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Abstract

In this course we deal with the numerical approximation of various parabolic free bound-
ary problems: motion of interfaces under curvature, phase change problems, phase transition
problems. We introduce finite element methods and discuss their convergence properties as
well as their efficient implementation. Numerical aspects and implementation details of
adaptive finite element methods in two and three dimensions will be presented, as well as
grid adaptation techniques based on error indicators and estimators.
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1 An introduction to a posteriori error estimation for elliptic
problems

Although the subject of this course are parabolic free boundary problems, we give an introduc-
tion about adaptive finite element techniques for elliptic problems. The reason is, that most of
the principles are much clearer and easier to describe and understand in the context of elliptic
problems, while they are applicable to parabolic problems in a similar way.

We consider the model problem: Find a solution u of

—Au = f in Q,
(1.1) u = 0 on 0N

where  is a bounded domain in R? with a polyhedral boundary and f € Lo(Q) is some given
right hand side.

Let H'(2) be the Sobolev space of all functions with weak derivatives of first order and let
H'(€) be the subspace of all those functions in H'() that vanish on the boundary of . Then
the weak formulation of (1.1) is stated as:

(1.2) we HY(Q) : /vuw - /f(p Vo € H(Q).
Q Q
Now, let V}, C H 1(Q) be a finite dimensional subspace. Then we have the discrete problem:

(1.3) up, € Vi : /QVUhV‘Ph = /Qf(ph Yop € Vy,.

1.1 A posteriori error estimation in the energy norm

If V}, is for example the finite element space consisting of piecewise polynomials of degree p > 1
on a given triangulation 7 (with zero boundary values) we have the following a priori estimate

1/2 1/2
L) e = ([ Ve -wR) < c<2 h%”|u|m+lm>>

TeT

where hrp is the diameter of a simplex T (see [13] e.g.).
The aim of a posteriori error estimation is to establish an estimation of the form

1/2
(1.5) lu —uplmo) < ¢ <Z 77T(Uhaf)2>

TeT

where the value of 5 does only depend on the discrete solution uj, on a simplex T and its
adjacent neighbours and given data f on the simplex T'. Thus, nr is a computable value and
we can control the adaptive procedure by these values (see Section 3).

The most important tool for such an a posteriori error estimation is an interpolation estimate
for functions v € H'(). Since for d > 2 we do not have the embedding of H'(Q) into C°(fQ),
we can not make use of the usual Lagrange interpolant. But we can use the Clément interpolant
which avoids the pointwise evaluation of an H' function [14].



It is defined in the following way: Let V}, contain the space of piecewise linear functions on the
underlying triangulation. Then for v € H'(2) we can construct the piecewise linear interpolant
in the following way: For each node « of the triangulation let v, be the Lo projection of v to the
space of all piecewise linear function on all simplices surrounding the node a and define for the
interpolant Rjv the nodal value at a by (Rpv)(a) := ve(a). Defining the nodal values of Rpv
for all nodes of the triangulation by this procedure, gives a unique piecewise linear function on
the whole triangulation. Setting (Rjv)(a) := 0 for all nodes a that belong to the boundary of
Q defines an interpolant Ry, : H'(2) — Vj, (i.e. the interpolant has zero boundary values also)
and we get the following estimates:

v = Ruollpory < chrlolm (agy,
<

|Ryv|m(r) clvl g (arp)

where M(T) is the patch of all simplices 7" that have a non empty intersection with T
Now we will derive the a posteriori estimate: Let H~'(2) be the dual space of H'(f), i.e.
H Q) = (HYQ))*. For f € Ly(Q) define F € H '(Q) by

(Fa @)Hfl(g)xﬁl(ﬂ) = /QfQD for allgoeﬁl(Q)

where (., '>H*1(Q)><ﬁ11((2) is the dual pairing on H1(Q) x H(Q).
We can look at —A as an operator

~A:HY(Q) - H Q)
by defining —Av € H~1(Q) for a function v € H'(Q) in the following way:
(1.8) (—Awv, ‘p>H—1(Q)xﬁ11(Q) = /QVvVgo for all ¢ € H'(Q).
It is clear that —A is a linear continuous operator. Moreover —A is invertible since (1.2) is

uniquely solvable for a given right hand side F € H~!(Q) and it is an isometric isomorphism,
i.e.

(1.9) | —AUHH—l(Q) = |U|H1(Q)
because
sup (—Awv, (;0>H71(Q)Xﬁ1(ﬂ) _ up /QVUV‘P
P (@)\ (0} el @) seii@n oy |9l
{ < Jolpie by Cauchy’s inequality,
> |vlma) taking ¢ = v.

Remark: We can use such an abstract framework in more general situations also: Let V' be
an Hilbert space and a(.,.) : V x V — R a continuous V-coercive bilinear form, i.e.

a(v,p) < llvllellv and cdoll} < a(v,0) Yo,p €V,
Defining A : V. — V* by

(Av, @)yery = alv,p)  Vo,p €V,



we conclude
cellollv < [JAv[ly= < lollv,

and the following analysis will also carry over to this situation.
Returning back to our model problem we rewrite (1.2) as:

uwe H'Y(Q): —Au = F in H71(Q).
By this equation and by (1.9) we have for the error e := u — uy,

lelm) = lu—unlm) = | = Al —up)llg-1@) = |F + Aupllg-1(q)

Thus, we have an expression for the error in terms of up and data f. The problem is that
we can not evaluate this expression because the norm on H~'(Q) involves the evaluation of a
supremum over all p € H*(2)\{0}. As a consequence we have to estimate this supremum.
For that we need the orthogonality of the error, i.e.

0 = /QV(u—uh)chh = (—A(u —up), ‘Ph>H71(Q)><fI1(Q)
= (F+ Aun, 0n) gr—10)x i (0)

for all pp, € V3. Now, denote by [0,up] the jumps of the normal derivatives of the discrete
solution wuy, across a (d — 1)-simplex. We obtain by the orthogonality of the error, integration
by parts, a scaled trace theorem, and the interpolation estimate (1.6)

el = I1F+ Aupllp-1(0)
= sup (F+ Aup, @)H—l(g)xﬁfl(n)
e (Q)
“P|H1(Q):1
= sup (F + Aup, ¢ — Rh‘p>H*1(Q)><fll(Q)
e (Q)
“P|H1(Q):1

= sup Z /Tf (o — Rpp) — /TVUhV(SD — Ryp)

e\ (Q) T

\‘P|H1(Q):1
1
= s Y [ Bu) R =5 [ e Rag)
pEANQ) TcT T T\ o
\‘P|H1(Q):1
1
< o sup X (bl + Bunllyry + 5 NOunlluomon ) el
eeHLQ) TeT 2
W‘HI(Q)ZI
1 1/2
< o X0 WIS + Aunl iy + ShrlOvunllly,or o0 )
TeT - -

=mr (up,f)?

where we used the fact that the overlap of different patches M7 is bounded by a constant. This
establishes the a posteriori error estimate (1.5).



1/2
The above estimate makes sure that the error estimator n := ( > nT(uh,f)Z) / is reliable.
TET

But we also have to answer the question whether the estimator is efficient also, i.e. can we
estimate the estimator by the error itself. This is very important especially for higher order
elements, because we only used the approximation property of the piecewise linear functions.
Let f;, be an approximation of the right hand side f belonging to some finite dimensional space
(for example the piecewise Lo projection on each element, or some other interpolant of the right
hand side). Then we can prove

(1.10) nr(un, fr) < C(|U —up|mr vy + hrllf — fh“Lz(M(T)))

where M (T') now denotes the patch of all those simplices T" sharing a complete (d — 1)-simplex
with T'. The last term hr||f — fullr,(ar(ry) is of higher order if f is smooth. This term reflects
that we first have to approximate given data sufficiently, i.e. ||f — fullz,(ar(7)) is small, and
then we get an efficient error estimator which we can not expect for a poor approximation of
given data. The proof of this estimate is very technical (one has to construct suitable cut—off
functions to localize the element residual f + Awuy, and the singular residual [0, uj] and estimate
them separately) and is omitted here (see [61] for example).

Remark: Usually, nr(up, f) is used as error estimator, since it is often not possible to compute
the Lo—morm of an arbitrary function exactly. By the triangle inequality it is clear that as well

nr(un, fn) < nr(un, f) +brllf = fullyr  as
nr(un, f) < nr(un, fo) + hrllf — full oo
holds.
Since we usually can not compute the right hand side [, fyp of our discrete problem (1.3)

exactly, the orthogonality of the error is disturbed. Applying an analysis which includes this
defect will result in the a posteriori error estimation

1/2
lu —up|mi) < C( > UT(Uhafh)Q) +c||[F — Fylv:
TeT

where we have replaced the right hand side of (1.3) by a computable value (Fj, cp)Vh*th =
Ja fnien.

The above analysis is not restricted to this simple model problem but can also be used for
nonlinear problems (see [60]):
Let F : H'(Q) — H () be an operator (maybe nonlinear) and let u € H'(Q) be a regular
solution of

F(u) = 0 in H'(Q),
i.e. the Frechet—derivative of DF'(u) of F at u is invertible and bounded. Assume that DF and
DF~! are locally Lipschitz continuous. Now, let u; be a discrete solution which is“near” wu, i.e.
|u — up|fr1(q) is small enough. Then we get the following estimates:

clu—uplpr)y < 1F@un)llgio < Clu—unlpyg)

where the constants ¢, C' depend on the norms of | DF (u)|| and ||(DF(u))~!| and the Lipschitz
constants of DF and DF~!. Again the error is represented in terms of given data and the
discrete solution. Now using similar techniques to those used in the model problem will also
establish efficient and reliable a posteriori error estimators for nonlinear problems.



1.2 A posteriori error estimation in the L, norm

It is often of interest to estimate the error not in the energy norm |.| mi(q) but in the Ly norm
[l z5(0)- For this we use the so called Aubin—Nitsche trick (which is also used for the a priori
error estlmatlon [50] or [13]):

Let wy—y, € H'(€) be the solution of the dual problem

(L1 wyw, € H'(Q): /Qwku,uh — /Q(u “u)e  Vee H(Q).

Remark: Let a(.,.) : H(Q) x H(Q) — R be a non symmetric, bilinear and H'(Q) coercive
bilinear form. Then the original problem is stated as

we H'(Q):  alu,p) =F(p) VYoe H(Q)

whereas the dual problem is stated as

Wy € HYQ) . alprwy—s,) = /Q (w—un)p Ve H(Q).

To establish an Lo a posteriori estimate we have to assume that the solution of the dual problem
(1.11) is H?-regular. Assuming ) is convex one can prove that for the solution wy,_,, of (1.11)
we have wy,_,, € H?(Q) and

(1.12) [Wy—uy | r20) < | = Awy—uy, [[y0) = v —unlly @)

since u — up, € L2(02) (see [34] e.g.).
Defining for g € H2(Q) := (H ( )N H'(Q))*

9l ir-2() = sup (g, @) -2 () (r2(@)n 1 ()

pEH2(Q)NHL(Q)
W‘HZ(Q)ZI

using the fact that wy,_,, € H%(2), and setting ¢ = u — uy, in (1.11) we conclude

“u_uh“%Q(Q) = /v h)V Wy,

— up), wufuh>H*1(Q)><IfI1(Q)
€H?(Q)

= (B A, Wamuy) 20 x (12 (@) 1 ()

|F'+ Aup| -2y Wu—uy | 72 (0)

<
< JF + Aupl -2 llu — uplln, (o)

On the other hand using the higher regularity of the test function ¢ and integration by parts
we have

|F + Auplg-2(0) = I (F'+ Auny ) -2y (m2(@)nfi @)
“PlH?(Q):l



= sup / V(u—up)Vep
peH2(Q)NHL(Q) JQ
“PlH?(Q):l

= s [@ow)-ay)
peH2()NAL(Q) /Q
\lez(Q):l

IN

lu = unll L, )
Combining these two estimates we achieve
(1.13) v —upllry) = |F + Auplg-2(q)-

In order to establish the Ly estimate, we have to estimate now the term |F'+ Aup|g-2(q). This
is done in the same manner as in the case of the energy norm. In contrast to that estimate we
can use the fact that the test function ¢ belongs to H2(€). Thus, for the interpolation of ¢ we
can make use of the usual Lagrange interpolant (H2(f) is embedded in C°(Q), d = 2,3!) and
we gain a higher power of hr in front of the residuals since we can rely on second derivatives of
. As a result we have

1/2
(1.14) lu —upllr.@) < ¢ (Z ﬁT(Uhaf)2>

TeT

where 77 is defined to be

. 1
ir(un, )2 = hpllf + Aupllf, o + §h%““[avuh]“%2(8T\8Q)'
Again, using the finite dimensional approximation f; of f we can prove the efficiency

(1.15) i (un, fo) < C(||U — upll Lo (neery) + PEIf - fh||L2(M(T)))

where we also gain one additional power of hr in front of the term || f — fu ||z, ar(7))-
This analysis also carries over to nonlinear problems under suitable assumptions on the existence
of the dual problem and the regularity of its solution. Under such assumptions we can prove

cllu—unllzaey < 1F@) gy < €l — oy

where now ¢ and C' depend on the coercivity of the dual problem (which is associated to the
norms of DF and DF ') and the regularity constant for the solution of the dual problem. This
inequality now establishs Lo error estimators for nonlinear problems using the same techniques
as described above [5].



2 Mesh refinement and coarsening

Finite element meshes may consist of geometric elements of various types:

simplicial: triangles or tetrahedra,

quadrilateral: rectangles, cubes, or general quadrilaterals,

more general: prisms, for example,

mixed: mixture of different types.
The choice of the mesh type for an application may depend on some special approximation
properties or on the need for some special FE basis functions, which require a special local
geometry. We will restrict ourselves here to the description of simplicial meshes, for several
reasons:

e A simplex is one of the most simple geometric types.
e Complex domains may be approximated by a set of simplices quite easily.

e Simplicial meshes allow local refinement (see Figure 2.1) without the need of nonconform-
ing meshes (hanging nodes), parametric elements, or mixture of element types (which is
the case for quadrilateral meshes, for example, see Figure 2.2).

e Polynomials of a given degree are easily represented on a simplex using local (barycentric)
coordinates. (On quadrilateral elements, the ‘standard’ type of ansatz spaces is a tensor
product of onedimensional polynomials.)

Refinement algorithms for non-simplicial meshes can be found in the literature.

Figure 2.1: Global and local refinement of a triangular mesh.

Figure 2.2: Local refinements of a rectangular mesh: with hanging nodes, conforming closure
using bisected rectangles, and conforming closure using triangles. Using a conforming closure
with rectangles, a local refinement has always global effects up to the boundary.

We will consider the following situation:
An initial (coarse) triangulation of the domain is given. We call it ‘macro triangulation’. It
may be generated by hand or by some mesh generation algorithm.



Some (or all) of the simplices are marked for refinement, depending on some error estimator
or indicator. After several refinements, some other simplices may be marked for coarsening.
Marking criteria and marking strategies are subject of Section 3.

2.1 Refinement algorithms for simplicial meshes

For simplicial elements, several refinement algorithms are widely used. One example is regular
refinement (“red refinement”), which divides every triangle into four similar triangles, see Fig-
ure 2.3. The corresponding refinement algorithm in three dimensions cuts every tetrahedron
into eight tetrahedra, and only a small number of similarity classes occur during successive
refinements, see [7]. Unfortunately, hanging nodes arise during local regular refinement. To re-
move them and create a conforming mesh, in two dimensions some triangles have to be bisected
(“green closure”). In three dimensions, several types of irregular refinement are needed for the
green closure. This creates more similarity classes, even in two dimensions. Additionally, these
bisected elements have to be removed before a further refinement of the mesh, in order to keep
the triangulation regular.

