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1 An introduction to a posteriori error estimation for ellipticproblemsAlthough the subject of this course are parabolic free boundary problems, we give an introduc-tion about adaptive �nite element techniques for elliptic problems. The reason is, that most ofthe principles are much clearer and easier to describe and understand in the context of ellipticproblems, while they are applicable to parabolic problems in a similar way.We consider the model problem: Find a solution u of��u = f in 
;u = 0 on @
(1.1)where 
 is a bounded domain in Rd with a polyhedral boundary and f 2 L2(
) is some givenright hand side.Let H1(
) be the Sobolev space of all functions with weak derivatives of �rst order and let�H1(
) be the subspace of all those functions in H1(
) that vanish on the boundary of 
. Thenthe weak formulation of (1.1) is stated as:u 2 �H1(
) : Z
rur' = Z
 f ' 8' 2 �H1(
):(1.2)Now, let Vh � �H1(
) be a �nite dimensional subspace. Then we have the discrete problem:uh 2 Vh : Z
ruhr'h = Z
 f 'h 8'h 2 Vh:(1.3)1.1 A posteriori error estimation in the energy normIf Vh is for example the �nite element space consisting of piecewise polynomials of degree p � 1on a given triangulation T (with zero boundary values) we have the following a priori estimateju� uhjH1(
) := �Z
 jr(u� uh)j2�1=2 � c XT2T h2pT jujHp+1(
)!1=2(1.4)where hT is the diameter of a simplex T (see [13] e.g.).The aim of a posteriori error estimation is to establish an estimation of the formju� uhjH1(
) � c XT2T �T (uh; f)2!1=2(1.5)where the value of �T does only depend on the discrete solution uh on a simplex T and itsadjacent neighbours and given data f on the simplex T . Thus, �T is a computable value andwe can control the adaptive procedure by these values (see Section 3).The most important tool for such an a posteriori error estimation is an interpolation estimatefor functions v 2 �H1(
). Since for d � 2 we do not have the embedding of H1(
) into C0(�
),we can not make use of the usual Lagrange interpolant. But we can use the Cl�ement interpolantwhich avoids the pointwise evaluation of an H1 function [14].1



It is de�ned in the following way: Let Vh contain the space of piecewise linear functions on theunderlying triangulation. Then for v 2 H1(
) we can construct the piecewise linear interpolantin the following way: For each node a of the triangulation let va be the L2 projection of v to thespace of all piecewise linear function on all simplices surrounding the node a and de�ne for theinterpolant Rhv the nodal value at a by (Rhv)(a) := va(a). De�ning the nodal values of Rhvfor all nodes of the triangulation by this procedure, gives a unique piecewise linear function onthe whole triangulation. Setting (Rhv)(a) := 0 for all nodes a that belong to the boundary of
 de�nes an interpolant Rh : �H1(
)! Vh (i.e. the interpolant has zero boundary values also)and we get the following estimates:kv �RhvkL2(T ) � chT jvjH1(MT );(1.6) jRhvjH1(T ) � cjvjH1(MT )(1.7)where M(T ) is the patch of all simplices T 0 that have a non empty intersection with T .Now we will derive the a posteriori estimate: Let H�1(
) be the dual space of �H1(
), i.e.H�1(
) = (�H1(
))�. For f 2 L2(
) de�ne F 2 H�1(
) byhF; 'iH�1(
)��H1(
) := Z
 f ' for all ' 2 �H1(
)where h:; :iH�1(
)��H1(
) is the dual pairing on H�1(
)� �H1(
).We can look at �� as an operator �� : �H1(
)! H�1(
)by de�ning ��v 2 H�1(
) for a function v 2 �H1(
) in the following way:h��v; 'iH�1(
)��H1(
) := Z
rvr' for all ' 2 �H1(
):(1.8)It is clear that �� is a linear continuous operator. Moreover �� is invertible since (1.2) isuniquely solvable for a given right hand side F 2 H�1(
) and it is an isometric isomorphism,i.e. k ��vkH�1(
) = jvjH1(
)(1.9)because sup'2�H1(
)nf0g h��v; 'iH�1(
)��H1(
)j'jH1(
) = sup'2�H1(
)nf0g Z
rvr'j'jH1(
)( � jvjH1(
) by Cauchy's inequality,� jvjH1(
) taking ' = v:Remark: We can use such an abstract framework in more general situations also: Let V bean Hilbert space and a(:; :) : V � V ! R a continuous V {coercive bilinear form, i.e.a(v; ') � c�kvkV k'kV and c�kvk2V � a(v; v) 8v; ' 2 V;De�ning A : V ! V � by hAv; 'iV ��V := a(v; ') 8v; ' 2 V;2



we conclude c�kvkV � kAvkV � � c�kvkV ;and the following analysis will also carry over to this situation.Returning back to our model problem we rewrite (1.2) as:u 2 �H1(
) : ��u = F in H�1(
):By this equation and by (1.9) we have for the error e := u� uhjejH1(
) = ju� uhjH1(
) = k ��(u� uh)kH�1(
) = kF +�uhkH�1(
)Thus, we have an expression for the error in terms of uh and data f . The problem is thatwe can not evaluate this expression because the norm on H�1(
) involves the evaluation of asupremum over all ' 2 �H1(
)nf0g. As a consequence we have to estimate this supremum.For that we need the orthogonality of the error, i.e.0 = Z
r(u� uh)r'h = h��(u� uh); 'hiH�1(
)��H1(
)= hF +�uh; 'hiH�1(
)��H1(
)for all 'h 2 Vh. Now, denote by [@�uh] the jumps of the normal derivatives of the discretesolution uh across a (d � 1){simplex. We obtain by the orthogonality of the error, integrationby parts, a scaled trace theorem, and the interpolation estimate (1.6)jejH1(
) = kF +�uhkH�1(
)= sup'2�H1(
)j'jH1(
)=1 hF +�uh; 'iH�1(
)��H1(
)= sup'2�H1(
)j'jH1(
)=1 hF +�uh; '�Rh'iH�1(
)��H1(
)= sup'2�H1(
)j'jH1(
)=1 XT2T ZT f ('�Rh')� ZT ruhr('�Rh')= sup'2�H1(
)j'jH1(
)=1 XT2T ZT (f +�uh) (' �Rh')� 12 Z@Tn@
 [@�uh]('�Rh')� c sup'2�H1(
)j'jH1(
)=1 XT2T �hT kf +�uhkL2(T ) + 12h1=2T k[@�uh]kL2(@Tn@
)� j'jH1(MT )� c� XT2T h2T kf +�uhk2L2(T ) + 12hT k[@�uh]k2L2(@Tn@
)| {z }=:�T (uh;f)2 �1=2where we used the fact that the overlap of di�erent patches MT is bounded by a constant. Thisestablishes the a posteriori error estimate (1.5).3



The above estimate makes sure that the error estimator � := � PT2T �T (uh; f)2�1=2 is reliable.But we also have to answer the question whether the estimator is e�cient also, i.e. can weestimate the estimator by the error itself. This is very important especially for higher orderelements, because we only used the approximation property of the piecewise linear functions.Let fh be an approximation of the right hand side f belonging to some �nite dimensional space(for example the piecewise L2 projection on each element, or some other interpolant of the righthand side). Then we can prove�T (uh; fh) � c�ju� uhjH1(M(T )) + hT kf � fhkL2(M(T ))�(1.10)whereM(T ) now denotes the patch of all those simplices T 0 sharing a complete (d�1){simplexwith T . The last term hT kf � fhkL2(M(T )) is of higher order if f is smooth. This term reectsthat we �rst have to approximate given data su�ciently, i.e. kf � fhkL2(M(T )) is small, andthen we get an e�cient error estimator which we can not expect for a poor approximation ofgiven data. The proof of this estimate is very technical (one has to construct suitable cut{o�functions to localize the element residual f +�uh and the singular residual [@�uh] and estimatethem separately) and is omitted here (see [61] for example).Remark: Usually, �T (uh; fh) is used as error estimator, since it is often not possible to computethe L2{norm of an arbitrary function exactly. By the triangle inequality it is clear that as well�T (uh; fh) � �T (uh; f) + hT kf � fhkL2(T ) as�T (uh; f) � �T (uh; fh) + hT kf � fhkL2(T )holds.Since we usually can not compute the right hand side R
 f'h of our discrete problem (1.3)exactly, the orthogonality of the error is disturbed. Applying an analysis which includes thisdefect will result in the a posteriori error estimationju� uhjH1(
) � c� XT2T �T (uh; fh)2�1=2 + ckF � FhkV �hwhere we have replaced the right hand side of (1.3) by a computable value hFh; 'iV �h�Vh :=R
 fh'h.The above analysis is not restricted to this simple model problem but can also be used fornonlinear problems (see [60]):Let F : �H1(
) ! H�1(
) be an operator (maybe nonlinear) and let u 2 �H1(
) be a regularsolution of F (u) = 0 in H�1(
);i.e. the Frechet{derivative of DF (u) of F at u is invertible and bounded. Assume that DF andDF�1 are locally Lipschitz continuous. Now, let uh be a discrete solution which is\near" u, i.e.ju� uhjH1(
) is small enough. Then we get the following estimates:c ju� uhjH1(
) � kF (uh)k�H1(
) � C ju� uhjH1(
)where the constants c, C depend on the norms of kDF (u)k and k(DF (u))�1k and the Lipschitzconstants of DF and DF�1. Again the error is represented in terms of given data and thediscrete solution. Now using similar techniques to those used in the model problem will alsoestablish e�cient and reliable a posteriori error estimators for nonlinear problems.4



1.2 A posteriori error estimation in the L2 normIt is often of interest to estimate the error not in the energy norm j:jH1(
) but in the L2 normk:kL2(
). For this we use the so called Aubin{Nitsche trick (which is also used for the a priorierror estimation [50] or [13]):Let wu�uh 2 �H1(
) be the solution of the dual problemwu�uh 2 �H1(
) : Z
r'rwu�uh = Z
(u� uh)' 8' 2 �H1(
):(1.11)Remark: Let a(:; :) : �H1(
) � �H1(
) ! R be a non symmetric, bilinear and �H1(
) coercivebilinear form. Then the original problem is stated asu 2 �H1(
) : a(u; ') = F (') 8' 2 �H1(
)whereas the dual problem is stated aswu�uh 2 �H1(
) : a(';wu�uh) = Z
(u� uh)' 8' 2 �H1(
):To establish an L2 a posteriori estimate we have to assume that the solution of the dual problem(1.11) is H2{regular. Assuming 
 is convex one can prove that for the solution wu�uh of (1.11)we have wu�uh 2 H2(
) andjwu�uh jH2(
) � k ��wu�uhkL2(
) = ku� uhkL2(
)(1.12)since u� uh 2 L2(
) (see [34] e.g.).De�ning for g 2 H�2(
) := (H2(
) \ �H1(
))�jgjH�2(
) := sup'2H2(
)\�H1(
)j'jH2(
)=1 hg; 'iH�2(
)�(H2(
)\�H1(
));using the fact that wu�uh 2 H2(
), and setting ' = u� uh in (1.11) we concludeku� uhk2L2(
) = Z
r(u� uh)rwu�uh= h��(u� uh); wu�uh| {z }2H2(
)iH�1(
)��H1(
)= hF +�uh; wu�uhiH�2(
)�(H2(
)\�H1(
))� jF +�uhjH�2(
)jwu�uh jH2(
)� jF +�uhjH�2(
)ku� uhkL2(
):On the other hand using the higher regularity of the test function ' and integration by partswe have jF +�uhjH�2(
) = sup'2H2(
)\�H1(
)j'jH2(
)=1 hF +�uh; 'iH�2(
)�(H2(
)\�H1(
))5



= sup'2H2(
)\�H1(
)j'jH2(
)=1 Z
r(u� uh)r'= sup'2H2(
)\�H1(
)j'jH2(
)=1 Z
(u� uh)(��')� ku� uhkL2(
):Combining these two estimates we achieveku� uhkL2(
) = jF +�uhjH�2(
):(1.13)In order to establish the L2 estimate, we have to estimate now the term jF +�uhjH�2(
). Thisis done in the same manner as in the case of the energy norm. In contrast to that estimate wecan use the fact that the test function ' belongs to H2(
). Thus, for the interpolation of ' wecan make use of the usual Lagrange interpolant (H2(
) is embedded in C0(�
), d = 2; 3!) andwe gain a higher power of hT in front of the residuals since we can rely on second derivatives of'. As a result we have ku� uhkL2(
) � c XT2T ~�T (uh; f)2!1=2(1.14)where ~�T is de�ned to be~�T (uh; f)2 := h4T kf +�uhk2L2(T ) + 12h3T k[@�uh]k2L2(@Tn@
):Again, using the �nite dimensional approximation fh of f we can prove the e�ciency~�T (uh; fh) � c�ku� uhkL2(M(T )) + h2T kf � fhkL2(M(T ))�(1.15)where we also gain one additional power of hT in front of the term kf � fhkL2(M(T )).This analysis also carries over to nonlinear problems under suitable assumptions on the existenceof the dual problem and the regularity of its solution. Under such assumptions we can provec ku� uhkL2(
) � kF (uh)kH2(
)\�H1(
) � C ku� uhkL2(
)where now c and C depend on the coercivity of the dual problem (which is associated to thenorms of DF and DF�1) and the regularity constant for the solution of the dual problem. Thisinequality now establishs L2 error estimators for nonlinear problems using the same techniquesas described above [5].
6



2 Mesh re�nement and coarseningFinite element meshes may consist of geometric elements of various types:simplicial: triangles or tetrahedra,quadrilateral: rectangles, cubes, or general quadrilaterals,more general: prisms, for example,mixed: mixture of di�erent types.The choice of the mesh type for an application may depend on some special approximationproperties or on the need for some special FE basis functions, which require a special localgeometry. We will restrict ourselves here to the description of simplicial meshes, for severalreasons:� A simplex is one of the most simple geometric types.� Complex domains may be approximated by a set of simplices quite easily.� Simplicial meshes allow local re�nement (see Figure 2.1) without the need of nonconform-ing meshes (hanging nodes), parametric elements, or mixture of element types (which isthe case for quadrilateral meshes, for example, see Figure 2.2).� Polynomials of a given degree are easily represented on a simplex using local (barycentric)coordinates. (On quadrilateral elements, the `standard' type of ansatz spaces is a tensorproduct of onedimensional polynomials.)Re�nement algorithms for non-simplicial meshes can be found in the literature.
Figure 2.1: Global and local re�nement of a triangular mesh.

