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Abstract. The continuous casting problem is a convection-dominated nonlinearly degenerate

diffusion problem. It is discretized implicitly in time via the method of characteristics, and in space

via continuous piecewise linear finite elements. A posteriori error estimates are derived for the L1L1

norm of temperature which exhibit a mild explicit dependence on velocity. The analysis is based

on special properties of a linear dual problem in non-divergence form with vanishing diffusion and

strong advection. Several simulations with realistic physical parameters illustrate the reliability of

the estimators and the flexibility of the proposed adaptive method.
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1 Introduction

Let the ingot occupy a cylindrical domain Ω with large aspect ratio. Let 0 < L < +∞ be the length

of the ingot and Γ ⊂ Rd for d = 1 or 2 be its (polygonal) cross section. We show Ω = Γ× (0, L) in

Figure 1, and hereafter write x = (y, z) ∈ Ω with y ∈ Γ and 0 < z < L.
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We study the following convection-dominated nonlinearly degenerate diffusion problem

∂tu+ v(t)∂zu−∆θ = 0 in QT , (1.1)

θ = β(u) in QT , (1.2)

θ = gD on Γ0 × (0, T ), (1.3)

∂νθ + p(θ − θext) = 0 on ΓN × (0, T ), (1.4)

u(x, 0) = u0(x) in Ω, (1.5)

where

Γ0 = Γ× {0}, ΓL = Γ× {L}, ΓN = ∂Γ× (0, L), QT = Ω× (0, T ), (1.6)

and θ + θc is the absolute temperature, θc is the melting temperature, u is the enthalpy, v(t) > 0

is the extraction velocity of the ingot, ν is the unit outer normal to ∂Ω, and θext is the external

temperature. The mapping β : R → R is Lipschitz continuous and monotone increasing; since β

is not strictly increasing, (1.1) is degenerate parabolic. The missing outflow boundary condition on

ΓL is unclear because the ingot moves at the casting speed and is cut shorter from time to time. It

is thus evident that any standard boundary condition could only be an approximation. We impose

either a Neumann

∂νθ = gN ≤ 0 on ΓL × (0, T ), (1.7)

or a Dirichlet outflow condition

θ = gD < 0 on ΓL × (0, T ). (1.8)

Enforcing (1.7) with gN = 0 is equivalent to assuming that the normal heat flux on ΓL is entirely

due to advection, which turns out to be an excellent approximation. Both boundary conditions

lead to artificial boundary layers, with the second being more pronounced. In our simulations of

§7 with real physical parameters, we take gN = 0 and adjust gD to minimize this effect. It is

convenient to denote by ΓD the Dirichlet part of ∂Ω, that is Γ0 for (1.7) and Γ0∪ΓL for (1.8). The

linear Robin condition (1.4) on that part of ΓN in contact with air is just an approximation of the

actual nonlinear Stefan-Boltzmann radiation law condition (σ > 0)

−∂νθ = σ((θ + θc)
4
+ − θ4ext) on ΓN × (0, T ). (1.9)

We see that linearizing (1.9) around a constant temperature leads to (1.4).

The importance of simulating and controlling the continuous casting process in the production

of steel, copper, and other metals is recognized in industry. The extraction velocity v(t) as well as

the cooling conditions on the mold and water spray region are known to be decisive in determining

material properties of the ingot. Avoiding excessive thermal stresses and material defects is an

essential, and rather empirical, aspect of the continuous casting process.

If the extraction velocity v(t) is assumed constant, and diffusion in the extraction direction z is

ignored, then the resulting steady-state problem can be reformulated as a standard Stefan problem

with a fictitious time t = z/v [16], [23]. However, changes in the casting velocity v as well as in
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the cooling conditions are not only expected during a cycle of several hours of operation but are

also desirable to handle late-arriving ladle, ladle or pouring problems, temporary malfunctions, etc.

The casting machine must adjust to these demands and maintain production without degrading

quality. The full non-stationary model (1.1)-(1.5) is thus more realistic than the steady state model

in practical simulations and online control of continuous casting processes.

The system (1.1)-(1.5) is a special case of general Stefan problems with prescribed convection

[25]. An outflow Dirichlet condition together with an inflow Neumann condition is assumed in [25]

to guarantee uniqueness of weak solutions; our more realistic boundary data (1.3) and (1.7)-(1.8)

violate this restriction. Under the additional assumption that the free boundary does not touch

the inflow boundary Γ0, uniqueness of weak solutions to (1.1)-(1.5) and (1.8) is shown in [24].

A posteriori error estimates are computable quantities that measure the actual errors without

knowledge of the limit solution. They are instrumental in devising algorithms for mesh and time-

step modification which equidistribute the computational effort and so optimize the computations.

Ever since the seminal paper [1] on elliptic problems, adaptivity has become a central theme in

scientific and engineering computations. In particular, a posteriori error estimators have been

derived in [8], [9] for linear and mildly nonlinear parabolic problems, and in [20], [3] for degenerate

parabolic problems of Stefan type. Duality is the main tool in the analysis of [8],[9],[20], and so is

in the present paper. We stress that the techniques of [19],[3] circumvent duality and thus apply

to non-Lipschitz nonlinearities.

The purpose of this paper is twofold: we first introduce and analyze an adaptive method with

error control, and second we apply it to steel casting, a concrete engineering application. We

combine the method of characteristics for time discretization [7],[17],[22], with continuous piecewise

linear finite elements for space discretization [5]. We derive a posteriori error estimators which

provide the necessary information to modify the mesh and time step according to varying external

conditions and corresponding motion of the solid-liquid interface. Our estimates exhibit a mild

dependence on an upper bound V for the casting velocity v(t), depending on the outflow conditions

(1.7) and (1.8), which results from a novel and rather delicate analysis of a linearized dual problem

- a convection-dominated degenerate parabolic with non-divergence form and a Dirichlet outflow

condition. We stress that this mild as well as explicit dependence on V is a major improvement

with respect to previous L2-based a priori analyses of [2] for the continuous casting problem and

of [7],[22] for parabolic PDE with large ratio advection/diffusion; they lead to an exponential

dependence on V , unless Ω = Rd or the characteristics do not intercept ∂Ω [17], which is not the

case in Figure 1. We finally remark that convergence of a fully discrete finite element scheme for

(1.9) is proved [4]; error estimates cannot in general be expected due to lack of compactness except

on special cases [18].

The paper is organized as follows. In §2 we state the assumptions and set the problem. In §3 we

discuss the fully discrete scheme, which combines the method of characteristics and finite elements.

In §4 we introduce the concept of parabolic duality and prove several crucial stability estimates.

In §5 we prove the a posteriori error estimates. In §6 we discuss an example with exact solution

and document the method’s performance. We conclude in §7 with applications to casting of steel

with realistic physical parameters.
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2 Setting

We start by stating the hypotheses concerning the data.

(H1) β(s) = 0 for s ∈ [0, λ] and 0 < β1 ≤ β′(s) ≤ β2 for a.e. s ∈ R\[0, λ]; λ > 0 is the latent heat.

(H2) 0 < v0V ≤ v(t) ≤ V for t ∈ [0, T ] and |v′(t)| ≤ v1V a.e. t ∈ [0, T ], with v0, v1 > 0 constants.

(H3) θ0 = β(u0) ∈W 1,∞(Ω), and the initial interface F0 := {x ∈ Ω : θ0(x) = 0} is Lipschitz.

(H4) p ∈ H1(0, T ;W 1,∞(ΓN )); p ≥ 0.

(H5) θext ∈ H1(0, T ;C(Γ̄N )).

(H6) gD ∈ H1(0, T ;C(Γ̄D)); gD(x, 0) = θ0(x) on ΓD.

(H7) gN ∈ H1(0, T ;C(Γ̄L)).

(H8) Uniqueness condition: ∃ ε0, ρ0 > 0 such that θ ≥ ρ0 a.e. in Γ× [0, ε0]× [0, T ].

(H9) Solidification condition: ∃ ε1, ρ1 > 0 such that θ ≤ −ρ1 a.e. in Γ × [L − ε1, L] × [0, T ] and

β′(s) = α > 0 for β(s) ≤ −ρ1.

(H10) V ≥ 1.

We remark that (H8) is reasonable since it is satisfied for Stefan problems with v = 0 due to the

continuity of θ and positivity of θ|Γ0
; heuristically the larger v, and so V , the larger the width ε0.

The condition (H9) is an implicit assumption on data which corresponds to the ingot being solid

in the vicinity of ΓL, where it is to be cut, as well as having a constant conductivity β′. (H9) is

only needed to handle (1.7). In addition, (H10) is not restrictive in that we are interested in the

convection-dominated case. In view of (H4)-(H7) we may consider p, θext, gD, gN extended to Ω in

such a way that θext, gD, gN ∈ H1(0, T ;C(Ω̄)), p ∈ H1(0, T ;W 1,∞(Ω)).

Let V0 = {v ∈ H1(Ω) : v = 0 on ΓD} and V∗ the dual space of V0. The weak formulation of

(1.1)-(1.8) then reads as follows.