Figure 2.3: Global and local regular refinement of triangles and conforming closure by bisection.

Another possibility is to use bisection of simplices only. For every element (triangle or tetra-
hedron) one of its edges is marked as the refinement edge, and the element is refined into two
elements by cutting this edge at its midpoint. There are several possibilities to choose such a
refinement edge for a simplex, one example is to use the longest edge. Mitchell [48] compared
different approaches. We will describe an algorithm where the choice of refinement edges on
the macro triangulation prescribes the refinement edges for all simplices that are created during
mesh refinement (the “newest vertex” bisection in Mitchell’s notation). This make sure that
shape regularity of the triangulations is conserved.

The refinement by bisection can be implemented using recursive or non-recursive algorithms.
For tetrahedra, the first description of such refinements was done in the non-recursive way by
Bénsch [4]. It needs the intermediate handling of hanging nodes during the refinement process.
Two recursive algorithms, which do not create such hanging nodes and are therefore easier to
implement, are published by Kossaczky [45] and Maubach [47], which result in exactly the same
tetrahedral meshes as the non-recursive algorithm.

Other refinement techniques for simplicial meshes, such as Delaunay techniques, are possible
and described in the literature. We do not present details here.

In the following, we will describe the recursive refinement by bisection in detail, using the
notation of Kossaczky. An implementation was done for example in [58].

The refinement algorithm is based on a recursive bisectioning of elements. For every element of
the mesh, one of its edges is marked as its refinement edge. Elements are refined by bisecting
this edge. To keep the mesh conforming, bisection of an edge is only allowed when this edge



is the refinement edge for all elements which share this edge. Bisection of an edge and thus
of all elements around the edge is the atomic refinement operation, and no other refinement
operations are allowed. See Figures 2.4 and 2.5 for the two and three dimensional situations.

|

Figure 2.4: Atomic refinement operation in two dimensions. The common edge is the refinement
edge for both triangles.

Figure 2.5: Atomic refinement operation in three dimensions. The common edge is the refine-
ment edge for all tetrahedra around it.

If an element has to be refined, we first get all elements at this edge. In two dimensions this
is just the neighbour opposite this edge or there is no other element at this edge in the case
that the refinement edge belongs to the boundary. In three dimensions we have to loop around
the edge and collect all neighbours at this edge. If for all collected neighbours this edge is the
refinement edge also, we can refine the whole patch at same time by inserting one new vertex
in the midpoint of the common refinement edge and bisecting every element of the patch. The
resulting triangulation then is a conforming one.

If one of the collected neighbours has not the same refinement edge we first refine this neighbour
recursively. Thus, we can formulate the refinement of an element in the following way

Algorithm 2.1 Recursive refinement of one simplex
subroutine recursive refine(element)

{

do
for all neighbours at refinement edge
if neighbour has no compatible refinement edge
recursive_refine(neighbour) ;
} until all neighbours have a compatible refinement edge;

bisect all elements at the refinement edge;

}

In two dimensions we used the so called newest vertex bisection and in three dimensions the
algorithm described in [45]. For both variants it is proved, that for macro triangulation fulfilling




certain criteria the recursion stops. Both algorithms are for special macro triangulations the
recursive variants of the non recursive algorithms described in [4]. The beauty of the recursive
approach is that we do not have to handle hanging nodes and not one to one adjacencies, since
we can refine the whole refinement patch at same time.

In Figure 2.6 we show a twodimensional situation where recursion is needed. For all triangles,
the longest edge is the refinement edge. Let us assume that triangles A and B are marked for
refinement. Triangle A can be refined at once, as its refinement edge is a boundary edge. For
refinement of triangle B, we have to recursively refine triangles C and D. Again, triangle D can
be directly refined, so recursion stops there. This is shown in the second part of the figure.
Back in triangle C, this can now be refined together with its neighbour. After this, also triangle
B can be refined together with its neighbour.

Figure 2.6: Recursive refinement in two dimensions. Triangles A and B are initially marked for
refinement.

Now, the overall refinement algorithm can be formulated as follows:

Algorithm 2.2 Refinement of the mesh
subroutine refine mesh()

{

for all elements
while element is marked for refinement
recursive refine(element);

}

We will use the convention, that all vertices of an element are given fixed local indices. Valid
indices are 0, 1, and 2 for vertices of a triangle, and 0, 1, 2, and 3 for vertices of a tetrahedron.
Now, the refinement edge for an element can be fixed to be the edge between the vertices with
local indices 0 and 1.

child[0] child[1] child[0] child[1]

0 1 1 22 0

Figure 2.7: Numbering of nodes on parent and children triangles

During refinement, the new vertex numbers for the newly created child simplices are prescribed
by the refinement algorithm. This is done in such a way, that only a small number of similarity

10



childyy 2 child[1] 0

childo] < child[0]
0 {211}

3

Figure 2.8: Numbering of nodes on parent and children tetrahedra

1
Generation O:
0 2
0
Generation 1:
child[0] 3 child[1]
2
1
Generation 2;
child[0] child[1] el
‘ > child[1] %
Generatl on 0:

‘ child[0] Chl|d[1] ch||d[0]
Chl|d[ \‘ 3
child[1] Chlld Chlld[l]

0" child[1]

Figure 2.9: Successive refinements of a generation 0 tetrahedron

11
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classes occur during successive refinement of one macro element. For both children elements,
the index of the newly generated vertex at the midpoint of this edge has the highest local index
(2 resp. 3 for triangles and tetrahedra). These numbers are shown in Figure 2.7 for 2d and
in 2.8 for 3d. In 2d this numbering is the same for all refinement levels. In 3d, one has to
make some special arrangements: the numbering of the second child’s vertices does depend on
the generation of the elements. There exist three different generations 0, 1, and 2, and the
generation of a child element is always ((parent’s generation + 1) modulo 3). In Figure 2.8
we used the following convention: for the index set {1,2,2} on child[1] of a tetrahedron
of generation 0 we use the index 1 and for a tetrahedron of generation 1 and 2 the index 2.
Figure 2.9 shows successive refinments of a generation 0 tetrahedron, producing tetrahedra of
generations 1, 2, and 0 again.

Using the above refinement algorithm, the refinements of a mesh are totally determined by the
local vertex numbering of the macro triangulation, plus a prescribed generation for every macro
element in three dimensions.

The numbering for tetrahedra was introduced by Kossaczky. In case of the “standard” trian-
gulation of a (unit) square and cube into two triangles resp. six tetrahedra (see Figure 2.10),

oD (1,1,2)
1
(1,1,0)
2 0
00) L0 (000 (1,0,0)

Figure 2.10: Standard elements in two and three dimensions

0.1) (1,1,1)

(0.0)
Figure 2.11: Refined standard elements in two and three dimensions

these numberings and the definition of the refinement edge during refinement of the elements
guarantee that always the longest edge will be the refinement edge and will be bisected, see
Figure 2.11. For the general case is proved:

Theorem 2.1 (Kossaczky [45], Mitchell [48])

1. The recursion stops if the macro triangulation fulfils certain criteria.

2. We obtain shape reqularity for all elements at all levels.

In two dimensions, a triangulation where recursion does not stop is shown in Figure 2.12. The
selected refinement edges of the triangles are shown by dashed lines. One can easily see, that

12



there are no patches for the atomic refinement operation. This triangulation can only be refined
if other choices of refinement edges are made, or by a non-recursive algorithm.

Figure 2.12: A macro triangulation where recursion does not stop

For using the refinement algorithm in a finite element package, we also need a numbering for
edges, neighbours and faces. Edges and faces are needed for the implementation of higher order
elements, for example, and neighbour information is used in the refinement algorithm itself and
for error estimator calculation, for example.

In 2d the i-th edge/neighbour is the edge/neighbour opposite the i-th vertex; in 3d the i-th
face/neighbour is the face/neighbour opposite the i-th vertex; edges in 3d are numbered in the
following way:

edge 0: between vertex 0 and 1, edge 3: between vertex 1 and 1,
edge 1: between vertex 0 and 2, edge 4: between vertex 1 and 3,
edge 2: between vertex 0 and 3, edge 5: between vertex 2 and 3.

Figure 2.13 shows the numbering of the edges of child tetrahedra after refinement. The markers
describe, which edge’s degrees of freedom are changed during refinement, when higher order
elements are used. For a more detailed description of handling higher order elements, see [58].

child[1]

child[0]

child[o]

Figure 2.13: Edge numbers during refinement and degrees of freedom that are no longer needed
e, passed on from parent to child elements o, and newly generated O

2.2 Prolongation of data during refinement

During refinement, finite element functions will have to be adjusted to the new mesh situation.
Using hierarchically structured meshes, the finite element space of the coarse mesh is a subset
of the space of the refined mesh (at least for typical polynomial ansatz spaces and refinement by
bisection — there exist some finite elements where spaces are not nested, and the conforming
closure needed by local regular refinements may lead to non—nested spaces, too). Thus, data
can be represented identically on the refined mesh. During local refinement procedures, this

13



prolongation of information from the old mesh to the new one is usually done directly together
with the mesh changes.

After the geometrical part of the refinement is done on a patch around a refinement edge, we
can prolongate data handled by the degrees of freedom from parents to child on the whole patch.
We will describe the prolongation in detail for the case of piecewise linear finite elements; for
higher order elements, everything is similar, but more degrees of freedom are involved.

For linear element, when degrees of freedom are located at vertices only, everything takes place
on the bisected edge alone. Only one new vertex is created, the midpoint of the refinement edge.
To determine the value of a function fj at this new vertex, we can interpolate the function at
this point. On the edge, f}, is a polynomial of degree 1, so the value at the midpoint is just the
mean of the values at the edge endpoints:

fn(midpoint) = %(fh(vertex 0) + fn(vertex 1)).

Using the nodal basis functions ¢;(v;) = d; j, then the coefficient f,, of the new basis function
¢n, is just

fu= 3o+ )

2.3 Coarsening algorithms

The coarsening algorithm is more or less the inverse of the refinement algorithm. The basic idea
is to collect all those elements that were created during the refinement at same time, i.e. the
parents of these elements build a compatible refinement patch. If all the elements are marked
for coarsening, information is passed on the parents and the whole patch is coarsened at the
same time.

If one of the elements is not marked for coarsening, we are not allowed to coarsen the patch.
All element markers are reset. If one of the collected elements is not a leaf element but we are
allowed to coarsen it more than one time, we first try to coarsen this element and then try to
coarsen the newly collected patch.

This is the main difference between refinement and coarsening: Every element that is marked
for refinement will be refined and this refinement may enforce a refinement of other elements
that are not marked for refinement. An element that is marked for coarsening can only be
coarsened if all elements of the coarsening patch may be coarsened together with this element.
An element that is not marked for coarsening must not be coarsened, compare Section 3.2.
Thus, we can formulate the coarsening algorithm as follows:
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Algorithm 2.3 Local coarsening around one edge
subroutine coarsen(element)

{

get the parents of all elements at the coarsening edge

for all parents

{

if the coarsening edge of the parent is not compatible
reset coarsening marks of all children of this patch;
return false;

}
}

for all parents

{

if the parent is refined more than once,
and its children can be coarsened more than once
return true;

}

coarsen all parents at the coarsening edge;
return false;

}

The following routine coarsens as many elements as possible, even more than once if allowed:

Algorithm 2.4 Coarsening of the mesh
subroutine coarsen_mesh()

{

do
{
do_coarsen_once_more = false;
for all elements
if element is marked for coarsening
do_coarsen_once_more |= coarsen(element);
} until do_coarsen_once more is false

}

2.4 Restriction of data during coarsening

Also during coarsening, finite element functions will have to be adjusted to the new mesh
situation. As now no longer the new finite element space is a superset of the old one, we loose
some information. The marking strategies based on error estimators or indicators choose parts
of the mesh to be coarsened, where the amount of lost information is not too big.
Nevertheless, finite element functions have to be restricted (transfered) from the fine to the
coarse mesh. For linear finite elements, the easiest way to get around is just to ignore the value
at the old vertex that will be removed, and interpolate the function in all remaining vertices.
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In one special situation, information can be transfered identically from the old to the new
mesh. If the values of a linear functional F' applied to all basis functions are of interest, we can
transform these values during coarsening, without making any error: If ¢gne, ff“e, and ¢2ne
denote the basis functions corresponding to the endpoints and the midpoint of the edge inside
the coarsened patch, then the new basis functions corresponding to the endpoints of the edge

are
1 1
¢80arse qsgne 5 ('b’fine’ qs(lzoarse fliine 5 fgne )

This can easily be seen by interpolation of the coarse basis functions. Now, if for some linear
functional F' the values (F, $i"®), (F, ¢fi"¢), and (F, ¢fi"¢) are available, the values of F applied
to the new basis functions are

1 1
(F,¢6™"™) = (F,g0") + 5 (B ™), (Fg5°™) = (F,61™) + 5 (F, ¢5").

As one can easily see, the transformation matrix which transforms the old vector of functional
values to the new one is just the transpose of the transformation matrix which was used for
prolongation during refinement. This is the same for higher order elements.

One application of this procedure is time discretization, where scalar products with the solution
u™ ! from the last time step appear on the right hand side of the discrete problem.

2.5 Storage methods for hierarchical meshes

There are basically two kinds of storing a finite element grid. One possibility is to store only
the elements of the triangulation in a vector or a linked list. All information about elements is
located at the elements. In this situation there is no direct information of a hierarchical structure
for multigrid methods, e.g. Such information has to be generated and stored separately. During
mesh refinement, new elements are added (at the end) to the vector or list of elements. During
mesh coarsening, elements are removed. In case of an element vector, ‘holes’ may appear in the
vector that contain no longer a valid element. One has to take care of them, or remove them
by compressing the vector.

The other kind of storing the mesh is to keep the whole sequence of grids starting on the macro
triangulation up to the actual one. Storing information about the whole hierarchical structure
will need additional amount of computer memory, but on the other hand we can save computer
memory by storing such information not explicitly on each element which can be produced by
the hierarchical structure.

The simplicial grid is generated by refinement of a given macro triangulation. Refined parts
of the grid can be derefined, but we can not coarsen elements of the macro triangulation. The
refinement and coarsening routines construct a sequence of nested grids with a hierarchical
structure. Every refined simplex is refined into two children. Elements that may be coarsened
were created by refining the parent into these two elements and are now just coarsened back
into this parent (compare Sections 2.1, 2.3).

Using this structure of the refinement/coarsening routines, every element of the macro triangu-
lation is the root of a binary tree: every interior node of that tree has two pointers to the two
children; the leaf elements are part of the actual triangulation, which is used to define the finite
element space. The whole triangulation is a list (or vector) of given macro elements together
with the associated binary trees.
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Operations on elements can be performed by traversing the mesh, using standard tree traversing
algorithms.

Some information is stored on the (leaf) elements explicitly, other information is located at the
macro elements and is transfered to the leaf elements while traversing through the binary tree.
All information that should be available for mesh elements is stored explicitly for elements of
the macro triangulation. Thus, all information is present on the macro level and is transfered to
the other tree elements by transforming requested data from one element to its children. These
can be done by simple calculations using the hierarchic structure induced by the refinement
algorithm.

An example of information which does not have to be stored for each element are the coordinates
of the element’s vertices (in the case of non-parametric elements and polyhedral boundary).
Going from parent to child only the coordinates of one vertex changes and the new ones are
simply the mean value of the coordinates of two vertices at the so called refinement edge of the
parent. The other vertex coordinates stay the same.

Another example of such information is information about adjacent elements. Using adjacency
information of the macro elements we can compute requested information for all elements of
the mesh.

An implementation of the hierarchical mesh storage is done in [58].
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3 Adaptive strategies

During this section, we will present several strategies for the local refinement and coarsening of
finite element meshes and for adjustment of the time step size.