Figure 2.2: Local re�nements of a rectangular mesh: with hanging nodes, conforming closureusing bisected rectangles, and conforming closure using triangles. Using a conforming closurewith rectangles, a local re�nement has always global e�ects up to the boundary.We will consider the following situation:An initial (coarse) triangulation of the domain is given. We call it `macro triangulation'. Itmay be generated by hand or by some mesh generation algorithm.7



Some (or all) of the simplices are marked for re�nement, depending on some error estimatoror indicator. After several re�nements, some other simplices may be marked for coarsening.Marking criteria and marking strategies are subject of Section 3.2.1 Re�nement algorithms for simplicial meshesFor simplicial elements, several re�nement algorithms are widely used. One example is regularre�nement (\red re�nement"), which divides every triangle into four similar triangles, see Fig-ure 2.3. The corresponding re�nement algorithm in three dimensions cuts every tetrahedroninto eight tetrahedra, and only a small number of similarity classes occur during successivere�nements, see [7]. Unfortunately, hanging nodes arise during local regular re�nement. To re-move them and create a conforming mesh, in two dimensions some triangles have to be bisected(\green closure"). In three dimensions, several types of irregular re�nement are needed for thegreen closure. This creates more similarity classes, even in two dimensions. Additionally, thesebisected elements have to be removed before a further re�nement of the mesh, in order to keepthe triangulation regular.
Figure 2.3: Global and local regular re�nement of triangles and conforming closure by bisection.Another possibility is to use bisection of simplices only. For every element (triangle or tetra-hedron) one of its edges is marked as the re�nement edge, and the element is re�ned into twoelements by cutting this edge at its midpoint. There are several possibilities to choose such are�nement edge for a simplex, one example is to use the longest edge. Mitchell [48] compareddi�erent approaches. We will describe an algorithm where the choice of re�nement edges onthe macro triangulation prescribes the re�nement edges for all simplices that are created duringmesh re�nement (the \newest vertex" bisection in Mitchell's notation). This make sure thatshape regularity of the triangulations is conserved.The re�nement by bisection can be implemented using recursive or non{recursive algorithms.For tetrahedra, the �rst description of such re�nements was done in the non{recursive way byB�ansch [4]. It needs the intermediate handling of hanging nodes during the re�nement process.Two recursive algorithms, which do not create such hanging nodes and are therefore easier toimplement, are published by Kossaczk�y [45] and Maubach [47], which result in exactly the sametetrahedral meshes as the non{recursive algorithm.Other re�nement techniques for simplicial meshes, such as Delaunay techniques, are possibleand described in the literature. We do not present details here.In the following, we will describe the recursive re�nement by bisection in detail, using thenotation of Kossaczk�y. An implementation was done for example in [58].The re�nement algorithm is based on a recursive bisectioning of elements. For every element ofthe mesh, one of its edges is marked as its re�nement edge. Elements are re�ned by bisectingthis edge. To keep the mesh conforming, bisection of an edge is only allowed when this edge8



is the re�nement edge for all elements which share this edge. Bisection of an edge and thusof all elements around the edge is the atomic re�nement operation, and no other re�nementoperations are allowed. See Figures 2.4 and 2.5 for the two and three dimensional situations.
Figure 2.4: Atomic re�nement operation in two dimensions. The common edge is the re�nementedge for both triangles.
Figure 2.5: Atomic re�nement operation in three dimensions. The common edge is the re�ne-ment edge for all tetrahedra around it.If an element has to be re�ned, we �rst get all elements at this edge. In two dimensions thisis just the neighbour opposite this edge or there is no other element at this edge in the casethat the re�nement edge belongs to the boundary. In three dimensions we have to loop aroundthe edge and collect all neighbours at this edge. If for all collected neighbours this edge is there�nement edge also, we can re�ne the whole patch at same time by inserting one new vertexin the midpoint of the common re�nement edge and bisecting every element of the patch. Theresulting triangulation then is a conforming one.If one of the collected neighbours has not the same re�nement edge we �rst re�ne this neighbourrecursively. Thus, we can formulate the re�nement of an element in the following wayAlgorithm 2.1 Recursive re�nement of one simplexsubroutine recursive refine(element)f dof for all neighbours at refinement edgeif neighbour has no compatible refinement edgerecursive refine(neighbour);g until all neighbours have a compatible refinement edge;bisect all elements at the refinement edge;gIn two dimensions we used the so called newest vertex bisection and in three dimensions thealgorithm described in [45]. For both variants it is proved, that for macro triangulation ful�lling9



certain criteria the recursion stops. Both algorithms are for special macro triangulations therecursive variants of the non recursive algorithms described in [4]. The beauty of the recursiveapproach is that we do not have to handle hanging nodes and not one to one adjacencies, sincewe can re�ne the whole re�nement patch at same time.In Figure 2.6 we show a twodimensional situation where recursion is needed. For all triangles,the longest edge is the re�nement edge. Let us assume that triangles A and B are marked forre�nement. Triangle A can be re�ned at once, as its re�nement edge is a boundary edge. Forre�nement of triangle B, we have to recursively re�ne triangles C and D. Again, triangle D canbe directly re�ned, so recursion stops there. This is shown in the second part of the �gure.Back in triangle C, this can now be re�ned together with its neighbour. After this, also triangleB can be re�ned together with its neighbour.
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BFigure 2.6: Recursive re�nement in two dimensions. Triangles A and B are initially marked forre�nement.Now, the overall re�nement algorithm can be formulated as follows:Algorithm 2.2 Re�nement of the meshsubroutine refine mesh()f for all elementswhile element is marked for refinementrecursive refine(element);gWe will use the convention, that all vertices of an element are given �xed local indices. Validindices are 0, 1, and 2 for vertices of a triangle, and 0, 1, 2, and 3 for vertices of a tetrahedron.Now, the re�nement edge for an element can be �xed to be the edge between the vertices withlocal indices 0 and 1.
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Figure 2.7: Numbering of nodes on parent and children trianglesDuring re�nement, the new vertex numbers for the newly created child simplices are prescribedby the re�nement algorithm. This is done in such a way, that only a small number of similarity10
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classes occur during successive re�nement of one macro element. For both children elements,the index of the newly generated vertex at the midpoint of this edge has the highest local index(2 resp. 3 for triangles and tetrahedra). These numbers are shown in Figure 2.7 for 2d andin 2.8 for 3d. In 2d this numbering is the same for all re�nement levels. In 3d, one has tomake some special arrangements: the numbering of the second child's vertices does depend onthe generation of the elements. There exist three di�erent generations 0, 1, and 2, and thegeneration of a child element is always ((parent's generation + 1) modulo 3). In Figure 2.8we used the following convention: for the index set f1; 2; 2g on child[1] of a tetrahedronof generation 0 we use the index 1 and for a tetrahedron of generation 1 and 2 the index 2.Figure 2.9 shows successive re�nments of a generation 0 tetrahedron, producing tetrahedra ofgenerations 1, 2, and 0 again.Using the above re�nement algorithm, the re�nements of a mesh are totally determined by thelocal vertex numbering of the macro triangulation, plus a prescribed generation for every macroelement in three dimensions.The numbering for tetrahedra was introduced by Kossaczk�y. In case of the \standard" trian-gulation of a (unit) square and cube into two triangles resp. six tetrahedra (see Figure 2.10),
(0,0,0) (1,0,0)

(1,1,0)

(1,1,1)

(1,0)(0,0)

(0,1)

0

1

2
0

1

2

3Figure 2.10: Standard elements in two and three dimensions
(1,0)(0,0)

(0,1)

(0,0,0) (1,0,0)

(1,1,0)

(1,1,1)

Figure 2.11: Re�ned standard elements in two and three dimensionsthese numberings and the de�nition of the re�nement edge during re�nement of the elementsguarantee that always the longest edge will be the re�nement edge and will be bisected, seeFigure 2.11. For the general case is proved:Theorem 2.1 (Kossaczk�y [45], Mitchell [48])1. The recursion stops if the macro triangulation ful�ls certain criteria.2. We obtain shape regularity for all elements at all levels.In two dimensions, a triangulation where recursion does not stop is shown in Figure 2.12. Theselected re�nement edges of the triangles are shown by dashed lines. One can easily see, that12



there are no patches for the atomic re�nement operation. This triangulation can only be re�nedif other choices of re�nement edges are made, or by a non-recursive algorithm.
Figure 2.12: A macro triangulation where recursion does not stopFor using the re�nement algorithm in a �nite element package, we also need a numbering foredges, neighbours and faces. Edges and faces are needed for the implementation of higher orderelements, for example, and neighbour information is used in the re�nement algorithm itself andfor error estimator calculation, for example.In 2d the i-th edge/neighbour is the edge/neighbour opposite the i-th vertex; in 3d the i-thface/neighbour is the face/neighbour opposite the i-th vertex; edges in 3d are numbered in thefollowing way:edge 0: between vertex 0 and 1, edge 3: between vertex 1 and 1,edge 1: between vertex 0 and 2, edge 4: between vertex 1 and 3,edge 2: between vertex 0 and 3, edge 5: between vertex 2 and 3.Figure 2.13 shows the numbering of the edges of child tetrahedra after re�nement. The markersdescribe, which edge's degrees of freedom are changed during re�nement, when higher orderelements are used. For a more detailed description of handling higher order elements, see [58].
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Figure 2.13: Edge numbers during re�nement and degrees of freedom that are no longer needed�, passed on from parent to child elements �, and newly generated 22.2 Prolongation of data during re�nementDuring re�nement, �nite element functions will have to be adjusted to the new mesh situation.Using hierarchically structured meshes, the �nite element space of the coarse mesh is a subsetof the space of the re�ned mesh (at least for typical polynomial ansatz spaces and re�nement bybisection | there exist some �nite elements where spaces are not nested, and the conformingclosure needed by local regular re�nements may lead to non{nested spaces, too). Thus, datacan be represented identically on the re�ned mesh. During local re�nement procedures, this13



prolongation of information from the old mesh to the new one is usually done directly togetherwith the mesh changes.After the geometrical part of the re�nement is done on a patch around a re�nement edge, wecan prolongate data handled by the degrees of freedom from parents to child on the whole patch.We will describe the prolongation in detail for the case of piecewise linear �nite elements; forhigher order elements, everything is similar, but more degrees of freedom are involved.For linear element, when degrees of freedom are located at vertices only, everything takes placeon the bisected edge alone. Only one new vertex is created, the midpoint of the re�nement edge.To determine the value of a function fh at this new vertex, we can interpolate the function atthis point. On the edge, fh is a polynomial of degree 1, so the value at the midpoint is just themean of the values at the edge endpoints:fh(midpoint) = 12(fh(vertex 0) + fh(vertex 1)):Using the nodal basis functions �i(vj) = �i;j , then the coe�cient fn of the new basis function�n is just fn = 12(f0 + f1):2.3 Coarsening algorithmsThe coarsening algorithm is more or less the inverse of the re�nement algorithm. The basic ideais to collect all those elements that were created during the re�nement at same time, i.e. theparents of these elements build a compatible re�nement patch. If all the elements are markedfor coarsening, information is passed on the parents and the whole patch is coarsened at thesame time.If one of the elements is not marked for coarsening, we are not allowed to coarsen the patch.All element markers are reset. If one of the collected elements is not a leaf element but we areallowed to coarsen it more than one time, we �rst try to coarsen this element and then try tocoarsen the newly collected patch.This is the main di�erence between re�nement and coarsening: Every element that is markedfor re�nement will be re�ned and this re�nement may enforce a re�nement of other elementsthat are not marked for re�nement. An element that is marked for coarsening can only becoarsened if all elements of the coarsening patch may be coarsened together with this element.An element that is not marked for coarsening must not be coarsened, compare Section 3.2.Thus, we can formulate the coarsening algorithm as follows:
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Algorithm 2.3 Local coarsening around one edgesubroutine coarsen(element)f get the parents of all elements at the coarsening edgefor all parentsf if the coarsening edge of the parent is not compatiblef reset coarsening marks of all children of this patch;return false;ggfor all parentsf if the parent is refined more than once,and its children can be coarsened more than oncereturn true;gcoarsen all parents at the coarsening edge;return false;gThe following routine coarsens as many elements as possible, even more than once if allowed:Algorithm 2.4 Coarsening of the meshsubroutine coarsen mesh()f dof do coarsen once more = false;for all elementsif element is marked for coarseningdo coarsen once more |= coarsen(element);g until do coarsen once more is falseg2.4 Restriction of data during coarseningAlso during coarsening, �nite element functions will have to be adjusted to the new meshsituation. As now no longer the new �nite element space is a superset of the old one, we loosesome information. The marking strategies based on error estimators or indicators choose partsof the mesh to be coarsened, where the amount of lost information is not too big.Nevertheless, �nite element functions have to be restricted (transfered) from the �ne to thecoarse mesh. For linear �nite elements, the easiest way to get around is just to ignore the valueat the old vertex that will be removed, and interpolate the function in all remaining vertices.15



In one special situation, information can be transfered identically from the old to the newmesh. If the values of a linear functional F applied to all basis functions are of interest, we cantransform these values during coarsening, without making any error: If ��ne0 , ��ne1 , and ��nendenote the basis functions corresponding to the endpoints and the midpoint of the edge insidethe coarsened patch, then the new basis functions corresponding to the endpoints of the edgeare �coarse0 = ��ne0 + 12��nen ; �coarse1 = ��ne1 + 12��nen :This can easily be seen by interpolation of the coarse basis functions. Now, if for some linearfunctional F the values hF; ��ne0 i, hF; ��ne1 i, and hF; ��nen i are available, the values of F appliedto the new basis functions arehF; �coarse0 i = hF; ��ne0 i+ 12hF; ��nen i; hF; �coarse1 i = hF; ��ne1 i+ 12hF; ��nen i:As one can easily see, the transformation matrix which transforms the old vector of functionalvalues to the new one is just the transpose of the transformation matrix which was used forprolongation during re�nement. This is the same for higher order elements.One application of this procedure is time discretization, where scalar products with the solutionum�1 from the last time step appear on the right hand side of the discrete problem.2.5 Storage methods for hierarchical meshesThere are basically two kinds of storing a �nite element grid. One possibility is to store onlythe elements of the triangulation in a vector or a linked list. All information about elements islocated at the elements. In this situation there is no direct information of a hierarchical structurefor multigrid methods, e.g. Such information has to be generated and stored separately. Duringmesh re�nement, new elements are added (at the end) to the vector or list of elements. Duringmesh coarsening, elements are removed. In case of an element vector, `holes' may appear in thevector that contain no longer a valid element. One has to take care of them, or remove themby compressing the vector.The other kind of storing the mesh is to keep the whole sequence of grids starting on the macrotriangulation up to the actual one. Storing information about the whole hierarchical structurewill need additional amount of computer memory, but on the other hand we can save computermemory by storing such information not explicitly on each element which can be produced bythe hierarchical structure.The simplicial grid is generated by re�nement of a given macro triangulation. Re�ned partsof the grid can be dere�ned, but we can not coarsen elements of the macro triangulation. There�nement and coarsening routines construct a sequence of nested grids with a hierarchicalstructure. Every re�ned simplex is re�ned into two children. Elements that may be coarsenedwere created by re�ning the parent into these two elements and are now just coarsened backinto this parent (compare Sections 2.1, 2.3).Using this structure of the re�nement/coarsening routines, every element of the macro triangu-lation is the root of a binary tree: every interior node of that tree has two pointers to the twochildren; the leaf elements are part of the actual triangulation, which is used to de�ne the �niteelement space. The whole triangulation is a list (or vector) of given macro elements togetherwith the associated binary trees. 16