Continuous Problem. Find u and θ such that

θ ∈ L2(0, T ;H1(Ω)), u ∈ L∞(0, T ;L∞(Ω)) ∩H1(0, T ;V∗),

θ(x, t) = β(u(x, t)) a.e. (x, t) ∈ QT ,

θ(x, t) = gD(x, t) a.e. (x, t) ∈ ΓD × (0, T ),

u(·, 0) = u0,

and for a.e. t ∈ (0, T ) and all φ ∈ V0 the following equation holds

〈∂tu, φ〉 + v(t)〈∂zu, φ〉+ 〈∇θ,∇φ〉+ 〈〈pθ, φ〉〉ΓN
= 〈〈pθext, φ〉〉ΓN

+ 〈〈gN , φ〉〉ΓL
. (2.1)

Hereafter, 〈·, ·〉 stands for either the inner product in L2(Ω) or the duality pairing between V∗

and V0, and 〈〈·, ·〉〉E denotes the inner product in L2(E) with E ⊂ ∂Ω; if E = ∂Ω we omit the

subscript. We stress that the last term in (2.1) is absent when (1.8) is imposed. Existence and

uniqueness of solutions (u, θ) to this problem satisfying θ ∈ C(Q̄T ) are known [24].
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3 Discretization

We now introduce the fully discrete problem, which combines continuous piecewise linear finite

elements in space with characteristic finite differences in time. In fact, we use the method of

characteristics to discretize the convection [7],[17],[22]. We denote by τn the n-th time step and set

tn :=
n
∑

i=1

τi, ϕn(·) := ϕ(·, tn)

for any function ϕ continuous in (tn−1, tn]. Let N be the total number of time steps, that is

tN ≥ T . If ez denotes the unit vector in Rd in the z-direction, then dx
dt = v(t)ez defines the forward

characteristics, and U(t) = u(x(t), t) satisfies

dU

dt
= ∂tu+ v∂zu. (3.1)

The characteristic finite difference method is based on writing

x̄n−1 = x− vn−1τnez, ūn−1(x) = u(x̄n−1, tn−1),

for n ≥ 1 and discretizing (3.1) by means of backward differences as follows:

dUn

dt
≈ Un − Un−1

τn
⇒ ∂tu

n + vn∂zu
n ≈ un − ūn−1

τn
.

Therefore the discretization in time of (1.1)-(1.2) reads

un − ūn−1

τn
−∆β(un) = 0 in Ω. (3.2)

As ūn−1(x) is well defined only for x̄n−1 ∈ Ω̄, one has to either restrict the time step size τn (at

least locally) or extend un−1 beyond the inflow boundary Γ0.

We denote by Mn a uniformly regular partition of Ω into simplexes [5]. The mesh Mn is

obtained by refinement/coarsening of Mn−1, and thus Mn and Mn−1 are compatible. Given a

triangle S ∈ Mn, hS stands for its diameter and ρS for its sphericity and they satisfy hS ≤
2ρS/ sin(αS/2), where αS is the minimum angle of S; h denotes the mesh density function h|S = hS
for all S ∈ Mn. Uniform regularity of the family of triangulations is equivalent to αS ≥ α∗ > 0,

with α∗ independent of n. We also denote by Bn the collection of boundaries or sides e of Mn in

Ω; he stands for the size of e ∈ Bn.

Let Vn indicate the usual space of C0 piecewise linear finite elements over Mn and Vn
0 =

Vn ∩ V0. Let {xnk}K
n

k=1 denote the interior nodes of Mn. Let In : C(Ω̄) → Vn be the usual

Lagrange interpolation operator, namely (Inϕ)(xnk ) = ϕ(xnk ) for all 1 ≤ k ≤ Kn. Finally, let the

discrete inner products 〈·, ·)n and 〈〈·, ·〉〉nE be the sum over S ∈ Mn of the element scalar products

〈ϕ,χ〉nS =

∫

S
In〈ϕχ)dx, 〈〈ϕ,χ〉〉nS =

∫

S∩E
In(ϕχ)dσ,

for any piecewise uniformly continuous functions ϕ,χ. It is known that for all ϕ,χ ∈ Vn [20]
∣

∣

∣

∫

S
ϕχdx−

∫

S
In(ϕχ)dx

∣

∣

∣
≤ 1

8
h2S‖∇ϕ ‖L2(S)‖∇χ ‖L2(S) ∀S ∈ Mn, (3.3)

∣

∣

∣

∫

e
ϕχdσ −

∫

e
In(ϕχ)dσ

∣

∣

∣
≤ 1

8
h2S‖∇ϕ ‖L2(e)‖∇χ ‖L2(e) ∀e ∈ Bn. (3.4)
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for any S ∈ Mn and e ∈ Bn.

The discrete initial enthalpy U0 ∈ V0 is defined at nodes x0k of M0 = M1 to be

U0(x0k) := u0(x
0
k) ∀ x0k ∈ Ω\F0, U0(x0k) := 0 ∀ x0k ∈ F0.

Hence, U0 is easy to evaluate in practice.

Discrete Problem. Given Un−1,Θn−1 ∈ Vn−1, then Mn−1 and τn−1 are modified as described

below to get Mn and τn and thereafter Un,Θn ∈ Vn computed according to the following prescription

Θn = Inβ(Un), Θn − IngnD ∈ Vn
0 , Ūn−1 := Un−1(x̄n−1),

1

τn
〈Un − InŪn−1, ϕ〉n + 〈∇Θn,∇ϕ〉+ 〈〈pn(Θn − θnext), ϕ〉〉nΓN

= 〈〈gnN , ϕ〉〉nΓL
∀ϕ ∈ Vn

0 . (3.5)

We stress that the right-hand side of (3.5) vanishes in case ΓD = Γ0 ∪ΓL, and p, θext, gN need only

be piecewise smooth. In view of the constitutive relation Θn = Inβ(Un) being enforced only at

the nodes, and the use of mass lumping, the discrete problem yields a monotone operator in RKn

which is easy to implement and solve via either nonlinear SOR [20] or monotone multigrid [12].

We conclude this section with some notation. Let the jump of ∇Θn across e ∈ Bn be

[[∇Θn]]e := (∇Θn
|S1

−∇Θn
|S2

) · νe. (3.6)

Note that with the convention that the unit normal vector νe to e points from S2 to S1, the jump

[[∇Θn]]e is well defined. Let U and Û denote the piecewise constant and piecewise linear extensions

of {Un}, that is U(·, 0) = Û(·, 0) = U0(·) and, for all tn−1 < t ≤ tn,

U(·, t) := Un(·) ∈ Vn, Û(·, t) := tn − t

τn
Un−1(·) + t− tn−1

τn
Un(·).

Finally, for any γ > 0, k ≥ 0 and ω ⊂ Ω we introduce the mesh dependent norms

‖|hγϕ ‖|Hk(ω) :=
(

∑

e⊂ω,e∈Bn

h2γe ‖ϕ ‖2Hk(e)

)1/2
, ‖hγϕ ‖Hk(ω) :=

(

∑

S⊂ω,S∈Mn

h2γS ‖ϕ ‖2Hk(S)

)1/2
.

4 Parabolic Duality

In this section we study a linear backward parabolic problem in non-divergence form, which can

be viewed as the adjoint formal derivative of (1.1). For any U ∈ BV (0, T ;L2(Ω)), we define

b(x, t) =







β(u) − β(U)

u− U
if u 6= U,

β1 otherwise.
(4.1)

It is clear from (H1) that 0 ≤ b(x, t) ≤ β2, for a.e. (x, t) ∈ QT . Let bδ ∈ C2(Q̄T ) be a regularization

of b satisfying

bδ ≥ δ > 0, 0 ≤ bδ − b ≤ δ a.e. in QT , (4.2)
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where 0 < δ ≤ 1 is a parameter to be chosen later. For arbitrary t∗ ∈ (0, T ] and χ ∈ L∞(QT ), let

ψ be the solution of the following linear backward parabolic problem

Lδ(ψ) := ∂tψ + v(t)∂zψ + bδ∆ψ = −b1/2χ in Ω× (0, t∗), (4.3)

ψ = 0 on ΓD × (0, t∗), (4.4)

∂νψ + pψ = 0 on ΓN × (0, t∗), (4.5)

ψ(x, t∗) = 0 in Ω, (4.6)

and

∂νψ +
v(t)

bδ
ψ = 0 on ΓL × (0, t∗) (4.7)

provided (1.7) is enforced; we set Q∗ = Ω × (0, t∗). Existence of a unique solution ψ ∈ W 2,1
q (Q∗)

for any q ≥ 2 of (4.3)-(4.6) follows from the theory of nonlinear strictly parabolic problems [13].

Note that we impose a Dirichlet outflow boundary condition on Γ0, which yields a boundary layer

for ψ.

We now embark in the derivation of a priori estimates for the regularity of ψ. It turns out

that such a technical endeavor depends on the boundary condition on ΓL, which becomes inflow

for (4.3). Consequently we distinguish the two cases on ΓL × (0, t∗)

∂νψ +
v(t)

bδ
ψ = 0 Robin inflow condition, (4.8)

ψ = 0 Dirichlet inflow condition, (4.9)

corresponding to (1.7) and (1.8): the former is more realistic but leads to worse stability bounds.

We start with a simple, but essential, non-degeneracy property first proved in [2, Lemma 3.2].

Lemma 4.1 Let ξ, ρ ∈ R satisfy |β(ξ)| ≥ ρ > 0. Then we have

|ξ − η| ≤
( 1

β1
+
λ

ρ

)

|β(ξ) − β(η)|, ∀ η ∈ R. (4.10)

Proof. We only show the case β(ξ) ≥ ρ because the other β(ξ) ≤ −ρ is similar. In view of (H1)

we see that ξ > λ since β(ξ) > 0. If η > λ the assertion follows directly from β′ ≥ β1. For any

η ∈ [0, λ], we have β(η) = 0 and

|ξ − η| ≤ |ξ − λ|+ λ ≤ 1

β1
|β(ξ)− β(λ)|+ λ

ρ
ρ

≤ 1

β1
|β(ξ)|+ λ

ρ
|β(ξ)|

=
( 1

β1
+
λ

ρ

)

|β(ξ) − β(η)|.

Finally, if η < 0, we use the previous inequality with η = 0 together with β(ξ),−β(η) > 0, to get

|ξ − η| ≤ |ξ − 0|+ |0− η| ≤
( 1

β1
+
λ

ρ

)

|β(ξ)|+ 1

β1
|β(η)|

≤
( 1

β1
+
λ

ρ0

)

|β(ξ)− β(η)|.
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This completes the proof of (4.11). �

The following result is a trivial consequence of (4.1) and Lemma 4.1.

Corollary 4.1 There exists r > 0 depending on ρ0 of (H8) and ρ1 of (H9) such that

b(x, t) ≥ r in Γ×
(

[0, ε0] ∪ [L− ε1, L]
)

× [0, T ]. (4.11)

We observe that Corollary 4.1 only guarantees non-degeneracy of b but not its differentiability. If,

in addition, β(U) ≤ −ρ1 on Γ × [L − ε1, L] × [0, T ], which can be verified a posteriori, then (H9)

leads to

b(x, t) = α > 0 in Γ× [L− ε1, L]× [0, T ]. (4.12)

This property will also be assumed for bδ whenever it is valid for b.