3.1 Mesh refinement strategies

Let us assume that a triangulation 7, of , a finite element solution u; € Vj to an elliptic
problem, and an a posteriori error estimate

1/2

Ju—upll < nlup) == | D nr(us)’
TET,

on this mesh are given. If € is a given allowed tolerance for the error, and n(up) > &, the
problem arises

e where to refine the mesh in order to reduce the error,
e while at the same time the number of unknowns should not become too large.

A global refinement of the mesh would lead to the best reduction of the error, but the amount of
new unknowns might be much larger than needed to reduce the error below the given tolerance.
Using local refinement, we hope to do much better.

The design of an “optimal” mesh, where the number of unknowns is as small as possible to
keep the error below the tolerance, is an open problem and will probably be much too costly.
Especially in the case of linear problems, the design of an optimal mesh will be much more
expensive than the solution of the original problem, since the mesh optimization is a highly
nonlinear problem. Some heuristic arguments have to be used in the algorithm. The aim is to
produce a result that is “not too far” from an optimal mesh, but with a relatively small amount
of additional work to generate it.

Several adaptive strategies are proposed in the literature, that give criteria which mesh elements
should be marked for refinement. All strategies are based on the idea of an equidistribution
of the local error to all mesh elements. Babuska and Rheinboldt [1] motivate that a mesh is
almost optimal when the local errors are approximately equal for all elements. So, elements
where the error estimate is large will be marked for refinement, while elements with a small
estimated error are left unchanged.

The general outline of the adaptive algorithm is as follows. Starting from an initial triangulation
To, we produce a sequence of triangulations T, k = 1,2, ..., until the estimated error is below
the given tolerance:
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Algorithm 3.1 General adaptive refinement strategy
Start with 7y and error tolerance &

k:=0
do forever
solve the discrete problem on T
compute local error estimates nr, T € T
if n <¢ then
stop
mark elements for refinement, according to a marking strategy
refine mesh 7, producing 7.1
k=k+1
enddo

Since a discrete problem has to be solved in every iteration of this algorithm, the number of
iterations should be as small as possible. Thus, the marking strategy should select not too few
mesh elements for refinement in each cycle. On the other hand, not much more elements should
be selected than is needed to reduce the error below the given tolerance.

In the sequel, we describe several marking strategies that are commonly used in adaptive finite
element methods.

Maximum strategy: The simplest strategy is a maximum strategy. A threshold v € (0,1)
is given, and all elements T € T with

3.1 > 7y max g

(3.1) >y max r

are marked for refinement. A small «y leads to more refinement and non—optimal meshes, while
a large 7y leads to more cycles until the error tolerance is reached, but produces a mesh with
less unknowns. Typically, a threshold value v = 0.5 is used [61, 63].

Algorithm 3.2 Mazimum strategy
Start with parameter vy € (0,1)

Nmax = max(nr, T € Tg)
for all T in 7, do

if 7 > YNmax then mark T for refinement
enddo

Extrapolation strategy: Suppose that the local error estimates have an asymptotic be-
haviour

nr = ch);f ash—0
for some X > 0. If an element T with estimate 7 was generated by refining an element T°'¢ in
a previous mesh with corresponding estimate n%ld, then the above behaviour suggests that the

estimate at one of the childs after refining T will be approximately

2

new __ nT
nr = —a-
Uiy
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Now, the idea is that no elements should be refined in the current iteration, where the estimated
error is smaller than the largest local estimate that is expected after the next refinement. This
leads to the following algorithm:

Algorithm 3.3 Eztrapolation strategy [1]

cut := max(n*V, T € Tg)
for all T in 7T, do

if npr > cut then mark 7T for refinement
enddo

If n%ld

used.

is unknown and thus n*" cannot be computed, some other marking strategy has to be

Equidistribution strategy: Let Ny be the number of mesh elements in 7. If we assume
that the error is equidistributed over all elements, i. e. ny = ng for all T,T" € T}, then

1/2
2 ! £
n=|>Yn| =VNemr =¢ and np = :
(Te’rh ) VN

We can try to reach this equidistribution by refining all elements, where it is disturbed because
the estimated error is larger than ¢/y/Ng. To make the procedure more robust, a parameter
6 € (0,1), 8 =~ 1, is included in the method.

Algorithm 3.4 FEquidistribution strateqy [24]
Start with parameter 0 € (0,1), =1

for all T in 7T, do
if n7 > 0e/\/Nj then mark T for refinement
enddo

If the error 7 is already near e, then the choice # = 1 leads to the selection of only very few
elements for refinement, which results in more iterations of the adative process. Thus, 6 should
be chosen smaller than 1, for example 8 = 0.9.

Guaranteed error reduction strategy: Usually, it is not clear whether the adaptive re-
finement strategy Algorithm 3.1 using a marking strategy (other than global refinement) will
converge and stop, or how fast the convergence is. Dorfler [17] describes a strategy with a
guaranteed relative error reduction for the Poisson equation.

We need the assumptions, that

- given data of the problem (like the right hand side) is sufficiently resolved by the current
mesh T,

- all edges of marked mesh elements are at least bisected by the refinement procedure (using
regular refinement or two/three iterated bisections of triangles/tetrahedra, for example).

The idea is to refine a subset of the triangulation that produces a considerable amount of the
total error 7. Given a parameter 6, € (0,1), the procedure is:

Mark a set A C Ty such that Z > (1—6,)%n.
TeA
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It follows from the assumptions that the error will be reduced by at least a factor Kk < 1
depending of 6, and data of the problem. Selection of the set A can be done in the following
way. The threshold v is reduced in small steps of size v € (0,1), v ~ 0, until the maximum
strategy marks a set which is large enough. This inner iteration does not cost much time, as
no computations are done in it.

Algorithm 3.5 Guaranteed error reduction strategy [17]
Start with given parameters 6, € (0,1), v € (0,1)

Tmax = maX(T]T, TEE)

sum := 0

v :=1

while sum < (1 —46,)?p? do
V= -y

for all T in 7T, do
if T is not marked
if N7 > Y Nmax
mark T for refinement
sum := sum + n%
endif
endif
enddo
endwhile

Using the above algorithm, Dorfler [16] describes a robust adaptive strategy also for the nonlin-
ear Poisson equation —Awu = f(u). It is based on a posteriori error estimates and a posteriori
saturation criteria for the approximation of the nonlinearity.

Other refinement strategies: Jarausch [39] describes a strategy which generates quasi—
optimal meshes. It is based on an optimization procedure involving the increase of a cost
function during refinement and the profit while minimizing an energy functional.

For special applications, additional information may be generated by the error estimator and
used by the adaptive strategy. This includes (anisotropic) directional refinement of elements
[44, 59], or the decision of local h— or p—enrichment of the finite element space [15].

3.2 Coarsening strategies

Up to now we presented only refinement strategies. For linear elliptic problems, no more is
needed to generate a quasi—optimal mesh with nearly equidistributed local errors.

In timedependent problems, the regions where large local errors are produced can move in time.
In stationary nonlinear problems, a bad resolution of the solution on coarse meshes may lead
to some local refinement where it is not needed for the final solution, and the mesh could be
coarsened again. Both situations result in the need to coarsen the mesh at some places in order
to keep the number of unknowns small.

Coarsening of the mesh can produce additional errors in a timedependent process. Assuming
that these are bounded by an a posteriori estimate 7.7, we can take this into account during
the marking procedure.
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Some of the refinement strategies described above can also be used to mark mesh elements
for coarsening. Actually, elements will only be coarsened if all neighbour elements which are
affected by the coarsening process are marked for coarsening, too. This makes sure that only
elements where the error is small enough are coarsened, and motivates the coarsening algorithm
in Section 2.3.

Equidistribution strategy: Equidistribution of the tolerated error ¢ leads to

€
nr =~ forall T € T.
V' Ni
If the local error at an element is considerably smaller than this mean value, we may coarsen
the element without producing an error that is too large. If we are able to estimate the error
after coarsening, for example by assuming an asymptotic behavior like

nr ch%, A>0,

we can calculate a threshold 6. € (0,0) such that the local error after coarsening is still below
0 e/\/ Ny if it was smaller than 6.c/+/Nj before. If the error after coarsening gets larger than
this value, the elements would directly be refined again in the next iteration.

Algorithm 3.6 FEquidistribution refinement/coarsening strategy
Start with parameters 6 € (0,1), 6§ ~ 1, and 0. € (0,0)

for all T in 7T, do

if nr > 0e/\/Ni then mark T for refinement

if pr+ner < 0. E/\/Nk then mark 7T for coarsening
enddo

When local h— and p—enrichment and coarsening of the finite element space is used, then the
threshold 6. depends on the local degree of finite elements. Thus, local thresholds 6. 7 have to
be used.

Guaranteed error reduction strategy: Similar to the refinement in Algorithm 3.5, Dorfler
[18] describes a marking strategy for coarsening. Again, the idea is to coarsen a subset of the
triangulation such that the additional error after coarsening is not larger than a fixed amount
of the given tolerance . Given a parameter 6, € (0,1), the procedure is:

Mark a set B C 7j, such that Z n% + niT < 6%?.
TeB

The selection of the set B can be done similar to Algorithm 3.5. Under suitable assumptions,
Dorfler proves that the adaptive algorithm with mesh refinement and coarsening leads to an
error below the given tolerance [18].

Handling information loss during coarsening: Usually, some information is irreversibly
destroyed during coarsening of parts of the mesh, compare Section 2.4. If the adaptive procedure
iterates several times, it may occur that elements which were marked for coarsening in the
beginning are not allowed to coarsen at the end. If the mesh was already coarsened, an error is
produced which can not be reduced anymore.
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One possibility to circumvent such problems is to delay the mesh coarsening until the final
iteration of the adaptive procedure, allowing only refinements before. If the coarsening marking
strategy is not too liberal (6, not too large), this should keep the error below the given bound.
Dorfler [18] proposes to keep all information until it is clear, after solving and by estimating
the error on a (virtually) coarsened mesh, that the coarsening does not lead to an error which
is too large.

3.3 Adaptive procedures for timedependent problems

In timedependent problems, the mesh is adapted to the solution in every time step using a
posteriori error estimators or indicators. Bansch [3] lists several different adaptive procedures
for timedependent problems:

e Explicit strategy: The current time step is solved once on the mesh from the previous
time step, giving the solution wu,. Based on a posteriori estimates of u, the mesh is
locally refined and coarsened. The problem is not solved again on the new mesh, and the
estimate—adapt process is not iterated.

This strategy is only usable when the solution is nearly stationary and does not change
much in time, or when the time step size is very small.

e Semi—implicit strategy: The current time step is solved once on the mesh from the
previous time step, giving an intermediate solution %;. Based on a posteriori estimates of
1, the mesh is locally refined and coarsened. This produces the final mesh for the current
time step, where the discrete solution uy, is computed. The estimate—adapt process is not
iterated.

This strategy works quite well, if the time steps are not too large, such that regions of
refinement move too fast.

e Implicit strategy A: In every time step starting from the previous time step’s triangu-

lation, a mesh is generated using local refinement and coarsening based on a posteriori
estimates of a solution which is calculated on the current mesh. This solve—estimate—
adapt process is iterated until the estimated error is below the given bound.
This strategy guarantees that the estimated error is below the given bound. Together
with an adaptive control of the time step size, this leads to global (in time) error bounds.
If the time step size is not too large, the number of iterations of the solve—estimate—adapt
process is usually very small.

e Implicit strategy B: In every time step starting from the macro triangulation, a mesh
is generated using local refinements based on a posteriori estimates of a solution which
is calculated on the current (maybe quite coarse) mesh; no mesh coarsening is needed.
This solve—estimate—adapt process is iterated until the estimated error is below the given
bound.

Like implicit strategy A, this strategy guarantees error bounds. As the initial mesh for
every time step is very coarse, the number of iterations of the solve—estimate—adapt process
becomes quite large, and thus the algorithm might become expensive. On the other hand,
a solution on a coarse grid is fast and can be used as a good initial guess for finer grids,
which is usually better than using the solution from the old time step.

Implicit strategy B can also be used with anisotropically refined triangular meshes, see
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[29]. As coarsening of anisotropic meshes and changes of the anisotropy direction are still
open problems, this implies that the implicit strategy A can not be used in this context.

Figure 3.1 shows one time step using the implicit strategy A. The adaptive algorithm as shown
in the flow diagram ensures that the mesh refinement/coarsening is done at least once in each
time step, even if the error estimate is below the limit. Nevertheless, the error might be not
equally distributed between all elements; for some simplices the local error estimates might be
bigger than allowed.

(Start with initial values 7!, 7, u0>

I

Given 7™, u™ 1, solve for u™
a Compute error estimates

Forall T € T™:

Use marking strategy for refinement and coarsening

Adapt the mesh where needed

I

If mesh was changed, solve again for u™
Compute error estimates

I

Test error estimate: n > £7

K yes

Figure 3.1: Implicit adaptive strategy A

3.4 Adaptive control of the time step size

A posteriori error estimates for parabolic problems include an estimate 7, of the error that
is produced by the time discretization with the actual time step size 7. For Euler time dis-

cretization of the heat equation u; — Au = f with piecewise linear finite elements, for example,

e = (Ll (tm ) + luf ™ = uflle).
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When a bound ¢ is given for the total error produced in a timestep, the widely used strategy is
to allow half of this error to be produced by the spacial discretization, and the other half of the
error to be produced by the time discretization (equidistribution of error in time and space).
The adaptive procedure is now:

e Adjust the time step size such that n, ~ /2,
e Adapt the mesh such that n ~ ¢/2.

The adjustment of the time step size can be done via extrapolation techniques known from
numerical methods for ordinary differential equations, or iteratively: The algorithm starts from
the previous time step size 7oq or from an initial guess. A parameter §; € (0,1) (usually
depending on the order of the time discretization) is used to reduce the step size until the
estimate is below the given bound. If the error is smaller than the bound, the step size is
enlarged by a factor do > 1. In this case, the actual time step is not recalculated, only the
initial step size for the next time step is changed. Two additional parameters 6; € (0,1),
B € (0,60,) are used to keep the algorithm robust, just like it is done in the equidistribution
strategy for mesh adaption. The algorithm starts from the previous time step size 714 or from
an initial guess.

If §1 = 1, consecutive time steps may vary only slightly, but the number of iterations for getting
the new accepted time step may increase. Again, as each iteration includes the solution of a
discrete problem, this value should be chosen not too large. For a 1st order time discretization
scheme, a common choice is §; =~ 0.5, for example.

Algorithm 3.7 Time step size control
Start with parameters ¢; € (0,1), dy > 1, 6, € (0,1), 63 € (0,6y)

T = Told
Solve time step problem and estimate the error
while 7, > 0¢/2 do

T =T %

Solve time step problem and estimate the error
endwhile
if 9 <6¢/2 then

T =T %
endif

The above algorithm controls only the time step size, but does not show the mesh adaption.
There are several possibilities to combine both controls. An inclusion of the grid adaption in
every iteration of Algorithm 3.7 can result in a large number of discrete problems to solve,
especially if the time step size is reduced more than once. A better procedure is first to do the
step size control with the old mesh, then adapt the mesh, and after this check the time error
again. In combination with implicit strategy A, this procedure is shown in Figure 3.2.

The adaptive a posteriori approach can be extended to the adaptive choice of the order of the
time discretization: Bornemann [8, 9, 10] describes an adaptive variable order time discretization
method, combined with implicit strategy B using the extrapolation marking strategy for the
mesh adaption.
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(Start with initial values 7', 7!, u0>

I

| Given 7™, 7™, u™ !, solve for u™
4 Compute error estimates

Reduce yes Test timestep size:
| timestep | nr > 6016/2 7

-
For all T € T™:
Use marking strategy for refinement and coarsening
Adapt the mesh where needed
.

|

If mesh was changed, solve again for u™
Compute error estimates

Reduce yes Test timestep size:
| timestep | Ny > 6016/2 7

Test spatial error estimate: | yes

n>0e/27?
Test timestep size: yes | Enlarge
Ny < 02e/2 7 | timestep
N yes | m<4—m+1
t<T?

