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1 Introduction, motivation

1.1 Introduction

When we talk about the use of mathematics or mathematical modeling for the industry,
we mean the transformation of real world problems into mathematics. Often, this means
neglecting some details, which are unimportant with respect to the posed questions.
While experiments reveal the particular features of any process, the mathematical model
permits the establishment of the general laws and thus contributes to the fundamental
knowledge of the process.

The subject of partial differential equations (PDEs) holds a special and an important
position in mathematical modeling. Partial differential equations describe a huge range
of physical principles and they have been becoming increasingly powerful since the times
of Euler and Lagrange.

The study of PDEs contains two main aspects:

1. Analytic methods for PDEs which involves the issues concerning the existence and
uniqueness of solutions,

2. Numerical approximation of PDEs.

Both the mathematical analysis of the PDEs and the numerical analysis of methods rely
heavily on the strong tools of functional analysis.
Numerical approximation of PDEs is a cornerstone of the mathematical modeling since
almost all modeled real world problems fail to have analytic solutions or they are not
known in the scope of pure mathematics because of their complexity.

The history of numerical solution of PDEs is much younger than that of analytic methods,
but the development of high speed computers nowadays makes the advent of numerical
methods very fast and productive.

On the other hand, the numerical approximation of PDEs often demands a knowledge of
several aspects of the problem, such as the physical background of the problem, in order
to understand and interpret the behavior of expected solutions, or the algorithmic aspects
concerned with the choice of the numerical method and the accuracy that can be achieved.

The aim of the lecture is to discuss some modeling problems and provide the students
with the knowledge of Finite Element techniques for the numerical approximation of the
model equations.
Especially the theory and application of finite element methods is a very nice combination
of mathematical theory with aspects of implementation, modelling, and applications.
So-called “adaptive” methods enable on one hand the prescription of a tolerance for
the approximation error, while on the other hand they make computations possible in
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cases where, for example, a uniformly refined mesh would be prohibitively costly even on
nowadays’ computers, especially in three space dimensions or for problems that need the
resolution of different scales.

1.2 Multiple scales in the modelling of real world problems

Most of the phenomena in nature are concerned with the behavior of a big number of
individual objects which are always in a close interaction with each other. On the other
hand, the important features are visible on a much coarser macro scale, where a mean
behaviour of objects is observable.
Let us consider a very short list of fields where such behaviour arises in real life problems
and where the mathematical investigation is needed to answer the questions stated by
the problem.

1. Meteorology: In this field we are mainly interested in the interaction of air (oxygen,
nitrogene, ozone, etc.) and water molecules, because those interactions are the ones who
are responsible for the behaviour of macroscopic variables like temperature, pressure,
humidity, and wind. The main objective of meteorological stations is to develop a sys-
tem which permits reliable monitoring of climate changes. The monitoring is of high
importance for companies like airports, off-shore wind parks, etc.

Figure 1.1: Air molecules — Weather map with isobars

2. Civil Engineering: In many aspects of our life a huge amount of different materials are
used. Glass, wood, metals, or concrete, those are some instances of materials which we
directly use almost every minute in our everyday life. Thus, the modification of materials
and prediction of their properties are very important objectives for the manufacturers. In
order to produce high quality materials the engineers in industry, among other problems,
are very much interested in the elastic behavior or loading capacity of the material. While
it is known that the bonding forces between the atoms of the material are responsible for
the above mentioned properties, the averaged behaviour can be modelled using continuum
mechanics.
So, to manufacture a new product with higher quality, a detailed investigation of the
material on the atomic level is not required in most cases. A mathematical model is
needed for the quantitative description of the change of material properties under exter-
nal influences such as melting or cooling. The theory of differential equations comes to

2



Figure 1.2: Crystal lattice of steel — Crack with inner stresses

help us as an excellent tool for the development of such a model.

3. Biology: Today the connection between biology and mathematics is a vast growing
area of research. One of the target objects are bacterias. They are unicellular organisms
growing on different substrates, and they gain energy from degradation of substrate
components. Important is that as a result of degradation of substrate, bacterias produce
other materials which are of high industrial interest, because they are used e.g. in medical
care.
Another research area is the population growth problem. The problem aims in forecasting
the change in a given population. The population can consist of cells in a tumor, or
insects, or petri dishes.
While the behaviour of single individuals is the underlying principle, models for the
behaviour of the whole population or local parts of the population can be derived by
averaging over individuals.

Figure 1.3: Single bacterias — Colonies in Petri dishes

The problem is very complex and old. For simplified cases, ordinary differential equations
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are a wide spread method to model the population growth, but localized phenomena need
the treatment with PDEs.

4. Traffic Flow: After a usual working day, many people in many countries of the world
spend several hours on their way back home because of the traffic jams on the roads.
During the driving process every driver has its own behavior which depends on the
objectives of being fast and avoiding accidents. So, in this way a driver (with his car)
interacts with other cars. But people are not able intuitively to drive in such a manner
as to avoid the traffic jams on the roads.

Figure 1.4: Traffic flow

Again we need the help of mathematical model which can provide the understanding
necessary to make the life of drivers more pleasant. The developed model can serve as an
efficient model also for other application problems. For example, the traffic jam model
is similar to gas flow models which allow for the appearance of shock waves. In aircraft
traffic, analogous problems cause noise pollution near airports.
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2 Mathematical modeling

2.1 Density, flux, and conservation

The simplest mathematical models can be developed with the help of density, flux and
a conservation law.

Density. As examples of a density we can consider some space quantities which can vary
in time. Quantities like concentration of a substance or the heat density in a body are
two simple examples.

• Sugar in Coffee (Concentration)

• Temperature in a spoon
or in a pot (Heat Density)

The mass density is, for sure, the simplest example of density. To define the mass density
(density of a material), we consider a point P = (x, y, z) in the space, and let δV be a
small volume element containing P .

δV

P=(x,y,z)

Volume Element δV Containing P

The average mass density ρ in δV at time t is equal to the mass contained in δV (which
is proportional to the number of molecules), divided by the volume of |δV |:

ρ(δV, t) =
Mass in δV at time t

|δV |
In order to determine the mass density ρ(P, t) in the point P at time t, we should allow
δV to become smaller and smaller.
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In reality we can not make the volume element arbitrarily small, as for a very small
element δV a few number of molecules might remain inside δV (it can become even
empty). Thus, the mass density in a point is kind of theoretical property, it is just an
idea.

On the other hand, we know that there are 1023 molecules in 1 cm3 of water, therefore,
it is possible to make δV small enough to define reasonable average values of the density.

Analogous to mass density one can define

• Electrical charge density,

• Population density (biological organisms),

• Chemical concentration (e.g. of components in a mixture),

• Energy density e(P, t) (for example thermal energy / temperature).

Flux. It is known that single objects like molecules or organisms are in continuous
movement.

So, we want to define the flow vector (flux) q(P, t) in a point P at time t to be the rate
and direction of average movement of the objects. Like in the case of density, the flux
can be also defined through a limiting process.
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For the simplicity, first we discuss the one dimensional case. Suppose we want to consider
the heat conduction in a rod. Similarly you can imagine a fluid flow in a tube.

Let δI = [t, t+ ∆t) a (small) time interval starting at t. We define the mass flux (or the
fluid flow vector) q(P, δI) to be the total mass, which moves from left to right through
the point P in the time interval δI, divided by the length |δI| = ∆t of the time interval:

q(P, δt) =
Mass moved through P from left in time interval δI

∆t

P
t

t+τ

Letting ∆t get smaller and smaller, we arrive to the limiting value of mass flux rate
q(P, t) through P at time t. q(P, t) is negative, when the amount of mass which passed
from right to left is bigger than from left to right. Thus, the sign of the flux vector in
one dimensional case shows the direction of the movement of the objects.

Now let us consider the higher dimensional case. Consider a surface element δF
containing the point P with a unit normal vector nδF at the point P . Analog to 1D
case, we consider again the number of objects which move from one side of δF to another
through the surface element δF in a time interval δI.

δF

nP

δF

nP

Then the flux in the direction nδF is defined as

q(δF, δI) · nδF =
Number of objects passing across δF in δI

|δF | ∆t

Again tending the size of the element surface and ∆t to zero, we get in limit the flux
q(P, t) ·n. Here the flow vector q(P, t) determines the direction and strength of the flow
in the point P at time t.
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Conservation Laws. We start with one dimensional case. Suppose we want to derive
a conservation of energy (e.g. heat) in a rod.

For this purpose, we consider an arbitrary section [x1, x2] of the rod.

xx1 2

Next we divide the section [x1, x2] into volume elements δV1, δV2, . . . , δVN .

δVδV δV

xx1 2

21 ... N

Note that the total energy at time instant t is equal to the sum of energies in the volume
elements δV1, δV2, . . . , δVN . Thus

E[x1,x2](t) =
N∑

i=1

E(δVi, t) =
N∑

i=1

|δVi|
E(δVi, t)

|δVi|
︸ ︷︷ ︸

Energy density e(δVi, t)

For |δV | → 0 we get

E[x1,x2](t) =

∫ x2

x1

e(x, t) dx

We state now the general conservation law for the case when no source and sink terms
are present.The basic law of conservation of heat energy for the section [x1, x2] can be
expressed in the following way

Conservation Law:

The net accumulation of the energy in the section is equal to the input across the
end points of the section minus the output across the end points of the section

Energy flow from the section [x1, x2] through the end points is the following

• in x1 flows q(x1, t) to right (inside of the section, input),

• in x2 floes q(x2, t) to right (outside of the section, output).
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x1x

q(x

2

q(x , t) 21 , t)

Thus
d

dt
E[x1,x2](t) = q(x1, t) − q(x2, t)

If we assume that q is a differentiable function with respect to x, we obtain

q(x2, t) − q(x1, t) =

∫ x2

x1

∂

∂x
q(x, t) dx

and from equation

d

dt
E[x1,x2](t) =

∂

∂t

∫ x2

x1

e(x, t) dx =

∫ x2

x1

∂

∂t
e(x, t) dx

follows

∫ x2

x1

∂

∂t
e(x, t) dx = −

∫ x2

x1

∂

∂x
q(x, t) dx

or ∫ x2

x1

(
∂

∂t
e(x, t) +

∂

∂x
q(x, t)

)

dx = 0

The last equation is valid for all sections [x1, x2], therefore, due to the result from the
calculus course, the integrand must vanish:

∂

∂t
e(x, t) +

∂

∂x
q(x, t) = 0

for all points x and for any time t.

This is a partial differential equation, named the

Conservation Equation:

∂

∂t
e(x, t) = − ∂

∂x
q(x, t)
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All above considerations were done when no sources or sinks are present. Let assume
that the 1D rod is additionally heated with a candle from outside.

What he have to do is to add a source term f (function describing the heating by the
candle) to the right hand side of the conservation equation:

rate of change of energy = space change of the flux + Production

∂

∂t
e(x, t) = − ∂

∂x
q(x, t) + f(x, t)

It is obvious that the source may be negative (a sink), f < 0, when we cool down the
heated rod (e.g. by spraying water onto the rod).

Some examples of sources and sinks in other models are:

• Chemistry:
Production and consumption of substrates through chemical reactions

• Biology:
Creation of new biological individuals (e.g. reproduction of bacterias or their die
off),

• Traffic Flow:
Driving in and out of the road,

• ...

Conservation law in n dimensions:
Consider a n-dimensional cube with faces which are parallel to the coordinate planes.
Then the accumulation in the cube is given by the in- and outflow over all faces. Using
the fact that the unit normal vectors of the faces are the unit vectors ±e1, . . . ,±en, the
flux in direction ei is just the i-th component of the flux vector, qi.
With similar arguments as above, we can model the accumulation by the sum of partial
derivatives of the flux vector components, its divergence: Let x = (x1, . . . , xn), then

∂

∂t
e(x, t) = −

n∑

i=1

∂

∂xi
qi(x, t) + f(x, t),
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which can equivalently be written, using the notion of divergence, as

∂

∂t
e(x, t) = −div q(x, t) + f(x, t)

2.2 PDEs as a modeling tool

Heat conduction equation (1D). If the left end of the rod is at a higher temperature,
then heat energy will be transferred from left to right across the rod toward the colder
part of the rod. Note that in conduction process we do not consider any any motion of the
material as a whole. The quantity that is conserved in the theory of heat conduction is
the thermal energy. The energy density e(x, t) per unit mass of a material in the interval
[x1, x2] of density ρ and specific heat cp depends on the temperature T via

e(x, t) = ρcpT (x, t)

The heat flux tries to equidistribute heat over a piece of material. Thus, heat flows from
warmer parts to cooler ones. This mechanism can be modelled by the empirical Fourier’s
law for heat conduction, which states that the rate of heat flow through a homogeneous
medium is directly proportional to the temperature difference along the path of heat flow,
∂T/∂x i.e.

q(x, t) = −k ∂
∂x
T (x, t)

where k > 0 is a material parameter and is called the thermal conductivity.
Finally, after some calculations, we arrive to the one-dimensional heat conduction equa-
tion

ρcp
∂T

∂t
= k

∂2T

∂x2
+ f

The temperature balancing through the heat flow without sources is illustrated in the
next figure.

Time
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Heat conduction equation (3D): The derivation of the heat conduction equation
in 3D case follows from similar steps. We should only substitute the energy density
e(x, t) and heat flow vector q(x, t) in the conservation equation with their corresponding
expressions in three-dimensional space. The Fourier’s law now can be written as

q(x, t) =







−k ∂
∂x1

T (x, t)

−k ∂
∂x2

T (x, t)

−k ∂
∂x3

T (x, t)







= −k∇T (x, t)

The thermal energy density e(x, t), analog to one-dimensional case, for domain Ω is equal
to

e(x, t) = cpρT (x, t)

Substituting both quantities in the conservation equation and assuming the material
parameters to be constant, we obtain the three-dimensional heat conduction equation

ρcp
∂T

∂t
= div(k∇T ) + f

Since we assume that k is a constant, we can write this also using the Laplace operator,

ρcp
∂T

∂t
= k∆T + f

Poisson equation: Imagine we have some fluid which is incompressible and irrotational
in a domain Ω ⊂ R

3 and we would like to follow the flow of the fluid. This is an often met
problem in several areas of fluid mechanics. Assume that the fluid has a density ρ(x, t)
and the flow is defined by the vector velocity field v(x, t). Further we assume that there
are some mass sources per unit volume equal to Q(x, t). Following the mass conservation
law introduced in previous section we can write the differential equation

(2.1) ρt − div(ρv) = Q

The definition of an incompressible flow yields that the density is constant, so we get

(2.2) div v = Q/ρ := Q̃

Now we use the fact that the fluid is irrotational, i.e. curl v = 0. Then the velocity vector
v is the gradient of a scalar potential u(x), that is

(2.3) v = ∇u.
Finally, from (2.2) and (2.3) we obtain the Poisson equation

(2.4) ∆u = Q̃,

a scalar equation for the potential of the flow. Once u is determined by solving the
Poisson problem, then v can be computed by (2.3).
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Remark 2.1. Mathematically speaking, the conservation equation must be supplemented
with some additional conditions, i.e. initial conditions (e.g. the temperature distribution
in the material at time t = 0) and boundary conditions (e.g. the temperature on the
boundary or the flux across the boundary,etc.).
Without these supplemental conditions, we cannot expect to have a unique solution to the
problem.

Stefan problem The classical Stefan problem is a typical free boundary problem which
describes the melting of ice surrounded by water. This problem admits the following
mathematical formulation. Given a container Ω ⊂ Rn with liquid (water) with a tem-
perature distribution T0 = T0(x). An initial piece of ice inside the water is described by
the curve (surface) Γ0 (see figure 2.2). A model for the melting of ice in the water can

Figure 2.1: Melting of ice in the Water

be formulated in the following way:
given: Ω ⊂ Rn, Γ0 and T0 = T0(x) (x ∈ Ω̄). At a time t > 0, Ω is composed of two sub-

domains Ωs and Ωl, appropriately occupied by the solid (ice) and liquid (water) phases.
The subdomains are separated by a regular interface Γt.
compute: T (x, t) and Γ(t), t > 0, such that in each of the subdomains Ωs,l the heat
equation is fulfilled

(2.5) ρc
∂T

∂t
− div(k∇T ) = f

where f(x, t) is a given function describing heat sources, ρ denotes the density, k the heat
conductivity, and c the heat capacity. All these coefficients are assumed to be constant
in each of the phases, but may differ between them.

In addition to heat equation we must impose boundary and initial conditions. On the
unknown interface Γt between phases two conditions are prescribed. First,

T = 0 on Γt,

13



the temperature is equal to the melting temperature of the ice. The second condition
follows from the energy conservation law by its application to elementary volumes that
contain both phases at the same time. Let us consider an element dγ of interface that
moves with velocity v, and denote by ql the heat flux (per unit surface) contributed by
the liquid phase and by qs the heat flux (again per unit surface) absorbed by the solid
phase, and L being the constant latent heat of melting. Latent heat is either absorbed
or released at a rate Lv · ndγ. The heat exchanged by the interface Γt itself through dγ
is equal to (ql · n − qs · n)dγ. Applying the energy conservation law to the elementary
surface dγ, we obtain

(ql · n− qs · n) dγ = Lv · ndγ
This yields (dividing both sides by dγ and using the Fourier law for the heat flux) the
classical Stefan condition on the moving interface.

ρLv · n = k
∂T

∂n
|l − k

∂T

∂n
|s on Γt.

On the fixed boundary ∂Ω we impose a Dirichlet boundary condition, that is

(2.6) T = TD

As for initial conditions, we have

T (x, 0) = T0(x) x ∈ Ω(2.7)

Γ(0) = Γ0(2.8)

The above formulation is called two-phase one-front Stefan problem and represents one
of the simplest problem settings. Modifications are possible in different directions (one-
phase Stefan problem, multi-phase multi-front Stefan problem, etc.).

Remark 2.2. We have so far introduced some models which are derived with the help of
mass conservation law. After the mathematical model is complete, several questions arise
which can be answered only after a detailed investigation and mathematical analysis of
the model. Typical questions are:

• Existence: Does a solution to the problem exist?

• Uniqueness: Can there be two or more (different) solutions?

• Regularity: How smooth are those solutions? How does the smoothness of the solu-
tion depend on the source term or the smoothness of the boundary of the domain?

• ...
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3 Functional analysis background

In the following chapter we are going to develop function spaces that are used in the
weak formulation of partial differential equations. Using the main concepts of Lebesgue
functional spaces we will define spaces commonly referred to as Soboloev spaces. The
chapter includes only a small part of functional analysis and the theory for Sobolev spaces
– just enough to be able to establish the foundation for the finite element method.

3.1 Banach spaces and Hilbert spaces

Let (X, d) be a metrical space.

Definition 3.1. A sequence (xk)k∈N in X is called a Cauchy sequence if and only if

d(xk, xl) → 0 for k, l → ∞

We say that (X, d) is a complete metrical space if every Cauchy sequence in X converges
to a limit in X.

Definition 3.2. (Banach Space) A normed space which is complete with respect to the
induced metric is called a Banach space.

Let Ω ∈ Rn be a open and bounded set.

Definition 3.3. (Spaces of Hölder Continuous Functions) For 0 < λ ≤ 1 and we define
Cm,λ(Ω) to be the subspace of Cm(Ω) consisting of those functions f for which there exists
a constant h such that

|Dαf(x) −Dαf(y)| ≤ h|x− y|λ x, y ∈ Ω

for 0 ≤ α ≤ m. The functions from the space Cm,λ(Ω) are called Hölder continuous and
Lipschitz continuous for the case λ = 1.

The constant h is called the Hölder constant. The space Cm,λ(Ω) is then a Banach space
with norm given by

‖f‖Cm,λ(Ω) = ‖f‖Cm(Ω) + max
0≤|α|≤m

sup
x,y∈Ω,x6=y

|Dαf(x) −Dαf(y)|
|x− y|λ

Definition 3.4. (Inner Product Spaces and Hilbert Spaces) Let X be a vector space and
(·, ·) be a symmetric positive definite bilinear form (an inner product) on X ×X. Then
X is called an inner product space and the norm on this space may be defined as

‖x‖X =
√

(x, x)X , x ∈ X

If X is complete under this norm, then it is called a Hilbert space.
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Denote by X ′ the normed dual of the space X with the norm

‖x′‖X′ = sup {|x′(x)| : ‖x‖X ≤ 1} .
The following theorem shows that there exists an isometry between a Hilbert spaces X
and X ′.

Theorem 3.1. (Riesz Representation Theorem) Let X be a Hilbert space. Then for any
continuous linear functional x′ from the space X ′ there exists exactly one x ∈ X such
that x′ can be represented as

x′(y) = (x, y) for all y ∈ X.

In this case
‖x′‖X′ = ‖x‖X

According to the Riesz Representation Theorem, we can identify any Hilbert space with
its normed dual.

3.2 Basic concepts of Lebesgue spaces

Let Ω be a Lebesgue-measurable domain in Rn and let p be a positive real number. We
denote by Lp(Ω) the class of all measurable functions, defined on Ω:

(3.1) L
p(Ω) :=

{
u : ‖u‖Lp(Ω) <∞

}
,

where the norm ‖u‖Lp(Ω) is defined in the following way: for 1 ≤ p <∞

(3.2) ‖u‖Lp(Ω) :=





∫

Ω

|u(x)|pdx





1
p

,

and for p = ∞ we set

(3.3) ‖u‖L∞(Ω) := ess sup
x∈Ω

{|u(x)|} .

The elements of Lp(Ω) are actually equivalence classes of measurable functions satisfying
(3.2) or (3.3), because we can identify all functions in L

p(Ω) which are equal almost
everywhere on Ω.

Theorem 3.2. For 1 ≤ p, q ≤ ∞, 1
p

+ 1
q

= 1 and u, v ∈ Lp(Ω), w ∈ Lq(Ω) we have

‖u+ v‖Lp(Ω) ≤ ‖u‖Lp(Ω) + ‖v‖Lp(Ω), Minkowski’s inequality,
∫

Ω

|u(x)w(x)|dx ≤ ‖u‖Lp(Ω)‖w‖Lq(Ω) Hölder’s inequality,

∫

Ω

|u(x)w(x)|dx ≤ ‖u‖L2(Ω)‖w‖L2(Ω) Schwarz’ inequality.
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Note that Schwarz’ inequality is just the Hölder’s inequality in the special case p = q = 2.

The following theorem gives some useful properties of L
p-spaces over domains with fi-

nite volume. The proof of the theorem may be found in the references given in the
bibliography.

Theorem 3.3. Assume 1 ≤ p ≤ q ≤ ∞. Then

1. Lp(Ω) is a Banach space.

2. if u ∈ L
q(Ω), then u ∈ L

p(Ω) and

(3.4) ‖u‖Lp(Ω) ≤ (volumeΩ)( 1
p
− 1

q
) ‖u‖Lq(Ω).

3. as a consequence of (3.4) we get a useful embedding result for L
p-spaces, namely

(3.5) L
q(Ω) ↪→ L

p(Ω).

4. if p <∞ then Lp(Ω) is separable.

5. L
p(Ω) is reflexive if and only if 1 < p <∞

3.3 Weak derivatives

The classical definition of derivative contains information about the function only near
the given point. Of special importance is the notion of weak or distributional derivatives
which does not care about the pointwise values. Therefore, we will consider derivatives
that can be interpreted as functions in the Lebesgue spaces. We know that pointwise
values of functions in Lebesgue spaces are irrelevant and these functions are determined
only by their global behavior. The weak derivative will be used in the development of
the variational formulation of partial differential equations.

Let Ω be a domain in Rn. Denote by C∞
0 (Ω) the subset of C∞ functions with compact

support in Ω. By support of the function u defined on a compact K ⊂⊂ Ω we mean

supp u = {x ∈ K : u(x) 6= 0},

and if supp u ⊂⊂ Ω then we say that u has a compact support.

Definition 3.5. A function u is said to be locally integrable on Ω, if it is defined on Ω
almost everywhere and u ∈ L1(K) for every compact K lying in the interior of Ω. The
locally integrable function space is denoted by L1

loc(Ω).

Now we are ready to define the notion of weak derivative.
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Definition 3.6. The function u ∈ L1
loc(Ω) possesses a weak derivative, if there exists a

function v ∈ L1
loc(Ω) such that

∫

Ω

v(x)φ(x)dx = (−1)|α|
∫

Ω

u(x)Dαφ(x)dx for all φ ∈ C
∞
0 (Ω).

where

Dα =
∂|α|v

∂α1x1∂α2x2...∂αnxn

with a multi index α = (α1, ..., αn), αi ∈ Z, αi ≥ 0, |α| = α1 + α2 + ...+ αn.

We denote the weak derivative of u by Dα
wu and define Dα

wu=v (if such a v exists, of
course).

3.4 Introduction to Sobolev spaces

The Sobolev spaces which will play an important role in the variational formulation of
partial differential equations are built on the function spaces Lp(Ω) introduced in the
previous chapter. The idea is to generalize the Lebesgue norms and spaces to include
weak derivatives.

Let again Ω be an open subset of Rn.

Definition 3.7. Let m be a non-negative integer and 1 ≤ p ≤ ∞. We define the Sobolev
norm ‖ · ‖m,p for any function u ∈ L1

loc(Ω) in the following form

‖u‖m,p =




∑

0≤|α|≤m

‖Dα
wu‖p

Lp(Ω)





1
p

if 1 ≤ p <∞,(3.6)

‖u‖m,∞ = max
0≤|α|≤m

‖Dα
wu‖L∞(Ω) if p = ∞(3.7)

where we assume that the weak derivatives Dα
wu of u exist for all |α| ≤ m.

The Sobolev norm defines a norm on any vector space of functions provided we identify
all functions in the case they are equal almost everywhere in Ω.

Definition 3.8. For any positive integer m and 1 ≤ p ≤ ∞ we define the Sobolev spaces

W
m,p(Ω) :=

{
u ∈ L

1
loc : ‖u‖m,p <∞

}

Clearly W0,p(Ω) = Lp(Ω). For the finite element approximation of differential equations
the following space is of great importance

W
m,p
0 (Ω) ≡ the closure of C

∞
0 (Ω) in the space W

m,p(Ω)
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For an arbitrary integer m we get the following obvious chain of embeddings

W
m,p
0 (Ω) ↪→ W

m,p(Ω) ↪→ L
p(Ω)

In a special cases of Sobolev spaces Wm,p(Ω), i.e. when p = 2, we will use the notation
Hm(Ω) instead of Wm,2Ω and Hm

0 (Ω) instead of W
m,2
0 Ω.

3.5 Some useful properties of Sobolev spaces

In this section we will present, mainly without proofs, some useful properties (useful for
our further considerations) enjoyed by functions from Sobolev spaces. We will provide
results in their general formulations. The special cases used in Finite Element formula-
tions can be easily obtained with very simple calculations.

Let again Ω ⊂ Rd be an open, bounded domain with ∂Ω ∈ C
0,1.

Theorem 3.4. The Sobolev space W
m,p is a Banach space.

Proof. Let {un} be a Cauchy sequence in Wm,p(Ω).Then for all |α| ≤ m, {Dα
wun} is

a Cauchy sequence with respect to the norm ‖ · ‖Lp(Ω), since the ‖ · ‖Wm,p(Ω) norm is a
combination of ‖·‖Lp(Ω) norms of weak derivatives. Because of the completeness of Lp(Ω)
(the space Lp(Ω) is a Banach space), there exists a uα ∈ Lp(Ω) such that

‖Dα
wun − uα‖Lp(Ω) → 0 for n→ ∞

Particularly, un → u(0,...,0) =: u in Lp(Ω). To end the proof of the theorem, it remains to
show that Dα

wu exists and is equal to uα.
First, note that if vn → v in Lp(Ω), then for all φ ∈ C∞

0 (Ω) (using the Hölder’s inequality)

(3.8) ‖vnφ− vφ‖Lp(Ω) ≤ ‖vn − v‖Lp(Ω)‖φ‖L∞(Ω) → 0 for n→ ∞

Thus

(3.9)

∫

Ω

vn(x)φ(x)dx →
∫

Ω

v(x)φ(x)dx

Now having in hand the definition of the weak derivative and two times applying (3.9),
we obtain

∫

Ω

uαφdx = lim
n→∞

∫

Ω

(Dα
wun)φdx = lim

n→∞
(−1)|α|

∫

Ω

un∂
αφdx = (−1)|α|

∫

Ω

u∂αφdx

Thus ∫

Ω

uαφdx = (−1)|α|
∫

Ω

u∂αφdx

and the proof of the theorem is complete.
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Theorem 3.5. (Sobolev Embedding Theorem). Assume m, l ∈ N and p, q ∈ [1,∞]. Then
the following statements hold:

1. if m ≥ l and m − d
p
> l − d

q
, then Wm,p(Ω) is continuously embedded in W l,q(Ω),

i.e. there exists a constant c, such that

‖u‖l,q ≤ c · ‖u‖m,p

The number m− d
p

is called the Sobolev number.

2. if m > l and m− d
p
> l − d

q
, then the embedding is compact.

3. if m− d
p
> k + α, then

‖u‖Ck,α(Ω) ≤ c · ‖u‖m,p ∀u ∈ Wm,p(Ω)

i.e. the space Wm,p(Ω) is continuously embedded in Ck,α(Ω).

Recall, that Sobolev functions can not be in general evaluated over lower-dimensional
subsets, i.e. subsets having measure equal zero.

Theorem 3.6. (Trace Theorem). Using the notations of the previous theorem, we assume
that m > l and m − d

p
> l − d−r

q
. Then there exists a continuous linear embedding

γ : Wm,p(Ω) → W l,q(S), where S is a smooth (d − r) dimensional sub-manifold of Ω.
Thus the estimate holds

‖γ(u)‖l,q,s ≤ c · ‖u‖m,p ∀u ∈ Wm,p(Ω)

The embedding operator γ is then called the trace operator. For example, if u ∈ C∞(Ω),
then the trace operator γ is determined as γ(u) = u.

For our future discussions it is useful to introduce the notation of Sobolev semi-norms.

Definition 3.9. Let m be a non-negative integer and u ∈ Wm,p(Ω). We define the
Sobolev semi-norm | · |m,p

|u|m,p =




∑

|α|=m

‖Dα
wu‖p

Lp(Ω)





1
p

if 1 ≤ p <∞,(3.10)

|u|m,∞ = max
|α|=m

‖Dα
wu‖L∞(Ω) if p = ∞(3.11)
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4 Variational formulation of elliptic problems

In most mathematical models of real world problems one has the difficulty with analytical
investigation of the problem. The difficulties can be caused by several factors, e.g. com-
plicated geometry, etc. Therefore, more and more often we have to apply the capacity of
high performance computers for getting adequate solutions of developed mathematical
models.

4.1 Variational formulation of Poisson problem

In this chapter we will discuss the weak or variational formulation of boundary value
problems. Since finite element approximation methods are most naturally defined in
terms of weak formulations, we briefly indicate how elliptic problems can be cast in weak
form. Moreover, the weak formulation provides a relatively simple way to develop the
existence and uniqueness of so-called “weak solutions”.

Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary and f ∈ C(Ω). Consider the
Poisson problem for the unknown function u ∈ C2(Ω) ∩ C0(Ω):

−∆u = f in Ω,(4.1)

u = 0 on ∂Ω.(4.2)

(We impose here Dirichlet boundary condition on ∂Ω, in the case of Neumann or Robin
boundary condition the procedure looks very similar.)
Now let us replace the classical representation (4.1)+(4.2) by a weak or variational formu-
lation. The idea is to multiply the equation (4.1) with a so called test function v ∈ H1

0(Ω)
and then integrate both sides of the new equation over the domain Ω.

(4.3) −
∫

Ω

∆uv dx =

∫

Ω

fv dx

Using the known rules of integration by parts and then employing the Dirichlet boundary
condition (4.2), equivalently it holds

∫

Ω

∇u∇v dx =

∫

Ω

fv dx

Now we can ask a solution just to fulfill this weak form of the poisson problem. For such
a weak solution is is not longer necessary that second derivatives exist, as the equation
above contains only integrals over first derivatives. Additionally, it is sufficient that the
first derivatives exist only in a weak sense. Thus, we can state the weak formulation of
the Poisson problem in the following way:
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Find u ∈ H1
0(Ω), such that for all test functions v ∈ H1

0(Ω) holds

(4.4)

∫

Ω

∇u∇v dx =

∫

Ω

fv dx

We call the solution of (4.4) the weak (variational) solution.

Remark 4.1. Why we are replacing the classical formulation?
The answer is that by writing the problem in its weak formulation it is possible to treat
a larger class of problems. It is easy to see that less regularity is required for the weak
solution, thus the existence proofs are simplified. The main advantage of such replacement
is that for solving the problems, numerical methods can be constructed which converge with
less assumptions on the regularity of the solution, for example, finite element method.
Finally, it is well known that if the classical solutions exist, then the weak solutions
coincide with them. However, there are a lot of cases, when the weak solution fails to be
classical.
Another important reason of the replacement is that the weak formulation allows us to
use the nice theory of functional analysis and easily arrive at existence results and to
error estimates for approximations in different functional spaces.

4.2 Existence and uniqueness of weak solution

Before we establish the existence result of weak formulation (4.4), let us first recall some
definitions and state an abstract theorem.

Let X be a Hilbert space with a scalar product (·, ·)X and associated norm ‖ · ‖, namely

‖v‖X :=
√

(v, v)X.

Further we define the dual space, X∗, to the Hilbert space X as a set of all linear func-
tionals on X. We introduce the dual pairing 〈·, ·〉X∗×X in the form

〈·, ·〉X∗×X : X∗ × X → R,

〈l, v〉X∗×X := l(v) ∀l ∈ X∗, v ∈ X.

Definition 4.1. A mapping a(·, ·) : X×X → R is said to be a bilinear form, if for any
fixed v ∈ X each of the maps a(v, ·) : X × X → R and a(·, v) : X × X → R is a linear
form on X. If

a(w, v) = a(v, w) ∀u, w ∈ X,

then the bilinear form a(·, ·) is called symmetric.

We define also the mapping L : X → X∗

〈Lw, v〉X∗×X := a(w, u) ∀w, v ∈ X.
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Assume that we are given the bilinear form a(·, ·) (not necessarily symmetric) and the
norm ‖| · ‖| : X → R defined on the space X with the property

‖|v‖| ≤ a(v, v), ∀v ∈ X

In the case when the bilinear form a(·, ·) is symmetric, then

‖|v‖| :=
√

a(v, v)

Remark 4.2. It is easy to check that ‖|v‖| :=
√

a(v, v) defines a norm in the Hilbert
space X. This norm is usually called the energy norm.

The problem in the solution of which we are mainly interested is the following:

Problem 4.1. For a given f ∈ X∗, find u ∈ X such that

a(u, v) = 〈f, v〉 for all v ∈ X.

Equivalently we can rewrite the problem as: find u ∈ X such that

Lu = f in X∗.

Let the bilinear form a(·, ·) be coercive, it means there exists Ca > 0 such that

‖|v‖|2 ≥ Ca‖v‖2
X ∀v ∈ X,

or in terms of the bilinear form

a(v, v) ≥ Ca‖v‖2
X

Suppose also that a(·, ·) is continuous, meaning that there exist Ca > 0 and Cl > 0 such
that

a(v, w) ≤ Ca‖v‖X‖w‖X,

a(v, w) ≤ Cl‖|v‖| · ‖|w‖|X.
Theorem 4.1. (Lax-Milgram lemma). Let X be a Hilbert space, a(·, ·) : X × X → R be
a continuous coercive bilinear form and let f : X → R be a continuous linear form.
Then the Problem 4.1 has one and only one solution.