Operations on elements can be performed by traversing the mesh, using standard tree traversingalgorithms.Some information is stored on the (leaf) elements explicitly, other information is located at themacro elements and is transfered to the leaf elements while traversing through the binary tree.All information that should be available for mesh elements is stored explicitly for elements ofthe macro triangulation. Thus, all information is present on the macro level and is transfered tothe other tree elements by transforming requested data from one element to its children. Thesecan be done by simple calculations using the hierarchic structure induced by the re�nementalgorithm.An example of information which does not have to be stored for each element are the coordinatesof the element's vertices (in the case of non-parametric elements and polyhedral boundary).Going from parent to child only the coordinates of one vertex changes and the new ones aresimply the mean value of the coordinates of two vertices at the so called re�nement edge of theparent. The other vertex coordinates stay the same.Another example of such information is information about adjacent elements. Using adjacencyinformation of the macro elements we can compute requested information for all elements ofthe mesh.An implementation of the hierarchical mesh storage is done in [58].
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3 Adaptive strategiesDuring this section, we will present several strategies for the local re�nement and coarsening of�nite element meshes and for adjustment of the time step size.3.1 Mesh re�nement strategiesLet us assume that a triangulation Th of 
, a �nite element solution uh 2 Vh to an ellipticproblem, and an a posteriori error estimateku� uhk � �(uh) := 0@XT2Th �T (uh)21A1=2on this mesh are given. If " is a given allowed tolerance for the error, and �(uh) > ", theproblem arises� where to re�ne the mesh in order to reduce the error,� while at the same time the number of unknowns should not become too large.A global re�nement of the mesh would lead to the best reduction of the error, but the amount ofnew unknowns might be much larger than needed to reduce the error below the given tolerance.Using local re�nement, we hope to do much better.The design of an \optimal" mesh, where the number of unknowns is as small as possible tokeep the error below the tolerance, is an open problem and will probably be much too costly.Especially in the case of linear problems, the design of an optimal mesh will be much moreexpensive than the solution of the original problem, since the mesh optimization is a highlynonlinear problem. Some heuristic arguments have to be used in the algorithm. The aim is toproduce a result that is \not too far" from an optimal mesh, but with a relatively small amountof additional work to generate it.Several adaptive strategies are proposed in the literature, that give criteria which mesh elementsshould be marked for re�nement. All strategies are based on the idea of an equidistributionof the local error to all mesh elements. Babu�ska and Rheinboldt [1] motivate that a mesh isalmost optimal when the local errors are approximately equal for all elements. So, elementswhere the error estimate is large will be marked for re�nement, while elements with a smallestimated error are left unchanged.The general outline of the adaptive algorithm is as follows. Starting from an initial triangulationT0, we produce a sequence of triangulations Tk, k = 1; 2; : : :, until the estimated error is belowthe given tolerance:
18



Algorithm 3.1 General adaptive re�nement strategyStart with T0 and error tolerance "k := 0do foreversolve the discrete problem on Tkcompute local error estimates �T, T 2 Tkif � � " thenstopmark elements for refinement, according to a marking strategyrefine mesh Tk, producing Tk+1k := k + 1enddoSince a discrete problem has to be solved in every iteration of this algorithm, the number ofiterations should be as small as possible. Thus, the marking strategy should select not too fewmesh elements for re�nement in each cycle. On the other hand, not much more elements shouldbe selected than is needed to reduce the error below the given tolerance.In the sequel, we describe several marking strategies that are commonly used in adaptive �niteelement methods.Maximum strategy: The simplest strategy is a maximum strategy. A threshold  2 (0; 1)is given, and all elements T 2 Tk with �T >  maxT 02Tk �T 0(3.1)are marked for re�nement. A small  leads to more re�nement and non{optimal meshes, whilea large  leads to more cycles until the error tolerance is reached, but produces a mesh withless unknowns. Typically, a threshold value  = 0:5 is used [61, 63].Algorithm 3.2 Maximum strategyStart with parameter  2 (0; 1)�max := max(�T, T 2 Tk)for all T in Tk doif �T >  �max then mark T for refinementenddoExtrapolation strategy: Suppose that the local error estimates have an asymptotic be-haviour �T = c h�T as h! 0for some � > 0. If an element T with estimate �T was generated by re�ning an element T old ina previous mesh with corresponding estimate �oldT , then the above behaviour suggests that theestimate at one of the childs after re�ning T will be approximately�newT = �2T�oldT :19



Now, the idea is that no elements should be re�ned in the current iteration, where the estimatederror is smaller than the largest local estimate that is expected after the next re�nement. Thisleads to the following algorithm:Algorithm 3.3 Extrapolation strategy [1]cut := max(�newT , T 2 Tk)for all T in Tk doif �T > cut then mark T for refinementenddoIf �oldT is unknown and thus �newT cannot be computed, some other marking strategy has to beused.Equidistribution strategy: Let Nk be the number of mesh elements in Tk. If we assumethat the error is equidistributed over all elements, i. e. �T = �T 0 for all T; T 0 2 Tk, then� = 0@XT2Th �2T1A1=2 = pNk �T != " and �T = "pNk :We can try to reach this equidistribution by re�ning all elements, where it is disturbed becausethe estimated error is larger than "=pNk. To make the procedure more robust, a parameter� 2 (0; 1), � � 1, is included in the method.Algorithm 3.4 Equidistribution strategy [24]Start with parameter � 2 (0; 1), � � 1for all T in Tk doif �T > �"=pNk then mark T for refinementenddoIf the error � is already near ", then the choice � = 1 leads to the selection of only very fewelements for re�nement, which results in more iterations of the adative process. Thus, � shouldbe chosen smaller than 1, for example � = 0:9.Guaranteed error reduction strategy: Usually, it is not clear whether the adaptive re-�nement strategy Algorithm 3.1 using a marking strategy (other than global re�nement) willconverge and stop, or how fast the convergence is. D�orer [17] describes a strategy with aguaranteed relative error reduction for the Poisson equation.We need the assumptions, that- given data of the problem (like the right hand side) is su�ciently resolved by the currentmesh Tk,- all edges of marked mesh elements are at least bisected by the re�nement procedure (usingregular re�nement or two/three iterated bisections of triangles/tetrahedra, for example).The idea is to re�ne a subset of the triangulation that produces a considerable amount of thetotal error �. Given a parameter �� 2 (0; 1), the procedure is:Mark a set A � Tk such that XT2A �2T � (1� ��)2�2 :20



It follows from the assumptions that the error will be reduced by at least a factor � < 1depending of �� and data of the problem. Selection of the set A can be done in the followingway. The threshold  is reduced in small steps of size � 2 (0; 1), � � 0, until the maximumstrategy marks a set which is large enough. This inner iteration does not cost much time, asno computations are done in it.Algorithm 3.5 Guaranteed error reduction strategy [17]Start with given parameters �� 2 (0; 1), � 2 (0; 1)�max := max(�T, T 2 Tk)sum := 0 := 1while sum < (1� ��)2�2 do :=  � �for all T in Tk doif T is not markedif �T >  �maxmark T for refinementsum := sum + �2TendifendifenddoendwhileUsing the above algorithm, D�orer [16] describes a robust adaptive strategy also for the nonlin-ear Poisson equation ��u = f(u). It is based on a posteriori error estimates and a posteriorisaturation criteria for the approximation of the nonlinearity.Other re�nement strategies: Jarausch [39] describes a strategy which generates quasi{optimal meshes. It is based on an optimization procedure involving the increase of a costfunction during re�nement and the pro�t while minimizing an energy functional.For special applications, additional information may be generated by the error estimator andused by the adaptive strategy. This includes (anisotropic) directional re�nement of elements[44, 59], or the decision of local h{ or p{enrichment of the �nite element space [15].3.2 Coarsening strategiesUp to now we presented only re�nement strategies. For linear elliptic problems, no more isneeded to generate a quasi{optimal mesh with nearly equidistributed local errors.In timedependent problems, the regions where large local errors are produced can move in time.In stationary nonlinear problems, a bad resolution of the solution on coarse meshes may leadto some local re�nement where it is not needed for the �nal solution, and the mesh could becoarsened again. Both situations result in the need to coarsen the mesh at some places in orderto keep the number of unknowns small.Coarsening of the mesh can produce additional errors in a timedependent process. Assumingthat these are bounded by an a posteriori estimate �c;T , we can take this into account duringthe marking procedure. 21



Some of the re�nement strategies described above can also be used to mark mesh elementsfor coarsening. Actually, elements will only be coarsened if all neighbour elements which area�ected by the coarsening process are marked for coarsening, too. This makes sure that onlyelements where the error is small enough are coarsened, and motivates the coarsening algorithmin Section 2.3.Equidistribution strategy: Equidistribution of the tolerated error " leads to�T � "pNk for all T 2 T :If the local error at an element is considerably smaller than this mean value, we may coarsenthe element without producing an error that is too large. If we are able to estimate the errorafter coarsening, for example by assuming an asymptotic behavior like�T � c h�T ; � > 0 ;we can calculate a threshold �c 2 (0; �) such that the local error after coarsening is still below� "=pNk if it was smaller than �c "=pNk before. If the error after coarsening gets larger thanthis value, the elements would directly be re�ned again in the next iteration.Algorithm 3.6 Equidistribution re�nement/coarsening strategyStart with parameters � 2 (0; 1), � � 1, and �c 2 (0; �)for all T in Tk doif �T > � "=pNk then mark T for refinementif �T + �c;T < �c "=pNk then mark T for coarseningenddoWhen local h{ and p{enrichment and coarsening of the �nite element space is used, then thethreshold �c depends on the local degree of �nite elements. Thus, local thresholds �c;T have tobe used.Guaranteed error reduction strategy: Similar to the re�nement in Algorithm 3.5, D�orer[18] describes a marking strategy for coarsening. Again, the idea is to coarsen a subset of thetriangulation such that the additional error after coarsening is not larger than a �xed amountof the given tolerance ". Given a parameter �c 2 (0; 1), the procedure is:Mark a set B � Tk such that XT2B �2T + �2c;T � �2c"2 :The selection of the set B can be done similar to Algorithm 3.5. Under suitable assumptions,D�orer proves that the adaptive algorithm with mesh re�nement and coarsening leads to anerror below the given tolerance [18].Handling information loss during coarsening: Usually, some information is irreversiblydestroyed during coarsening of parts of the mesh, compare Section 2.4. If the adaptive procedureiterates several times, it may occur that elements which were marked for coarsening in thebeginning are not allowed to coarsen at the end. If the mesh was already coarsened, an error isproduced which can not be reduced anymore. 22



One possibility to circumvent such problems is to delay the mesh coarsening until the �naliteration of the adaptive procedure, allowing only re�nements before. If the coarsening markingstrategy is not too liberal (�c not too large), this should keep the error below the given bound.D�orer [18] proposes to keep all information until it is clear, after solving and by estimatingthe error on a (virtually) coarsened mesh, that the coarsening does not lead to an error whichis too large.3.3 Adaptive procedures for timedependent problemsIn timedependent problems, the mesh is adapted to the solution in every time step using aposteriori error estimators or indicators. B�ansch [3] lists several di�erent adaptive proceduresfor timedependent problems:� Explicit strategy: The current time step is solved once on the mesh from the previoustime step, giving the solution uh. Based on a posteriori estimates of u, the mesh islocally re�ned and coarsened. The problem is not solved again on the new mesh, and theestimate{adapt process is not iterated.This strategy is only usable when the solution is nearly stationary and does not changemuch in time, or when the time step size is very small.� Semi{implicit strategy: The current time step is solved once on the mesh from theprevious time step, giving an intermediate solution ~uh. Based on a posteriori estimates of~u, the mesh is locally re�ned and coarsened. This produces the �nal mesh for the currenttime step, where the discrete solution uh is computed. The estimate{adapt process is notiterated.This strategy works quite well, if the time steps are not too large, such that regions ofre�nement move too fast.� Implicit strategy A: In every time step starting from the previous time step's triangu-lation, a mesh is generated using local re�nement and coarsening based on a posterioriestimates of a solution which is calculated on the current mesh. This solve{estimate{adapt process is iterated until the estimated error is below the given bound.This strategy guarantees that the estimated error is below the given bound. Togetherwith an adaptive control of the time step size, this leads to global (in time) error bounds.If the time step size is not too large, the number of iterations of the solve{estimate{adaptprocess is usually very small.� Implicit strategy B: In every time step starting from the macro triangulation, a meshis generated using local re�nements based on a posteriori estimates of a solution whichis calculated on the current (maybe quite coarse) mesh; no mesh coarsening is needed.This solve{estimate{adapt process is iterated until the estimated error is below the givenbound.Like implicit strategy A, this strategy guarantees error bounds. As the initial mesh forevery time step is very coarse, the number of iterations of the solve{estimate{adapt processbecomes quite large, and thus the algorithm might become expensive. On the other hand,a solution on a coarse grid is fast and can be used as a good initial guess for �ner grids,which is usually better than using the solution from the old time step.Implicit strategy B can also be used with anisotropically re�ned triangular meshes, see23



[29]. As coarsening of anisotropic meshes and changes of the anisotropy direction are stillopen problems, this implies that the implicit strategy A can not be used in this context.Figure 3.1 shows one time step using the implicit strategy A. The adaptive algorithm as shownin the ow diagram ensures that the mesh re�nement/coarsening is done at least once in eachtime step, even if the error estimate is below the limit. Nevertheless, the error might be notequally distributed between all elements; for some simplices the local error estimates might bebigger than allowed. Start with initial values T 1; �; u0O N M LH I J K
��Given T m; um�1, solve for umCompute error estimates
��G F E D

@ A B C

For all T 2 T m:Use marking strategy for re�nement and coarseningAdapt the mesh where needed
��If mesh was changed, solve again for umCompute error estimates
��Test error estimate: � > "?
��

B Cyes

E Doo

m m+ 1t < T ?@ A yes

G F //

��StopO N M LH I J KFigure 3.1: Implicit adaptive strategy A3.4 Adaptive control of the time step sizeA posteriori error estimates for parabolic problems include an estimate �� of the error thatis produced by the time discretization with the actual time step size � . For Euler time dis-cretization of the heat equation ut ��u = f with piecewise linear �nite elements, for example,�� = c(kfk
�(tm ;tm+1) + kum+1h � umh k
). 24



When a bound " is given for the total error produced in a timestep, the widely used strategy isto allow half of this error to be produced by the spacial discretization, and the other half of theerror to be produced by the time discretization (equidistribution of error in time and space).The adaptive procedure is now:� Adjust the time step size such that �� � "=2,� Adapt the mesh such that � � "=2.The adjustment of the time step size can be done via extrapolation techniques known fromnumerical methods for ordinary di�erential equations, or iteratively: The algorithm starts fromthe previous time step size �old or from an initial guess. A parameter �1 2 (0; 1) (usuallydepending on the order of the time discretization) is used to reduce the step size until theestimate is below the given bound. If the error is smaller than the bound, the step size isenlarged by a factor �2 > 1. In this case, the actual time step is not recalculated, only theinitial step size for the next time step is changed. Two additional parameters �1 2 (0; 1),�2 2 (0; �1) are used to keep the algorithm robust, just like it is done in the equidistributionstrategy for mesh adaption. The algorithm starts from the previous time step size �old or froman initial guess.If �1 � 1, consecutive time steps may vary only slightly, but the number of iterations for gettingthe new accepted time step may increase. Again, as each iteration includes the solution of adiscrete problem, this value should be chosen not too large. For a 1st order time discretizationscheme, a common choice is �1 � 0:5, for example.Algorithm 3.7 Time step size controlStart with parameters �1 2 (0; 1), �2 > 1, �1 2 (0; 1), �2 2 (0; �1)� := �oldSolve time step problem and estimate the errorwhile �� > �1 "=2 do� := � * �1Solve time step problem and estimate the errorendwhileif �� � �2 "=2 then� := � * �2endifThe above algorithm controls only the time step size, but does not show the mesh adaption.There are several possibilities to combine both controls. An inclusion of the grid adaption inevery iteration of Algorithm 3.7 can result in a large number of discrete problems to solve,especially if the time step size is reduced more than once. A better procedure is �rst to do thestep size control with the old mesh, then adapt the mesh, and after this check the time erroragain. In combination with implicit strategy A, this procedure is shown in Figure 3.2.The adaptive a posteriori approach can be extended to the adaptive choice of the order of thetime discretization: Bornemann [8, 9, 10] describes an adaptive variable order time discretizationmethod, combined with implicit strategy B using the extrapolation marking strategy for themesh adaption. 25
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4 The classical Stefan problemWe consider the classical two phase Stefan problem, which describes the heat di�usion andphase change in a pure material. Let 
 � Rd denote a bounded domain, u the enthalpy and �the temperature, and f(t; �) 2 H�1(
) a given right hand side su�ciently smooth in time.Problem 4.1 Two phase Stefan problemFind u 2 L1(0; T ;L1(
)) \W 1;1(0; T ;H�1(
)) and � 2 L1(0; T ;H10 (
)) such thatddtu��� = f in H�1(
);with initial condition u(�; 0) = u0and � = �(u);where �(s) = min(s; 0) + max(s� 1; 0), see Figure 4.1.
1