Figure 3.2: Time and space adaptive algorithm

26



4 The classical Stefan problem

We consider the classical two phase Stefan problem, which describes the heat diffusion and
phase change in a pure material. Let & C R? denote a bounded domain, u the enthalpy and 6
the temperature, and f(¢,-) € H~'(Q) a given right hand side sufficiently smooth in time.

Problem 4.1 Two phase Stefan problem
Find u € Loo(0,T; Loo(Q)) NWE(0,T; H () and 6 € Loo(0,T; HS () such that

%u — Al =f in H(Q),
with initial condition
u(-,0) = wuy
and
0 = B(u),

where $(s) = min(s,0) + max(s — 1,0), see Figure 4.1.

I

Figure 4.1: Graphs of 3 and 5!

4.1 Elliptic variational inequalities and the Stefan problem

EVI and minimization problems: We need to cite some results about elliptic variational
inequalities. For more information, see e.g. [21, 32].

Theorem 4.1 Let Q C R? bounded, V. C H}(Q), a : V x V — R bilinear, symmetric, and
elliptic, ® : R — R convez, | € V* D Ly(Q), and

Tw) = 50(v,0) = (o), 90) = [ B(v())d.
Then the minimization problem
(4.1) weV: Jw)+ou) <Jw)+¢v) YoeV
has a unique solution and is equivalent to the elliptic variational inequality of second kind
(4.2) weV: a(u,v—u)+ ¢(w) —¢(u) > ({l,v—u) YveV.

Proof (from [32]): Existence and uniqueness of a solution v for the minimization problem
(4.1) follows from the strict convexity of J + ¢ and the fact that J(v) + ¢(v) — oo as
|lv]| = oo.
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Let u be the solution of (4.1). For every v € V and 0 < s <1 we have
J(w) + ¢d(u) < J(u+ s(v—u)) + d(u+ s(v —u)),
and thus, using the convexity of ¢,

0 < Ju+s(v—u))—Jw) +du+s(v—u))— ¢(u)
< J(u+s(v—u)) = J(u) + s(p(v) — ¢(u)).

Dividing by s, we get in the limit s — 0

0<(J'(u),v—u) + ¢v) —p(u) YveV.
Since a(-,-) is symmetric, we have

(J'(v),w) = a(v,w) — (l,w) Yv,w eV,
and the variational inequality (4.2) follows.

Now, let u be a solution of (4.2). For v € V' we have

J(v) + p(v) = J(u) — d(u) = 5 (a(v,v) — a(u,u)) + (v) — ¢p(u) — (I, v —u).
Using the identity
a(v,v) =alu+v—u,u+v—u)=alu,u) + 2a(u,v —u) +alu —v,u —v),

we get

1
J(0) + ¢(v) = J(u) = $(u) = a(u,v —u) + $(v) = p(u) = {l,v —u) + Ja(u —v,u —v).
Since (4.2) and a(u —v,u —v) > 0, we get that u solves (4.1). 0
EVI and subdifferentials: For a function ¢ : V' — R, we define the subdifferential of ¢ at

u €V by
0p(u) :=={u* € V* | p(v) — p(u) > (u*,v — u) for all v € V'}.

Defining A € L(V,V*) by (Av,w) := a(v,w) for all v,w € V, the EVI (4.2) reads
(Au,v —u) + p(v) —d(u) > (Lv—u) VeV,

or

p(v) —p(u) > (I — Au,v — u) Yo e V.

By definition of d¢(u), we have
(4.3) [ — Au € 0¢(u).

For smooth [ — Au, also the pointwise inclusion (almost everywhere)
(I — Au)(z) € 0P(u(z)) fora.e. z€Q
holds for the solution u of (4.2), where the subdifferential of ® is defined as

00(u(zr)) ={z€ R | ®(y) — ®(x) > z(y — x) for all y € R}.
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An EVI equivalent to the Stefan problem: We return to the Stefan problem

%u —Af=f in HYQ), with

0=pu) & uef ()

where ((s) = min(s,0) + max(s — 1,0), see Figure 4.1, and suitable initial and boundary
conditions. An implicit Euler discretization in time leads to

m _ ,,m—1

Uu U

— g =,
-
u™ = TAG™ + 0™ 4 T
With A := —7A and I"™ := «™ ! 4+ 7f™ this reads
u™ =1"— A0™.
Using the relation u € 371(6), we get
™ — AO™ € BH(O™).

Now, 57! is just the subdifferential of the convex function

(4.4 B(y) = 547+ max(y,0),

which results in the inclusion
(™ — A0™)(x) € 0P(0™(x)) a.e., or
™ — AQ™ € 0p(0™).

Recalling (4.3), we see that the temperature 0™ is the solution of the minimization problem
(4.1) or the elliptic variational inequality (4.2) with the special ® from (4.4).

For solving the timedependent Stefan problem, we have to solve such an elliptic variational
inequality in every time step.

4.2 A multigrid method for elliptic variational inequalities

Iterative solution methods like (linear or nonlinear) SOR are usually non-optimal in the sense,
that their convergence gets slower when the discretizations get finer. This is caused by the fact
that the contraction constant of the method (spectral radius of the corresponding matrix) tends
to one when the mesh size tends to zero.

Using multilevel techniques, the design of some ‘optimal’ iterative solution methods for linear
and nonlinear problems is possible. Linear multilevel solvers (multigrid solvers or multilevel
preconditioners) are quite standard now, but most nonlinear problems need specialized methods.
Kornhuber [41, 43] describes a finite element multigrid method for the solution of elliptic vari-
ational inequalities, where ® is a piecewise quadratic function. We will motivate and describe
this method. Similar methods were presented in [35], [36].
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First, we need some notations used for the multilevel finite element method (we use the same
as [43]).

Let the domain © C R? be bounded by a polygon, and let 7° be a given macro-triangulation
of Q. We use a sequence of nested triangulations 7',...,77 by successive refinements of 7.
We want to solve the time discretized Stefan problem on the finest triangulation 77. Let Vj,
k =0,...,7 be the corresponding finite element spaces of piecewise linear functions. N =
{pi,i = 1,...,n;} denote the non-Dirichlet vertices of 7%, and A = {)\I(,]f), i=1,...,n},
k =0,...,7, the corresponding nodal basis of V;. By construction, we have Vo C V1 C ... CV}
and ng <n; <... < nj.

Multigrid for linear elliptic problems: First of all, we give a short description of multigrid
methods for the linear elliptic problem

1 1

§a’(u7u)_<fau> < —G(U,U)—<f,1)> VUEH&(Q)

& we HY(Q):  alu,v) = (f,v) Vo€ H(Q).

Finite element discretization leads to the linear system of equations

u € Hy(Q) :

[N

up € Vi i+ alup,vn) = (f,on) Yop €Vj.

One iteration of a V-cycle multigrid solver for this problem, starting with u; € V; and producing
u,'frl, is presented in the Algorithm 4.1. The general idea of multilevel methods is to reduce high
frequency components of the error by fine level smoothing and low frequency error components
by coarse grid correction. The multigrid iteration below uses one pre-smoothing iteration per
level and no post-smoothing. The smoothing operator My (a, f) consists usually of one or more
iterations of a standard iterative solver for the linear system, like Gauss-Seidel, Jacobi, etc.,

which has some smoothing properties.

Algorithm 4.1 Linear V-cycle multigrid iteration

fine grid smoothing: v\ := M;(a, f)(u})
residual: rU) = f—qa(v0),.)
o) =g
coarse grid correction:
for k=j5—1 to 0 step —1 do

canonical restrictions: a®) :=a*+D|y ., r) =)

|Vk
coarse grid smoothing: v := My (a®),r#))(0)
update residual: 7 .= (k) — k) (k) )
enddo
for k=0 to j—1 do
canonical prolongation: okt = y(k+1) (k)
enddo
new iterate: wu) ' :=uvl)

The restrictions of the bilinear form and of the residual and the prolongation of the coarse grid
correction use the formulas presented in Sections 2.2 and 2.4. The general structure of the
multigrid algorithm for elliptic variational inequalities will be just the same, see Algorithm 4.3.
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Multigrid for elliptic variational inequalities: The aim now is so solve the discrete op-
timization problem

(4.5) up € Vj: Jj(uh) + ¢j(uh) < Jj(vh) + gbj(vh) Vv, €'V},

where the nonlinear functional ¢(v) = [, ®(v(z)) is replaced by the discrete (lumped) nonlinear
functional

(46) Bifon) = 3 D(onlp) [ A da,
i=1
and J is replaced by an approximation using a lumped L5 scalar product:
1
(4.7) Ji(vp) == 3 a(vp,vp) — (I, vp) 4,
n;
(4.8) (s w)j ==Y va(pi) wn(ps) /Q A9 dz,
i=1

For the sake of clearness and simplicity, we describe the method for the Stefan problem with ®
from (4.4),

1,2
(4.9) <I>(y>={ L
3y°+y y<0.

The articles [42, 43] describe the method for some more general situations of two or more phases,
where ® is a general piecewise quadratic and convex function.

Existence and uniqueness of a solution uy, of the discrete problem (4.5) follow just as in the
nondiscrete case. Convergence of the discrete solution uy to the solution u of the continuous
problem (4.1) is known [22, 32], including a priori error estimates.

The general idea of the multilevel solver is to successively minimize the energy functional in the
one dimensional subspaces, which are spanned by the nodal basis functions from all levels:

vk .= span{Agf)}, i=1,...,n5, k=0,...,7.

Starting from uj € Vj, the following algorithm describes one iteration of a ‘global’ relaxation
procedure, producing the next iterate u,’frl. It consists of one minimization in each of the above
subspaces, using damping parameters wy ; € [0, 1].

Algorithm 4.2 (Nonlinear multilevel relazation)

wy, 1= uy
for k=3,...,0 step —1 do
for 1+ =1,...,n; do
oy €VF Jj(wn +0,) + (w4 ) < Jj(wp +op) + ¢j(wp +vp) Vo, € VE
Wh = Wh + Wk iV, Wk € [0, 1]

enddo
enddo
UZH = wy,

The following theorem states the convergence of such successive minimizations even when
damped minimizations are used in subspaces which are generated by coarse level basis functions:
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Theorem 4.2 For any initial iterate ug € V; and any sequence of damping parameters with
the property that no damping is used at the finest level, i. e.

wj,izl, 7j=1,...,n]~,

the sequence of iterates (uy),>0 produced by Algorithm 4.2 converges to the solution uy, of the
discrete problem (4.5).

The proof uses the global convergence of the leading nondamped relaxation on the finest
level (which is just a nonlinear Gauss-Seidel relaxation) and the monotonicity of the local
corrections: (J; + ¢;)(wy) does not increase during the iteration. It can be found in [41].

On the finest level £ = j, the minimization in the one dimensional subspace Vij
v € Vij o Jj(wh +op) + ¢ (wn, +o1) < Jj(wp +vp) + di(wy, +vp) Yoy € Vij
is equivalent (compare (4.3)) to the inclusion:
e V?: l—alwy+0p,-) € 9¢;(wp+ ).

With m, = [, )\,(,]u), Qpy = a()\z(,{),)\,(,],,)), wy, = wy(py), and 1, = l(p,), p,v = 1,...,n; , this
corresponds to the scalar nonlinear inclusion

zeR: I;m;— Z Qs Wy, € aii(w; + 2) + m; 0P (w; + 2) .
/J/Zla-“:nja.u/;éi

Using b :=l; m; — }_,4; au; wy, the solution z is given explicitely by the nonlinear Gauss-Seidel
step
b/ (aii +m;) b <0,
(4.10) wi+2z = 0 b € [0,m;],
(b—m;)/(aii +mi) b>m;.

(k)

For coarser levels k£ < j, the basis functions A,
and the minimization in the one dimensional subspace Vlk needs the solution of a system of
nonlinear equations. The exact solution can no longer be calculated as easily as in the case of
the finest level. So, this general nonlinear multilevel relaxation is not easy to implement and

are nonzero at more than one fine-level vertex,

solve.

The idea for a multilevel procedure, which is easy to implement, is to minimize the functional
only in a subset of the one dimensional subspace, where the solution is easy to compute.

We will see afterwards, that the final multigrid methods are equivalent to the nonlinear multi-
level relaxation with damping at the coarser levels.

Depending on a current iterate uj, we define discrete phases N, ; and N, ;r by
N; (up) = {p € Nj | uj(p) <O}, N;(up):={p € Nj | uj(p) > 0}.
All other nodes belong to the set of critical nodes N}
Ny (up) = Nj \ (N} (up) UN (up)).

It can be shown that these discrete phases converge during the nonlinear multilevel relaxation:
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Theorem 4.3 If the discrete problem (4.5) is non—degenerate, i. e.
pENS(u) = (LAY) —a(un,AJ)) € intdg;(un) ),

then the discrete phases of the iterates uy converge to the discrete phases of uy. There esists
some vy > 0, such that the discrete phases Nj_, Nf, and N} of up, and those of uy, v > 1y,
coincide.

The proof can be found in [43].

As long as the discrete phases of a function wj, do not change, the functional ¢;(wy,) is quadratic:

i) =S Bwnlp) [ N de
i—=1

1
= Z 5 Wh (pi) /)\ dz + Z wh (pi) -I-wh />‘pz
PiEN, plEN"'
= —thpZ /)\ dr + Z wp(pi) /)‘pl

pieN;

=t by (,108) — o ().

This defines a bilinear form b,,, and a linear functional f,,, , which both depend on the current
discrete phases, in general (in our special situation, only f,, depends on the phases).

The coarse grid corrections of the multilevel procedure will keep the discrete phases of the
current solution unchanged and solve the problem with such simplified equations. In order to
keep the discrete phases unchanged, we define lower and upper obstacle functions <p and ¢4 by

& (p) :={ I T =) :={ S

0,
uy (p) >0, 0 PEN;,

and the closed convex subset i C Vj of functions with the same discrete phases as uj, is given
by
= {vn € Vj | ¢ (p) < vn(p) < & (p) for all p € Nj}.

After minimizing the energy in the fine level subspaces Vij , ¢t = 1,...,nj, the discrete phases
and obstacles are computed, and coarse level minimizations are only done in a convex subset
Dy cVFEnKy:

vy, € Df : Jj(wh +op) + gbj(wh + o) < Jj(wh + ) + gbj(wh +vy) Yo, € Df

The generation of these subsets D¥ will be described below. This minimization can be done
very efficiently and is equivalent to a truncated linear Gauss-Seidel smoother on the coarser
grids. Let 2)\;5,];) € Vzk be the solution of the unconstrained linearized problem, which can be
computed by a linear Gauss-Seidel step similar to (4.10). For given D¥ we define DF¥, DF € R by
DF = {z)\l(,]f) | z € [D¥, D¥]}. Then the solution of the problem in D¥ is given by the truncation

vp = Zkgf) where Z := min(D¥ max(D¥,2)).
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A computation of the set Vlk N K7 is not easy to implement at the coarse levels, but a very
efficient and simple (but non-optimal) restriction of the obstacles to the coarser finite element
spaces is possible. This is used to compute the subsets Df. We present the simple idea in
case of the upper obstacle ¢”. Like always during restrictions and prolongations in multigrid
methods, such a restriction can be built out of simple atomic restrictions, which describe the
local situation where one edge e of the triangulation 7y is bisected into two edges of level k + 1.
This defines a restriction operator R, : Vi+1 — Vii1. The restriction Rﬁ 41 ¢ Vir1r = Vg is then
defined by

(4.11) Rf, :==IyoR,o0--0R,, ,

where Ij; is the Lagrange interpolation operator to Vi, and ey, ..., en are the edges which were
bisected during the refinement process from 7Ty, to 7;1. The actual restriction R’,; 4 may depend
on the order of these edges.