Now let apply the Lax-Milgram lemma to the weak formulation (4.4). We set

X = W
1
0(Ω),

a(u, v) =

∫

Ω

∇u∇v dx for u, v ∈ X,

and

〈f, v〉 =

∫

Ω

fv dx

and it is up to the reader to verify that all assumptions of Lax-Milgram lemma are
satisfied.
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Remark 4.3. Above, the Sobolev spaces appear without much motivation, just saying
that the regularity of Sobolev functions is enough to write down the formulation. You can
introduce them also in a different way: The weak formulation appears naturally as the
condition for the minimizer u of the energy functional

E(v) =

∫

Ω

1

2
|∇v|2 − fv dx, v ∈ C

1
0(Ω).

Trying to proove existence of a (unique) minimizer, you need completeness of the under-
lying space with respect to a norm which is compatible with the energy funcional. This
leads naturally to the completion

H
1
0 = C1

0(Ω)
||·||

H1
.

24



5 Finite element approximation

The finite element method was first conceived in a paper by Courant in 1943, but the
importance of this contribution was ignored at the time. Then the engineers indepen-
dently re-invented the method in the early fifties. Nowadays the whole procedure of the
finite element method is a field of mathematical research since many years and it has be-
come one of the most popular techniques for obtaining numerical solutions of differential
equations arising from engineering problems.
In this chapter we will briefly introduce the main aspects of the finite element method.

5.1 Galerkin discretization

In the theory of classical solutions it is natural to use approximation procedures which
are based on a pointwise evaluation of functions and differential operators. When dealing
with weak solutions this approach cannot be taken over, because point values of func-
tions in Hm(Ω) are in general not defined, if m− n

2
≤ 0 (m and n are the corresponding

Sobolev numbers). The formulation of the original problem as weak problem suggests a
different strategy to convert the infinite dimensional space into a finite dimensional one
which then allows a numerical treatment.

Having in mind the old notations, let us again consider the following problem:

Problem 5.1. For a given f ∈ X∗, find u ∈ X such that

a(u, v) = 〈f, v〉 for all v ∈ X.

Then discretization is obtained by replacing X with a finite dimensional subspace Xh ⊂ X.
To get a numerical approximation to the unknown function u, the idea of Galerkin method
is

Problem 5.2. For a given f ∈ X∗, find uh ∈ Xh such that

(5.1) a(uh, vh) = 〈f, vh〉 for all vh ∈ Xh.

Existence of a discrete solution uh ∈ Xh follows directly by applying the above theory
on the subspace, or by looking for a minimizer of the energy functional in the (finite-
dimensional, so complete) subspace.

We introduce a basis {ϕ1, ϕ2, ..., ϕn} of Vh and taking into consideration the fact that
(5.1) is satisfied for any vh ∈ Vh, we replace vh by basis functions.

(5.2) a(uh, ϕi) = 〈f, ϕi〉.
Now the desired approximate solution uh is represented by means of chosen basis func-
tions:

(5.3) uh =

n∑

j=1

Ujϕj.
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If this expression for uh is now substituted into (5.2), we obtain the following system of
equations:

(5.4)

n∑

j=1

a(ϕj, ϕi)Uj = 〈f, ϕi〉 for i = 1, . . . , n,

which must be solved for the unknowns U1, U2, · · · , Un.
The equation (5.4) permits us to write it in the form:

(5.5) SU = B

with the matrix Sij = a(ϕj, ϕi), vector Bi = 〈f, ϕi〉 and U being the column vector of
coefficients Uj.

S is called the stiffness matrix and B is called the load vector.

For a given space Xh, solving the corresponding discrete problem (5.1) amounts to finding
the coefficients Uj of the expansion (5.3) over the basis functions ϕj, j = 1, 2, ..., n. Thus,
in order to obtain the numerical solution of any second order elliptic problem one has
first, to compute the stiffness matrix S and load vector B for the specific problem, and
second, solve the algebraic system(5.5).
Some details about aspects of efficient implementations are given in Section 10

5.2 Finite element method

The finite element method can be described in a few words. Suppose that the problem to
be solved is in weak formulation. The idea of finite element method is simple. It starts
by a subdivision of the structure, or the region of physical interest, into smaller pieces.
These pieces must be easy for the computer to record and identify: they may be triangles
or rectangles.
Then within each piece the trial functions are given an extremely simple form-normally
they are polynomials of arbitrary degree. Boundary conditions are easier to impose lo-
cally along the edge of a triangle or rectangle, than globally along a more complicated
boundary.

So, let us start from the first step: divide the domain into finitely many smaller pieces.
These small pieces are called elements. There are several kinds of elements, which can
be used for the decomposition of the domain and it is not clear whether to subdivide
the region into triangles, rectangles or other types of elements. We will not discuss the
advantages and disadvantages of each type of elements and will subdivide the region of
interest into triangles.

If we decompose the given domain Ω by triangles (see Figure 5.1), we will see that the
union of these triangles will be a polygon Ωh and in general - if ∂Ω is a curved boundary
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- there will be a nonempty region Ω \ Ωh, which will later, of course, contribute to the
error. So one of the main tasks when considering curved boundary, will be to make the
nonempty region as small in area as possible. For simplicity we will consider only polyg-
onal domains, i.e. the case when Ωh = Ω.

Figure 5.1: A triangulation of a domain

Definition 5.1. τ := {T1, ..., TNτ} is called a (conforming) triangulation of Ω, if the
following conditions are fulfilled: (see [21])

1. Ti are open triangles (elements) for 1 ≤ i ≤ Nτ ;

2. Ti are disjoint, i.e. Ti ∩ Tj = ∅ for i 6= j;

3.
⋃

1≤i≤Nτ

Ti = Ω;

4. for i 6= j the set Ti ∩ Tj is either

i. empty, or

ii. a common edge of Ti and Tj, or

iii. a common vertex of Ti and Tj.
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Figure 5.2: Examples of conforming and non-conforming triangulation

The examples of conforming and non-conforming triangles are given in Figure 5.2.

Let τ0 be a triangulation of Ω. If we subdivide a subset of triangles of τ0 into sub-
triangles such that the resulting set of triangles is again a triangulation of Ω, then we
call this a refinement of τ0. Let the new triangulation be τ1. If we proceed in this way,
we can construct a sequence of triangulations {τk}k≥0 such that τk+1 is a refinement of τk.

Let now τ be a conforming triangulation. Our next task is to define a finite element space
Xh. For the moment we know only that Xh is a finite dimensional space of functions
defined over the domain Ω. With the help of Xh we define the space

PT = {vh|T ; vh ∈ Xh} .

The members of this space are the restrictions of the functions vh ∈ Xh to the elements
(triangles ) T ∈ τ . It is natural now to obtain some conditions guaranteeing that the
inclusion Xh ⊂ H1(Ω) holds (if you remember, our goal is to approximate solutions of
problems belonging to the space H1(Ω)).

Theorem 5.1. Assume that Xh ⊂ C(Ω) and PT ⊂ H
1(T ) for all T ∈ τ . Then

Xh ⊂ H
1(Ω),

Xh0 := {vh ∈ Xh; vh = 0 on ∂Ω} ⊂ H
1
0(Ω)

Having in mind all previous considerations, we summarize the properties of a finite ele-
ment space.

1. A finite element space is described by the underlying triangulation τ of the domain
Ω

2. For each element T of the triangulation τ the space

PT = {vh|T ; vh ∈ Xh} .

contains polynomials of certain degree.

3. there exist a canonical basis in the space Xh, whose functions are easy to describe
using the information on local elements.
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Example 5.1. (Linear finite elements).

Let assume that we are given a domain Ω ∈ R2 with polygonal boundary ∂Ω. Let τ be
some triangulation of Ω into triangles T . For an arbitrary positive integer r we define
the space

Pr(T ) := {v; v is a polynomial of degree ≤ r on T} .
Thus for r = 1, P1(T ) is the space of linear functions defined on T . These linear functions
can be represented as

v(x, y) = a + bx + cy, x ∈ T

where a, b, c ∈ R. Here we immediately see how the basis {ϕ1, ϕ2, ϕ3} for P1(T ) looks
like, compare Figures 5.3 and 5.4

Figure 5.3: Linear basis functions for the triangle T

Note that dim P1(T ) = 3. Let the finite dimensional space Xh be the space of piecewise
linear functions, i.e.

Xh =
{
v ∈ C(Ω); v|T ∈ P1(T ), ∀T ∈ τ

}

It is clear that any function v ∈ Xh is uniquely determined by the values (called also
degrees of freedom) at the vertices of T (called also the nodes). Indeed, let T ∈ τ be a
triangle with vertices a1 = (x1, y1), a2 = (x2, y2), a3 = (x3, y3). Since the function v ∈ Xh

is defined on the arbitrary triangle T , the vertices of T must satisfy the equation for v, i.e.
v(x, y) = a+ bx + cy. If we denote the values of v(x, y) at the vertices by αi, i = 1, 2, 3,
we obtain the linear system of equations

a + bxi + cyi = αi, i = 1, 2, 3,

for the unknowns a, b, c. From the basics of linear algebra we know that for given αi the
system has a unique solution if and only if the determinant of coefficient matrix does not
vanish, i.e.

det





1 x1 y1

1 x2 y2

1 x3 y3



 6= 0.
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On the other hand it is well known that the above mentioned determinant is equal to
twice the area of triangle T , thus it can not be equal to zero, which means that the un-
knowns a, b, c are uniquely determined and therefore, the function v(x, y) is also uniquely
determined by its given degrees of freedom (values at the vertices of T ).

Remark 5.1. In general, for our approximations we will use the finite element space Xh0

for solving the second-order problems with homogeneous Dirichlet boundary and the space
Xh if we are solving a second order Neumann problem.

Remark 5.2. A common way to define the basis functions associated with the degrees of
freedom is to take functions ϕi ∈ P1(T ), i = 1, 2, 3, such that

ϕi(aj) = δij =

{
1 if i = j
0 if i 6= j

for i, j = 1, 2, 3 (see Figure 5.3).

Note, that we can analogously define other finite element spaces using the spaces of higher
degree polynomials. Here we state only a theorem on general Lagrange elements.

Definition 5.2. The Lagrange grid Gk(T ) on a triangle T with vertices a0, a1, a2 is given
by the set of points

Gk(T ) =

{

x =
d∑

j=0

λjaj : λj ∈ {m
k
,m = 0, . . . , k}, λj ≥ 0,

d∑

j=0

λj = 1

}

On each triangle T , each polynomial p ∈ Pk of degree k is defined uniquely by its values
on the Lagrange grid Gk(T ). It holds dimPk =

(
k+2

k

)
= #Gk(T ).

Theorem 5.2. Let the domain Ω ∈ Rd is decomposed into triangles through the triangu-
lation Tau. Assume that the grid Gk is of order k, it means

Gk := ∪T∈TGk(T ) = {aj, j = 1, 2, · · · , N} .

If the values of uh on the grid Gk are known, then using these values we can uniquely
determine a function uh ∈ Xh ⊂ H1(Ω) with

Xh =
{
uh ∈ C

0(Ω); uh|T ∈ Pk(T ), T ∈ T
}
,

A basis of Xh is given as a collection of functions ϕj ∈ Xh such that

ϕj(ai) = δji i, j = 1, 2, · · · , N.

where δji is the well know Kronecker delta function.
The basis functions on the given triangulation for linear, quadratic and 4th order finite
elements are visualized in figures 5.4, 5.5 and 5.6.
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Figure 5.4: Mesh and linear basis function

Figure 5.5: Quadratic basis functions

5.3 Discretisation of 2nd order equation

In this section we describe the assembling of the discrete system in detail.
We consider the following second order differential equation in divergence form:

Lu := −∇ ·A∇u+ b · ∇u+ c u = f in Ω,(5.6a)

u = g on ΓD,(5.6b)

νΩ · A∇u = 0 on ΓN ,(5.6c)

where A ∈ L∞(Ω; Rd×d), b ∈ L∞(Ω; Rd), c ∈ L∞(Ω), and f ∈ L2(Ω). By ΓD ⊂ ∂Ω (with
|ΓD| 6= 0) we denote the Dirichlet boundary and we assume that the Dirichlet boundary
values g : ΓD → R have an extension to some function g ∈ H1(Ω).
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Figure 5.6: 4th order basis functions

By ΓN = ∂Ω\ΓD we denote the Neumann boundary, and by νΩ we denote the outer
normal vector on ∂Ω. The boundary condition (5.6c) is a so called natural Neumann
condition.
Equations (5.6) describe not only a simple model problem. The same kind of equations re-
sult from a linearization of nonlinear elliptic problems (for example by a Newton method)
as well as from a time discretization scheme for (non–) linear parabolic problems.
Setting

(5.7) X = H
1(Ω) and X̊ = H

1
0(Ω) =

{
v ∈ H

1(Ω); v = 0 on ΓD

}

this equation has the following weak formulation: We are looking for a solution u ∈ X,
such that u ∈ g + X̊ and

(5.8)

∫

Ω

(∇ϕ(x)) ·A(x)∇u(x) + ϕ(x) b(x) · ∇u(x) + c(x)ϕ(x) u(x) dx =

∫

Ω

f(x)ϕ(x) dx

for all ϕ ∈ X̊
Denoting by X̊∗ the dual space of X̊ we identify the differential operator L with the
linear operator L ∈ L(X, X̊∗) defined by

(5.9)
〈
Lv, ϕ

〉

X̊∗×X̊
:=

∫

Ω

∇ϕ · A∇v +

∫

Ω

ϕ b · ∇v +

∫

Ω

c ϕ v for all v, ϕ ∈ X̊

and the right hand side f with the linear functional f ∈ X̊∗ defined by

(5.10)
〈
F, ϕ

〉

X̊∗×X̊
:=

∫

Ω

f ϕ for all ϕ ∈ X̊.

With these identifications we use the following reformulation of (5.8): Find u ∈ X such
that

(5.11) u ∈ g + X̊ : Lu = f in X̊∗

holds.

32



Suitable assumptions on the coefficients imply that L is elliptic, i.e. there is a constant
C = CA,b,c,Ω such that

〈
Lϕ, ϕ

〉

X̊∗×X̊
≥ C ‖ϕ‖2

X for all ϕ ∈ X̊.

The existence of a unique solution u ∈ X of (5.11) is then a direct consequence of the
Lax–Milgram–Theorem.
We consider a finite dimensional subspace Xh ⊂ X for the discretization of (5.11) with
N = dim Xh. We set X̊h = Xh ∩ X̊ with N̊ = dim X̊h. Let gh ∈ Xh be an approximation
of g ∈ X. A discrete solution of (5.11) is then given by: Find uh ∈ Xh such that

(5.12) uh ∈ gh + X̊h : Luh = f in X̊∗
h,

i.e.
uh ∈ gh + X̊h :

〈
Luh, ϕh

〉

X̊∗
h
×X̊h

=
〈
f, ϕh

〉

X̊∗
h
×X̊h

for all ϕh ∈ X̊h

holds. If L is elliptic, we have a unique discrete solution uh ∈ Xh of (5.12), again using
the Lax–Milgram–Theorem.
Choose a basis {ϕ1, . . . , ϕN} of Xh such that {ϕ1, . . . , ϕN̊} is a basis of X̊h. For a function
vh ∈ Xh we denote by v = (v1, . . . , vN) the coefficient vector of vh with respect to the
basis {ϕ1, . . . , ϕN}, i.e.

vh =

N∑

j=1

vjϕj.

Using (5.12) with test functions ϕi, i = 1, . . . , N̊ , we get the following N equations for
the coefficient vector u = (u1, . . . , uN) of uh:

N∑

j=1

uj

〈
Lϕj, ϕi

〉

X̊∗
h×X̊h

=
〈
f, ϕi

〉

X̊∗
h×X̊h

for i = 1, . . . , N̊ ,(5.13a)

ui = gi for i = N̊ + 1, . . . , N.(5.13b)

Defining the system matrix L by

(5.14) L :=














〈
Lϕ1, ϕ1

〉
. . .

〈
LϕN̊ , ϕ1

〉 〈
LϕN̊+1, ϕ1

〉
. . .

〈
LϕN , ϕ1

〉

...
. . .

...
...

. . .
...

〈
Lϕ1, ϕN̊

〉
. . .

〈
LϕN̊ , ϕN̊

〉 〈
LϕN̊+1, ϕN̊

〉
. . .

〈
LϕN , ϕN̊

〉

0 . . . 0 1 0 . . . 0
0 . . . 0 0 1 . . . 0
...

. . . 0 0 0
. . .

...
0 . . . 0 0 0 . . . 1














33



and the right hand side vector or load vector f by

(5.15) f :=












〈
f, ϕ1

〉

...
〈
f, ϕN̊

〉

gN̊+1
...
gN












,

we can write (5.13) as the linear N ×N system

(5.16) L u = f ,

which has to be assembled and solved numerically.

5.4 Simplices of arbitrary dimension

Above, we considered for simplicity only triangulations of 2-dimensional domains, built
out of triangles or 2-simplices. But the concept of finite elements and triangulations can
be used in any space dimension.

Definition 5.3 (Simplex). a) Let a0, . . . , ad ∈ Rn be given such that a1 − a0, . . . , ad−a0

are linear independent vectors in Rn. The convex set

(5.17) T = conv hull{a0, . . . , ad}

is called a d–simplex in Rn. For k < d let

(5.18) T ′ = conv hull{a′0, . . . , a′k} ⊂ ∂T

be a k–simplex with a′0, . . . , a
′
k ∈ {a0, . . . , ad}. Then T ′ is called a k–sub–simplex of T .

A 0–sub–simplex is called vertex, a 1–sub–simplex edge and a 2–sub–simplex face.
b) The standard simplex in Rd is defined by

(5.19) T̂ = conv hull {â0 = 0, â1 = e1, . . . , âd = ed} ,

where ei are the unit vectors in Rd.
c) Let FT : T̂ → T ⊂ Rn be an invertible, differentiable mapping. Then T is called a para-
metric d–simplex in Rn. The k–sub–simplices T ′ of T are given by the images of the k–
sub–simplices T̂ ′ of T̂ . Thus, the vertices a0, . . . , ad of T are the points FT (â0), . . . , FT (âd).
d) For a d–simplex T , we define

(5.20) hT := diam(T ) and ρT := sup{2r; Br ⊂ T is a d–ball of radius r},

the diameter and in-ball–diameter of T .
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Let T be an element of the triangulation with vertices {a0, . . . , ad}; let FT : T̂ → T be
the diffeomorphic parameterization of T over T̂ with regular Jacobian DFT , such that

F (âk) = ak, k = 0, . . . , d

holds. For a point x ∈ T we set

(5.21) x̂ = F−1
T (x) ∈ T̂ .

For a simplex T the easiest choice for FT is the unique affine mapping

FT (x̂) = AT x̂ + a0

where the matrix AT ∈ Rn×d is defined for any d−simplex T in Rn as

AT =






...
...

a1 − a0 · · · ad − a0
...

...




 ,

Since FT is affine linear it is differentiable. It is easy to check that FT : T̂ → T is invert-
ible and that FT (âi) = ai, i = 0, . . . , d holds. For an affine mapping, DFT is constant. In
the following, we assume that the parameterization FT of a simplex T is affine.

For a simplex T the barycentric coordinates

λT (x) = (λT
0 , . . . , λ

T
d )(x) ∈ R

d+1

of some point x ∈ Rd are (uniquely) determined by the (d+ 1) equations

d∑

k=0

λT
k (x) ak = x and

d∑

k=0

λT
k (x) = 1.

The following relation holds:

x ∈ T iff λT
k (x) ∈ [0, 1] for all k = 0, . . . , d iff λT ∈ T̄ .

On the other hand, each λ ∈ T̄ defines a unique point xT ∈ T by

xT (λ) =

d∑

k=0

λk ak.

Thus, xT : T̄ → T is an invertible mapping with inverse λT : T → T̄ . The barycentric
coordinates of x on T are the same as those of x̂ on T̂ , i.e. λT (x) = λT̂ (x̂).
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In the general situation, when FT may not be affine, i.e. we have a parametric element,
the barycentric coordinates λT are given by the inverse of the parameterization FT and
the barycentric coordinates on T̂ :

(5.22) λT (x) = λT̂ (x̂) = λT̂
(
F−1

T (x)
)

and the world coordinates of a point xT ∈ T with barycentric coordinates λ are given by

(5.23) xT (λ) = FT

(
d∑

k=0

λkâk

)

= FT

(

xT̂ (λ)
)

(see also Figure 5.7).
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Figure 5.7: Definition of λT : T → T̄ via F−1
T and λT̂ , and xT : T̄ → T via xT̂ and FT

Every function f : T → V defines (uniquely) two functions

f̄ : T̄ → V
λ 7→ f(xT (λ))

and
f̂ : T̂ → V

x̂ 7→ f(FT (x̂)).

Accordingly, f̂ : T̂ → V defines two functions f : T → V and f̄ : T̄ → V , and f̄ : T̄ → V
defines f : T → V and f̂ : T̂ → V .
Assuming that a function space P̄ ⊂ C0(T̄ ) is given, it uniquely defines function spaces
P̂ and PT by

(5.24) P̂ =
{

p̂ ∈ C
0(T̂ ); p̄ ∈ P̄

}

and PT =
{
ϕ ∈ C

0(T ); p̄ ∈ P̄
}
.

We can also assume that the function space P̂ is given and this space uniquely defines
P̄ and PT in the same manner. In numerical implementation it makes sense to use the
function space P̄ on T̄ ; the implementation of a basis {p̄1, . . . , p̄m} of P̄ is much simpler
than the implementation of a basis {p̂1, . . . , p̂m} of P̂ as we are able to use symmetry
properties of the barycentric coordinates λ.
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6 A priori error estimates for elliptic problems

In the following chapter we will consider general linear elliptic partial differential equa-
tions and introduce an abstract a priori error estimate for those problems. A priori
estimate means to find some connection relating the error between the exact solution
of the problem and its approximation to the regularity properties of the exact solution
itself. Note that in most cases the exact solution is not available.

The problem in the solution of which we are mainly interested is the following:

Problem 6.1. For a given f ∈ X∗, find u ∈ X such that

a(u, v) = 〈f, v〉 for all v ∈ X.

Equivalently we can rewrite the problem as: find u ∈ X such that

Lu = f in X∗.

For the existence and uniqueness result of the solution of Problem 6.1 we refer to Lax-
Milgram lemma, which has been the subject of Chapter 2.
After formulation of the continuous problem, we introduce now the discretized form of
Problem 6.1. For this purpose assume that {Xh} is the family of finite dimensional
subspaces of the space X. The subscript h must be understood as a parameter, which
defines the family and it will tend to zero.

Problem 6.2. for a given f ∈ X∗, find the discrete solution uh associated with each finite
dimensional space Xh such that

a(uh, vh) = 〈f, vh〉 for all vh ∈ Xh.

6.1 Abstract error estimates: Céa’s lemma

Let u be the solution of problem 6.1 and uh be the solution to discretized problem 6.2.
What we want to do is to estimate the error between the exact solution u and discrete
solution uh.

Theorem 6.1. ( Céa’s Lemma). Let f ∈ X∗. Then the following inequalities hold
√

Ca‖u− uh‖X ≤ ‖|u− uh‖| ≤ Cl inf
vh∈Xh

‖|u− vh‖|

Proof: Let vh be an arbitrary element in Xh. Then using the coercivity and continuity of
the bilinear form a(·, ·) we obtain

‖|u− uh‖|2 ≤ a(u− uh, u− uh) = a(u− uh, u− vh) + a(u− uh, vh − uh
︸ ︷︷ ︸

∈Xh

)

︸ ︷︷ ︸

=0

≤ Cl‖|u− uh‖| · ‖|u− vh‖|
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⇒ ‖|u− uh‖| ≤ Cl‖|u− vh‖|, ∀vh ∈ Xh

⇒ ‖|u− uh‖| ≤ Cl inf
vh∈Xh

‖|u− vh‖|

Remark 6.1. The problem of estimating the the error ‖|u − uh‖| is now reduced to a
problem of evaluating the term inf

vh∈Xh

‖|u − vh‖|. Usually instead of vh one takes the

interpolant of u on the subspace Xh, i.e.

vh := Ihu ∈ Xh.

What we need now is the local interpolation estimates between u and its interpolant Ihu,
more precisely, we need an estimate for the norm ‖u− Ihu‖X.

6.2 Interpolation estimates

One of the most used inequality in the process of derivation of any error estimate is the
Poincarés inequality, which we introduce in the following theorem.

Theorem 6.2. (Poincaré’s inequality for functions with vanishing mean value).
Let Ω ⊂ Rd be any convex bounded domain with Lipschitz boundary ∂Ω ∈ C0,1. Then
there exists a constant C(Ω) such that for all u ∈ H1(Ω) with zero mean value, i.e.
∫

Ω

u = 0 the following inequality holds

(6.1) ‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω).

Basically, all estimates will be derived by transformation to the standard element T̂ ,
compare (5.19). Thus, we need estimates for the transformation from T to T̂ .

Lemma 6.1. The transformation FT : T̂ → T is affine linear, it can be written as

FT (x̂) = AT x̂+ a0.

For a regular n-simplex T , the matrix AT ∈ Rn×n is invertible. The following estimates
hold:

|AT | ≤
hT

ρT̂

, |A−1
T | ≤ hT̂

ρT
,

| detAT | =
|T |
|T̂ |

, c(n) ρn
T ≤ | detAT | ≤ c(n) hn

T .

Here, |A| is the matrix norm corresponding to the Euclidian vector norm.

By the chain rule, now the following estimates hold:

Lemma 6.2. For g ∈ Hm(T ) define ĝ(x̂) := g(FT (x̂)). Then ĝ ∈ Hm(T̂ ) and

|ĝ|
Hm(T̂ ) ≤ c

(hT )m

| detAT |
1
2

|g|Hm(T ), |g|Hm(T ) ≤ c
| detAT |

1
2

(ρT )m
|ĝ|

Hm(T̂ ).
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For functions in a finite-dimensional subspace of Hm(T ) (for example polynomials of a
fixed degree), we obtain the following inverse estimates.

Lemma 6.3. Let X̂T (T̂ ) ⊂ H
m(T̂ ) a finite dimensional subspace, q̂ ∈ X̂T (T̂ ), and define

q(FT (x̂)) := q̂(x̂). Then it holds for all k with 0 ≤ k < m

|q|Hm(T ) ≤ c(σT )m 1

(hT )m−k
|q|Hk(T ).

Here, σT = hT

ρT
is a measure for the aspect ratio of T , thus a geometrical parameter of the

triangulation.

Notice that we can estimate higher derivatives of q by lower ones, loosing powers of hT .

6.2.1 Clement interpolation

To describe the procedure of obtaining some interpolation estimates we assume that a
conforming triangulation τ of Ω ∈ Rd is given and we set X = H1(Ω). Let Xh :=
{
vh ∈ C(Ω); vh|T ∈ Pk, ∀T ∈ τ

}
be some finite element space of X. Let further ω be

the support of some basis function ϕh of Xh. For any T ∈ τ we define

h(ω) := diam(ω)

Xh(ω) := {v|ω; v ∈ Xh}

Lemma 6.4. There exists a mapping

Pω : L
2(ω) → Xh(ω)

such that for all v ∈ L
2(ω) the following equation holds

‖v − Pωv‖L2(ω) = inf
ϕh∈Xh(ω)

‖v − ϕh‖L2(ω)

Corollary 6.1. Let ω, Xh(ω) and Pω are the same as above. Then for any v ∈ H
1(ω)

the estimates are true

‖v − Pωv‖L2(ω) ≤ Ch(ω)‖∇v‖L2(ω)

‖∇(v − Pωv)‖L2(ω) ≤ C‖∇v‖L2(ω)

Proof: We first note that Pω is a L2-projection. Thus

‖v − Pωv‖L2(ω) ≤ ‖v −
∫

ω

v‖L2(ω) ≤ C · diam(ω) · ‖∇v‖L2(ω)
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In the last inequality we have used the Poincaré’s inequality.

‖∇(v − Pωv)‖L2(ω) ≤ ‖∇



v −
∫

ω

v



 ‖L2(ω) + ‖∇





∫

ω

v − Pωv



 ‖L2(ω)

≤ ‖∇v‖L2(ω) +
C

h(ω)
‖
∫

ω

v − Pωv‖L2(ω)

≤ ‖∇v‖L2(ω) +
C

h(ω)



‖
∫

ω

v − v‖L2(ω) + ‖v − Pωv‖L2(ω)





≤ C‖∇v‖2
L(ω)

Theorem 6.3. For all v ∈ H1(Ω) there exists a linear mapping Ih ∈ L(H1(Ω),Xh), such
that

‖v − Ihv‖L2(Ω) ≤ C

(
∑

T∈τ

h(T )2‖∇v‖2
L2(T )

) 1
2

and respectively
(
∑

T∈τ

h−2(T )‖v − Ihv‖2
L2(T )

) 1
2

≤ C‖∇v‖L2(Ω)

as well as
‖∇(v − Ihv)‖L2(Ω) ≤ C‖∇v‖L2(Ω)

Proof: Let aj, j = 1, . . . , N be the vertices of the triangulation and ϕj the piecewise
linear basis functions, i.e.

ϕi(aj) = δij

and let ωj = supp(ϕj). We define Ih as

(Ihv)(x) :=

N∑

j=1

(
Pωj

v
)
(aj) · ϕj

The defined interpolation operator Ih is called Clement Interpolation. We will prove the
estimates element wise. For that let T ∈ τ be an element and ωT the support of T , i.e.

ωT := ∪T ′∈τ {T ∩ T ′ 6= �}

We have
1

C
h(T ′) ≤ h(T ) ≤ Ch(T ′) ∀T ′ ⊂ ωT

with
number of(T ′ ⊂ ωT ) ≤ C <∞
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Let a0, . . . , ad be the vertices of T ∈ τ , then

Ihv|T =

d∑

j=1

(
Pωj

v
)
(aj) · ϕj = Pω0v +

d∑

j=1

(
Pωj

v − Pω0v
)
(aj) · ϕj

‖
(
Pωj

v − Pω0v
)
(aj) · ϕj‖L2(T ) ≤ ‖Pωj

v − Pω0v‖L∞(T )‖ϕj‖L2(T )

≤ C
√

|T |
‖Pωj

v − Pω0v‖L2(T )

√

|T |

≤ C
(
‖Pωj

v − v‖L2(T ) + ‖v − Pω0v‖L2(T )

)

Thus

‖v − Ihv‖L2(T ) ≤ C
d∑

j=0

‖v − Pωj
v‖L2(T )

≤ C
d∑

j=0

‖v − Pωj
v‖L2(ωj)

≤ C
d∑

j=0

h(ωj)‖∇v‖L2(ωj)

⇒ ‖v − Ihv‖L2(Ω) =

(
∑

T∈τ

‖v − Ihv‖2
L2(S)

) 1
2

≤
(
∑

T∈τ

C

d∑

j=0

h(ωT,j)
2‖∇v‖2

ωT,j

) 1
2

≤ C

(
∑

T∈τ

h(T )2‖∇v‖2
T

) 1
2

which is the required result. The other two inequalities are proved in a analog way.

Lemma 6.5. (The Scaled Trace Theorem) Let T be a d-simplex and Γ a (d − 1)-
dimensional sub-simplex of T . Then there exist a C > 0 such that for all v ∈ H1(T )
the following inequality is valid

‖v‖L2(Γ) ≤ C
(

h(T )−
1
2‖v‖L2(T ) + h(T )

1
2‖∇v‖L2(T )

)

Corollary 6.2. Let T be a d-simplex and Γ a (d − 1)- dimensional sub-simplex of T .
Then for all v ∈ H1(Ω) the following inequality is satisfied

‖v − Ihv‖L2(Γ) ≤ Ch(Γ)
1
2 ‖∇v‖L2(ωT )
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6.2.2 Lagrange interpolation

To derive Lagrange interpolation estimates we state some results first.

Theorem 6.4. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary ∂Ω ∈ C0,1, u
be a function in the space Hl(Ω) and

∫

Ω

Dαu = 0 for a multi-index α, |α| = 0, 1, · · · , l − 1.

Then
‖u‖Hl(Ω) ≤ C(Ω, l)|u|Hl(Ω)

where | · | is the earlier defined semi-norm and C is a constant depending on Ω and l.

For the proof of this theorem one should successively apply the Poincaré’s inequality.

Lemma 6.6. For a function u ∈ Hl+1(Ω) there exists exactly one polynomial q ∈ Pl(Ω)
such that ∫

Ω

Dα(u− q) = 0, |α| = 0, 1, · · · , l.

Proof: The polynomial q in general has the following form

q(x) =

l∑

|β|=0

cβx
β.

With this representation we arrive to a linear system of equations

l∑

|β|=0

cβ

∫

Ω

Dαxβ dx =

∫

Ω

Dαu(x) dx, |α| = 0, 1, · · · , l.

The system has a unique solution. Indeed, from

l∑

|β|=0

cβ

∫

Ω

Dαxβ dx = 0 |α| = 0, 1, · · · , l,

follows that ∫

Ω

Dαq dx = 0 |α| = 0, 1, · · · , l,

which is equivalent to q = 0.

As a consequence of these two results we obtain
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Theorem 6.5. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary ∂Ω ∈ C0,1 and
k ∈ N. Then there exist a constant C = C(Ω, k) such that for all functions u from the
quotient space H

k+1(Ω)Pk(Ω) the following inequality is satisfied

‖u‖Hk+1(Ω)/Pk(Ω) ≤ C|u|Hk+1(Ω).

We recall her the definition of the norm on the quotient functional space

‖u‖Hk+1(Ω)/Pk(Ω) = inf
q∈Pk(Ω)

‖u− q‖Hk+1(Ω).

Corollary 6.3. Let again Ω ⊂ Rd be a bounded domain with Lipschitz boundary ∂Ω ∈
C0,1 and k,m ∈ N0, m ≤ k + 1 and I ∈ L(Hk+1(Ω),Hm(Ω)) be a interpolation operator
which leaves the polynomial space Pk(Ω) invariant, i.e. Iq = q for all q ∈ Pk(Ω).
Then there exists a constant C = C(k,m,Ω, ‖I‖) such that for all functions u ∈ Hk+1(Ω
we have

‖u− Iu‖Hm(Ω ≤ C|u|Hk+1(Ω.

Proof: We recall one embedding result of Sobolev spaces.

H
m(Ω) ↪→ H

k+1(Ω),

which yields
‖u‖Hm(Ω) ≤ ‖u‖Hk+1(Ω).

Then for every q ∈ Pk(Ω) we have

‖u− Iu‖Hm(Ω) = ‖(u− q) − I(u− q)‖Hm(Ω) ≤ (1 + ‖I‖)‖u− q‖Hk+1(Ω)

Finally, applying the Theorem 6.5 we obtain

‖u− Iu‖Hm(Ω) ≤ (1 + ‖I‖)‖u‖Hk+1(Ω)Pk(Ω) ≤ C(1 + ‖I‖)|u|Hk+1(Ω)

The proof is complete.

Now we apply the interpolation operator locally on each simplex of the triangulation of
the domain Ω.