4.1 Robin Inflow Condition

Throughout this section we assume that (4.8) is enforced. To motivate the estimates below consider

the simplified PDE obtained from (4.3) by setting bδ = 0, v(t) = V and bχ = 1, namely,

∂tΛ+ V ∂zΛ = −1, (4.13)

with terminal condition (4.6). If the inflow condition were ∂νΛ = 0 then the method of character-

istics would yield the solution Λ(z, t) = t∗ − t for the resulting transport problem. Such a Λ is an

upper bound for the actual solution ψ ≥ 0 of (4.13) satisfying ∂νψ ≤ 0 on ΓL. We then see that ψ

is bounded uniformly in V , and expect a boundary layer of size 1/V due to the outflow Dirichlet

condition on Γ0 and the presence of non-vanishing diffusion (4.11) near Γ0; so |∂νψ| ≤ CV on Γ0.

We now set A = ‖χ ‖L∞(Q∗), and proceed to justify these heuristic arguments.

Lemma 4.2 The following a priori bound is valid

‖ψ ‖L∞(Q∗) ≤ β
1/2
2 t∗‖χ ‖L∞(Q∗).

Proof. Consider the barrier function Λ(t) = β
1/2
2 A(t∗ − t). In view of (H1), we easily get

Lδ(Λ± ψ) = −β1/22 A∓ b1/2χ ≤ 0.

Since Λ± ψ ≥ 0 on Γ0 × (0, t∗) and Ω× {t∗}, along with

∂ν(Λ± ψ) + q(Λ± ψ) = qΛ ≥ 0,

where q = v
bδ

on ΓL × (0, t∗) and q = p on ΓN × (0, t∗), the strong maximum principle yields the

desired estimate

Λ± ψ ≥ 0 in Q∗. �

To obtain a bound for ∂zψ on Γ0 we modify a barrier technique in [24] to allow for variable

velocity v(t). We also explicitly trace the dependence on V and t∗.
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Lemma 4.3 There exists C independent of V and T such that the following a priori bound is valid

for all 0 ≤ t∗ ≤ T

|∂νψ| ≤ CV t∗‖χ ‖L∞(Q∗) on Γ0 × (0, t∗). (4.14)

Proof. For k > 0 to be chosen later consider the barrier function

σ(z) = k
(

1− e−V z/r
)

−
(β

1/2
2 A

v0V

)

z, 0 ≤ z ≤ ε0.

Since (4.2) and (4.11) imply r ≤ b ≤ bδ, and (H2) thus leads to v(t)− bδ Vr ≤ 0, a simple calculation

yields

Lδ(σ) = −v(t)
(β

1/2
2 A

v0V

)

+
V

r
ke−V z/r

(

v(t)− bδ
V

r

)

≤ −β1/22 A.

Hence

Lδ(σ ± ψ) ≤ 0 in Γ× (0, ε0)× (0, t∗).

Upon taking

k =
β
1/2
2 A(v0V t∗ + ε0)

v0V (1− e−V ε0/r)
,

and using Lemma 4.2, we deduce the boundary conditions

σ ± ψ ≥ 0 on Γ0 × (0, t∗) ∪Ω× {t∗},

σ ± ψ ≥ k(1− e−V ε0/r)− β
1/2
2 Aε0
v0V

− β
1/2
2 t∗A = 0 on (Γ× {ε0})× (0, t∗),

∂ν(σ ± ψ) + p(σ ± ψ) = pσ ≥ 0 on ΓN × (0, t∗).

Now the strong maximum principle implies that

σ ± ψ ≥ 0 in Γ× [0, ε0]× [0, t∗].

Since σ(0) = 0, we immediately obtain the asserted estimate

|∂zψ| ≤ σ′(0) =
V k

r
− β

1/2
2 A

v0V
≤ V k

r
=
β
1/2
2 (v0V t∗ + ε0)

v0r(1− e−V ε0/r)
A on Γ0 × (0, t∗). �

It turns out that we also need a bound on the tangential derivative ∂yψ on ΓL, which cannot

be derived with a barrier technique. To this end we first prove a local gradient estimate in the

vicinity of ΓL, namely on the sets ω1 := Γ× (L− ε1, L), ω0 := Γ× (L− ε1/2, L). Let ζ ∈ C∞(R)

be a cut-off function satisfying

0 ≤ ζ ≤ 1, ζ(s) = 0 ∀ −∞ < s ≤ L− ε1, ζ(s) = 1 ∀ L− ε1
2

≤ s <∞.

Lemma 4.4 Let (4.12) hold for both b and bδ. We then have the gradient estimate

∫ t∗

0

∫

ω1

ζ2|∇ψ|2 +
∫ t∗

0

∫

ΓL

vψ2 ≤ Ct3∗‖χ ‖2L∞(Q∗)
. (4.15)
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Proof. Multiply (4.3) by the admissible test function −ζ2ψ and integrate in space and time. In

light of (4.12), integration by parts leads to

1

2

∫

ω1

ζ2ψ2(·, t) +

∫ t∗

t

∫

ω1

−v
2
∂z(ζ

2ψ2) +
v

2
ψ2∂zζ

2 + αζ2|∇ψ|2 + 2αζ∇ψ · ψ∇ζ

−
∫ t∗

t

∫

∂ω1

αζ2ψ∂νψ =

∫ t∗

t

∫

ω1

b1/2χζ2ψ.

The second term can be rewritten as
∫ t∗

t

∫

ω1

−v
2
∂z(ζ

2ψ2) =

∫ t∗

t

∫

ΓL

−v
2
ζ2ψ2,

whereas the third term is non-negative. Applying Cauchy-Schwarz inequality, the fifth term is

bounded above by

2α

∫ t∗

t

∫

ω1

ζ|∇ψ||ψ∇ζ| ≤ α

2

∫ t∗

t

∫

ω1

ζ2|∇ψ|2 + 2α

∫ t∗

t

∫

ω1

ψ2|∇ζ|2.

In view of (4.5) and (4.7), the boundary term becomes

−
∫ t∗

t

∫

∂ω1

αζ2ψ∂νψ =

∫ t∗

t

∫

ΓN

αpζ2ψ2 +

∫ t∗

t

∫

ΓL

vζ2ψ2.

Collecting all these estimates, and discarding some non-negative terms, we end up with the asserted

result

α

2

∫ t∗

t

∫

ω1

ζ2|∇ψ|2 + 1

2

∫ t∗

t

∫

ΓL

vζ2ψ2 ≤
∫ t∗

t

∫

ω1

2αψ2|∇ζ|2 + b1/2|χψ|ζ2 ≤ Ct3∗A
2. �

Lemma 4.5 Let (4.12) hold for both b and bδ. Then there exists C > 0 independent of V and t∗
such that the following a priori bounds are valid for all 0 ≤ t∗ ≤ T

max
0≤t≤t∗

‖∇ψ(·, t) ‖2L2(Ω) +

∫ t∗

t

∫

Ω
bδ|∆ψ|2dxdt+

∫ t∗

t

∫

ΓL

v|∇ψ|2dσdt ≤ CV 3t3∗‖χ ‖2L∞(Q∗)
.

Proof. We multiply (4.3) by ∆ψ and integrate over Ω× (t, t∗) to get

∫ t∗

t

∫

Ω
∂tψ∆ψ +

∫ t∗

t

∫

Ω
v∂zψ∆ψ +

∫ t∗

t

∫

Ω
bδ|∆ψ|2 =

∫ t∗

t

∫

Ω
−b1/2χ∆ψ.

The rest of the proof consists of estimating each term separately. We examine them in turn.

1. Integrating by parts and using the boundary conditions (4.4), (4.5), and (4.7), as well as the

terminal condition (4.6), we obtain

∫ t∗

t

∫

Ω
∂tψ∆ψ =

1

2
‖∇ψ(·, t) ‖2L2(Ω) −

∫ t∗

t

∫

ΓN

pψ∂tψ −
∫ t∗

t

∫

ΓL

v

α
ψ∂tψ.

Since

−
∫ t∗

t

∫

ΓN

pψ∂tψ =
1

2

∫

ΓN

pψ(·, t)2 + 1

2

∫ t∗

t

∫

ΓN

ψ2∂tp,
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and

−
∫ t∗

t

∫

ΓL

v

α
ψ∂tψ =

1

2α

∫

ΓL

vψ2(·, t) + 1

2α

∫ t∗

t

∫

ΓL

ψ2∂tv,

according to (H2), (H4), and Lemma 4.2 we readily arrive at

∫ t∗

t

∫

Ω
∂tψ∆ψ ≥ 1

2
‖∇ψ(·, t) ‖2L2(Ω) − Ct3∗V A

2.

2. Integrating again by parts and using (4.5) and (4.7), we have

∫ t∗

t

∫

Ω
v∂zψ∆ψ = −

∫ t∗

t

∫

Ω

v

2
∂z|∇ψ|2 −

∫ t∗

t

∫

ΓN

vpψ∂zψ −
∫ t∗

t

∫

Γ0

v|∂zψ|2 +
∫ t∗

t

∫

ΓL

v|∂zψ|2.

Making use of (4.4) and (4.7), the first term on the right-hand side gives rise to

−
∫ t∗

t

∫

Ω

v

2
∂z|∇ψ|2 = −1

2

∫ t∗

t

∫

ΓL

v|∂yψ|2 + v|∂zψ|2 +
1

2

∫ t∗

t

∫

Γ0

v|∂zψ|2,

whereas, in view of (H4), the second term of the right-hand side yields

−
∫ t∗

t

∫

ΓN

vpψ∂zψ =

∫ t∗

t

∫

ΓN

−v
2
∂z(pψ

2) +
v

2
ψ2∂zp ≥ −CV t3∗A2.

