

Numerik II

WS 2001/2002 — Übung 2 — 29.10.2001 Abgabe: 31.10.2001

Aufgabe 5 (4 Punkte)

a) Zeigen Sie, dass die Jacobi-Iterationsmatrix $M_J=-D^{-1}(L+R)$ zur 1D Finite Differenzen Matrix für -u'' zur Schrittweite h=1/(n+1) die folgenden Eigenwerte λ^k mit Eigenvektoren v^k , $k=1,\ldots,n$, besitzt:

$$\lambda^k = \cos\frac{k\pi}{n+1}, \quad v_i^k = \sin\frac{ik\pi}{n+1}.$$

b) Zeigen Sie, dass die Jacobi-Iterationsmatrix $M_J=-D^{-1}(L+R)$ zur 2D Finite Differenzen Matrix für $-\Delta u$ zur Schrittweite h=1/(n+1) die folgenden Eigenwerte $\lambda^{k,l}$ mit Eigenvektoren $v^{k,l},\ k,l=1,\ldots,n$, besitzt:

$$\lambda^{k,l} = \frac{1}{2} \left(\cos \frac{k\pi}{n+1} + \cos \frac{l\pi}{n+1} \right), \qquad v_{i,j}^{k,l} = \sin \frac{ik\pi}{n+1} \sin \frac{jl\pi}{n+1}.$$

Aufgabe 6 (2 Punkte)

Bestimmen Sie die optimalen Relaxationsparameter ω_{opt} für die 1D bzw. 2D Finite Differenzen Matrizen zur Schrittweite h=1/(n+1).

Aufgabe 7 (2 Punkte)

Zeigen Sie: Die SSOR-Iteration für eine hermitesche Matrix A ergibt eine hermitesche Iterationsmatrix $N_{\rm SSOR}$ in der Darstellung $x_{k+1} = x_k + N_{\rm SSOR}(b - Ax_k)$.

Programmieraufgabe 1 Abgabe: 05.11.2001

(8 Punkte)

- a) Implementieren Sie das Jacobi- und das SOR-Verfahren für dünn besetzte Matrizen. Verwenden Sie dazu in MATLAB sparse Matrizen.
- b) Lösen Sie damit die 1D Finite Differenzen Approximation zum Problem

$$-u''(x) = \pi^2 \sin(\pi x) \quad \text{in } \Omega = (0, 1),$$

$$u(0) = u(1) = 0.$$

Verwenden Sie dabei Schrittweiten h=1/(n+1) mit n=10,100,1000 und SOR-Parameter $\omega=1,\omega_{opt}.$ Welches Verhalten der Konvergenzgeschwindigkeiten beobachten Sie? Welches Verhalten zeigt die Approximation der exakten Lösung, gemessen durch $\max_{i=1,\dots,n}|u_i-u(x_i)|$?

c) Lösen Sie damit die 2D Finite Differenzen Approximation zum Problem

$$\begin{array}{rcl} -\Delta u &=& 1 & & \text{in } \Omega = (0,1)^2, \\ u &=& 0 & & \text{auf } \partial \Omega. \end{array}$$

Verwenden Sie dabei Schrittweiten h=1/(n+1) mit n=10,32,100 und SOR-Parameter $\omega=1,\omega_{opt}$. Welches Verhalten der Konvergenzgeschwindigkeiten beobachten Sie?