiate stress dependencies, see [Wolff,
2005c]. We want to simulate the temperature- aresstdriven phase transition in a single 2D
six-sided grain. Cooling from the left side resuttghe nucleation of the new phase in the left
corner. Temperature gradients and density chaeges Lo interior stresses, which accelerate the
phase transition wheo> 0. For phase variable and stress, we assume fosithfge test case
here the natural (homogeneous) boundary conditinrike grain boundary.
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Figure 6: Comparison of volume fractions over tiimedifferent influence of stress (differeat).

We use a finite element discretization and an agaphethod based on error indicators from
[Chen, 2005], [Schmidt, 2003a]. In Figure 6, wewsltloe evolution of the relative volume of the

growing phase inside the grain. Three curves shevphase transitions far=10%, ¢ =107°,
and c=0. The figure shows that, depending on the parasjetech models can lead to very

strongly accelerated phase transitions.

Figure 7: Graphs of phase variable and correspgndeshes at time t=0.4, 0.5, 0.6, 0.7.



Figure 8: Comparison of simulations withoat=£ 0, left) and with stresso(=10%°, right):
Phases at time t=0.6 and corresponding meshes.

Figure 7 shows values of the phase variable (quoretng to the untransformed phase) and

corresponding finite element meshes from a sinardawith influence of stressc10%). In
Figure 8, we compare phase distributions at theegame from simulations withoutc(=0) and

with (¢ =10%) strain. Under influence of strain, the phase bamnhas moved farther.

The adaptive method automatically refines the nieshe moving transition region, where the
phase variable is not constant, so that it carppeoaimated well. This highly refined region is
coarsened again, when the transition region hasdforward. Additional refinement is due to
variations in the temperature and deformation $ielthese simulations are still part of a work in
progress. Multi-grain configurations and more efab® and realistic parameters and boundary
conditions will be considered in the future.

4 Conclusion

We have shown some examples, where local phenohikenboundary layers, interior layers,
and phase transition regions appear naturally idetscand simulations for the heat treatment of
steel. The adaptive finite element method presamtsutomatic tool for numerical simulations,
and produces locally refined meshes where needetéoirate computations. Especially in 3D,
computations of similar accuracy would be too gosthen not using local refinements, but a
globally refined mesh.
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