Theorem 6.6. Let T be a non-degenerate d-simplex, T̂ a reference simplex and FT :
T̂ → T the corresponding affine mapping. Let k,m ∈ N0, m ≤ k + 1 and let Î ∈
L(Hk+1(T̂ ),Hm(T̂ )) be a interpolation operator which leaves the polynomial space Pk(T̂ )
invariant.
Then for an interpolation operator I ∈ L(Hk+1(T ),Hm(T ))) defined as

(Iu) ◦ FT = Î(u ◦ F ),

we get the following interpolation estimate for each u ∈ Hk+1(T )

|u− Iu|Hm(T ) ≤ Cσ(T )mh(T )k+1−m|u|Hk+1(T )

where C = C(k,m, T̂ , ‖Î‖).
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Proof: The proof follows directly from the result of corollary 6.3.

For our purposes we need an interpolation operator I (respectively Î) such that Î(û) ∈
Pk(T̂ ),because what we would like to estimate is the finite element error,i.e.

‖u− uh‖H1(Omega) ≤ C inf
vh∈Xh

‖u− vh‖H1(Omega) ≤ C‖u− Ihu‖H1(Omega).

The interpolation operator Ih must fulfill the following conditions:

Ihu|T ∈ Pk(T ),

Ihq|T = q for all q ∈ Pk(T ),

and
Ihu ∈ Xh.

We have already get acquainted with such interpolation operators in section 5 when we
discussed the linear finite elements. We know that the values of u in Lagrange nodes (in
the case of linear elements Lagrange nodes are the vertices of elements) uniquely deter-
mine uh ∈ Xh with uh|T ∈ Pk and because of the unique representation the space Pk(T )
remains invariant. The problem that arises here is the so called “point values” of u, as
u is in general a function from a Sobolev space (u ∈ Hk+1(Ω)) and the point values are
only defined for continuous functions.

Theorem 6.7. Let Ω ∈ Rd, d < 4, be an open and bounded domain with a conforming
triangulation T . Denote by Xh the finite element space

Xh :=
{
vh ∈ C

0(Ω); vh|T ∈ Pk(T ), T ∈ T
}
.

Then there exists a Lagrange interpolation operator I, Iu ∈ Pk(T ) and Iu = u on the grid
Gk of order k, T ∈ T , such that I leaves the space Pk(T ) invariant, I ∈ L(H2(Ω),Xh) and
for m, l ∈ N0, where 0 ≤ m ≤ l + 1 and 1 ≤ l ≤ k, the following interpolation estimate
holds

|u− Iu|Hm(Ω) ≤ C1

(
∑

T∈T

(σ(T )mh(T )l+1−m|u|Hl+1(T ))
2

) 1
2

≤ C1σ
m
0 ( h(T )
︸ ︷︷ ︸

max
T∈T

h(T )

)l+1−m|u|Hl+1(Ω)

Proof: Since H2(Ω) ↪→ C0(Ω), then the existence of an interpolation operator I follows
from the theorem 5.2. As for the estimate, we get

|u− Iu|2Hm(Ω) =
∑

T∈T

|u− Iu|2Hm(T )

≤ C
∑

T∈T

(
σ(T )mh(T )l+1−m|u|Hl+1(T )

)2

≤ Cmax
T∈T

(
σ(T )mh(T )l+1−m

)2 |u|Hl+1(Ω)
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The proof of the theorem is complete.

6.3 A priori error estimate

Putting Theorems 6.1 and 6.7 together, we derive the a priori error estimate:

Theorem 6.8. Let Ω ⊂ Rn a bounded polygonal domain, X = H1
0 (Ω) and f ∈ X∗. Let T

a proper, shape regular triangulation of Ω and Xh = {vh ∈ C0(Ω̄), vh|T ∈ Pk(T ) ∀T ∈ T }
the corresponding finite element space of piecewise polynomials of degree k.
Let u ∈ X the solution of Problem 6.1 and uh ∈ Xh the discrete solution of Problem 6.2.
Then the following error estimate holds for all l > n

2
− 1, 1 ≤ l ≤ k, with u ∈ Hl(Ω):

‖u− uh‖H1(Ω) ≤ c h(T )l |u|Hl+1(Ω).

Now we want to consider again the more general elliptic problem from Section 5.3, where
we were looking for solutions u ∈ g + X̊ ⊂ X = H1(Ω) and uh ∈ gh + X̊h ⊂ X. How can
we get error estimates in this case?
First of all, we reformulate the problem again.
Let g ∈ X and gh ∈ Xh be continuations of the Dirichlet boundary values g and gh. For
the difference u− g ∈ X̊ holds

〈L(u− g), v〉 = 〈Lu, v〉 − 〈Lg, v〉 = 〈F, v〉 − 〈Lg, v〉 = 〈F − Lg, v〉
Defining the linear functionals F̃ ∈ X∗ and F̃h ∈ X∗ by

F̃ := F − Lg, F̃h := F − Lgh,

we arrive at continuous and discrete problems for w := u− g and wh := uh − gh.

Problem 6.3. Find w ∈ X̊ such that

〈Lw, v〉 = 〈F̃ , v〉 for all v ∈ X̊.

Problem 6.4. Find wh ∈ X̊h such that

〈Lwh, vh〉 = 〈F̃h, vh〉 for all vh ∈ X̊h.

Thus, the right hand sides of the continuous and the discrete problems are in general not
the same. But we can prove the following generalization of Cea’s Lemma:

Theorem 6.9. Let X a Hilbert space and Xh ⊂ X, F̃ ∈ X∗ and F̃h ∈ X∗
h, a(w, v) :=

〈Lw, v〉 a continuous and coercive bilinear form on X. Let w ∈ X,wh be the solutions to
Problems 6.3 and 6.4. Then

‖u− uh‖X ≤ c

(

inf
vh∈Xh

‖u− vh‖X + ‖F̃ − F̃h‖X∗
h

)

.

By using gh = Ig, we can estimate the error in right hand sides ‖F̃ − F̃h‖ again by the
interpolation estimates, and get the following error estimate.

Theorem 6.10. Let w,wh be the solutions to Problems 6.3 and 6.4, with gh = Ig. Set
u := w + g and uh := wh + gh, and let k, l as in Theorem 6.8 with u, g ∈ Hl+1(Ω). Then

‖u− uh‖H1(Ω) ≤ c h(T )l
(
|u|Hl+1(Ω) + |g|Hl+1(Ω)

)
.
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7 A posteriori error estimation for elliptic problems

In this chapter we give an introduction about adaptive finite element techniques for
elliptic problems. Most of the principles are clear and easy to describe and understand
in the context of elliptic problems. Afterwards we will apply the results to parabolic
problems.

We consider the model problem: Find a solution u of

(7.1)
−∆u = f in Ω,

u = 0 on ∂Ω

where Ω is a bounded domain in Rd with a polyhedral boundary and f ∈ L2(Ω) is some
given right hand side.
Let H

1(Ω) be the Sobolev space of all functions with weak derivatives of first order and
let H1

0(Ω) be the subspace of all those functions in H1(Ω) that vanish on the boundary
of Ω. Then the weak formulation of (7.1) is stated as:

(7.2) u ∈ H
1
0(Ω) :

∫

Ω

∇u∇ϕ =

∫

Ω

f ϕ ∀ϕ ∈ H
1
0(Ω).

Now, let Vh ⊂ H1
0(Ω) be a finite dimensional subspace. Then we have the discrete

problem:

(7.3) uh ∈ Vh :

∫

Ω

∇uh∇ϕh =

∫

Ω

f ϕh ∀ϕh ∈ Vh.

7.1 A posteriori error estimation in the energy norm

If Vh is for example the finite element space consisting of piecewise polynomials of degree
p ≥ 1 on a given triangulation T (with zero boundary values) we have the following a
priori estimate

(7.4) |u− uh|H1(Ω) :=

(∫

Ω

|∇(u− uh)|2
) 1

2

≤ c

(
∑

T∈T

h2p
T |u|Hp+1(Ω)

) 1
2

where hT is the diameter of a simplex T (see [21] e.g.).
The aim of a posteriori error estimation is to establish an estimation of the form

(7.5) |u− uh|H1(Ω) ≤ c

(
∑

T∈T

ηT (uh, f)2

) 1
2

where the value of ηT does only depend on the discrete solution uh on a simplex T and its
adjacent neighbors and given data f on the simplex T . Thus, ηT is a computable value
and we can control the adaptive procedure by these values (see Section 9).
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The most important tool for such an a posteriori error estimation is an interpolation
estimate for functions v ∈ H1

0(Ω). Since for d ≥ 2 we do not have the embedding of
H

1(Ω) into C0(Ω̄), we can not make use of the usual Lagrange interpolant. But we can
use the Clément interpolant which avoids the pointwise evaluation of an H1 function [22],
see Section 6.2.1 for definition and interpolation estimates. On each element T ∈ T of
the triangulation holds the local interpolation estimate

‖v − Ihv‖L2(T ) ≤ chT |v|H1(ωT ),(7.6)

|Ihv|H1(T ) ≤ c|v|H1(ωT ),(7.7)

where ωT is the patch of all simplices T ′ ∈ T that have a non empty intersection with T .

Now we will derive the a posteriori estimate: Let H−1(Ω) be the dual space of H1
0(Ω), i.e.

H
−1(Ω) = (H1

0(Ω))∗. For f ∈ L2(Ω) define F ∈ H
−1(Ω) by

〈
F, ϕ

〉

H−1(Ω)×H1
0 (Ω)

:=

∫

Ω

f ϕ for all ϕ ∈ H
1
0(Ω)

where
〈
., .
〉

H−1(Ω)×H1
0 (Ω)

is the dual pairing on H−1(Ω) × H1
0(Ω).

We can look at −∆ as an operator

−∆ : H
1
0(Ω) → H

−1(Ω)

by defining −∆v ∈ H−1(Ω) for a function v ∈ H1
0(Ω) in the following way:

(7.8)
〈
−∆v, ϕ

〉

H−1(Ω)×H1
0 (Ω)

:=

∫

Ω

∇v∇ϕ for all ϕ ∈ H
1
0(Ω).

It is clear that −∆ is a linear continuous operator. Moreover −∆ is invertible since
(7.2) is uniquely solvable for a given right hand side F ∈ H−1(Ω) and it is an isometric
isomorphism, i.e.

(7.9) ‖ − ∆v‖H−1(Ω) = |v|H1(Ω)

because

sup
ϕ∈H1

0 (Ω)\{0}

〈
−∆v, ϕ

〉

H−1(Ω)×H1
0 (Ω)

|ϕ|H1(Ω)

= sup
ϕ∈H1

0 (Ω)\{0}

∫

Ω

∇v∇ϕ

|ϕ|H1(Ω)

{ ≤ |v|H1(Ω) by Cauchy’s inequality,

≥ |v|H1(Ω) taking ϕ = v.

Remark: We can use such an abstract framework in more general situations also: Let
V be an Hilbert space and a(., .) : V ×V → R a continuous V –coercive bilinear form, i.e.

a(v, ϕ) ≤ c∗‖v‖V ‖ϕ‖V and c∗‖v‖2
V ≤ a(v, v) ∀v, ϕ ∈ V,
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Defining A : V → V ∗ by

〈
Av, ϕ

〉

V ∗×V
:= a(v, ϕ) ∀v, ϕ ∈ V,

we conclude
c∗‖v‖V ≤ ‖Av‖V ∗ ≤ c∗‖v‖V ,

and the following analysis will also carry over to this situation.

Returning back to our model problem we rewrite (7.2) as:

u ∈ H
1
0(Ω) : −∆u = F in H

−1(Ω).

By this equation and by (7.9) we have for the error e := u− uh

|e|H1(Ω) = |u− uh|H1(Ω) = ‖ − ∆(u− uh)‖H−1(Ω) = ‖F + ∆uh‖H−1(Ω)

Thus, we have an expression for the error in terms of uh and data f . The problem is that
we can not evaluate this expression because the norm on H−1(Ω) involves the evaluation
of a supremum over all ϕ ∈ H1

0(Ω)\{0}. As a consequence we have to estimate this
supremum.
For that we need the orthogonality of the error, i.e.

0 =

∫

Ω

∇(u− uh)∇ϕh =
〈
−∆(u− uh), ϕh

〉

H−1(Ω)×H1
0 (Ω)

=
〈
F + ∆uh, ϕh

〉

H−1(Ω)×H1
0 (Ω)

for all ϕh ∈ Vh.Now, denote by
[
∂νuh

]
the jumps of the normal derivatives of the dis-

crete solution uh across a (d− 1)–simplex. We obtain by the orthogonality of the error,
integration by parts, a scaled trace theorem, and the interpolation estimate (7.6)
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|e|H1(Ω) = ‖F + ∆uh‖H−1(Ω)

= sup
ϕ∈H1

0(Ω)

|ϕ|
H1(Ω)

=1

〈
F + ∆uh, ϕ

〉

H−1(Ω)×H1
0 (Ω)

= sup
ϕ∈H1

0(Ω)

|ϕ|
H1(Ω)

=1

〈
F + ∆uh, ϕ− Ihϕ

〉

H−1(Ω)×H1
0 (Ω)

= sup
ϕ∈H1

0
(Ω)

|ϕ|
H1(Ω)

=1

∑

T∈T

∫

T

f (ϕ− Ihϕ) −
∫

T

∇uh∇(ϕ− Ihϕ)

= sup
ϕ∈H1

0(Ω)

|ϕ|
H1(Ω)

=1

∑

T∈T

∫

T

(f + ∆uh) (ϕ− Ihϕ) − 1

2

∫

∂T\∂Ω

[
∂νuh

]
(ϕ− Ihϕ)

≤ c sup
ϕ∈H1

0
(Ω)

|ϕ|
H1(Ω)

=1

∑

T∈T

(

hT ‖f + ∆uh‖L2(T ) +
1

2
h

1
2
T‖
[
∂νuh

]
‖L2(∂T\∂Ω)

)

|ϕ|H1(MT )

≤ c
(∑

T∈T

h2
T‖f + ∆uh‖2

L2(T ) +
1

2
hT‖

[
∂νuh

]
‖2

L2(∂T\∂Ω)
︸ ︷︷ ︸

=:ηT (uh,f)2

) 1
2

where we used the fact that the overlap of different patches MT is bounded by a constant.
This establishes the a posteriori error estimate (7.5).

The above estimate makes sure that the error estimator η :=
(
∑

T∈T

ηT (uh, f)2
) 1

2
is reliable.

But we also have to answer the question whether the estimator is efficient also, i.e. can
we estimate the estimator by the error itself. This is very important especially for higher
order elements, because we only used the approximation property of the piecewise linear
functions.
Let fh be an approximation of the right hand side f belonging to some finite dimensional
space (for example the piecewise L2 projection on each element, or some other interpolant
of the right hand side). Then we can prove

(7.10) ηT (uh, fh) ≤ c
(

|u− uh|H1(M(T )) + hT‖f − fh‖L2(M(T ))

)

where M(T ) now denotes the patch of all those simplices T ′ sharing a complete (d− 1)–
simplex with T . The last term hT‖f − fh‖L2(M(T )) is of higher order if f is smooth. This
term reflects that we first have to approximate given data sufficiently, i.e. ‖f−fh‖L2(M(T ))

is small, and then we get an efficient error estimator which we can not expect for a poor
approximation of given data. The proof of this estimate is very technical (one has to
construct suitable cut–off functions to localize the element residual f + ∆uh and the
singular residual

[
∂νuh

]
and estimate them separately) and is omitted here (see [101] for

example).
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Remark: Usually, ηT (uh, fh) is used as error estimator, since it is often not possible to
compute the L2–norm of an arbitrary function exactly. By the triangle inequality it is
clear that as well

ηT (uh, fh) ≤ ηT (uh, f) + hT‖f − fh‖L2(T ) as

ηT (uh, f) ≤ ηT (uh, fh) + hT ‖f − fh‖L2(T )

holds.
Since we usually can not compute the right hand side

∫

Ω
fϕh of our discrete problem

(7.3) exactly, the orthogonality of the error is disturbed. Applying an analysis which
includes this defect will result in the a posteriori error estimation

|u− uh|H1(Ω) ≤ c
(∑

T∈T

ηT (uh, fh)
2
) 1

2
+ c‖F − Fh‖V ∗

h

where we have replaced the right hand side of (7.3) by a computable value
〈
Fh, ϕ

〉

V ∗
h
×Vh

:=
∫

Ω
fhϕh.

The above analysis is not restricted to this simple model problem but can also be used
for nonlinear problems (see [100]):
Let F : H1

0(Ω) → H−1(Ω) be an operator (maybe nonlinear) and let u ∈ H1
0(Ω) be a

regular solution of
F (u) = 0 in H

−1(Ω),

i.e. the Frechet–derivative of DF (u) of F at u is invertible and bounded. Assume that
DF and DF−1 are locally Lipschitz continuous. Now, let uh be a discrete solution which
is“near” u, i.e. |u− uh|H1(Ω) is small enough. Then we get the following estimates:

c |u− uh|H1(Ω) ≤ ‖F (uh)‖H1
0 (Ω) ≤ C |u− uh|H1(Ω)

where the constants c, C depend on the norms of ‖DF (u)‖ and ‖(DF (u))−1‖ and the
Lipschitz constants of DF and DF−1. Again the error is represented in terms of given
data and the discrete solution. Now using similar techniques to those used in the model
problem will also establish efficient and reliable a posteriori error estimators for nonlinear
problems.
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8 Mesh refinement and coarsening

Finite element meshes may consist of geometric elements of various types:
simplicial: triangles or tetrahedra,
quadrilateral: rectangles, cubes, or general quadrilaterals,
more general: prisms, for example,
mixed: mixture of different types.

The choice of the mesh type for an application may depend on some special approximation
properties or on the need for some special FE basis functions, which require a special
local geometry. We will restrict ourselves here to the description of simplicial meshes, for
several reasons:

• A simplex is one of the most simple geometric types.

• Complex domains may be approximated by a set of simplices quite easily.

• Simplicial meshes allow local refinement (see Figure 8.1) without the need of non-
conforming meshes (hanging nodes), parametric elements, or mixture of element
types (which is the case for quadrilateral meshes, for example, see Figure 8.2).

• Polynomials of a given degree are easily represented on a simplex using local
(barycentric) coordinates. (On quadrilateral elements, the ‘standard’ type of ansatz
spaces is a tensor product of one-dimensional polynomials.)

Refinement algorithms for non-simplicial meshes can be found in the literature.

Figure 8.1: Global and local refinement of a triangular mesh.

Figure 8.2: Local refinements of a rectangular mesh: with hanging nodes, conforming
closure using bisected rectangles, and conforming closure using triangles. Using a con-
forming closure with rectangles, a local refinement has always global effects up to the
boundary.

We will consider the following situation:
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An initial (coarse) triangulation of the domain is given. We call it ‘macro triangulation’.
It may be generated by hand or by some mesh generation algorithm.
Some (or all) of the simplices are marked for refinement, depending on some error esti-
mator or indicator. After several refinements, some other simplices may be marked for
coarsening. Marking criteria and marking strategies are subject of Section 9.

8.1 Refinement algorithms for simplicial meshes

For simplicial elements, several refinement algorithms are widely used. One example is
regular refinement (“red refinement”), which divides every triangle into four similar tri-
angles, see Figure 8.3. The corresponding refinement algorithm in three dimensions cuts
every tetrahedron into eight tetrahedra, and only a small number of similarity classes
occur during successive refinements, see [10]. Unfortunately, hanging nodes arise dur-
ing local regular refinement. To remove them and create a conforming mesh, in two
dimensions some triangles have to be bisected (“green closure”). In three dimensions,
several types of irregular refinement are needed for the green closure. This creates more
similarity classes, even in two dimensions. Additionally, these bisected elements have to
be removed before a further refinement of the mesh, in order to keep the triangulation
regular.

Figure 8.3: Global and local regular refinement of triangles and conforming closure by
bisection.

Another possibility is to use bisection of simplices only. For every element (triangle or
tetrahedron) one of its edges is marked as the refinement edge, and the element is refined
into two elements by cutting this edge at its midpoint. There are several possibilities
to choose such a refinement edge for a simplex, one example is to use the longest edge.
Mitchell [68] compared different approaches. We will describe an algorithm where the
choice of refinement edges on the macro triangulation prescribes the refinement edges
for all simplices that are created during mesh refinement (the “newest vertex” bisection
in Mitchell’s notation). This make sure that shape regularity of the triangulations is
conserved.
The refinement by bisection can be implemented using recursive or non–recursive algo-
rithms. For tetrahedra, the first description of such refinements was done in the non–
recursive way by Bänsch [7]. It needs the intermediate handling of hanging nodes during
the refinement process. Two recursive algorithms, which do not create such hanging nodes
and are therefore easier to implement, are published by Kossaczký [59] and Maubach [67],
which result in exactly the same tetrahedral meshes as the non–recursive algorithm.
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Other refinement techniques for simplicial meshes, such as Delaunay techniques, are
possible and described in the literature. We do not present details here.
In the following, we will describe the recursive refinement by bisection in detail, using
the notation of Kossaczký. An implementation was done for example in [94].

The refinement algorithm is based on a recursive bisectioning of elements. For every
element of the mesh, one of its edges is marked as its refinement edge. Elements are
refined by bisecting this edge. To keep the mesh conforming, bisection of an edge is only
allowed when this edge is the refinement edge for all elements which share this edge.
Bisection of an edge and thus of all elements around the edge is the atomic refinement
operation, and no other refinement operations are allowed. See Figures 8.4 and 8.5 for
the two and three dimensional situations.

Figure 8.4: Atomic refinement operation in two dimensions. The common edge is the
refinement edge for both triangles.

Figure 8.5: Atomic refinement operation in three dimensions. The common edge is the
refinement edge for all tetrahedra around it.

If an element has to be refined, we first get all elements at this edge. In two dimensions
this is just the neighbour opposite this edge or there is no other element at this edge
in the case that the refinement edge belongs to the boundary. In three dimensions we
have to loop around the edge and collect all neighbours at this edge. If for all collected
neighbours this edge is the refinement edge also, we can refine the whole patch at same
time by inserting one new vertex in the midpoint of the common refinement edge and
bisecting every element of the patch. The resulting triangulation then is a conforming
one.
If one of the collected neighbours has not the same refinement edge we first refine this
neighbour recursively. Thus, we can formulate the refinement of an element in the fol-
lowing way
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8.1 Algorithm. Recursive refinement of one simplex
subroutine recursive refine(element)

{
do

{
for all neighbours at refinement edge

if neighbour has no compatible refinement edge

recursive refine(neighbour);

} until all neighbours have a compatible refinement edge;

bisect all elements at the refinement edge;

}
In two dimensions we used the so called newest vertex bisection and in three dimensions
the algorithm described in [59]. For both variants it is proved, that for macro triangula-
tion fulfilling certain criteria the recursion stops. Both algorithms are for special macro
triangulations the recursive variants of the non recursive algorithms described in [7]. The
beauty of the recursive approach is that we do not have to handle hanging nodes and not
one to one adjacencies, since we can refine the whole refinement patch at same time.
In Figure 8.6 we show a two-dimensional situation where recursion is needed. For all
triangles, the longest edge is the refinement edge. Let us assume that triangles A and B
are marked for refinement. Triangle A can be refined at once, as its refinement edge is
a boundary edge. For refinement of triangle B, we have to recursively refine triangles C
and D. Again, triangle D can be directly refined, so recursion stops there. This is shown
in the second part of the figure. Back in triangle C, this can now be refined together with
its neighbour. After this, also triangle B can be refined together with its neighbour.

C
D
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Figure 8.6: Recursive refinement in two dimensions. Triangles A and B are initially
marked for refinement.

Now, the overall refinement algorithm can be formulated as follows:

8.2 Algorithm. Refinement of the mesh
subroutine refine mesh()

{
for all elements

while element is marked for refinement

recursive refine(element);

}
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We will use the convention, that all vertices of an element are given fixed local indices.
Valid indices are 0, 1, and 2 for vertices of a triangle, and 0, 1, 2, and 3 for vertices
of a tetrahedron. Now, the refinement edge for an element can be fixed to be the edge
between the vertices with local indices 0 and 1.

0 1

2

child[0] child[1]

0

1

1

02 2

child[0] child[1]

Figure 8.7: Numbering of nodes on parent and children triangles
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{2,1,1}

33

2 {1,2,2}

child[1]

Figure 8.8: Numbering of nodes on parent and children tetrahedra

During refinement, the new vertex numbers for the newly created child simplices are
prescribed by the refinement algorithm. This is done in such a way, that only a small
number of similarity classes occur during successive refinement of one macro element. For
both children elements, the index of the newly generated vertex at the midpoint of this
edge has the highest local index (2 resp. 3 for triangles and tetrahedra). These numbers
are shown in Figure 8.7 for 2d and in 8.8 for 3d. In 2d this numbering is the same for
all refinement levels. In 3d, one has to make some special arrangements: the numbering
of the second child’s vertices does depend on the generation of the elements. There exist
three different generations 0, 1, and 2, and the generation of a child element is always
((parent’s generation + 1) modulo 3). In Figure 8.8 we used the following convention:
for the index set {1, 2, 2} on child[1] of a tetrahedron of generation 0 we use the index
1 and for a tetrahedron of generation 1 and 2 the index 2. Figure 8.9 shows successive
refinements of a generation 0 tetrahedron, producing tetrahedra of generations 1, 2, and
0 again.
Using the above refinement algorithm, the refinements of a mesh are totally determined
by the local vertex numbering of the macro triangulation, plus a prescribed generation
for every macro element in three dimensions.
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Figure 8.9: Successive refinements of a generation 0 tetrahedron

The numbering for tetrahedra was introduced by Kossaczký. In case of the “standard”
triangulation of a (unit) square and cube into two triangles resp. six tetrahedra (see
Figure 8.10), these numbering and the definition of the refinement edge during refinement
of the elements guarantee that always the longest edge will be the refinement edge and
will be bisected, see Figure 8.11. For the general case is proved:

8.3 Theorem. (Kossaczký [59], Mitchell [68])

1. The recursion stops if the macro triangulation fulfills certain criteria.

2. We obtain shape regularity for all elements at all levels.

In two dimensions, a triangulation where recursion does not stop is shown in Figure 8.12.
The selected refinement edges of the triangles are shown by dashed lines. One can easily
see, that there are no patches for the atomic refinement operation. This triangulation
can only be refined if other choices of refinement edges are made, or by a non-recursive
algorithm.
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Figure 8.10: Standard elements in two and three dimensions
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Figure 8.11: Refined standard elements in two and three dimensions

For using the refinement algorithm in a finite element package, we also need a numbering
for edges, neighbours and faces. Edges and faces are needed for the implementation of
higher order elements, for example, and neighbour information is used in the refinement
algorithm itself and for error estimator calculation, for example.
In 2d the i-th edge/neighbour is the edge/neighbour opposite the i-th vertex; in 3d
the i-th face/neighbour is the face/neighbour opposite the i-th vertex; edges in 3d are
numbered in the following way:

edge 0: between vertex 0 and 1, edge 3: between vertex 1 and 1,
edge 1: between vertex 0 and 2, edge 4: between vertex 1 and 3,
edge 2: between vertex 0 and 3, edge 5: between vertex 2 and 3.

Figure 8.13 shows the numbering of the edges of child tetrahedra after refinement. The
markers describe, which edge’s degrees of freedom are changed during refinement, when
higher order elements are used. For a more detailed description of handling higher order
elements, see [94].

Figure 8.12: A macro triangulation where recursion does not stop
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Figure 8.13: Edge numbers during refinement and degrees of freedom that are no longer
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8.2 Prolongation of data during refinement

During refinement, finite element functions will have to be adjusted to the new mesh
situation. Using hierarchically structured meshes, the finite element space of the coarse
mesh is a subset of the space of the refined mesh (at least for typical polynomial ansatz
spaces and refinement by bisection — there exist some finite elements where spaces are
not nested, and the conforming closure needed by local regular refinements may lead to
non–nested spaces, too). Thus, data can be represented identically on the refined mesh.
During local refinement procedures, this prolongation of information from the old mesh
to the new one is usually done directly together with the mesh changes.
After the geometrical part of the refinement is done on a patch around a refinement
edge, we can prolongate data handled by the degrees of freedom from parents to child
on the whole patch. We will describe the prolongation in detail for the case of piecewise
linear finite elements; for higher order elements, everything is similar, but more degrees
of freedom are involved.
For linear element, when degrees of freedom are located at vertices only, everything takes
place on the bisected edge alone. Only one new vertex is created, the midpoint of the
refinement edge. To determine the value of a function fh at this new vertex, we can
interpolate the function at this point. On the edge, fh is a polynomial of degree 1, so the
value at the midpoint is just the mean of the values at the edge endpoints:

fh(midpoint) =
1

2
(fh(vertex 0) + fh(vertex 1)).

Using the nodal basis functions φi(vj) = δi,j, then the coefficient fn of the new basis
function φn is just

fn =
1

2
(f0 + f1).

8.3 Coarsening algorithms

The coarsening algorithm is more or less the inverse of the refinement algorithm. The
basic idea is to collect all those elements that were created during the refinement at same
time, i.e. the parents of these elements build a compatible refinement patch. If all the
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elements are marked for coarsening, information is passed on the parents and the whole
patch is coarsened at the same time.
If one of the elements is not marked for coarsening, we are not allowed to coarsen the
patch. All element markers are reset. If one of the collected elements is not a leaf element
but we are allowed to coarsen it more than one time, we first try to coarsen this element
and then try to coarsen the newly collected patch.
This is the main difference between refinement and coarsening: Every element that is
marked for refinement will be refined and this refinement may enforce a refinement of
other elements that are not marked for refinement. An element that is marked for coars-
ening can only be coarsened if all elements of the coarsening patch may be coarsened
together with this element. An element that is not marked for coarsening must not be
coarsened, compare Section 9.3.
Thus, we can formulate the coarsening algorithm as follows:

8.4 Algorithm. Local coarsening around one edge
subroutine coarsen(element)

{
get the parents of all elements at the coarsening edge

for all parents

{
if the coarsening edge of the parent is not compatible

{
reset coarsening marks of all children of this patch;

return false;

}
}
for all parents

{
if the parent is refined more than once,

and its children can be coarsened more than once

return true;

}
coarsen all parents at the coarsening edge;

return false;

}
The following routine coarsens as many elements as possible, even more than once if
allowed:
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8.5 Algorithm. Coarsening of the mesh
subroutine coarsen mesh()

{
do

{
do coarsen once more = false;

for all elements

if element is marked for coarsening

do coarsen once more |= coarsen(element);

} until do coarsen once more is false

}

8.4 Restriction of data during coarsening

Also during coarsening, finite element functions will have to be adjusted to the new mesh
situation. As now no longer the new finite element space is a superset of the old one, we
loose some information. The marking strategies based on error estimators or indicators
choose parts of the mesh to be coarsened, where the amount of lost information is not
too big.
Nevertheless, finite element functions have to be restricted (transfered) from the fine
to the coarse mesh. For linear finite elements, the easiest way to get around is just to
ignore the value at the old vertex that will be removed, and interpolate the function in
all remaining vertices.
In one special situation, information can be transfered identically from the old to the new
mesh. If the values of a linear functional F applied to all basis functions are of interest,
we can transform these values during coarsening, without making any error: If φfine

0 , φfine
1 ,

and φfine
n denote the basis functions corresponding to the endpoints and the midpoint of

the edge inside the coarsened patch, then the new basis functions corresponding to the
endpoints of the edge are

φcoarse
0 = φfine

0 +
1

2
φfine

n , φcoarse
1 = φfine

1 +
1

2
φfine

n .

This can easily be seen by interpolation of the coarse basis functions. Now, if for some
linear functional F the values 〈F, φfine

0 〉, 〈F, φfine
1 〉, and 〈F, φfine

n 〉 are available, the values
of F applied to the new basis functions are

〈F, φcoarse
0 〉 = 〈F, φfine

0 〉 +
1

2
〈F, φfine

n 〉, 〈F, φcoarse
1 〉 = 〈F, φfine

1 〉 +
1

2
〈F, φfine

n 〉.

As one can easily see, the transformation matrix which transforms the old vector of
functional values to the new one is just the transpose of the transformation matrix which
was used for prolongation during refinement. This is the same for higher order elements.
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One application of this procedure is time discretization, where scalar products with the
solution um−1 from the last time step appear on the right hand side of the discrete
problem.

8.5 Storage methods for hierarchical meshes

There are basically two kinds of storing a finite element grid. One possibility is to store
only the elements of the triangulation in a vector or a linked list. All information about
elements is located at the elements. In this situation there is no direct information of a
hierarchical structure for multigrid methods, e.g. Such information has to be generated
and stored separately. During mesh refinement, new elements are added (at the end) to
the vector or list of elements. During mesh coarsening, elements are removed. In case
of an element vector, ‘holes’ may appear in the vector that contain no longer a valid
element. One has to take care of them, or remove them by compressing the vector.

The other kind of storing the mesh is to keep the whole sequence of grids starting on
the macro triangulation up to the actual one. Storing information about the whole
hierarchical structure will need additional amount of computer memory, but on the other
hand we can save computer memory by storing such information not explicitly on each
element which can be produced by the hierarchical structure.
The simplicial grid is generated by refinement of a given macro triangulation. Refined
parts of the grid can be derefined, but we can not coarsen elements of the macro triangu-
lation. The refinement and coarsening routines construct a sequence of nested grids with
a hierarchical structure. Every refined simplex is refined into two children. Elements
that may be coarsened were created by refining the parent into these two elements and
are now just coarsened back into this parent (compare Sections 8.1, 8.3).
Using this structure of the refinement/coarsening routines, every element of the macro
triangulation is the root of a binary tree: every interior node of that tree has two pointers
to the two children; the leaf elements are part of the actual triangulation, which is used
to define the finite element space. The whole triangulation is a list (or vector) of given
macro elements together with the associated binary trees.
Operations on elements can be performed by traversing the mesh, using standard tree
traversing algorithms.
Some information is stored on the (leaf) elements explicitly, other information is located
at the macro elements and is transfered to the leaf elements while traversing through
the binary tree. All information that should be available for mesh elements is stored
explicitly for elements of the macro triangulation. Thus, all information is present on
the macro level and is transfered to the other tree elements by transforming requested
data from one element to its children. These can be done by simple calculations using
the hierarchic structure induced by the refinement algorithm.
An example of information which does not have to be stored for each element are the
coordinates of the element’s vertices (in the case of non-parametric elements and polyhe-
dral boundary). Going from parent to child only the coordinates of one vertex changes
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and the new ones are simply the mean value of the coordinates of two vertices at the so
called refinement edge of the parent. The other vertex coordinates stay the same.
Another example of such information is information about adjacent elements. Using
adjacency information of the macro elements we can compute requested information for
all elements of the mesh.
An implementation of the hierarchical mesh storage is done in [94].
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9 Adaptive strategies for elliptic problems

The aim of adaptive methods is the generation of a mesh which is adapted to the problem
such that a given criterion, like a tolerance for the estimated error between exact and
discrete solution, if fulfilled by the finite element solution on this mesh. An optimal mesh
should be as coarse as possible while meeting the criterion, in order to save computing
time and memory requirements. For time dependent problems, such an adaptive method
may include mesh changes in each time step and control of time step sizes.

The philosophy for the implementation should be the changing of meshes successively by
local refinement or coarsening, based on error estimators or error indicators, which are
computed a posteriori from the discrete solution and given data on the current mesh.
In this section, we will present several strategies for the local refinement and coarsening
of finite element meshes.

Let us assume that a triangulation Th of Ω, a finite element solution uh ∈ Vh to an elliptic
problem, and an a posteriori error estimate

‖u− uh‖ ≤ η(uh) :=

(
∑

T∈Th

ηT (uh)
2

)1/2

on this mesh are given. If ε is a given allowed tolerance for the error, and η(uh) > ε, the
problem arises

• where to refine the mesh in order to reduce the error,

• while at the same time the number of unknowns should not become too large.