P1 Pe P2
Figure 4.2: Restriction R, of the upper obstacle: Fine grid obstacles are depicted by solid lines
and coarse grid obstacles by dashed lines.

Looking at one single edge e, we have a one dimensional situation. Let p, pa denote the vertices
of e, and p, the midpoint of e. The coarse level obstacle ¢ is linear on this edge, and should be
smaller or equal to the fine level obstacle ¢} , |, which is piecewise linear on the two half edges.
The idea of this restriction is simply to change the values at the vertices py, ps in a simple way
such that the coarse grid function ¢} is bounded by the fine grid function. Figure 4.2 shows the
three principal cases. The solid line denotes the function v, while the dashed line denotes I, R,v.
If v(pe) < min(v(p1),v(p2)), then Iy Rev is constant equal to v(pe). If v(pe) > 3 (v(p1) + v(p2)),
then I R.v is just the interpolation of v. Otherwise, Iy R.v is just the continuation of the lower
half. Formulas for the restricted values at p;, ps follow quite easily.

These restrictions R,’g 41 and Bﬁ 41 of the lower and upper obstacles are used on level £ to bound
the coarse grid correction and describe the sets DZ’-“, 1 =1,...,n;. These sets can not become
empty, but it may happen that Df = {0} for points p; near the interface, and thus no correction
will be allowed at these points.

Let us denote the fine-grid minimization (smoothing) operation starting with uj by M;(u})
and the coarse-grid minimization (smoothing) operation using a quadratic functional a(*)(-,.),
a right hand side r*)(.) and upper and lower obstacles ,%}(k)’ p®) | starting with zero, by

Mi[a®),r®), 0 5] (0):

Subroutine M;(uj):

wy, 1= uy

for i =1 to n; do
vy, € Vi(]) : Jj(wh + o) + ¢j(wh + o) < Jj(wh + o) + ¢j(wh +vp) Vo, € Vi]
Wp, 1= Wy, + U,

enddo

return wy,
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Subroutine Mj [a®), (k) zé(k), $p#1(0):

wp, =0

Ji(vp) = %a(k)(vh,vh) — (r(k),vh>

for 1 =1 to n; do
ng) = {vp € VF | B (p;) <wplpi) < 9F) (pi)}
vy, € ng) s Je(wy +op) < Jp(wp +vp)
Wp, 1= Wp, + UV,

enddo

return wy,

Using these subroutines one iteration of the multilevel algorithm reads as follows:

Algorithm 4.3 Standard monotone multigrid method STDKH

fine grid smoothing: aj := M;(uj)
discrete phases: N; (i), N]*(ﬁZ),~N;(fLZ)
local linearization: a:=a-+bg, [:=1+ far
coarse grid correction:
initialize:
bilinear form: al) = a,
residual: rU) =[—a(a,")
defect obstacles: @(j) =
for k=j5—1 to 0 step —1 do
canonical restrictions: af):=a*+D|y ., rk) = p(tl

)|Vk
obstacle restrictions: @é)(k) = B§+1Q£(k+1), k) = R pk+1)
coarse grid smoothing: vk) = Mk[a(k>,r(k>,z[;(k>,7];(k>](0)

update: -
residual: k) = (k) — gk (k) )
obstacles: o) = k) — (k) (k) .= (k) — (k)
enddo B
for k=0 to 57—1 do
canonical prolongation: ovF*1) = y(k+1) 4 4(k)
enddo
new iterate: uZ'H = ay + v(9)

Using a multigrid methods’s wording, Algorithm 4.3 as stated above is a V—cycle which uses
one pre-smoothing iteration per level and no post—smoothing. Similar algorithms with more
pre— and post—-smoothing iterations, W—cycles, etc. are straightforward.

Kornhuber [41, 43] proves the following convergence result:

Theorem 4.4 The standard monotone multigrid method described in Algorithm 4.3 is globally
convergent.

Assume that the discrete problem is non—degenerate, then the discrete phases of the iterates
(up)u>0 converge to the discrete phases of the discrete solution wy, and the error estimate

lu, = uy ™ < (1= (G + )7 llup, —

holds, if v is large enough.
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Convergence follows from Theorem 4.2, as the standard monotone multigrid method is a
nonlinear multilevel relaxation. The proof of the multigrid convergence rate is based on the
convergence of discrete phases, Theorem 4.3, and some general multigrid convergence results.

The proven convergence rate of the multilevel method is not independent of the mesh size, but
(1 —c(j + 1)) depends only logarithmically on h ~ 277,
If the set of critical nodes N7 (%} ) is not empty, then the restrictions (4.11) of the upper and lower

obstacles forbid any coarse grid corrections in subspaces Vi(k) where N7 N int supp A,()If) # 0.
This leads to inefficient multilevel convergence. For this reason, Kornhuber additionally presents
a modification of his algorithm, which is equivalent to a modification (‘truncation’) of those
coarse level basis functions that are non—zero at critical nodes.

Algorithm 4.4 Truncated monotone multigrid method TRCKH

Modifications of the standard monotone multigrid method, Algorithm 4.5:

modified restrictions of the bilinear form and of the residual:

treat all entries from the actual critical nodes N7 (i) as zero
modified restrictions of the upper (and lower) defect obstacle:

treat all entries from the actual critical nodes N7 (iy) as oo (—oo)
modified prolongations of the corrections:

prolongate zero to all critical nodes

Convergence of this modified algorithm is proved, too, but (for technical reasons) the proven
convergence rate is worse than for the standard multigrid method. Numerical results show that
mesh—-independent convergence is observed which reaches the convergence rate of multigrid
methods for the linear elliptic problem [42]. Thus, this truncated monotone multigrid method
seems to be an ‘optimal’ solver.

However, the actual efficiency depends a lot on an efficient implementation of every part of
the method. For small- and medium—scale problems with not too small error criterion, the
SOR solver described below is usually faster because of its simple structure, but for large—scale
problems the multigrid method with its O(|NV;|) work bound gets superior.

4.3 Nonlinear SOR solvers for the Stefan problem

A nonlinear Gauss—Seidel solver is already included in the nonlinear multilevel relaxation Al-
gorithm 4.2. With damping parameters wy; = 0, k < j, only relaxations at the finest level are
allowed. This results just in a nonlinear Gauss—Seidel solver. Convergence follows directly from
Theorem 4.2.

Even for fine level damping with a fixed w;; = w € (0,1], convergence follows easily.

In practice, the SOR solver (with w € (0,2)) converges quite well and is very easy to implement.
A good choice for w is the optimal value for the (linear) discretized heat equation, see [51].
Elliott [22] proved convergence of an SOR solver with arbitrary w;; = w € (0,2). It uses a
modification of the above algorithm: If the overrelaxation step leads to a local change of phase,
then the exact minimizer (w;; = 1) is used at this point. Thus, overrelaxation is used only
where no phase changes occur.
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4.4 Adaptive method

The mesh and time step adaption process is based on the following a posteriori error estimate.
Here, the triangulation of timestep n is M", simplices are denoted by S, and the discrete

solutions by U™ resp. ©".

For all ™ € [0, T,

|u — UHLOO(O,tm;H—l

) + 1B(u) — €

Ol 75(0,6m;1.0(02))

< o — Ul -1

For derivation and proof, see [54].

> hslVOIl7, s
Semn

>1/2

i d+1
+Ch Z " ( Z
n=1

m 1/2

+Cy Y " ( > hgmt - UZL||%2(5)>

n=1 semn
D R FAES | G e

n=1

m 1/2
+CZT“( Y hgllvar - UF)!I%2(5)>

n=1 Semn

+Z ™|V (8

+ Z U™ Ml -1
n=1

+ % [ 1=l
"1:1 - 1/2

n=1

—"6U) Lo

localized squares of the terms from above):

S| |M0uq 12 if SN %0 A0,

gs) = | Ml ESnE7
SIhsI[VOOI3, o5y if SNEC =0,
d+1

EP(S) = Cf} hs|[VO™MII7, s)

E3(S) = C3h} HH"f" U 1Z,s)

BY(S) = dylf" — 1" s

E}(S) = C?hg||[V(I" " = UM, (s) »

EZ(S) = [IV(BU™) =T"BU™)I7,s)

n dQ 2 n—1

B(S) = (52) 10" ),

E7(S) = ds2ﬂ|f—fn“%m(1n,L2(5))a
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(which are just the



1
Eg(S) = §||TnUt||%2(S) :

The local and global estimators for mesh adaption, coarsening and time step adaption are

ns = (EN(S) + EXS) + EMS) + EXNS) + EX(S))'/2,
Ne,s = Eg(s)l/Qv
1/2
n o= (Z 77.%“"772,5) )
Semn

1/2
Ny = (Z TE?(S)+E§(S)> :

Semn

With a given tolerance € for the total error, we try to equidistribute the error in time also, and
in every timestep the mesh size and time step size are adjusted such that

n < £ and n; < c

o espaceT o Htime\/T‘

Together with an adaption of the initial mesh, such that

1/2
( > EO(S)) :

)
Seq0 Oinitial

IN

and parameters @initial + Ospace + Otime < 1, this assures that the total error, summed up over all
time steps, is below the given bound e¢.
The final adaptive algorithm is shown in the flow diagram Figure 4.3.
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(Start with initial values M*', 71, u0>

\|,

| Given M™, ™, u”~!, solve for u”

Compute error estimates

\|,

Reduce | ves Test timestep size: .
timestep | YsTEs(S)+Er(S) > o= 7
time
/

For all S € M™:

El(s) +E2(S) +E3(S) +E4(S) > 92 ;“22|Mn| ? e > Reﬁne S

space

EL(S) + Ea(S) + B3(S) + Ea(S) + Bs(S) < gr—tszpey ? [ ?foggzg?bi :

|

If mesh was changed, solve again for u”
Compute error estimates

|

Reduce | ves Test timestep size: .
timestep | S s T Eo(S) + Ez(S) > e ?
tim:

I e

Test spacial error estimate:

Y5 E1(S) + Bx(S) + Ea(S) + Ea(S) + E5(S) > gz ?

space
\L

Test timestep size: . ves Enlarge
Y. T Es(S) + E7(S) € gz 7 ‘ timestep
time

Figure 4.3: Flow diagram of the adaptive algorithm for the Stefan problem
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5 The Stefan problem with surface tension and kinetic under-
cooling

The following section is taken from [57]. Let @ C R™ denote a bounded domain containing a
pure substance. For ¢ > 0 let Q,(¢) C Q and Q;(¢) C Q with Q,(¢) N (t) = 0, Q = Qs () UQ(t)
be the parts of {2 containing the solid and liquid phases of the substance at time . The moving
free boundary between solid and liquid phases will be denoted by () := Qg(¢) N Q;(¢).

The physical constants for the different phases are heat conductivity ks, k;, specific heat cs, ¢;
and density ps, p;. In each of both phases the heat equation for the (absolute) temperature ©

holds: 96 90
(5].) E :Ds AE‘) m Qs, E :Dl A@ 1 Ql,

where the diffusion constants Ds, D; are defined by the physical constants as D; := k;/(c;p;),
1 = 8,1. At the free boundary X, its velocity and the temperature fulfil an equation known as
“Stefan condition”:

90
|m+a

2 L = Dscs
(5 ) ‘/E ¢ 81/5 81/1

P

P

cl% =: —{ 00 on X(t),

by

where vy and v; denote the outer normal vectors to the domains Qg and €;, and we take
Y, = Vs = —1; to be the normal of the free boundary X. V;, is the velocity of the free boundary
¥ in direction of 1, and L is the latent heat per unit volume in the solid phase. Finally, [-]s
denotes the jump at the free boundary. The left hand side of (5.2) describes the rate at which
heat is generated by solidification at the free boundary. The right hand side describes the heat
transport into the solid and liquid phase.

Additionally, a thermodynamical condition holds at the free boundary:
5.3 o—on(1-2c - Ly z
( : ) — YM - Z s T Z by on 2.

Here, ©)/ is the melting temperature of the substance, and v = 7(1,) the surface tension
between solid and liquid phase (usually depending on the direction of 1). C is the mean
curvature of the free boundary ¥ (sum of the principal curvatures). The sign of C, is taken in the
way that the mean curvature for a convex solid phase € is positive. The coefficient 8 = (1)
depends on 1, in the general case, too. Equation (5.3) is known as the Gibbs—Thomson law. If
v or 3 depend on the direction of the normal 14, then the coefficients are called “anisotropic”,
else “isotropic”. The term yC, /L describes the influence of surface tension, which stabilizes the
motion and makes dendritic growth possible. With 3 = 0, equation (5.3) describes a situation
in local thermical equilibrium (see [46] for details), while the non equilibrium situation with a
moving interface is modeled with 8 > 0 (compare [33]). In the sequel, we will only consider the
case 0 > 0.

In three dimensions, it may be better to use an anisotropic surface tension to model the
anisotropy. This results in some anisotropic curvature to replace the mean curvature C;,. Use
of this anisotropic curvature leads to weak formulations, compare (7.7) and (9.6).

With a given initial temperature distribution Oy and an interface 33, we pose the following
boundary and initial value conditions:

O(z,t) = Op(z,t) on 90, t >0,
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O(z,0) = 0Ogy(z,0) in
(0) = 3.

Using a dimensionless temperature 0 := (cs + ¢;) (© — Opr)/2L, the system of equations (5.1)-
(5.3) transforms to

00

E = Ds’l ABO in Qs,la t> 07
-2 00
V, = —— [Dici— on X,
cs + ¢ o |y,
0 = —¢.CG —¢g W on 3.

Here we used €, (14) = (14 ) (¢s + ¢;) Onr/2L% and g, (14,) = B(14.) (s + ¢;) Oar/2L%. The initial
and boundary values transform in a similar way. With 6y(z,t) := (¢s + ¢;) (©o(z,t) — Onr) /2L
we get

O(z,t) = 6o(x,t) on 0Q, t >0,
(5.4) 0(z,0) = 6y(z,0) in Q,
2(0) = X

In the sequel we want to work with the simplified case, where the physical constants in the solid
and liquid phase are equal: ks = kj, ¢s = ¢, ps = pi, and Ds = Dy =: Dy. This assumption
leads not only to a pure academic example; there exist real material, like Succinonitil, which
obey to the same physical constants in the solid and liquid phase (see [31, Table II]). On the
other hand, most numerical method can be adapted to the case of different constants in both
phases.

Altogether, we now get the following equations:

Problem 5.1 Find a temperature 6 and a moving free boundary > solving the equations

[

(5.5) %—D()A@ = 0 inQ,uUQ, t>0,
00

(5.6) Dy {— FY = 0 on ¥, t>0,
oy, |5,

(5.7) O0+e, Co+e, Vy, = 0 onX, t>0,

together with the boundary and initial value conditions (5.4).

The Gibbs-Thomson law (5.7) is a mean curvature flow equation with driving force for the
interface X(t):
&V, = —e¢.C,—0 onX(t),t>0, £(0) = 3.

For this reason we present in the next sections several formulations of the mean curvature flow
together with corresponding discretizations and show their coupling to the heat equation (5.5)
with Stefan condition (5.6).
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6 Mean Curvature Flow for Hypersurfaces in R"

6.1 Some definitions and notations for hypersurfaces

A hypersurface ¥ of class C? is a subset of R™ which is locally the graph of a function u of
class C?
SNV ={(2,z,) = (x1,79, ., Tn_1,7,) EV' xR ‘ T = u(z') }.