1Figure 4.1: Graphs of � and ��14.1 Elliptic variational inequalities and the Stefan problemEVI and minimization problems: We need to cite some results about elliptic variationalinequalities. For more information, see e.g. [21, 32].Theorem 4.1 Let 
 � Rd bounded, V � H10 (
), a : V � V ! R bilinear, symmetric, andelliptic, � : R! R convex, l 2 V � � L2(
), andJ(v) := 12a(v; v) � hl; vi; �(v) := Z
�(v(x))dx:Then the minimization problemu 2 V : J(u) + �(u) � J(v) + �(v) 8v 2 V(4.1)has a unique solution and is equivalent to the elliptic variational inequality of second kindu 2 V : a(u; v � u) + �(v) � �(u) � hl; v � ui 8v 2 V:(4.2)Proof (from [32]): Existence and uniqueness of a solution u for the minimization problem(4.1) follows from the strict convexity of J + � and the fact that J(v) + �(v) ! 1 askvk ! 1. 27



Let u be the solution of (4.1). For every v 2 V and 0 < s � 1 we haveJ(u) + �(u) � J(u+ s(v � u)) + �(u+ s(v � u));and thus, using the convexity of �,0 � J(u+ s(v � u))� J(u) + �(u+ s(v � u))� �(u)� J(u+ s(v � u))� J(u) + s(�(v)� �(u)):Dividing by s, we get in the limit s! 00 � hJ 0(u); v � ui+ �(v)� �(u) 8v 2 V:Since a(�; �) is symmetric, we havehJ 0(v); wi = a(v; w) � hl; wi 8v; w 2 V;and the variational inequality (4.2) follows.Now, let u be a solution of (4.2). For v 2 V we haveJ(v) + �(v)� J(u)� �(u) = 12(a(v; v) � a(u; u)) + �(v)� �(u)� hl; v � ui:Using the identitya(v; v) = a(u+ v � u; u+ v � u) = a(u; u) + 2a(u; v � u) + a(u� v; u� v);we getJ(v) + �(v)� J(u)� �(u) = a(u; v � u) + �(v)� �(u)� hl; v � ui+ 12a(u� v; u� v):Since (4.2) and a(u� v; u� v) � 0, we get that u solves (4.1). 2EVI and subdi�erentials: For a function � : V ! R, we de�ne the subdi�erential of � atu 2 V by @�(u) := fu� 2 V � j �(v) � �(u) � hu�; v � ui for all v 2 V g:De�ning A 2 L(V; V �) by hAv;wi := a(v; w) for all v; w 2 V , the EVI (4.2) readshAu; v � ui+ �(v)� �(u) � hl; v � ui 8v 2 V;or �(v)� �(u) � hl �Au; v � ui 8v 2 V:By de�nition of @�(u), we have l �Au 2 @�(u):(4.3)For smooth l �Au, also the pointwise inclusion (almost everywhere)(l �Au)(x) 2 @�(u(x)) for a. e. x 2 
holds for the solution u of (4.2), where the subdi�erential of � is de�ned as@�(u(x)) := fz 2 R j �(y)� �(x) � z(y � x) for all y 2 Rg:28



An EVI equivalent to the Stefan problem: We return to the Stefan problemddtu��� = f in H�1(
); with� = �(u) , u 2 ��1(�);where �(s) = min(s; 0) + max(s � 1; 0), see Figure 4.1, and suitable initial and boundaryconditions. An implicit Euler discretization in time leads toum � um�1� ���m = fm;um = ���m + um�1 + �fm:With A := ��� and lm := um�1 + �fm this readsum = lm �A�m:Using the relation u 2 ��1(�), we getlm �A�m 2 ��1(�m):Now, ��1 is just the subdi�erential of the convex function�(y) = 12y2 +max(y; 0);(4.4)which results in the inclusion(lm �A�m)(x) 2 @�(�m(x)) a.e., orlm �A�m 2 @�(�m):Recalling (4.3), we see that the temperature �m is the solution of the minimization problem(4.1) or the elliptic variational inequality (4.2) with the special � from (4.4).For solving the timedependent Stefan problem, we have to solve such an elliptic variationalinequality in every time step.4.2 A multigrid method for elliptic variational inequalitiesIterative solution methods like (linear or nonlinear) SOR are usually non-optimal in the sense,that their convergence gets slower when the discretizations get �ner. This is caused by the factthat the contraction constant of the method (spectral radius of the corresponding matrix) tendsto one when the mesh size tends to zero.Using multilevel techniques, the design of some `optimal' iterative solution methods for linearand nonlinear problems is possible. Linear multilevel solvers (multigrid solvers or multilevelpreconditioners) are quite standard now, but most nonlinear problems need specialized methods.Kornhuber [41, 43] describes a �nite element multigrid method for the solution of elliptic vari-ational inequalities, where � is a piecewise quadratic function. We will motivate and describethis method. Similar methods were presented in [35], [36].29



First, we need some notations used for the multilevel �nite element method (we use the sameas [43]).Let the domain 
 � R2 be bounded by a polygon, and let T 0 be a given macro{triangulationof 
. We use a sequence of nested triangulations T 1; : : : ;T j by successive re�nements of T 0.We want to solve the time discretized Stefan problem on the �nest triangulation T j. Let Vk,k = 0; : : : ; j be the corresponding �nite element spaces of piecewise linear functions. Nk =fpi; i = 1; : : : ; nkg denote the non-Dirichlet vertices of T k, and �k = f�(k)pi ; i = 1; : : : ; nkg,k = 0; : : : ; j, the corresponding nodal basis of Vk. By construction, we have V0 � V1 � : : : � Vjand n0 < n1 < : : : < nj .Multigrid for linear elliptic problems: First of all, we give a short description of multigridmethods for the linear elliptic problemu 2 H10 (
) : 12 a(u; u) � hf; ui � 12 a(v; v) � hf; vi 8v 2 H10 (
), u 2 H10 (
) : a(u; v) = hf; vi 8v 2 H10 (
):Finite element discretization leads to the linear system of equationsuh 2 Vj : a(uh; vh) = hf; vhi 8vh 2 Vj :One iteration of a V-cycle multigrid solver for this problem, starting with u�h 2 Vj and producingu�+1h , is presented in the Algorithm 4.1. The general idea of multilevel methods is to reduce highfrequency components of the error by �ne level smoothing and low frequency error componentsby coarse grid correction. The multigrid iteration below uses one pre{smoothing iteration perlevel and no post{smoothing. The smoothing operator Mk(a; f) consists usually of one or moreiterations of a standard iterative solver for the linear system, like Gauss-Seidel, Jacobi, etc.,which has some smoothing properties.Algorithm 4.1 Linear V{cycle multigrid iterationfine grid smoothing: v(j) :=Mj(a; f)(u�h)residual: r(j) = f � a(v(j); �)a(j) := acoarse grid correction:for k = j � 1 to 0 step �1 docanonical restrictions: a(k) := a(k+1)jVk�Vk, r(k) := r(k+1)jVkcoarse grid smoothing: v(k) :=Mk(a(k); r(k))(0)update residual: r(k) := r(k) � a(k)(v(k); �)enddofor k = 0 to j � 1 docanonical prolongation: v(k+1) = v(k+1) + v(k)enddonew iterate: u�+1h := v(j)The restrictions of the bilinear form and of the residual and the prolongation of the coarse gridcorrection use the formulas presented in Sections 2.2 and 2.4. The general structure of themultigrid algorithm for elliptic variational inequalities will be just the same, see Algorithm 4.3.30



Multigrid for elliptic variational inequalities: The aim now is so solve the discrete op-timization problemuh 2 Vj : Jj(uh) + �j(uh) � Jj(vh) + �j(vh) 8vh 2 Vj ;(4.5)where the nonlinear functional �(v) = R
�(v(x)) is replaced by the discrete (lumped) nonlinearfunctional �j(vh) := njXi=1�(vh(pi)) Z
 �(j)pi dx ;(4.6)and J is replaced by an approximation using a lumped L2 scalar product:Jj(vh) := 12 a(vh; vh)� hl; vhij ;(4.7) hvh; whij := njXi=1 vh(pi)wh(pi) Z
 �(j)pi dx ;(4.8)For the sake of clearness and simplicity, we describe the method for the Stefan problem with �from (4.4), �(y) = ( 12y2 y � 0 ;12y2 + y y � 0 :(4.9)The articles [42, 43] describe the method for some more general situations of two or more phases,where � is a general piecewise quadratic and convex function.Existence and uniqueness of a solution uh of the discrete problem (4.5) follow just as in thenondiscrete case. Convergence of the discrete solution uh to the solution u of the continuousproblem (4.1) is known [22, 32], including a priori error estimates.The general idea of the multilevel solver is to successively minimize the energy functional in theone dimensional subspaces, which are spanned by the nodal basis functions from all levels:V ki := spanf�(k)pi g; i = 1; : : : ; nk; k = 0; : : : ; j:Starting from u�h 2 Vj, the following algorithm describes one iteration of a `global' relaxationprocedure, producing the next iterate u�+1h . It consists of one minimization in each of the abovesubspaces, using damping parameters !k;i 2 [0; 1].Algorithm 4.2 (Nonlinear multilevel relaxation)wh := u�hfor k = j; : : : ; 0 step �1 dofor i = 1; : : : ; nk do�vh 2 V ki : Jj(wh + �vh) + �j(wh + �vh) � Jj(wh + vh) + �j(wh + vh) 8vh 2 V kiwh := wh + !k;i�vh; !k;i 2 [0; 1]enddoenddou�+1h := whThe following theorem states the convergence of such successive minimizations even whendamped minimizations are used in subspaces which are generated by coarse level basis functions:31



Theorem 4.2 For any initial iterate u0h 2 Vj and any sequence of damping parameters withthe property that no damping is used at the �nest level, i. e.!j;i = 1; i = 1; : : : ; nj ;the sequence of iterates (u�h)��0 produced by Algorithm 4.2 converges to the solution uh of thediscrete problem (4.5).The proof uses the global convergence of the leading nondamped relaxation on the �nestlevel (which is just a nonlinear Gauss-Seidel relaxation) and the monotonicity of the localcorrections: (Jj + �j)(wh) does not increase during the iteration. It can be found in [41].On the �nest level k = j, the minimization in the one dimensional subspace V ji�vh 2 V ji : Jj(wh + �vh) + �j(wh + �vh) � Jj(wh + vh) + �j(wh + vh) 8vh 2 V jiis equivalent (compare (4.3)) to the inclusion:�vh 2 V ji : l � a(wh + �vh; �) 2 @�j(wh + �vh) :With m� := R
 �(j)p� , a�� := a(�(j)p� ; �(j)p� ), w� := wh(p�), and l� := l(p�), �; � = 1; : : : ; nj , thiscorresponds to the scalar nonlinear inclusion�z 2 R : limi � X�=1;:::;nj ; �6=i a�i w� 2 aii(wi + �z) +mi @�(wi + �z) :Using b := limi�P�6=i a�i w�, the solution �z is given explicitely by the nonlinear Gauss{Seidelstep wi + �z = 8><>: b=(aii +mi) b < 0;0 b 2 [0;mi];(b�mi)=(aii +mi) b > mi :(4.10)For coarser levels k < j, the basis functions �(k)i are nonzero at more than one �ne-level vertex,and the minimization in the one dimensional subspace V ki needs the solution of a system ofnonlinear equations. The exact solution can no longer be calculated as easily as in the case ofthe �nest level. So, this general nonlinear multilevel relaxation is not easy to implement andsolve.The idea for a multilevel procedure, which is easy to implement, is to minimize the functionalonly in a subset of the one dimensional subspace, where the solution is easy to compute.We will see afterwards, that the �nal multigrid methods are equivalent to the nonlinear multi-level relaxation with damping at the coarser levels.Depending on a current iterate u�h, we de�ne discrete phases N�j and N+j byN�j (u�h) := fp 2 Nj j u�h(p) < 0g ; N+j (u�h) := fp 2 Nj j u�h(p) > 0g :All other nodes belong to the set of critical nodes N�jN�j (u�h) := Nj n (N�j (u�h) [N+j (u�h)) :It can be shown that these discrete phases converge during the nonlinear multilevel relaxation:32



Theorem 4.3 If the discrete problem (4.5) is non{degenerate, i. e.p 2 N�j (uh) ) hl; �(j)p i � a(uh; �(j)p ) 2 int @�j(uh)(�(j)p ) ;then the discrete phases of the iterates u�h converge to the discrete phases of uh. There esistssome �0 � 0, such that the discrete phases N�j , N+j , and N�j of uh and those of u�h, � > �0,coincide.The proof can be found in [43].As long as the discrete phases of a function wh do not change, the functional �j(wh) is quadratic:�j(wh) = njXi=1�(wh(pi)) Z
 �(j)pi dx= Xpi2N�j 12wh(pi)2 Z
 �(j)pi dx+ Xpi2N+j (12wh(pi)2 + wh(pi)) Z
 �(j)pi dx= 12 njXi=1wh(pi)2 Z
 �(j)pi dx+ Xpi2N+j wh(pi) Z
 �(j)pi dx=: 12bwh(wh; wh)� fwh(wh) :This de�nes a bilinear form bwh and a linear functional fwh , which both depend on the currentdiscrete phases, in general (in our special situation, only fwh depends on the phases).The coarse grid corrections of the multilevel procedure will keep the discrete phases of thecurrent solution unchanged and solve the problem with such simpli�ed equations. In order tokeep the discrete phases unchanged, we de�ne lower and upper obstacle functions '��j and �'�j by'��j (p) := ( �1 u�h(p) < 0;0 u�h(p) � 0; �'�j (p) := ( 0 u�h(p) � 0;1 u�h(p) > 0; p 2 Nj ;and the closed convex subset K�j � Vj of functions with the same discrete phases as u�h is givenby K�j = fvh 2 Vj j '��j (p) � vh(p) � �'�j (p) for all p 2 Njg:After minimizing the energy in the �ne level subspaces V ji , i = 1; : : : ; nj, the discrete phasesand obstacles are computed, and coarse level minimizations are only done in a convex subsetDki � V ki \ K�j :�vh 2 Dki : Jj(wh + �vh) + �j(wh + �vh) � Jj(wh + vh) + �j(wh + vh) 8vh 2 Dki :The generation of these subsets Dki will be described below. This minimization can be donevery e�ciently and is equivalent to a truncated linear Gauss-Seidel smoother on the coarsergrids. Let ~z�(k)pi 2 V ki be the solution of the unconstrained linearized problem, which can becomputed by a linear Gauss-Seidel step similar to (4.10). For given Dki we de�ne D� ki ; �Dki 2 R byDki = fz�(k)pi j z 2 [D� ki ; �Dki ]g. Then the solution of the problem in Dki is given by the truncationvh := �z�(k)pi where �z := min( �Dki ;max(D� ki ; ~z)) :33