A global refinement of the mesh would lead to the best reduction of the error, but the
amount of new unknowns might be much larger than needed to reduce the error below
the given tolerance. Using local refinement, we hope to do much better.
The design of an “optimal” mesh, where the number of unknowns is as small as possible
to keep the error below the tolerance, is an open problem and will probably be much
too costly. Especially in the case of linear problems, the design of an optimal mesh
will be much more expensive than the solution of the original problem, since the mesh
optimization is a highly nonlinear problem. Some heuristic arguments have to be used
in the algorithm. The aim is to produce a result that is “not too far” from an optimal
mesh, but with a relatively small amount of additional work to generate it.

9.1 Quasi-optimal meshes

Babuška and Rheinboldt [4] motivate that a mesh is almost optimal when the local errors
are approximately equal for all elements.
For this purpose, assume that we have a discretization of Ω ⊂ R

n with local mesh size
h(x). We assume now that h is a smooth function.
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The size of the local mesh elements is ≈ h(x)n, and for the number of degrees of freedom
holds

#DOF = M(h) =

∫

Ω

σ(x)

h(x)n

with σ(x) bounded from above and below. The next assumption is that the error can be
written as a functinal of h in the way

E(h) =

(∫

Ω

(h(x)αE(x))r

) 1
r

where r ≥ 1, α > 0 and E is independent of h.

Problem 9.1. Optimal mesh problem:
Given a tolerance ε > 0, optimize h such that

M(h) is minimal, while E(h) = ε.

This can be interpreted as a continuous optimization problem with restriction. The
solution can be computed easily, and for that holds the condition, that the weighted
pointwise error h(x)n+αrE(x)r/sigma(x) must be constant over Ω. Integrating over mesh
elements, this leads to the condition that the local element error

Er
T =

∫

T

h(x)αrE(x)r dx

must be equidistributed over all mesh elements.
By substituting the exact error by the local error indicators, this condition can be used
to design an adaptive method which produces a quasi-optimal mesh.

9.1 Remark. We use here the notion of “quasi-optimality”, as the above derivation uses
non-practical assumtions (for example that arbitrary smooth functions h(x) can be used)
and thus is only heuristic. Using only implementable variations of the mesh size, the
whole procedure leads to a discrete optimization problem which is much harder to solve.

In the above consideration, optimality of the mesh is measured by counting the total
number of unknowns, the dimension of the finite element space. Since the amount of
computations necessary for most solution methods is a monotone function of this dimen-
sion, it makes sense to use this measure.

9.2 Mesh refinement strategies

Several adaptive strategies are proposed in the literature, that give criteria which mesh
elements should be marked for refinement. All strategies are based on the idea of an
equidistribution of the local error to all mesh elements. So, elements where the error
estimate is large will be marked for refinement, while elements with a small estimated
error are left unchanged.
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The general outline of the adaptive algorithm is as follows. Starting from an initial
triangulation T0, we produce a sequence of triangulations Tk, k = 1, 2, . . . , until the
estimated error is below the given tolerance:

9.2 Algorithm. General adaptive refinement strategy

Start with T0 and error tolerance ε

k := 0
do forever

solve the discrete problem on Tk

compute local error estimates ηT, T ∈ Tk

if η ≤ ε then

stop

mark elements for refinement, according to a marking strategy

refine mesh Tk, producing Tk+1

k := k + 1
enddo

Since a discrete problem has to be solved in every iteration of this algorithm, the number
of iterations should be as small as possible. Thus, the marking strategy should select not
too few mesh elements for refinement in each cycle. On the other hand, not much more
elements should be selected than is needed to reduce the error below the given tolerance.
In the sequel, we describe several marking strategies that are commonly used in adaptive
finite element methods.

Maximum strategy: The simplest strategy is a maximum strategy. A threshold γ ∈
(0, 1) is given, and all elements T ∈ Tk with

(9.1) ηT > γ max
T ′∈Tk

ηT ′

are marked for refinement. A small γ leads to more refinement and non–optimal meshes,
while a large γ leads to more cycles until the error tolerance is reached, but produces a
mesh with less unknowns. Typically, a threshold value γ = 0.5 is used [101, 103].

9.3 Algorithm. Maximum strategy

Start with parameter γ ∈ (0, 1)

ηmax := max(ηT, T ∈ Tk)

for all T in Tk do

if ηT > γ ηmax then mark T for refinement

enddo

Extrapolation strategy: Suppose that the local error estimates have an asymptotic
behaviour

ηT = c hλ
T as h→ 0
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for some λ > 0. If an element T with estimate ηT was generated by refining an element
T old in a previous mesh with corresponding estimate ηold

T , then the above behaviour
suggests that the estimate at one of the children after refining T will be approximately

ηnew
T =

η2
T

ηold
T

.

Now, the idea is that no elements should be refined in the current iteration, where the
estimated error is smaller than the largest local estimate that is expected after the next
refinement. This leads to the following algorithm:

9.4 Algorithm. Extrapolation strategy [4]

cut := max(ηnew
T , T ∈ Tk)

for all T in Tk do

if ηT > cut then mark T for refinement

enddo

If ηold
T is unknown and thus ηnew

T cannot be computed, some other marking strategy has
to be used.

Equidistribution strategy: Let Nk be the number of mesh elements in Tk. If we
assume that the error is equidistributed over all elements, i. e. ηT = ηT ′ for all T, T ′ ∈ Tk,
then

η =

(
∑

T∈Th

η2
T

)1/2

=
√

Nk ηT
!
= ε and ηT =

ε√
Nk

.

We can try to reach this equidistribution by refining all elements, where it is disturbed
because the estimated error is larger than ε/

√
Nk. To make the procedure more robust,

a parameter θ ∈ (0, 1), θ ≈ 1, is included in the method.

9.5 Algorithm. Equidistribution strategy [34]

Start with parameter θ ∈ (0, 1), θ ≈ 1

for all T in Tk do

if ηT > θε/
√
Nk then mark T for refinement

enddo

If the error η is already near ε, then the choice θ = 1 leads to the selection of only very
few elements for refinement, which results in more iterations of the adaptive process.
Thus, θ should be chosen smaller than 1, for example θ = 0.9.

Guaranteed error reduction strategy: Usually, it is not clear whether the adaptive
refinement strategy Algorithm 9.2 using a marking strategy (other than global refinement)
will converge and stop, or how fast the convergence is. Dörfler [25] describes a strategy
with a guaranteed relative error reduction for the Poisson equation.
We need the assumptions, that
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- given data of the problem (like the right hand side) is sufficiently resolved by the
current mesh Tk,

- all edges of marked mesh elements are at least bisected by the refinement procedure
(using regular refinement or two/three iterated bisections of triangles/tetrahedra,
for example).

The idea is to refine a subset of the triangulation that produces a considerable amount
of the total error η. Given a parameter θ∗ ∈ (0, 1), the procedure is:

Mark a set A ⊆ Tk such that
∑

T∈A

η2
T ≥ (1 − θ∗)

2η2 .

It follows from the assumptions that the error will be reduced by at least a factor κ < 1
depending of θ∗ and data of the problem. Selection of the set A can be done in the
following way. The threshold γ is reduced in small steps of size ν ∈ (0, 1), ν ≈ 0, until
the maximum strategy marks a set which is large enough. This inner iteration does not
cost much time, as no computations are done in it.

9.6 Algorithm. Guaranteed error reduction strategy [25]

Start with given parameters θ∗ ∈ (0, 1), ν ∈ (0, 1)

ηmax := max(ηT, T ∈ Tk)

sum := 0

γ := 1

while sum < (1 − θ∗)
2η2 do

γ := γ − ν
for all T in Tk do

if T is not marked

if ηT > γ ηmax

mark T for refinement

sum := sum + η2
T

endif

endif

enddo

endwhile

Using the above algorithm, Dörfler [24] describes a robust adaptive strategy also for the
nonlinear Poisson equation −∆u = f(u). It is based on a posteriori error estimates and
a posteriori saturation criteria for the approximation of the nonlinearity.

Other refinement strategies: Jarausch [51] describes a strategy which generates
quasi–optimal meshes. It is based on an optimization procedure involving the increase of
a cost function during refinement and the profit while minimizing an energy functional.
For special applications, additional information may be generated by the error estimator
and used by the adaptive strategy. This includes (anisotropic) directional refinement of
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elements [58, 98], or the decision of local h– or p–enrichment of the finite element space
[23].

9.3 Coarsening strategies

Up to now we presented only refinement strategies. For linear elliptic problems, no more
is needed to generate a quasi–optimal mesh with nearly equidistributed local errors.
Some of the refinement strategies described above can also be used to mark mesh elements
for coarsening. Actually, elements will only be coarsened if all neighbour elements which
are affected by the coarsening process are marked for coarsening, too. This makes sure
that only elements where the error is small enough are coarsened, and motivates the
coarsening algorithm in Section 8.3.

Equidistribution strategy: Equidistribution of the tolerated error ε leads to

ηT ≈ ε√
Nk

for all T ∈ T .

If the local error at an element is considerably smaller than this mean value, we may
coarsen the element without producing an error that is too large. If we are able to
estimate the error after coarsening, for example by assuming an asymptotic behavior like

ηT ≈ c hλ
T , λ > 0 ,

we can calculate a threshold θc ∈ (0, θ) such that the local error after coarsening is still
below θ ε/

√
Nk if it was smaller than θc ε/

√
Nk before. If the error after coarsening gets

larger than this value, the elements would directly be refined again in the next iteration.

9.7 Algorithm. Equidistribution refinement/coarsening strategy

Start with parameters θ ∈ (0, 1), θ ≈ 1, and θc ∈ (0, θ)

for all T in Tk do

if ηT > θ ε/
√
Nk then mark T for refinement

if ηT + ηc,T < θc ε/
√
Nk then mark T for coarsening

enddo

When local h– and p–enrichment and coarsening of the finite element space is used, then
the threshold θc depends on the local degree of finite elements. Thus, local thresholds
θc,T have to be used.

Guaranteed error reduction strategy: Similar to the refinement in Algorithm 9.6,
Dörfler [26] describes a marking strategy for coarsening. Again, the idea is to coarsen a
subset of the triangulation such that the additional error after coarsening is not larger
than a fixed amount of the given tolerance ε. Given a parameter θc ∈ (0, 1), the procedure
is:

Mark a set B ⊆ Tk such that
∑

T∈B

η2
T + η2

c,T ≤ θ2
cε

2 .
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The selection of the set B can be done similar to Algorithm 9.6. Under suitable assump-
tions, Dörfler proves that the adaptive algorithm with mesh refinement and coarsening
leads to an error below the given tolerance [26].

Handling information loss during coarsening: Usually, some information is irre-
versibly destroyed during coarsening of parts of the mesh, compare Section 8.4. If the
adaptive procedure iterates several times, it may occur that elements which were marked
for coarsening in the beginning are not allowed to coarsen at the end. If the mesh was
already coarsened, an error is produced which can not be reduced anymore.
One possibility to circumvent such problems is to delay the mesh coarsening until the final
iteration of the adaptive procedure, allowing only refinements before. If the coarsening
marking strategy is not too liberal (θc not too large), this should keep the error below
the given bound.
Dörfler [26] proposes to keep all information until it is clear, after solving and by esti-
mating the error on a (virtually) coarsened mesh, that the coarsening does not lead to
an error which is too large.
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10 Aspects of efficient implementation

10.1 Numerical integration (quadrature schemes)

We have seen above that for computing the system matrix and right hand side vector of
the resulting linear system we need to calculate integrals being of the form

∑

T∈T

∫

T

Φ(x)dx.

In the case when the domain has a curved boundary or for the general data of the
problem, i.e. nonlinear problems or equations with variable coefficients, the integrals may
be difficult to evaluate exactly. To evaluate such integrals, suitable quadrature formulas
for numerical integration have to be used. Numerical integration in finite element method
is done by looping over all grid elements and using a quadrature formula on each element
T . The general quadrature formula for approximating the integrals takes the form

(10.1)

∫

T

Φ(x)dx ≈
nq∑

i=1

ωiΦ(yi)

where ωi, i = 1, 2, . . . , nq are certain weights, nq is the number of quadrature nodes
and the yi are certain points (quadrature nodes) in the element T . The weights and
nodes for any finite element T are derived from a simple quadrature formula defined
over a reference element. Thus, we need to map an arbitrary triangle T onto a reference
triangle T̂ and define the quadrature formula on the latter. For this purpose we use the
notion of barycentric coordinates introduced in Section 5.4. We use the notations used
there.

In the following we shall often drop the superscript T of λT and xT . The mappings
λ(x) = λT (x) and x(λ) = xT (λ) are always defined with respect to the actual element
T ∈ T .

Definition 10.1 (Numerical quadrature). A numerical quadrature Q̂ on T̂ is a set
{(wk, λk) ∈ R × Rd+1; k = 0, . . . , nQ − 1} of weights wk and quadrature points λk ∈ T̄
(i.e. given in barycentric coordinates) such that

∫

T̂

f(x̂) dx̂ ≈ Q̂(f) :=

nQ−1
∑

k=0

wkf(x̂(λk)).

It is called exact of degree p for some p ∈ N if
∫

T̂

q(x̂) dx̂ = Q̂(q) for all q ∈ Pp(T̂ ).

It is called stable if
wk > 0 for all k = 0, . . . , nQ − 1.
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Remark 10.1. A given numerical quadrature Q̂ on T̂ defines for each element S a
numerical quadrature QS. Using the transformation rule we define QS on an element S
which is parameterized by FS : Ŝ → S and a function f : S → R:

(10.2)

∫

S

f(x) dx ≈ QS(f) := Q̂((f ◦FS)| detDFS|) =

nQ−1
∑

k=0

wkf(x(λk))| detDFS(x̂(λk)|.

For a simplex S this results in

(10.3) QS(f) = d! |S|
nQ−1
∑

k=0

wkf(x(λk)).

10.2 Efficient solvers for linear systems

We have seen that after the discretization of partial differential equations using finite
elements, we obtain a system of algebraic equations. In general the coefficient matrix
of such systems is large and sparse. By sparse matrix we mean that in each row of the
matrix there are only a few number of entries that do not vanish.
The aim of the following chapter is to give a brief look at basic iterative methods for the
solution of large linear systems.

10.2.1 Methods of Jacobi, Gauss-Seidel and Relaxation

Let suppose we want to solve a system of linear equations which in matrix form can be
written as

(10.4) Ax = b, A ∈ C
n×n, b ∈ C

n

where A is the coefficient matrix, b is the given right-hand side vector and x is the vector
to be calculated.
The methods we are going to describe are based on an idea to express the invertible
matrix A by a splitting

(10.5) A = B + (A− B)

where B is a “nice” matrix, i.e. it is an invertible matrix which can be relatively easy
inverted (e.g. B can be chosen as a diagonal matrix). Thus, we have the following
equivalences

Ax = b⇔ Bx = (B − A)x +B ⇔ x = B−1(B − A)
︸ ︷︷ ︸

M

x+ B−1
︸︷︷︸

N

b

(10.6) ⇔ x = Mx +Nb
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If we take an arbitrary start vector x0, we can then consider the associated iterative
scheme of (10.6)

(10.7) xk+1 = Mxk +Nb k ≥ 0

The iterative procedure (10.7) means that we pass from one iterate to the next and the
next one must be, of course, a better approximation to the solution than the first iterate.
In this process we hope to converge to the solution of the system (10.4).
More precisely, we start with a initial vector (iterate) x(0) and create the sequence of
vectors x(0), x(1), x(2), . . . . If this sequence converges to the exact solution x = A−1b, then
we say that the iterative method converges. Thus, it is important to introduce some
criteria for which the iterative method converges.

Definition 10.2. If λi, i = 1, 2, . . . , n are the eigenvalues of a matrix A, then we denote
by ρ(A) the spectral radius of the matrix A and define it as

ρ(A) := max
i

|λi|, i = 1, 2, . . . , n

Theorem 10.1. The iterative method (10.7) converges if and only if

ρ(M) < 1,

where ρ(M) is the spectral radius of the matrix M .

Now we are free to choose the nonsingular matrix B. It is natural to choose such a
“nice” B, so that the iterative equations (10.7) are easily solved. Each choice leads us to
a different iterative method. Here we will discuss only a few basic iterative schemes. To
start with we decompose the system matrix A in the form

(10.8) A = D − L−R =






@
@

@
@

@
@

@
@

@

@
@

@
@




 ,

where L and R are strict lower and upper matrices and D is a diagonal matrix.

Jacobi Method: In the Jacobi method we assume that aii 6= 0 for i = 1, 2, . . . , n and
sets in (10.5) B = D. Then

A = D + (A−D) = D
︸︷︷︸

B

−(L +R)

Therefore, from (10.6) we get

(10.9) N = D−1 MJ := M = B−1(B − A) = D−1(L+R)

With above notations we get the Jacobi Method

(10.10) xk+1 = D−1(L +R)xk +D−1b
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It is convenient to write the equation (10.10) for components, i,e. for i = 1, . . . , n:

(10.11) x
(k+1)
i =

1

aii
(bi −

n∑

j=1,j 6=i

aijx
(k)
j ).

Note that in order to calculate the new iterate xk+1 we need the values of previous iterates.

Theorem 10.2. (Strong Row Sum Criterion). The Jacobi method converges for all
matrices A with

|aii| >
∑

j 6=i

aij for i = 1, 2, . . . , n

(Strong Column Sum Criterion). The Jacobi method converges for all matrices A with

|ajj| >
∑

i6=j

aij for j = 1, 2, . . . , n

If the above inequalities are satisfied, then A is called strictly diagonally dominant.
Gaus-Seidel Method: In Gauss-Seidel method one chooses B = D − L. Thus

A = (D − L)
︸ ︷︷ ︸

B

+ R
︸︷︷︸

B−A

Therefore, from (10.5)

MGS := M = (D − L)−1R, N := NGS = (D − L)−1

The iteration scheme in matrix form looks

xk+1 = (D − L)−1Rxk + (D − L)−1b for k = 1, 2, . . .

or which is the same

(10.12) (D − L)xk+1 = Rxk + b für k = 1, 2, . . .

Rewriting (10.12) for components i = 1, . . . , n, we obtain

i−1∑

j=1

aijx
(k+1)
j + aiix

(k+1)
i = −

n∑

j=i+1

aijx
(k)
j + bi

Note that in Gauss-Seidel method in order to calculate x
(k+1)
i we use the already calcu-

lated (k+1)-st iterates of previous components, namely for k = 1, 2, . . . and i = 1, 2, . . . , n

we can get the equation for calculating x
(k+1)
i

(10.13) x
(k+1)
i =

1

aii

[

bi −
i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j

]
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Relaxation Method: In Jacobi and Gauss-Seidel methods the convergence is relatively
slow, especially when the number of unknowns is large. To accelerate the convergence,
we use the technique of the relaxation method. The idea is the following: we start with
the initial iterative scheme and try to correct the iterate x(k) to get a better x(k+1):

x(k+1) = B−1(B − A)x(k) +B−1b = x(k) +B−1(b− Ax(k))
︸ ︷︷ ︸

“correction”

Now we introduce a real parameter ω 6= 0 and weight the correction vector with ω

x(k+1) = x(k) + ωB−1(B − Ax(k))

After some manipulations we get

(10.14) x(k+1) = (I − ωB−1A)
︸ ︷︷ ︸

M(ω)

x(k) + ωB−1
︸ ︷︷ ︸

N(ω)

b

This is the relaxation iterative method and ω is called the relaxation parameter.

As for the convergence, there is a sufficient condition for the convergence of the relaxation
method.

Theorem 10.3. If the system matrix A is Hermitian and positive definite, then the
relaxation method converges if 0 < ω < 2.

Example 10.1. (Relaxation for Gauss-Seidel Method)

We go back to Gauss-Seidel method again

x
(k+1)
i = x

(k)
i +

1

aii

[

bi −
i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j

]

︸ ︷︷ ︸

correction

Now we rewrite the equation weighted with a parameter ω

(10.15) x
(k+1)
i = x

(k)
i +

ω

aii

[

bi −
i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j

]

Finally, the equation for x(k+1) in matrix writing takes the form

(10.16) x(k+1) = (D − ωL)−1 [(1 − ω)D + ωR]
︸ ︷︷ ︸

MGS(ω)

x(k) + ω(D − ωL)−1

︸ ︷︷ ︸

NGS(ω)

b

That is what people call the Successive over-relaxation (SOR) method.

At the end of this section we would like to state a result which gives us a possibility to
compare the Jacobi and Gauss-Seidel methods.
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Theorem 10.4. Let A be a tridiagonal matrix (or block tridiagonal). Then the spectral
radii of the corresponding Jacobi and Gauss-Seidel matrices are related by

ρ(MGS) = ρ(MJ)2.

We see from the theorem that both methods either converge or diverge at the same time.
But what is important that when they converge, then the Gauss-Seidel converges more
rapidly than the Jacobi method. This theorem is especially useful, because in the result
of the discretization of partial differential equations very often we get matrices that are
tridiagonal (or block tridiagonal).

10.2.2 Conjugate gradient method and other Krylov subspace iterations

The convergence rate of the iterative solvers described in the above section gets quite
slow for finite element problems when the size of the system increases, i.e. when the local
mesh element size decreases.
This is mainly due to the fact that high frequency parts of the error between the current
iterate and the discrete solution are damped very well, while low frequency parts of the
error are damped only very slowly.
For many problems, there are better iterative solvers which may give approximate so-
lutions to a linear system much faster than the classical iterations Examples of such
methods are the Krylov subspace iteration methods, like the Conjugate Gradient (CG)
method for symmetric positive definite matrices, or the GMRES method for arbitrary
matrices. Details and more algorithms can be found for example in [92].
Both are based on successive minimization of residual norms ‖rn‖ = ‖Axn−b‖ on Krylov
spaces Kn = span{r0, Ar0, A2r0, . . . , A

nr0}. By using special properties of the matrix A
or the iterative method, such minimizations can be done very efficiently.
The simplest example is the CG method for symmetric positive definite matrices, which
reads as follows:

10.1 Algorithm. Conjugate Gradient algorithm for solution of Ax = b

Begin with x0 ∈ R
N and set d0 = −g0 = b− Ax0.

for k = 0, 1, 2, . . . compute

αk =
gT

k gk

dT
kAdk

xk+1 = xk + αkdk

gk+1 = gk + αkAdk

βk =
gT

k+1gk+1

gT
k gk

dk+1 = −gk+1 + βkdk

while gk > tolerance
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Note, that for each iteration, only one matrix-vector product Adk must be computed, plus
some vector operations. So, especially for sparse finite element matrices, each iteration
needs only O(N) arithmetic operations.
Preconditioners: All Krylov subpace iteration methods may get more efficient when a
preconditioning of the linear system is used in a proper way. This means the transforma-
tion by a matrix C, such that the system CAx = Cb is easier to solve than the original
system Ax = b. The main idea is to reduce the condition of the iteration matrix, as this
condition plays an important role for the convergence speed of the iteration. The best
preconditioner would be the choice C = A−1, but this is not known (and usually a full
matrix, even when A is sparse). But A−1 can be approximated, for example by

• the inverse of the diagonal of A,

• application of one iteration of a classical iterative solver,

• incomplete LU decompositions,

• one multilevel iteration (see below)

• and other ideas.

10.2.3 Multilevel preconditioners and solvers

Coming back to the fact, that the classical iterative solvers reduce only high frequency
parts of the error efficiently, the idea was coming up to use few iterations of the iterative
methods on a fine mesh as smoothers, while low frequency parts of the error can be
reduced also on coarser meshes. Putting these ideas together, some of the most efficient
solvers for systems of linear equations available nowadays were constructed.
Using the natural hierarchy of meshes and corresponding finite element spaces, which is
generated by successive (local or global) refinement of a triangulation, multigrid solvers
use the smoothing and coarse grid correction in a recursive way. Unfortunately, the
multigrid methods work not for all classes of problems, sometimes one has to do very
special smoothing operations. But, for example, symmetric positive definite problems
with constant coefficients can be solved extremey efficient. It is possible to approximately
solve a sparse N ×N system of linear equations in O(N) arithmetic operations.
Details are not presented here, but the literature about multigrid solvers is very rich.
Multilevel iterations can also be used as preconditioners in Krylov subspace methods, see
above.
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11 Error estimates via dual techniques

All error estimates above gave estimates for the energy (H1) norm of the error. We will
see, that the L2 norm of the error (which is a weaker norm) can converge faster (with
larger power of h) when the problem has enough regularity. This goes conforming with
the better interpolation estimates in L2, compare Theorems 6.3 and 6.7.
Similar techniques to the one used in this section will later be used for error estimation
in case of parabolic problems.

For simplicity, we consider here again just the Poisson problem.

11.1 Estimates for the L2 norm of the error

Let Ω ⊂ Rn a convex domain with polygonal boundary, and f ∈ L2(Ω) given. Let
X = H

1
0(Ω) and Xh ⊂ X a finite-dimensional finite element space with P1(T ) ⊂ Xh|T for

all T ∈ T .
Let

u ∈ X : (∇u,∇v)L2(Ω) = (f, v)L2(Ω) ∀v ∈ X,

uh ∈ Xh : (∇uh,∇vh)L2(Ω) = (f, vh)L2(Ω) ∀vh ∈ Xh.

We want to estimate the L2 norm of the error, ‖u − uh‖L2(Ω). For this purpose, we
consider the

Problem 11.1. Dual Problem:

w ∈ X : (∇v,∇w)L2(Ω) = (u− uh, v)L2(Ω) ∀v ∈ X.

Now let us assume that the solution w of the dual problem 11.1 is smooth, i.e.

w ∈ H
2(Ω) ∩ H

1
0(Ω)

and there is an a priori estimate

(11.1) |w|H2(Ω) ≤ ‖−∆w‖L2(Ω) = ‖u− uh‖L2(Ω).

For a convex domain Ω, this follows from regularity theory of elliptic problems, see [46],
e.g.

11.1 Remark. For general (non-symmetric) elliptic problems

u ∈ X : a(u, v) = 〈f, v〉 ∀v ∈ X,

the corresponding dual problem is

w ∈ X : a(v, w) = (u− uh, v)L2(Ω) ∀v ∈ X.

Besides the convexity of the domain, the coefficients must be smooth enough in order to
assure a dual solution w ∈ H2(Ω). Additionally, there will be constants (> 1) in the a
priori estimate (11.1).
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11.2 A priori error estimation in the L2 norm

Let w ∈ X be the solution of Problem 11.1. Then for test function v := u− uh holds

‖u− uh‖2
L2(Ω) = (u− uh, u− uh)L2(Ω)

= (∇(u− uh),∇w)L2(Ω)

= (∇(u− uh),∇(w − wh))L2(Ω) ∀wh ∈ Xh

≤ ‖∇(u− uh)‖L2(Ω) ‖∇(w − wh)‖L2(Ω).

We can insert any discrete wh ∈ Xh because of the orthogonality of the error (u− uh) to
the discrete space. Now, we choose an interpolation of w, wh = Iw ∈ Xh, for example
interpolation with piecewise linear finite element functions. Due to the regularity of w,
we have the interpolation estimate

‖∇(w − wh)‖L2(Ω) ≤ c h(T )|w|H2(Ω) ≤ c h(T )‖u− uh‖L2(Ω).

Putting the above estimates and the a priori error estimate together, we get

‖u− uh‖L2(Ω) ≤ ≤ c h(T )‖u− uh‖L2(Ω)

≤ ≤ c h(T )

(
∑

T∈T

h2
T‖D2u‖L2(T )2

) 1
2

≤ ≤ c h(T )2‖D2u‖L2(Ω)

≤ ≤ c h(T )2‖f‖L2(Ω).

So, the estimate for the L2 norm of the error behaves like h(T )2, just like the interpolation
estimate.

11.2 Remark. The above technique is named after Aubin and Nitsche, who were the
first to introduce it (separately). For more details, see [72] or [21]).
When the solution of the dual problem w has less regularity, for example in case of non-
convex corners in the domain’s boundary, we get estimates with lower powers of h(T ).
For example, when ‖w‖W2,p ≤ c‖u− uh‖Lp holds only for 1 < p ≤ 2, then the power of h
will be like 2 + ( 1

2
− 1

p
)n.

11.3 A posteriori error estimation in the L2 norm

To establish an L2 a posteriori estimate we use again the dual problem 11.1 and assume
regularity of its solution w.
Defining for g ∈ H−2(Ω) := (H2(Ω) ∩ H1

0(Ω))∗

|g|H−2(Ω) := sup
v∈H2(Ω)∩H1

0
(Ω)

|v|
H2(Ω)

=1

〈
g, v

〉

H−2(Ω)×(H2(Ω)∩H1
0 (Ω))

,
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using the fact that w ∈ H2(Ω), and setting v = u− uh in Problem 11.1, we conclude

‖u− uh‖2
L2(Ω) =

∫

Ω

∇(u− uh)∇w

=
〈
−∆(u− uh), w

︸︷︷︸

∈H2(Ω)

〉

H−1(Ω)×H1
0 (Ω)

=
〈
F + ∆uh, w

〉

H−2(Ω)×(H2(Ω)∩H1
0 (Ω))

≤ |F + ∆uh|H−2(Ω)|w|H2(Ω)

≤ |F + ∆uh|H−2(Ω)‖u− uh‖L2(Ω).

On the other hand using the higher regularity of the test function v and integration by
parts we have

|F + ∆uh|H−2(Ω) = sup
v∈H2(Ω)∩H1

0(Ω)

|v|
H2(Ω)

=1

〈
F + ∆uh, v

〉

H−2(Ω)×(H2(Ω)∩H1
0 (Ω))

= sup
v∈H2(Ω)∩H1

0
(Ω)

|v|
H2(Ω)

=1

∫

Ω

∇(u− uh)∇v

= sup
v∈H2(Ω)∩H1

0
(Ω)

|v|
H2(Ω)

=1

∫

Ω

(u− uh)(−∆v)

≤ ‖u− uh‖L2(Ω).

Combining these two estimates we achieve

(11.2) ‖u− uh‖L2(Ω) = |F + ∆uh|H−2(Ω).

In order to establish the L2 estimate, we have to estimate now the term |F +∆uh|H−2(Ω).
This is done in the same manner as in the case of the a posteriori energy norm estimates.
In contrast to that estimate we can use the fact that the test function v belongs to H2(Ω).
Thus, for the interpolation of v we can make use of the usual Lagrange interpolant (H2(Ω)
is embedded in C0(Ω̄), d = 2, 3!) and we gain a higher power of hT in front of the residuals
since we can rely on second derivatives of v. As a result we have

(11.3) ‖u− uh‖L2(Ω) ≤ c

(
∑

T∈T

η̃T (uh, f)2

) 1
2

where η̃T is defined to be

η̃T (uh, f)2 := h4
T‖f + ∆uh‖2

L2(T ) +
1

2
h3

T‖
[
∂νuh

]
‖2

L2(∂T\∂Ω).

Again, using the finite dimensional approximation fh of f we can prove the efficiency

(11.4) η̃T (uh, fh) ≤ c
(

‖u− uh‖L2(M(T )) + h2
T‖f − fh‖L2(M(T ))

)
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where we also gain one additional power of hT in front of the term ‖f − fh‖L2(M(T )).
This analysis also carries over to nonlinear problems under suitable assumptions on the
existence of the dual problem and the regularity of its solution. Under such assumptions
we can prove

c ‖u− uh‖L2(Ω) ≤ ‖F (uh)‖H2(Ω)∩H1
0 (Ω) ≤ C ‖u− uh‖L2(Ω)

where now c and C depend on the coercivity of the dual problem (which is associated
to the norms of DF and DF−1) and the regularity constant for the solution of the dual
problem. This inequality now establishes L2 error estimators for nonlinear problems using
the same techniques as described above [8].
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12 Parabolic problems - heat equation

In this section we introduce the weak formulation of a model parabolic problem (heat
equation) derived in section 1. The heat equation is classically described by the following
evolution equation plus initial and boundary conditions (for the sake of simplicity we set
all material parameters equal to one)

(12.1) ut − ∆u = f in Ω × (0, T ),

where u = u(x, t) represents the temperature, t is the time variable, T > 0 is a fixed num-
ber, Ω ⊂ Rd is as usual a bounded domain with a Lipschitz boundary ∂Ω and f = f(x, t)
describes the volume heat sources.

As for the boundary conditions, we impose Dirichlet boundary conditions on the whole
boundary ∂Ω × (0, T )

(12.2) u = 0 on ∂Ω × (0, T ),

The cases of other type of boundaries (Neumann, Robin) are treated analogously.

Finally, we assume that the temperature distribution at t = 0 is given

(12.3) u(x, 0) = u0(x) x ∈ Ω.

12.1 Weak solutions of heat equation

We start the formulation of weak solutions by the definition of Bochner integral.

Definition 12.1. A function u : [a, b] → X is called Bochner measurable, if there exists
a sequence of simple functions {uk}k∈N such that

lim
k→∞

uk(t) = u(t) for almost all t ∈ [a, b].

Definition 12.2. If additionally

lim
k→∞

b∫

a

‖u(t) − uk(t)‖X = 0

then the function u is called Bochner-integrable and the integral

b∫

a

u(t)dt = lim
k→∞

b∫

a

uk(t)dt

is said to be the Bochner-integral of u.
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Let assume that −∞ < a < b < ∞, the function u : [a, b] → X is Bochner-measurable.
Then we define the following functional spaces

L
p(a, b;X) :=

{
u : [a, b] → X Bochner-measurable; ‖u‖Lp(a,b;X) <∞

}
1 ≤ p <∞

and
C

0([a, b];X) := {u : [a, b] → X continuous}
with corresponding norms

‖u‖Lp(a,b;X) :=





b∫

a

‖u(t)‖p
X





1
2

1 ≤ p <∞.

‖u‖C0([a,b];X) := max
t∈[a,b]

‖u(t)‖X

Theorem 12.1. Let −∞ < a < b < ∞ and X is a Banach space. Then the spaces
(
Lp(a, b;X), ‖ · ‖(Lp(a,b;X)

)
and

(
C0([a, b];X), ‖ · ‖(C0(a,b;X)

)
are Banach spaces.

Further we define the weak derivative of a Bochner-integrable function.

Definition 12.3. Let (X, (·, ·)) be a separable Hilbert space, 0 < T < ∞ and u ∈
L1(0, T ;X). A function v ∈ L1(0, T ;X) is called the weak derivative of u if

T∫

0

u(t)ϕ′(t)dt = −
T∫

0

v(t)ϕ(t)dt ∀ϕ ∈ C
∞
0 (0, T ).

Then we write u′ = v (if such a v exists, of course).

We define the functional space

W
1
2(0, T ) :=

{
u ∈ L

2(0, T ;H1
0(Ω)), u′ ∈ L

2(0, T ;H−1Ω)
}

with a norm

‖u‖W 1
2 (0,T ) :=





T∫

0

‖u(t)‖2
H1

0 (Ω)dt+

T∫

0

‖u′(t)‖2
H−1(Ω)dt





1
2

=





T∫

0

∫

Ω

|∇u|2 +

T∫

0

(

sup
v∈H1

0 (Ω)

< u′(t), v >

‖v‖H1
0 (Ω)

)2




1
2

Assume that we have a classical solution u of (12.1)+(12.2)+(12.3) and it is sufficiently
smooth, more precisely u ∈ C2,1(Ω × (0, T )). We now fix t ∈ (0, T ), multiply the equation
(12.1) by a test function v ∈ H1

0(Ω) and do partial integration over Ω

< u′(t), v >H−1×H1
0

+

∫

Ω

∇u∇vdx =

∫

Ω

fvdx ∀v ∈ H
1
0(Ω).
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Similar to the elliptic case let us introduce a bilinear form

b(u(t), v; t) :=

∫

Ω

∇u∇vdx ∀u, v ∈ H
1
0(Ω).

and a linear form

F (v) :=

∫

Ω

fvdx ∀v ∈ H
1
0(Ω).

