

Numerik partieller Differentialgleichungen

SS 2002 — Übung 8 — 06.06.2002 Abgabe: Donnerstag, 13.06.2002

Aufgabe 23 (L^2 -Projektion)

(4 Punkte)

Es sei \mathcal{S} eine konforme und nicht degenerierte Triangulierung von $\Omega \subset \mathbb{R}^d$ und $X_h = \{v_h \in L^2(\Omega) : v_h|_{\mathring{S}} \in \mathbb{P}_k(\mathring{S}) \text{ für alle } S \in \mathcal{S}\}.$

Zeigen Sie: Zu jedem $u \in L^2(\Omega)$ gibt es genau ein $u_h \in X_h$, so dass

$$||u - u_h||_{L^2(\Omega)} = \inf_{v_h \in X_h} ||u - v_h||_{L^2(\Omega)}$$

gilt. u_h ist die eindeutige Lösung von

$$\int_{\Omega} u_h \varphi_h = \int_{\Omega} u \varphi_h \qquad \forall \varphi_h \in X_h.$$

Außerdem gibt es ein c > 0 so dass für $u \in H^1(\Omega)$ gilt:

$$||u - u_h||_{L^2(\Omega)} \le c h(\mathcal{S}) ||u||_{H^1(\Omega)}$$

 $mit h(S) = \max_{S \in S} h(S).$

Aufgabe 24 (Anisotrope Rechteck-Elemente)

(4 Punkte)

Es seien $R_0=(0,1)^d$ der d-dimensionale Einheitswürfel und R ein achsenparalleler Quader, affin äquivalent zu R_0 mit der Abbildung

$$F: R_0 \to R$$
, $F(y) = Ay + b$, $A = \operatorname{diag}(h_1, \dots, h_d)$.

a) Zeigen Sie, dass mit $m \in \mathbb{N}_0$ für $|\alpha| \leq m$, $v \in H^m(R)$ und $\hat{v} := v \circ F$ gilt:

$$||D^{\alpha}\hat{v}||_{L^{2}(R_{0})} = h^{\alpha - \frac{1}{2}}||D^{\alpha}v||_{L^{2}(R)}.$$

Dabei bezeichnet $h^{\alpha-\frac{1}{2}}=\prod\limits_{i=1}^d h_i^{\alpha_i-\frac{1}{2}}.$

b) Sei $\mathbb{P}(R_0)$ ein endlichdimensionaler Funktionenraum auf R_0 und $\mathbb{P}(R)$ der auf R transformierte Raum. Zeigen Sie, dass es dann eine Konstante c>0 gibt so dass für alle $p\in\mathbb{P}$ und $i=1,\ldots,d$ gilt:

$$\left\| \frac{\partial p}{\partial x_i} \right\|_{L^2(R)} \le c \frac{1}{h_i} \|p\|_{L^2(R)}.$$

Aufgabe 25 (Skalierter Spursatz)

(4 Punkte)

Es sei S ein reguläres Dreieck mit $h \leq \sigma \rho$ und Randkante Γ . Zeigen Sie, dass für $v \in H^1(S)$ gilt:

$$\|v\|_{L^2(S)} \leq c \left(h^{-\frac{1}{2}} \|v\|_{L^2(S)} + h^{\frac{1}{2}} \|\nabla v\|_{L^2(S)} \right).$$

Transformieren Sie dazu S auf das Standardelement \hat{S} wobei $\hat{\Gamma}=(0,1)\times\{0\}$ sei. Setzen Sie $\hat{v}(\hat{x}_1,\hat{x}_2)=\hat{v}(1-\hat{x}_2,1-\hat{x}_1)$ für $\hat{x}_2>1-\hat{x}_1$ auf das Einheitsquadrat $(0,1)^2$ fort und verwenden Sie den Hauptsatz der Differential- und Integralrechnung in \hat{x}_2 -Richtung.