These estimates, together with Lemma 4.3, lead to the expression

∫ t∗

t

∫

Ω
v∂zψ∆ψ ≥ −CV t3∗A2 − 1

2

∫ t∗

t

∫

Γ0

v|∂zψ|2 −
1

2

∫ t∗

t

∫

ΓL

v|∂yψ|2 +
1

2

∫ t∗

t

∫

ΓL

v|∂zψ|2

≥ −CV 3t3∗A
2 − 1

2

∫ t∗

t

∫

ΓL

v|∂yψ|2 +
1

2

∫ t∗

t

∫

ΓL

v|∂zψ|2.

To proceed any further we thus must bound the tangential derivative |∂yψ| on ΓL.

3. We now invoke the well known trace inequality

‖∇ψ ‖2L2(ΓL)
≤ C‖∇ψ ‖L2(ω0)

(

‖∇ψ ‖L2(ω0) + ‖D2ψ ‖L2(ω0)

)

∀ 0 < t < t∗.

To estimate ‖D2ψ ‖L2(ω0) we resort to elliptic regularity theory. Since ζ2ψ satisfies in ω1

∆(ζ2ψ) = ζ2∆ψ + 4ζ∇ψ∇ζ + ψ∆ζ2, (4.16)

together with non-homogeneous boundary conditions

∂z(ζ
2ψ) = − v

α
(ζ2ψ) on ΓL, ζ2ψ = 0 on ΓL−ε1 , ∂ν(ζ

2ψ) + p(ζ2ψ) = 0 on ΓN ,

computing the right-hand side of (4.16) in L2(Ω) and v
αζ

2ψ in H1(Ω), we deduce for all 0 < t < t∗

‖D2ψ ‖L2(ω0) ≤ ‖D2(ζ2ψ) ‖L2(ω1) ≤ C‖∆ψ ‖2L2(ω1)
+ CV 2‖ ζ∇ψ ‖2L2(ω1)

+CV 2‖ψ ‖2L2(ω1)
.
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If we next integrate in time and use Lemmas 4.2 and 4.4 in conjunction with the Cauchy-Schwarz

inequality, we thus obtain
∫ t∗

t
‖ ∂yψ ‖2L2(ΓL)

≤ η

∫ t∗

t
‖∆ψ ‖2L2(ω1)

+
C

η
V 2

∫ t∗

t
‖ ζ∇ψ ‖2L2(ω1)

+ ‖ψ ‖2L2(ω1)

≤ C

η
V 2t3∗A

2 + η

∫ t∗

t
‖∆ψ ‖2L2(ω1)

∀ 0 < η ≤ 1, (4.17)

whence
∫ t∗

t

∫

Ω
v∂zψ∆ψ ≥ −CV 2

(

V +
1

η

)

t3∗A
2 − η

2
V

∫ t∗

t
‖∆ψ ‖2L2(ω1)

.

4. We finally collect all previous estimates to arrive at

‖∇ψ ‖2L2(Ω) +

∫ t∗

t

∫

Ω
bδ|∆ψ|2 +

∫ t∗

t

∫

ΓL

v|∂zψ|2

≤ CV 2
(

V +
1

η

)

t3∗A
2 + ηV

∫ t∗

t
‖∆ψ ‖2L2(ω1)

+

∫ t∗

t

∫

Ω
|χ|2.

We see that choosing η = α
2V , and using the crucial fact (4.12), we infer all the asserted estimates

except for that of the tangential derivative on ΓL. This estimate follows from (4.17). �

Corollary 4.2 Let (4.12) hold for both b and bδ. Then there exists C > 0 independent of V and

t∗ such that the following a priori bounds are valid for all 0 ≤ t∗ ≤ T
∫ t∗

0

∫

Ω
|∂tψ + v(t)∂zψ|2dxdt ≤ CV 3t3∗‖χ ‖2L∞(Q∗)

.

Proof. This is a direct consequence of Lemma 4.5 and (4.3). �

Corollary 4.3 Let (4.12) hold for both b and bδ. Then there exists C > 0 independent of V and

t∗ such that the following a priori bounds are valid for all 0 ≤ t∗ ≤ T
∫ t∗

0
δ‖D2ψ ‖2L2(Ω)dt ≤ CV 3t3∗‖χ ‖2L∞(Q∗)

.

Proof. Since bδ ≥ δ, we deduce from Lemma 4.5 that
∫ t∗

0
δ‖∆ψ ‖2L2(Ω)dt ≤ CV 3t3∗‖χ ‖2L∞(Q∗)

.

We use again the argument of step 3 in Lemma 4.5, but now in Ω. Since Ω is a rectangle and ψ

satisfies the Dirichlet condition ψ = 0 on Γ0, together with the Neumann conditions ∂νψ = − v
αψ

on ΓL and ∂νψ = −pψ on ΓN , elliptic regularity theory [10], [11] yields

‖D2ψ ‖2L2(Ω) ≤ C‖∆ψ ‖2L2(Ω) +CV ‖∇ψ ‖2L2(Ω).

Consequently, with the aid of the interpolation estimates [10, p.173]

‖∇ψ ‖2L2(Ω) ≤ η‖D2ψ ‖2L2(Ω) +
1

Cη
‖ψ ‖2L2(Ω)

we realize that choosing η = 1
2CV leads to the desired bound. �
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4.2 Dirichlet Inflow Condition

Throughout this section we assume that (1.8) is enforced. As in §4.1, we first examine the behavior

of the simplified PDE (4.13) with inflow boundary condition ψ = 0 on ΓL. If we allow t∗ = ∞,

then the method of characteristics gives the solution ψ(z, t) = (L− z)/V . Due to the effect of the

terminal condition ψ = 0 at t = t∗ < ∞, such a solution is larger than the actual one, and both

exhibit an outflow boundary layer of size 1/V near Γ0. Since the size of the solution is also about

1/V , we expect ∂zψ to be bounded uniformly in V on Γ0. This heuristic reasoning is made rigorous

below. We set again A = ‖χ ‖L∞(Q∗).

Lemma 4.6 The following a priori bound is valid for all x ∈ Ω̄ and 0 ≤ t ≤ t∗ ≤ T

|ψ(x, t)| ≤ β
1/2
2 L

v0V
‖χ ‖L∞(Q∗).

Proof. We consider the barrier function Λ(z) = (β
1/2
2 A/v0V )(L − z) for 0 ≤ z ≤ L. A simple

calculation using (H2) implies

Lδ(Λ± ψ) = −v(t)
(β

1/2
2 A

v0V

)

± (−b1/2χ) ≤ −β1/22 A± b1/2χ ≤ 0.

With respect to boundary conditions, we see that (4.4) and (4.6) yield

Λ± ψ ≥ 0 on ΓD × (0, t∗) ∪Ω× {t∗},

and (4.5) gives

∂ν(Λ± ψ) + p(Λ± ψ) = pΛ ≥ 0 on ΓN × (0, t∗).

Therefore, applying the strong maximum principle results in the desired bound

Λ± ψ ≥ 0 in Ω̄× [0, t∗]. � (4.18)

A direct consequence of (4.18) and Λ = 0 on ΓL × (0, t∗) is that

|∂νψ| ≤ −Λ′(L) =
β
1/2
2

v0V
‖χ ‖L∞(Q∗) on ΓL × (0, t∗). (4.19)

We now prove a similar bound on the outflow boundary Γ0.

Lemma 4.7 There exists C > 0 independent of V and t∗ such that for all 0 ≤ t∗ ≤ T

|∂νψ| ≤ C‖χ ‖L∞(Q∗) on Γ0 × (0, t∗). (4.20)

Proof. We proceed as in Lemma 4.3, with the same barrier function σ(z) and k =
β
1/2
2

A(L+ε0)

v0V (1−e−V ε0/r)
. �

Lemma 4.8 There exists C > 0 independent of V and t∗ such that for all 0 ≤ t∗ ≤ T

max
0≤t≤t∗

‖∇ψ(·, t) ‖2L2(Ω) +

∫ t∗

0

∫

Ω
bδ|∆ψ|2dxdt ≤ CV t∗‖χ ‖2L∞(Q∗)

.
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Proof. We proceed as in Lemma 4.5, that is we first multiply (4.3) by ∆ψ and integrate by parts

over Q∗. The only difference arises in treating the convection term, which now reads
∫ t∗

t

∫

Ω
v∂zψ∆ψ =

1

2

∫ t∗

t

∫

ΓL

v|∂zψ|2 −
1

2

∫ t∗

t

∫

Γ0

v|∂zψ|2 −
∫ t∗

t

∫

ΓN

vp

2
∂z |ψ|2.

The first term on the right-hand side, which was problematic before, can now be eliminated because

it is ≥ 0. The proof concludes as in Lemma 4.5. �.

Corollary 4.4 There exists C > 0 independent of V and t∗ such that for all 0 ≤ t∗ ≤ T
∫ t∗

0

∫

Ω

(

|∂tψ + v(t)∂zψ|2 + δ|D2ψ|
)

dxdt ≤ CV t∗‖χ ‖2L∞(Q∗)
.

4.3 Discontinuous p

We investigate the effect in 2d of a finite number of discontinuities of p along ΓN ; this corresponds

to abrupt changes in the cooling conditions as in the examples of §7. The estimates above remain

all valid except for those in Corollaries 4.3 and 4.4, which involve second derivatives of ψ.

Using the intrinsic definition of fractional Sobolev spaces, together with the fact that p is

piecewise W 1,∞ over ΓN , results in ∂νψ = −pψ ∈ H1/2−ǫ in a vicinity of such discontinuities for

ǫ > 0. Elliptic regularity theory implies [15, p.188], [11]

∫ t∗

0
δ‖ψ‖2H2−ǫ(Ω)dt ≤ CǫV

kt∗
k‖χ ‖2L∞(Q∗)

∀ ǫ > 0, (4.21)

where k = 3, 1 for the Neumann and Dirichlet conditions, respectively. There is thus a slight loss

of regularity with respect to the smooth case for both boundary conditions.

4.4 Error Representation Formula

We now derive an explicit representation formula for the error ‖β(u) − β(U) ‖L1(Q∗) based on the

linear backward parabolic problem (4.3)-(4.7). We only assume that U(·, t) is piecewise constant,

so the derivation below applies to the solution U of (3.5).