One can easily show that the bilinear form b(·, ·; t) is continuous on H1
0(Ω) and u′(t) ∈

H−1(Ω). Using these notations we arrive at

(12.4) < u′(t), v > +b(u(t), v; t) = F (v) ∀v ∈ H
1
0(Ω).

Now the definition of the weak solution to the classical problem reads:

Definition 12.4. A function u ∈ W2
1(0, T ) is called the weak solution of the classical

problem (12.1)+(12.2)+(12.3), if u satisfies the equation (12.4) for almost every fixed
t ∈ (0, T ) and the condition (12.3) for almost every x ∈ Ω.

We state the last result in this section (without proof though) which provides us with
the existence and uniqueness of the weak solution.

Theorem 12.2. For any right-hand side f ∈ C([0, T ];L2(Ω)) and initial function u0 ∈
L2(Ω) there exists one and only one weak solution u ∈ W2

1(0, T ) of the classical heat
equation and

T∫

0

‖u(t)‖2
H1

0(Ω)dt +

T∫

0

‖u′(t)‖2
H−1(Ω)dt ≤ C(Ω, d, . . . )



‖u0‖2
L2(Ω) +

T∫

0

‖f(t)‖2
L2(Ω)dt





12.2 Discretization of heat equation

Let Xh ⊂ H1
0(Ω) be a finite dimensional subspace (it can be for example a finite element

space) and {ϕ1, ϕ2, · · · , ϕN} be the basis of Xh. Recall the weak formulation of the heat
equation with vanishing Dirichlet boundary conditions: find a function u ∈ W1

2(0, T )
such that

(12.5) < u′(t), v > +(∇u(t),∇v)L2(Ω) = F (v) ∀v ∈ H
1
0(Ω) and a.e. t ∈ (0, T ).

and
u(x, 0) = u0(x) x ∈ Ω

Space Discretization: The Galerkin approximation of the equation (12.4) consists of
finding a discrete solution uh(x, t) ∈ Xh such that for almost every t ∈ (0, T )

(12.6) < u′h(t), vh > +(∇uh(t),∇vh)L2(Ω = F (vh) ∀vh ∈ Xh,
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and

(12.7) uh(x, 0) = u0,h ∈ Xh.

This is called the semi -discrete Galerkin scheme. The reason to call it semi -discrete is
that we have performed only a space discretization.

Since uh(t) ∈ Xh, then we can present it with the help of the basis functions of Xh in the
following way

(12.8) uh(t) =

N∑

i=1

αi(t)ϕi,

and the gradient of uh is obtained to be

(12.9) ∇uh(t) =
N∑

i=1

αi(t)∇ϕi,

Then the discrete equation (12.6) is equivalent to a system of ordinary differential equa-
tions for the unknowns α1(t), α2(t), · · · , αN(t)

(12.10)
N∑

j=1

(ϕi, ϕj)L2(Ω)α
′
j(t) +

N∑

j=1

(∇ϕi,∇ϕj)L2(Ω)αj(t) = F (ϕi) i = 1, 2, . . . , N.

Denoting by α(t) := (α1(t), α2(t), · · · , αN(t))T the vector of unknowns, M = (Mij) :=
(ϕi, ϕj)L2(Ω) the mass matrix, S = (Sij) := (∇ϕi,∇ϕj)L2(Ω) the stiffness matrix and
F := (F (ϕ1), F (ϕ1), · · · , F (ϕN))T the load vector, we can rewrite the equation (12.10)
in the matrix form

(12.11) Mα′(t) + Sα(t) = F (t).

It can be shown that there exists a unique vector α(t) which solves the system (12.11).
Thus we arrive to the following result:

Theorem 12.3. Let T > 0, f ∈ L2(0, T ;L2(Ω)) and u0 = u0,h ∈ Xh. Then there exist

unique functions αi ∈ H1(0, T ) for 1 ≤ i ≤ N such that the function uh(t) =
∑N

i=1 αi(t)ϕi

solves the problem (12.6)+(12.7).

Remark 12.1. In the formulation of the theorem we require that the function u0 belongs
to the space Xh. If this condition fails, i.e. u0 6∈ Xh, then u0,h can be constructed as a
projection of u0 onto the space Xh. An example of such a projection is the interpolant
Ihu0 ∈ Xh of u0.
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Time Discretization: Let ∆t be the time step, αn and F n be the values of α(t) and
F (t) at the n-th time level, respectively. For discretization of the equation (12.11) in
time it is common and natural to use the explicit Euler method where we replace the
time derivative α′ by the difference quotient

α′ =
αn+1 − αn

∆t

Substituting this in (12.11), we obtain

(12.12) M · α
n+1 − αn

∆t
+ Sαn = F n

The explicit Euler scheme is not a stable method, unless ∆t ≤ Ch2. When this condition
on time step fails then there will be instabilities. To avoid this problem, it is convenient
to use the implicit Euler method which for the equation (12.11) can be written as

(12.13) M · α
n+1 − αn

∆t
+ Sαn+1 = F n+1

or

(12.14) (M + ∆tS)αn+1 = Mαn + ∆tF n+1,

with

(12.15) α0 = α(0) = (α1(0), α2(0), · · · , αn(0))T , n = 0, 1, 2, . . .

The implicit Euler method compared to the explicit one is unconditionally stable, i.e. no
condition is forced on the time step ∆t.

We now turn to Crank-Nicholson method. Here the semi-discrete equation (12.11) is
discretized in a symmetric way around the point (n + 1

2
)∆t. Here the equation for αn+1

can written in matrix form as follows

(12.16) (M +
∆t

2
S)αn+1 = (M − ∆t

2
S)αn + ∆t

F n+1 + F n

2
,

with

(12.17) α0 = α(0) = (α1(0), α2(0), · · · , αn(0))T , n = 0, 1, 2, . . .

This scheme will produce a second order accurate method in time.

A more general time discretization scheme is the so called θ-scheme. For θ ∈ [0, 1] and a
variable time step ∆tn+1 = tn+1 − tn we search for αn+1 such that

1

∆tn+1
Mαn+1 + θSαn+1 =

1

∆tn+1
Mαn + (1 − θ)Sαn + F n+θ∆tn+1

Note that for θ = 0 we obtain the explicit Euler scheme,for θ = 1 the implicit Euler
scheme and for θ = 1

2
the Crank-Nicholson scheme. One can show that for 0.5 ≤ θ ≤ 1

the θ-scheme is unconditionally stable, while for θ < 0.5 stability is only guaranteed if
the time step is sufficiently small.
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12.3 A priori error estimates

A priori estimates for the error between continuous and discrete solution can be derived
by using the scheme described above,

• first proving an approximation result for the solution of the semi-discrete problem
(where discretization is done only in space, not in time),

• and then using more or less the standard estimates for time discretization of systems
of ordinary differential equations.

For example, for the backward Euler time disretization and piecewise linear finite element
space over a triangulation T in space, the error estimate reads like: Under the condition,
that u is smooth enough, holds

max
0≤k≤M

‖u(tk) − uh,k‖2
L2(Ω) ≤ c

(

‖uo − uh,0‖2
L2(Ω) + h(T )4‖uo‖2

H2(Ω)

+h(T )4

tM∫

0

‖ ∂
∂t
u‖2

H2(Ω)dt+ (∆t)2

tM∫

0

‖ ∂
2

∂t2
u‖2

L2(Ω)dt

)

So, the error converges to zero quadratically in h(T ) and linearly in ∆t. For the Crank-
Nicholson scheme, you get also quadratic convergence in ∆t, but under higher regularity
assumptions on u.
We will not go into more detail here.
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13 A posteriori error estimates for parabolic prob-

lems

13.1 Abstract error estimate for ordinary differential equations

Let H be a Hilbert space and we are interested in the solution of the following parabolic
equation

(13.1)
u′(t) + F (u(t)) = f(t) in H∗, t ∈ (0, T ),

u(0) = u0,

where u0 ∈ H is the initial function, f(t) ∈ H∗ and F : H → H∗ is a smooth, Lipschitz
continuous function, i.e. there is a constant l such that

‖F (u) − F (v)‖H∗ ≤ l‖u− v‖H .

After the time discretization of the equation (13.1) with a variable time step τn = tn −
tn−1 > 0, t0 = 0 and tN = T (implicit Euler Discretization), we obtain

(13.2)
un ∈ H :

un − un−1

τn
+ F (un) = fn := f(tn), n = 1, . . . , N,

u0 = u0,

Our goal is to obtain an equation for the error e := u−U , where U := un−1 + t−tn−1

τn
(un−

un−1). In the interval (tn−1, tn) we have

U ′(t) =
un − un−1

τn

Let U denote the piecewise constant function (with respect to t) defined by

U(t) := Un for t ∈ (tn−1, tn].

Then (13.2) is equivalent to

(13.3)
U ′ + F (U) = f in (0, T ),

U0 = U0.

From (13.1) and (13.2) we get

(u− U)′ + F (u) − F (U) = f − f,

(u− U)′ + F (u) − F (U) = f −f + F (U)
︸ ︷︷ ︸

=−U ′

−F (U),

= f − U ′ − F (U) := R(U)
︸ ︷︷ ︸

Residual

87



For the initial condition we get
(u− U) (0) = 0.

Now we use the property of F being Lipschitz continuous, meaning that the Frechet
derivative DF exists. Thus we can define a continuous linear operator L : H → H

∗

L :=

1∫

0

DF (su+ (1 − s)U) ds.

Then
F (u) − F (U) = L(u− U),

and we arrive to the following equation for e = u− U

(13.4)
e′ + Le = R(U)

e(0) = 0.

In the case when F is linear then L = F independent on u. If F is non linear, then the op-
erator L contains the exact solution u and therefore, we need a priori error estimates for L.

Let us rewrite the equation (13.4) in weak form:

T∫

0

〈e′, ϕ〉 + 〈Le, ϕ〉 dt =

T∫

0

〈R(U), ϕ〉dt for all ϕ ∈ H.

After integration by parts we obtain

〈e(T ), ϕ(T )〉 − 〈e(0), ϕ(0)〉 =

T∫

0

〈e, ϕ′〉 − 〈e, L∗ϕ〉 dt+
T∫

0

〈R(U), ϕ〉 dt,

(13.5) 〈e(T ), ϕ(T )〉 = 〈e(0), ϕ(0)〉 +

T∫

0

〈e, ϕ′ − L∗ϕ〉 dt+

T∫

0

〈R(U), ϕ〉 dt.

Let ϕ be the solution of the dual problem

(13.6)
ϕ′ − L∗ϕ = 0 for almost all t ∈ (0, T )

ϕ(T ) = e(T ).

With ϕ being the solution of (13.6) the equation (13.5) is equivalent to

‖e(T )‖2 = 〈e(0), ϕ(0)〉+

T∫

0

〈R(U), ϕ〉 dt
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What we need is to find some stability estimation for the solution of the dual problem
(13.6) which depends on the problem data and does not depend on the exact solution u.
One example of such an estimation might be

‖ϕ(t)‖H ≤ Cs‖e(T )‖H,

from which we could calculate

‖e(T )‖2
H ≤ Cs



‖e(0)‖H∗ +

T∫

0

‖R(U)‖H∗dt



 ‖e(T )‖H.

Finally, we would obtain a bound for e(T )

‖e(T )‖H ≤ Cs



‖e(0)‖H∗ +

T∫

0

‖R(U)‖H∗dt





13.2 Weak formulation of the heat equation

Let again Ω be a bounded domain with polygonal boundary ∂Ω. We set as before

W
2
1(0, T ) :=

{
v ∈ L

2(0, T ;H1
0(Ω)), v′ ∈ L

2(0, T ;H−1(Ω))
}
.

Suppose that the right-hand side f ∈ L2(0, T ;H−1(Ω)) and the initial condition u0 ∈
H1

0(Ω) are given and let u ∈ W2
1(0, T ) be the weak solution of the heat equation

(13.7)
u′(t) − ∆u = f in H−1(Ω), t ∈ (0, T ),

u(0) = u0,

i.e. for u ∈ W2
1(0, T ) we consider the equation

(13.8)
〈u′, ϕ〉 +

∫

Ω

∇u · ∇ϕ−
∫

Ω

fϕ = 0 ∀ϕ ∈ H1
0(Ω), t ∈ (0, T ),

u(0) = u0,

13.3 Discretization

Let 0 = t0 < t1 < · · · < tN = T define a subdivision of (0, T ), denote In = (tn−1, tn)
and τn = tn − tn−1. For n = 1, . . . , N let Tn be a proper and shape regular triangulation
of Ω and Xn ⊂ H1

0(Ω) a corresponding finite element space with piecewise polynomial
functions of degree p ≥ 1 on Tn.
Let Wn denote the space of (constant in time) functions w(t) = w ∈ Xn, and Wh,τ :=
{w ∈ L2(0, t; H1

0(Ω)) : w|In ∈ Wn, n = 1, . . . , N}. For w ∈ Wh,τ define

w+(x, tn) := lim
s↘0

w(x, tn + s), w−(x, tn) := lim
s↘0

w(x, tn − s),

and we define the jump of w at tn by

[w]n := w+
n − w−

n , where w+
n := w+(·, tn), w−

n := w−(·, tn).
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13.1 Remark. The whole procedure can be also done with higher order approximation
on the time interval, for example piecewise linear in time. This would just change the
definition of spaces Wn. Nevertheless, the discrete functions w ∈ Wh,τ will be in general
not continuous at times tn.

Now, the discrete problem reads:

Problem 13.1. The discrete solution is U ∈ Wh,τ such that for all w ∈ Wh,τ holds

(13.9)

∫ T

0

(Ut, w) + (∇U,∇w) dt+
N∑

n=1

([U ]n−1, w
+
n−1) =

∫ T

0

(f, w) dt,

where U−
0 is an approximation to u0 in X1.

13.4 Error representation and dual problem

Let u ∈ W
2
1(0, T ) be the solution of (13.8) and U ∈ Wh,τ the discrete solution of (13.9).

Then it holds in W2
1(0, T )∗

ut − ∆u = f,

Ut − ∆U = f − R,

where the residual R ∈ W
2
1(0, T )∗ is just defined by the second equation.

So, for all M = 1, . . . , N and v ∈ W2
1(0, T ) holds

∫ tM

0

(ut, v) + (∇u,∇v) − (f, v) dt = 0,

∫ tM

0

(Ut, v) + (∇U,∇v) − (f, v) dt = −R(v).

Substracting the second from the first equality, we get

∫ tM

0

(ut − Ut, v) + (∇(u− U),∇v) dt = R(v).

Integration by parts in time now gives
(13.10)

(u(tM)−U(tM ), v(tM)) = (u(0)−U(0), v(0))+

∫ tM

0

(u−U, vt)−(∇(u−U),∇v) dt+R(v).

So, the corresponding dual problem like (13.6) is now (using F (v) = −∆v, L = L∗ = −∆):

Problem 13.2. Given final values χ at tM , the discrete dual solution is v ∈ W 2
1 (0, tM)

such that for all ϕ ∈ H1
0 (Ω) and almost all t ∈ (0, tM) holds

(13.11) v(tm) = χ, (vt, ϕ) − (∇v,∇ϕ) dt = 0.
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This is a backward parabolic problem, where final values are prescribed. Thus, it is easy
to prove existence of a unique solution.
Now, using the dual solution for final value χ = u(tM)−U(tM ) in the error representation
(13.10), we get

‖u(tM) − U(tM )‖2
L2(Ω) ≤ ‖u(0) − U(0)‖L2(Ω)‖v(0)‖L2(Ω) + |R(v)|.

This gives an estimate of the error at time tM in terms of the initial error and the dual
solution.
Using now the definition of R(v), we can show that for every w ∈ Wh,τ holds

(13.12) ‖u(tM) − U(tM )‖L2(Ω) ≤

≤ sup
χ∈L2(Ω),‖χ‖=1

∣
∣
∣

M∑

n=1

∫

In

(Ut, vχ − w) dt+ (∇U,∇(vχ − w)) − (f, vχ − w) dt

+([U ]n−1, vχ(tn−1) − w+
n−1)

∣
∣
∣ + ‖u(0) − U−

0 ‖L2(Ω),

where vχ denotes the dual solution with final value χ.

In order to estimate the terms involving the dual solution, we need some a priori estimates
for this:

Lemma 13.1. Let v ∈ W2
1(0, tM) be the solution of (13.11) with final value v(tM) = χ ∈

L2(Ω). Then for almost all t ∈ (0, tM) we have that v(t) ∈ H2(Ω), v′(t) ∈ L2(Ω) and the
following conditions hold:

(i) ‖v(t)‖L2(Ω) ≤ ‖χ‖L2(Ω),

(ii)

tM∫

t

‖∇v(s)‖2
L2(Ω)ds ≤

1

2
‖χ‖2

L2(Ω),

(iii)

tM∫

t

(tM − s)‖∆v(s)‖2
L2(Ω)ds ≤

1

4
‖χ‖2

L2(Ω),

(iv)

tM∫

t

(tM − s)‖vt‖2
L2(Ω)ds ≤

1

4
‖χ‖2

L2(Ω),

(v) ‖∆v(t)‖L2(Ω) ≤
1√

2(tM − t)
‖χ‖L2(Ω),

(vi)

tM∫

t

‖∆v(s)‖L2(Ω)ds ≤
1

2

(

log
tM
τM

) 1
2

‖χ‖L2(Ω),
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(vii)

tM∫

t

‖ vt(s)‖L2(Ω)ds ≤
1

2

(

log
tM
τM

) 1
2

‖χ‖L2(Ω),

(viii)

M∑

n=1

τn‖∆v(tn−1)‖L2(Ω) ≤
(

1

2

(

log
tM
τM

) 1
2

+
1√
2

)

‖χ‖L2(Ω),

(ix)
M∑

n=1

τn‖vt(tn−1)‖L2(Ω) ≤
(

1

2

(

log
tM
τM

) 1
2

+
1√
2

)

‖χ‖L2(Ω).

The proof is done by mainly using just the right choice of test functions ϕ in the weak
formulation.

13.5 A posteriori error estimate

Now, we can choose in (13.12) a special w ∈ Wh,τ : for t ∈ In, set w := Pnvχ :=
PInPXnvχ = PXnPInvχ, where PIn and PXn denote the L2 projections onto the piecewise
constant functions on In and on Xn. The following estimates hold:

‖h−2(v − PXnv)‖ + ‖h−1∇(v − PXnv)‖ ≤ c‖D2v‖ ≤ c‖∆v‖ for v ∈ H
2(Ω), Ω convex,

‖v − PInv‖L∞(In) ≤ c‖v‖L∞(In) for v ∈ L∞(In),

‖v − PInv‖L∞(In) ≤ c

∫

In

|vt| dt for v ∈ W
1,1(In).

Using the a priori estimates from Lemma 13.1 and above approximation results, we have

13.2 Theorem. Let u ∈ W2
1(0, T ) the solution of the heat equation (13.8) and U ∈ Wh,τ

the discrete solution of (13.9). The the following a posteriori error estimate holds:

(13.13) ‖u(tN) − U−
N‖L2(Ω) ≤ ‖u(0) − U−

0 ‖L2(Ω) +

c
(

log
tN
τN

) 1
2

max
1≤n≤N

(
(∑

T∈Tn

h4
T ‖Ut − ∆U − f‖2

L∞(In,L2(T )) + h3
T‖[n · ∇U ]‖2

L∞(In,L2(∂T\∂Ω))

) 1
2

+‖[U ]n−1‖L2(Ω) + ‖h
2

τ
[U ]n−1‖∗L2(Ω)

)

.

The final term ‖ · ‖∗ appears only when Xn−1 6⊂ Xn, for example when the mesh was
coarsened.

The proof of this theorem was first done by Eriksson and Johnson [34].
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14 Adaptive methods for parabolic problems

In this chapter we will construct some adaptive methods for choosing the space and time
steps in a finite element method for a linear time dependent problem.

In parabolic problems, the mesh is adapted to the solution in every time step using
a posteriori error estimators or indicators. This may be accompanied by an adaptive
control of time step sizes, see below.
Bänsch [6] lists several different adaptive procedures (in space) for time dependent prob-
lems:

• Explicit strategy: The current time step is solved once on the mesh from the
previous time step, giving the solution uh. Based on a posteriori estimates of uh,
the mesh is locally refined and coarsened. The problem is not solved again on the
new mesh, and the solve–estimate–adapt process is not iterated.
This strategy is only usable when the solution is nearly stationary and does not
change much in time, or when the time step size is very small. Usually, a given
tolerance for the error can not be guaranteed with this strategy.

• Semi–implicit strategy: The current time step is solved once on the mesh from
the previous time step, giving an intermediate solution ũh. Based on a posteriori
estimates of ũh, the mesh is locally refined and coarsened. This produces the final
mesh for the current time step, where the discrete solution uh is computed. The
solve–estimate–adapt process is not iterated.
This strategy works quite well, if the time steps are not too large, such that regions
of refinement move too fast.

• Implicit strategy A: In every time step starting from the previous time step’s
triangulation, a mesh is generated using local refinement and coarsening based on
a posteriori estimates of a solution which is calculated on the current mesh. This
solve–estimate–adapt process is iterated until the estimated error is below the given
bound.
This guarantees that the estimated error is below the given bound. Together with
an adaptive control of the time step size, this leads to global (in time) error bounds.
If the time step size is not too large, the number of iterations of the solve–estimate–
adapt process is usually very small.

• Implicit strategy B: In every time step starting from the macro triangulation,
a mesh is generated using local refinements based on a posteriori estimates of a
solution which is calculated on the current (maybe quite coarse) mesh; no mesh
coarsening is needed. This solve–estimate–adapt process is iterated until the esti-
mated error is below the given bound.
Like implicit strategy A, this guarantees error bounds. As the initial mesh for ev-
ery time step is very coarse, the number of iterations of the solve–estimate–adapt
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process becomes quite large, and thus the algorithm might become expensive. On
the other hand, a solution on a coarse grid is fast and can be used as a good initial
guess for finer grids, which is usually better than using the solution from the old
time step.
Implicit strategy B can also be used with anisotropically refined triangular meshes,
see [40]. As coarsening of anisotropic meshes and changes of the anisotropy direc-
tion are still open problems, this implies that the implicit strategy A can not be
used in this context.

The following algorithm implements one time step of the implicit strategy A. The adaptive
algorithm ensures that the mesh refinement/coarsening is done at least once in each time
step, even if the error estimate is below the limit. Nevertheless, the error might be not
equally distributed between all elements; for some simplices the local error estimates
might be bigger than allowed.

14.1 Algorithm (Implicit strategy A).

Start with given parameters tol and time step size τ,
the solution un from the previous time step on grid Tn

Tn+1 := Tn

solve the discrete problem for un+1 on Tn+1 using data un

compute error estimates on Tn+1

do

mark elements for refinement or coarsening

if elements are marked then

adapt mesh Tn+1 producing a modified Tn+1

solve the discrete problem for un+1 on Tn+1 using data un

compute error estimates on Tn+1

end if

while η > tol

14.1 Adaptive control of the time step size

A posteriori error estimates for parabolic problems usually consist of four different types
of terms:

• terms estimating the initial error;

• terms estimating the error from discretization in space;

• terms estimating the error from mesh coarsening between time steps;

• terms estimating the error from discretization in time.

Thus, the total estimate can be split into parts

η0, ηh, ηc, and ητ

estimating these four different error parts.
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Example: Recall the a posteriori error estimate of Eriksson and Johnson [34] for the
heat equation, Theorem 13.2, which reads for piecewise linear (P1) finite elements and
piecewise constant approximation in time:

‖u(tN) − UN‖ ≤ ‖u0 − U0‖L2(Ω) +

max
1≤n≤N

(
∑

T∈Tn

C1h
4
T‖f‖2

L∞(In,L2(T )) + C2h
3
T‖[n · ∇Un]‖2

L∞(In,L2(∂T\∂Ω))

) 1
2

+C3‖Un − Un−1‖ + C4

∥
∥
∥h2

n

[Un−1]

τn

∥
∥
∥

∗
)

,

where Un is the discrete solution on In := (tn−1, tn), τn = tn − tn−1 is the nth time step
size, [·] denotes jumps over edges or between time intervals, and ‖ · ‖ denotes the norm in
L2(Ω). The last term C4‖ . . . ‖∗ is present only in case of mesh coarsening. The constants
Ci depend on the time tN and the size of the last time step: Ci = Ci(log( tN

τN
)).

This leads to the following error estimator parts:

η0 =
( ∑

T∈T0

‖u0 − U0‖2
L2(T )

)1/2

,

ηh =

(
∑

T∈Tn

C1h
4
T‖f‖2

L∞(In,L2(T )) + C2h
3
T‖[n · ∇Un]‖2

L∞(In,L2(∂T\∂Ω))

)1/2

,

ηc =

(
∑

T∈Tn

C4

∥
∥
∥h2

T

[Un−1]

τn

∥
∥
∥

2

L2(T )

)1/2

,

ητ = C3‖Un − Un−1‖L2(Ω).

When a bound tol is given for the total error produced in each time step, the widely used
strategy is to allow one fixed portion Γh tol to be produced by the spatial discretization,
and another portion Γτ tol of the error to be produced by the time discretization, with
Γh + Γτ ≤ 1.0. The adaptive procedure now tries to adjust time step sizes and meshes
such that in every time step

ητ ≈ Γτ tol and η2
h + η2

c ≈ Γ2
h tol2 .

The adjustment of the time step size can be done via extrapolation techniques known
from numerical methods for ordinary differential equations, or iteratively: The algorithm
starts from the previous time step size τold or from an initial guess. A parameter δ1 ∈ (0, 1)
is used to reduce the step size until the estimate is below the given bound. If the error is
smaller than the bound, the step size is enlarged by a factor δ2 > 1 (usually depending on
the order of the time discretization). In this case, the actual time step is not recalculated,
only the initial step size for the next time step is changed. Two additional parameters
θ1 ∈ (0, 1), θ2 ∈ (0, θ1) are used to keep the algorithm robust, just like it is done in the
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equidistribution strategy for the mesh adaption. The algorithm starts from the previous
time step size τold or from an initial guess.
If δ1 ≈ 1, consecutive time steps may vary only slightly, but the number of iterations for
getting the new accepted time step may increase. Again, as each iteration includes the
solution of a discrete problem, this value should be chosen not too large. For a first order
time discretization scheme, a common choice is δ1 ≈ 0.5, for example.

14.2 Algorithm (Time step size control).

Start with parameters δ1 ∈ (0, 1), δ2 > 1, θ1 ∈ (0, 1), θ2 ∈ (0, θ1)

τ := τold
Solve time step problem and estimate the error

while ητ > θ1 Γτ tol do

τ := δ1 τ
Solve time step problem and estimate the error

end while

if ητ ≤ θ2 Γτ tol then

τ := δ2 τ
end if

The above algorithm controls only the time step size, but does not show the mesh adap-
tion. There are several possibilities to combine both controls. An inclusion of the grid
adaption in every iteration of Algorithm 14.2 can result in a large number of discrete
problems to solve, especially if the time step size is reduced more than once. A better
procedure is first to do the step size control with the old mesh, then adapt the mesh,
and after this check the time error again. In combination with implicit strategy A, this
procedure leads to the following algorithm for one single time step

14.3 Algorithm (Time and space adaptive algorithm).

Start with given parameter tol, δ1 ∈ (0, 1), δ2 > 1, θ1 ∈ (0, 1), θ2 ∈ (0, θ1),
the solution un from the previous time step on grid Tn at time tn
with time step size τn

Tn+1 := Tn

τn+1 := τn
tn+1 := tn + τn+1

solve the discrete problem for un+1 on Tn+1 using data un

compute error estimates on Tn+1

while ητ > θ1 Γτ tol
τn+1 := δ1 τn+1

tn+1 := tn + τn+1

solve the discrete problem for un+1 on Tn+1 using data un

compute error estimates on Tn+1

end while
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do

mark elements for refinement or coarsening

if elements are marked then

adapt mesh Tn+1 producing a modified Tn+1

solve the discrete problem for un+1 on Tn+1 using data un

compute estimates on Tn+1

end if

while ητ > θ1 Γτ tol
τn+1 := δ1 τn+1

tn+1 := tn + τn+1

solve the discrete problem for un+1 on Tn+1 using data un

compute error estimates on Tn+1

end while

while ηh > tol

if ητ ≤ θ2 Γτ tol then

τn+1 := δ2 τn+1

end if

The adaptive a posteriori approach can be extended to the adaptive choice of the order
of the time discretization: Bornemann [11, 12, 13] describes an adaptive variable order
time discretization method, combined with implicit strategy B using the extrapolation
marking strategy for the mesh adaption.
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15 The Stefan problem of phase transition

Let us recall the modelling of the heat equation from energy conservation law. The
temporal change of energy density is equal to the spatial change of flux plus production,

∂

∂t
e(x, t) = −div q(x, t) + f(x, t).

In a homogeneous material, the energy density e was assumed to be proportional to the
temperature θ, like e(x, t) = ρcθ(x, t). But when the material undergoes a phase change
from solid to liquid, then energy is consumed by the phase transition. Molecules need
additional energy in order to leave the matrix of solid crystal, in order to flow around
freely in the liquid state.
Experimentally it can be observed that when a solid material is heated to its melting
temperature, and energy is added, then the temperature increases proportionally to the
energy density like

θ(x, t) =
1

ρcs
e(x, t). (θ < θm).

When the melting temperature θm is reached (at energy em), additional energy is first
consumed without raising the temperature, until the latent heat of melting, L, is added
(and the material has changed its state from solid to liquid). Only then even more energy
is added, the temperature increases again, like

θ(x, t) = θm +
1

ρcl
(e(x, t) − em − L) (θ > θm).

Rescaling temperature and energy such that θm = 0, em = 0, the relationship between
temperature and energy can be described by

θ(x, t) = β(e(x, t)) =







1
ρcs
e(x, t) if e(x, t) < 0,

0 if e(x, t) ∈ [0, L],

1
ρcl

(e(x, t) − L) if e(x, t) > L,

compare Figure 15.1.
Still, the heat flux can be modelled by Fourier’s law q = −κ∇θ (with different heat
conductivities in solid and liquid material).
So, the conservation law gives the differential equation

∂

∂t
e(x, t) − div(κ∇β(e(x, t))) = f(x, t).

As β vanishes for all e ∈ [0, L], this equation is degenerate parabolic. In case that the
solution is smooth and the set Γ(t) := {x : θ(x, t) = 0} is a smooth n − 1-dimensional
submanifold of the domain, the temperature θ = β(e) and the set Γ(t) give a solution of
the classical Stefan problem, compare Section 2.2.
For simplicity, we will set all constants to one in the following considerations.
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15.1 Problem setting:

We consider the classical two phase Stefan problem, which describes the heat diffusion
and phase change in a pure material. Let Ω ⊂ Rd denote a bounded domain, u the
enthalpy (or energy density) and θ the temperature, and f(t, ·) ∈ H−1(Ω) a given right
hand side sufficiently smooth in time.

Problem 15.1. Two phase Stefan problem
Find u ∈ L∞(0, T ;L∞(Ω)) ∩ W1,∞(0, T ;H−1(Ω)) and θ ∈ L∞(0, T ;H1

0(Ω)) such that

d

dt
u− ∆θ = f in H

−1(Ω),

with initial condition
u(·, 0) = u0

and
θ = β(u),

where β(s) = min(s, 0) + max(s− 1, 0), see Figure 15.1.

1

1

Figure 15.1: Graphs of β and β−1

15.2 Discretization

We denote by τn the time step at the n-th step and set tn =
∑n

i=1 τi. Let Mn be a
uniformly regular partition of Ω into simplices, with mesh size density hn, and Bn be
the collection of interior sides e of Mn in Ω; hS (he) stands for the size of S ∈ Mn

(e ∈ Bn). Let Vn ⊂ H1
0(Ω) be the piecewise linear finite element space over Mn and In

the Lagrange interpolation operator.

The discrete problem reads as follows. The discrete initial enthalpy U 0 ∈ V0 is an
“interpolant” of u0. For time step (tn−1, tn) let τn = tn− tn−1. Given Un−1,Θn−1 ∈ Vn−1,
then Mn−1 and τn−1 are modified as described below to get Mn and τn and thereafter
Un,Θn ∈ Vn computed according to Θn = Inβ(Un) and

(15.1) 1
τn

∫

Ω

In((Un − Un−1)ϕ) +

∫

Ω

∇Θn · ∇ϕ =

∫

Ω

In(f(tn)ϕ) ∀ ϕ ∈ Vn.

Note that the nonlinear relation Θn = β(Un) is enforced only in the vertices of the
triangulation (otherwise not both Un and Θn could be in P1 on each element of the
triangulation).
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Using mass lumping and enforcing Θn = Inβ(Un) solely at the nodes introduces some
consistency errors but amounts to having a monotone problem easy to implement and
solved via an optimized nonlinear SOR [31, 74] or even with monotone multigrid methods
[54, 55, 57].

15.3 Error control for Stefan problem

The presence of interfaces, and associated lack of regularity, is responsible for global nu-
merical pollution effects for phase change problems. A cure consists of equidistributing
discretization errors in adequate norms by means of highly graded meshes and varying
time steps. Their construction relies on a posteriori error estimates, which are a funda-
mental component for the design of reliable and efficient adaptive algorithms for PDEs.
These issues have been recently tackled in [79], [80], and are briefly discussed here.
We consider for simplicity the classical two-phase Stefan problem

(15.2) ∂tu− ∆β(u) = f in Q = Ω × (0, T ),

where β(s) = min(s, 0)+max(s−1, 0); this corresponds to an ideal material with constant
thermal properties and unit latent heat. A discrete solution U of (15.2) satisfies

(15.3) ∂tU − ∆β(U) = f −R in Q,

where R, a distribution with singular components and oscillatory behavior, is the so-
called parabolic residual. Its size is to be determined in negative norms which entail
averaging and thus quantify oscillations better.
In §15.4 we show how to represent the error eβ(u) = β(u) − β(U) in terms of R, and in
§15.5 we state an error estimate of the form

‖eβ(u)‖L2(Q) ≤ E(U, f, T,Ω; h, τ),

with computable right hand side; hereafter h stands for the mesh size and τ for the time
step. This formula is the basis of the adaptive algorithm of §15.6 and the simulations of
§15.7.

15.4 Error Representation Formula

Upon subtracting (15.3) from (15.2) and integrating by parts against a smooth test
function ϕ, the error eu = u− U satisfies the equation

(15.4)

∫

Ω

eu(T )ϕ(T ) =

∫

Ω

eu(0)ϕ(0) +

∫

Q

eu(∂tϕ + b∆ϕ) + R(ϕ),

where b(x, t) =
β(u) − β(U)

u− U
provided u 6= U and b(x, t) = 1 otherwise, and

(15.5) R(ϕ) =

∫

Ω

U(0)ϕ(0) −
∫

Ω

U(T )ϕ(T ) +

∫

Q

(fϕ+ U∂tϕ+ β(U)∆ϕ).
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This motivates the study of the backward parabolic problem in non-divergence form [73],
with vanishing diffusion coefficient 0 ≤ b ≤ 1,

(15.6) ∂tψ + (b+ δ)∆ψ = −bχ in Q, ψ(T ) = 0 in Ω,

where χ ∈ L
2(Q) and δ ↓ 0. The theory of nonlinear strictly parabolic problems [60]

yields existence of a unique solution ψ, which satisfies [79]

(15.7) ‖∇ψ(t)‖L2(Ω),
1
2
‖∂tψ‖L2(Q), δ

1/2‖∆ψ‖L2(Q) ≤ ‖χ‖L2(Q).

