

Mathematische Grundlagen der Informatik I

WS 2003/04 — Übung 11 — 20.01.2004 Abgabe: 27.01.2004

Aufgabe 36 (4 Punkte)

Seien U,V,W drei \mathbb{K} -Vektorräume und $f:U\to V$, $g:V\to W$ lineare Abbildungen. Zeigen Sie, dass dann die Verkettung

$$g \circ f : U \to W$$

ebenfalls eine lineare Abbildung ist (vgl. Satz 5.11 der Vorlesung).

Aufgabe 37 (4 Punkte)

Sei $F:=\{f:\mathbb{R}\to\mathbb{R}\mid f \text{ Abbildung}\}$ der Vektorraum der reellwertigen Funktionen auf \mathbb{R} . Zeigen Sie, dass zu einem gegebenen $x\in\mathbb{R}$ die Punktauswertung von Funktionen

$$P_x(f) := f(x)$$

eine lineare Abbildung $P_x: F \to \mathbb{R}$ definiert. Beschreiben Sie Kern und Bild dieser Abbildung.

Aufgabe 38 (4 Punkte)

Seien U, V zwei \mathbb{K} -Vektorräume.

Zeigen Sie, dass die Menge der linearen Abbildungen $f:U\to V$ einen \mathbb{K} -Vektorraum bildet.

(Falls $V = \mathbb{K}$, so nennt man diesen Raum auch den *Dualraum* von U.)

Aufgabe 39 (4 Punkte)

- a) Zeigen Sie, dass die Polynome $1, x, x^2, x^3, \ldots$ linear unabhängig in $\mathbb{R}[X]$ sind.
- b) Zeigen Sie, dass sie eine Basis des Vektorraums $\mathbb{R}[X]$ bilden.