We first multiply (4.3) by −(u − U), and integrate in space and time from 0 to t∗ = tm. We

examine the various contributions in turn. Since U is piecewise constant in time, we have

−
∫ tm

0
〈∂tψ, u− U〉 =

∫ tm

0

(

〈ψ, ∂t(u− Û)〉+ 〈∂tψ,U − Û〉
)

dt+ 〈ψ0, u0 − U0〉.

Integrating by parts we get

−
∫ tm

0
〈v(t), ∂zψ(u− U)〉 =

∫ tm

0
v(t)〈ψ, ∂z(u− U)〉 −

∫ tm

0
v(t)〈〈ψ, u − U〉〉ΓL

,

and using (4.1) we also obtain

−
∫ tm

0
〈bδ∆ψ, u− U〉 =

∫ tm

0
〈∇ψ,∇(β(u) − β(U))〉

−
∫ tm

0
〈〈∂νψ, β(u) − β(U)〉〉 +

∫ tm

0
〈(b− bδ)∆ψ, u− U〉.
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Since

b1/2|u− U | = |β(u)− β(U)|1/2|u− U |1/2 ≥ β
−1/2
2 |β(u) − β(U)|,

collecting these estimates, and making use of (2.1), we easily end up with

‖β(u) − β(U) ‖L1(Qm) ≤ β
1/2
2 sup

χ∈L∞(Qm)

|R(ψ)|
‖χ‖L∞(Qm)

, (4.22)

where R, the parabolic residual, is the following distribution

R(ψ) = 〈u0 − U0, ψ0〉+
∫ tm

0
〈U − Û , ∂tψ〉dt+

∫ tm

0
〈u− U, (b− bδ)∆ψ〉dt

−
∫ tm

0

(

〈∂tÛ + v(t)∂zU,ψ〉+ 〈∇β(U),∇ψ〉
)

dt

−
∫ tm

0

(

〈〈p(β(U) − θext), ψ〉〉ΓN
+ 〈〈∂νψ, gD − β(U)〉〉Γ0

− 〈〈gN , ψ〉〉ΓL

)

dt.

We conclude that an estimate of the error solely depending on discrete quantities and data may be

obtained upon evaluating R in suitable negative Sobolev norms. The latter are dictated by the a

priori bounds of §§4.1 and 4.2. This program is carry out in §5.1 for the fully discrete solution U

of (3.5).

5 A Posteriori Error Analysis

We first introduce the interior residual Rn and boundary residual Bn:

Rn :=
Un − InŪn−1

τn
, Bn :=

{

∂νΘ
n + Inpn(Θn − Inθnext) on ΓN ,

∂νΘ
n − IngnN on ΓL.

Theorem 5.1 (Neumann Outflow) Let (1.7) be enforced and Θn ≤ −ρ1 in Γ× [L− ε1, L] for

any n ≥ 1. Then there exists a constant C > 0 independent of V and tm such that the following a

posteriori error estimate holds for all tm ∈ [0, T ],

∫ tm

0
‖β(u) − β(U) ‖L1(Ω)dt ≤ C(V tm)3/2

(

E0 +
10
∑

i=5

Ei +
(

Λm

4
∑

i=1

Ei
)1/2)

, (5.1)

where

Λm =
(

m
∑

n=1

τn
(

1 + λ|Ω|+ ‖Θn ‖2L2(Ω)

)

)1/2
(5.2)

15



and the error indicators Ei are given by

E0 := (V 3tm)−1/2‖u0 − U0 ‖L1(Ω) initial error,

E1 :=
(

m
∑

n=1

τn‖|h3/2[[∇Θn]] ‖|2L2(Ω)

)1/2
jump residual,

E2 :=
(

m
∑

n=1

τn‖h2Rn ‖2L2(Ω)

)1/2
interior residual,

E3 :=
(

m
∑

n=1

τn‖|h3/2Bn ‖|2L2(∂Ω\ΓD)

)1/2
boundary residual,

E4 :=
(

m
∑

n=1

τn‖β(Un)− Inβ(Un) ‖2L2(Ω)

)1/2
constitutive relation,

E5 :=
(

m
∑

n=1

τn‖Un − InUn−1 ‖2L2(Ω)

+
m
∑

n=1

τn
V 2

‖Un − InUn−1 ‖2L2(ΓL)

)1/2
time residual,

E6 :=
(

m
∑

n=1

τn‖Un−1 − InUn−1 ‖2L2(Ω)

+
m
∑

n=1

τn
V 2

‖Un−1 − InUn−1 ‖2L2(ΓL)

)1/2
coarsening,

E7 := (V 3tm)−1/2
m
∑

n=1

τn‖Rn − (∂tÛ + v(t)∂zÛ) ‖L1(Ω) characteristic residual,

E8 :=

m
∑

n=1

τn‖h2∇Rn ‖L2(Ω) interior quadrature,

E9 :=
m
∑

n=1

τn‖|h3/2(Θn − Inθnext) ‖|H1(ΓN )

+
(

m
∑

n=1

τn
V
‖|h2∂y(IngnN ) ‖|2L2(ΓL)

)1/2
boundary quadrature,

E10 := (V 3tm)−1/2
m
∑

n=1

∫ tn

tn−1

‖ θext − Inθnext ‖L1(ΓN )

+(V 3tm)−1/2
m
∑

n=1

∫ tn

tn−1

‖ p− Inpn ‖L∞(ΓN )‖Θn − θext ‖L1(ΓN )

+(V 3tm)−1/2
m
∑

n=1

∫ tn

tn−1

‖ gN − IngnN ‖L1(ΓL)

+(V tm)−1/2
m
∑

n=1

∫ tn

tn−1

‖ gD − IngnD ‖L1(Γ0) boundary discretization.

Theorem 5.2 (Dirichlet Outflow) Let (1.8) be satisfied. Then there exists a constant C > 0

independent of V and tm such that the following a posteriori error estimate holds for all tm ∈ [0, T ],

∫ tm

0
‖β(u) − β(U) ‖L1(Ω)dt ≤ C(V tm)1/2

(

E0 +
10
∑

i=5

Ei +
(

Λm

4
∑

i=1

Ei
)1/2)

, (5.3)
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where Λm is defined in (5.2) and the error indicators Ei are given by

E0 := (V 3tm)−1/2‖u0 − U0 ‖L1(Ω) initial error,

E1 :=
(

m
∑

n=1

τn‖|h3/2[[∇Θn]] ‖|2L2(Ω)

)1/2
jump residual,

E2 :=
(

m
∑

n=1

τn‖h2Rn ‖2L2(Ω)

)1/2
interior residual,

E3 :=
(

m
∑

n=1

τn‖|h3/2Bn ‖|2L2(∂Ω\ΓD)

)1/2
boundary residual,

E4 :=
(

m
∑

n=1

τn‖β(Un)− Inβ(Un) ‖2L2(Ω)

)1/2
constitutive relation,

E5 :=
(

m
∑

n=1

τn‖Un − InUn−1 ‖2L2(Ω)

)1/2
time residual,

E6 :=
(

m
∑

n=1

τn‖Un−1 − InUn−1 ‖2L2(Ω)

)1/2
coarsening,

E7 := (V 3tm)−1/2
m
∑

n=1

τn‖Rn − (∂tÛ + v(t)∂zÛ) ‖L1(Ω) characteristic residual,

E8 :=
m
∑

n=1

τn‖h2∇Rn ‖L2(Ω) interior quadrature,

E9 :=

m
∑

n=1

τn‖|h3/2(Θn − Inθnext) ‖|H1(ΓN ) boundary quadrature,

E10 := (V 3tm)−1/2
m
∑

n=1

∫ tn

tn−1

‖ θext − Inθnext ‖L1(ΓN )

+(V 3tm)−1/2
m
∑

n=1

∫ tn

tn−1

‖ p − Inpn ‖L∞(ΓN )‖Θn − θext ‖L1(ΓN )

+(V 3tm)−1/2
m
∑

n=1

∫ tn

tn−1

‖ gD − IngnD ‖L1(ΓL)

+(V tm)−1/2
m
∑

n=1

∫ tn

tn−1

‖ gD − IngnD ‖L1(Γ0) boundary discretization.

Remark 5.1. We note that the quantity Λm in the estimates involves the L2 norm of the discrete

temperature which is difficult to localize in practical computations. This bound, clearly achieved

experimentally, can be proved by an a priori stability analysis which incorporates mesh changes.

Remark 5.2. If the meshes Mn are of weakly acute type, or equivalently the stiffness matrix

(∇φi,∇φj)i,j is an M-matrix, then the discrete maximum principle holds and guarantees the uni-

form boundedness of Θn; thus Λm ≤ C
√
tm. If for all interelement sides e and corresponding pair

of adjacent simplexes, the sum of angles opposite to e does not exceed π, then Mn is weakly acute

in 2D. Such a condition is not very restrictive in practice since it can be enforced with automatic

mesh generators as long as the initial mesh exhibits this property.
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5.1 Residuals

The error analysis hinges on the crucial estimate (4.22). To express the oscillatory character of R
in (4.4), we resort to Galerkin orthogonality. This replaces the evaluation of R in negative Sobolev

spaces by that on positive spaces plus weights depending on the mesh size h and the regularity of

ψ. We first rewrite the discrete problem (3.5), for tn−1 < t ≤ tn, φ ∈ V0, and ϕ ∈ Vn
0 , as follows:

〈∂tÛ + v(t)∂zU, φ〉+ 〈∇Θ,∇φ〉+ 〈〈p(Θ − θext), φ〉〉ΓN
− 〈〈gN , φ〉〉ΓL

= 〈∂tÛ + v(t)∂zÛ − τ−1
n (Un − InŪn−1), φ

〉

+ v(t)〈∂z(U − Û), φ〉
+ 〈Rn, φ− ϕ〉
+ 〈∇Θn,∇(φ− ϕ)〉 + 〈〈Inpn(Θn − Inθnext), φ − ϕ〉〉ΓN

− 〈〈IngnN , φ− ϕ〉〉ΓL

+
(

〈Rn, ϕ〉 − 〈Rn, ϕ〉n
)

+
(

〈〈Inpn(Θn − Inθnext), ϕ〉〉ΓN
− 〈〈Inpn(Θn − Inθnext), ϕ〉〉nΓN

)

+
(

〈〈IngnN , ϕ〉〉nΓL
− 〈〈IngnN , ϕ〉〉ΓL

)

+ 〈〈(p − Inpn)(Θn − θext) + Inpn(Inθnext − θext), φ〉〉ΓN
+ 〈〈IngnN − gN , φ〉〉ΓL

.