A computation of the set V ki \ K�j is not easy to implement at the coarse levels, but a verye�cient and simple (but non-optimal) restriction of the obstacles to the coarser �nite elementspaces is possible. This is used to compute the subsets Dki . We present the simple idea incase of the upper obstacle �'� . Like always during restrictions and prolongations in multigridmethods, such a restriction can be built out of simple atomic restrictions, which describe thelocal situation where one edge e of the triangulation Tk is bisected into two edges of level k+1.This de�nes a restriction operator �Re : Vk+1 ! Vk+1. The restriction �Rkk+1 : Vk+1 ! Vk is thende�ned by �Rkk+1 := Ik � �Re1 � � � � � �Rem ;(4.11)where Ik is the Lagrange interpolation operator to Vk, and e1; : : : ; em are the edges which werebisected during the re�nement process from Tk to Tk+1. The actual restriction �Rkk+1 may dependon the order of these edges.
p1

p2pep1
p2pe p1

p2peFigure 4.2: Restriction �Re of the upper obstacle: Fine grid obstacles are depicted by solid linesand coarse grid obstacles by dashed lines.Looking at one single edge e, we have a one dimensional situation. Let p1, p2 denote the verticesof e, and pe the midpoint of e. The coarse level obstacle �'�k is linear on this edge, and should besmaller or equal to the �ne level obstacle �'�k+1, which is piecewise linear on the two half edges.The idea of this restriction is simply to change the values at the vertices p1, p2 in a simple waysuch that the coarse grid function �'�k is bounded by the �ne grid function. Figure 4.2 shows thethree principal cases. The solid line denotes the function v, while the dashed line denotes Ik �Rev.If v(pe) � min(v(p1); v(p2)), then IkRev is constant equal to v(pe). If v(pe) > 12(v(p1) + v(p2)),then Ik �Rev is just the interpolation of v. Otherwise, Ik �Rev is just the continuation of the lowerhalf. Formulas for the restricted values at p1, p2 follow quite easily.These restrictions �Rkk+1 and R� kk+1 of the lower and upper obstacles are used on level k to boundthe coarse grid correction and describe the sets Dki , i = 1; : : : ; nk. These sets can not becomeempty, but it may happen that Dki = f0g for points pi near the interface, and thus no correctionwill be allowed at these points.Let us denote the �ne-grid minimization (smoothing) operation starting with u�h by Mj(u�h)and the coarse-grid minimization (smoothing) operation using a quadratic functional a(k)(�; �),a right hand side r(k)(�) and upper and lower obstacles  � (k), � (k), starting with zero, by~Mk[a(k); r(k);  � (k); � (k)](0):Subroutine Mj(u�h):wh := u�hfor i = 1 to nj do�vh 2 V (j)i : Jj(wh + �vh) + �j(wh + �vh) � Jj(wh + vh) + �j(wh + vh) 8vh 2 V jiwh := wh + �vhenddoreturn wh 34



Subroutine ~Mk[a(k); r(k);  �(k); � (k)](0):wh := 0Jk(vh) := 12a(k)(vh; vh)� hr(k); vhifor i = 1 to nk doD(k)i := fvh 2 V ki j  �(k)(pi) � vh(pi) � � (k)(pi)g�vh 2 D(k)i : Jk(wh + �vh) � Jk(wh + vh) 8vh 2 D(k)iwh := wh + �vhenddoreturn whUsing these subroutines one iteration of the multilevel algorithm reads as follows:Algorithm 4.3 Standard monotone multigrid method STDKHfine grid smoothing: ~u�h :=Mj(u�h)discrete phases: N�j (~u�h), N+j (~u�h), N�j (~u�h)local linearization: ~a := a+ b~u�h, ~l := l + f~u�hcoarse grid correction:initialize:bilinear form: a(j) = ~a,residual: r(j) = ~l � ~a(~u�h; �),defect obstacles:  �(j) := '��j � ~u�h, � (j) := �'�j � ~u�hfor k = j � 1 to 0 step �1 docanonical restrictions: a(k) := a(k+1)jVk�Vk, r(k) := r(k+1)jVkobstacle restrictions:  �(k) := R�kk+1 �(k+1), � (k) := �Rkk+1 � (k+1)coarse grid smoothing: v(k) := ~Mk[a(k); r(k);  �(k); � (k)](0)update:residual: r(k) := r(k) � a(k)(v(k); �)obstacles:  �(k) :=  �(k) � v(k), � (k) := � (k) � v(k)enddofor k = 0 to j � 1 docanonical prolongation: v(k+1) = v(k+1) + v(k)enddonew iterate: u�+1h := ~u�h + v(j)Using a multigrid methods's wording, Algorithm 4.3 as stated above is a V{cycle which usesone pre{smoothing iteration per level and no post{smoothing. Similar algorithms with morepre{ and post{smoothing iterations, W{cycles, etc. are straightforward.Kornhuber [41, 43] proves the following convergence result:Theorem 4.4 The standard monotone multigrid method described in Algorithm 4.3 is globallyconvergent.Assume that the discrete problem is non{degenerate, then the discrete phases of the iterates(u�h)��0 converge to the discrete phases of the discrete solution uh and the error estimatekuh � u�+1h k � (1� c(j + 1)�4)kuh � u�hkholds, if � is large enough. 35



Convergence follows from Theorem 4.2, as the standard monotone multigrid method is anonlinear multilevel relaxation. The proof of the multigrid convergence rate is based on theconvergence of discrete phases, Theorem 4.3, and some general multigrid convergence results.The proven convergence rate of the multilevel method is not independent of the mesh size, but(1� c(j + 1)�4) depends only logarithmically on h � 2�j .If the set of critical nodesN�j (~u�h) is not empty, then the restrictions (4.11) of the upper and lowerobstacles forbid any coarse grid corrections in subspaces V (k)i where N�j \ int supp �(k)pi 6= ;.This leads to ine�cient multilevel convergence. For this reason, Kornhuber additionally presentsa modi�cation of his algorithm, which is equivalent to a modi�cation (`truncation') of thosecoarse level basis functions that are non{zero at critical nodes.Algorithm 4.4 Truncated monotone multigrid method TRCKHModi�cations of the standard monotone multigrid method, Algorithm 4.3:modi�ed restrictions of the bilinear form and of the residual:treat all entries from the actual critical nodes N�j (~u�h) as zeromodi�ed restrictions of the upper (and lower) defect obstacle:treat all entries from the actual critical nodes N�j (~u�h) as 1 (�1)modi�ed prolongations of the corrections:prolongate zero to all critical nodesConvergence of this modi�ed algorithm is proved, too, but (for technical reasons) the provenconvergence rate is worse than for the standard multigrid method. Numerical results show thatmesh{independent convergence is observed which reaches the convergence rate of multigridmethods for the linear elliptic problem [42]. Thus, this truncated monotone multigrid methodseems to be an `optimal' solver.However, the actual e�ciency depends a lot on an e�cient implementation of every part ofthe method. For small{ and medium{scale problems with not too small error criterion, theSOR solver described below is usually faster because of its simple structure, but for large{scaleproblems the multigrid method with its O(jNj j) work bound gets superior.4.3 Nonlinear SOR solvers for the Stefan problemA nonlinear Gauss{Seidel solver is already included in the nonlinear multilevel relaxation Al-gorithm 4.2. With damping parameters !k;i = 0, k < j, only relaxations at the �nest level areallowed. This results just in a nonlinear Gauss{Seidel solver. Convergence follows directly fromTheorem 4.2.Even for �ne level damping with a �xed !j;i = ! 2 (0; 1], convergence follows easily.In practice, the SOR solver (with ! 2 (0; 2)) converges quite well and is very easy to implement.A good choice for ! is the optimal value for the (linear) discretized heat equation, see [51].Elliott [22] proved convergence of an SOR solver with arbitrary !j;i = ! 2 (0; 2). It uses amodi�cation of the above algorithm: If the overrelaxation step leads to a local change of phase,then the exact minimizer (!j;i = 1) is used at this point. Thus, overrelaxation is used onlywhere no phase changes occur.
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4.4 Adaptive methodThe mesh and time step adaption process is based on the following a posteriori error estimate.Here, the triangulation of timestep n is Mn, simplices are denoted by S, and the discretesolutions by Un resp. �n.For all tm 2 [0; T ], ku� ÛkL1(0;tm;H�1(
)) + k�(u)� �̂kL2(0;tm;L2(
))� ku0 � U0kH�1(
)+C1 mXn=1 �n  d+ 14 XS2Mn hSk[r�n]k2L2(@S)!1=2+C2 mXn=1 �n  XS2Mn h2Sk�nfn � Unt k2L2(S)!1=2+ mXn=1 �nkfn ��nfnkH�1(
)+C mXn=1 �n XS2Mn h4Skr(�nfn � Unt )k2L2(S)!1=2+ mXn=1 �nkr(�(Un)��n�(Un))kL2(
)+ mXn=1 k[Un�1]kH�1(
)+ mXn=1 ZIn kf � fnkH�1(
)+ 1p2  mXn=1 �nk�nUtk2L2(
)!1=2 :For derivation and proof, see [54]. This leads to local estimator terms (which are just thelocalized squares of the terms from above):En0 (S) := ( jSjk�0u0k2L1(S) if S \ �0 6= ;;jSjhsk[r�0]k2L2(@S) if S \ �0 = ;;En1 (S) := C21 d+ 14 hSk[r�n]k2L2(@S) ;En2 (S) := C22h2Sk�nfn � Unt k2L2(S) ;En3 (S) := d2
kfn ��nfnk2L2(S) ;En4 (S) := C2h4Skr(�nfn � Unt )k2L2(S) ;En5 (S) := kr(�(Un)��n�(Un))k2L2(S) ;En6 (S) := �d
�n�2 k[Un�1]k2L2(S) ;En7 (S) := d2
kf � fnk2L1(In;L2(S)) ;37



En8 (S) := 12k�nUtk2L2(S) :The local and global estimators for mesh adaption, coarsening and time step adaption are�S := (En1 (S) +En2 (S) +En3 (S) +En4 (S) +En5 (S))1=2 ;�c;S := En6 (S)1=2;� :=  XS2Mn �2S + �2c;S!1=2 ;�� :=  XS2Mn TEn7 (S) +En8 (S)!1=2 :With a given tolerance " for the total error, we try to equidistribute the error in time also, andin every timestep the mesh size and time step size are adjusted such that� � "�spaceT and �� � "�timepT :Together with an adaption of the initial mesh, such that0@ XS2M0E0(S)1A1=2 � "�initial ;and parameters �initial+ �space+ �time � 1, this assures that the total error, summed up over alltime steps, is below the given bound ".The �nal adaptive algorithm is shown in the ow diagram Figure 4.3.
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5 The Stefan problem with surface tension and kinetic under-coolingThe following section is taken from [57]. Let 
 � Rn denote a bounded domain containing apure substance. For t � 0 let 
s(t) � 
 and 
l(t) � 
 with 
s(t)\
l(t) = ;, �
 = �
s(t)[ �
l(t)be the parts of 
 containing the solid and liquid phases of the substance at time t. The movingfree boundary between solid and liquid phases will be denoted by �(t) := �
s(t) \ �
l(t).The physical constants for the di�erent phases are heat conductivity ks; kl, speci�c heat cs; cland density �s; �l. In each of both phases the heat equation for the (absolute) temperature �holds: @�@t = Ds�� in 
s ; @�@t = Dl�� in 
l ;(5.1)where the di�usion constants Ds;Dl are de�ned by the physical constants as Di := ki=(ci�i),i = s; l. At the free boundary �, its velocity and the temperature ful�l an equation known as\Stefan condition":LV� = Dscs@�j
s@�s +Dlcl @�j
l@�l =: � �Di ci @�@�� �� on �(t) ;(5.2)where �s and �l denote the outer normal vectors to the domains 
s and 
l, and we take�� := �s = ��l to be the normal of the free boundary �. V� is the velocity of the free boundary� in direction of �� , and L is the latent heat per unit volume in the solid phase. Finally, [�]�denotes the jump at the free boundary. The left hand side of (5.2) describes the rate at whichheat is generated by solidi�cation at the free boundary. The right hand side describes the heattransport into the solid and liquid phase.Additionally, a thermodynamical condition holds at the free boundary:� = �M �1� L C� � �L V�� on �:(5.3)Here, �M is the melting temperature of the substance, and  = (��) the surface tensionbetween solid and liquid phase (usually depending on the direction of ��). C� is the meancurvature of the free boundary � (sum of the principal curvatures). The sign of C� is taken in theway that the mean curvature for a convex solid phase 
s is positive. The coe�cient � = �(��)depends on �� in the general case, too. Equation (5.3) is known as the Gibbs{Thomson law. If or � depend on the direction of the normal �� then the coe�cients are called \anisotropic",else \isotropic". The term C�=L describes the inuence of surface tension, which stabilizes themotion and makes dendritic growth possible. With � = 0, equation (5.3) describes a situationin local thermical equilibrium (see [46] for details), while the non equilibrium situation with amoving interface is modeled with � > 0 (compare [33]). In the sequel, we will only consider thecase � > 0.In three dimensions, it may be better to use an anisotropic surface tension to model theanisotropy. This results in some anisotropic curvature to replace the mean curvature C� . Useof this anisotropic curvature leads to weak formulations, compare (7.7) and (9.6).With a given initial temperature distribution �0 and an interface �0, we pose the followingboundary and initial value conditions:�(x; t) = �0(x; t) on @
; t � 0 ;40



�(x; 0) = �0(x; 0) in 
 ;�(0) = �0 :Using a dimensionless temperature � := (cs + cl) (���M )=2L, the system of equations (5.1){(5.3) transforms to @�@t = Ds;l�� in 
s;l; t > 0 ;V� = �2cs + cl �Dici @�@�� �� on � ;� = �"C C� � "V V� on � :Here we used "C (��) = (��) (cs+ cl)�M=2L2 and "V (��) = �(��) (cs+ cl)�M=2L2. The initialand boundary values transform in a similar way. With �0(x; t) := (cs + cl) (�0(x; t)��M )=2Lwe get �(x; t) = �0(x; t) on @
; t � 0 ;�(x; 0) = �0(x; 0) in 
 ;�(0) = �0 :(5.4)In the sequel we want to work with the simpli�ed case, where the physical constants in the solidand liquid phase are equal: ks = kl, cs = cl, �s = �l, and Ds = Dl =: D0. This assumptionleads not only to a pure academic example; there exist real material, like Succinonitil, whichobey to the same physical constants in the solid and liquid phase (see [31, Table II]). On theother hand, most numerical method can be adapted to the case of di�erent constants in bothphases.Altogether, we now get the following equations:Problem 5.1 Find a temperature � and a moving free boundary � solving the equations@�@t �D0�� = 0 in 
s [ 
l; t > 0 ;(5.5) D0 � @�@�� �� + V� = 0 on �; t > 0 ;(5.6) � + "C C� + "V V� = 0 on �; t > 0 ;(5.7)together with the boundary and initial value conditions (5.4).The Gibbs{Thomson law (5.7) is a mean curvature ow equation with driving force for theinterface �(t): "V V� = � "C C� � � on �(t); t > 0 ; �(0) = �0 :For this reason we present in the next sections several formulations of the mean curvature owtogether with corresponding discretizations and show their coupling to the heat equation (5.5)with Stefan condition (5.6). 41



