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Introduction. The Collaborative Research Centre 747 “Micro cold forming” stud-
ies aspects of the production of micro components. Motivated by the engineering
application of melting the end of thin wires by laser heating in order to accumulate
material for a subsequent forming process, we study the melting and solidification
of material with a free capillary melt surface. The model leads to a coupled system
of Stefan and Navier-Stokes equations, where the solution of the Stefan problem
defines the solid subdomain Ωs(t) and the solution of Navier-Stokes with capillary
boundary gives the shape of the liquid subdomain Ωl(t). An Arbitrary Lagrangian
Eulerian Finite Element method is presented that is able to compute a numerical
solution without spurious oscillations.
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Figure 1. Left: material accumulation from experiment; right:
solid and liquid subdomains Ωs and Ωl, interface ΓS and capillary
surface ΓC .

Mathematical Model. The nondimensional system of equations for tempera-
ture θ, pressure p, velocity field u and time-dependent domain Ω(t) = Ωs(t) ∪
Ωl(t) ∪ ΓS(t) (see Figure 1) consists of a Stefan problem for the temperature,
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with Stefan boundary conditions on the solid-liquid interface ΓS(t) = Ω̄l(t)∩ Ω̄s(t)
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and heat flux condition including laser heating and radiation on the outer boundary
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a − (θm + θ)4) on ∂Ω(t),

coupled with Navier-Stokes equations in the liquid subdomain Ωl(t)
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with no-slip condition u = 0 on the solid-liquid interface ΓS(t) and capillary con-
dition on the free melt surface ΓC(t) = ∂Ωl(t) \ ΓS(t)

u · ν = VΓC
, σν =

1

We
Hν, on ΓC(t).

Here, Re, Pr, Bo, We, Gr, and St denote the Reynolds, Prandtl, Bond, Weber,
Grasshoff, and Stefan numbers, La and Em the laser power and emissivity con-
stants, Il is the intensity distribution of the laser heating, H the mean curvature
of the capillary boundary.

Finite element methods. The finite element discretization of this system can
be done separately for the Stefan problem in an enthalpy formulation as studied in
[3] and for the Navier-Stokes system as in [1]. For an application without capillary
boundary (Bridgman growth of a semiconducter crystal), the coupled numerical
method was demonstrated sucessfully in [2]. There, on a fixed mesh, the discrete
liquid subdomain is given by all mesh elements, where the temperature is above
melting temperature (nondimensional, θ > 0).

When the capillary boundary meets the phase boundary in a triple line (or
point in 2D), a coupled method of the type mentioned above is possible, too, but
can easily produce spurious velocity oscillations. This is due to the fact that whole
mesh elements change from solid to liquid and thus parts of the outer boundary
change from solid to capillary boundary. The capillary forces directly push the
boundary element into a different position, which produces a strong local velocity.
Thus, a new approach had to be developed.

The new method presented here uses a representation of the phase boundary
by mesh lines (in 2D, faces in 3D) and a front tracking method. Using the strong
formulation of the Stefan problem, the velocity of the phase boundary can be
computed from the jump of temperature gradients. Moving local mesh points by
the velocity of the interface (which is a non-material velocity), we end up in an
Arbitrary Lagrangian Eulerian (ALE) formulation of the coupled system. A similar
approach is used for moving the mesh with the capillary surface. Special attention
must be directed to the triple junction where capillary surface and solid-liquid
interface meet.

As the moving mesh degenerates when the liquid subdomain changes much,
as in our application, remeshing is necessary at certain times. In order to not
reduce the resolution of free boundaries, we keep the mesh points on the capillary
boundary and interface and generate a new mesh only for the interior of the solid
and liquid subdomains.

Numerical results. Both a 2D and a 2D axial symmetric implementation of the
algorithm were done based on the Navier code [1], the remeshing is done using by
Triangle [5]. Figure 2 shows a zoom into the mesh around the solid-liquid interface
at two different times from a 2D axial symmetric simulation. The interface lies in
the light gray region. Mesh lines at the interface were moved together with it, and
the bulk was remeshed between the two time instances.
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Figure 2. Meshes from two different time steps. Gray shade
indicates temperature, the interface lies in the light region.

Work in progress. As the front tracking approach is applicable only when al-
ready some liquid pool exists, a combination with the enthalpy formulation FEM
is needed in the beginning of the process, until some material is molten.

Some open questions and related future work regard the optimization of mi-
crostructure in the re-solidified material by a time-dependent control of laser
power.
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