Y. can also be defined through an immersion F' from a compact (n — 1)—dimensional manifold
S without boundary into R™:
Ez{F(s)‘sES}.

Finally, ¥ can also be defined as the zero-level set of a function w of class C?

Y={zeR"

w(z) =0},

where w satisfies: Vo € 2, Vw(z) # 0. Locally we can always assume that e.g.

ow

0Ty

(z) # 0.

Hence, by means of the implicit function theorem, the link between the two definitions of ¥ in
the neighbourhood V' (z) of z¢ in ¥ is obvious. Indeed, there exists a function u,, defined in
a neighbourhood of zj, such that

€ XNV(xg) = Ty = Uy (z)

and uz, satisfies

Vie{l,..n—1} : i_(uzo)(gg'):—ai’f(x Ow
or or or

Moreover, by rotating the axes at xp, we can always assume that

9 /

Virtigy (z) =0, ie. Vie{l,..,n—1} : %(“zo)(wo) = 0.
i
The unit normal vector N(z) to ¥ at x is defined by
Vuw
N(z) = =—(=).
(#) = @)
This normal vector is pointing into the direction of increasing values of w. If w(z) = —z, +

Uz, (2') then
Vi € {1,...,n — 1} : Nl(l‘g) =0; Nn(q;o) = —1.

The principal curvatures of 3 at zy are the n — 1 eigenvalues k;, 1 < i < n — 1, of the
symmetric matrix D?ug,(z)). Since the Laplace operator (applied to ug, at zf) is invariant
under orthogonal transformations, we have

D2UIO($6) = dia‘g(’fla"'aﬁ'nfl)

42



which implies
Aptig (1)) = K1+ oo + Epo1-

The mean curvature of ¥ at ¢ is the quantity H(xo) equal to

1
H(xy) := —7" (K1 + . + Kp—1)-

At some places, the sum of the principal curvatures will be denoted as mean curvature k or Cx:
Cx(zg) = k(zo) = (n—1)H(x0) = K1+ ... + Ep—1.

We define the principal coordinate system at x(, assuming that the x1, ..., z,_1 axes are gener-
ated by the eigenvectors of the Hessian matrix D?u,, (7)) and that the z,, axis is generated by
the normal N(z).

Lemma 6.1 In a principal coordinate system at xg, we have

(’L) Vi, j € {1,...,n — 1} : gIN]’ (xo) = —Kj " (529

(ii) ¥j € {1,..,n} : u(z) =0.

ox;j

Proof: (i) Since w can be defined as : —z,, + ugz,(z'), in a neighbourhood of zg

0? , 0 (Ow , 0w ON;
(2212) o -

M(Uzo)(wo) = _a—flij 0z 8—33“ — 833]' (330) = ﬁi-(sij

because D?u,,(r}) is the diagonal matrix diag(s1, ..., kn_1)-
(ii) This is an immediate consequence of the computation of

o (o
Oz; \ 0z,

/IVul) (o).

Suppose that ¢ is defined in a neighbourhood of 3. We define the tangential gradient Vg(zo)
of g at =y on X as the projection of the gradient of g at zy onto the tangent space of 3 at zq

Vg(x0) = Vg(xo) — (N(x0) - Vg(w0)) N (o).

Notice that Vg(zo) only depends of the values of g on X, in a neighbourhood of zj. From
Lemma, 6.1, we derive that the tangential divergence of N is

V-N = —(n—1)H(z).

We then define the Laplace-Beltrami operator on X of g at xg as

Asg(zo) = V- Vg(z0)-
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6.2 Formulation of the MCF involving the Laplace-Beltrami operator

The formulation of the mean curvature flow problem for hypersurfaces is taken from Huisken’s
work [37].

Definition 6.1 A family (X(t))i>0 of hypersurfaces evolves, from a hypersurface o, according
to the mean curvature flow if

OF

—(s,t) = (n—1)H(F(s,t)) N(F(s,t)) VseS, Vt>D0,

(6.1) ot
F(s,0) = Fy(s) VseS,

where H denotes the mean curvature of X(t), N the ‘inner’ normal to X(t) and Fy defines ¥

equal to %(+,0).

Lemma 6.2 We have, for every s in S
Ay F(s) := (Axid)(F(s)) = (n — 1) H(F(s))N(F(s)),

where Ay, denotes the Laplace—Beltrami operator on ¥. Hence the mean curvature flow defined
in (6.1) may be written as

F
aa—t(s,t) = Az(t)F(S,t) Vse S, Vt>0.

Huisken has proved the following existence result

Theorem 6.1 Suppose that X is uniformly convez (that is the principal curvatures are positive
everywhere). Then (6.1) has a smooth solution on [0,T). Moreover, the hypersurfaces %(-,t)
converge spherelike to a point when t increases to T.

Motion with a driving force: The equation

oF

ot
describes the mean curvature motion of a manifold with an additional driving force ¢ : R™ %
R* — R which acts in normal direction.

(5,t) = AsF(s,t) + g(F(s,1),t)N(F(s,1)) VseS, Vi>0

6.3 The level set formulation of MCF and the formulation for graphs

We suppose that ¥ is defined as the graph of a function u or as the zero level set of a function
w. We want to describe the mean curvature flow of a family (X(%));>0 in terms of u or w.

Theorem 6.2 Assume that all the level sets of w evolve according to mean curvature flow in
the sense of (6.1). Then w = w(x,t) satisfies

9 v
(6.2) 2 Vu|v- —2 = 0 VzeR", Vt>0.

Conversely, if w is the solution of (6.2), the family of zero level sets of w(-,t) evolve according
to the mean curvature flow, at least when w is smooth and |Vw| does not vanish.
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Proof: Since w(F(.,t)) is identically equal to 0, we have
ow oF

—(F(-,1),t Vw(F(-,t),t) —(,t) =0.
(R 1),0) + VaF(,0),1) 51
Because every level set of w evolves according to mean curvature flow, we have
oF Vw Vw
—=n-1)H(F)N(F)=——=— V- ——
5 = (N DH(PN(F) = 28 ¥ - 2
which immediately implies (6.2). The converse part is proved in an analogous way. O
Remarks:
1) Equation (6.2) may be written as
ow 0
a_w_z 5.,_3;1)1‘% 0*w
ot 7 Y| Vw|?2 | 0x0z;

2) When X(t) are presented as graphs of functions u(-,t), Equation (6.2) for w leads to the
following equation for w:

ou Vu
—— /1 2 N S ——
gr - VITIVelE Vs =0

Motion with a driving force: The equation
0 \Y
0 VulV- —2 = |Vw|g Yz eR®, V> 0.

describes the mean curvature motion of all level sets of w with an additional driving force
g : R™ x RT — R which acts in normal direction.

6.4 Viscosity solutions for the level set formulation

Generalized motion by mean curvature: The contents of this paragraph is taken from
the work of Evans and Spruck [26]. As Equation (6.2) degenerates when |Vw| = 0, we now turn
to the concept of viscosity solutions w = w(z,t) for the differential equation

Vw
6.3 —|Vw| V. —— =0
( ) we | ’LU| |V’U)| )
with initial values
(6.4) w(-,0) = wy.

Definition 6.2 A function w € C°(R" x[0,00))NL>®(R" x [0, 00)) is called a weak subsolution
of 6.3 provided for each 1) € C®(R™1) the following conclusion holds true:
If w — 4 has a local mazimum at a point (xg,ty) € R™ X (0,00) then at (xo,to)

d’zi",[}xj .
(6.5) b — (fz-j _ W> e, <0, if T, o) £ 0,
and

for some n € R" with |n| < 1.
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Definition 6.3 A function w € C°(R" x [0,00)) N L>®(R™ x [0,00)) is called a weak superso-
lution of (6.3) provided for each ) € C®(R™1) the following conclusion holds true:
If w — 4 has a local minimum at a point (zg,ty) € R™ X (0,00) then at (xo,to)

(6.7 i (3 %) Yase; > 0, if V(. t0) £,
and
(6.8) Yy — (03 — 1inj)Paie; > 0, if Vap(wo,to) =0

for some n € R™ with |n| < 1.

Definition 6.4 A function w € C°(R" x [0,00)) N L®(R™ x [0,00)) is called a weak solution
of (6.3) if w is a weak subsolution and a weak supersolution of (6.3).

Since we want to treat the mean curvature flow problem for a given initial hypersurface, we have
to say what we mean by the generalized motion by mean curvature also in the case where the
surface does not continue to be a classical surface. We shall see that under natural assumptions
there exists a unique weak solution of (6.3).

Definition 6.5 Let S be a compact set in R™ and let wg € C°(R™) a real-valued function
which is constant outside some large ball such that

Yo = {z € R"|wo(x) = 0}.
If w is a weak solution of (6.3), (6.4), we define the set
Y ={z €e R"|w(z,t) =0}
and call 3¢, t > 0 the generalized motion of Xy by mean curvature.

One can show, that ¥; does not depend on the particular choice of the initial function wqg which
represents the initial surface.

One can check that this concept of the generalized motion by mean curvature coincides with
the classical motion if and so long as the latter exists.

Some properties of weak solutions:

Theorem 6.3 Assume that w is a weak solution of (6.8) and ¥ € C°(R") is real-valued. Then
v =U(w) is a weak solution of (6.3).

Theorem 6.4 Let (wg)ren be a sequence of uniformly bounded weak solutions of (6.3) which

converges uniformly on compact subsets of R™ x [0,00) to w. Then w is a weak solution of
(6.3). The same holds true for weak subsolutions and weak supersolutions of (6.3).
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Existence of weak solutions: The existence of a weak solution of problem (6.3) is proved
by a regularization procedure. The idea is to regularize the singular problem for € € (0,1) by
the partial differential equation

W, U, . - on :
(6.9) wy — (51‘]' - m) Wap; = 0 inR"x(0,00) with
(6.10) w(-,0) = wy in R".

Let us assume that w® is a smooth solution of the regularized problem (6.9). We write T =
(2, 2p4+1) and define
(6.11) v¥(Z) = w(x) —exnyy for T € RV
Then
IVof|? = 2 + |[Vws|?

and v° is a solution of

£ _ L vglv;‘] £ _ . n+1 .
. 1 e 9y
(6.12) v} 0ij Vo2 Vi, 0 inR" x (0,00) with
6.13 v°(-,0) = g
0

where v§(T) = wo(x) — expy1. But this means that each level set of v® moves according to its
mean curvature. This is in particular the case for the zero level sets

¥ = {7 € R"[v°(7,t) = 0}
and each level set is a graph:
1
5 = {(@,2n11) e Ry = gwa(fﬂ)}-
These ideas are used to prove the following theorem.

Theorem 6.5 Let wg be smooth and constant outside some large ball in R™. For each e € (0,1)
there exists a unique smooth bounded solution v® of (6.12), (6.13) and

(6.14) sup [[v°][crmrx(0,00) < cllwollerimey-
e€(0,1)

This result is then used to prove the existence and uniqueness of a weak solution of the mean
curvature flow problem (6.3),

Theorem 6.6 Assume wy € C°(R™) is real valued and constant outside some large ball in
R™. Then there exists a unique weak solution w of (6.3), (6.4) which is constant outside some
large ball in R™ x [0, 00).

The uniqueness of weak solutions is established by a comparision argument.

Theorem 6.7 Assume that w is a weak subsolution and W is a weak supersolution of (6.3)
satisfying w <w on R™ x {0}. if w and w are constant on {(x,t)| |z|+t > R} for some postive
R, then w <w on R™ x [0, 00).
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6.5 Mean curvature flow via the Allen-Cahn equation

The distance function: In this subsection we assume that ¥ is a smooth surface. One
should think of it as the boundary of some domain in R"™. The distance function of ¥ is given
by

dist(z) = inf |z — |, € R"
ist(z) inf |z — y x
From [25] we know:

Theorem 6.8 Let dist(-,t) be the distance function to the surfaces evolving according to mean
curvature flow until the extinction time T. Then dist satisfies

(i) dist is lower semicontinuous on R™ x [0,T), i. e.

VeeR", Vtel[0,T): lim dist(y,s)> dist(z,t),

y—x,s—t
(11) d is continuous from below in time on R™ x [0,T):

Ve e R", Vtel[0,T): lim  dist(y,s) = dist(x, 1),

y—x,s—t—0

(11i) On R™ x (0,T) N {dist > 0}, dist satisfies ddist/0t — Adist > 0 in the sense of viscosity
solutions, that is for every smooth function 1 in C*°(R™ x (0,T)), such that dist — has
a minimum at (zg,tp) in R" x (0,T) with dist(zg,ty) > 0, then 0/t — Ap(zg,ty) > 0.

In the following we shall need an oriented distance function, which is usually normalized in such
a way that it is positive in the ‘interior’ I and negative in the ‘exterior’ O.

dist(z) , z €l

d(z) = 0 , ze€X
—dist(z) , z€O

Lemma 6.3 For every x in a neighbourhood of 3 the decomposition

z =a(z) +d(x)N(x)

holds with a(x) € 3. d is as smooth as the surface 2 is. The normal to ¥ at a(x) in the
direction of increasing d is given by

N(z) = Vd(z).

The trace of the Hessian matriz of d is the mean curvature at © € 3i:

(n —1)H(z) = Ad(z).
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For a proof see the book of Gilbarg, Trudinger [30, 14.6 Appendix, resp. Section 2.1].

Let us see how the distance function in smooth mean curvature flow behaves. We assume that
d(x,t) is the oriented distance function of a surface 3(¢) which is moved by its mean curvature.
We assume that d is a smooth function of both variables = and %.

Then we have
vd

dy— |Vd|V - — =

0.
and since |Vd(-,t)| = 1, we get
di —Ad = 0 on X(¢)

Note that the level sets of d do not move according to their mean curvature except the zero
level set %(t). The following Lemma is obtained by an easy calculation.

Lemma 6.4 If w is a smooth solution of equation (6.2) with |Vw| # 0, then the oriented
distance function d(x,t) with respect to ¥(t) = {z|w(z,t) = 0} satisfies

d—Ad > 0 inIx(0,T)

di—Ad = 0 on X(t) x (0,T)

d—Ad < 0 inOx(0,T)

in a neighbourhood of X(t).

The Allen—Cahn equation: In order to define a weak viscosity type solution for singular
mean curvature flow, there are many possibilities to introduce artificial viscosity into the equa-
tion (6.2). As we shall see one slightly hidden way to do this is to consider the Allen-Cahn
equation

1 .
(6.15) X; — Ax© + G—sz(xe) =0 inR"x(0,7)

with initial condition
x‘=x5 onR" x{0}.

The function 9 is the derivative of a double well potential W:
h(s) = 50'(s), U(s)=(s—1)?% seR.

First we have to convince ourselves that this differential equation has something to do with mean
curvature flow in the case when there are no singularities developing during the evolution. A
detailed asymptotic analysis can be found in [56]. Here we shall just see that there is a connection
between the Allen-Cahn equation and mean curvature flow for e — 0, € > 0.

For the smooth case it should be enough to know the following fact, which is used later for the
asymptotic analysis. The function

e — 1
q(S) = tanh(s) = m, S € R
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is a solution of the ordinary differential equation

2
T ) = plg(s),  qlkoo) = £1.

The function

then satisfies the equation
. .1 . d. 1
wy — Aw® + 8—21/1(11) )= q'(g)g(dt — Ad).

Asymptotic analysis for the Allen-Cahn equation: The intention of this paragraph is
to formulate the results of [25] on the asymptotics for the Allen-Cahn equation, namely that
for € — 0 the solution u° of (6.15) becomes +1 in an ‘interior’ resp. ‘exterior’ region with an
‘interface’ between the inside and the outside being a generalized motion governed by mean
curvature. The main theorem is the following.