Equation (15.6) does not exhibit a regularizing effect in that ‖∆ψ‖L2(Q) is never bounded
uniformly in δ; compare with [35]. Using (15.7), together with beu = eβ(u) and |eu| ≤
1 + |eβ(u)|, (15.4) with ϕ = ψ yields

(1 − δ1/2)‖eβ(u)‖L2(Q) ≤ ‖eu(0)‖H−1(Ω) + sup
χ∈L2(Q)
0<t<T

|R(ψ)|
‖∇ψ(t)‖L2(Ω)

+ |Q|1/2δ1/2.

Taking δ ↓ 0 we deduce a representation formula based on evaluating R in the negative
norm L1

tH
−1
x , and valid for any numerical method:

‖eβ(u)‖L2(Q) ≤ ‖eu(0)‖H−1(Ω) + sup
χ∈L2(Q)
0<t<T

|R(ψ)|
‖∇ψ(t)‖L2(Ω)

.

15.5 A Posteriori Error Estimators

If we set Un
t = (Un − InUn−1)/τn and Rn = Inf(tn)− Un

t , integrate (16.9) by parts, and
use Galerkin orthogonality (15.1), we easily arrive at

R(ψ) = C +
∑

n

∫ tn

tn−1

∫

Ω

(

Rn(ψ − Ψ) −∇Θn · ∇(ψ − Ψ)
)

+
∑

n

∫

Ω

(Un−1 − InUn−1)ψn−1 +

N∑

n=1

∫ tn

tn−1

∫

Ω

Un
t (ψ − ψn−1),

where Ψ is any discrete approximation of ψ and C stands for consistency terms. Inte-
grating ∇Θn by parts element wise and using (15.7), we conclude

E(U, f, T,Ω; h, τ) = C(E0 + E1 + E2 + E3 + E4) + EC.
Here C depends on the minimum angle of Mn, the error indicators Ei are

E0 = ‖u0 − U0‖H−1(Ω) initial error,

E1 =
∑

n

τn

(∑

e∈Bn

he‖[[∇Θn]]e · νe‖2
L2(e)

)1/2

jump residual,

E2 =
∑

n

τn

( ∑

S∈Mn

h2
S‖Rn‖2

L2(S)

)1/2

interior residual,

E3 =
∑

n

‖InUn−1 − Un−1‖H−1(Ω) coarsening,

E4 =
(∑

n

τn‖Un − InUn−1‖2
L2(Ω)

)1/2

time residual,
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and EC stands for consistency errors which we do not specify and could in principle
be removed at the expense of complicating the implementation of (15.1); see [79]. All
indicators Ei can be evaluated in terms of the computed solution, initial datum, and
source term, and are essential; they are also present for the heat equation [35]. The
weights of E1, E2 correspond to H1

x regularity of ψ, as opposed to H2
x regularity for the

heat equation, thereby reflecting the degenerate nature of (15.2). An alternative approach
exploiting the additional, but nonuniform, regularity δ‖∆ψ‖L2(Q) ≤ ‖χ‖L2(Q) is proposed
in [79] and improves on this distinctive aspect of (15.2).

15.6 Adaptive Algorithm

The error estimators of §15.5 entail an L1 or L2 norm in time, which is impractical in
that the entire history would be needed to control E(U, f, T,Ω; h, τ). We therefore resort
to an L∞ norm in time, and the ensuing equidistribution strategy of minimizing the
spatial degrees of freedom for a uniform error distribution in time. For each S ∈ Mn,
the resulting local spatial error indicators are denoted by E0(S), for initial error, and

E1(S) = 1
2
T 2 hS ‖[[∇Θn]]e · νe‖2

L2(∂S) local jump residual,

E2(S) = T 2 h2
S ‖Rn‖2

L2(S) local interior residual,

E3(S) = T 2 τ−2
n ‖InUn−1 − Un−1‖2

L2(S)) local coarsening.

Let ε be a given error tolerance and Mn = cardMn. The objective is to select adaptively
time steps and mesh densities in such a way that Ei(S) have comparable size for all
S ∈ Mn (equidistribution) and E(U, f, T,Ω; h, τ) ≤ ε. Elements S are either refined or
coarsened via bisection. This algorithm creates compatible consecutive meshes, extends
naturally from 2D to 3D, and is handy for combined refinement/coarsening operations
[7].
Given refinement and coarsening parameters satisfying Γ0+Γτ +Γh ≤ 1, γτ < Γτ , γh < Γh,
the initial mesh is obtained upon bisecting a coarse partition M0 until E0(S) ≤ Γ2

0ε
2/M0

for all S ∈ M0. Neglecting all terms EC for simplicity, the mesh size and time step are
modified as follows. We first check whether

γ2
h

Mn
ε2 < max(E1(S), E2(S), E3(S)) <

Γ2
h

Mn
ε2 ∀ S ∈ Mn,

or not. If the rightmost constraint is violated, then S is bisected, whereas the leftmost
constraint is used to flag S for coarsening. The latter will be allowed only if the local
error incurred is sufficiently small; this is a critical computational issue. We next verify
whether

γτ ε < T 1/2‖Un − InUn−1‖L2(Ω) < Γτ ε,

or not. Failure of the rightmost inequality forces τn to diminish, whereas that of the
leftmost constraint causes a corresponding increase of next time step τn+1 but acceptance
of the current time step.
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15.7 Numerical Experiments

Our approach is able to detect the presence of interfaces, and refine accordingly, and is
insensitive to topological changes such as merging, extinction, and mush or singularity
formation. The interface velocity need not be computed explicitly for mesh design, which
is a major improvement with respect to [74].

15.7.1 Example 1: Oscillating Circle

The interface is a circle of center c(t) moving with velocity V (t) = ċ(t) and changing
radius R(t). The exact solution is given by

u(x, t) =

{
α(r2 − R2) if r ≤ R

1 +
(
2αR− V · x−c

r
− Ṙ

)
(r −R) if r > R,

where r = |x− c| and α > 0 is a constant, such that u > 1 when r > R. The numerical
simulation was done in Ω = (−1, 1)2 for t ∈ (0, 1) with

c(t) = (0.25, 0.4 sin(10 t)), R(t) = 0.35 + 0.2 sin(20 t), α = 17.0 .

Numerical parameters for the adaptive method were

ε = 175, Γ0 = 0.1, Γτ = 0.2, Γh = 0.6, γτ = 0.155, γh = 0.268 .

Figures 15.2 and 15.3 show discrete isothermal lines and corresponding meshes. The
innermost isothermal Θ = 0 is the free boundary. Values (and derivatives) of the solution,
along with normal interface velocities, exhibit a large variation in time, depending on R
and V . This explains the various levels of mesh refinement and the variation in time of
the element count.

15.7.2 Example 2: Oscillating Source

This is a phase change in a container Ω = (−1, 1)2, T = 20.0, with initial temperature
Θ(x, 0) = 0.1 x2, prescribed temperature at three walls Θ(x, t) = 0.1 x2 for x2 > −1, a
fourth insulated wall ∂νΘ(x, t) = 0 for x2 = −1, and two circular oscillating heat sources
driving the evolution,

f(x, t) = cos(0.2 t) max (0.0, 3.125 − 50|x− (−0.2,−0.5)|2)
+ sin(0.2 t) max (0.0, 3.125 − 50|x− (−0.2, 0.5)|2).

The exact solution is unknown. The upper pictures of Figure 15.4 show a topology
change consisting of two liquid phases merging. The lower pictures show a mushy region
produced by a cooling source term. Figure 15.5 depicts the corresponding meshes with
highly refined regions; they capture the interface location along with the presence of
strong heat sources.
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Figure 15.2: Example 1: Isothermal lines Θ = 0, 2, 4, 6, . . . at t = 0.15, 0.20, 0.25, 0.30,
0.35, 0.40

Figure 15.3: Example 1: Meshes at t = 0.15, 0.20, 0.25, 0.30, 0.35, 0.40; element count
between 450 and 3600
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Figure 15.4: Example 2: Interfaces with topology changes and a mushy region at t =
1.2, 1.6, 2.0, 8.6, 9.6, 10.6

Figure 15.5: Example 2: Meshes at t = 1.2, 1.6, 2.0, 8.6, 9.6, 10.6
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15.8 Nonlinear solver

As mentioned above, the system of nonlinear equations in each time step can be solved
by a nonlinear Gauss-Seidel iteration.
Let M = diag(mi) denote the lumped mass matrix and A = (aij) the stiffness matrix in
the n-th timestep. Then the nonlinear equation for unknown coefficient vectores Un and
Θn reads:

1

τn
M(Un − Un−1) + AΘn = F n, Θn

i = β(Un
i ), i = 1, . . . , N.

The Gauss-Seidel equation for i-th coefficients Un
i ,Θ

n
i reads

mi

τn
Un

i + aiiΘ
n
i =

mi

τn
Un−1

i + F n
i −

∑

j 6=i

aijΘ
n
j =: F̃i.

The additional condition Θn
i = β(Un

i ) leads to

(mi

τn
Id+ aiiβ

)

(Un
i ) = F̃i.

As (mi

τn
Id+ aiiβ) is a strictly monotone function, it is invertable and the solution can be

computed by

Un
i :=

(mi

τn
Id+ aiiβ

)−1

(F̃i), Θn
i := β(Un

i ).

Overrelaxation can be used, when not crossing the melting temperature [31, 74]. And
monotone multigrid methods can be used as well [54, 55, 57].
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16 The continuous casting problem

During oontinuous casting of steel ingots, hot molten steel is formed in a mold to a
cylindrically shaped ingot, which is further cooled by spraying water onto it. In the
interior of the ingot, a pool of liquid remains which must totally solidify before the ingot
gets cut off.
Mathematically, the continuous casting problem leads to a convection-dominated non-
linearly degenerate diffusion problem. We will derive an a posteriori error estimate for
a finite element discretization, and an adaptive method based on that. Most proofs are
omitted here, they can be found in [18].
Remember that for the Stefan problem without convection, studied in the previous sec-
tion, we were using L2 norm estimates for both dual and primal problem. Here, the
estimates will be based on L∞ bounds for the dual problem, leading L1 bounds for the
error. This is the most natural norm when dealing with convection dominated problems.
The application to the steel casting problem with physically realistic parameters is shown
in Section 16.16.

Let the ingot occupy a cylindrical domain Ω with large aspect ratio. Let 0 < L < +∞
be the length of the ingot and Γ ⊂ Rd for d = 1 or 2 be its (polygonal) cross section.
We show Ω = Γ × (0, L) in Figure 16, and hereafter write x = (y, z) ∈ Ω with y ∈ Γ and
0 < z < L.

-

6 $

%
L z

y

Γ0 ΓL

ΓN

Ω

Liquid Solid

0

Figure : The domain Ω
We study the following convection-dominated nonlinearly degenerate diffusion problem

∂tu+ v(t)∂zu− ∆θ = 0 in QT ,

θ = β(u) in QT ,

θ = gD on Γ0 × (0, T ),

∂νθ + p(θ − θext) = 0 on ΓN × (0, T ),

u(x, 0) = u0(x) in Ω,

where

(16.1) Γ0 = Γ × {0}, ΓL = Γ × {L}, ΓN = ∂Γ × (0, L), QT = Ω × (0, T ),

and θ + θc is the absolute temperature, θc is the melting temperature, u is the enthalpy,
v(t) > 0 is the extraction velocity of the ingot, ν is the unit outer normal to ∂Ω, and
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θext is the external temperature. The mapping β : R → R is Lipschitz continuous and
monotone increasing; since β is not strictly increasing, (16.1) is degenerate parabolic.
The missing outflow boundary condition on ΓL is unclear because the ingot moves at the
casting speed and is cut shorter from time to time. It is thus evident that any standard
boundary condition could only be an approximation. We impose either a Neumann

(16.2) ∂νθ = gN ≤ 0 on ΓL × (0, T ),

or a Dirichlet outflow condition

(16.3) θ = gD < 0 on ΓL × (0, T ).

Enforcing (16.2) with gN = 0 is equivalent to assuming that the normal heat flux on ΓL

is entirely due to advection, which turns out to be an excellent approximation. Both
boundary conditions lead to artificial boundary layers, with the second being more pro-
nounced. In our simulations of §7 with real physical parameters, we take gN = 0 and
adjust gD to minimize this effect. It is convenient to denote by ΓD the Dirichlet part
of ∂Ω, that is Γ0 for (16.2) and Γ0 ∪ ΓL for (16.3). The linear Robin condition (16.1)
on that part of ΓN in contact with air is just an approximation of the actual nonlinear
Stefan-Boltzmann radiation law condition (σ > 0)

(16.4) −∂νθ = σ((θ + θc)
4
+ − θ4

ext) on ΓN × (0, T ).

We see that linearizing (16.4) around a constant temperature leads to (16.1).
The importance of simulating and controlling the continuous casting process in the pro-
duction of steel, copper, and other metals is recognized in industry. The extraction
velocity v(t) as well as the cooling conditions on the mold and water spray region are
known to be decisive in determining material properties of the ingot. Avoiding excessive
thermal stresses and material defects is an essential, and rather empirical, aspect of the
continuous casting process.
If the extraction velocity v(t) is assumed constant, and diffusion in the extraction di-
rection z is ignored, then the resulting steady-state problem can be reformulated as a
standard Stefan problem with a fictitious time t = z/v [66], [88]. However, changes in
the casting velocity v as well as in the cooling conditions are not only expected during
a cycle of several hours of operation but are also desirable to handle late-arriving la-
dle, ladle or pouring problems, temporary malfunctions, etc. The casting machine must
adjust to these demands and maintain production without degrading quality. The full
non-stationary model (16.1)-(16.1) is thus more realistic than the steady state model in
practical simulations and online control of continuous casting processes.
The system (16.1)-(16.1) is a special case of general Stefan problems with prescribed
convection [91]. An outflow Dirichlet condition together with an inflow Neumann con-
dition is assumed in [91] to guarantee uniqueness of weak solutions; our more realistic
boundary data (16.1) and (16.2)-(16.3) violate this restriction. Under the additional as-
sumption that the free boundary does not touch the inflow boundary Γ0, uniqueness of
weak solutions to (16.1)-(16.1) and (16.3) is shown in [89].
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A posteriori error estimates are computable quantities that measure the actual errors
without knowledge of the limit solution. They are instrumental in devising algorithms
for mesh and time-step modification which equidistribute the computational effort and
so optimize the computations. Ever since the seminal paper [4] on elliptic problems,
adaptivity has become a central theme in scientific and engineering computations. In
particular, a posteriori error estimators have been derived in [34], [33] for linear and
mildly nonlinear parabolic problems, and in [78], [17] for degenerate parabolic problems
of Stefan type. Duality is the main tool in the analysis of [34],[33],[78], and so is in the
present paper. We stress that the techniques of [77],[17] circumvent duality and thus
apply to non-Lipschitz nonlinearities.
The purpose of this paper is twofold: we first introduce and analyze an adaptive method
with error control, and second we apply it to steel casting, a concrete engineering ap-
plication. We combine the method of characteristics for time discretization [27],[69],[87],
with continuous piecewise linear finite elements for space discretization [21]. We de-
rive a posteriori error estimators which provide the necessary information to modify the
mesh and time step according to varying external conditions and corresponding motion
of the solid-liquid interface. Our estimates exhibit a mild dependence on an upper bound
V for the casting velocity v(t), depending on the outflow conditions (16.2) and (16.3),
which results from a novel and rather delicate analysis of a linearized dual problem -
a convection-dominated degenerate parabolic with non-divergence form and a Dirichlet
outflow condition. We stress that this mild as well as explicit dependence on V is a major
improvement with respect to previous L2-based a priori analyses of [16] for the continuous
casting problem and of [27],[87] for parabolic PDE with large ratio advection/diffusion;
they lead to an exponential dependence on V , unless Ω = R

d or the characteristics do not
intercept ∂Ω [69], which is not the case in Figure 16. We finally remark that convergence
of a fully discrete finite element scheme for (16.4) is proved [20]; error estimates cannot
in general be expected due to lack of compactness except on special cases [84].
The paper is organized as follows. In §2 we state the assumptions and set the problem. In
§3 we discuss the fully discrete scheme, which combines the method of characteristics and
finite elements. In §4 we introduce the concept of parabolic duality and prove several
crucial stability estimates. In §5 we prove the a posteriori error estimates. In §6 we
discuss an example with exact solution and document the method’s performance. We
conclude in §7 with applications to casting of steel with realistic physical parameters.

16.1 Setting

We start by stating the hypotheses concerning the data.

(H1) β(s) = 0 for s ∈ [0, λ] and 0 < β1 ≤ β ′(s) ≤ β2 for a.e. s ∈ R\[0, λ]; λ > 0 is the
latent heat.

(H2) 0 < v0V ≤ v(t) ≤ V for t ∈ [0, T ] and |v′(t)| ≤ v1V a.e. t ∈ [0, T ], with v0, v1 > 0
constants.
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(H3) θ0 = β(u0) ∈ W 1,∞(Ω), and the initial interface F0 := {x ∈ Ω : θ0(x) = 0} is
Lipschitz.

(H4) p ∈ H
1(0, T ;W 1,∞(ΓN)); p ≥ 0.

(H5) θext ∈ H1(0, T ;C(Γ̄N)).

(H6) gD ∈ H1(0, T ;C(Γ̄D)); gD(x, 0) = θ0(x) on ΓD.

(H7) gN ∈ H1(0, T ;C(Γ̄L)).

(H8) Uniqueness condition: ∃ ε0, ρ0 > 0 such that θ ≥ ρ0 a.e. in Γ × [0, ε0] × [0, T ].

(H9) Solidification condition: ∃ ε1, ρ1 > 0 such that θ ≤ −ρ1 a.e. in Γ×[L−ε1, L]×[0, T ]
and β ′(s) = α > 0 for β(s) ≤ −ρ1.

(H10) V ≥ 1.

We remark that (H8) is reasonable since it is satisfied for Stefan problems with v = 0 due
to the continuity of θ and positivity of θ|Γ0 ; heuristically the larger v, and so V , the larger
the width ε0. The condition (H9) is an implicit assumption on data which corresponds to
the ingot being solid in the vicinity of ΓL, where it is to be cut, as well as having a constant
conductivity β ′. (H9) is only needed to handle (16.2). In addition, (H10) is not restrictive
in that we are interested in the convection-dominated case. In view of (H4)-(H7) we may
consider p, θext, gD, gN extended to Ω in such a way that θext, gD, gN ∈ H1(0, T ;C(Ω̄)),
p ∈ H1(0, T ;W 1,∞(Ω)).
Let V0 = {v ∈ H1(Ω) : v = 0 on ΓD} and V∗ the dual space of V0. The weak formulation
of (16.1)-(16.3) then reads as follows.

Continuous Problem. Find u and θ such that

θ ∈ L
2(0, T ;H1(Ω)), u ∈ L

∞(0, T ;L∞(Ω)) ∩ H
1(0, T ;V∗),

θ(x, t) = β(u(x, t)) a.e. (x, t) ∈ QT ,

θ(x, t) = gD(x, t) a.e. (x, t) ∈ ΓD × (0, T ),

u(·, 0) = u0,

and for a.e. t ∈ (0, T ) and all φ ∈ V0 the following equation holds

(16.5) 〈∂tu, φ〉 + v(t)〈∂zu, φ〉 + 〈∇θ,∇φ〉 + 〈〈pθ, φ〉〉ΓN
= 〈〈pθext, φ〉〉ΓN

+ 〈〈gN , φ〉〉ΓL
.

Hereafter, 〈·, ·〉 stands for either the inner product in L2(Ω) or the duality pairing between
V∗ and V0, and 〈〈·, ·〉〉E denotes the inner product in L2(E) with E ⊂ ∂Ω; if E = ∂Ω we
omit the subscript. We stress that the last term in (16.5) is absent when (16.3) is imposed.
Existence and uniqueness of solutions (u, θ) to this problem satisfying θ ∈ C(Q̄T ) are
known [89].
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16.2 Discretization

We now introduce the fully discrete problem, which combines continuous piecewise linear
finite elements in space with characteristic finite differences in time. In fact, we use the
method of characteristics to discretize the convection [27],[69],[87]. We denote by τn the
n-th time step and set

tn :=
n∑

i=1

τi, ϕn(·) := ϕ(·, tn)

for any function ϕ continuous in (tn−1, tn]. Let N be the total number of time steps, that
is tN ≥ T . If ez denotes the unit vector in Rd in the z-direction, then dx

dt
= v(t)ez defines

the forward characteristics, and U(t) = u(x(t), t) satisfies

(16.1)
dU

dt
= ∂tu+ v∂zu.

The characteristic finite difference method is based on writing

x̄n−1 = x− vn−1τnez, ūn−1(x) = u(x̄n−1, tn−1),

for n ≥ 1 and discretizing (16.1) by means of backward differences as follows:

dUn

dt
≈ Un − Un−1

τn
⇒ ∂tu

n + vn∂zu
n ≈ un − ūn−1

τn
.

Therefore the discretization in time of (16.1)-(16.1) reads

(16.2)
un − ūn−1

τn
− ∆β(un) = 0 in Ω.

As ūn−1(x) is well defined only for x̄n−1 ∈ Ω̄, one has to either restrict the time step size
τn (at least locally) or extend un−1 beyond the inflow boundary Γ0.
We denote by Mn a uniformly regular partition of Ω into simplexes [21]. The mesh Mn

is obtained by refinement/coarsening of Mn−1, and thus Mn and Mn−1 are compatible.
Given a triangle S ∈ Mn, hS stands for its diameter and ρS for its sphericity and
they satisfy hS ≤ 2ρS/ sin(αS/2), where αS is the minimum angle of S; h denotes the
mesh density function h|S = hS for all S ∈ Mn. Uniform regularity of the family of
triangulations is equivalent to αS ≥ α∗ > 0, with α∗ independent of n. We also denote
by Bn the collection of boundaries or sides e of Mn in Ω; he stands for the size of e ∈ Bn.
Let Vn indicate the usual space of C0 piecewise linear finite elements over Mn and
Vn

0 = Vn ∩ V0. Let {xn
k}Kn

k=1 denote the interior nodes of Mn. Let In : C(Ω̄) → Vn be
the usual Lagrange interpolation operator, namely (Inϕ)(xn

k) = ϕ(xn
k) for all 1 ≤ k ≤ Kn.

Finally, let the discrete inner products 〈·, ·)n and 〈〈·, ·〉〉nE be the sum over S ∈ Mn of the
element scalar products

〈ϕ, χ〉nS =

∫

S

In〈ϕχ)dx, 〈〈ϕ, χ〉〉nS =

∫

S∩E

In(ϕχ)dσ,
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for any piecewise uniformly continuous functions ϕ, χ. It is known that for all ϕ, χ ∈ Vn

[78]

∣
∣
∣

∫

S

ϕχdx−
∫

S

In(ϕχ)dx
∣
∣
∣ ≤ 1

8
h2

S‖∇ϕ ‖L2(S)‖∇χ ‖L2(S) ∀S ∈ Mn,

∣
∣
∣

∫

e

ϕχdσ −
∫

e

In(ϕχ)dσ
∣
∣
∣ ≤ 1

8
h2

S‖∇ϕ ‖L2(e)‖∇χ ‖L2(e) ∀e ∈ Bn.

for any S ∈ Mn and e ∈ Bn.
The discrete initial enthalpy U 0 ∈ V0 is defined at nodes x0

k of M0 = M1 to be

U0(x0
k) := u0(x

0
k) ∀ x0

k ∈ Ω\F0, U0(x0
k) := 0 ∀ x0

k ∈ F0.

Hence, U0 is easy to evaluate in practice.

Discrete Problem. Given Un−1,Θn−1 ∈ Vn−1, then Mn−1 and τn−1 are modified as
described below to get Mn and τn and thereafter Un,Θn ∈ Vn computed according to the
following prescription

Θn = Inβ(Un), Θn − Ingn
D ∈ Vn

0 , Ūn−1 := Un−1(x̄n−1),

(16.3)
1

τn
〈Un−InŪn−1, ϕ〉n+〈∇Θn,∇ϕ〉+〈〈pn(Θn−θn

ext), ϕ〉〉nΓN
= 〈〈gn

N , ϕ〉〉nΓL
∀ϕ ∈ Vn

0 .

We stress that the right-hand side of (16.3) vanishes in case ΓD = Γ0 ∪ΓL, and p, θext, gN

need only be piecewise smooth. In view of the constitutive relation Θn = Inβ(Un) being
enforced only at the nodes, and the use of mass lumping, the discrete problem yields
a monotone operator in RKn

which is easy to implement and solve via either nonlinear
SOR [78] or monotone multigrid [57].
We conclude this section with some notation. Let the jump of ∇Θn across e ∈ Bn be

(16.4) [[∇Θn]]e := (∇Θn
|S1

−∇Θn
|S2

) · νe.

Note that with the convention that the unit normal vector νe to e points from S2 to S1, the
jump [[∇Θn]]e is well defined. Let U and Û denote the piecewise constant and piecewise
linear extensions of {Un}, that is U(·, 0) = Û(·, 0) = U0(·) and, for all tn−1 < t ≤ tn,

U(·, t) := Un(·) ∈ Vn, Û(·, t) :=
tn − t

τn
Un−1(·) +

t− tn−1

τn
Un(·).

Finally, for any γ > 0, k ≥ 0 and ω ⊂ Ω we introduce the mesh dependent norms

‖| hγϕ ‖|Hk(ω) :=
( ∑

e⊂ω,e∈Bn

h2γ
e ‖ϕ ‖2

Hk(e)

)1/2

, ‖ hγϕ ‖Hk(ω) :=
( ∑

S⊂ω,S∈Mn

h2γ
S ‖ϕ ‖2

Hk(S)

)1/2

.
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16.3 Parabolic Duality

In this section we study a linear backward parabolic problem in non-divergence form,
which can be viewed as the adjoint formal derivative of (16.1). For any U ∈ BV (0, T ;L2(Ω)),
we define

(16.1) b(x, t) =







β(u) − β(U)

u− U
if u 6= U,

β1 otherwise.

It is clear from (H1) that 0 ≤ b(x, t) ≤ β2, for a.e. (x, t) ∈ QT . Let bδ ∈ C2(Q̄T ) be a
regularization of b satisfying

(16.2) bδ ≥ δ > 0, 0 ≤ bδ − b ≤ δ a.e. in QT ,

where 0 < δ ≤ 1 is a parameter to be chosen later. For arbitrary t∗ ∈ (0, T ] and
χ ∈ L∞(QT ), let ψ be the solution of the following linear backward parabolic problem

Lδ(ψ) := ∂tψ + v(t)∂zψ + bδ∆ψ = −b1/2χ in Ω × (0, t∗),

ψ = 0 on ΓD × (0, t∗),

∂νψ + pψ = 0 on ΓN × (0, t∗),

ψ(x, t∗) = 0 in Ω,

and

(16.3) ∂νψ +
v(t)

bδ
ψ = 0 on ΓL × (0, t∗)

provided (16.2) is enforced; we set Q∗ = Ω × (0, t∗). Existence of a unique solution
ψ ∈ W 2,1

q (Q∗) for any q ≥ 2 of (16.3)-(16.3) follows from the theory of nonlinear strictly
parabolic problems [60]. Note that we impose a Dirichlet outflow boundary condition on
Γ0, which yields a boundary layer for ψ.
We now embark in the derivation of a priori estimates for the regularity of ψ. It turns out
that such a technical endeavor depends on the boundary condition on ΓL, which becomes
inflow for (16.3). Consequently we distinguish the two cases on ΓL × (0, t∗)

∂νψ +
v(t)

bδ
ψ = 0 Robin inflow condition,

ψ = 0 Dirichlet inflow condition,

corresponding to (16.2) and (16.3): the former is more realistic but leads to worse stability
bounds. We start with a simple, but essential, non-degeneracy property first proved in
[16, Lemma 3.2].

Lemma 16.1. Let ξ, ρ ∈ R satisfy |β(ξ)| ≥ ρ > 0. Then we have

(16.4) |ξ − η| ≤
( 1

β1

+
λ

ρ

)

|β(ξ) − β(η)|, ∀ η ∈ R.
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The following result is a trivial consequence of (16.1) and Lemma 16.1.

Corollary 16.1. There exists r > 0 depending on ρ0 of (H8) and ρ1 of (H9) such that

(16.5) b(x, t) ≥ r in Γ ×
(
[0, ε0] ∪ [L− ε1, L]

)
× [0, T ].

We observe that Corollary 16.1 only guarantees non-degeneracy of b but not its differen-
tiability. If, in addition, β(U) ≤ −ρ1 on Γ × [L− ε1, L] × [0, T ], which can be verified a
posteriori, then (H9) leads to

(16.6) b(x, t) = α > 0 in Γ × [L− ε1, L] × [0, T ].

This property will also be assumed for bδ whenever it is valid for b.

16.4 Robin Inflow Condition

Throughout this section we assume that (16.4) is enforced. To motivate the estimates
below consider the simplified PDE obtained from (16.3) by setting bδ = 0, v(t) = V and
bχ = 1, namely,

(16.7) ∂tΛ + V ∂zΛ = −1,

with terminal condition (16.3). If the inflow condition were ∂νΛ = 0 then the method
of characteristics would yield the solution Λ(z, t) = t∗ − t for the resulting transport
problem. Such a Λ is an upper bound for the actual solution ψ ≥ 0 of (16.7) satisfying
∂νψ ≤ 0 on ΓL. We then see that ψ is bounded uniformly in V , and expect a boundary
layer of size 1/V due to the outflow Dirichlet condition on Γ0 and the presence of non-
vanishing diffusion (16.5) near Γ0; so |∂νψ| ≤ CV on Γ0. We now set A = ‖χ ‖L∞(Q∗),
and proceed to justify these heuristic arguments.
The proof of all following a priori L∞ estimates are based on choosing an appropriate
barrier function and using a comparison principle. To show the principle, the first (and
simplest) proof is shown, all other ones are omitted.

Lemma 16.2. The following a priori bound is valid

‖ψ ‖L∞(Q∗) ≤ β
1/2
2 t∗‖χ ‖L∞(Q∗).

Proof. Consider the barrier function Λ(t) = β
1/2
2 A(t∗ − t). In view of (H1), we easily get

Lδ(Λ ± ψ) = −β1/2
2 A∓ b1/2χ ≤ 0.

Since Λ ± ψ ≥ 0 on Γ0 × (0, t∗) and Ω × {t∗}, along with

∂ν(Λ ± ψ) + q(Λ ± ψ) = qΛ ≥ 0,

where q = v
bδ

on ΓL × (0, t∗) and q = p on ΓN × (0, t∗), the strong maximum principle
yields the desired estimate

Λ ± ψ ≥ 0 in Q∗. �

To obtain a bound for ∂zψ on Γ0 we modify a barrier technique in [89] to allow for variable
velocity v(t). We also explicitly trace the dependence on V and t∗.
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Lemma 16.3. There exists C independent of V and T such that the following a priori
bound is valid for all 0 ≤ t∗ ≤ T

(16.8) |∂νψ| ≤ CV t∗‖χ ‖L∞(Q∗) on Γ0 × (0, t∗).

It turns out that we also need a bound on the tangential derivative ∂yψ on ΓL, which
cannot be derived with a barrier technique. To this end we first prove a local gradient
estimate in the vicinity of ΓL, namely on the sets ω1 := Γ × (L − ε1, L), ω0 := Γ × (L−
ε1/2, L). Let ζ ∈ C∞(R) be a cut-off function satisfying

0 ≤ ζ ≤ 1, ζ(s) = 0 ∀ −∞ < s ≤ L− ε1, ζ(s) = 1 ∀ L− ε1

2
≤ s <∞.

Lemma 16.4. Let (16.6) hold for both b and bδ. We then have the gradient estimate

(16.9)

∫ t∗

0

∫

ω1

ζ2|∇ψ|2 +

∫ t∗

0

∫

ΓL

vψ2 ≤ Ct3∗‖χ ‖2
L∞(Q∗).

Lemma 16.5. Let (16.6) hold for both b and bδ. Then there exists C > 0 independent of
V and t∗ such that the following a priori bounds are valid for all 0 ≤ t∗ ≤ T

max
0≤t≤t∗

‖∇ψ(·, t) ‖2
L2(Ω) +

∫ t∗

t

∫

Ω

bδ|∆ψ|2dxdt+

∫ t∗

t

∫

ΓL

v|∇ψ|2dσdt ≤ CV 3t3∗‖χ ‖2
L∞(Q∗).

Corollary 16.2. Let (16.6) hold for both b and bδ. Then there exists C > 0 independent
of V and t∗ such that the following a priori bounds are valid for all 0 ≤ t∗ ≤ T

∫ t∗

0

∫

Ω

|∂tψ + v(t)∂zψ|2dxdt ≤ CV 3t3∗‖χ ‖2
L∞(Q∗).

Corollary 16.3. Let (16.6) hold for both b and bδ. Then there exists C > 0 independent
of V and t∗ such that the following a priori bounds are valid for all 0 ≤ t∗ ≤ T

∫ t∗

0

δ‖D2ψ ‖2
L2(Ω)dt ≤ CV 3t3∗‖χ ‖2

L∞(Q∗).

16.5 Dirichlet Inflow Condition

Throughout this section we assume that (16.3) is enforced. As in §16.4, we first examine
the behavior of the simplified PDE (16.7) with inflow boundary condition ψ = 0 on ΓL. If
we allow t∗ = ∞, then the method of characteristics gives the solution ψ(z, t) = (L−z)/V .
Due to the effect of the terminal condition ψ = 0 at t = t∗ <∞, such a solution is larger
than the actual one, and both exhibit an outflow boundary layer of size 1/V near Γ0.
Since the size of the solution is also about 1/V , we expect ∂zψ to be bounded uniformly in
V on Γ0. This heuristic reasoning is made rigorous below. We set again A = ‖χ ‖L∞(Q∗).
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Lemma 16.6. The following a priori bound is valid for all x ∈ Ω̄ and 0 ≤ t ≤ t∗ ≤ T

|ψ(x, t)| ≤ β
1/2
2 L

v0V
‖χ ‖L∞(Q∗).

A direct consequence of the barrier and comparison principle used for proving the last
lemma and Λ = 0 on ΓL × (0, t∗) is that

(16.10) |∂νψ| ≤
β

1/2
2

v0V
‖χ ‖L∞(Q∗) on ΓL × (0, t∗).

A similar bound holds on the outflow boundary Γ0.

Lemma 16.7. There exists C > 0 independent of V and t∗ such that for all 0 ≤ t∗ ≤ T

(16.11) |∂νψ| ≤ C‖χ ‖L∞(Q∗) on Γ0 × (0, t∗).

Lemma 16.8. There exists C > 0 independent of V and t∗ such that for all 0 ≤ t∗ ≤ T

max
0≤t≤t∗

‖∇ψ(·, t) ‖2
L2(Ω) +

∫ t∗

0

∫

Ω

bδ|∆ψ|2dxdt ≤ CV t∗‖χ ‖2
L∞(Q∗).