(5.4)

This is the so-called Galerkin orthogonality, and reflects the essential property that the left-hand

side is small in average. We next take φ = ψ and realize that to define ϕ we need to interpolate

ψ under minimal regularity assumptions. We thus resort to the Clément interpolation operator

Πn : L2(Ω) → Vn
0 , which satisfies the following local approximation properties [6], for k = 1, 2,

‖ψ −Πnψ‖L2(S) + hS‖∇(ψ −Πnψ)‖L2(S) ≤ C∗hkS‖ψ‖Hk(S̃), (5.5)

‖ψ −Πnψ‖L2(e) ≤ C∗hk−1/2
e ‖ψ‖Hk(S̃), (5.6)

where S̃ is the union of all elements surrounding S ∈ Mn or e ∈ Bn. The constant C∗ depends

solely on the minimum angle of the mesh Mn. An important by-product of shape regularity of Mn

is that the number of adjacent simplexes to a given one is bounded by a constant A independent

of n, mesh-sizes and time-steps. Hence

∑

S∈Mn

‖ξ‖2
L2(S̃)

≤ A‖ξ‖2L2(Ω) ∀ ξ ∈ L2(Ω).

This, in conjunction with (5.6) for k = 1, yields the H1-stability bound

‖∇Πnψ(·, t)‖L2(Ω) ≤ (1 + C∗A1/2)‖∇ψ(·, t)‖L2(Ω). (5.7)

Consequently, we select ϕ in (5.4) to be

ϕ(·, t) = Πnψ((·, t)) ∀tn−1 < t ≤ tn.
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Since β(Un) = αUn = Inβ(Un) on ΓL, we then obtain an explicit expression for the residual

R(ψ) =
∑12

i=0 Ri(ψ) of (4.4), where

R0(ψ) = 〈u0 − U0, ψ
0〉,

R1(ψ) =

m
∑

n=1

∫ tn

tn−1

〈∇Θn,∇(Πnψ − ψ)〉dt,

R2(ψ) =
m
∑

n=1

∫ tn

tn−1

〈Rn,Πnψ − ψ〉dt,

R3(ψ) =

m
∑

n=1

∫ tn

tn−1

〈〈Bn − ∂νΘ
n,Πnψ − ψ〉〉dt,

R4(ψ) =

m
∑

n=1

∫ tn

tn−1

(

〈∇(Inβ(Un)− β(Un)),∇ψ〉 − 〈〈Inβ(Un)− β(Un)), ∂νψ〉〉
)

dt,

R5(ψ) =
m
∑

n=1

∫ tn

tn−1

(

〈U − Û , ∂tψ〉 − v(t)〈∂z(U − Û), ψ〉
)

dt,

R6(ψ) =

m
∑

n=1

∫ tn

tn−1

〈τ−1
n (Un − InŪn−1)− ∂tÛ − v(t)∂zÛ , ψ〉dt,

R7(ψ) =
m
∑

n=1

∫ tn

tn−1

(

〈Rn,Πnψ〉n − 〈Rn,Πnψ〉
)

dt,

R8(ψ) =

m
∑

n=1

∫ tn

tn−1

(

〈〈Inpn(Θn − Inθnext),Π
nψ〉〉nΓN

− 〈〈Inpn(Θn − Inθnext),Π
nψ〉〉ΓN

)

dt,

R9(ψ) =
m
∑

n=1

∫ tn

tn−1

(

〈〈IngnN ,Πnψ〉〉ΓL
− 〈〈IngnN ,Πnψ〉〉nΓL

)

dt,

R10(ψ) =

m
∑

n=1

∫ tn

tn−1

〈〈(Inpn − p)(Θn − θext) + Inpn(θext − Inθnext), ψ〉〉ΓN
dt,

R11(ψ) =

m
∑

n=1

∫ tn

tn−1

(

〈〈gN − IngnN , ψ〉〉ΓL
+ 〈〈IngnD − gD, ∂νψ〉〉Γ0

)

dt,

R12(ψ) =

∫ tm

0
〈u− U, (b− bδ)∆ψ〉dt.

(5.8)

The rest of the argument consists of estimating each term Ri(ψ) separately. We rely on the

regularity results of §4.1.
We decompose the integral 〈∇Θn,∇(Πnψ − ψ)) over all elements S ∈ Mn and next integrate

by parts to obtain the equivalent expression

〈∇InΘn,∇(Πnψ − ψ)〉 =
∑

e∈Bn

〈〈[[∇Θn]]e, ψ −Πnψ〉〉e + 〈〈∂νΘn,Πnψ − ψ〉〉, (5.9)

where 〈〈·, ·〉〉e denotes the L2-scalar product on e ∈ Bn, and [[∇Θn]]e is defined in (3.6). In view of
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(5.6), we obtain

m
∑

n=1

∫ tn

tn−1

∑

e∈Bn

〈〈[[∇Θn]]e, ψ −Πnψ〉〉e ≤ C

m
∑

n=1

∫ tn

tn−1

‖|h3/2[[∇Θn]]e ‖|L2(Ω)‖D2ψ ‖L2(Ω).

Since the last term in (5.9) cancels out with a similar one in R3(ψ), adding R1(ψ) and R3(ψ) and

using (5.6) with k = 2 again, in conjunction with Corollary 4.3, we get

|R1(ψ) +R3(ψ)| ≤ C(V tm)3/2δ−1/2‖χ ‖L∞(Qm)

(

E1 + E3
)

.

For R2(ψ) we employ (5.5) with k = 2 and Corollary 4.3 to arrive at

|R2(ψ)| ≤ C
m
∑

n=1

∫ tn

tn−1

‖h2Rn ‖L2(Ω)‖D2ψ ‖L2(Ω) ≤ C(V tm)3/2δ−1/2‖χ ‖L∞(Qm)E2.

To estimate R4(ψ), we integrate by parts and then use Lemma 4.5. We have

|R4(ψ)| ≤
m
∑

n=1

∫ tn

tn−1

‖ Inβ(Un)− β(Un) ‖L2(Ω)‖∆ψ ‖L2(Ω) ≤ C(V tm)3/2δ−1/2‖χ ‖L∞(Qm)E4.

These are all the terms involving δ−1/2. The remaining terms require lower regularity of ψ and are

thus independent of δ, except for R12 which is also of different character.

If l(t) is the piecewise linear function l(t) := τ−1
n (tn − t), then U − Û = l(t)(Un − Un−1).

Consequently, integration by parts and the fact that ψ = 0 on Γ0 yield

−v(t)〈∂z(U − Û), ψ〉 = l(t)〈Un − Un−1, v(t)∂zψ〉 − l(t)〈〈Un − Un−1, v(t)ψ〉〉ΓL
.

Coupling the first term on the right-hand side with the remaining one in R5(ψ), and writing

Un − Un−1 = (Un − InUn−1) + (InUn−1 − Un−1), we obtain with the aid of Corollary 4.2

m
∑

n=1

∫ tn

tn−1

l(t)〈Un − Un−1, ∂tψ + v(t)∂zψ〉dt

≤ C(E5 + E6)
(

∫ tm

0
‖ ∂tψ + v(t)∂zψ ‖2L2(Ω)

)1/2
≤ C(V tm)3/2‖χ ‖L∞(Qm)(E5 + E6).

This is an essential step because neither ∂tψ nor ∂zψ are smooth alone, but rather their special

combination above. In light of Lemma 4.4, the remaining boundary term in R5(ψ) gives rise to

−
m
∑

n=1

∫ tn

tn−1

l(t)〈〈Un − Un−1, v(t)ψ〉〉ΓL

≤
(

m
∑

n=1

τnV

2
‖Un − Un−1 ‖2L2(ΓL)

)1/2(
∫ tm

0
‖ v1/2ψ ‖2L2(ΓL)

)1/2

≤ C(V tm)3/2‖χ ‖L∞(Qm)(E5 + E6).
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The term R6(ψ) is easy to handle by Lemma 4.2, namely,

|R6(ψ)| ≤
m
∑

n=1

∫ tn

tn−1

‖ τ−1
n (Un − InŪn−1)− ∂tÛ − v(t)∂zÛ ‖L1(Ω)‖ψ ‖L∞(Ω)

≤ C(V tm)3/2‖χ ‖L∞(Qm)E7.

The next three terms R7(ψ) to R9(ψ) represent the effect of quadrature, and can be treated

via (3.3) and (3.4). Hence, (5.7) and Lemma 4.5 imply

|R7(ψ)| ≤ C
m
∑

n=1

∫ tn

tn−1

‖h2∇Rn ‖L2(Ω)‖∇ψ ‖L2(Ω) ≤ C(V tm)3/2‖χ ‖L∞(Qm)E8,

|R8(ψ)| ≤ C

m
∑

n=1

∫ tn

tn−1

‖ Inpn ‖W 1,∞(ΓN )‖|h3/2(Θn − Inθnext) ‖|H1(ΓN )‖ψ ‖H1(Ω)

≤ C(V tm)3/2‖χ ‖L∞(Qm)E9.

Moreover, if we modify the boundary values of Πnψ by using the L2 local projection over the sets

supp(φk) ∩ ∂Ω instead of supp(φk), where {φk}k is the canonical basis of Vn, we achieve optimal

approximability over ∂Ω. If we now use Lemma 4.5, we obtain

|R9(ψ)| ≤ CV −1/2
m
∑

n=1

∫ tn

tn−1

‖|h2∂y(IngnN ) ‖|L2(ΓL)‖ v1/2∂yψ ‖L2(ΓL) ≤ C(V tm)3/2‖χ ‖L∞(Qm)E9.