Theorem 6.9 Let X(0) be the smooth boundary of a domain in R™ and let d° be the signed
distance function for 3(0). Set

0(z
he(z) := q(dT()>, z € R".

Let x© be a solution to the Allen-Cahn equation (6.15) on R™ x (0, 00) with initial value h®. Let

w be a weak solution of
Vuw

w — |Vw|V - ol =0,
with initial value d° which is thought to be continued constantly outside some ball. Then
x° =1 (e = 0)
uniformly on all compact subsets of I and
x°— —1 (e —0)

uniformly on all compact subsets of O where

I={(z,t) e R" x (0,00) | w(z,t) >0}, O={(z,t) € R" x (0,00) | w(z,t) <O0}.
Double obstacle potential: Similar results can be obtained with 1 coming from other
potentials, for example the double obstacle potential, which will be used in the numerical

method described below:

P(s) = %\If’(s), T(s)=s>—1, se[-1,1].
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Motion with a driving force: Mean curvature flow with a driving force g : R® x R* — R
which acts in normal direction is modelled by the equation

1 ¢ .
Oh(xe) = Dx= + 59(xe) = 529 in 2 x (0,00),
with ¢p := [1, /U (s)ds.

Time and space dependent regularization parameter: The same asymptotic analysis
holds if the regularization constant ¢ is replaced by a density function ea(z,t), where a :
R"” x Rt — R is bounded. The appropriate Allen-Cahn equation reads:

1
edi(axe) — eV - (aVxe) + a—gw(xg) = C2—Og in Q x (0,00).

Anisotropic motion: Anisotropic motion by mean curvature can be modelled in the Allen—
Cahn equation by adding an anisotropy function. The equation

1
8atXE - 5AX€ + E\III(XE) = 0.

is the gradient flow of the energy functional
1
(o) = [elVxl+ 000 - bx.

Replacing |Vx|? by an anisotropy F(Vx), where F is convex and homogenous of degree 2, the
corresponding energy is

1
Epe(x) = /€F(VX) + 200 —Ox
and the corresponding Allen—Cahn equation reads
1
e0iXe — 6VF,(VXE) + E\III(XE) = 0.

Elliott and Schéatzle [23] proved convergence of the solution to an anisotropic mean curvature

flow
V = tr(B(N)D*B(N)R) — B(N)#,

where B := v/2F', N is the unit normal, V' the normal velocity, and R the second fundamental
form of the interface. Again, in two dimensions and for smooth anisotropy, this is equivalent to

V=—f(f+ ")k — fo,

where f is 27-periodic, and f(«) := \/2F(cos a, sin ).
Belletini and Paolini [6] get similar results in the context of Finsler geomety.

Phase field equations: The Stefan problem with kinetic undercooling and surface tension,
Problem 5.1, can be approximated by a coupling of the Allen—-Cahn equation with a heat
equation. This gives the following system of equations which is called “phase field equations”
for the temperature 6. and phase parameter x. [11]:

e0(0: + xe) —eAb. = f,

1
Orxe — Axe + E‘III(Xa) = 0.
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7 Finite element methods for the MCF level set formulation

Weak formulation: For the numerical computation of a function w whose level sets move
according the mean curvature flow, we start from the regularized equation (6.9). We consider
the problem in a bounded domain 2 C R" with homogenous Neumann boundary conditions
on 0N). This is motivated by the fact, that if wq is constant outside a ball, then w is constant
outside a ball for all times ¢ > 0.

Wy Vw

—— V' i— = 0 in Q x (0,00),
Ve + | Vwl|? Ve + | Vwl|? o (0,00)
(7.1) Z—Z) =0 on 00 x (0,00),

w = wp in Qx {0}.

In order to derive a weak formulation, which can be used for a finite element discretization, we
multiply the first equation in (7.1) with an arbitrary test function ¢ € H'(Q), and integrate by

parts:
wip + Vw -V

= 0 Vo e H'(Q),0 < t < oo,
(7.2) o e2+|Vuw|? 4 ) >
w = wp in Qx{0}.

Time discretization: We use a constant time step size 7 > 0 and the notations w™(z) ~
w(mt,z) and Qp, := /e? + [Vw™|?, m = 0,1,..., and replace the time derivative in (7.2) by
an implicit Euler time discretization. With w® := wy, this leads to

L[ (w™—w™ e Vw™ -V 1
7.3 —/ +/ 0  VpeH(Q), m=12,...
( ) T JQ Qm Q Qm 4 ( ) ik

In every time step, this is a nonlinear equation for w”. In order to get linear equations, we
can use a semi—implicit discretization in time, where the linear part is discretized implicitely,
while the nonlinear parts are discretized explicitely. All denominators are computed using the
previous solution w™!:

1/ (" —w™ go 1 _
(7.4) /Q /le 0 VoeHY (Q), m=1,2,...,

T

Discretization in space: We assume that the bounded domain €2 has polygonal boundary
09, and that a conforming triangulation 75, of Q into simplices (triangles or tetrahedra) is
given. Let Vj, C H'(2) denote the space of piecewise linear finite elements over T;. Now we
can approximate the time-discretized problems using finite elements. Equation (7.3) leads to

m m—1 m
1 — + Vw* -V
/T(wh wh)en + Vwi - Veor 0 Vo €V, m=1,2,...,
Q

(7.5) Qm

wh) = Iywy.

For each time step, this is a nonlinear equation for w™. It can be solved by a modified Newtons
method, for example.
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The linearized semi-implicit equation (7.4) leads to

/ %(whm — whm_l)SOh + Vwp - Vo,
Q

Qm—l

= 0 Yorb €V, m=1,2,...,
(7.6)

’U)?Z = Ih’wg .

Thus, in each time step a linear equation has to be solved.

Adaptive methods: Up to now, no error estimates are known for problems (7.5) or (7.6),
neither a priori nor a posteriori. In the context of free boundary problems, we are mainly
interested in the evolution of the zero level set of w, not in the evolution of all level sets. So, a
first heuristic criterion for local mesh sizes is to choose a fine mesh near the zero level set, and
a coarser mesh far away from it.

In spirit of the a posteriori Ly error estimate for the heat equation, we can also use a local error
indicator like

o

@m

A combination of both criteria is used for the numerical examples that will be presented. The
computations are done by Fried [27, 28].

nr(wp) = hil>

Lo (9T\00)

Motion with a driving force: Mean curvature motion with a driving force g : Q@ — R,
where every level set moves in normal direction according to the geometric law

V= -C+yg
leads to a right hand side g in equation (7.1):

W g VW
Ve? + | Vuwl? Ve? + | Vuwl?

The changes in the discrete scheme are straightforward.

=g in Qx(0,00).

Anisotropic motion: The motion of level sets by mean curvature is the gradient flow for
the energy

E(w) = /Q|Vw|.

If we are given a smooth function f : S”~! — R* and study the gradient flow of the anisotropic

energy
By(w) = /Qf<|§—z|> IVl

we end up with the following weak formulation:

Wy VUJ)VUJ (Vw))
F(2ZE) 22 1 vr (22)) v = 0
o [Vl (fQVw||Vw| N\wy)) V%

(7.7) for all p € H(Q), 0 < t < oo,

w = wy in Qx{0}.
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The level sets of a smooth solution w move according to the anisotropic law
V = -Cf,

where Cy is the anisotropic mean curvature according to f. In two dimensions, f can be written
as f(cosa,sina) = f(a) where f : [0,27] — R. If f is smooth and f + f” > 0, this law of
motion is equivalent to

V= —(f+f"C.

Regularization and discretization of this equation can be done like above.
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8 Adaptive discretization of the Allen—Cahn equation
We consider the Allen-Cahn equation (6.15) with regularization parameter

1 c .
(8.1) edy(axe) — eV - (aVxe) + nglll'(xg) e Eog in Q x (0, 00),

Xa('ao) = Xg() in 0, XE('at) = f('at) on GQX(0,00),

using the double obstacle potential

1= ifse[-1,1]
\I’(S)‘_{ too  ifs¢[—1,1],

(—o0,1] ifs=-—1
—U'(s) = —s if s € (—1,1)
—1,00) ifs=1
[=1,00) ;

co = fil VVU(s)ds = 7/2, and @ C R" a bounded domain. The function a(z,t) denotes a
density function which may vary in space and time, and g a driving force. The zero level set of
x? coincides with the initial surface 2°.

It can be shown, that |x.| < 1, and x. attains the values —1 or +1 outside a narrow transition
layer 7-(t) of local size O(ea(x,t)) in the vincinity of any regular point z € ¥(¢). The latter is
not true if the double well potential is used instead of the double obstacle potential.

Variational formulation: Using the convex set
K:={pe H'(Q) | |p| <1inQ, ¢ = f on 89},

the variational inequality equivalent to (8.1) is: Find x. € Lo(0, 00, K) N H'(0, 00, L2(2)) such
that x:(-,0) = x’(:) and, for a.e. t >0 and all p € K

1 T
[ cilax (e = xc) + VXVl x2) — goxle = xe) — Jale = xc) 2 0.

2

Discretization: In [53], this weak variational formulation is discretized using piecewise linear
finite elements on a triangulation of © and an explicit time discretization. Lumping is used for
the Lo scalar products. Convergence of this method, even after singularities, is shown in [52, 55].
We use the following matrix—vector notation: Let X denote the vector of nodal values of a
piecewise linear finite element function, M; = (m?l)j,l denotes the lumped mass matrix with
weight a*, k = —1,0,1, and S = (sj1);, the stiffness matrix with weight a. Let ¢; denote a
nodal basis function, and TI°, TI' the piecewise constant resp. linear interpolation operators at
barycenters resp. nodes of the triangulation. Then the entries of these matrices are

mk, = /Q () I (1), 81 = /Q 11°(a) Vo, Vg,

In time step i + 1, when the discrete solution X* from the previous time is known, this leads to
the following discrete algorithm for computation of X**1:

. . i . 1 .
Xl+1/2 = (Ml)il M1 —7'8 + %M1> X' + T’Lg%MUH191+1> ’
Xt — PKXH_l/Q,
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where Py is the projection to the convex set K by truncation of the nodal values to the range
[—1,1].

A similar formulation can be derived also in a rotationally symmetric context [53]. If a changes
in time, then the two M7 matrices which appear in the scheme above are computed with different
weights.

Adaptive methods: The property |x:| = 1 outside 7:(¢) can be used numerically in solving
the discrete problem only in a narrow region around the discrete interface. The mesh adaption
will take this into account and generate a fine mesh only where it is needed, while it coarsens
the mesh as much as possible at other places.

Our control parameter is the density function a. Depending on this function, the width of the
transition area will vary. We will try to adapt this width to local properties of the solution,
such as the curvature of the discrete interface.

The local mesh size is chosen proportional to the density function a, according to a priori
analysis.

Up to now, no a posteriori error estimates for the Allen—Cahn equation are known. For that
reason, we will exploit the known a priori estimates and add some heuristics for the local choice
of the density function a(z,t). A priori analysis leads to the following formula for the local
mesh size depending on ¢ and a:

h(z,t) ~ ceta(z,t), withee (0,1), A>1.

As we use an explicit time discretization, the time step size is bounded by size of the smallest
mesh element for stability of the numerical scheme:

T < cmlinhQT.

In [53] a time-independent order parameter a(x) is used, which is chosen by a priori knowledge
of the curvature of X(¢) and the formation of singularities.

We try to generate such information a posteriori out of the current discrete solution, and adapt
the mesh accordingly.

The main idea is the following: For a smooth interface, there is a strip around the surface,
where the distance function is smooth (each point has a unique nearest point on the interface).
We will try to keep the transition area inside this strip. Locally, the width w of this strip is

1

w = —
max | K|

where k; denote the principal curvatures of the surface. Here “locally” means that no “global”
effects take place. A global effect is for example, that two different parts of the interface come
close together. These will be taken into account below. As the width of the transition area
depends on €a, we can choose a small ¢ where the curvature is high:

(a.1) -
a(x N —
’ max; |I<&Z'(i‘,t)| ’

where Z is the nearest point to x on X(£). The situation is sketched in Figure 8.1: The thick
line is the interface, the dashed line denotes the strip, and the shaded area is an acceptable
transition area.
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Figure 8.1: Situation around an interface without global effects; only curvature affects the
transition area

Computation of the curvature: A good way to compute the curvature of the zero level set
is to use the Allen—Cahn equation once more. With a vanishing right hand side, the solution
evolves according to its mean curvature, and the time derivative approaches the mean curvature:

Oxe = K|Vxe| onX.

Numerical experiments show, that

+1
Kp = 7th — T
|Vl
where 2! is computed by an explicit time step for the homogenous Allen-Cahn equation, is
h y g

a good approximation to the curvature x of the interface >.

This algorithm is used in mesh elements near the zero level set (in those elements where the
sign of X changes) to compute the curvature of the discrete interface. Such information is
distributed over the whole mesh in order to be able to calculate a local meshsize everywhere.

Global bounds for the transition area: There exist situations where curvature alone does
not determine the width of the strip around the interface where the distance function is smooth.
The most important situation is depicted in Figure 8.2. Two parts of the interface with relatively
small curvature are near each other. Here, the width of the strip is half the distance between
these parts, and the transition area should be more narrow than the strip.

The idea for determination of such situations is to test if different parts of the transition area
are nearly touching each other. If this is found, the density function a is reduced in both parts,
which results in a narrower transition area after a few time steps.

In order to be able to find places, where different parts of the transition area touch, we can
store with every element of the triangulation its nearest point on the interface, or a direction
towards that point. As criterion for such a place, we can check if two elements of the transition
area are near each other, but their associated directions differ a lot (as the scalar product is
negative, for example).

Once such elements have been located, the bound for the density function a has to be distributed
over the regions of interest. This can be done by first setting the density at both interface parts,
and then distributing it over the whole mesh as described above.

A similar situation for global restictions on the transition area comes from boundary conditions:
If reflection symmetry or axial symmetry is valid for a part of the boundary, the transition area
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7, ////// 7

X 7 7 ////////////// 4:7//

Figure 8.2: Situation around an interface with global effects

should not be allowed to extend up to this boundary, see Figure 8.3. As such symmetries are
known a priori as data of the problem, this situation can be checked.

M

Figure 8.3: Symmetry boundary (dashed) on the left hand of a circle. The transition area is
restricted.
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9 A parametric finite element method for MCF

Time discretization: We start from the equation for the mean curvature flow with a driving
force g, where the family of surfaces 3(¢) is parametrized by local charts ®;(t) : Q; — R™, i € I,
compare Section 6.2. The parameter domains €; C R*~! are independent of . 1, denotes the
unit normal of ¥(¢).

0
—(I)Z'—Az(t)q)iz (QUE)O(I)Z' in ; x (O,Tma,x)g 1€ 1.

(9.1) o

With discrete time values 0 = #y < t; < to < ... < Tax and time steps 7, = tma1 — tm,
using an implicit Fuler discretization of the time derivative, we derive semidiscrete equations

for the charts ®™, m = 0, 1, ..., approximating ®;(¢,,) and manifolds ™! which approximate
S(tmy1):
ol _ pm
A ®T = g, inQ,iel, m=1,2,...,
Tm
Zm+1 . U ,1)2714»1(91) )
i€l

This discretization is only implicit in the sense, that the Laplace-Beltrami operator Ay is
applied to the unknown parametrization q>;~n+1, but Asm itself is still defined by the known
surface X™. We can leave now the local parametrizations of the manifolds over domains £2; C
R"~! and use a global parametrization of the next manifold ™! over the previous manifold
Y™, We define ®™+! . Bm — 5t by omHL(O7(y)) := & (y) for y € Q;. This definition
is independent of the choice of local charts. Now we get the following semidiscrete equation:

(I)m+1 —

- Azm q)m—i_l = g(aj) Vom (Jf) on ¥ )
Tm

ol = emrl(mm),

Thus, we have converted the nonlinear differential equation (9.1) into a sequence of linear
equations.