6 Mean Curvature Flow for Hypersurfaces in Rn6.1 Some de�nitions and notations for hypersurfacesA hypersurface � of class C2 is a subset of Rn which is locally the graph of a function u ofclass C2 � \ V = f (x0; xn) = (x1; x2; :::; xn�1; xn) 2 V 0 �R ��� xn = u(x0) g:� can also be de�ned through an immersion F from a compact (n� 1){dimensional manifoldS without boundary into Rn: � = f F (s) ��� s 2 S g:Finally, � can also be de�ned as the zero{level set of a function w of class C2� = f x 2 Rn ��� w(x) = 0 g;where w satis�es: 8x 2 �, rw(x) 6= 0. Locally we can always assume that e.g.@w@xn (x) 6= 0:Hence, by means of the implicit function theorem, the link between the two de�nitions of � inthe neighbourhood V (x0) of x0 in � is obvious. Indeed, there exists a function ux0 de�ned ina neighbourhood of x00 such thatx 2 � \ V (x0) ) xn = ux0(x0)and ux0 satis�es 8i 2 f1; :::; n � 1g : @@xi (ux0)(x0) = � @w@xi (x). @w@xn (x):Moreover, by rotating the axes at x0, we can always assume thatrx0ux0(x00) = 0 ; i.e. 8i 2 f1; :::; n � 1g : @@xi (ux0)(x00) = 0:The unit normal vector N(x) to � at x is de�ned byN(x) = rwjrwj(x):This normal vector is pointing into the direction of increasing values of w. If w(x) = �xn +ux0(x0) then 8i 2 f1; :::; n � 1g : Ni(x0) = 0 ; Nn(x0) = �1:The principal curvatures of � at x0 are the n � 1 eigenvalues �i, 1 � i � n � 1, of thesymmetric matrix D2ux0(x00). Since the Laplace operator (applied to ux0 at x00) is invariantunder orthogonal transformations, we haveD2ux0(x00) = diag(�1; :::; �n�1)42



which implies �x0ux0(x00) = �1 + :::+ �n�1:The mean curvature of � at x0 is the quantity H(x0) equal toH(x0) := 1n� 1 � (�1 + :::+ �n�1):At some places, the sum of the principal curvatures will be denoted as mean curvature � or C�:C�(x0) := �(x0) := (n� 1)H(x0) = �1 + :::+ �n�1:We de�ne the principal coordinate system at x0, assuming that the x1; :::; xn�1 axes are gener-ated by the eigenvectors of the Hessian matrix D2ux0(x00) and that the xn axis is generated bythe normal N(x0).Lemma 6.1 In a principal coordinate system at x0, we have(i) 8i; j 2 f1; :::; n � 1g : @Ni@xj (x0) = ��i � �ij.(ii) 8j 2 f1; :::; ng : @Nn@xj (x0) = 0.Proof: (i) Since w can be de�ned as : �xn + ux0(x0), in a neighbourhood of x0@2@xi@xj (ux0)(x00) = � @@xj � @w@xi = @w@xn� (x0) = � @Ni@xj (x0) = �i � �ijbecause D2ux0(x00) is the diagonal matrix diag(�1; :::; �n�1).(ii) This is an immediate consequence of the computation of@@xj � @w@xn =jrwj� (x0):Suppose that g is de�ned in a neighbourhood of �. We de�ne the tangential gradient r�g(x0)of g at x0 on � as the projection of the gradient of g at x0 onto the tangent space of � at x0r�g(x0) = rg(x0)� (N(x0) � rg(x0))N(x0):Notice that r�g(x0) only depends of the values of g on �, in a neighbourhood of x0. FromLemma 6.1, we derive that the tangential divergence of N isr� �N = �(n� 1)H(x0):We then de�ne the Laplace{Beltrami operator on � of g at x0 as�� �g(x0) = r� � r�g(x0):
43



6.2 Formulation of the MCF involving the Laplace{Beltrami operatorThe formulation of the mean curvature ow problem for hypersurfaces is taken from Huisken'swork [37].De�nition 6.1 A family (�(t))t�0 of hypersurfaces evolves, from a hypersurface �0, accordingto the mean curvature ow if@F@t (s; t) = (n� 1)H(F (s; t))N(F (s; t)) 8s 2 S; 8t > 0;F (s; 0) = F0(s) 8s 2 S;(6.1)where H denotes the mean curvature of �(t), N the `inner' normal to �(t) and F0 de�nes �0equal to �(�; 0).Lemma 6.2 We have, for every s in S�� �F (s) := (�� �id)(F (s)) = (n� 1)H(F (s))N(F (s));where �� � denotes the Laplace{Beltrami operator on �. Hence the mean curvature ow de�nedin (6.1) may be written as@F@t (s; t) = ��(t)F (s; t) 8s 2 S; 8t > 0:Huisken has proved the following existence resultTheorem 6.1 Suppose that �0 is uniformly convex (that is the principal curvatures are positiveeverywhere). Then (6.1) has a smooth solution on [0; T ). Moreover, the hypersurfaces �(�; t)converge spherelike to a point when t increases to T .Motion with a driving force: The equation@F@t (s; t) = ��(t)F (s; t) + g(F (s; t); t)N(F (s; t)) 8s 2 S; 8t > 0describes the mean curvature motion of a manifold with an additional driving force g : Rn �R+ ! R which acts in normal direction.6.3 The level set formulation of MCF and the formulation for graphsWe suppose that � is de�ned as the graph of a function u or as the zero level set of a functionw. We want to describe the mean curvature ow of a family (�(t))t�0 in terms of u or w.Theorem 6.2 Assume that all the level sets of w evolve according to mean curvature ow inthe sense of (6.1). Then w = w(x; t) satis�es@w@t � jrwjr � rwjrwj = 0 8x 2 Rn; 8t > 0:(6.2)Conversely, if w is the solution of (6.2), the family of zero level sets of w(�; t) evolve accordingto the mean curvature ow, at least when w is smooth and jrwj does not vanish.44



Proof: Since w(F (:; t)) is identically equal to 0, we have@w@t (F (�; t); t) +rw(F (�; t); t) @F@t (�; t) = 0:Because every level set of w evolves according to mean curvature ow, we have@F@t = (n� 1)H(F )N(F ) = � rwjrwj r � rwjrwj ;which immediately implies (6.2). The converse part is proved in an analogous way. 2Remarks:1) Equation (6.2) may be written as@w@t =Xi;j 0@�ij � @w@xi @w@xjjrwj2 1A @2w@xi@xj :2) When �(t) are presented as graphs of functions u(�; t), Equation (6.2) for w leads to thefollowing equation for u:@u@t �q1 + jruj2 r � rup1 + jruj2 = 0:Motion with a driving force: The equation@w@t � jrwjr � rwjrwj = jrwj g 8x 2 Rn; 8t > 0:describes the mean curvature motion of all level sets of w with an additional driving forceg : Rn �R+ ! R which acts in normal direction.6.4 Viscosity solutions for the level set formulationGeneralized motion by mean curvature: The contents of this paragraph is taken fromthe work of Evans and Spruck [26]. As Equation (6.2) degenerates when jrwj = 0, we now turnto the concept of viscosity solutions w = w(x; t) for the di�erential equationwt � jrwj r � rwjrwj = 0;(6.3)with initial values w(�; 0) = w0:(6.4)De�nition 6.2 A function w 2 C0(Rn�[0;1))\L1(Rn�[0;1)) is called a weak subsolutionof 6.3 provided for each  2 C1(Rn+1) the following conclusion holds true:If w �  has a local maximum at a point (x0; t0) 2 Rn � (0;1) then at (x0; t0) t � ��ij �  xi xjjr j2 � xixj � 0; if r (x0; t0) 6= 0;(6.5)and  t � (�ij � �i�j) xixj � 0; if r (x0; t0) = 0(6.6)for some � 2 Rn with j�j � 1. 45



De�nition 6.3 A function w 2 C0(Rn � [0;1)) \L1(Rn � [0;1)) is called a weak superso-lution of (6.3) provided for each  2 C1(Rn+1) the following conclusion holds true:If w �  has a local minimum at a point (x0; t0) 2 Rn � (0;1) then at (x0; t0) t � ��ij �  xi xjjr j2 � xixj � 0; if r (x0; t0) 6= 0;(6.7)and  t � (�ij � �i�j) xixj � 0; if r (x0; t0) = 0(6.8)for some � 2 Rn with j�j � 1.De�nition 6.4 A function w 2 C0(Rn � [0;1)) \ L1(Rn � [0;1)) is called a weak solutionof (6.3) if w is a weak subsolution and a weak supersolution of (6.3).Since we want to treat the mean curvature ow problem for a given initial hypersurface, we haveto say what we mean by the generalized motion by mean curvature also in the case where thesurface does not continue to be a classical surface. We shall see that under natural assumptionsthere exists a unique weak solution of (6.3).De�nition 6.5 Let �0 be a compact set in Rn and let w0 2 C0(Rn) a real-valued functionwhich is constant outside some large ball such that�0 = fx 2 Rnjw0(x) = 0g:If w is a weak solution of (6.3), (6.4), we de�ne the set�t = fx 2 Rnjw(x; t) = 0gand call �t, t � 0 the generalized motion of �0 by mean curvature.One can show, that �t does not depend on the particular choice of the initial function w0 whichrepresents the initial surface.One can check that this concept of the generalized motion by mean curvature coincides withthe classical motion if and so long as the latter exists.Some properties of weak solutions:Theorem 6.3 Assume that w is a weak solution of (6.3) and 	 2 C0(Rn) is real-valued. Thenv = 	(w) is a weak solution of (6.3).Theorem 6.4 Let (wk)k2N be a sequence of uniformly bounded weak solutions of (6.3) whichconverges uniformly on compact subsets of Rn � [0;1) to w. Then w is a weak solution of(6.3). The same holds true for weak subsolutions and weak supersolutions of (6.3).
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Existence of weak solutions: The existence of a weak solution of problem (6.3) is provedby a regularization procedure. The idea is to regularize the singular problem for � 2 (0; 1) bythe partial di�erential equationw"t �  �ij � w"xiu"xj"2 + jrw"j2!w"xixj = 0 in Rn � (0;1) with(6.9) w"(�; 0) = w0 in Rn:(6.10)Let us assume that w" is a smooth solution of the regularized problem (6.9). We write x =(x; xn+1) and de�ne v"(x) = w"(x)� "xn+1 for x 2 Rn+1:(6.11)Then jrv"j2 = "2 + jrw"j2and v" is a solution ofv"t �  �ij � v"xiv"xjjrv"j2! v"xixj = 0 in Rn+1 � (0;1) with(6.12) v"(�; 0) = v"0(6.13)where v"0(x) = w0(x) � "xn+1. But this means that each level set of v" moves according to itsmean curvature. This is in particular the case for the zero level sets�"t = fx 2 Rn+1jv"(x; t) = 0gand each level set is a graph:�"t = f(x; xn+1) 2 Rn+1jxn+1 = 1"w"(x)g:These ideas are used to prove the following theorem.Theorem 6.5 Let w0 be smooth and constant outside some large ball in Rn. For each " 2 (0; 1)there exists a unique smooth bounded solution v" of (6.12), (6.13) andsup"2(0;1) kv"kC1(Rn�(0;1)) � ckw0kC1;1(Rn):(6.14)This result is then used to prove the existence and uniqueness of a weak solution of the meancurvature ow problem (6.3),Theorem 6.6 Assume w0 2 C0(Rn) is real valued and constant outside some large ball inRn. Then there exists a unique weak solution w of (6.3), (6.4) which is constant outside somelarge ball in Rn � [0;1).The uniqueness of weak solutions is established by a comparision argument.Theorem 6.7 Assume that w is a weak subsolution and w is a weak supersolution of (6.3)satisfying w � w on Rn�f0g. if w and w are constant on f(x; t)j jxj+ t � Rg for some postiveR, then w � w on Rn � [0;1). 47



6.5 Mean curvature ow via the Allen-Cahn equationThe distance function: In this subsection we assume that � is a smooth surface. Oneshould think of it as the boundary of some domain in Rn. The distance function of � is givenby dist(x) = infy2� jx� yj; x 2 RnFrom [25] we know:Theorem 6.8 Let dist(�; t) be the distance function to the surfaces evolving according to meancurvature ow until the extinction time T . Then dist satis�es(i) dist is lower semicontinuous on Rn � [0; T ), i. e.8x 2 Rn; 8t 2 [0; T ) : limy!x;s!tdist(y; s) � dist(x; t);(ii) d is continuous from below in time on Rn � [0; T ):8x 2 Rn; 8t 2 [0; T ) : limy!x;s!t�0dist(y; s) = dist(x; t);(iii) On Rn � (0; T ) \ fdist > 0g, dist satis�es @dist=@t��dist � 0 in the sense of viscositysolutions, that is for every smooth function  in C1(Rn� (0; T )), such that dist� hasa minimum at (x0; t0) in Rn � (0; T ) with dist(x0; t0) > 0, then @ =@t�� (x0; t0) � 0.In the following we shall need an oriented distance function, which is usually normalized in sucha way that it is positive in the `interior' I and negative in the `exterior' O.d(x) = 8><>: dist(x) ; x 2 I0 ; x 2 ��dist(x) ; x 2 OLemma 6.3 For every x in a neighbourhood of � the decompositionx = a(x) + d(x)N(x)holds with a(x) 2 �. d is as smooth as the surface � is. The normal to � at a(x) in thedirection of increasing d is given by N(x) = rd(x):The trace of the Hessian matrix of d is the mean curvature at x 2 �:(n� 1)H(x) = �d(x):48



For a proof see the book of Gilbarg, Trudinger [30, 14.6 Appendix, resp. Section 2.1].Let us see how the distance function in smooth mean curvature ow behaves. We assume thatd(x; t) is the oriented distance function of a surface �(t) which is moved by its mean curvature.We assume that d is a smooth function of both variables x and t.Then we have dt � jrdjr � rdjrdj = 0:and since jrd(�; t)j = 1, we get dt ��d = 0 on �(t)Note that the level sets of d do not move according to their mean curvature except the zerolevel set �(t). The following Lemma is obtained by an easy calculation.Lemma 6.4 If w is a smooth solution of equation (6.2) with jrwj 6= 0, then the orienteddistance function d(x; t) with respect to �(t) = fxjw(x; t) = 0g satis�esdt ��d � 0 in I � (0; T )dt ��d = 0 on �(t)� (0; T )dt ��d � 0 in O � (0; T )in a neighbourhood of �(t).The Allen{Cahn equation: In order to de�ne a weak viscosity type solution for singularmean curvature ow, there are many possibilities to introduce arti�cial viscosity into the equa-tion (6.2). As we shall see one slightly hidden way to do this is to consider the Allen-Cahnequation ��t ���� + 1�2 (��) = 0 in Rn � (0; T )(6.15)with initial condition �� = ��0 on Rn � f0g:The function  is the derivative of a double well potential 	: (s) = 12	0(s); 	(s) = (s2 � 1)2; s 2 R:First we have to convince ourselves that this di�erential equation has something to do with meancurvature ow in the case when there are no singularities developing during the evolution. Adetailed asymptotic analysis can be found in [56]. Here we shall just see that there is a connectionbetween the Allen-Cahn equation and mean curvature ow for �! 0, � > 0.For the smooth case it should be enough to know the following fact, which is used later for theasymptotic analysis. The functionq(s) = tanh(s) = e2s � 1e2s + 1 ; s 2 R49



