

Mathematische Grundlagen der Informatik I

WS 2003/04 — Übung 10 — 13.01.2004 Abgabe: 20.01.2004

Aufgabe 33 (4 Punkte)

Berechnen Sie die folgenden Polynomdivisionen mit Rest über den angegebenen Körpern:

- a) über \mathbb{Q} : $(3x^4 + 2x^2 + 3x)/(5x^2 2x)$
- b) über \mathbb{R} : $(5\pi x^5 + 10x^2 1)/(\pi x^2 + 2\pi)$
- c) über $\mathbb{Z}/5\mathbb{Z}$: $(4x^2 + 3x + 2)/(3x + 2)$
- d) über $\mathbb{Z}/7\mathbb{Z}$: $(3x^3 + 4x^2 + 5x + 6)/(2x^2 + x)$

Aufgabe 34 (4 Punkte)

Zeigen Sie, dass die Gruppe der Drehungen eines regelmäßigen m-Ecks um seinen Mittelpunkt (vgl. Aufgabe 26; $m \ge 3$) isomorph ist zur Gruppe ($\mathbb{Z}/m\mathbb{Z}, \oplus$).

Aufgabe 35 (Boolsche Algebra)

(8 Punkte)

Eine Boolsche Algebra ist ein Tripel (M, \oplus, \otimes) aus einer Menge M, die mindestens zwei Elemente 0 und 1 enthält, und zwei Verknüpfungen \oplus, \otimes auf M, für die folgende Eigenschaften gelten:

- (B1) (M, \oplus) und (M, \otimes) sind zwei kommutative Halbgruppen,
- (B2) Für alle $x, y, z \in M$ gelten die Distributivgesetze $x \oplus (y \otimes z) = (x \oplus y) \otimes (x \oplus z)$ und $x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z)$,
- (B3) Für alle $x \in M$ gelten $x \oplus 0 = x$ und $x \otimes 1 = x$,
- (B4) Zu jedem $x \in M$ gibt es ein $\bar{x} \in M$ mit $x \oplus \bar{x} = 1$ und $x \otimes \bar{x} = 0$.
 - a) Zeigen Sie, dass die *Schaltalgebra* $(\{0,1\},\vee,\wedge)$, siehe Abschnitt 3.7 der Vorlesung, eine Boolsche Algebra ist.
 - b) Sei M eine nichtleere Menge. Zeigen Sie, dass die Potenzmenge von M mit Mengen-Vereinigung und -Durchschnitt, $(P(M), \cup, \cap)$, eine Boolsche Algebra ist. Welche Teilmengen von M spielen dabei die Rollen von 0 und 1, und was ist \bar{N} zu einer Teilmenge $N \subset M$?