Corollary 16.4. There exists C > 0 independent of V and t∗ such that for all 0 ≤ t∗ ≤ T

∫ t∗

0

∫

Ω

(

|∂tψ + v(t)∂zψ|2 + δ|D2ψ|
)

dxdt ≤ CV t∗‖χ ‖2
L∞(Q∗).

16.6 Discontinuous p

We investigate the effect in 2d of a finite number of discontinuities of p along ΓN ; this
corresponds to abrupt changes in the cooling conditions as in the examples of §7. The
estimates above remain all valid except for those in Corollaries 16.3 and 16.4, which
involve second derivatives of ψ.
Using the intrinsic definition of fractional Sobolev spaces, together with the fact that
p is piecewise W 1,∞ over ΓN , results in ∂νψ = −pψ ∈ H1/2−ε in a vicinity of such
discontinuities for ε > 0. Elliptic regularity theory implies [64, p.188], [44]

(16.12)

∫ t∗

0

δ‖ψ‖2
H2−ε(Ω)dt ≤ CεV

kt∗
k‖χ ‖2

L∞(Q∗) ∀ ε > 0,

where k = 3, 1 for the Neumann and Dirichlet conditions, respectively. There is thus a
slight loss of regularity with respect to the smooth case for both boundary conditions.
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16.7 Error Representation Formula

We now derive an explicit representation formula for the error ‖ β(u)−β(U) ‖L1(Q∗) based
on the linear backward parabolic problem (16.3)-(16.3). We only assume that U(·, t) is
piecewise constant, so the derivation below applies to the solution U of (16.3).
We first multiply (16.3) by −(u−U), and integrate in space and time from 0 to t∗ = tm.
We examine the various contributions in turn. Since U is piecewise constant in time, we
have

−
∫ tm

0

〈∂tψ, u− U〉 =

∫ tm

0

(

〈ψ, ∂t(u− Û)〉 + 〈∂tψ, U − Û〉
)

dt+ 〈ψ0, u0 − U0〉.

Integrating by parts we get

−
∫ tm

0

〈v(t), ∂zψ(u− U)〉 =

∫ tm

0

v(t)〈ψ, ∂z(u− U)〉 −
∫ tm

0

v(t)〈〈ψ, u− U〉〉ΓL
,

and using (16.1) we also obtain

−
∫ tm

0

〈bδ∆ψ, u− U〉 =

∫ tm

0

〈∇ψ,∇(β(u)− β(U))〉

−
∫ tm

0

〈〈∂νψ, β(u) − β(U)〉〉 +

∫ tm

0

〈(b− bδ)∆ψ, u− U〉.

Since

b1/2|u− U | = |β(u) − β(U)|1/2|u− U |1/2 ≥ β
−1/2
2 |β(u) − β(U)|,

collecting these estimates, and making use of (16.5), we easily end up with

(16.13) ‖ β(u) − β(U) ‖L1(Qm) ≤ β
1/2
2 sup

χ∈L∞(Qm)

|R(ψ)|
‖χ‖L∞(Qm)

,

where R, the parabolic residual, is the following distribution

R(ψ) = 〈u0 − U0, ψ0〉 +

∫ tm

0

〈U − Û , ∂tψ〉dt+

∫ tm

0

〈u− U, (b− bδ)∆ψ〉dt

−
∫ tm

0

(

〈∂tÛ + v(t)∂zU, ψ〉 + 〈∇β(U),∇ψ〉
)

dt

−
∫ tm

0

(

〈〈p(β(U) − θext), ψ〉〉ΓN
+ 〈〈∂νψ, gD − β(U)〉〉Γ0 − 〈〈gN , ψ〉〉ΓL

)

dt.

We conclude that an estimate of the error solely depending on discrete quantities and
data may be obtained upon evaluating R in suitable negative Sobolev norms. The latter
are dictated by the a priori bounds of §§16.4 and 16.5. This program is carry out in §16.9
for the fully discrete solution U of (16.3).
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16.8 A Posteriori Error Analysis

We first introduce the interior residual Rn and boundary residual Bn:

Rn :=
Un − InŪn−1

τn
, Bn :=

{
∂νΘ

n + Inpn(Θn − Inθn
ext) on ΓN ,

∂νΘ
n − Ingn

N on ΓL.

Theorem 16.1. (Neumann Outflow) Let (16.2) be enforced and Θn ≤ −ρ1 in Γ ×
[L − ε1, L] for any n ≥ 1. Then there exists a constant C > 0 independent of V and tm

such that the following a posteriori error estimate holds for all tm ∈ [0, T ],

(16.1)

∫ tm

0

‖ β(u) − β(U) ‖L1(Ω)dt ≤ C(V tm)3/2
(

E0 +

10∑

i=5

Ei +
(

Λm

4∑

i=1

Ei

)1/2)

,

where

(16.2) Λm =
( m∑

n=1

τn
(
1 + λ|Ω| + ‖Θn ‖2

L2(Ω)

))1/2
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and the error indicators Ei are given by

E0 := (V 3tm)−1/2‖ u0 − U0 ‖L1(Ω) initial error,

E1 :=
( m∑

n=1

τn‖| h3/2[[∇Θn]] ‖|2L2(Ω)

)1/2

jump residual,

E2 :=
( m∑

n=1

τn‖ h2Rn ‖2
L2(Ω)

)1/2

interior residual,

E3 :=
( m∑

n=1

τn‖| h3/2Bn ‖|2L2(∂Ω\ΓD)

)1/2

boundary residual,

E4 :=
( m∑

n=1

τn‖ β(Un) − Inβ(Un) ‖2
L2(Ω)

)1/2

constitutive relation,

E5 :=
( m∑

n=1

τn‖Un − InUn−1 ‖2
L2(Ω)

+
m∑

n=1

τn
V 2

‖Un − InUn−1 ‖2
L2(ΓL)

)1/2

time residual,

E6 :=
( m∑

n=1

τn‖Un−1 − InUn−1 ‖2
L2(Ω)

+

m∑

n=1

τn
V 2

‖Un−1 − InUn−1 ‖2
L2(ΓL)

)1/2

coarsening,

E7 := (V 3tm)−1/2
m∑

n=1

τn‖Rn − (∂tÛ + v(t)∂zÛ) ‖L1(Ω) characteristic residual,

E8 :=

m∑

n=1

τn‖ h2∇Rn ‖L2(Ω) interior quadrature,

E9 :=
m∑

n=1

τn‖| h3/2(Θn − Inθn
ext) ‖|H1(ΓN )

+
( m∑

n=1

τn
V
‖| h2∂y(I

ngn
N) ‖|2L2(ΓL)

)1/2

boundary quadrature,

E10 := (V 3tm)−1/2

m∑

n=1

∫ tn

tn−1

‖ θext − Inθn
ext ‖L1(ΓN )

+(V 3tm)−1/2
m∑

n=1

∫ tn

tn−1

‖ p− Inpn ‖L∞(ΓN )‖Θn − θext ‖L1(ΓN )

+(V 3tm)−1/2

m∑

n=1

∫ tn

tn−1

‖ gN − Ingn
N ‖L1(ΓL)

+(V tm)−1/2
m∑

n=1

∫ tn

tn−1

‖ gD − Ingn
D ‖L1(Γ0) boundary discretization.

Theorem 16.2. (Dirichlet Outflow) Let (16.3) be satisfied. Then there exists a
constant C > 0 independent of V and tm such that the following a posteriori error
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estimate holds for all tm ∈ [0, T ],

(16.3)

∫ tm

0

‖ β(u) − β(U) ‖L1(Ω)dt ≤ C(V tm)1/2
(

E0 +

10∑

i=5

Ei +
(

Λm

4∑

i=1

Ei

)1/2)

,

where Λm is defined in (16.2) and the error indicators Ei are given by

E0 := (V 3tm)−1/2‖ u0 − U0 ‖L1(Ω) initial error,

E1 :=
( m∑

n=1

τn‖| h3/2[[∇Θn]] ‖|2L2(Ω)

)1/2

jump residual,

E2 :=
( m∑

n=1

τn‖ h2Rn ‖2
L2(Ω)

)1/2

interior residual,

E3 :=
( m∑

n=1

τn‖| h3/2Bn ‖|2L2(∂Ω\ΓD)

)1/2

boundary residual,

E4 :=
( m∑

n=1

τn‖ β(Un) − Inβ(Un) ‖2
L2(Ω)

)1/2

constitutive relation,

E5 :=
( m∑

n=1

τn‖Un − InUn−1 ‖2
L2(Ω)

)1/2

time residual,

E6 :=
( m∑

n=1

τn‖Un−1 − InUn−1 ‖2
L2(Ω)

)1/2

coarsening,

E7 := (V 3tm)−1/2

m∑

n=1

τn‖Rn − (∂tÛ + v(t)∂zÛ) ‖L1(Ω) characteristic residual,

E8 :=
m∑

n=1

τn‖ h2∇Rn ‖L2(Ω) interior quadrature,

E9 :=

m∑

n=1

τn‖| h3/2(Θn − Inθn
ext) ‖|H1(ΓN ) boundary quadrature,

E10 := (V 3tm)−1/2
m∑

n=1

∫ tn

tn−1

‖ θext − Inθn
ext ‖L1(ΓN )

+(V 3tm)−1/2
m∑

n=1

∫ tn

tn−1

‖ p− Inpn ‖L∞(ΓN )‖Θn − θext ‖L1(ΓN )

+(V 3tm)−1/2

m∑

n=1

∫ tn

tn−1

‖ gD − Ingn
D ‖L1(ΓL)

+(V tm)−1/2
m∑

n=1

∫ tn

tn−1

‖ gD − Ingn
D ‖L1(Γ0) boundary discretization.

Remark 5.1. We note that the quantity Λm in the estimates involves the L2 norm of
the discrete temperature which is difficult to localize in practical computations. This
bound, clearly achieved experimentally, can be proved by an a priori stability analysis
which incorporates mesh changes.
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Remark 5.2. If the meshes Mn are of weakly acute type, or equivalently the stiffness
matrix (∇φi,∇φj)i,j is an M-matrix, then the discrete maximum principle holds and
guarantees the uniform boundedness of Θn; thus Λm ≤ C

√
tm. If for all inter element

sides e and corresponding pair of adjacent simplexes, the sum of angles opposite to e does
not exceed π, then Mn is weakly acute in 2D. Such a condition is not very restrictive in
practice since it can be enforced with automatic mesh generators as long as the initial
mesh exhibits this property.

16.9 Residuals

The error analysis hinges on the crucial estimate (16.13). To express the oscillatory char-
acter of R in (16.14), we resort to Galerkin orthogonality. This replaces the evaluation
of R in negative Sobolev spaces by that on positive spaces plus weights depending on
the mesh size h and the regularity of ψ. We first rewrite the discrete problem (16.3), for
tn−1 < t ≤ tn, φ ∈ V0, and ϕ ∈ Vn

0 , as follows:

(16.4)

〈∂tÛ + v(t)∂zU, φ〉 + 〈∇Θ,∇φ〉 + 〈〈p(Θ − θext), φ〉〉ΓN
− 〈〈gN , φ〉〉ΓL

= 〈∂tÛ + v(t)∂zÛ − τ−1
n (Un − InŪn−1), φ

〉

+ v(t)〈∂z(U − Û), φ〉
+ 〈Rn, φ− ϕ〉
+ 〈∇Θn,∇(φ− ϕ)〉 + 〈〈Inpn(Θn − Inθn

ext), φ− ϕ〉〉ΓN
− 〈〈Ingn

N , φ− ϕ〉〉ΓL

+
(

〈Rn, ϕ〉 − 〈Rn, ϕ〉n
)

+
(

〈〈Inpn(Θn − Inθn
ext), ϕ〉〉ΓN

− 〈〈Inpn(Θn − Inθn
ext), ϕ〉〉nΓN

)

+
(

〈〈Ingn
N , ϕ〉〉nΓL

− 〈〈Ingn
N , ϕ〉〉ΓL

)

+ 〈〈(p− Inpn)(Θn − θext) + Inpn(Inθn
ext − θext), φ〉〉ΓN

+ 〈〈Ingn
N − gN , φ〉〉ΓL

.

This is the so-called Galerkin orthogonality, and reflects the essential property that the
left-hand side is small in average. We next take φ = ψ and realize that to define ϕ
we need to interpolate ψ under minimal regularity assumptions. We thus resort to the
Clément interpolation operator Πn : L2(Ω) → Vn

0 , which satisfies the following local
approximation properties [22], for k = 1, 2,

‖ψ − Πnψ‖L2(S) + hS‖∇(ψ − Πnψ)‖L2(S) ≤ C∗hk
S‖ψ‖Hk(S̃),

‖ψ − Πnψ‖L2(e) ≤ C∗hk−1/2
e ‖ψ‖Hk(S̃),

where S̃ is the union of all elements surrounding S ∈ Mn or e ∈ Bn. The constant
C∗ depends solely on the minimum angle of the mesh Mn. An important by-product
of shape regularity of Mn is that the number of adjacent simplexes to a given one is
bounded by a constant A independent of n, mesh-sizes and time-steps. Hence

∑

S∈Mn

‖ξ‖2
L2(S̃)

≤ A‖ξ‖2
L2(Ω) ∀ ξ ∈ L2(Ω).
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This, in conjunction with (16.5) for k = 1, yields the H1-stability bound

(16.5) ‖∇Πnψ(·, t)‖L2(Ω) ≤ (1 + C∗A1/2)‖∇ψ(·, t)‖L2(Ω).

Consequently, we select ϕ in (16.4) to be

ϕ(·, t) = Πnψ((·, t)) ∀tn−1 < t ≤ tn.

Since β(Un) = αUn = Inβ(Un) on ΓL, we then obtain an explicit expression for the
residual R(ψ) =

∑12
i=0 Ri(ψ) of (16.14), where

(16.6)
R0(ψ) = 〈u0 − U0, ψ

0〉,

R1(ψ) =
m∑

n=1

∫ tn

tn−1

〈∇Θn,∇(Πnψ − ψ)〉dt,

R2(ψ) =
m∑

n=1

∫ tn

tn−1

〈Rn,Πnψ − ψ〉dt,

R3(ψ) =
m∑

n=1

∫ tn

tn−1

〈〈Bn − ∂νΘ
n,Πnψ − ψ〉〉dt,

R4(ψ) =

m∑

n=1

∫ tn

tn−1

(

〈∇(Inβ(Un) − β(Un)),∇ψ〉 − 〈〈Inβ(Un) − β(Un)), ∂νψ〉〉
)

dt,

R5(ψ) =

m∑

n=1

∫ tn

tn−1

(

〈U − Û , ∂tψ〉 − v(t)〈∂z(U − Û), ψ〉
)

dt,

R6(ψ) =

m∑

n=1

∫ tn

tn−1

〈τ−1
n (Un − InŪn−1) − ∂tÛ − v(t)∂zÛ , ψ〉dt,

R7(ψ) =

m∑

n=1

∫ tn

tn−1

(

〈Rn,Πnψ〉n − 〈Rn,Πnψ〉
)

dt,

R8(ψ) =
m∑

n=1

∫ tn

tn−1

(

〈〈Inpn(Θn − Inθn
ext),Π

nψ〉〉nΓN
− 〈〈Inpn(Θn − Inθn

ext),Π
nψ〉〉ΓN

)

dt,

R9(ψ) =
m∑

n=1

∫ tn

tn−1

(

〈〈Ingn
N ,Π

nψ〉〉ΓL
− 〈〈Ingn

N ,Π
nψ〉〉nΓL

)

dt,

R10(ψ) =

m∑

n=1

∫ tn

tn−1

〈〈(Inpn − p)(Θn − θext) + Inpn(θext − Inθn
ext), ψ〉〉ΓN

dt,

R11(ψ) =

m∑

n=1

∫ tn

tn−1

(

〈〈gN − Ingn
N , ψ〉〉ΓL

+ 〈〈Ingn
D − gD, ∂νψ〉〉Γ0

)

dt,

R12(ψ) =

∫ tm

0

〈u− U, (b− bδ)∆ψ〉dt.
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The rest of the argument consists of estimating each term Ri(ψ) separately. We rely on
the regularity results of §16.4.
We decompose the integral 〈∇Θn,∇(Πnψ − ψ)) over all elements S ∈ Mn and next
integrate by parts to obtain the equivalent expression

(16.7) 〈∇InΘn,∇(Πnψ − ψ)〉 =
∑

e∈Bn

〈〈[[Θn]]e, ψ − Πnψ〉〉e + 〈〈∂νΘ
n,Πnψ − ψ〉〉,

where 〈〈·, ·〉〉e denotes the L2-scalar product on e ∈ Bn, and [[Θn]]e is defined in (16.4). In
view of (16.5), we obtain

m∑

n=1

∫ tn

tn−1

∑

e∈Bn

〈〈[[Θn]]e, ψ − Πnψ〉〉e ≤ C

m∑

n=1

∫ tn

tn−1

‖| h3/2[[Θn]]e ‖|L2(Ω)‖D2ψ ‖L2(Ω).

Since the last term in (16.7) cancels out with a similar one in R3(ψ), adding R1(ψ) and
R3(ψ) and using (16.5) with k = 2 again, in conjunction with Corollary 16.3, we get

|R1(ψ) + R3(ψ)| ≤ C(V tm)3/2δ−1/2‖χ ‖L∞(Qm)

(

E1 + E3

)

.

For R2(ψ) we employ (16.5) with k = 2 and Corollary 16.3 to arrive at

|R2(ψ)| ≤ C
m∑

n=1

∫ tn

tn−1

‖ h2Rn ‖L2(Ω)‖D2ψ ‖L2(Ω) ≤ C(V tm)3/2δ−1/2‖χ ‖L∞(Qm)E2.

To estimate R4(ψ), we integrate by parts and then use Lemma 16.5. We have

|R4(ψ)| ≤
m∑

n=1

∫ tn

tn−1

‖ Inβ(Un) − β(Un) ‖L2(Ω)‖∆ψ ‖L2(Ω) ≤ C(V tm)3/2δ−1/2‖χ ‖L∞(Qm)E4.

These are all the terms involving δ−1/2. The remaining terms require lower regularity of
ψ and are thus independent of δ, except for R12 which is also of different character.
If l(t) is the piecewise linear function l(t) := τ−1

n (tn − t), then U − Û = l(t)(Un − Un−1).
Consequently, integration by parts and the fact that ψ = 0 on Γ0 yield

−v(t)〈∂z(U − Û), ψ〉 = l(t)〈Un − Un−1, v(t)∂zψ〉 − l(t)〈〈Un − Un−1, v(t)ψ〉〉ΓL
.

Coupling the first term on the right-hand side with the remaining one in R5(ψ), and
writing Un − Un−1 = (Un − InUn−1) + (InUn−1 − Un−1), we obtain with the aid of
Corollary 16.2

m∑

n=1

∫ tn

tn−1

l(t)〈Un − Un−1, ∂tψ + v(t)∂zψ〉dt

≤ C(E5 + E6)
(∫ tm

0

‖ ∂tψ + v(t)∂zψ ‖2
L2(Ω)

)1/2

≤ C(V tm)3/2‖χ ‖L∞(Qm)(E5 + E6).
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This is an essential step because neither ∂tψ nor ∂zψ are smooth alone, but rather their
special combination above. In light of Lemma 16.4, the remaining boundary term in
R5(ψ) gives rise to

−
m∑

n=1

∫ tn

tn−1

l(t)〈〈Un − Un−1, v(t)ψ〉〉ΓL

≤
( m∑

n=1

τnV

2
‖Un − Un−1 ‖2

L2(ΓL)

)1/2(
∫ tm

0

‖ v1/2ψ ‖2
L2(ΓL)

)1/2

≤ C(V tm)3/2‖χ ‖L∞(Qm)(E5 + E6).

The term R6(ψ) is easy to handle by Lemma 16.2, namely,

|R6(ψ)| ≤
m∑

n=1

∫ tn

tn−1

‖ τ−1
n (Un − InŪn−1) − ∂tÛ − v(t)∂zÛ ‖L1(Ω)‖ψ ‖L∞(Ω)

≤ C(V tm)3/2‖χ ‖L∞(Qm)E7.

The next three terms R7(ψ) to R9(ψ) represent the effect of quadrature, and can be
treated via (16.3) and (16.3). Hence, (16.5) and Lemma 16.5 imply

|R7(ψ)| ≤ C
m∑

n=1

∫ tn

tn−1

‖ h2∇Rn ‖L2(Ω)‖∇ψ ‖L2(Ω) ≤ C(V tm)3/2‖χ ‖L∞(Qm)E8,

|R8(ψ)| ≤ C
m∑

n=1

∫ tn

tn−1

‖ Inpn ‖W 1,∞(ΓN )‖| h3/2(Θn − Inθn
ext) ‖|H1(ΓN )‖ψ ‖H1(Ω)

≤ C(V tm)3/2‖χ ‖L∞(Qm)E9.

Moreover, if we modify the boundary values of Πnψ by using the L2 local projection over
the sets supp(φk)∩ ∂Ω instead of supp(φk), where {φk}k is the canonical basis of Vn, we
achieve optimal approximability over ∂Ω. If we now use Lemma 16.5, we obtain

|R9(ψ)| ≤ CV −1/2

m∑

n=1

∫ tn

tn−1

‖| h2∂y(I
ngn

N) ‖|L2(ΓL)‖ v1/2∂yψ ‖L2(ΓL) ≤ C(V tm)3/2‖χ ‖L∞(Qm)E9.

In addition, Lemma 16.2 yields

|R10(ψ)| ≤ ‖ψ ‖L∞(Qm)

m∑

n=1

∫ tn

tn−1

(

‖ Inpn − p ‖L∞(ΓN )‖Θn − θext ‖L1(ΓN )

+ ‖ Inpn ‖L∞(ΓN )‖ θext − Inθn
ext ‖L1(ΓN )

)

dt ≤ C(V tm)3/2‖χ ‖L∞(Qm)E10,

and

|R11(ψ)| ≤
m∑

n=1

∫ tn

tn−1

(

‖ gN − Ingn
N ‖L1(ΓL)‖ψ ‖L∞(ΓL) + ‖ gD − Ingn

D ‖L1(Γ0)‖ ∂νψ ‖L∞(Γ0)

)

dt

≤ C(V tm)3/2‖χ ‖L∞(Qm)E10.
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The last residual R12(ψ) is of different nature from those above. We notice that (H1)
and the a priori bound ‖ θ ‖L2(Qm) ≤ C imply

‖ u− Un ‖2
L2(Ω) ≤ C

(

λ|Ω| + ‖Θn − θ ‖2
L2(Ω)

)

≤ C
(

1 + λ|Ω| + ‖Θn ‖2
L2(Ω)

)

=: CΞ2
n,

whence Lemma 16.5 yields

|R12(ψ)| ≤ Cδ1/2
( m∑

n=1

τnΞ2
n

)1/2(
∫ tm

0

‖ b1/2
δ ∆ψ ‖2

L2(Ω)dt
)1/2

≤ Cδ1/2(V tm)3/2Λm‖χ ‖L∞(Qm).

16.10 Proof of Theorem 16.1

Collecting the above estimates for Ri(ψ), and inserting them back into (16.13), we obtain

∫ tm

0

‖ β(u) − β(U) ‖L1(Ω)dt ≤ C(V tm)3/2
(

E0 +

10∑

i=5

Ei + q(δ)
)

,

where

q(δ) = δ−1/2
4∑

i=1

Ei + δ1/2Λm.

The asserted estimate follows from optimizing q(δ), namely from choosing δ = Λ−1
m

∑4
i=1 Ei.

16.11 Proof of Theorem 16.2

We first notice that the residual R(ψ) of (16.14) remains unaltered provided we remove
〈〈gN , ψ〉〉ΓL

and change Γ0 by ΓD = Γ0 ∩ ΓL. The equality (16.4), expressing Galerkin
orthogonality, is also valid provided all terms containing gN are eliminated. We proceed
as in §§16.9 and (16.1), but now using the regularity results of §16.5. The assertion
follows immediately.

16.12 Discontinuous p

We examine now the case where p is piecewise Lipschitz as in §§16.6 and 16.16. In view
of (16.12), the estimators in Theorems 16.1 and 16.2 which depend on second derivatives
of ψ change as follows:

E1 :=
( m∑

n=1

τn‖| h3/2−ε[[∇Θn]] ‖|2L2(Ω)

)1/2

,

E2 :=
( m∑

n=1

τn‖ h2−εRn ‖2
L2(Ω)

)1/2

,

E3 :=
( m∑

n=1

τn‖| h3/2−εBn ‖|2L2(∂Ω\ΓD)

)1/2

,

125



for all ε > 0. Moreover, the constants C > 0 in Theorems 16.1 and 16.2 depend also on
ε, whereas the other estimators do not change.

16.13 Performance

In this section we explain how the estimators from §16.8 can be used for mesh and
time-step modification, and document the performance of the resulting adaptive method.

16.14 Localization and adaption

For parabolic problems the aim of adaptivity is twofold: equidistribution of local errors in
both space and time. We refer to [34],[33] for strictly parabolic problems and to [78],[81]
for degenerate parabolic problems. On the basis of the a posteriori error estimates of
§16.8, we can now design an adaptive method that meets these two goals and also keeps
the error below a given tolerance.
The error estimators Ei of both Theorems 16.1 and 16.2 can be split into contributions
En

i (S) for each element S and time tn, and collected together to give rise to element
indicators; see [78] for details. This way the error estimate is rewritten as

err :=

∫ tm

0

‖ β(u)− β(U) ‖L1(Ω)dt ≤
∑

S∈M0

η0
S + max

n=1,...,m

(

ηn
τ +

( ∑

S∈Mn

(ηn
S)2
)1/2)

,

where ηn
τ includes all error indicators of time discretization (from E5, E7, E10) and ηn

S is
the local indicator on element S of space discretization errors. We use them to equidis-
tribute the space contributions by refinement/coarsening of the mesh Mn and the time
contributions by modifying the time step τn. Given a tolerance tol for the error err, the
adaptive method adjusts time step sizes τn and adapts the meshes Mn so as to achieve

(16.1) η0
S ≤ Γ0 tol

#M0
, ηn

τ ≤ Γτ tol, ηn
S ≤ Γh tol√

#Mn
,

where Γ0 + Γτ + Γh ≤ 1 are given parameters for the adaptive method. The mesh
adaption in each time step is performed by local refinement and coarsening: all elements
S violating (16.1) must be refined and those S with local indicators much smaller than
the local tolerance may be coarsened. The time step may be enlarged in the latter
case. The implementation uses local mesh refinement by bisectioning of elements; local
mesh coarsening is the inverse operation of a previous local refinement. As meshes are
nested, the interpolation of discrete functions such as Un−1 and ¯Un−1 between consecutive
meshes during local refinement or coarsening is a very simple operation. One new degree
of freedom at the midpoint of the bisected edge is inserted during each local refinement,
while one degree of freedom is deleted during a local coarsening. No other degrees of
freedom are involved in such local operations.
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16.15 Example: Traveling wave

An explicit solution for the nonlinearity β(u) = min(u, 0) + max(u− 1, 0) is given by the
traveling wave

β(u(x, y, t)) =

{
(1 − exp(s)) if s ≤ 0 (liquid),
2(1 − exp(s)) if s > 0 (solid),

where s = (ν ·v−V )(ν ·(x, y)−V t),

with ν = (cos(α), sin(α)) and parameters v = (2, 0), V = 0.4, α = π/6; V is the
interface velocity in the normal direction ν. We solve the problem in the domain Ω =
(0.0, 1.0) × (0.0, 0.2) for time t ∈ (1, 2) with Dirichlet boundary condition on ∂Ω. To
avoid any mesh effects, the interface normal ν is rotated from the horizontal direction by
α. This way ν is never parallel to any mesh edge. As the domain in the applications of
Section 16.16 has a very large aspect ratio, we explore here the use of elongated elements.
We thus compare simulations with meshes of aspect ratios 1 and 5 originated from the
macro triangulations of Figure 16.1, for the explicit traveling wave solution.
Figures 16.2 and 16.4 show adaptive meshes at time t = 1.1, generated with error toler-
ances tol = 0.5 and tol = 0.25, while Figure 16.3 depicts isothermal lines at the same time;
the latter look the same for all simulations. Figure 16.5 displays the error ||eβ(u)(t)||L1(Ω)

and Figure 16.6 the mesh element counts for simulations with both aspect ratios. Finally,
Figure 16.7 shows the total error for different given tolerances and mesh aspect ratios.
Even though the triangle counts are larger for simulations with larger aspect ratio, the
estimators and the adaptive method behave well. It is thus reasonable to use elongated
elements in the following application. In any event, we do not employ specialized esti-
mators or adaptive methods for anisotropic meshes such as [98]. The application of such
methods to degenerate parabolic equations is still to be investigated.

Figure 16.1: Example 16.15. Macro triangulations with aspect ratios 1 and 5.

Figure 16.2: Example 16.15. Meshes with aspect ratios 1 and 5 for tol = 0.5 at t = 1.1.
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Figure 16.3: Example 16.15. Isothermal lines at β(u) = k/8, k = −16 . . . 3, at t = 1.1.

Figure 16.4: Example 16.15. Meshes with aspect ratios 1 and 5 for tol = 0.25 at t = 1.1.
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Figure 16.5: Example 16.15. ||eβ(u)(t)||L1(Ω) for meshes with aspect ratios 1 (left) and 5
(right).

 

tol = 1.0

tol = 0.5

tol = 0.25

Mn

time

2

5

1e+03

2

1.00 1.50 2.00

 

tol = 1.0

tol = 0.5

tol = 0.25

Mn

time

5

1e+03

2

5

1.00 1.50 2.00

Figure 16.6: Example 16.15. Triangle counts for meshes with aspect ratios 1 (left) and 5
(right).

128



 

R=1

R=5

err x 10-6

tol0.00

200.00

400.00

600.00

0.00 0.50 1.00

Figure 16.7: Example 16.15. ||eβ(u)(t)||L1(L1) for meshes with aspect ratios R = 1, 5.

16.16 Applications to Casting of Steel

We study the casting of a slab in 2D. This problem was proposed in [61], and a sim-
ilar problem with time dependent parameters was studied in [66]. In order to derive
non-dimensional equations (16.1)-(16.3), we first rescale the physical equations with the
material parameters.

16.17 Scaling

In this section, we mark all physical quantities by a tilde. The original equations with
physical coefficients for temperature θ̃ (in units [ ◦K]) and energy density (or enthalpy) ũ
(in units [kg/ms2]) read

∂t̃ũ+ ṽ∂z̃ũ = ∇̃ · (k̃∇̃θ̃) in Ω̃ × (0, T̃ ),

ũ = ρ̃(c̃θ̃ + χ̃λ̃) in Ω̃ × (0, T̃ ),

θ̃ = g̃D on Γ̃0 × (0, T̃ ),

k̃∂ν̃ θ̃ + p̃(θ̃ − θ̃ext) = 0 on Γ̃N × (0, T̃ ),

ũ(·, 0) = ũ0 in Ω̃,

k̃∂ν̃ θ̃ = g̃N on Γ̃L × (0, T̃ )

or θ̃ = g̃D on Γ̃L × (0, T̃ ).

The physical coefficients and their units are: casting speed ṽ [m/s], heat conductivity
k̃ [kgm/s3 ◦K], density ρ̃ [kg/m3], specific heat c̃ [m2/s2 ◦K], latent heat λ̃ [m2/s2], melt-
ing temperature θ̃m [ ◦K], heat transfer coefficient p̃ [kg/s3 ◦K], and external cooling tem-
perature θ̃ext [ ◦K]. Here χ̃ stands for the characteristic function of the liquid phase. In
the remainder of this section, subscripts s and l indicate the corresponding coefficients
for the solid and liquid phase.
The simulations are done over a slab of length L̃ = 25m and height 0.21m. We use
material parameters for steel with 0.09% carbon content. Temperature–dependent data
provided in [61] are approximated by piecewise constant data for the liquid and solid
phase: k̃s = 30 kgm/s3 ◦K, k̃l = 180 kgm/s3 ◦K, c̃s = 660m2/s2 ◦K, c̃l = 830m2/s2 ◦K,
ρ̃ = 7400 kg/m3, λ̃ = 276 000m2/s2, and θ̃m = 1733 ◦K.
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The boundary condition on Γ̃N depends on the position along the slab; the model has
a mold cooling zone (1.15m) and three water spray zones which include radiation. The
(nonlinear) radiation condition (16.4) is linearized by using

(θ̃4 − θ̃4
ext) ≈ (θ̃ − θ̃ext)(θ̃m + θ̃ext)(θ̃

2
m + θ̃2

ext).

The (linear) Robin conditions on Γ̃N in the mold and spray regions are then

−k̃∂ν̃ θ̃ =

{

p̃(θ̃ − θ̃mold) if z̃ < 1.15m,

p̃(θ̃ − θ̃H2O) + σ̃ε(θ̃ − θ̃rad)(θ̃m + θ̃rad)(θ̃
2
m + θ̃2

rad) if z̃ > 1.15m.

Casting and boundary parameters are given in Table 16.1. In this model, the quantities
p and θext exhibit discontinuities along ΓN , which results in hypotheses (H4) and (H5)
not being satisfied. But, as stated in §16.12, the estimators can be adjusted to the case
of piecewise smooth boundary data. On the other hand, a refined model might include
some mollifying effect of water spraying, which removes these discontinuities.

Quantity Value Unit Description
ṽ 0.0225 m

s
casting speed

g̃D 1818 ◦K on Γ̃0: inflow temperature

g̃D 1250 ◦K on Γ̃L: outflow temperature

g̃N 0 kg
s3 on Γ̃L: outflow temperature flux

p̃ 1500 kg
s3 ◦K

on Γ̃N , z̃ ∈ (0, 1.15)m: heat transfer in mold

θ̃mold 353 ◦K mold external temperature

p̃ 700 kg
s3 ◦K

on Γ̃N , z̃ ∈ (1.15, 4.4)m: heat transfer in first spray region

p̃ 350 kg
s3 ◦K

on Γ̃N , z̃ ∈ (4.4, 14.6)m: heat transfer in second spray region

p̃ 50 kg
s3 ◦K

on Γ̃N , z̃ ∈ (14.6, 25)m: heat transfer in third spray region

θ̃H2O 300 ◦K cooling water temperature

σ̃ 5.67 E−8 kg
s3 ◦K4 Stefan–Boltzmann constant

ε 0.8 emission factor

θ̃rad 370 ◦K z̃ ∈ (1.15, 14.6)m: air temperature

θ̃rad 710 ◦K z̃ ∈ (14.6, 25)m: air temperature in third spray region

Table 16.1: Casting and boundary parameters.

Using a length scale X̄ [m] and a time scale T̄ [s], the physical quantities can be trans-
formed into dimensionless ones as follows:

x :=
x̃

X̄
, t :=

t̃

T̄
, u :=

ũ

ρ̃λ̃
− c̃sθ̃m

λ̃
, θ :=

{
c̃s
λ̃
(θ̃ − θ̃m) if θ̃ ≤ θ̃m,

c̃l
λ̃
(θ̃ − θ̃m) if θ̃ ≥ θ̃m,

v :=
ṽT̄

X̄
, k :=

k̃T̄

ρ̃c̃X̄2
, p :=

p̃T̄

ρ̃c̃X̄
, gD :=

c̃

λ̃
(g̃D − θ̃m), gN :=

g̃N T̄

ρ̃λ̃X̄
.
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Using these new quantities, the dimensionless equation reads

ut + v ∂zu− ∆β(u) = 0 in Ω × (0, T ), with β(u) =







ksu if u < 0,
0 if u ∈ [0, 1],
kl(u− 1) if u > 1.