is a solution of the ordinary di�erential equationd2qds2 (s) =  (q(s)); q(�1) = �1:The function w"(x; t) = q(d" )then satis�es the equationw"t ��w" + 1"2 (w") = q0(d" )1" (dt ��d):Asymptotic analysis for the Allen-Cahn equation: The intention of this paragraph isto formulate the results of [25] on the asymptotics for the Allen-Cahn equation, namely thatfor " ! 0 the solution u" of (6.15) becomes �1 in an `interior' resp. `exterior' region with an`interface' between the inside and the outside being a generalized motion governed by meancurvature. The main theorem is the following.Theorem 6.9 Let �(0) be the smooth boundary of a domain in Rn and let d0 be the signeddistance function for �(0). Seth"(x) := q d0(x)" ! ; x 2 Rn:Let �" be a solution to the Allen-Cahn equation (6.15) on Rn� (0;1) with initial value h". Letw be a weak solution of wt � jrwjr � rwjrwj = 0;with initial value d0 which is thought to be continued constantly outside some ball. Then�" ! 1 ("! 0)uniformly on all compact subsets of I and�" ! �1 ("! 0)uniformly on all compact subsets of O whereI = f(x; t) 2 Rn � (0;1) j w(x; t) > 0g; O = f(x; t) 2 Rn � (0;1) j w(x; t) < 0g:Double obstacle potential: Similar results can be obtained with  coming from otherpotentials, for example the double obstacle potential, which will be used in the numericalmethod described below: (s) = 12	0(s); 	(s) = s2 � 1; s 2 [�1; 1]:
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Motion with a driving force: Mean curvature ow with a driving force g : Rn �R+ ! Rwhich acts in normal direction is modelled by the equation@t(�")���" + 1"2 (�") = c02"g in 
� (0;1);with c0 := R 1�1p	(s)ds.Time and space dependent regularization parameter: The same asymptotic analysisholds if the regularization constant " is replaced by a density function "a(x; t), where a :Rn �R+ ! R+ is bounded. The appropriate Allen{Cahn equation reads:"@t(a�")� "r � (ar�") + 1a" (�") = c02 g in 
� (0;1):Anisotropic motion: Anisotropic motion by mean curvature can be modelled in the Allen{Cahn equation by adding an anisotropy function. The equation"@t�" � "��" + 1"	0(�") = � :is the gradient ow of the energy functionalE"(�) := Z "jr�j2 + 1"	(�)� �� :Replacing jr�j2 by an anisotropy F (r�), where F is convex and homogenous of degree 2, thecorresponding energy is EF;"(�) := Z "F (r�) + 1"	(�)� ��and the corresponding Allen{Cahn equation reads"@t�" � "rF 0(r�") + 1"	0(�") = � :Elliott and Sch�atzle [23] proved convergence of the solution to an anisotropic mean curvatureow V = tr(B(N)D2B(N)R)�B(N)�;where B := p2F , N is the unit normal, V the normal velocity, and R the second fundamentalform of the interface. Again, in two dimensions and for smooth anisotropy, this is equivalent toV = � ~f( ~f + ~f 00)�� ~f�;where ~f is 2�-periodic, and ~f(�) := p2F (cos�; sin�).Belletini and Paolini [6] get similar results in the context of Finsler geomety.Phase �eld equations: The Stefan problem with kinetic undercooling and surface tension,Problem 5.1, can be approximated by a coupling of the Allen{Cahn equation with a heatequation. This gives the following system of equations which is called \phase �eld equations"for the temperature �" and phase parameter �" [11]:"@t(�" + �")� "��" = f ;@t�" ���" + 1"	0(�") = �" :51



7 Finite element methods for the MCF level set formulationWeak formulation: For the numerical computation of a function w whose level sets moveaccording the mean curvature ow, we start from the regularized equation (6.9). We considerthe problem in a bounded domain 
 � Rn with homogenous Neumann boundary conditionson @
. This is motivated by the fact, that if w0 is constant outside a ball, then w is constantoutside a ball for all times t > 0.wtp"2 + jrwj2 �r � rwp"2 + jrwj2 = 0 in 
� (0;1);@w@� = 0 on @
� (0;1);w = w0 in 
� f0g:(7.1)In order to derive a weak formulation, which can be used for a �nite element discretization, wemultiply the �rst equation in (7.1) with an arbitrary test function ' 2 H1(
), and integrate byparts: Z
 wt'+rw � r'p"2 + jrwj2 = 0 8' 2 H1(
); 0 < t <1;w = w0 in 
� f0g:(7.2)Time discretization: We use a constant time step size � > 0 and the notations wm(x) �w(m�; x) and Qm := p"2 + jrwmj2, m = 0; 1; : : :, and replace the time derivative in (7.2) byan implicit Euler time discretization. With w0 := w0, this leads to1� Z
 (wm �wm�1)'Qm + Z
 rwm � r'Qm = 0 8' 2 H1(
); m = 1; 2; : : :(7.3)In every time step, this is a nonlinear equation for wm. In order to get linear equations, wecan use a semi{implicit discretization in time, where the linear part is discretized implicitely,while the nonlinear parts are discretized explicitely. All denominators are computed using theprevious solution wm�1:1� Z
 (wm � wm�1)'Qm�1 + Z
 rwm � r'Qm�1 = 0 8' 2 H1(
); m = 1; 2; : : : ;(7.4)Discretization in space: We assume that the bounded domain 
 has polygonal boundary@
, and that a conforming triangulation Th of 
 into simplices (triangles or tetrahedra) isgiven. Let Vh � H1(
) denote the space of piecewise linear �nite elements over Th. Now wecan approximate the time{discretized problems using �nite elements. Equation (7.3) leads toZ
 1� (wmh � wm�1h )'h +rwmh � r'hQm = 0 8'h 2 Vh; m = 1; 2; : : : ;w0h = Ihw0 :(7.5)For each time step, this is a nonlinear equation for wm. It can be solved by a modi�ed Newtonsmethod, for example. 52



The linearized semi{implicit equation (7.4) leads toZ
 1� (wmh � wm�1h )'h +rwmh � r'hQm�1 = 0 8'h 2 Vh; m = 1; 2; : : : ;w0h = Ihw0 :(7.6)Thus, in each time step a linear equation has to be solved.Adaptive methods: Up to now, no error estimates are known for problems (7.5) or (7.6),neither a priori nor a posteriori. In the context of free boundary problems, we are mainlyinterested in the evolution of the zero level set of w, not in the evolution of all level sets. So, a�rst heuristic criterion for local mesh sizes is to choose a �ne mesh near the zero level set, anda coarser mesh far away from it.In spirit of the a posteriori L2 error estimate for the heat equation, we can also use a local errorindicator like �T (wmh ) := h3=2T �rwmhQm �L2(@Tn@
) :A combination of both criteria is used for the numerical examples that will be presented. Thecomputations are done by Fried [27, 28].Motion with a driving force: Mean curvature motion with a driving force g : 
 ! R,where every level set moves in normal direction according to the geometric lawV = �C + gleads to a right hand side g in equation (7.1):wtp"2 + jrwj2 �r � rwp"2 + jrwj2 = g in 
� (0;1):The changes in the discrete scheme are straightforward.Anisotropic motion: The motion of level sets by mean curvature is the gradient ow forthe energy E(w) := Z
 jrwj :If we are given a smooth function f : Sn�1 ! R+ and study the gradient ow of the anisotropicenergy Ef (w) := Z
 f � rwjrwj� jrwj ;we end up with the following weak formulation:Z
 wt'jrwj + �f � rwjrwj� rwjrwj +rf � rwjrwj�� � r' = 0for all ' 2 H1(
); 0 < t <1;w = w0 in 
� f0g:(7.7)
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The level sets of a smooth solution w move according to the anisotropic lawV = � Cf ;where Cf is the anisotropic mean curvature according to f . In two dimensions, f can be writtenas f(cos�; sin�) = ~f(�) where ~f : [0; 2�] ! R. If ~f is smooth and ~f + ~f 00 > 0, this law ofmotion is equivalent to V = � ( ~f + ~f 00)C :Regularization and discretization of this equation can be done like above.
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8 Adaptive discretization of the Allen{Cahn equationWe consider the Allen{Cahn equation (6.15) with regularization parameter"@t(a�")� "r � (ar�") + 12a"	0(�") 3 c02 g in 
� (0;1);(8.1) �"(�; 0) = �0"(�) in 
; �"(�; t) = f(�; t) on @
� (0;1);using the double obstacle potential	(s) := ( 1� s2 if s 2 [�1; 1]+1 if s 62 [�1; 1];12	0(s) = 8><>: (�1; 1] if s = �1�s if s 2 (�1; 1)[�1;1) if s = 1;c0 := R 1�1p	(s)ds = �=2, and 
 � Rn a bounded domain. The function a(x; t) denotes adensity function which may vary in space and time, and g a driving force. The zero level set of�0" coincides with the initial surface �0.It can be shown, that j�"j < 1, and �" attains the values �1 or +1 outside a narrow transitionlayer T"(t) of local size O("a(x; t)) in the vincinity of any regular point x 2 �(t). The latter isnot true if the double well potential is used instead of the double obstacle potential.Variational formulation: Using the convex setK := f' 2 H1(
) j j'j � 1 in 
; ' = f on @
g;the variational inequality equivalent to (8.1) is: Find �" 2 L2(0;1;K) \H1(0;1; L2(
)) suchthat �"(�; 0) = �0"(�) and, for a.e. t > 0 and all ' 2 KZ
 "@t(a�")(' � �") + "ar�"r('� �")� 12a"�"('� �")� �4 g(' � �") � 0 :Discretization: In [53], this weak variational formulation is discretized using piecewise linear�nite elements on a triangulation of 
 and an explicit time discretization. Lumping is used forthe L2 scalar products. Convergence of this method, even after singularities, is shown in [52, 55].We use the following matrix{vector notation: Let X denote the vector of nodal values of apiecewise linear �nite element function, Mk = (mkjl)j;l denotes the lumped mass matrix withweight ak, k = �1; 0; 1, and S = (sjl)j;l the sti�ness matrix with weight a. Let 'j denote anodal basis function, and �0, �1 the piecewise constant resp. linear interpolation operators atbarycenters resp. nodes of the triangulation. Then the entries of these matrices aremkjl = Z
�0(ak)�1('j'l) ; sjl = Z
�0(a)r'jr'l :In time step i+1, when the discrete solution Xi from the previous time is known, this leads tothe following discrete algorithm for computation of Xi+1:Xi+1=2 = (M1)�1   M1 � � iS + � i"2M�1!Xi + � i 1" �4M0�1gi+1! ;Xi+1 = PKXi+1=2; 55



where PK is the projection to the convex set K by truncation of the nodal values to the range[�1; 1].A similar formulation can be derived also in a rotationally symmetric context [53]. If a changesin time, then the twoM1 matrices which appear in the scheme above are computed with di�erentweights.Adaptive methods: The property j�"j = 1 outside T"(t) can be used numerically in solvingthe discrete problem only in a narrow region around the discrete interface. The mesh adaptionwill take this into account and generate a �ne mesh only where it is needed, while it coarsensthe mesh as much as possible at other places.Our control parameter is the density function a. Depending on this function, the width of thetransition area will vary. We will try to adapt this width to local properties of the solution,such as the curvature of the discrete interface.The local mesh size is chosen proportional to the density function a, according to a priorianalysis.Up to now, no a posteriori error estimates for the Allen{Cahn equation are known. For thatreason, we will exploit the known a priori estimates and add some heuristics for the local choiceof the density function a(x; t). A priori analysis leads to the following formula for the localmesh size depending on " and a:h(x; t) � c"�a(x; t); with c 2 (0; 1); � > 1 :As we use an explicit time discretization, the time step size is bounded by size of the smallestmesh element for stability of the numerical scheme:� � cminT h2T :In [53] a time{independent order parameter a(x) is used, which is chosen by a priori knowledgeof the curvature of �(t) and the formation of singularities.We try to generate such information a posteriori out of the current discrete solution, and adaptthe mesh accordingly.The main idea is the following: For a smooth interface, there is a strip around the surface,where the distance function is smooth (each point has a unique nearest point on the interface).We will try to keep the transition area inside this strip. Locally, the width w of this strip isw = 1max j�ij ;where �i denote the principal curvatures of the surface. Here \locally" means that no \global"e�ects take place. A global e�ect is for example, that two di�erent parts of the interface comeclose together. These will be taken into account below. As the width of the transition areadepends on "a, we can choose a small a where the curvature is high:a(x; t) � cmaxi j�i(~x; t)j ;where ~x is the nearest point to x on �(t). The situation is sketched in Figure 8.1: The thickline is the interface, the dashed line denotes the strip, and the shaded area is an acceptabletransition area. 56
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Figure 8.1: Situation around an interface without global e�ects; only curvature a�ects thetransition areaComputation of the curvature: A good way to compute the curvature of the zero level setis to use the Allen{Cahn equation once more. With a vanishing right hand side, the solutionevolves according to its mean curvature, and the time derivative approaches the mean curvature:@t�" � �jr�"j on � :Numerical experiments show, that �h := xm+1h � xmh� jrxmh j ;where xm+1h is computed by an explicit time step for the homogenous Allen{Cahn equation, isa good approximation to the curvature � of the interface �m.This algorithm is used in mesh elements near the zero level set (in those elements where thesign of X changes) to compute the curvature of the discrete interface. Such information isdistributed over the whole mesh in order to be able to calculate a local meshsize everywhere.Global bounds for the transition area: There exist situations where curvature alone doesnot determine the width of the strip around the interface where the distance function is smooth.The most important situation is depicted in Figure 8.2. Two parts of the interface with relativelysmall curvature are near each other. Here, the width of the strip is half the distance betweenthese parts, and the transition area should be more narrow than the strip.The idea for determination of such situations is to test if di�erent parts of the transition areaare nearly touching each other. If this is found, the density function a is reduced in both parts,which results in a narrower transition area after a few time steps.In order to be able to �nd places, where di�erent parts of the transition area touch, we canstore with every element of the triangulation its nearest point on the interface, or a directiontowards that point. As criterion for such a place, we can check if two elements of the transitionarea are near each other, but their associated directions di�er a lot (as the scalar product isnegative, for example).Once such elements have been located, the bound for the density function a has to be distributedover the regions of interest. This can be done by �rst setting the density at both interface parts,and then distributing it over the whole mesh as described above.A similar situation for global restictions on the transition area comes from boundary conditions:If reection symmetry or axial symmetry is valid for a part of the boundary, the transition area57
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Figure 8.2: Situation around an interface with global e�ectsshould not be allowed to extend up to this boundary, see Figure 8.3. As such symmetries areknown a priori as data of the problem, this situation can be checked.
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Figure 8.3: Symmetry boundary (dashed) on the left hand of a circle. The transition area isrestricted.
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9 A parametric �nite element method for MCFTime discretization: We start from the equation for the mean curvature ow with a drivingforce g, where the family of surfaces �(t) is parametrized by local charts �i(t) : 
i ! Rn, i 2 I,compare Section 6.2. The parameter domains 
i � Rn�1 are independent of t. �� denotes theunit normal of �(t). @@t�i ��� �(t)�i = (g ��) � �i in 
i � (0; Tmax); i 2 I:(9.1)With discrete time values 0 = t0 < t1 < t2 < : : : � Tmax and time steps �m := tm+1 � tm,using an implicit Euler discretization of the time derivative, we derive semidiscrete equationsfor the charts �mi , m = 0; 1; : : :, approximating �i(tm) and manifolds �m+1 which approximate�(tm+1): �0i = �i(0) ;�m+1i � �mi�m ����m�m+1i = g ��m in 
i; i 2 I; m = 1; 2; : : : ;�m+1 := [i2I �m+1i (
i) :This discretization is only implicit in the sense, that the Laplace{Beltrami operator ���m isapplied to the unknown parametrization �m+1i , but ���m itself is still de�ned by the knownsurface �m. We can leave now the local parametrizations of the manifolds over domains 
i �Rn�1 and use a global parametrization of the next manifold �m+1 over the previous manifold�m. We de�ne �m+1 : �m ! �m+1 by �m+1(�mi (y)) := �m+1i (y) for y 2 
i. This de�nitionis independent of the choice of local charts. Now we get the following semidiscrete equation:�m+1 � x�m � �� �m�m+1 = g(x) ��m (x) on �m ;�m+1 := �m+1(�m):Thus, we have converted the nonlinear di�erential equation (9.1) into a sequence of linearequations.Parametric �nite element discretization: Multiplication with a test function and integra-tion by parts leads to the following weak formulation. Form = 0; 1; 2; : : :, �nd a parametrization�m+1 2 H1(�m)n which solvesZ�m �m+1 � x�m  + Z�m r��m�m+1r��m = Z�m g ��m  for all  2 H1(�m) :(9.2)For a �nite element discretization of (9.2), we �rst need a discretization of the manifold �m.We are able to construct a discretization �0h of �0 by a conforming (globally continuous) meshof parametric n-simplices of polynomial order k (i. e. curved simplices, if k > 1), based ontriangulations of the parameter domains 
i, i 2 I. Each simplex interpolates �0 at a set of La-grange nodes corresponding to the polynomial degree k. This discretization can be constructed59