In addition, Lemma 4.2 yields

|R10(ψ)| ≤ ‖ψ ‖L∞(Qm)

m
∑

n=1

∫ tn

tn−1

(

‖ Inpn − p ‖L∞(ΓN )‖Θn − θext ‖L1(ΓN )

+ ‖ Inpn ‖L∞(ΓN )‖ θext − Inθnext ‖L1(ΓN )

)

dt ≤ C(V tm)3/2‖χ ‖L∞(Qm)E10,

and

|R11(ψ)| ≤
m
∑

n=1

∫ tn

tn−1

(

‖ gN − IngnN ‖L1(ΓL)‖ψ ‖L∞(ΓL) + ‖ gD − IngnD ‖L1(Γ0)‖ ∂νψ ‖L∞(Γ0)

)

dt

≤ C(V tm)3/2‖χ ‖L∞(Qm)E10.

The last residual R12(ψ) is of different nature from those above. We notice that (H1) and the

a priori bound ‖ θ ‖L2(Qm) ≤ C imply

‖u− Un ‖2L2(Ω) ≤ C
(

λ|Ω|+ ‖Θn − θ ‖2L2(Ω)

)

≤ C
(

1 + λ|Ω|+ ‖Θn ‖2L2(Ω)

)

=: CΞ2
n,

whence Lemma 4.5 yields

|R12(ψ)| ≤ Cδ1/2
(

m
∑

n=1

τnΞ
2
n

)1/2(
∫ tm

0
‖ b1/2δ ∆ψ ‖2L2(Ω)dt

)1/2
≤ Cδ1/2(V tm)3/2Λm‖χ ‖L∞(Qm).

21



5.2 Proof of Theorem 5.1

Collecting the above estimates for Ri(ψ), and inserting them back into (4.22), we obtain

∫ tm

0
‖β(u) − β(U) ‖L1(Ω)dt ≤ C(V tm)3/2

(

E0 +
10
∑

i=5

Ei + q(δ)
)

,

where

q(δ) = δ−1/2
4

∑

i=1

Ei + δ1/2Λm.

The asserted estimate follows from optimizing q(δ), namely from choosing δ = Λ−1
m

∑4
i=1 Ei.

5.3 Proof of Theorem 5.2

We first notice that the residual R(ψ) of (4.4) remains unaltered provided we remove 〈〈gN , ψ〉〉ΓL

and change Γ0 by ΓD = Γ0∩ΓL. The equality (5.4), expressing Galerkin orthogonality, is also valid

provided all terms containing gN are eliminated. We proceed as in §§5.1 and (5.1), but now using

the regularity results of §4.2. The assertion follows immediately.

5.4 Discontinuous p

We examine now the case where p is piecewise Lipschitz as in §§4.3 and 7. In view of (4.21), the

estimators in Theorems 5.1 and 5.2 which depend on second derivatives of ψ change as follows:

E1 :=
(

m
∑

n=1

τn‖|h3/2−ǫ[[∇Θn]] ‖|2L2(Ω)

)1/2
,

E2 :=
(

m
∑

n=1

τn‖h2−ǫRn ‖2L2(Ω)

)1/2
,

E3 :=
(

m
∑

n=1

τn‖|h3/2−ǫBn ‖|2L2(∂Ω\ΓD)

)1/2
,

for all ǫ > 0. Moreover, the constants C > 0 in Theorems 5.1 and 5.2 depend also on ǫ, whereas

the other estimators do not change.

6 Performance

In this section we explain how the estimators from §5 can be used for mesh and time-step modifi-

cation, and document the performance of the resulting adaptive method.

6.1 Localization and adaption

For parabolic problems the aim of adaptivity is twofold: equidistribution of local errors in both

space and time. We refer to [8],[9] for strictly parabolic problems and to [20],[21] for degenerate

22



parabolic problems. On the basis of the a posteriori error estimates of §5, we can now design an

adaptive method that meets these two goals and also keeps the error below a given tolerance.

The error estimators Ei of both Theorems 5.1 and 5.2 can be split into contributions En
i (S) for

each element S and time tn, and collected together to give rise to element indicators; see [20] for

details. This way the error estimate is rewritten as

err :=

∫ tm

0
‖β(u) − β(U) ‖L1(Ω)dt ≤

∑

S∈M0

η0S + max
n=1,...,m

(

ηnτ +
(

∑

S∈Mn

(ηnS)
2
)1/2)

,

where ηnτ includes all error indicators of time discretization (from E5, E7, E10) and ηnS is the local

indicator on element S of space discretization errors. We use them to equidistribute the space

contributions by refinement/coarsening of the mesh Mn and the time contributions by modifying

the time step τn. Given a tolerance tol for the error err, the adaptive method adjusts time step

sizes τn and adapts the meshes Mn so as to achieve

η0S ≤ Γ0 tol

#M0
, ηnτ ≤ Γτ tol, ηnS ≤ Γh tol√

#Mn
, (6.1)

where Γ0 + Γτ + Γh ≤ 1 are given parameters for the adaptive method. The mesh adaption in

each time step is performed by local refinement and coarsening: all elements S violating (6.1)

must be refined and those S with local indicators much smaller than the local tolerance may be

coarsened. The time step may be enlarged in the latter case. The implementation uses local mesh

refinement by bisectioning of elements; local mesh coarsening is the inverse operation of a previous

local refinement (see Figure 1). As meshes are nested, the interpolation of discrete functions such as

Un−1 and Ūn−1 between consecutive meshes during local refinement or coarsening is a very simple

operation. One new degree of freedom at the midpoint of the bisected edge is inserted during each

local refinement, while one degree of freedom is deleted during a local coarsening. No other degrees

of freedom are involved in such local operations.

refine

coarsen

Figure 1: Refinement by bisection and coarsening of a pair of triangles. Refinement edges of

triangles are marked.

6.2 Example: Travelling wave

An explicit solution for the nonlinearity β(u) = min(u, 0) +max(u− 1, 0) is given by the travelling

wave

β(u(x, y, t)) =

{

(1− exp(s)) if s ≤ 0 (liquid),

2(1− exp(s)) if s > 0 (solid),
where s = (ν · v − V )(ν · (x, y)− V t),

with ν = (cos(α), sin(α)) and parameters v = (2, 0), V = 0.4, α = π/6; V is the interface velocity

in the normal direction ν. We solve the problem in the domain Ω = (0.0, 1.0) × (0.0, 0.2) for time
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Figure 2: Example 6.2. Macro triangulations with aspect ratios 1 and 5.

Figure 3: Example 6.2. Meshes with aspect ratios 1 and 5 for tol = 0.5 at t = 1.1.

Figure 4: Example 6.2. Isothermal lines at β(u) = k/8, k = −16 . . . 3, at t = 1.1.

Figure 5: Example 6.2. Meshes with aspect ratios 1 and 5 for tol = 0.25 at t = 1.1. 
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tol=0.5

tol=0.25

err

time
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tol=1.0

tol=0.5

tol=0.25

err

time

1e-04

2
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Figure 6: Example 6.2. ||eβ(u)(t)||L1(Ω) for meshes with aspect ratios 1 (left) and 5 (right).
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tol = 0.5
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Figure 7: Example 6.2. Triangle counts for meshes with aspect ratios 1 (left) and 5 (right).
 

R=1

R=5

err x 10-6

tol0.00

200.00

400.00

600.00

0.00 0.50 1.00

Figure 8: Example 6.2. ||eβ(u)(t)||L1(L1) for meshes with aspect ratios R = 1, 5.

t ∈ (1, 2) with Dirichlet boundary condition on ∂Ω. To avoid any mesh effects, the interface normal

ν is rotated from the horizontal direction by α. This way ν is never parallel to any mesh edge. As

the domain in the applications of Section 7 has a very large aspect ratio, we explore here the use of

elongated elements. We thus compare simulations with meshes of aspect ratios 1 and 5 originated

from the macro triangulations of Figure 2, for the explicit travelling wave solution.

Figures 3 and 5 show adaptive meshes at time t = 1.1, generated with error tolerances tol = 0.5

and tol = 0.25, while Figure 4 depicts isothermal lines at the same time; the latter look the same for

all simulations. Figure 6 displays the error ||eβ(u)(t)||L1(Ω) and Figure 7 the mesh element counts

for simulations with both aspect ratios. Finally, Figure 8 shows the total error for different given

tolerances and mesh aspect ratios. Even though the triangle counts are larger for simulations with

larger aspect ratio, the estimators and the adaptive method behave well. It is thus reasonable to

use elongated elements in the following application. In any event, we do not employ specialized

estimators or adaptive methods for anisotropic meshes such as [26]. The application of such methods

to degenerate parabolic equations is still to be investigated.

7 Applications to Casting of Steel

We study the casting of a slab in 2D. This problem was proposed in [14], and a similar problem

with time dependent parameters was studied in [16]. In order to derive non-dimensional equations

(1.1)-(1.8), we first rescale the physical equations with the material parameters.

7.1 Scaling

In this section, we mark all physical quantities by a tilde. The original equations with physical

coefficients for temperature θ̃ (in units [ ◦K]) and energy density (or enthalpy) ũ (in units [kg/ms2])
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read

∂t̃ũ+ ṽ∂z̃ũ = ∇̃ · (k̃∇̃θ̃) in Ω̃× (0, T̃ ),

ũ = ρ̃(c̃θ̃ + χ̃λ̃) in Ω̃× (0, T̃ ),

θ̃ = g̃D on Γ̃0 × (0, T̃ ),

k̃∂ν̃ θ̃ + p̃(θ̃ − θ̃ext) = 0 on Γ̃N × (0, T̃ ),

ũ(·, 0) = ũ0 in Ω̃,

k̃∂ν̃ θ̃ = g̃N on Γ̃L × (0, T̃ )

or θ̃ = g̃D on Γ̃L × (0, T̃ ).

The physical coefficients and their units are: casting speed ṽ [m/s], heat conductivity k̃ [kg m/s3 ◦K],

density ρ̃ [kg/m3], specific heat c̃ [m2/s2 ◦K], latent heat λ̃ [m2/s2], melting temperature θ̃m [ ◦K],

heat transfer coefficient p̃ [kg/s3 ◦K], and external cooling temperature θ̃ext [
◦K]. Here χ̃ stands for

the characteristic function of the liquid phase. In the remainder of this section, subscripts s and l

indicate the corresponding coefficients for the solid and liquid phase.