Dirichlet boundary conditions are transformed into

β(u) = k gD on Γ0 × (0, T ),

and the scaled Robin and Neumann conditions are

k ∂νθ + p(θ − θext) = 0 ⇔ ∂νβ(u) +
p

k
(β(u) − kθext) = 0 on ΓN × (0, T ),

∂νβ(u) = gN on ΓL × (0, T ).

After scaling with X̄ = 10m, T̄ = 105 s ≈ 28 h, the non-dimensional domain is of
size 0.021 × 2.5 and the slopes of β are ks = 0.006, kl = 0.029. A temperature range
θ̃ ∈ (1000, 1800) ◦K leads to scaled values |β(u)| = O(10−2), while the scaled latent heat
is λ = 1. The scaled convection speed is v = 225, so convection is dominant. The
simulations run for t ∈ (0, 0.1), which is equivalent to a final time T̃ = 10000s ≈ 2 3

4
h.

Initial conditions are chosen piecewise linear in z direction, with a prescribed initial
position of the interface at z = L/10. This is a convenient but totally unphysical initial
condition: there is liquid in contact to water/air. The long–time behavior does not
depend on the actual choice of initial conditions though.

Figure 16.8: Domain aspect ratio.

Figure 16.9: Adapted mesh for stationary solution, Dirichlet (top) and Neumann (bot-
tom) outflow; vertical scale = 16.

The actual aspect ratio of the domain is depicted in Figure 16.8; so for visualization
purposes, the height of all subsequent domains is scaled by a factor 16. The numerical
simulations start from a macro triangulation of Ω into 20 triangles with aspect ratio
≈ 12. Figures 16.9 and 16.10 compare adapted meshes and graphs of the temperature
for Dirichlet and Neumann outflow conditions with error tolerances tol = 2 and tol = 45,
respectively. It can be easily seen that the Dirichlet outflow condition generates a sharp
boundary layer at ΓL but no oscillations elsewhere; both solutions are indeed very similar
away from ΓL. To avoid this unphysical boundary layer, the following simulations were
all done with a vanishing Neumann outflow condition. We conclude this paper with two
simulations with time-dependent parameters.
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Figure 16.10: Graph of temperature for stationary solution with Dirichlet (top) and
Neumann (bottom) outflow.

16.18 Example: Oscillating Velocity

First, we prescribe a variable casting speed

ṽ(t̃) = 0.0175 + 0.005 ∗ sin(0.00175 t̃) [m/s],

which has a strong influence on the length of the liquid pool inside the slab. The largest
velocity is chosen equal to the constant velocity in the problem with stationary casting
speed; all other parameters are left unchanged. This guarantees that the liquid pool will
not reach the outflow boundary. The variable velocity is shown in Figure 16.11, together
with the number of elements in the adapted meshes M(tn) = #(Mn) and time step
sizes. Due to a longer liquid pool (and interface), there are more mesh elements when the
velocity is larger and a smaller time step size is needed. Figures 16.12 and 16.13 display
adaptive meshes and temperature graphs for t = 0.05 and t = 0.07, corresponding to
large and small velocity values. Some spurious oscillations can be seen in the temperature
graphs near jumps of Robin boundary conditions. They are created by the method of
characteristics which transport such cusps in the z direction. Therefore, an upper bound
of 0.00025 (= 25 s) is imposed in this simulation.
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Figure 16.11: Variable casting speed. Velocity ṽ(t), element count, and time step sizes.
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Figure 16.12: Variable casting speed. Adaptive meshes for t = 0.05 (top) and t = 0.07
(bottom).

Figure 16.13: Variable casting speed. Temperature graphs for t = 0.05 (top) and t = 0.07
(bottom).

16.19 Example: Oscillating Cooling

For constant casting velocity ṽ = 0.0225m/s, we model a varying cooling water flow rate
in the second spray region by a time dependent heat transfer coefficient:

p̃(t̃) = 550 + 200 sin(0.00175 t̃) [kg/s3 ◦K] on ΓL, z̃ ∈ (4.4, 14.6)m.

Again, this has an influence on the length of the liquid pool inside the slab, which gets
longer when the cooling coefficient is smaller, thereby representing a reduced water flow.
Figure 16.14 shows the varying parameter p̃(t) and the corresponding mesh element
counts. Adaptive meshes and temperature graphs for t = 0.05 and t = 0.07 are displayed
in Figures 16.15 and 16.16. As the liquid pool length does not depend so strongly on
p̃(t) as it did on ṽ(t), the mesh element count changes only slightly in this example; the
larger changes for t < 0.02 are due to the given initial conditions. The time step size is
not shown but equals the given upper bound 0.00025 for t > 0.02. The oscillations in
Figure 16.16 near jumps of Robin boundary conditions along ΓN uncover the undesirable
condition vτ � h for the method of characteristics. We show the beneficial effect of
reducing the time step in the bottom picture of Figure 16.16. This graph corresponds to
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t = 0.05 for a simulation with smaller tolerance for the time error estimate, which leads
to a time step size τ = 0.00006 (= 6 s) for t > 0.025: vτ < h holds and the oscillations
are removed.

 
heat transfer

0.00

500.00

time
0.00 0.05 0.10

 

M x 103

0.00

5.00

10.00

15.00

time
0.00 0.05 0.10

Figure 16.14: Variable cooling. Heat transfer coefficient p̃(t) and element counts.

Figure 16.15: Variable cooling. Adaptive meshes for t = 0.05 (top) and t = 0.07 (bottom).

Figure 16.16: Variable cooling. Temperature graphs for t = 0.05 (top) and t = 0.07
(middle); Simulation with smaller time step size for t = 0.05 (bottom).

134



17 Mathematical modeling of thermal cutting

17.1 Introduction

There is a wide range of thermal cutting techniques available for the shaping of materi-
als. One example is the plasma cutting. The cutting of the workpiece occurs as a result
of melting/vaporizing the material by an extremely hot cylindrical plasma beam which
burns and melts its way through the material, leaving a kerf in its wake.

The heat transfer from the plasma beam into the material accounts for most of the
phenomena encountered subsequently: shrinkage, residual stresses, metallurgical changes
(e.g. phase transition in the Heat Affected Zone, HAZ), mechanical deformations (e.g.
the cut edge is not square as desired), chemical modifications, etc.

On the other hand the speed of moving plasma beam can cause a formation of high or
low speed drosses, which is another problem as the removal of the dross is an additional
operation which increases the cost of the cutting.

Investigations are needed for the prediction and control of the above mentioned phe-
nomena during the plasma arc cutting process. To get the quantitative description of
the process, one requires a mathematical model for it. Therefore a proper mathematical
model has to be developed which must involve the different physical phenomena occurring
in the cutting workpiece, i.e. heat conduction, convection and radiation effects, mechan-
ical deformations, phase transition, etc.

While experiment reveals the particular features of every process, the developed model
will permit the establishment of the general laws and thus will contribute to the funda-
mental knowledge of the process.

17.2 Problem description and physical modeling

Plasma cutting is desirable for many metal cutting applications. Carbon steels, alu-
minum and stainless steel are some examples of materials cut with thermal plasma.The
heat source for plasma cutting is a high temperature and high velocity stream of partially
ionized gas. The plasma stream appears as a result of a current which passes between
a cathode and an anode workpiece. Due to the current, the plasma gas (mixture of ni-
trogen,hydrogen and argon) is heated to high temperature and the Lorenz forces propel
it down towards the workpiece (anode) in the form of high velocity jet (see figure 17.2).
Typical plasma temperatures are in the range of 10, 000K to 30, 000K.

Anyway, how does the thermal cutting work? The essential idea of cutting is to focus a
lot of power onto a small area of surface of the material producing intense surface heating.
First the material on the surface melts and then evaporates. As the vapor is puffed away
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Figure 17.1: Thermal plasma system

or the molten metal is removed by the high speed gas flow, so a hole develops in the
material (see figure 17.2).

Figure 17.2: Real picture of thermal cutting

The problem which the industry faces at the moment is the deformations of the cut
edges after the material is cut and cooled down. The deformations might be a result of
shrinkage, residual stresses, metallurgical changes (e.g. phase transition), etc. Due to
this deformations, the cut edges are not straight any more which makes a lot of difficulties
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during the further applications of the metal. So, one needs to develop a mathematical
model which must involve the different physical phenomena occurring in the workpiece,
i.e. heat conduction, convection and radiation effects, phase transition, etc. The devel-
oped model will permit the establishment of the general laws and thus contribute to the
fundamental knowledge of the cutting process. Results from the numerical simulations
(verified by the experiments) of the model will provide a quantitative description of the
process. The mathematical model should mainly include the

• temperature field analysis in the workpiece,

• effects of cutting on the geometry of the cut pieces,

• investigation of the properties of the material due to the solid-solid phase change
during the cutting process.

17.3 Mathematical formulation of the problem

Let Ω be a given, open and bounded domain in R
3 occupied by the workpiece, 0 < T <

+∞. Denote: θ(x, t):= the temperature of the workpiece, I := (0, T ), ∂Ω:= the boundary
of Ω which is assumed to be piecewise smooth. The initial temperature distribution of the
workpiece is given by θ0(x), which is less than the melting temperature at all points. For
every t ∈ I the domain Ω is assumed to consist of three non-intersecting parts, namely
Ω = Ωs(t)∪ ∂Ωs(t) ∪Ωc(t), where Ωs(t) and Ωc(t) are the domains occupied by the solid
part of the workpiece and cut cavity at a time instant t, respectively, and ∂Ωs(t) is the
free interface at time t. Let ∂Ωs(t) be also smooth. By ν we shall denote the unit out-
ward normal vector of the domain Ωs(t). Let jabs be the heat flux density absorbed by
the interface due to the plasma beam radiation. In addition to the terms defined above
we will use the following notations: ρ is the density of the workpiece, cs is the specific
heat, k is the heat conductivity of the material, Lm is the latent heat of melting, h is the
linear convective heat transfer coefficient from the surface of the workpiece, θm is the melt-
ing temperature, θa is the ambient temperature, v ≥ 0 is the velocity of the free interface.

With the above mentioned notations and assuming no heat exchange between the work-
piece and the exterior through ∂Ωs(t), the classical mathematical formulation of the
problem is the following:
find the function θ(x, t) ∈ C2

1(Ωs × I) ∩ C(Ωs × I), representing the temperature of the
body, and the piecewise smooth surface ∂Ωs(t) representing the free boundary of the solid
domain Ωs(t) = {x; θ < θm} such that the heat conduction equation is fulfilled

(17.1) ρcs
∂θ

∂t
= ∇ · (k∇θ) x ∈ Ωs(t), t ∈ I

with the following boundary conditions on ∂Ωs(t):
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θ ≤ θm

k∇θ · ν + jabs · ν ≥ 0(17.2)

(θ − θm)(k∇θ · ν + jabs · ν) = 0

called the Signorini boundary conditions, and

−k∇θ · ν + ρLmv · ν = jabs · ν(17.3)

named the Stefan boundary condition,

and corresponding initial conditions

(17.4) θ(x, 0) = θ0(x) < θm x ∈ Ω

(17.5) s(x, 0) = s0

Note that the heat flux density jabs and v are equal to zero on the part of boundary where
no heat input takes place.

Remark 17.1. The Signorini boundary conditions (17.2) imply that at each time instant
t there exist on ∂Ωt two regions where on each region either θ = θm or jabs ·ν = −k∇θ ·ν;
on the regions where jabs · ν > −k∇θ · ν, i.e. the heat flux on the absorbing surface is
greater than the heat conducted into the workpiece, the temperature is equal to the melting
temperature (thus we have θ = θm on this part of the boundary), on the other hand, on the
regions where θ < θm, the entire heat flux absorbed by the interface is conducted within
the material, thus yielding the condition jabs · ν > −k∇θ · ν.
Remark 17.2. The idea behind the Stefan boundary condition is rather simple; the total
heat flux on the interface is decided into two parts: one part is conducted and the other
part is used to melt the material.

Note, that both Signorini and Stefan boundary conditions are non linear. Moreover,
above mentioned regions are not prescribed, resulting in a “free boundary problem”.

Remark 17.3. The above formulated problem could be referred to as a one phase Stefan
problem, although there are some important differences between them. The one-phase
Stefan problem represents a special case of the classical two-phase formulation, with the
temperature constant in one of the phases, assuming the melting value. Here we have
a different situation. First of all, we can not assume the value of the temperature in
the cavity (where the melt is removed) equal to the melting temperature of the solid,
because otherwise the cut edges will continue to melt and move forward, which does not
correspond to the real situation of plasma cutting. Secondly, in our problem an additional
heat source (plasma beam) is applied on the surface of the moving front which is not the
case in classical one-phase Stefan problem.
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17.4 Variational inequalities and the weak formulation of the
problem

The Signorini boundary conditions (17.2) allow us to rewrite the system (17.1)-(17.5)
in the form of variational inequalities (VI). First we introduce some notations and a
small fraction of the known theory of function spaces - just enough to establish the weak
formulation of Stefan-Signorini system.

17.4.1 Notation and Functional Spaces

Since we are only interested in the modeling of solid region, for convenience we will write
Ωt instead of Ωs(t). The time dependent domain Ωt is clearly a bounded open subset of
Ω and Ω = ∪t∈[0,T ]Ωt.

Define by θ(t) the function x → θ(x, t) and let us consider a bilinear form

(17.6) θ, ϕ→ b(θ, ϕ)

(17.7) b(θ, ϕ) =

∫

Ωt

∇θ · ∇ϕdx

which is obviously a continuous, symmetric and coercive form on H1(Ωt) × H1(Ωt).

Let us define

(17.8) V =

{

θ | θ ∈ L
2
(
0, T ;H1(Ωt)

)
, θ′ =

∂θ

∂t
∈ L

2
(

0, T ;
(
H1(Ωt)

)′
)}

Provided with the scalar product

(17.9) (θ, ϕ)L2(0,T ;H1(Ωt)) + (θ′, ϕ′)L2(0,T ;(H1(Ωt))
′),

V is a Hilbert space.

Remark 17.4. The following embedding result of Dautrey and Lions ([63])

(17.10) L
2
(
0, T ;H1(Ω)

)
∩ H

1
(

0, T ;
(
H1(Ω)

)′
)

⊂ C
0
(
0, T ;L2(Ω)

)

implies that any function θ ∈ V is almost everywhere equal to a continuous function from
[0, T ] → L2(Ωt).

Thus, we can define a closed subspace V0 of V in the following form

(17.11) V0 =
{
θ | θ ∈ V, θ(0) = θ0, where θ0 is a given function in L

2(Ω)
}

139



In order to restate the initial problem in the form of variational inequality, we introduce
the set K ⊂ H1(Ωt) which is a closed and convex subset of H1(Ωt)

(17.12) K =
{
ϕ | ϕ ∈ H

1(Ωt), ϕ ≤ θm on ∂Ωt

}

For the functions θ ∈ V we can define their trace on the lateral boundary Γ := ∂Ωt × I
of Q := Ωt × I. Recall that θ|Γ ∈ L2(0, T ;H

1
2 (∂Ωt). The latter allows us to define closed

convex subsets B and B0 in the following way

(17.13) B = {θ | θ ∈ V, θ(t) ∈ K a.e. in[0, T ]}

(17.14) B0 = {θ | θ ∈ V0, θ(t) ∈ K a.e. in[0, T ]}

17.4.2 A VI equivalent of Stefan-Signorini problem

We are interested in the solution of the following problem:
find θ ∈ B0 such that

(17.15)

∫ T

0

∫

Ωt

θ′(ϕ− θ)dxdt+

∫ T

0

∫

Ωt

∇θ · ∇(ϕ− θ)dxdt ≥
∫ T

0

∫

∂Ωt

g(ϕ− θ)dγdt

for all ϕ ∈ B, g ∈ H1(Rn) ∩ L∞(Rn).

It can be easily shown that the problems (17.1)-(17.2), (17.4)-(17.5) and (17.13), (17.14),
(17.15) are equivalent. Another equivalent formulation of the problem can be written in
the following way:
find θ(t) ∈ K for t ∈ I such that

(17.16)

∫

Ωt

θ′(ϕ− θ)dxdt+

∫

Ωt

∇θ · ∇(ϕ− θ)dx ≥
∫

∂Ωt

g(ϕ− θ)dγ

for all ϕ ∈ K, θ(0) = θ0.

Remark 17.5. The condition on θ′ forcing it to belong to the space L
2 ((0, T ; (H1(Ωt)))

seems to be too restrictive. It will be useful to consider a more general weak formulation.
We observe that if θ is a solution of (17.13),(17.14),(17.15) and ϕ ∈ B, then

∫ T

0

∫

Ωt

ϕ′(ϕ− θ)dxdt +

∫ T

0

∫

Ωt

∇θ · ∇(ϕ− θ)dxdt

≥
∫ T

0

(ϕ′ − θ′)(ϕ− θ)dt +

∫ T

0

∫

∂Ωt

g(ϕ− θ)dγdt

≥ −1

2
‖ ϕ(0) − θ0 ‖2 +

∫ T

0

∫

∂Ωt

g(ϕ− θ)dγdt(17.17)

If we now choose the function ϕ from the space B0, then the term − 1
2
‖ ϕ(0)−θ0 ‖2 can be

also avoided. Note that in the problem (17.17) we require only that θ ∈ L2(0, T ;H1(Ωt)),
nothing is said about θ′.
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17.5 Level set formulation

Let assume at the moment that the temperature distribution θ in the workpiece is given.
The problem of finding the second unknown of the Stefan-Signorini problem, namely the
geometry of the cutting front, can be formulated as follows:

Problem 17.1. Find a family of moving interfaces {∂Ωt}t∈(0,T ) such that

−k∇θ · ν + ρLmv · ν = jabs · ν on ∂Ωt(17.18)

∂Ωt|t=0 = ∂Ω0(17.19)

The technique we are going to apply for the investigation of the condition (17.18) is the
level-set theory introduced first by Sethian and Osher ([85]).

17.5.1 Stefan condition as level-set equation

The main idea of level-set method is to embed the evolving front ∂Ωt into a surface, the
level-set surface, which has the property that its zero-level set always yields the desired
moving interface. Thus, in order to find the unknown interface at any time t, we only need
to locate the set for which the level-set surface vanishes. What remains is to introduce
an equation which will describe the motion of the level-set surface. For the derivation of
this equation we follow the steps given in ([70]).

Let Γ0 be the initial interface bounding some open domain. We wish to investigate and
compute its motion under some velocity field which depends on several quantities. The
idea of level-set approach is to introduce a scalar function (level-set function) φ(x, t),
x ∈ R2 such that at any arbitrary time instant t the zero-level set of φ(x, t) is the desired
curve Γt. To obtain the equation for the level-set function we consider some level-set
φ(x, t) = C. The trajectory x(t) of a particle located on this level-set should satisfy the
equation

(17.20) φ(x(t), t) = C.

After differentiating the equation (17.20) we get

(17.21) φt + x′(t)∇φ = 0.

Finally, denoting by w := x′(t) the particle velocity we arrive to the level-set equation

(17.22) φt + w · ∇φ = 0.

In addition to the level-set equation (17.22) we need an initial condition for φ. Taking
into account the fact that the level-set function φ(x, t) is positive for x ∈ Ω, negative
for x /∈ Ω and equal zero on the domain boundary Γt, it is natural to choose the signed
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distance function as a good candidate for the initial value φ(x, t = 0). Thus, the initial
condition for (17.22) takes the form

(17.23) φ(x, 0) =







d(x) for x ∈ Ω
0 for x ∈ Γ0

−d(x) for x /∈ Ω

where d(x) is the distance from the point x to the initial curve Γ0. An example of a
distance function for a circle in the square is illustrated in figure 17.5.1.

Figure 17.3: Distance Function for Circle

Coming back to Stefan condition (17.18), we suppose that the moving interface Γt := ∂Ωt,
which bounds the domain Ωt occupied by the workpiece, is built into a level-set function
φ(x, t). Now we would like to redefine the terms with the help of the just introduced
level-set function φ.

The workpiece: the domain Ω(t) is represented as

Ω(t) = {x; φ(x, t) > 0} .

The cutting interface : the advancing cut front Γt is given by

Γt = {x; φ(x, t) = 0} .
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The unit normal: the unit outward normal ν to Γt has the following level-set repre-
sentation

ν =
∇φ
|∇φ| .

The velocity of interface: the velocity of the moving interface in the normal direction
can be represented as

v · ν = −
∂φ
∂t

|∇φ| .

Indeed, for two dimensional domain (analogy works for any dimension) the interface is
given by

(17.24) φ(x, y, t) = 0.

By chain rule,

(17.25)
dφ

dt
=
∂φ

∂x
· dx
dt

+
∂φ

∂y
· dy
dt

+
∂φ

dt
= 0.

Using the definitions ∇φ =
(

∂φ
∂x
, ∂φ

∂y

)

and v =
(

dx
dt
, dy

dt

)
we arrive to

(17.26) v · ∇φ = −∂φ
dt

But

v · ∇φ = v · ∇φ
|∇φ| · |∇φ| = v · ν · |∇φ|

Thus

v · ν = −
∂φ
∂t

|∇φ| .

The terms in Stefan condition (17.18) are already defined by their level-set representation.
All that remains is to substitute their expressions in (17.18).

−k∇θ · ∇φ
|∇φ| − ρLm

∂φ
∂t

|∇φ| = jabs ·
∇φ
|∇φ|

∂φ

∂t
+

1

ρLm
(jabs + k∇θ) · ∇φ = 0.

We can easily see that the last equation is simply the level-set equation with the velocity
of convection equal to

w :=
1

ρLm

(jabs + k∇θ) .

Note, that w is the velocity on the advancing front and is equal to something arbitrary
elsewhere.
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Remark 17.6. The velocity of propagating interface depends on the heat flux absorbed by
the material at the cutting front, therefore, such parameters like the velocity with which
the plasma beam advances in the cutting direction and the heat flux emitted by the beam
are of central importance. On the other hand, since the molten material is removed
immediately after it appears, the velocity of the front strongly depends on temperature
distribution, more precisely, on the gradient of the temperature on the interface. You
can see also the dependence of velocity on several material parameters which one would
naturally expect.

17.6 Weak formulation of Stefan-Signorini problem

Variational inequalities lead us to following weak formulation of the Stefan-Signorini
problem (17.1)-(17.5):

find the pair (θ(x, t), φ(x, t)) representing the temperature and the moving interface,
respectively, such that

1. θ ∈ B0 and φ ∈ C(Q) with φ(x, 0) = φ0(x) in Ω,

2. ∇θ belongs to the space L2(0, T ;H1(Ωt)),

3. θ ≤ θm on ∂Ωt with θ ∈ L2(0, T ;H2(Gt)) for any Gt with Gt ⊂⊂ Ωt,

4. θ satisfies the inequality

(17.27)

∫ T

0

∫

Ωt

θ′(ϕ− θ)dxdt+

∫ T

0

∫

Ωt

∇θ ·∇(ϕ− θ)dxdt ≥
∫ T

0

∫

∂Ωt

g(ϕ− θ)dγdt

for all ϕ ∈ B, g ∈ H1(Rn) ∩ L∞(Rn),

5. φ is the solution of the equation

(17.28) −
∫

Q

φv′ dxdt+

∫

Q

φv∇ · ω dxdt−
∫

Q

φω · ∇v dxdt =

∫

Ω

φ0v(x, 0) dx

for all v ∈ C1(0, T ;C1
0(Ωt)) with v(x, T ) = 0.

where ω = q + ∇θ is the velocity of the zero level-set of φ.
Following the results in [65] and [15] one can show the existence and uniqueness of the
weak solution of the above problem.

17.7 Heat Flux Density

A feature common to most plasma and laser cutting processes is that they occur as a
result of removing the material by melting and/or vaporization as intense laser light
or a high-temperature, partially ionized gas stream interacts with the material surface.
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The kinetics of those cutting processes are combined mainly by i) the amount of heat
generated by plasma arc or laser beam, and ii) the heat conducted through the workpiece.

Denote:
je - the heat flux density (the quantity of heat flowing across a unit area) emitted from
the arbitrary point Q of the surface of the plasma jet,
jabs - the heat flux density absorbed at the point P of the surface of the workpiece due
to the emission from Q,
r - the radius of the plasma beam (see figure 1).

There are several studies on the heat inputs from the different sources.
In relation to the measurable quantities (current voltage and power) Rosenthal [90] has
made a study of the plasma arc and found that the energy delivered to the workpiece Qw

represents about 65% of the total energy Qt supplied by the arc. Expressed in formula

(17.29) Qp = 0.65Qt = 0.65 · konstant · V Ic

where V is the voltage drop in arc and Ic is the current intensity. Rosenthal discussed in
his paper three types of moving heat sources:point source, line source and plane source,
and for each type he gave the relation between the temperature distribution and heat
Qp delivered to the workpiece. For example, in the case of a point source the relation
obtained is the following

(17.30) θ − θ0 =
Qp

2πk
e−λvξ e

−λvr

r

where ξ = x− vt and 1
2λ

= k
ρc

. Note, that this relation is valid only below θ = θm.

Arai et all [2] described two categories of heat flux density measurements: i)indirect,
measurements made by calculating heat transfer rates, using fundamental theories to-
gether with measurements of temperature and thermo physical properties, and ii) direct
measurements using heat flux density sensors placed in the thermal field.

In the model of Schulz et all [96] the heat flux density absorbed at the boundary is
proportional to the laser beam intensity I via the absorption coefficient Ap

(17.31) jabs = −ApIez · ν
where ez · ν is the angle of incidence of the laser beam.
The laser beam intensity I itself is characterized by the maximum intensity of the beam
I0 and the beam radius

(17.32) I = −I0(t)f(
x− v0t

r
)

where v0 is the speed of feeding (the speed of the moving laser) and f is a distribution
(0 ≤ f ≤ 1).
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Bunting et all [3] developed a relationship between the power density incident on a
material and the cut speed in terms of the thermal properties of the material. They used
the technique of Rosenthal on moving heat sources and got the following relation

(17.33)
je
h

=
2k(θm − θ0)

r2
· 1

I(s)

where h is the thickness of the material, s = vr
2α

and I(s) has been calculated by authors
and could be expressed

(17.34) I(s) =

∫ 1

0

r′dr′
∫ 2π

0

exp(−sr′cosφ)K0s
(
r,2 − 2r′sinφ + 1

)1/2
dφ

where K0 is the zeroth order, modified Bessel function of the second kind, α is the heat
diffusivity and the equation is written in cylindrical coordinates (r′, φ) with dimension-
alized r′.

In studying the heat-affected zone during the laser cutting of stainless steel, Sheng et all
[97] expressed the beam energy Eb(x, y) as a function of spatial coordinates via the beam
intensity I(x, y) of Gaussian type

(17.35) Eb(x, y) =

∫

I(u, y)
du

v
=

∫
A(u, y)P

πr2v
exp

(

−u
2 + y2

r2

)

du

where A is the absorptivity and P is the beam power.

In the following we describe a simple technique to calculate the heat flux density on the
absorbing surface.
For the calculations it is convenient to discuss the topic not in terms of point source,

but in terms of incremental surface elements. Therefore consider, as illustrated in the
figure, a small emitting surface of area (length) ds, where the point Q is located. Fur-
ther, let us assume that the cylindrical surface of the plasma beam is emitting heat in
the radial direction, i.e. the heat flux density vector at any point of the beam surface
has the direction of the normal to the plasma surface at that point.1

Having in our disposal the heat flux density je at the point Q and the radius of the beam
r, our aim is to calculate the heat flux density absorbed at the point P of the workpiece
surface (see figure).

Let dq be the rate at which the energy leaves the incremental area ds. Then the average
flux jav

e leaving ds is defined as

(17.36) jav
e =

dq

ds
1This assumption is made only for the simplicity, the calculations can be done also for other flux

density distributions
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and the flux due to the point Q on the beam surface is defined to be

(17.37) je = lim
ds→0

dq

ds

The flux emitted from ds is then completely absorbed (assume the material is a black
body) by the surface of the material, more precisely, by the part of the surface which we
denote by ds′. Then analogous to (17.36), the average heat flux density jav

abs absorbed by
ds′ will be

(17.38) jav
abs =

dq

ds′

and following (17.37) we obtain

(17.39) jabs = lim
ds′→0

dq

ds′
= lim

ds′→0

jeds

ds′

For cylindrical heat source we have

(17.40) ds = r∆ϕ

Now let ds′′ be an element of the spherical surface which we obtain by projecting ds′

normal to the direction PQ (the direction which the point P makes with the emitting
point Q). In terms of the drawing in figure, the flux at the point P due to the energy
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leaving the point Q may be determined in terms of energy falling on an element ds′′ of
the circular surface (center at origin, radius R) which passes through P . We then obtain
for the surface element ds′′

(17.41) ds′′ = ds′cosψ as ∆ϕ→ 0

where ψ is the angle between the normal of the workpiece surface at point P and the line
PQ.
Thus,

(17.42) ds′ =
ds′′

cosψ

If the interface is represented as a smooth graph, y = f(x), then for cosψ, we obtain

(17.43) cosψ = − 1
√

x2 + f 2(x)
· 1
√

1 + (f ′(x))2
·
(

x

f(x)

)

·
(
f ′(x)

−1

)

where 1√
x2+f2(x)

(
x

f(x)

)

represents the unit normal vector to the surface ds′′ at point

P (x, y) and 1√
1+(f ′(x))2

(
f ′(x)
−1

)

is the unit normal to the graph y = f(x) at point P (x, y).

Inserting expressions for ds′ from (17.42) and cosψ from (17.43) with ds′′ = R∆ϕ into
(17.39) and taking into account that ds′ → 0 is equivalent to ∆ϕ→ 0, we obtain

jabs = −je · lim
∆ϕ→0

r∆ϕ
R∆ϕ

“√
x2+f2(x)

”−1
·
“√

1+(f ′(x))2
”−1

·(xf ′(x)−f(x))

(17.44) = −jer
xf ′(x) − f(x)

(x2 + f 2(x))
√

1 + (f ′(x))2

17.8 Solution algorithm

The following algorithm implements one time step only. One should repeat the steps in
the algorithm for every time step using several adaptive procedures described in section
14.

17.1 Algorithm (Stefan-Signorini problem). Step 1. Start with initialization: take
φ(x, 0) = φ0(x) to be the signed distance to the interface and u(x, 0) = u0(x) the initial
temperature distribution,

Step 1. Given the old values θm and φm, in each time step tm+1 first compute the new
temperature θm+1 by numerically solving the inequality (17.27), where the interface ∂Ωt
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is replaced with old discrete interface being the zero-level set of φm,

Step 3. with the updated temperature θm+1 solve the weak level-set equation (17.28) and
get the new level-set function φn+1, the zero level set of θm+1 is then the new discrete
interface,

Step 4. Go to step 2.

Remark 17.7. It is intuitively clear (also known from the physical experiments) that
the temperature has big variations when we are close to the cutting front and varies very
little far from the interface. Thus, for a good approximation of the solution we need a
fine grid at least in the regions close to the cutting front. In the regions far away from
the moving interface a relatively coarser grid would be satisfactory. Of course, at each
time step we refine the mesh using the adaptive procedures and keep the time-space error
below the given tolerance using a posteriori error estimates.

The following figures illustrate the temperature distribution in the workpiece and adap-
tively refined mesh.

Figure 17.4: Temperature Distribution in Workpiece
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Figure 17.5: Adaptively Refined Mesh
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Gauthier-Villars, 1974.

[31] C. M. Elliott, On the finite element approximation of an elliptic variational in-
equality arising from an implicit time discretization of the Stefan problem, IMA J.
Numer. Anal., 1 (1981), pp. 115–125.

[32] C. M. Elliott and R. Schätzle, The limit of the anisotropic double–obstacle
Allen–Cahn equation. Proc. Royal Soc. Edinburgh 126 A (1996), pp. 1217–1234.

[33] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic
problems IV: Nonlinear problems, SIAM J. Numer. Anal. 32 (1995), pp. 1729-1749.

[34] , Adaptive finite element methods for parabolic problems I: A linear model prob-
lem, SIAM J. Numer. Anal., 28 (1991), pp. 43–77.

[35] , Adaptive finite element methods for parabolic problems IV: nonlinear problems,
SIAM J. Numer. Anal., 32 (1995), pp. 1750–1763

[36] L. C. Evans, H. M. Soner, and P. E. Souganidis, Phase transitions and
generalized motion by mean curvature, Comm. Pure and Appl. Math, 45 (1992),
pp. 1097–1123.

[37] L. C. Evans and J. Spruck, Motion of level sets by mean curvature I, J. Diff.
Geom., 33 (1991), pp. 635–681.

[38] M. Fried, A Level Set Based Finite Element Algorithm for the Simulation of Den-
dritic Growth, Freiburg 2001, Preprint, to appear in Computing and Visualization
in Science.
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[40] J. Fröhlich, J. Lang, and R. Roitzsch, Selfadaptive finite element computa-
tions with smooth time controller and anisotropic refinement. Preprint SC 96-16,
ZIB Berlin, 1996.

[41] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second
order, Springer, 1983.

[42] M. E. Glicksman, R. J. Schaefer, and J. D. Ayers, Dendritic growth — a
test of theory, Metal. Trans. A, 7A (1976), pp. 1747–1759.

[43] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer,
1984.

152



[44] P. Grisvard, Elliptic Problems on Non-smooth Domains, Pitman, Boston, 1985.

[45] M. E. Gurtin, Toward a nonequilibrium thermodynamics of two–phase materials,
Arch. Ration. Mech. Anal., 100 (1988), pp. 275–312.

[46] W. Hackbusch, Theorie und Numerik elliptischer Differentialgleichungen, Teub-
ner, 1986.

[47] R. W. Hoppe, A globally convergent multi-grid algorithm for moving boundary
problems of two-phase Stefan type, IMA J. Numer. Anal., 13 (1993), pp. 235–253.

[48] R. W. Hoppe and R. Kornhuber, Adaptive multilevel methods for obstacle prob-
lems, SIAM J. Numer. Anal., 31 (1994), pp. 301–323.

[49] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Diff. Geom.,
20 (1984), pp. 237–266.

[50] J. E. Hutchinson, Computing conformal maps and minimal surfaces, Proc.
C.M.A., Canberra, 26 (1991), pp. 140–161.

[51] H. Jarausch, On an adaptive grid refining technique for finite element approxima-
tions, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 1105–1120.

[52] K. Kalik and W. Wendland, The approximation of closed manifolds by trian-
gulated manifolds and the triangulation of closed manifolds, Computing, 47 (1992),
pp. 255–275.

[53] J. Kevorkian, Partial Differential Equations, Chapman and Hall, London, 1990

[54] R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities I,
Numer. Math., 69 (1994), pp. 167–184.

[55] , Monotone multigrid methods for elliptic variational inequalities II, Numer.
Math., 72 (1996), pp. 481–500.

[56] , Adaptive monotone multigrid methods for some non–smooth optimization prob-
lems. in R. Glowinski, J. Priaux, Z. Shi, O. Widlund (eds.), ‘Domain Decomposition
Methods in Sciences and Engineering’, Wiley (1997), pp. 177-191.

[57] , Monotone Multigrid Methods for Nonlinear Variational Problems, Teubner,
1997.

[58] R. Kornhuber and R. Roitzsch, On adaptive grid refinement in the presence
of internal or boundary layers, IMPACT Comput. Sci. Engrg., 2 (1990), pp. 40–72.
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