by polynomial Lagrange interpolation of local charts; see [40, 49] for details. For m > 0, adiscretization �mh of �m is generated from �m�1h , as we will show later.We use isoparametric �nite elements over �h. Let PT̂ be a �nite dimensional function space onthe n dimensional unit simplex T̂ satisfying Pk � PT̂ (usually, we take PT̂ = Pk). For everyT � �mh let FT : T̂ ! T be the (polynomial) parametrization. Using this notation, we de�nethe isoparametric �nite element spaceWmh := fvh 2 C0(�mh ;R) : (vh � FT ) 2 PT̂ for all T 2 �mh g:In [62], the Sobolev space H1(�) is de�ned for a Lipschitz manifold �. This de�nition applieshere, as our discretization �mh is Lipschitz continuous, and we get Wmh � H1(�mh ).The choice PT̂ = Pk, yielding same order polynomials for the discretization and the �niteelement functions, is natural in the sense that we can expect optimal error estimates [13].Analogous to (9.2), we now look for a weak solution in the �nite element space Wmh on �mh .This gives an approximation �m+1h to the parametrization �m+1 and de�nes a discrete manifold�m+1h approximating �m+1.Let �0h be a given triangulation of �0. For m = 0; 1; 2; : : :, the problem is to �nd a �nite elementsolution �m+1h 2Wh(�mh )n of the equationZ�mh �m+1h (x)� x�m  h + Z�mh r��m+1h r� h = Z�mh g �  h for all  h 2Wh(�mh ) ;(9.3) �m+1h := �m+1h (�mh ) :For each time step this leads to a decoupled system of n linear systems of equations for thecomponents of the parametrization. The matrices of the n linear systems are all equal, butright hand sides di�er between the components.Anisotropic motion: Anisotropic motion by mean curvature can be implemented in severalways. One possibility is to use given anisotropy functions "V ; "C : Sn�1 ! R+ which depend onthe direction of the surface normal and look for a family of surfaces which solve the problem"V (��(t)(x))V�(t)(x) + "C (��(t)(x))C�(t)(x) = g(x; t)(9.4) for all x 2 �(t); t 2 (0; Tmax) ;�(0) = �0 :With the same techniques as above, this leads to the �nite element problemsZ�mh "V (��m )"C (��m ) �m+1h (x)� x�m  h + Z�mh r��m+1h r� h = Z�mh 1"C (��m ) g �  h(9.5) for all  h 2Wh(�mh ) ;�m+1h := �m+1h (�mh ) :Another approach is to use the gradient ow of the anisotropic surface energyEf (�) := Z� f(��(x)) dx60



with an anisotropy function f : Sn�1 ! R+. The isotropic mean curvature ow is the gradientow for f � 1. The gradient ow for Ef leads to the weak formulationZ�(t) xt + Z�(t) f(��)r�x � r� �rf(��)r�x � r� �� = Z�(t) g ��  (9.6) for all  2 H1(�(t);Rn):Discretizations in time and space can be done in the same way as shown above. A coe�cient"V (��) can be added as well. In two dimensions, using ~f(�) := f(cos�; sin�), (9.6) is equivalentto (9.4) with "V � 1 and "C (cos�; sin�) = ( ~f + ~f 00)(�).Convergence results: Dziuk [20] proved convergence for the semi{discrete method (only dis-cretization in space) in two dimensions (for curves). For the same scheme including anisotropy,convergence is proved in [19].Adaptive methods: The discretization of the surface has to be adapted in time, to be able toresolve the evolving structures. This is done mainly by local re�nement and coarsening, drivenby an a posteriori error indicator. As the evolution equation is similar to a nonlinear heatequation, it seems appropriate to use error indicators which were derived in the heat equationcontext. In our case, this leads to a geometrical condition�T (�h) := h3=2T k[�� ]kL2(@T ) + h2T  g"C L2(T ) ;which involves the jumps of the surface normals over edges of the discrete surface and the forcingterm g. Re�nement and coarsening of the triangulation can now be done as usual.Depending on the forcing term and the resulting evolution of the surface, complex structures candevelop from a small part of an initially smooth surface. As the grid points of the discretizationare mainly moved into the direction of the surface normal, the distances of the vertices varyfrom one time step to the other. The distances get smaller at locally concave parts of the solidphase and grow where the interface is convex. In the three dimensional case, there may evolveparts of the surface, where the two principal curvatures di�er a lot (one positive and the othernegative, for example). The grid gets strongly deformed after some time. The largest anglesof some triangles may tend to 180 degrees, which would enlargen the errors in the numericalmethod. We have to prevent the mesh from degenerating too much and take special care ofthose triangles.Unfortunately, obtuse angles which develop during deformation of the mesh cannot be preventedre�nement and coarsening alone, because of the possible distortion of the mesh during theevolution. To avoid a degenerate grid, we have to use additional grid modi�cation procedures.These are based mainly on angle{dependent re�nement and displacement of the vertices onthe surface. Altogether, the algorithm is an adaptive h{r{method for the discretization andmovement of the curved free boundary [57].In the following, we describe a method for displacement of the grid nodes on the (discrete)surface which leads to good results.The coordinates of the vertices (and midpoints of the edges) are changed in a way, that makesthe triangulation \better". We use a single{stepping algorithm that moves only one vertex at a61



time, and loops through all nodes of the grid. Depending on the quality criterium for the grid,the direction of node movement is chosen.For each node P of the triangulation, we de�ne a functional F (P ) that measures the local meshquality, and try to maximize F by changing the coordinates of P . To this aim, we calculatethe gradient ddP F ( �P ) at the old position �P of the node and search the maximum of F in thedirection of the gradient, by a bisectioning line search algorithm. As we want to vary the nodesonly on the surface, not in the whole space, we have to project all points from the descent lineonto the discrete surface during the maximization process. During the iterations of the nodemovement algorithm, we have to remember the old positions of all nodes, because we need themfor the projection onto the discrete surface de�ned by these values.We use a functional F , which works on the angles of the triangulation; it minimizes the dif-ference between the N angles around a vertex P . It is based on the conformal energy (see[38] for de�nition and results) of a parametrization � : DN ! fT � �h : T \ P 6= ;g of theneighbourhood of P over the unit N{polygon DN (compare Figure 9.1). We setF (P ) := 2 ZDN j�u ^ �vj � ZDN jr�j2 :F is maximal (= 0) if � is a conformal mapping; in this case all angles around P are equal.Straightforward computation givesF (P ) = NXj=1 jQj � P j2 + jQj+1 � P j2 � 2 cos(�) hQj � P; Qj+1 � P i2 sin(�)� j(Qj � P ) ^ (Qj+1 � P )j ! andddP F (P ) = NXj=1�1� cos(�)sin(�) �(P �Qj+1) + (P �Qj)�� (Qj � P ) ^ (Qj+1 � P )j(Qj � P ) ^ (Qj+1 � P )j ^ (Qj �Qj+1)! ! ;where Qj; j = 1; : : : ; N , are the neighbouring vertices to P and � = 2�=N .
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Figure 9.1: Unit 5{polygon D5 and parametrization of a neighbourhood of P
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10 A parametric FEM for the Stefan problem with surface ten-sionIn [57] we describe a parametric �nite element algorithm for the Stefan problem with surfacetension, Problem 5.1. It will be an explicitely coupled algorithm of the mean curvature owmethod for the motion of the interface, where the discrete temperature appears on the righthand side, and a heat equation solver, where the discrete interface and its curvature appear.The �nite element method for discretization of the mean curvature ow of the free boundary�(t) was already presented above in Section 9, Equation (9.5). The �nite element method forthe heat equation is described next.Discretization of the heat equation: We assume in the moment, that the interface �(t) isknown. After an implicit Euler time discretization with time step size �m we combine equations(5.5){(5.7) in a weak formulation. Assuming that �m is known, Equation (5.5) leads toZ
 �m+1 � �m�m '+D0 Z
 r�m+1r' = Z�(tm+1) V�' for all ' 2 H10 (
) ;as integration by parts produces the jump term of (5.6) on �(tm+1). Using Equation (5.7),which gives a relationship between the velocity V� , the curvature C� and the temperature atthe free boundary, we get for all ' 2 H10 (
):Z
 �m+1 � �m�m '+D0 Z
 r�m+1r'+ Z�(tm+1) 1"V �m+1 ' = � Z�(tm+1) "C"V C� ' :The integral over �(tm+1) on the left{hand side leads to a more stable discretization, as we usean implicit discretization for the temperature on the free boundary and 1="V is positive.Let T m
 be a triangulation of the domain 
 into n{simplices (triangles or tetrahedra), whichwill be used during the m{th time step, and V mh � H10 (
) the corresponding �nite elementspace. Then the discrete problem is:Given smooth surfaces �(tm), m = 0; 1; : : :, with mean curvature C�(tm), boundary values�0 2 C0(�
 � [0; Tmax]) and discrete initial values �0h 2 V 0h , �nd for each m = 0; 1; 2; : : :, �niteelement temperatures �m+1h 2 V m+1h which solveZ
 �m+1h � �mh�m 'h +D0 Z
 r�m+1h r'h + Z�(tm+1) 1"V �m+1h 'h = � Z�(tm+1) "C"V C�(tm+1) 'h(10.1)for all 'h 2 V m+1h;0 , with boundary values �m+1h = Im+1h (�0(�; tm+1)) on @
.The discretizations for the free boundary evolution and the heat equation will be combinedbelow to a numerical method for the solution of Problem 5.1.Adaptive method: Similar to the methods from [24], we obtain an a posteriori L2 errorestimate for the solution of the associate elliptic problem (Equation (10.1) without the temporaldi�erential quotient), assuming a smooth interface �(t) and regularity of u for all t 2 [0; T ],�(�; t) 2 H1;1(
) \H2;2(
 n �(t));63



with a corresponding a priori estimate (see [12] for estimates for the anisotropic parabolicproblem). Let
�T (�h) := 8>>>>>>>>>>><>>>>>>>>>>>:

0B@D20h4 ZT j��hj2 + D202 h3 Z@Tn@
 ����� @�h@�T �����21CA 12 if T \ � = ;, and else0B@h2 Z�\T �"CC� + �h"V �2+D20h3 ZT j��hj2 + D202 h2 Z@Tn@
 ����� @�h@�T �����21CA12 :The lower h exponents near � account for the loss of regularity of the solution of the dualproblem at the free boundary. We can prove (for the elliptic problem) the a posteriori errorestimate k� � �hkL2(
) � c��(�h) := c�� XT2T
 �T (�h)2�1=2 :under the above regularity assumption. The values �T (�h) are used by the adaptive method todrive the re�nement and coarsening of the temperature mesh.Computation of the curvature: The right{hand side of the heat equation (10.1) uses thevalue of the mean curvature C� of the free boundary �(tm+1). As we approximate the freeboundary � by a piecewise polynomial, globally Lipschitz{continuous discrete free boundary�m+1h , there is no straightforward de�nition of a curvature for �m+1h . In the sequel, we use thenotation �h for the free boundary and drop the time step index.One possibility is to compute a discrete curvature using again the identity C� �� = ��� �id�,which is true for smooth manifolds. With a weak formulation and H�1{projection we de�ne avector{valued curvature ~Ch 2Wh(�h)n by�~Ch;  h�L2(�h) = �r��h id�h ;r��h h�L2(�h) for all  h 2Wh :Using approximate normals �h at the grid vertices, the discrete scalar mean curvature is nowde�ned by Ch := Ih �h ~Ch; �hi�as the piecewise linear interpolate of the scalar product of the discrete curvature vector withthe approximate normals.Other approaches to a de�nition of a curvature of the discrete interface use a weak formulationof the second fundamental form or an area variation formula.Adaptive algorithm for the Stefan problem: The adaptive methods for the heat equationand the interface motion are combined, de�ning an algorithm for the numerical solution ofProblem 5.1.In each time step, given the old values �mh and �mh , we �rst move the interface �h to a newposition ~�m+1h by solving Equation (9.3) with temperature �mh on the right hand side:Z�mh "V"C �m+1h (x)� x�m  h + Z�mh r��m+1h r� h = � Z�mh 1"C �mh �  h for all  h 2Wh(�mh ) :64



The triangulation of the interface is adaptively re�ned, coarsened and changed according tothe adaptive h{r{method from Section 9, which results in the new free boundary �m+1h . Thecurvature Cm+1h of �m+1h is computed. Now, the new temperature grid T m+1h and the newtemperature �m+1h are computed by the semi{implicit adaptive strategy for the solution ofEquation (10.1) using integrals over �m+1h and curvature Cm+1h on the right hand side, solvingfor all 'h 2 V m+1h;0Z
 �m+1h � �mh�m 'h +D0 Z
 r�m+1h r'h + Z�m+1h 1"V �m+1h 'h = � Z�m+1h "C"V Cm+1h 'h :The temperature meshes T m+1h and the surface meshes �m+1h are both adaptively generatedusing information only from the corresponding a posteriori error estimates (and the interfacemotion); no direct relationship between them exists.All integrals over the free boundary are computed by quadrature formulas. The coordinates ofthe quadrature points on the (curved) surface are computed easily from their position in thereference simplex using the local parametrization of the discrete interface. For integrals whichinvolve �h or another function from the �nite element space on the n dimensional temperaturemesh, the positions of these quadrature points in the temperature mesh (simplex number andbarycentric coordinates) can be found using local search operations, when the positions of thesurface grid vertices in the temperature mesh are (approximately) known, for example fromthe last time step. Such a local search is done by running from one simplex to an adjacentone which is closer to the point, until all barycentric coordinates are nonnegative. Some globalsearch operations are needed only once before the �rst time step, but the same technique can beused, and their number may be minimized using neighbourhood information about the verticeson the surface.The initial temperature grid T 0h is generated by an application of the adaptive �nite elementmethod to an elliptic problem like (10.1) with a given time derivative on the right hand side.Besides the generation of T 0h , computing the initial temperature �0h as the solution of this ellipticproblem ensures that it is compatible with the discrete interface �0h, its discrete curvature C�0hand the quadrature formulas used.In Figure 10.1, a ow diagram shows the whole adaptive algorithm, including the generationof an initial temperature grid. This algorithm is easily supplemented by a higher order timediscretization (Richardson{extrapolation is implemented) and adaptive time step control (usingthe parabolic error estimates and methods from [24], for example). Because of technical details(more intermediate solutions have to be computed and combined), the algorithm looses a bitof its simple structure in these cases, and we do not present details here.
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Start with initial values �0;�0m := 0g f e d` a b c
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Figure 10.1: Flow diagram of the adaptive algorithm
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