The simulations are done over a slab of length L̃ = 25m and height 0.21m. We use material

parameters for steel with 0.09% carbon content. Temperature–dependent data provided in [14]

are approximated by piecewise constant data for the liquid and solid phase: k̃s = 30 kg m/s3 ◦K,

k̃l = 180 kg m/s3 ◦K, c̃s = 660m2/s2 ◦K, c̃l = 830m2/s2 ◦K, ρ̃ = 7400 kg/m3, λ̃ = 276 000m2/s2,

and θ̃m = 1733 ◦K.

The boundary condition on Γ̃N depends on the position along the slab; the model has a mold

cooling zone (1.15m) and three water spray zones which include radiation. The (nonlinear) radiation

condition (1.9) is linearized by using

(θ̃4 − θ̃4ext) ≈ (θ̃ − θ̃ext)(θ̃m + θ̃ext)(θ̃
2
m + θ̃2ext).

The (linear) Robin conditions on Γ̃N in the mold and spray regions are then

−k̃∂ν̃ θ̃ =
{

p̃(θ̃ − θ̃mold) if z̃ < 1.15m,

p̃(θ̃ − θ̃H2O) + σ̃ǫ(θ̃ − θ̃rad)(θ̃m + θ̃rad)(θ̃
2
m + θ̃2rad) if z̃ > 1.15m.

Casting and boundary parameters are given in Table 1. In this model, the quantities p and θext
exhibit discontinuities along ΓN , which results in hypotheses (H4) and (H5) not being satisfied.

But, as stated in §5.4, the estimators can be adjusted to the case of piecewise smooth boundary

data. On the other hand, a refined model might include some mollifying effect of water spraying,

which removes these discontinuities.

Using a length scale X̄ [m] and a time scale T̄ [s], the physical quantities can be transformed

into dimensionless ones as follows:

x :=
x̃

X̄
, t :=

t̃

T̄
, u :=

ũ

ρ̃λ̃
− c̃sθ̃m

λ̃
, θ :=

{

c̃s
λ̃
(θ̃ − θ̃m) if θ̃ ≤ θ̃m,

c̃l
λ̃
(θ̃ − θ̃m) if θ̃ ≥ θ̃m,

v :=
ṽT̄

X̄
, k :=

k̃T̄

ρ̃c̃X̄2
, p :=

p̃T̄

ρ̃c̃X̄
, gD :=

c̃

λ̃
(g̃D − θ̃m), gN :=

g̃N T̄

ρ̃λ̃X̄
.
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Quantity Value Unit Description

ṽ 0.0225 m
s casting speed

g̃D 1818 ◦K on Γ̃0: inflow temperature

g̃D 1250 ◦K on Γ̃L: outflow temperature

g̃N 0 kg
s3

on Γ̃L: outflow temperature flux

p̃ 1500 kg
s3 ◦K

on Γ̃N , z̃ ∈ (0, 1.15)m: heat transfer in mold

θ̃mold 353 ◦K mold external temperature

p̃ 700 kg
s3 ◦K

on Γ̃N , z̃ ∈ (1.15, 4.4)m: heat transfer in first spray region

p̃ 350 kg
s3 ◦K

on Γ̃N , z̃ ∈ (4.4, 14.6)m: heat transfer in second spray region

p̃ 50 kg
s3 ◦K

on Γ̃N , z̃ ∈ (14.6, 25)m: heat transfer in third spray region

θ̃H2O 300 ◦K cooling water temperature

σ̃ 5.67 E−8 kg
s3 ◦K4 Stefan–Boltzmann constant

ǫ 0.8 emission factor

θ̃rad 370 ◦K z̃ ∈ (1.15, 14.6)m: air temperature

θ̃rad 710 ◦K z̃ ∈ (14.6, 25)m: air temperature in third spray region

Table 1: Casting and boundary parameters.

Using these new quantities, the dimensionless equation reads

ut + v ∂zu−∆β(u) = 0 in Ω× (0, T ), with β(u) =











ksu if u < 0,

0 if u ∈ [0, 1],

kl(u− 1) if u > 1.

Dirichlet boundary conditions are transformed into

β(u) = k gD on Γ0 × (0, T ),

and the scaled Robin and Neumann conditions are

k ∂νθ + p(θ − θext) = 0 ⇔ ∂νβ(u) +
p

k
(β(u)− kθext) = 0 on ΓN × (0, T ),

∂νβ(u) = gN on ΓL × (0, T ).

After scaling with X̄ = 10m, T̄ = 105 s ≈ 28h, the non-dimensional domain is of size 0.021×2.5

and the slopes of β are ks = 0.006, kl = 0.029. A temperature range θ̃ ∈ (1000, 1800) ◦K leads to

scaled values |β(u)| = O(10−2), while the scaled latent heat is λ = 1. The scaled convection speed

is v = 225, so convection is dominant. The simulations run for t ∈ (0, 0.1), which is equivalent to

a final time T̃ = 10000s ≈ 23
4h. Initial conditions are chosen piecewise linear in z direction, with a

prescribed initial position of the interface at z = L/10. This is a convenient but totally unphysical

initial condition: there is liquid in contact to water/air. The long–time behavior does not depend

on the actual choice of initial conditions though.

Figure 9: Domain aspect ratio.

The actual aspect ratio of the domain is depicted in Figure 9; so for visualization purposes, the

height of all subsequent domains is scaled by a factor 16. The numerical simulations start from
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Figure 10: Adapted mesh for stationary solution, Dirichlet (top) and Neumann (bottom) outflow;

vertical scale = 16.

Figure 11: Graph of temperature for stationary solution with Dirichlet (top) and Neumann (bot-

tom) outflow.

a macro triangulation of Ω into 20 triangles with aspect ratio ≈ 12. Figures 10 and 11 compare

adapted meshes and graphs of the temperature for Dirichlet and Neumann outflow conditions with

error tolerances tol = 2 and tol = 45, respectively. It can be easily seen that the Dirichlet outflow

condition generates a sharp boundary layer at ΓL but no oscillations elsewhere; both solutions

are indeed very similar away from ΓL. To avoid this unphysical boundary layer, the following

simulations were all done with a vanishing Neumann outflow condition. We conclude this paper

with two simulations with time-dependent parameters.

7.2 Example: Oscillating Velocity

First, we prescribe a variable casting speed

ṽ(t̃) = 0.0175 + 0.005 ∗ sin(0.00175 t̃) [m/s],

which has a strong influence on the length of the liquid pool inside the slab. The largest velocity

is chosen equal to the constant velocity in the problem with stationary casting speed; all other

parameters are left unchanged. This guarantees that the liquid pool will not reach the outflow

boundary. The variable velocity is shown in Figure 12, together with the number of elements in the

adapted meshes M(tn) = #(Mn) and time step sizes. Due to a longer liquid pool (and interface),
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there are more mesh elements when the velocity is larger and a smaller time step size is needed.

Figures 13 and 14 display adaptive meshes and temperature graphs for t = 0.05 and t = 0.07,

corresponding to large and small velocity values. Some spurious oscillations can be seen in the

temperature graphs near jumps of Robin boundary conditions. They are created by the method of

characteristics which transport such cusps in the z direction. Therefore, an upper bound of 0.00025

(= 25 s) is imposed in this simulation.
 

velocity

0.00
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0.02

time
0.00 0.05 0.10

 

M x 103

0.00

5.00

10.00
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0.00 0.05 0.10
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100.00

200.00

time
0.00 0.05 0.10

Figure 12: Variable casting speed. Velocity ṽ(t), element count, and time step sizes.

Figure 13: Variable casting speed. Adaptive meshes for t = 0.05 (top) and t = 0.07 (bottom).

Figure 14: Variable casting speed. Temperature graphs for t = 0.05 (top) and t = 0.07 (bottom).
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7.3 Example: Oscillating Cooling

For constant casting velocity ṽ = 0.0225m/s, we model a varying cooling water flow rate in the

second spray region by a time dependent heat transfer coefficient:

p̃(t̃) = 550 + 200 sin(0.00175 t̃) [kg/s3 ◦K] on ΓL, z̃ ∈ (4.4, 14.6)m.

Again, this has an influence on the length of the liquid pool inside the slab, which gets longer when

the cooling coefficient is smaller, thereby representing a reduced water flow.

Figure 15 shows the varying parameter p̃(t) and the corresponding mesh element counts. Adap-

tive meshes and temperature graphs for t = 0.05 and t = 0.07 are displayed in Figures 16 and 17.

As the liquid pool length does not depend so strongly on p̃(t) as it did on ṽ(t), the mesh element

count changes only slightly in this example; the larger changes for t < 0.02 are due to the given

initial conditions. The time step size is not shown but equals the given upper bound 0.00025 for

t > 0.02. The oscillations in Figure 17 near jumps of Robin boundary conditions along ΓN uncover

the undesirable condition vτ ≫ h for the method of characteristics. We show the beneficial effect

of reducing the time step in the botton picture of Figure 17. This graph corresponds to t = 0.05

for a simulation with smaller tolerance for the time error estimate, which leads to a time step size

τ = 0.00006 (= 6 s) for t > 0.025: vτ < h holds and the oscillations are removed.
 

heat transfer
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Figure 15: Variable cooling. Heat transfer coefficient p̃(t) and element counts.
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[15] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I,

Springer, 1972.

[16] S. Louhenkilpi, E. Laitinen and R. Nieminen, Real-time simulation of heat transfer in contin-

uous casting, Metallurgical Trans. B, 24B (1993), pp. 685-693.

[17] K.W. Morton and E. Süli, Evolution Galerkin methods and their supra-convergence, Numer.

Math. 64 (1995), pp. 1097-1122.

[18] R.H. Nochetto, Error estimates for the two-phase Stefan problems in several space variables

II: Nonlinear flux conditions, Calcolo 22 (1985), pp. 501-534.
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