Parametric finite element discretization: Multiplication with a test function and integra-
tion by parts leads to the following weak formulation. For m = 0,1, 2, ..., find a parametrization
dm+l ¢ HY(X™)™ which solves

q)m+1 _
(9.2) / i / Voo @ Vmtp = / Gl b forallep € H'(X™).
Em Em

Tm
Em

For a finite element discretization of (9.2), we first need a discretization of the manifold ™.
We are able to construct a discretization X of X0 by a conforming (globally continuous) mesh
of parametric n-simplices of polynomial order k£ (i. e. curved simplices, if k& > 1), based on
triangulations of the parameter domains €2;, i € I. Each simplex interpolates X0 at a set of La-
grange nodes corresponding to the polynomial degree k. This discretization can be constructed
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by polynomial Lagrange interpolation of local charts; see [40, 49] for details. For m > 0, a
discretization 37" of ¥ is generated from thfl, as we will show later.

We use isoparametric finite elements over ;. Let Pj be a finite dimensional function space on
the n dimensional unit simplex 7' satisfying P, C P; (usually, we take Py = P;). For every
T C X let Fr: T — T be the (polynomial) parametrization. Using this notation, we define
the isoparametric finite element space

W = {v, € C°'(SP",R) : (vy0Fr) € Py forall T € T}

In [62], the Sobolev space H!(X) is defined for a Lipschitz manifold ¥. This definition applies
here, as our discretization X} is Lipschitz continuous, and we get W™ C H'(XZ).

The choice Pj = P, yielding same order polynomials for the discretization and the finite
element functions, is natural in the sense that we can expect optimal error estimates [13].
Analogous to (9.2), we now look for a weak solution in the finite element space W;™* on 3}".
This gives an approximation @ZL'H to the parametrization ®”+! and defines a discrete manifold
¥+ approximating Z™*1.

Let 22 be a given triangulation of 3. For m = 0,1,2, ..., the problem is to find a finite element
solution ®;"*! € W}, (S7)" of the equation

ot (z) — mt1 m
(9.3) [P [veptien, = [ g forallg, € Wa(SP),
By Xy zy
st = epti(s).

For each time step this leads to a decoupled system of n linear systems of equations for the
components of the parametrization. The matrices of the n linear systems are all equal, but
right hand sides differ between the components.

Anisotropic motion: Anisotropic motion by mean curvature can be implemented in several
ways. One possibility is to use given anisotropy functions ¢, , ¢, : S"~1 — R* which depend on
the direction of the surface normal and look for a family of surfaces which solve the problem

(94) & (Vz}(t) (ZE)) ‘/;)(t) (ZE) + €& (Vz}(t) (ZE)) CE(t) ($) = g(l", t)
for all z € X(¢), t € (0, Trax)
2(0) = .

With the same techniques as above, this leads to the finite element problems

m—+1 _
(9.5) /gv(””") o @z, +/V<I>hm+1 Vo = /#Qvi/)h
Xy

o (Vm ) Tm € (Uym )

h h

for all o, € Wi,(Z),
syttt = epti(E).

Another approach is to use the gradient flow of the anisotropic surface energy
() = [ fue))do
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with an anisotropy function f : S»~' — R*. The isotropic mean curvature flow is the gradient
flow for f = 1. The gradient flow for Ey leads to the weak formulation

(9.6) /mth-i- /f(VE)Yx-Yw—Vf(VE)YZE-YQ/}VE = /gl/sz
(t) (t) (t)
for all ¢p € H'(X(t),R™).

Discretizations in time and space can be done in the same way as shown above. A coefficient
& (14 ) can be added as well. In two dimensions, using f(a) := f(cos a,sin), (9.6) is equivalent
to (9.4) with e, =1 and ¢, (cos a, sina) = (f + ") ().

Convergence results: Dziuk [20] proved convergence for the semi-discrete method (only dis-
cretization in space) in two dimensions (for curves). For the same scheme including anisotropy,
convergence is proved in [19].

Adaptive methods: The discretization of the surface has to be adapted in time, to be able to
resolve the evolving structures. This is done mainly by local refinement and coarsening, driven
by an a posteriori error indicator. As the evolution equation is similar to a nonlinear heat
equation, it seems appropriate to use error indicators which were derived in the heat equation
context. In our case, this leads to a geometrical condition

g

nr(Sp) = h;)“/QH[VE]“LQ(BT)"i_h%

)

Lo(T)

C

which involves the jumps of the surface normals over edges of the discrete surface and the forcing
term g. Refinement and coarsening of the triangulation can now be done as usual.

Depending on the forcing term and the resulting evolution of the surface, complex structures can
develop from a small part of an initially smooth surface. As the grid points of the discretization
are mainly moved into the direction of the surface normal, the distances of the vertices vary
from one time step to the other. The distances get smaller at locally concave parts of the solid
phase and grow where the interface is convex. In the three dimensional case, there may evolve
parts of the surface, where the two principal curvatures differ a lot (one positive and the other
negative, for example). The grid gets strongly deformed after some time. The largest angles
of some triangles may tend to 180 degrees, which would enlargen the errors in the numerical
method. We have to prevent the mesh from degenerating too much and take special care of
those triangles.

Unfortunately, obtuse angles which develop during deformation of the mesh cannot be prevented
refinement and coarsening alone, because of the possible distortion of the mesh during the
evolution. To avoid a degenerate grid, we have to use additional grid modification procedures.
These are based mainly on angle-dependent refinement and displacement of the vertices on
the surface. Altogether, the algorithm is an adaptive h—r—method for the discretization and
movement of the curved free boundary [57].

In the following, we describe a method for displacement of the grid nodes on the (discrete)
surface which leads to good results.

The coordinates of the vertices (and midpoints of the edges) are changed in a way, that makes
the triangulation “better”. We use a single-stepping algorithm that moves only one vertex at a
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time, and loops through all nodes of the grid. Depending on the quality criterium for the grid,
the direction of node movement is chosen.

For each node P of the triangulation, we define a functional F'(P) that measures the local mesh
quality, and try to maximize F' by changing the coordinates of P. To this aim, we calculate
the gradient %F(P) at the old position P of the node and search the maximum of F in the
direction of the gradient, by a bisectioning line search algorithm. As we want to vary the nodes
only on the surface, not in the whole space, we have to project all points from the descent line
onto the discrete surface during the maximization process. During the iterations of the node
movement algorithm, we have to remember the old positions of all nodes, because we need them
for the projection onto the discrete surface defined by these values.

We use a functional F', which works on the angles of the triangulation; it minimizes the dif-
ference between the N angles around a vertex P. It is based on the conformal energy (see
[38] for definition and results) of a parametrization ® : Dy — {T C Ty, : TN P # 0} of the
neighbourhood of P over the unit N-polygon Dy (compare Figure 9.1). We set

F is maximal (= 0) if ® is a conformal mapping; in this case all angles around P are equal.
Straightforward computation gives

N
& (1@ = P+ 1@ys1 — P2 =2 cos(e) (@5 — P, Q11 — P)
Fp) = ]Zl ( : : 2 sin(«) : :

_|(Qj_P)/\(Qj+1—P)|> and

N 71— cos(a)
BT = X (Cay (P @+ (P-@)

<

Qi —P)A(Qj+1 —P) s
(I(Qj P A Qi —p) Q“”) ) ’

where Q;, j = 1,..., N, are the neighbouring vertices to P and a = 2m/N.

Figure 9.1: Unit 5-polygon Ds and parametrization of a neighbourhood of P
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10 A parametric FEM for the Stefan problem with surface ten-
sion

In [57] we describe a parametric finite element algorithm for the Stefan problem with surface
tension, Problem 5.1. Tt will be an explicitely coupled algorithm of the mean curvature flow
method for the motion of the interface, where the discrete temperature appears on the right
hand side, and a heat equation solver, where the discrete interface and its curvature appear.
The finite element method for discretization of the mean curvature flow of the free boundary
¥(t) was already presented above in Section 9, Equation (9.5). The finite element method for
the heat equation is described next.

Discretization of the heat equation: We assume in the moment, that the interface ¥(¢) is
known. After an implicit Euler time discretization with time step size 7,, we combine equations
(5.5)—(5.7) in a weak formulation. Assuming that 8™ is known, Equation (5.5) leads to

0m+1 —_gm
/T7¢+D0/v9m+1w = / Vo  forall p € HJ(Q),
Q " Q S(tm1)

as integration by parts produces the jump term of (5.6) on X(,,11). Using Equation (5.7),
which gives a relationship between the velocity V., the curvature C, and the temperature at
the free boundary, we get for all p € H(Q):

gt —gm 1
/7¢+D0/V9m+1V<p+ / _9m+1<p — _ / 8_0 Q.
5 &

Tm &

Q Z(tm+1) E(tm+1)

The integral over ¥(t,,+1) on the left—hand side leads to a more stable discretization, as we use
an implicit discretization for the temperature on the free boundary and 1/¢, is positive.

Let 74" be a triangulation of the domain € into n—simplices (triangles or tetrahedra), which
will be used during the m—th time step, and V;® C H}(2) the corresponding finite element
space. Then the discrete problem is:

Given smooth surfaces X(t,,), m = 0,1,..., with mean curvature Cs(t,,),» boundary values
o € CO(Q x [0, Timax]) and discrete initial values 69 € V)0, find for each m = 0,1,2,..., finite
element temperatures 0;’?"’1 € V,:n"'l which solve

HiTJrl — OIT m+1 1 m+1 &
(10.1) /77% + Dy /VOh Vo + / . 0, " o= — / g CS:(tyr) Ph
Q " Q S(tm+1) v E(tm+1)

for all pj, € V;"F!, with boundary values 6;""! = I;"*1 (0o (-, t,11)) on 09Q.
The discretizations for the free boundary evolution and the heat equation will be combined
below to a numerical method for the solution of Problem 5.1.

Adaptive method: Similar to the methods from [24], we obtain an a posteriori Ly error
estimate for the solution of the associate elliptic problem (Equation (10.1) without the temporal
differential quotient), assuming a smooth interface 3(¢) and regularity of u for all ¢ € [0, T],

0(-,t) € H">(Q) N H>*(Q\ B(t)),
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with a corresponding a priori estimate (see [12] for estimates for the anisotropic parabolic
problem). Let

M

2
ifTNY =0, and else

D U
D§h4/|th|2+ - / Hﬂ}
T

! ovr
aT\o0
nr(On) = 1

D=

2

2 2
h2 / <8CCE + 0h> T Dgh?) / |A0h|2 + &hQ / ‘ |:%:|
& 7 2 8I/T

1%
{ =nT T \o0

The lower h exponents near Y. account for the loss of regularity of the solution of the dual
problem at the free boundary. We can prove (for the elliptic problem) the a posteriori error
estimate

1/2
10— Onllae) < exnn) i=eo( 3 mr(6)?)
TeTa
under the above regularity assumption. The values nr(6,) are used by the adaptive method to
drive the refinement and coarsening of the temperature mesh.

Computation of the curvature: The right-hand side of the heat equation (10.1) uses the
value of the mean curvature C, of the free boundary ¥(¢,,41). As we approximate the free
boundary ¥ by a piecewise polynomial, globally Lipschitz—continuous discrete free boundary
ZZL‘H, there is no straightforward definition of a curvature for Ehm+1. In the sequel, we use the
notation Y, for the free boundary and drop the time step index.

One possibility is to compute a discrete curvature using again the identity C, 14, = —Ayidy,
which is true for smooth manifolds. With a weak formulation and H~'-projection we define a
vector-valued curvature C), € Wi(Z)"™ by

(Crtn),, s, = (Touidss Vo), o forall gy € W

Using approximate normals v}, at the grid vertices, the discrete scalar mean curvature is now

defined by

Ch =1y ((Chﬂ/h>)
as the piecewise linear interpolate of the scalar product of the discrete curvature vector with
the approximate normals.

Other approaches to a definition of a curvature of the discrete interface use a weak formulation
of the second fundamental form or an area variation formula.

Adaptive algorithm for the Stefan problem: The adaptive methods for the heat equation
and the interface motion are combined, defining an algorithm for the numerical solution of
Problem 5.1.

In each time step, given the old values 6} and X}", we first move the interface ¥j to a new
position f]’,?"’l by solving Equation (9.3) with temperature 6}" on the right hand side:

/?wd’h +/vq>hm+1v¢h:—/€—9,Tywh for all ¢, € Wi(27").
sm ¢ =

m
(&

g m
h h Zh
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The triangulation of the interface is adaptively refined, coarsened and changed according to
the adaptive h—-r—-method from Section 9, which results in the new free boundary EZHI. The
curvature C’,T'H of EZL'H is computed. Now, the new temperature grid 77:”"'1 and the new
temperature H,TH are computed by the semi-implicit adaptive strategy for the solution of
Equation (10.1) using integrals over X/"*! and curvature C;"*! on the right hand side, solving

for all pj, € V™!

9}721-1-1 — ozn m+1 1 m+1 & m+l
/7(ph+DU/VGh thh-l-/g—ﬁh ‘Ph:_/gch ©Op -
a v

Tm
Q m+1 m+1
Eh Eh

The temperature meshes 77:”“ and the surface meshes Ehm+1 are both adaptively generated
using information only from the corresponding a posteriori error estimates (and the interface
motion); no direct relationship between them exists.

All integrals over the free boundary are computed by quadrature formulas. The coordinates of
the quadrature points on the (curved) surface are computed easily from their position in the
reference simplex using the local parametrization of the discrete interface. For integrals which
involve 6, or another function from the finite element space on the n dimensional temperature
mesh, the positions of these quadrature points in the temperature mesh (simplex number and
barycentric coordinates) can be found using local search operations, when the positions of the
surface grid vertices in the temperature mesh are (approximately) known, for example from
the last time step. Such a local search is done by running from one simplex to an adjacent
one which is closer to the point, until all barycentric coordinates are nonnegative. Some global
search operations are needed only once before the first time step, but the same technique can be
used, and their number may be minimized using neighbourhood information about the vertices
on the surface.

The initial temperature grid 77? is generated by an application of the adaptive finite element
method to an elliptic problem like (10.1) with a given time derivative on the right hand side.
Besides the generation of 7,0, computing the initial temperature 0} as the solution of this elliptic
problem ensures that it is compatible with the discrete interface 22, its discrete curvature 022
and the quadrature formulas used.

In Figure 10.1, a flow diagram shows the whole adaptive algorithm, including the generation
of an initial temperature grid. This algorithm is easily supplemented by a higher order time
discretization (Richardson—extrapolation is implemented) and adaptive time step control (using
the parabolic error estimates and methods from [24], for example). Because of technical details
(more intermediate solutions have to be computed and combined), the algorithm looses a bit
of its simple structure in these cases, and we do not present details here.
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Start with initial values 6, T
m:=0

I

Compute adaptively a discretization I') of T'y
Compute the curvature Cj of I'Y)
Compute adaptively an initial triangulation 7,2 and initial temperature 69

|

Time step (i, tmt1): H

I

~

Compute the free boundary propagation and T~ T'(ty41)
Compute the error estimate for f‘hm"'l
Adaptive refinement and coarsening of the surface grid

m+1
Fh

Generate by additional improvement of the surface grid

Compute Curvature C;" ! of T’}

/

N

Compute a temperature 9~,’L”+1 on T,™
Compute the error estimate for 67"
Generate 77:’”'1 by adaptive refinement and coarsening of the temperature grid

Compute the temperature 0;”“ on 771m+1

.

Figure 10.1: Flow diagram of the adaptive algorithm
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